CONTENTS

Chapter 1: What is the Lightning Component Framework?
- What is Salesforce Lightning? ... 1
- Why Use the Lightning Component Framework? 2
- Components .. 3
- Events .. 3
- Open Source Aura Framework .. 4
- Browser Support Considerations for Lightning Components 4
- My Domain Is Required to Use Lightning Components in Your Salesforce Org ... 6
- Using the Developer Console ... 6
- Online Content .. 7

Chapter 2: Quick Start .. 9
- Before You Begin .. 10
- Trailhead: Explore Lightning Components Resources 10
- Create a Component for Lightning Experience and the Salesforce Mobile App ... 11
 - Load the Contacts ... 14
 - Fire the Events .. 18

Chapter 3: Creating Components .. 20
- Component Names .. 22
- Create Lightning Components in the Developer Console 22
 - Lightning Bundle Configurations Available in the Developer Console ... 23
- Component Markup ... 25
- Component Namespace .. 25
 - Using the Default Namespace in Organizations with No Namespace Set ... 26
 - Using Your Organization’s Namespace 26
 - Using a Namespace in or from a Managed Package 27
 - Creating a Namespace in Your Organization 27
 - Namespace Usage Examples and Reference 27
- Component Bundles ... 30
- Component IDs ... 31
- HTML in Components .. 32
 - Supported HTML Tags .. 33
- CSS in Components ... 35
- Component Attributes ... 36
 - Supported aura:attribute Types 37
 - Basic Types ... 38
 - Function Type ... 40
 - Object Types ... 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard and Custom Object Types</td>
<td>40</td>
</tr>
<tr>
<td>Collection Types</td>
<td>41</td>
</tr>
<tr>
<td>Custom Apex Class Types</td>
<td>42</td>
</tr>
<tr>
<td>Framework-Specific Types</td>
<td>43</td>
</tr>
<tr>
<td>Component Composition</td>
<td>45</td>
</tr>
<tr>
<td>Component Body</td>
<td>48</td>
</tr>
<tr>
<td>Component Facets</td>
<td>49</td>
</tr>
<tr>
<td>Controlling Access</td>
<td>50</td>
</tr>
<tr>
<td>Application Access Control</td>
<td>53</td>
</tr>
<tr>
<td>Interface Access Control</td>
<td>53</td>
</tr>
<tr>
<td>Component Access Control</td>
<td>53</td>
</tr>
<tr>
<td>Attribute Access Control</td>
<td>54</td>
</tr>
<tr>
<td>Event Access Control</td>
<td>54</td>
</tr>
<tr>
<td>Using Object-Oriented Development</td>
<td>54</td>
</tr>
<tr>
<td>What is Inherited?</td>
<td>55</td>
</tr>
<tr>
<td>Inherited Component Attributes</td>
<td>55</td>
</tr>
<tr>
<td>Abstract Components</td>
<td>57</td>
</tr>
<tr>
<td>Interfaces</td>
<td>57</td>
</tr>
<tr>
<td>Inheritance Rules</td>
<td>59</td>
</tr>
<tr>
<td>Best Practices for Conditional Markup</td>
<td>59</td>
</tr>
<tr>
<td>Component Versioning</td>
<td>60</td>
</tr>
<tr>
<td>Components with Minimum API Version Requirements</td>
<td>61</td>
</tr>
<tr>
<td>Validations for Lightning Component Code</td>
<td>62</td>
</tr>
<tr>
<td>Validation When You Save Code Changes</td>
<td>63</td>
</tr>
<tr>
<td>Validation During Development Using the Salesforce CLI</td>
<td>64</td>
</tr>
<tr>
<td>Review and Resolve Validation Errors and Warnings</td>
<td>68</td>
</tr>
<tr>
<td>Lightning Component Validation Rules</td>
<td>69</td>
</tr>
<tr>
<td>Salesforce Lightning CLI (Deprecated)</td>
<td>75</td>
</tr>
<tr>
<td>Using Expressions</td>
<td>75</td>
</tr>
<tr>
<td>Dynamic Output in Expressions</td>
<td>76</td>
</tr>
<tr>
<td>Conditional Expressions</td>
<td>77</td>
</tr>
<tr>
<td>Data Binding Between Components</td>
<td>77</td>
</tr>
<tr>
<td>Value Providers</td>
<td>82</td>
</tr>
<tr>
<td>Expression Evaluation</td>
<td>87</td>
</tr>
<tr>
<td>Expression Operators Reference</td>
<td>88</td>
</tr>
<tr>
<td>Expression Functions Reference</td>
<td>91</td>
</tr>
<tr>
<td>Using Labels</td>
<td>94</td>
</tr>
<tr>
<td>Using Custom Labels</td>
<td>95</td>
</tr>
<tr>
<td>Input Component Labels</td>
<td>96</td>
</tr>
<tr>
<td>Dynamically Populating Label Parameters</td>
<td>96</td>
</tr>
<tr>
<td>Getting Labels in JavaScript</td>
<td>97</td>
</tr>
<tr>
<td>Getting Labels in Apex</td>
<td>98</td>
</tr>
<tr>
<td>Setting Label Values via a Parent Attribute</td>
<td>100</td>
</tr>
<tr>
<td>Localization</td>
<td>100</td>
</tr>
</tbody>
</table>
Providing Component Documentation .. 102
Working with Base Lightning Components .. 104
 Base Lightning Components Considerations 111
 Event Handling in Base Lightning Components 113
 Lightning Design System Considerations 115
Working with UI Components ... 136
 Event Handling in UI Components .. 138
 Using the UI Components .. 139
Supporting Accessibility .. 140
 Button Labels .. 141
 Audio Messages ... 141
 Forms, Fields, and Labels ... 141
 Events .. 142
 Menus ... 142

Chapter 4: Using Components ... 144
Lightning Component Bundle Design Resources .. 145
Use Lightning Components in Lightning Experience and the Salesforce Mobile App .. 147
 Configure Components for Custom Tabs .. 147
 Add Lightning Components as Custom Tabs in a Lightning Experience App .. 148
 Add Lightning Components as Custom Tabs in the Salesforce App ... 149
 Lightning Component Actions ... 150
 Override Standard Actions with Lightning Components 157
Navigation in Lightning Experience and the Salesforce Mobile App Using Page References .. 161
 pageReference Types ... 163
 Add Links to Lightning Pages from Your Custom Components 169
Get Your Lightning Components Ready to Use on Lightning Pages 169
 Configure Components for Lightning Pages and the Lightning App Builder .. 170
 Configure Components for Lightning Experience Record Pages 172
 Create Components for Outlook Integration and Lightning for Gmail ... 172
 Create Dynamic Picklists for Your Custom Components 177
 Create a Custom Lightning Page Template Component 178
 Lightning Page Template Component Best Practices 181
 Make Your Lightning Page Components Width-Aware with
 lightning:flexipageRegionInfo ... 182
 Tips and Considerations for Configuring Components for Lightning Pages and the Lightning
 App Builder .. 183
Use Lightning Components in Community Builder 184
 Configure Components for Communities .. 185
 Create Custom Theme Layout Components for Communities 186
 Create Custom Component for Guest User Flows 188
 Create Custom Search and Profile Menu Components for Communities .. 192
 Create Custom Content Layout Components for Communities 193
Use Lightning Components with Flows .. 194
Contents

Considerations for Configuring Components for Flows 195
Customize Flow Screens Using Lightning Components .. 198
Create Flow Local Actions Using Lightning Components 209
Embed a Flow in a Custom Lightning Component ... 213
Display Flow Stages with a Lightning Component ... 220
Add Components to Apps ... 224
Integrate Your Custom Apps into the Chatter Publisher 225
Using Background Utility Items ... 230
Use Lightning Components in Visualforce Pages .. 231
Add Lightning Components to Any App with Lightning Out (Beta) 232
Lightning Out Requirements .. 234
Lightning Out Dependencies ... 234
Lightning Out Markup ... 235
Authentication from Lightning Out ... 237
Share Lightning Out Apps with Non-Authenticated Users 238
Lightning Out Considerations and Limitations ... 239
Lightning Container ... 240
Using a Third-Party Framework .. 240
Lightning Container Component Limits .. 247
The Lightning Realty App ... 249
lightning-container NPM Module Reference ... 252

Chapter 5: Communicating with Events ... 258
Actions and Events .. 259
Handling Events with Client-Side Controllers .. 260
Component Events .. 262
Component Event Propagation ... 263
Create Custom Component Events ... 264
Fire Component Events ... 264
Handling Component Events ... 265
Component Event Example ... 271
Application Events ... 273
Application Event Propagation ... 274
Create Custom Application Events ... 275
Fire Application Events ... 276
Handling Application Events ... 277
Application Event Example ... 279
Event Handling Lifecycle .. 281
Advanced Events Example .. 283
Firing Lightning Events from Non-Lightning Code .. 287
Events Best Practices .. 288
Events Anti-Patterns ... 289
Events Fired During the Rendering Lifecycle ... 289
Events Handled in the Salesforce mobile app and Lightning Experience 291
System Events

Chapter 6: Creating Apps

App Overview
Designing App UI
Creating App Templates
Using the AppCache
Distributing Applications and Components

Chapter 7: Styling Apps

Using the Salesforce Lightning Design System in Apps
Using External CSS
More Readable Styling Markup with the join Expression
Tips for CSS in Components
Vendor Prefixes
Styling with Design Tokens
 Tokens Bundles
 Create a Tokens Bundle
 Defining and Using Tokens
 Using Expressions in Tokens
 Extending Tokens Bundles
 Using Standard Design Tokens

Chapter 8: Developing Secure Code

What is Locker Service?
JavaScript ES5 Strict Mode Enforcement
DOM Access Containment
Secure Wrappers
eval() Function is Limited by Locker Service
MIME Types Permitted
Access to Supported JavaScript API Framework Methods Only
What Does Locker Service Affect?
Locke Service Tools
Disabling Locker Service for a Component
Don’t Mix Component API Versions
Locker Service Disabled for Unsupported Browsers
Content Security Policy Overview
 Stricter CSP Restrictions
Freeze JavaScript Prototypes

Chapter 9: Using JavaScript

Invoking Actions on Component Initialization
Sharing JavaScript Code in a Component Bundle
Sharing JavaScript Code Across Components
UsingExternal JavaScript Libraries
Contents

Dynamically Creating Components .. 345
Detecting Data Changes with Change Handlers 348
Finding Components by ID ... 349
Working with Attribute Values in JavaScript 349
Working with a Component Body in JavaScript 351
Working with Events in JavaScript .. 352
Modifying the DOM .. 354
 Modifying DOM Elements Managed by the Lightning Component Framework 355
 Modifying DOM Elements Managed by External Libraries 359
Checking Component Validity ... 359
Modifying Components Outside the Framework Lifecycle 361
Validating Fields ... 362
Throwing and Handling Errors .. 364
Calling Component Methods .. 366
 Return Result for Synchronous Code ... 367
 Return Result for Asynchronous Code ... 369
Dynamically Adding Event Handlers To a Component 371
Dynamically Showing or Hiding Markup .. 374
Adding and Removing Styles .. 374
Which Button Was Pressed? ... 376
Formatting Dates in JavaScript .. 377
Using JavaScript Promises .. 379
Making API Calls from Components ... 381
Create CSP Trusted Sites to Access Third-Party APIs 381

Chapter 10: Using Apex ... 383
Creating Server-Side Logic with Controllers .. 384
 Apex Server-Side Controller Overview ... 385
 AuraEnabled Annotation .. 385
 Creating an Apex Server-Side Controller .. 386
 Returning Data from an Apex Server-Side Controller 387
 Returning Errors from an Apex Server-Side Controller 388
 Calling a Server-Side Action ... 389
 Queueing of Server-Side Actions .. 392
 Foreground and Background Actions ... 392
 Storable Actions ... 393
 Abortable Actions .. 397
Working with Salesforce Records .. 397
 CRUD and Field-Level Security (FLS) ... 400
 Saving Records .. 401
 Deleting Records ... 403
Testing Your Apex Code .. 405
Making API Calls from Apex ... 406
Creating Components in Apex .. 407
Contents

Chapter 11: Lightning Data Service

- Loading a Record .. 409
- Saving a Record .. 410
- Creating a Record .. 413
- Deleting a Record .. 416
- Record Changes .. 418
- Errors ... 420
- Considerations ... 420
- Lightning Data Service Example 423
- SaveRecordResult ... 427

Chapter 12: Testing Components with Lightning Testing Service

- How Lightning Testing Service Works 429
- Install Lightning Testing Service 430
- Get Started with Lightning Testing Service 432
- Explore the Example Test Suites 433
- Write Your Own Tests ... 434
- Use Other Frameworks ... 436

Chapter 13: Debugging

- Enable Debug Mode for Lightning Components 438
- Disable Caching Setting During Development 438
- Salesforce Lightning Inspector Chrome Extension 439
 - Install Salesforce Lightning Inspector 439
 - Salesforce Lightning Inspector 439
- Log Messages .. 453

Chapter 14: Performance

- Performance Settings ... 455
 - Enable Secure Browser Caching 455
 - Enable CDN to Load Applications Faster 455
- Fixing Performance Warnings 456
 - `<aura:if>`—Clean Unrendered Body 456
 - `<aura:iteration>`—Multiple Items Set 458

Chapter 15: Reference

- Component Library .. 461
 - Aura Reference Doc App 461
 - Differences Between Documentation Sites 462
- System Tag Reference 462
 - `aura:application` .. 463
 - `aura:dependency` .. 464
 - `aura:event` .. 465
 - `aura:interface` .. 466
CHAPTER 1 What is the Lightning Component Framework?

In this chapter ...

- What is Salesforce Lightning?
- Why Use the Lightning Component Framework?
- Components
- Events
- Open Source Aura Framework
- Browser Support Considerations for Lightning Components
- My Domain Is Required to Use Lightning Components in Your Salesforce Org
- Using the Developer Console
- Online Content

The Lightning Component framework is a UI framework for developing dynamic web apps for mobile and desktop devices. It's a modern framework for building single-page applications engineered for growth.

The framework supports partitioned multi-tier component development that bridges the client and server. It uses JavaScript on the client side and Apex on the server side.
What is Salesforce Lightning?

Lightning includes the Lightning Component Framework and some exciting tools for developers. Lightning makes it easier to build responsive applications for any device.

Lightning includes these technologies:

- Lightning components give you a client-server framework that accelerates development, as well as app performance, and is ideal for use with the Salesforce mobile app and Salesforce Lightning Experience.
- The Lightning App Builder empowers you to build apps visually, without code, quicker than ever before using off-the-shelf and custom-built Lightning components. You can make your Lightning components available in the Lightning App Builder so administrators can build custom user interfaces without code.

Using these technologies, you can seamlessly customize and easily deploy new apps to mobile devices running Salesforce. In fact, the Salesforce mobile app and Salesforce Lightning Experience are built with Lightning components.

This guide provides you with an in-depth resource to help you create your own standalone Lightning apps, as well as custom Lightning components that can be used in the Salesforce mobile app. You will also learn how to package applications and components and distribute them in the AppExchange.

Why Use the Lightning Component Framework?

The benefits include an out-of-the-box set of components, event-driven architecture, and a framework optimized for performance.

Out-of-the-Box Component Set

- Comes with an out-of-the-box set of components to kick start building apps. You don’t have to spend your time optimizing your apps for different devices as the components take care of that for you.

Rich component ecosystem

- Create business-ready components and make them available in the Salesforce app, Lightning Experience, and Communities. Salesforce app users access your components via the navigation menu. Customize Lightning Experience or Communities using drag-and-drop components on a Lightning Page in the Lightning App Builder or using Community Builder. Additional components are available for your org in the AppExchange. Similarly, you can publish your components and share them with other users.

Performance

- Uses a stateful client and stateless server architecture that relies on JavaScript on the client side to manage UI component metadata and application data. The client calls the server only when absolutely necessary; for example to get more metadata or data. The server only sends data that is needed by the user to maximize efficiency. The framework uses JSON to exchange data between the server and the client. It intelligently utilizes your server, browser, devices, and network so you can focus on the logic and interactions of your apps.

Event-driven architecture

- Uses an event-driven architecture for better decoupling between components. Any component can subscribe to an application event, or to a component event they can see.

Faster development

- Empowers teams to work faster with out-of-the-box components that function seamlessly with desktop and mobile devices. Building an app with components facilitates parallel design, improving overall development efficiency. Components are encapsulated and their internals stay private, while their public shape is visible to consumers of the component. This strong separation gives component authors freedom to change the internal implementation details and insulates component consumers from those changes.
Device-aware and cross browser compatibility

Apps use responsive design and provide an enjoyable user experience. The Lightning Component framework supports the latest in browser technology such as HTML5, CSS3, and touch events.

Components

Components are the self-contained and reusable units of an app. They represent a reusable section of the UI, and can range in granularity from a single line of text to an entire app.

The framework includes a set of prebuilt components. For example, components that come with the Lightning Design System styling are available in the lightning namespace. These components are also known as the base Lightning components. You can assemble and configure components to form new components in an app. Components are rendered to produce HTML DOM elements within the browser.

A component can contain other components, as well as HTML, CSS, JavaScript, or any other Web-enabled code. This enables you to build apps with sophisticated UIs.

The details of a component’s implementation are encapsulated. This allows the consumer of a component to focus on building their app, while the component author can innovate and make changes without breaking consumers. You configure components by setting the named attributes that they expose in their definition. Components interact with their environment by listening to or publishing events.

SEE ALSO:
- Creating Components
- Working with Base Lightning Components

Events

Event-driven programming is used in many languages and frameworks, such as JavaScript and Java Swing. The idea is that you write handlers that respond to interface events as they occur.

A component registers that it may fire an event in its markup. Events are fired from JavaScript controller actions that are typically triggered by a user interacting with the user interface.

There are two types of events in the framework:

- **Component events** are handled by the component itself or a component that instantiates or contains the component.
- **Application events** are handled by all components that are listening to the event. These events are essentially a traditional publish-subscribe model.

You write the handlers in JavaScript controller actions.

SEE ALSO:
- Communicating with Events
- Handling Events with Client-Side Controllers
Open Source Aura Framework

The Lightning Component framework is built on the open source Aura framework. The Aura framework enables you to build apps completely independent of your data in Salesforce.

The Aura framework is available at https://github.com/forcedotcom/aura. Note that the open source Aura framework has features and components that are not currently available in the Lightning Component framework. We are working to surface more of these features and components for Salesforce developers.

The sample code in this guide uses out-of-the-box components from the Aura framework, such as aura:iteration and ui:button. The aura namespace contains components to simplify your app logic, and the ui namespace contains components for user interface elements like buttons and input fields. The force namespace contains components specific to Salesforce.

Browser Support Considerations for Lightning Components

Browser support varies across different Salesforce products and experiences. Use this browser support information as you build with Lightning components.

The following tables provide high-level minimum browser versions for various Salesforce features. There are additional requirements and recommended settings for all browsers, and a number of considerations that apply to specific browsers. See the browser compatibility details in Salesforce Help.

Lightning Experience and Lightning-Based Features

The following table describes minimum browser version requirements for using Lightning components within various features that are built with our next-generation user interface platform.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Microsoft® Internet Explorer®</th>
<th>Microsoft® Edge</th>
<th>Google Chrome™</th>
<th>Mozilla® Firefox®</th>
<th>Apple® Safari®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning Experience</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
<tr>
<td>Salesforce Console in Lightning Experience</td>
<td>N/A</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
<tr>
<td>Lightning Communities</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
<tr>
<td>Outlook integration (Client)</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
What is the Lightning Component Framework?

Browser Support Considerations for Lightning Components

<table>
<thead>
<tr>
<th></th>
<th>Microsoft® Internet Explorer®</th>
<th>Microsoft® Edge</th>
<th>Google Chrome™</th>
<th>Mozilla® Firefox®</th>
<th>Apple® Safari®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook integration</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
<tr>
<td>(Web)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standalone Lightning App (my.app)</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
<tr>
<td>Lightning Out</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
</tbody>
</table>

1. Locker Service is disabled for IE11. We recommend using supported browsers other than IE11 for enhanced security.

⚠ **Important:** Support for Internet Explorer 11 to access Lightning Experience is retiring beginning in Summer ’16.
- You can continue to use IE11 to access Lightning Experience until December 16, 2017.
- If you opt in to [Extended Support for IE11](#), you can continue to use IE11 to access Lightning Experience and Communities until December 31, 2020.
- IE11 has significant performance issues in Lightning Experience.
- It is strongly recommended that you do not use Internet Explorer 11 with Community Builder.
- This change doesn’t impact Salesforce Classic.

Lightning Components for Visualforce in Salesforce Classic

The following table describes minimum browser version requirements for using Lightning components within various features that are built with our classic user interface platform.

<table>
<thead>
<tr>
<th></th>
<th>Microsoft® Internet Explorer®</th>
<th>Microsoft® Edge</th>
<th>Google Chrome™</th>
<th>Mozilla® Firefox®</th>
<th>Apple® Safari®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salesforce Classic</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
<tr>
<td>Salesforce Console in Salesforce Classic</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>N/A</td>
</tr>
<tr>
<td>Classic Communities</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
</tbody>
</table>
What is the Lightning Component Framework?

My Domain Is Required to Use Lightning Components in Your Salesforce Org

<table>
<thead>
<tr>
<th></th>
<th>Microsoft® Internet Explorer®</th>
<th>Microsoft® Edge</th>
<th>Google Chrome™</th>
<th>Mozilla® Firefox®</th>
<th>Apple® Safari®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salesforce Sites</td>
<td>IE 11 (support for IE 9 and 10 ends on April 5, 2019)</td>
<td>Latest</td>
<td>Latest</td>
<td>Latest</td>
<td>11.x+</td>
</tr>
</tbody>
</table>

Note: The term “latest” is defined by the browser vendors. Check with your browser vendor to determine the latest version available.

SEE ALSO:
- Salesforce Help: Supported Browsers
- Salesforce Help: Recommendations and Requirements for All Browsers
- Locker Service Disabled for Unsupported Browsers
- Content Security Policy Overview

My Domain Is Required to Use Lightning Components in Your Salesforce Org

You must deploy My Domain in your org if you want to use Lightning components in Lightning tabs, Lightning pages, as standalone apps, as actions and action overrides, as custom Lightning page templates, or elsewhere in your org.

When My Domain isn’t deployed in your org, user interface controls related to Lightning components may be hidden or inactive. Lightning components added to pages, tabs, and so on, don’t run and may be omitted, or display a placeholder error message.

SEE ALSO:
- Salesforce Help: My Domain

Using the Developer Console

The Developer Console provides tools for developing your components and applications.
The Developer Console enables you to perform these functions.

- Use the menu bar (1) to create or open these Lightning resources.
 - Application
 - Component
 - Interface
 - Event
 - Tokens
- Use the workspace (2) to work on your Lightning resources.
- Use the sidebar (3) to create or open client-side resources that are part of a specific component bundle.
 - Controller
 - Helper
 - Style
 - Documentation
 - Renderer
 - Design
 - SVG

For more information on the Developer Console, see The Developer Console User Interface.

SEE ALSO:
- Salesforce Help: Open the Developer Console
- Create Lightning Components in the Developer Console
- Component Bundles

Online Content

This guide is available online. To view the latest version, go to:

Go beyond this guide with exciting Trailhead content. To explore more of what you can do with Lightning Components, go to:

Trailhead Module: Lightning Components Basics
Link: https://trailhead.salesforce.com/module/lex_dev_lc_basics
Learn with a series of hands-on challenges on how to use Lightning Components to build modern web apps.

Quick Start: Lightning Components
Link: https://trailhead.salesforce.com/project/quickstart-lightning-components
Create your first component that renders a list of Contacts from your org.

Project: Build an Account Geolocation App
Link: https://trailhead.salesforce.com/project/account-geolocation-app
Build an app that maps your Accounts using Lightning Components.

Project: Build a Restaurant-Locator Lightning Component
Link: https://trailhead.salesforce.com/project/workshop-lightning-restaurant-locator
Build a Lightning component with Yelp’s Search API that displays a list of businesses near a certain location.

Project: Build a Lightning App with the Lightning Design System
Link: https://trailhead.salesforce.com/project/slds-lightning-components-workshop

Design a Lightning component that displays an Account list.
CHAPTER 2 Quick Start

In this chapter ...

- Before You Begin
- Trailhead: Explore Lightning Components Resources
- Create a Component for Lightning Experience and the Salesforce Mobile App

The quick start provides Trailhead resources for you to learn core Lightning components concepts, and a short tutorial that builds a Lightning component to manage selected contacts in the Salesforce app and Lightning Experience. You’ll create all components from the Developer Console. The tutorial uses several events to create or edit contact records, and view related cases.
Before You Begin

To work with Lightning apps and components, follow these prerequisites.

1. Create a Developer Edition organization
2. Define a Custom Salesforce Domain Name

Note: For this quick start tutorial, you don’t need to create a Developer Edition organization or register a namespace prefix. But you want to do so if you’re planning to offer managed packages. You can create Lightning components using the UI in Enterprise, Performance, Unlimited, Developer Editions, or a sandbox. If you don’t plan to use a Developer Edition organization, you can go directly to Define a Custom Salesforce Domain Name.

Create a Developer Edition Organization

You need an org to do this quick start tutorial, and we recommend you don’t use your production org. You only need to create a Developer Edition org if you don’t already have one.

1. In your browser, go to https://developer.salesforce.com/signup?d=70130000000td6N.
2. Fill in the fields about you and your company.
3. In the Email field, make sure to use a public address you can easily check from a Web browser.
4. Type a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same as your email address, and in fact, it’s usually better if they aren’t the same. Your username is your login and your identity on developer.salesforce.com, so you’re often better served by choosing a username such as firstname@lastname.com.
5. Read and then select the checkbox for the Master Subscription Agreement and then click Submit Registration.
6. In a moment you’ll receive an email with a login link. Click the link and change your password.

Define a Custom Salesforce Domain Name

A custom domain name helps you enhance access security and better manage login and authentication for your organization. If your custom domain is universalcontainers, then your login URL would be https://universalcontainers.lightning.force.com. For more information, see My Domain in the Salesforce Help.

Trailhead: Explore Lightning Components Resources

Get up to speed with the fundamentals of Lightning components with Trailhead resources.

Whether you’re a new Salesforce developer or a seasoned Visualforce developer, we recommend that you start with the following Trailhead resources.

Lightning Components Basics

Use Lightning components to build modern web apps with reusable UI components. You’ll learn core Lightning components concepts and build a simple expense tracker app that can be run in a standalone app, Salesforce app, or Lightning Experience.

Quick Start: Lightning Components

Create your first component that renders a list of contacts from your org.

Build an Account Geolocation App

Build an app that maps your accounts using Lightning components.
Build a Lightning App with the Lightning Design System
Design a Lightning component that displays an account list.

Build a Restaurant-Locator Lightning Component
Build a Lightning component with Yelp's Search API that displays a list of businesses near a certain location.

Create a Component for Lightning Experience and the Salesforce Mobile App

Explore how to create a custom UI that loads contact data and interacts with Lightning Experience and the Salesforce app.

This tutorial walks you through creating a component that:

• Displays a toast message (1) using the `force:showToast` event when all contacts are loaded successfully.
• Updates the number of contacts (2) based on the selected lead source.
• Filters the contacts using the `lightning:select` component (3) when a lead source (referral or social media) is selected.
• Displays the contact data using the `lightning:card` component (4).
• Navigates to the record when the `Details` button (5) is clicked.
Here's how the component looks like in the Salesforce app. You're creating two components, `contactList` and `contacts`, where `contactList` is a container component that iterates over and displays `contacts` components. All contacts are displayed in `contactList`, but you can select different lead sources to view a subset of contacts associated with the lead source.
In the next few topics, you create the following resources.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacts Bundle</td>
<td></td>
</tr>
<tr>
<td>contacts.cmp</td>
<td>The component that displays individual contacts</td>
</tr>
<tr>
<td>contactsController.js</td>
<td>The client-side controller action that navigates to a contact record using the force:navigateToSObject event</td>
</tr>
<tr>
<td>contactList Bundle</td>
<td></td>
</tr>
<tr>
<td>contactList.cmp</td>
<td>The component that loads the list of contacts</td>
</tr>
<tr>
<td>contactListController.js</td>
<td>The client-side controller actions that call the helper resource to load contact data and handles the lead source selection</td>
</tr>
</tbody>
</table>
Load the Contacts

Create an Apex controller and load your contacts. An Apex controller is the bridge that connects your components and your Salesforce data.

Your organization must have existing contact records for this tutorial.

1. Click **File > New > Apex Class**, and then enter **ContactController** in the **New Class** window. A new Apex class, **ContactController.apxc**, is created. Enter this code and then save.

   ```java
   public with sharing class ContactController {
     @AuraEnabled
     public static List<Contact> getContacts() {
       List<Contact> contacts =
         [SELECT Id, Name, MailingStreet, Phone, Email, LeadSource FROM Contact];

       //Add isAccessible() check
       return contacts;
     }
   }
   ``

   **ContactController** contains methods that return your contact data using SOQL statements. This Apex controller is wired up to your component in a later step. **getContacts()** returns all contacts with the selected fields.

2. Click **File > New > Lightning Component**, and then enter **contacts** for the **Name** field in the New Lightning Bundle popup window. This creates a component, **contacts.cmp**. Enter this code and then save.

   ```xml
 <aura:component>
 <aura:attribute name="contact" type="Contact" />

 <lightning:card variant="Narrow" title="{!v.contact.Name}" iconName="standard:contact">
 <aura:set attribute="actions">
 <lightning:button name="details" label="Details" onclick="!c.goToRecord" />
 </aura:set>

 <aura:set attribute="footer">
 <lightning:badge label="{!v.contact.Email}"/>
 </aura:set>

 <p class="slds-p-horizontal_small">
 {!v.contact.Phone}
 </p>

 <p class="slds-p-horizontal_small">
 {!v.contact.MailingStreet}
 </p>
 </lightning:card>
 </aura:component>
   ```
This component creates the template for your contact data using the `lightning:card` component, which simply creates a visual container around a group of information. This template gets rendered for every contact that you have, so you have multiple instances of a component in your view with different data. The `onclick` event handler on the `lightning:button` component calls the `goToRecord` client-side controller action when the button is clicked. Notice the expression `{!v.contact.Name}`? 

v represents the view, which is the set of component attributes, and `contact` is the attribute of type `Contact`. Using this dot notation, you can access the fields in the contact object, like `Name` and `Email`, after you wire up the Apex controller to the component in the next step.

3. Click **File > New > Lightning Component**, and then enter `contactList` for the **Name** field in the New Lightning Bundle popup window, which creates the `contactList.cmp` component. Enter this code and then save. If you’re using a namespace in your organization, replace `ContactController` with `myNamespace.ContactController`. You wire up the Apex controller to the component by using the `controller="ContactController"` syntax.
Let’s dive into the code. We added the `init` handler to load the contact data during initialization. The handler calls the client-side controller code in the next step. We also added two attributes, `contacts` and `totalContacts`, which stores the list of contacts and a counter to display the total number of contacts respectively. Additionally, the `contactList` component is an attribute used to store the filtered list of contacts when an option is selected on the lead source dropdown menu. The `lightning:layout` components simply create grids to align your content in the view with Lightning Design System CSS classes.

The page header contains the `{!v.totalContacts}` expression to dynamically display the number of contacts based on the lead source you select. For example, if you select `Referral` and there are 30 contacts whose `Lead Source` fields are set to `Referral`, then the expression evaluates to 30.

Next, we create a dropdown menu with the `lightning:select` component. When you select an option in the dropdown menu, the `onchange` event handler calls your client-side controller to update the view with a subset of the contacts. You create the client-side logic in the next few steps.

In case you’re wondering, the `force:appHostable` interface enables your component to be surfaced in Lightning Experience and the Salesforce mobile app as tabs, which we are getting into later.

4. In the `contactList` sidebar, click **CONTROLLER** to create a resource named `contactListController.js`. Replace the placeholder code with the following code and then save.

```javascript
({
 doInit : function(component, event, helper) {
 // Retrieve contacts during component initialization
 helper.loadContacts(component);
 },

 handleSelect : function(component, event, helper) {
 var contacts = component.get("v.contacts");
 var contactList = component.get("v.contactList");

 // Get the selected option: "Referral", "Social Media", or "All"
 var selected = event.getSource().get("v.value");

 var filter = [];
 var k = 0;
 for (var i=0; i<contactList.length; i++){
 var c = contactList[i];
 if (selected !== "All"){
 if (c.LeadSource == selected) {
 filter[k] = c;

```
The client-side controller calls helper functions to do most of the heavy-lifting, which is a recommended pattern to promote code reuse. Helper functions also enable specialization of tasks, such as processing data and firing server-side actions, which is what we are covering next. Recall that the onchange event handler on the lightning:select component calls the handleSelect client-side controller action, which is triggered when you select an option in the dropdown menu. handleSelect checks the option value that’s passed in using event.getSource().get("v.value"). It creates a filtered list of contacts by checking that the lead source field on each contact matches the selected lead source. Finally, update the view and the total number of contacts based on the selected lead source.

5. In the contactList sidebar, click HELPER to create a resource named contactListHelper.js. Replace the placeholder code with the following code and then save.

```javascript
({
 loadContacts : function(cmp) {
 // Load all contact data
 var action = cmp.get("c.getContacts");
 action.setCallback(this, function(response) {
 var state = response.getState();
 if (state === "SUCCESS") {
 cmp.set("v.contacts", response.getReturnValue());
 cmp.set("v.contactList", response.getReturnValue());
 this.updateTotal(cmp);
 }
 // Display toast message to indicate load status
 var toastEvent = $A.get("e.force:showToast");
 if (state === 'SUCCESS'){
 toastEvent.setParams({
 "title": "Success!",
 "message": " Your contacts have been loaded successfully."
 });
 } else {
 toastEvent.setParams({
 "title": "Error!",
 "message": " Something has gone wrong."
 });
 toastEvent.fire();
 }
 $A.enqueueAction(action);
 });
 },
```

Load the Contacts
updateTotal: function(cmp) {
    var contacts = cmp.get("v.contacts");
    cmp.set("v.totalContacts", contacts.length);
}
}

During initialization, the contactList component loads the contact data by:

- Calling the Apex controller method getContacts, which returns the contact data via a SOQL statement
- Setting the return value via cmp.set("v.contacts", response.getReturnValue()) in the action callback, which updates the view with the contact data
- Updating the total number of contacts in the view, which is evaluated in updateTotal

You must be wondering how your component works in Lightning Experience and the Salesforce app. Let's find out next!

6. Make the contactList component available via a custom tab in Lightning Experience and the Salesforce app.
   - Add Lightning Components as Custom Tabs in a Lightning Experience App
   - Add Lightning Components as Custom Tabs in the Salesforce App

   For this tutorial, we recommend that you add the component as a custom tab in Lightning Experience.

When your component is loaded in Lightning Experience or the Salesforce app, a toast message indicates that your contacts are loaded successfully. Select a lead source from the dropdown menu and watch your contact list and the number of contacts update in the view.

Next, wire up an event that navigates to a contact record when you click a button in the contact list.

Fire the Events

Fire the events in your client-side controller or helper functions. The force events are handled by Lightning Experience and the Salesforce mobile app, but let's view and test the components in Lightning Experience to simplify things.

This demo builds on the contacts component you created in Load the Contacts on page 14.

1. In the contacts sidebar, click CONTROLLER to create a resource named contactsController.js. Replace the placeholder code with the following code and then save.

```javascript

{{
 goToRecord : function(component, event, helper) {
 // Fire the event to navigate to the contact record
 var sObjectEvent = $A.get("e.force:navigateToSObject");
 sObjectEvent.setParams({
 "recordId": component.get("v.contact.Id")
 })
 sObjectEvent.fire();
 }
}}
```

The onclick event handler in the following button component triggers the goToRecord client-side controller when the button is clicked.

```html
<lightning:button name="details" label="Details" onclick="!c.goToRecord" />
```

You set the parameters to pass into the events using the event.setParams() syntax. In this case, you're passing in the Id of the contact record to navigate to. There are other events besides force:navigateToSObject that simplify navigation within
Lightning Experience and the Salesforce app. For more information, see Events Handled in the Salesforce mobile app and Lightning Experience.

2. To test the event, refresh your custom tab in Lightning Experience, and click the Details button.

   The force:navigateToSObject is fired, which updates the view to display the contact record page.

We stepped through creating a component that loads contact data using a combination of client-side controllers and Apex controller methods to create a custom UI with your Salesforce data. The possibilities of what you can do with Lightning components are endless. While we showed you how to surface a component via a tab in Lightning Experience and the Salesforce app, you can take this tutorial further by surfacing the component on record pages via the Lightning App Builder and even Communities. To explore the possibilities, blaze the trail with the resources available at Trailhead: Explore Lightning Components Resources.
CHAPTER 3  Creating Components

In this chapter ...

• Component Names
• Create Lightning Components in the Developer Console
• Component Markup
• Component Namespace
• Component Bundles
• Component IDs
• HTML in Components
• CSS in Components
• Component Attributes
• Component Composition
• Component Body
• Component Facets
• Controlling Access
• Using Object-Oriented Development
• Best Practices for Conditional Markup
• Component Versioning
• Components with Minimum API Version Requirements
• Validations for Lightning Component Code
• Using Expressions
• Using Labels
• Localization

Components are the functional units of the Lightning Component framework.

A component encapsulates a modular and potentially reusable section of UI, and can range in granularity from a single line of text to an entire application.
Creating Components

- Providing Component Documentation
- Working with Base Lightning Components
- Working with UI Components
- Supporting Accessibility
Component Names

A component name must follow the naming rules for Lightning components.

A component name must follow these naming rules:

- Must begin with a letter
- Must contain only alphanumeric or underscore characters
- Must be unique in the namespace
- Can’t include whitespace
- Can’t end with an underscore
- Can’t contain two consecutive underscores

SEE ALSO:

- Create Lightning Components in the Developer Console
- Component Markup

Create Lightning Components in the Developer Console

The Developer Console is a convenient, built-in tool you can use to create new and edit existing Lightning components and other bundles.

1. Open the Developer Console.
   
   Select Developer Console from the Your Name or the quick access menu.

2. Open the New Lightning Bundle panel for a Lightning component.
   
   Select File > New > Lightning Component.

3. Name the component.
   
   For example, enter helloWorld in the Name field.

4. Optional: Describe the component.
   
   Use the Description field to add details about the component.

5. Optional: Add component configurations to the new component.
   
   You can select as many options in the Component Configuration section as you wish, or select no configuration at all.

6. Click Submit to create the component.
   
   Or, to cancel creating the component, click the panel's close box in the top right corner.

Example:
IN THIS SECTION:

Lightning Bundle Configurations Available in the Developer Console

Configurations make it easier to create a component or application for a specific purpose, like a Lightning Page or Lightning Communities Page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle panel in the Developer Console offers a choice of component configurations when you create a Lightning component or application bundle.

SEE ALSO:

Using the Developer Console

Lightning Bundle Configurations Available in the Developer Console

Lightning Bundle Configurations Available in the Developer Console

Configurations make it easier to create a component or application for a specific purpose, like a Lightning Page or Lightning Communities Page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle panel in the Developer Console offers a choice of component configurations when you create a Lightning component or application bundle.

Configurations add the interfaces required to support using the component in the desired context. For example, when you choose the Lightning Tab configuration, your new component includes implements="force:appHostable" in the <aura:component> tag.
Using configurations is optional. You can use them in any combination, including all or none.

The following configurations are available in the New Lightning Bundle panel.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Markup</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning component bundle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning Tab</td>
<td>implements=&quot;force:appHostable&quot;</td>
<td>Creates a component for use as a navigation element in Lightning Experience or Salesforce mobile apps.</td>
</tr>
<tr>
<td>Lightning Page</td>
<td>implements=&quot;flexipage:availableForAllPageTypes&quot; and access=&quot;global&quot;</td>
<td>Creates a component for use in Lightning pages or the Lightning App Builder.</td>
</tr>
<tr>
<td>Lightning Record Page</td>
<td>implements=&quot;flexipage:availableForRecordHome, force:hasRecordId&quot; and access=&quot;global&quot;</td>
<td>Creates a component for use on a record home page in Lightning Experience.</td>
</tr>
<tr>
<td>Lightning Communities Page</td>
<td>implements=&quot;forceCommunity:availableForAllPageTypes&quot; and access=&quot;global&quot;</td>
<td>Creates a component that’s available for drag and drop in the Community Builder.</td>
</tr>
<tr>
<td>Lightning Quick Action</td>
<td>implements=&quot;force:lightningQuickAction&quot;</td>
<td>Creates a component that can be used with a Lightning quick action.</td>
</tr>
<tr>
<td>Lightning application bundle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning Out Dependency App</td>
<td>extends=&quot;ltng:outApp&quot;</td>
<td>Creates an empty Lightning Out dependency app.</td>
</tr>
</tbody>
</table>
Note: For details of the markup added by each configuration, see the respective documentation for those features.

SEE ALSO:
- Create Lightning Components in the Developer Console
- Configure Components for Custom Tabs
- Configure Components for Custom Actions
- Configure Components for Lightning Pages and the Lightning App Builder
- Configure Components for Lightning Experience Record Pages
- Configure Components for Communities

Component Markup

Component resources contain markup and have a .cmp suffix. The markup can contain text or references to other components, and also declares metadata about the component.

Let's start with a simple "Hello, world!" example in a helloWorld.cmp component.

```xml
<aura:component>
 Hello, world!
</aura:component>
```

This is about as simple as a component can get. The "Hello, world!" text is wrapped in the `<aura:component>` tags, which appear at the beginning and end of every component definition.

Components can contain most HTML tags so you can use markup, such as `<div>` and `<span>`. HTML5 tags are also supported.

```xml
<aura:component>
 <div class="container">
 <!--Other HTML tags or components here-->
 </div>
</aura:component>
```

Note: Case sensitivity should be respected as your markup interacts with JavaScript, CSS, and Apex.

SEE ALSO:
- Using the Developer Console
- Component Names
- Component Access Control

Component Namespace

Every component is part of a namespace, which is used to group related components together. If your organization has a namespace prefix set, use that namespace to access your components. Otherwise, use the default namespace to access your components.

Another component or application can reference a component by adding `<myNamespace:myComponent>` in its markup. For example, the helloWorld component is in the docsample namespace. Another component can reference it by adding `<docsample:helloWorld />` in its markup.
Lightning components that Salesforce provides are grouped into several namespaces, such as aura, ui, and force. Components from third-party managed packages have namespaces from the providing organizations. In your organization, you can choose to set a namespace prefix. If you do, that namespace is used for all of your Lightning components. A namespace prefix is required if you plan to offer managed packages on the AppExchange. If you haven’t set a namespace prefix for your organization, use the default namespace c when referencing components that you’ve created.

Namespaces in Code Samples

The code samples throughout this guide use the default c namespace. Replace c with your namespace if you’ve set a namespace prefix.

Using the Default Namespace in Organizations with No Namespace Set

If your organization hasn’t set a namespace prefix, use the default namespace c when referencing Lightning components that you’ve created.

The following items must use the c namespace when your organization doesn’t have a namespace prefix set.

• References to components that you’ve created
• References to events that you’ve defined

The following items use an implicit namespace for your organization and don’t require you to specify a namespace.

• References to custom objects
• References to custom fields on standard and custom objects
• References to Apex controllers

See Namespace Usage Examples and Reference on page 27 for examples of all of the preceding items.

Using Your Organization’s Namespace

If your organization has set a namespace prefix, use that namespace to reference Lightning components, events, custom objects and fields, and other items in your Lightning markup.

The following items use your organization’s namespace when your organization has a namespace prefix set.

• References to components that you’ve created
• References to events that you’ve defined
• References to custom objects
• References to custom fields on standard and custom objects
• References to Apex controllers
• References to static resources

Note: Support for the c namespace in organizations that have set a namespace prefix is incomplete. The following items can use the c namespace if you prefer to use the shortcut, but it’s not currently a recommended practice.

• References to components that you’ve created when used in Lightning markup, but not in expressions or JavaScript
• References to events that you’ve defined when used in Lightning markup, but not in expressions or JavaScript
• References to custom objects when used in component and event type and default system attributes, but not in expressions or JavaScript
Using a Namespace in or from a Managed Package

Always use the complete namespace when referencing items from a managed package, or when creating code that you intend to distribute in your own managed packages.

Creating a Namespace in Your Organization

Create a namespace for your organization by registering a namespace prefix.

If you’re not creating managed packages for distribution then registering a namespace prefix isn’t required, but it’s a best practice for all but the smallest organizations.

Your namespace prefix must:
- Begin with a letter
- Contain one to 15 alphanumeric characters
- Not contain two consecutive underscores

For example, myNp123 and my_np are valid namespaces, but 123Company and my__np aren’t.

To register a namespace prefix:
1. From Setup, enter Packages in the Quick Find box. Under Create, select Packages.
   - **Note:** This item is only available in Salesforce Classic.
2. In the Developer Settings panel, click Edit.
   - **Note:** This button doesn’t appear if you’ve already configured your developer settings.
3. Review the selections that are required for configuring developer settings, and then click Continue.
4. Enter the namespace prefix you want to register.
5. Click Check Availability to determine if the namespace prefix is already in use.
6. If the namespace prefix that you entered isn’t available, repeat the previous two steps.
7. Click Review My Selections.
8. Click Save.

Namespace Usage Examples and Reference

This topic provides examples of referencing components, objects, fields, and so on in Lightning components code.

Examples are provided for the following:
- Components, events, and interfaces in your organization
- Custom objects in your organization
- Custom fields on standard and custom objects in your organization
- Server-side Apex controllers in your organization
- Dynamic creation of components in JavaScript
- Static resources in your organization
Organizations with No Namespace Prefix Set

The following illustrates references to elements in your organization when your organization doesn’t have a namespace prefix set. References use the default namespace, `c`, where necessary.

<table>
<thead>
<tr>
<th>Referenced Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component used in markup</td>
<td><code>&lt;c:myComponent /&gt;</code></td>
</tr>
<tr>
<td>Component used in a system attribute</td>
<td><code>&lt;aura:component extends=&quot;c:myComponent&quot;&gt; &lt;aura:component implements=&quot;c:myInterface&quot;&gt;</code></td>
</tr>
<tr>
<td>Apex controller</td>
<td><code>&lt;aura:component controller=&quot;ExpenseController&quot;&gt;</code></td>
</tr>
<tr>
<td>Custom object in attribute data type</td>
<td><code>&lt;aura:attribute name=&quot;expense&quot; type=&quot;Expense__c&quot; /&gt;</code></td>
</tr>
<tr>
<td>Custom object or custom field in attribute defaults</td>
<td><code>&lt;aura:attribute name=&quot;newExpense&quot; type=&quot;Expense__c&quot; default=&quot;{ 'sobjectType': 'Expense__c', 'Name': '', 'Amount__c': 0, ... }&quot; /&gt;</code></td>
</tr>
<tr>
<td>Custom field in an expression</td>
<td><code>&lt;ui:inputNumber value=&quot;{!v.newExpense.Amount__c}&quot; label=... /&gt;</code></td>
</tr>
<tr>
<td>Custom field in a JavaScript function</td>
<td><code>updateTotal: function(component) { ... for(var i = 0 ; i &lt; expenses.length ; i++){ var exp = expenses[i]; total += exp.Amount__c; } ... }</code></td>
</tr>
<tr>
<td>Component created dynamically in a JavaScript function</td>
<td><code>var myCmp = $A.createComponent(&quot;c:myComponent&quot;, {}, function(myCmp) { });</code></td>
</tr>
<tr>
<td>Interface comparison in a JavaScript function</td>
<td><code>aCmp.isInstanceOf(&quot;c:myInterface&quot;)</code></td>
</tr>
<tr>
<td>Event registration</td>
<td><code>&lt;aura:registerEvent type=&quot;c:updateExpenseItem&quot; name=... /&gt;</code></td>
</tr>
<tr>
<td>Event handler</td>
<td><code>&lt;aura:handler event=&quot;c:updateExpenseItem&quot; action=... /&gt;</code></td>
</tr>
<tr>
<td>Explicit dependency</td>
<td><code>&lt;aura:dependency resource=&quot;markup://c:myComponent&quot; /&gt;</code></td>
</tr>
<tr>
<td>Application event in a JavaScript function</td>
<td><code>var updateEvent = $A.get(&quot;e.c:updateExpenseItem&quot;);</code></td>
</tr>
</tbody>
</table>
### Organizations with a Namespace Prefix

The following illustrates references to elements in your organization when your organization has set a namespace prefix. References use an example namespace yournamespace.

<table>
<thead>
<tr>
<th>Referenced Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component used in markup</td>
<td><code>&lt;yournamespace:myComponent /&gt;</code></td>
</tr>
<tr>
<td>Component used in a system attribute</td>
<td><code>&lt;aura:component extends=&quot;yournamespace:myComponent&quot;&gt;</code></td>
</tr>
<tr>
<td></td>
<td><code>&lt;aura:component implements=&quot;yournamespace:myInterface&quot;&gt;</code></td>
</tr>
<tr>
<td>Apex controller</td>
<td><code>&lt;aura:component controller=&quot;yournamespace.ExpenseController&quot;&gt;</code></td>
</tr>
<tr>
<td>Custom object in attribute data type</td>
<td><code>&lt;aura:attribute name=&quot;expenses&quot; type=&quot;yournamespace__Expense__c[]&quot; /&gt;</code></td>
</tr>
<tr>
<td>Custom object or custom field in attribute defaults</td>
<td><code>&lt;aura:attribute name=&quot;newExpense&quot; type=&quot;yournamespace__Expense__c&quot; default=&quot;{ 'sobjectType': 'yournamespace__Expense__c', 'Name': '', 'yournamespace__Amount__c': 0, ... }&quot; /&gt;</code></td>
</tr>
<tr>
<td>Custom field in an expression</td>
<td><code>&lt;ui:inputNumber value=&quot;{!v.newExpense.yournamespace__Amount__c}&quot; label=... /&gt;</code></td>
</tr>
<tr>
<td>Custom field in a JavaScript function</td>
<td><code>updateTotal: function(component) { ... for (var i = 0; i &lt; expenses.length; i++) { var exp = expenses[i]; total += exp.yournamespace__Amount__c; } ... }</code></td>
</tr>
<tr>
<td>Component created dynamically in a JavaScript function</td>
<td><code>var myCmp = $A.createComponent(&quot;yournamespace:myComponent&quot;, {}, function(myCmp) { });</code></td>
</tr>
<tr>
<td>Interface comparison in a JavaScript function</td>
<td><code>aCmp.isInstanceOf(“yournamespace:myInterface”)</code></td>
</tr>
</tbody>
</table>
### Component Bundles

A component bundle contains a component or an app and all its related resources.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Resource Name</th>
<th>Usage</th>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component or Application</td>
<td>sample.cmp or sample.app</td>
<td>The only required resource in a bundle. Contains markup for the component or app. Each bundle contains only one component or app resource.</td>
<td>Creating Components on page 20, aura.application on page 463</td>
</tr>
<tr>
<td>CSS Styles</td>
<td>sample.css</td>
<td>Contains styles for the component.</td>
<td>CSS in Components on page 35</td>
</tr>
<tr>
<td>Controller</td>
<td>sampleController.js</td>
<td>Contains client-side controller methods to handle events in the component.</td>
<td>Handling Events with Client-Side Controllers on page 260</td>
</tr>
<tr>
<td>Design</td>
<td>sample.design</td>
<td>File required for components used in Lightning App Builder, Lightning pages, Community Builder, or Cloud Flow Designer.</td>
<td>Lightning Component Bundle Design Resources</td>
</tr>
<tr>
<td>Documentation</td>
<td>sample.auradoc</td>
<td>A description, sample code, and one or multiple references to example components</td>
<td>Providing Component Documentation on page 102</td>
</tr>
<tr>
<td>Renderer</td>
<td>sampleRenderer.js</td>
<td>Client-side renderer to override default rendering for a component.</td>
<td>Create a Custom Renderer on page 356</td>
</tr>
</tbody>
</table>
Component IDs

A component has two types of IDs: a local ID and a global ID. You can retrieve a component using its local ID in your JavaScript code. A global ID can be useful to differentiate between multiple instances of a component or for debugging purposes.

Local IDs

A local ID is an ID that is only scoped to the component. A local ID is often unique but it’s not required to be unique.

Create a local ID by using the `aura:id` attribute. For example:

```html
<lightning:button aura:id="button1" label="button1"/>
```

**Note:** `aura:id` doesn’t support expressions. You can only assign literal string values to `aura:id`.

Find the button component by calling `cmp.find("button1")` in your client-side controller, where `cmp` is a reference to the component containing the button.

`find()` returns different types depending on the result.

- If the local ID is unique, `find()` returns the component.
- If there are multiple components with the same local ID, `find()` returns an array of the components.
- If there is no matching local ID, `find()` returns undefined.

To find the local ID for a component in JavaScript, use `cmp.getLocalId()`.

Global IDs

Every component has a unique `globalId`, which is the generated runtime-unique ID of the component instance. A global ID (1) is not guaranteed to be the same beyond the lifetime of a component, so it should never be relied on. A global ID can be useful to differentiate between multiple instances of a component or for debugging purposes.
To create a unique ID for an HTML element, you can use the `globalId` as a prefix or suffix for your element. For example:

```html
<div id="{!globalId + '_footer'}"></div>
```

In your browser’s developer console, retrieve the element using `document.getElementById("<globalId>_footer")`, where `<globalId>` is the generated runtime-unique ID.

To retrieve a component’s global ID in JavaScript, use the `getGlobalId()` function.

```javascript
var globalId = cmp.getGlobalId();
```

SEE ALSO:
- Finding Components by ID
- Which Button Was Pressed?

## HTML in Components

An HTML tag is treated as a first-class component by the framework. Each HTML tag is translated into an `<aura:html>` component, allowing it to enjoy the same rights and privileges as any other component.

For example, the framework automatically converts a standard HTML `<div>` tag to this component:

```aura
<aura:html tag="div" />
```

You can add HTML markup in components. Note that you must use strict XHTML. For example, use `<br/>` instead of `<br>`. You can also use HTML attributes and DOM events, such as `onclick`.

⚠️ **Warning:** Some tags, like `<applet>` and `<font>`, aren't supported.

### Unescaping HTML

To output pre-formatted HTML, use `aura:unescapedHTML`. For example, this is useful if you want to display HTML that is generated on the server and add it to the DOM. You must escape any HTML if necessary or your app might be exposed to security vulnerabilities.

You can pass in values from an expression, such as in `aura:unescapedHtml value="{!v.note.body}"`.

`{!expression}` is the framework’s expression syntax. For more information, see Using Expressions on page 75.
Supported HTML Tags

The framework supports most HTML tags, including the majority of HTML5 tags. We recommend that you use components in preference to HTML tags. For example, use `lightning:button` instead of `<button>`. Components are designed with accessibility in mind so users with disabilities or those who use assistive technologies can also use your app. When you start building more complex components, the reusable out-of-the-box components can simplify your job by handling some of the plumbing that you would otherwise have to create yourself. Also, these components are secure and optimized for performance.

Note that you must use strict XHTML. For example, use `<br/>` instead of `<br>`.

Some HTML tags are unsafe or unnecessary. The framework doesn’t support these tags. The `HtmlTag` enum in this open-source Aura file lists the supported HTML tags. Any tag followed by `(false)` is not supported. For example, `applet(false)` means the `applet` tag isn’t supported.

Note: The linked file is in the master branch of the open-source Aura project. The master branch is our current development branch and is ahead of the current release of the Lightning Component framework. However, this file changes infrequently and is the best place to see if a tag is supported now or in the near future.

Anchor Tag: `<a>`

Don’t hard code or dynamically generate Salesforce URLs in the `href` attribute of an `<a>` tag. Use events, such as `force:navigateToSObject` or `force:navigateToURL`, instead.

Avoid the `href` Attribute

Using the `href` attribute of an `<a>` tag leads to inconsistent behavior in different apps and shouldn’t be relied on. For example, don’t use this markup to link to a record:

```
Salesforce record ID (DON'T DO THIS)
```
If you use `#` in the `href` attribute, a secondary issue occurs. The hash mark (`#`) is a URL fragment identifier and is often used in Web development for navigation within a page. Avoid `#` in the `href` attribute of anchor tags in Lightning components as it can cause unexpected navigation changes, especially in the Salesforce app. That’s another reason not to use `href`.

**Use Navigation Events**

Use one of the navigation events for consistent behavior across Lightning Experience, Salesforce app, and Lightning communities.

- `force:navigateToList`  
  Navigates to a list view.
- `force:navigateToObjectHome`  
  Navigates to an object home.
- `force:navigateToRelatedList`  
  Navigates to a related list.
- `force:navigateToSObject`  
  Navigates to a record.
- `force:navigateToURL`  
  Navigates to a URL.

As well as consistent behavior, using navigation events instead of `<a>` tags reduces the number of full app reloads, leading to better performance.

**Example Using Navigation Event**

This example uses an `<a>` tag that’s wired to a controller action, which fires the `force:navigateToSObject` event to navigate to a record. The `one.app` container handles the event. This event is supported in Lightning Experience, Salesforce app, and Lightning communities.

```html
<!--c:navToRecord-->
<aura:component>
 <aura:attribute name="recordId" type="String" />
 <p>link to record</p>
</aura:component>
```

Here is the controller that fires the event.

```javascript
/* navToRecordController.js */

{!
 handleClick: function (component, event, helper) {
 var navEvt = $A.get("e.force:navigateToSObject");
 navEvt.setParams({
 "recordId": component.get("v.recordId")
 });
 navEvt.fire();
 }
}
```

The record ID is passed into `c:navToRecord` by setting its `recordId` attribute. When `c:navToRecord` is used in Lightning Experience, Salesforce app, or Lightning communities, the link navigates to the specified record.
CSS in Components

Style your components with CSS.

Add CSS to a component bundle by clicking the STYLE button in the Developer Console sidebar.

Note: You can’t add a <style> tag in component markup or when you dynamically create a component in JavaScript code. This restriction ensures better component encapsulation and prevents component styling interfering with the styling of another component. The <style> tag restriction applies to components with API version 42.0 or later.

For external CSS resources, see Styling Apps on page 298.

All top-level elements in a component have a special .THIS CSS class added to them. This, effectively, adds namespace to CSS and helps prevent one component’s CSS from overriding another component’s styling. The framework throws an error if a CSS file doesn’t follow this convention.

Let’s look at a sample helloHTML.cmp component. The CSS is in helloHTML.css.

Component source

```html
<aura:component>
 <div class="white">
 Hello, HTML!
 </div>

 <h2>Check out the style in this list.</h2>

 <li class="red">I'm red.
 <li class="blue">I'm blue.
 <li class="green">I'm green.

</aura:component>
```

CSS source

```css
.THIS {
 background-color: grey;
}

.THIS.white {
 background-color: white;
}

.THIS .red {
 background-color: red;
}

.THIS .blue {
 background-color: blue;
}

.THIS .green {
 background-color: green;
}
```
**Output**

The top-level elements, `h2` and `ul`, match the `THIS` class and render with a grey background. Top-level elements are tags wrapped by the HTML `body` tag and not by any other tags. In this example, the `li` tags are not top-level because they are nested in a `ul` tag.

The `<div class="white">` element matches the `.THIS.white` selector and renders with a white background. Note that there is no space in the selector as this rule is for top-level elements.

The `<li class="red">` element matches the `.THIS .red` selector and renders with a red background. Note that this is a descendant selector and it contains a space as the `<li>` element is not a top-level element.

**SEE ALSO:**
- Adding and Removing Styles
- HTML in Components

**Component Attributes**

Component attributes are like member variables on a class in Apex. They are typed fields that are set on a specific instance of a component, and can be referenced from within the component's markup using an expression syntax. Attributes enable you to make components more dynamic.

Use the `<aura:attribute>` tag to add an attribute to the component or app. Let's look at the following sample, `helloAttributes.app`:

```xml
<aura:application>
 <aura:attribute name="whom" type="String" default="world"/>
 Hello {!v.whom}!
</aura:application>
```

All attributes have a name and a type. Attributes may be marked as required by specifying `required="true"`, and may also specify a default value.

In this case we've got an attribute named `whom` of type String. If no value is specified, it defaults to "world".

Though not a strict requirement, `<aura:attribute>` tags are usually the first things listed in a component’s markup, as it provides an easy way to read the component’s shape at a glance.

**Attribute Naming Rules**

An attribute name must follow these naming rules:

- Must begin with a letter or an underscore
- Must contain only alphanumeric or underscore characters

**Expressions**

`helloAttributes.app` contains an expression, `{!v.whom}`, which is responsible for the component’s dynamic output.
{!expression} is the framework’s expression syntax. In this case, the expression we are evaluating is \( v \cdot \text{whom} \). The name of the attribute we defined is \( \text{whom} \), while \( v \) is the value provider for a component’s attribute set, which represents the view.

Note: Expressions are case sensitive. For example, if you have a custom field \( \text{myNamespace__Amount__c} \), you must refer to it as {!v.myObject.myNamespace__Amount__c}.

IN THIS SECTION:
- Supported aura:attribute Types
- Basic Types
  - Function Type
    - An attribute can have a type corresponding to a JavaScript function. If a child component has an attribute of this type, you can pass a callback from a parent component that contains the child component.
  - Object Types
    - Standard and Custom Object Types
    - Collection Types
    - Custom Apex Class Types
  - Framework-Specific Types

SEE ALSO:
- Supported aura:attribute Types
- Using Expressions

### Supported aura:attribute Types

aura:attribute describes an attribute available on an app, interface, component, or event.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access</td>
<td>String</td>
<td>Indicates whether the attribute can be used outside of its own namespace. Possible values are public (default), and global, and private.</td>
</tr>
<tr>
<td>name</td>
<td>String</td>
<td>Required. The name of the attribute. For example, if you set (&lt;\text{ aura:attribute name=&quot;isTrue&quot; type=&quot;Boolean&quot; } /&gt;) on a component called (&lt;\text{ aura:newCmp } /&gt;), you can set this attribute when you instantiate the component; for example, (&lt;\text{ aura:newCmp isTrue=&quot;false&quot; } /&gt;).</td>
</tr>
<tr>
<td>type</td>
<td>String</td>
<td>Required. The type of the attribute. For a list of basic types supported, see Basic Types.</td>
</tr>
<tr>
<td>default</td>
<td>String</td>
<td>The default value for the attribute, which can be overwritten as needed. When setting a default value, expressions using the $Label, $Locale, and $Browser global value providers are supported. Alternatively, to set a dynamic default, use an init event. See Invoking Actions on Component Initialization on page 339.</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>required</td>
<td>Boolean</td>
<td>Determines if the attribute is required. The default is false.</td>
</tr>
<tr>
<td>description</td>
<td>String</td>
<td>A summary of the attribute and its usage.</td>
</tr>
</tbody>
</table>

All `<aura:attribute>` tags have name and type values. For example:

```xml
<aura:attribute name="whom" type="String" />
```

**Note**: Although type values are case insensitive, case sensitivity should be respected as your markup interacts with JavaScript, CSS, and Apex.

**SEE ALSO**:

- Component Attributes

### Basic Types

Here are the supported basic type values. Some of these types correspond to the wrapper objects for primitives in Java. Since the framework is written in Java, defaults, such as maximum size for a number, for these basic types are defined by the Java objects that they map to.

<table>
<thead>
<tr>
<th>type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td><code>&lt;aura:attribute name=&quot;showDetail&quot; type=&quot;Boolean&quot; /&gt;</code></td>
<td>Valid values are true or false. To set a default value of true, add default=&quot;true&quot;.</td>
</tr>
<tr>
<td>Date</td>
<td><code>&lt;aura:attribute name=&quot;startDate&quot; type=&quot;Date&quot; /&gt;</code></td>
<td>A date corresponding to a calendar day in the format yyyy-mm-dd. The hh:mm:ss portion of the date is not stored. To include time fields, use DateTime instead.</td>
</tr>
<tr>
<td>DateTime</td>
<td><code>&lt;aura:attribute name=&quot;lastModifiedDate&quot; type=&quot;DateTime&quot; /&gt;</code></td>
<td>A date corresponding to a timestamp. It includes date and time details with millisecond precision.</td>
</tr>
<tr>
<td>Decimal</td>
<td><code>&lt;aura:attribute name=&quot;totalPrice&quot; type=&quot;Decimal&quot; /&gt;</code></td>
<td>Decimal values can contain fractional portions (digits to the right of the decimal). Maps to java.math.BigDecimal. Decimal is better than Double for maintaining precision for floating-point calculations. It’s preferable for currency fields.</td>
</tr>
<tr>
<td>Double</td>
<td><code>&lt;aura:attribute name=&quot;widthInchesFractional&quot; type=&quot;Double&quot; /&gt;</code></td>
<td>Double values can contain fractional portions. Maps to java.lang.Double. Use Decimal for currency fields instead.</td>
</tr>
<tr>
<td>Integer</td>
<td><code>&lt;aura:attribute name=&quot;numRecords&quot; type=&quot;Integer&quot; /&gt;</code></td>
<td>Integer values can contain numbers with no fractional portion. Maps to java.lang.Integer, which defines its limits, such as maximum size.</td>
</tr>
</tbody>
</table>
Long values can contain numbers with no fractional portion. Maps to java.lang.Long, which defines its limits, such as maximum size.

Use this data type when you need a range of values wider than those provided by Integer.

String

A sequence of characters.

You can use arrays for each of these basic types. For example:

```xml
<aura:attribute name="favoriteColors" type="String[]" default="['red','green','blue']" />
```

Retrieving Data from an Apex Controller

To retrieve the string array from an Apex controller, bind the component to the controller. This component retrieves the string array when a button is clicked.

```xml
<aura:component controller="namespace.AttributeTypes">
 <aura:attribute name="favoriteColors" type="String[]" default="cyan, yellow, magenta"/>

 <aura:iteration items="{"v.favoriteColors}" var="s">
 {s}
 </aura:iteration>
 <lightning:button onclick="{!c.getString}" label="Update"/>
</aura:component>
```

Set the Apex controller to return a List<String> object.

```java
public class AttributeTypes {
 private final String[] arrayItems;

 @AuraEnabled
 public static List<String> getStringArray() {
 String[] arrayItems = new String[]{'red', 'green', 'blue'};
 return arrayItems;
 }
}
```

This client-side controller retrieves the string array from the Apex controller and displays it using the `{!v.favoriteColors}` expression.

```javascript
{{
 getString : function(component, event) {
 var action = component.get("c.getStringArray");
 action.setCallback(this, function(response) {
 var state = response.getState();
 if (state === "SUCCESS") {
```
Function Type

An attribute can have a type corresponding to a JavaScript function. If a child component has an attribute of this type, you can pass a callback from a parent component that contains the child component.

```xml
<aura:attribute name="callback" type="Function" />
```

For an example of using this type with `aura:method`, see Return Result for Asynchronous Code.

⚠️ **Note:** Don’t send attributes with `type="Function"` to the server. These attributes are intended to only be used on the client side.

The most robust way to communicate between components is to use an event. If you get an error in a component with an attribute of type `Function`, fire an event in the child component instead and handle it in the parent component.

Object Types

An attribute can have a type corresponding to an Object. For example:

```xml
<aura:attribute name="data" type="Object" />
```

⚠️ **Warning:** We recommend using `type="Map"` instead of `type="Object"` to avoid some deserialization issues on the server. For example, when an attribute of `type="Object"` is serialized to the server, everything is converted to a string. Deep expressions, such as `v.data.property` can throw an exception when they are evaluated as a string on the server. Using `type="Map"` avoids these exceptions for deep expressions, and other deserialization issues.

Checking for Types

To determine a variable type, use `typeof` or a standard JavaScript method instead. The `instanceof` operator is unreliable due to the potential presence of multiple windows or frames.

SEE ALSO:

- Working with Salesforce Records
- Working with Salesforce Records

Standard and Custom Object Types

An attribute can have a type corresponding to a standard or custom object. For example, this is an attribute for a standard `Account` object:

```xml
<aura:attribute name="acct" type="Account" />
```
This is an attribute for an `Expense__c` custom object:

```html
<aura:attribute name="expense" type="Expense__c" />
```

**SEE ALSO:**
- Working with Salesforce Records
- Working with Salesforce Records

## Collection Types

Here are the supported collection type values.

<table>
<thead>
<tr>
<th>type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type[]</code> (Array)</td>
<td><code>&lt;aura:attribute name=&quot;colorPalette&quot; type=&quot;String[]&quot; default=&quot;[&quot;red&quot;, &quot;green&quot;, &quot;blue&quot;]&quot; /&gt;</code></td>
<td>An array of items of a defined type. <strong>Note:</strong> To set a default value, surround comma-separated values with <code>[]</code>; for example <code>default=&quot;[&quot;red&quot;, &quot;green&quot;, &quot;blue&quot;]&quot;</code>. Setting a default value without square brackets is deprecated and can lead to unexpected behavior.</td>
</tr>
<tr>
<td>List</td>
<td><code>&lt;aura:attribute name=&quot;colorPalette&quot; type=&quot;List&quot; default=&quot;[&quot;red&quot;, &quot;green&quot;, &quot;blue&quot;]&quot; /&gt;</code></td>
<td>An ordered collection of items. <strong>Note:</strong> To set a default value, surround comma-separated values with <code>[]</code>; for example <code>default=&quot;[&quot;red&quot;, &quot;green&quot;, &quot;blue&quot;]&quot;</code>. Setting a default value without square brackets is deprecated and can lead to unexpected behavior.</td>
</tr>
<tr>
<td>Map</td>
<td><code>&lt;aura:attribute name=&quot;sectionLabels&quot; type=&quot;Map&quot; default=&quot;{&quot;a&quot;: &quot;label1&quot;, b: &quot;label2&quot;}&quot; /&gt;</code></td>
<td>A collection that maps keys to values. A map can't contain duplicate keys. Each key can map to at most one value. Defaults to an empty object, <code>{}</code>). Retrieve values by using <code>cmp.get(&quot;v.sectionLabels&quot;)[&quot;a&quot;]]</code>.</td>
</tr>
<tr>
<td>Set</td>
<td><code>&lt;aura:attribute name=&quot;collection&quot; type=&quot;Set&quot; default=&quot;[&quot;red&quot;, &quot;green&quot;, &quot;blue&quot;]&quot; /&gt;</code></td>
<td>A collection that contains no duplicate elements. The order for set items is not guaranteed. For example, <code>[&quot;red&quot;, &quot;green&quot;, &quot;blue&quot;]</code> might be returned as <code>blue,green,red</code>. <strong>Note:</strong> To set a default value, surround comma-separated values with <code>[]</code>; for example <code>default=&quot;[&quot;red&quot;, &quot;green&quot;, &quot;blue&quot;]&quot;</code>. Setting a default value without square brackets is deprecated and can lead to unexpected behavior.</td>
</tr>
</tbody>
</table>
Checking for Types

To determine a variable type, use `typeof` or a standard JavaScript method, such as `Array.isArray()`, instead. The `instanceof` operator is unreliable due to the potential presence of multiple windows or frames.

Setting List Items

There are several ways to set items in a list. To use a client-side controller, create an attribute of type List and set the items using `component.set()`. This example retrieves a list of numbers from a client-side controller when a button is clicked.

```html
<aura:attribute name="numbers" type="List"/>
<lightning:button onclick="!c.getNumbers" label="Display Numbers" />
<aura:iteration var="num" items="{!v.numbers}"

{!num.value}
</aura:iteration>

/** Client-side Controller **/

{(getNumbers: function(component, event, helper) {

var numbers = [];

for (var i = 0; i < 20; i++) {
 numbers.push({
 value: i
 });
}

component.set("v.numbers", numbers);
})

To retrieve list data from a controller, use `aura:iteration`.

Setting Map Items

To add a key and value pair to a map, use the syntax `myMap.set('myNewKey', myNewValue)`. The following example retrieves data from a map.

```javascript
for (var key in myMap){
    //do something
}
```

Custom Apex Class Types

An attribute can have a type corresponding to an Apex class. For example, this is an attribute for a custom `Color` Apex class:

```html
<aura:attribute name="color" type="docSampleNamespace.Color" />
```

Component attribute types can be custom Apex classes, and the following standard Apex classes:

- List
Creating Components

- Map

To make use of values held in other Apex built-in classes, create a custom Apex class, and copy needed values from instances of the standard class into your custom class.

When an instance of an Apex class is returned from a server-side action, the instance is serialized to JSON by the framework. Only the values of `public` instance properties and methods annotated with `@AuraEnabled` are serialized and returned.

The following Apex data types can be serialized from `@AuraEnabled` properties and methods.

- Primitive types except for BLOB
- Object, subject to limitations described above
- sObject
- Collections types (List and Map) when they hold elements of a supported type

Note: Custom classes used for component attributes shouldn’t be inner classes or use inheritance. While these Apex language features might work in some situations, there are known issues, and their use is unsupported in all cases.

Using Arrays

If an attribute can contain more than one element, use an array.

This `aura:attribute` tag shows the syntax for an array of Apex objects:

```xml
<aura:attribute name="colorPalette" type="docSampleNamespace.Color[]" />
```

See Also:
- Returning Data from an Apex Server-Side Controller
- AuraEnabled Annotation
- Working with Salesforce Records
- Returning Data from an Apex Server-Side Controller
- AuraEnabled Annotation
- Working with Salesforce Records
- Apex Developer Guide: Data Types

Framework-Specific Types

Here are the supported type values that are specific to the framework.

<table>
<thead>
<tr>
<th>type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aura.Component</td>
<td>N/A</td>
<td>A single component. We recommend using Aura.Component[] instead.</td>
</tr>
<tr>
<td>Aura.Component[]</td>
<td><code><aura:attribute name="detail" type="Aura.Component[]"/></code></td>
<td>Use this type to set blocks of markup. An attribute of type Aura.Component[] is called a facet.</td>
</tr>
</tbody>
</table>

43
Creating Components

<table>
<thead>
<tr>
<th>type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aura.Action</td>
<td><code><aura:attribute name="onclick" type="Aura.Action"/></code></td>
<td>Use this type to pass an action to a component. See Using the Aura.Action Attribute Type.</td>
</tr>
</tbody>
</table>

IN THIS SECTION:

Using the Aura.Action Attribute Type

An Aura.Action is a reference to an action in the framework. If a child component has an Aura.Action attribute, a parent component can pass in an action handler when it instantiates the child component in its markup. This pattern is a shortcut to pass a controller action from a parent component to a child component that it contains, and is used for on* handlers, such as onclick.

SEE ALSO:

Component Body
Component Facets
Component Body
Component Facets

Using the Aura.Action Attribute Type

An Aura.Action is a reference to an action in the framework. If a child component has an Aura.Action attribute, a parent component can pass in an action handler when it instantiates the child component in its markup. This pattern is a shortcut to pass a controller action from a parent component to a child component that it contains, and is used for on* handlers, such as onclick.

⚠️ Warning: Although Aura.Action works for passing an action handler to a child component, we recommend registering an event in the child component and firing the event in the child’s controller instead. Then, handle the event in the parent component. The event approach requires a few extra steps in creating or choosing an event and firing it but events are the standard way to communicate between components.

Aura.Action shouldn’t be used for other use cases. Here are some known limitations of Aura.Action.

- Don’t use `cmp.set()` in JavaScript code to reset an attribute of type="Aura.Action" after it’s previously been set. Doing so generates an error.

  ```javascript
  Unable to set value for key 'c.passedAction'. Value provider does not implement 'set(key, value)'. : false
  ```
Don't use $A.enqueueAction() in the child component to enqueue the action passed to the Aura.Action attribute.

Example

This example demonstrates how to pass an action handler from a parent component to a child component.

Here's the child component with the Aura.Action attribute. The onclick handler for the button uses the value of the onclick attribute, which has type of Aura.Action.

```
<aura:component>
  <aura:attribute name="onclick" type="Aura.Action"/>
  <p>Child component with Aura.Action attribute</p>
  <lightning:button label="Execute the passed action" onclick="!v.onclick"/>
</aura:component>
```

Here's the parent component that contains the child component in its markup.

```
<aura:component>
  <p>Parent component passes handler action to c:child</p>
  <c:child onclick="!c.parentAction"/>
</aura:component>
```

When you click the button in c:child, the parentAction action in the controller of c:parent is executed.

Instead of an Aura.Action attribute, you could use <aura:registerEvent> to register an onclick event in the child component. You'd have to define the event and create an action in the child's controller to fire the event. This event-based approach requires a few extra steps but it's more in line with standard practices for communicating between components.

SEE ALSO:
- Framework-Specific Types
- Handling Events with Client-Side Controllers
- Framework-Specific Types
- Handling Events with Client-Side Controllers

Component Composition

Composing fine-grained components in a larger component enables you to build more interesting components and applications.

Let's see how we can fit components together. We will first create a few simple components: c:helloHTML and c:helloAttributes. Then, we'll create a wrapper component, c:nestedComponents, that contains the simple components.

Here is the source for helloHTML.cmp.

```
<aura:component>
  <div class="white">
    Hello, HTML!
  </div>
</aura:component>

<h2>Check out the style in this list.</h2>
```
Creating Components

CSS source

```
.THIS {
    background-color: grey;
}

.THIS.white {
    background-color: white;
}

.THIS .red {
    background-color: red;
}

.THIS .blue {
    background-color: blue;
}

.THIS .green {
    background-color: green;
}
```

Component Composition

```
<ul>
    <li class="red">I'm red.</li>
    <li class="blue">I'm blue.</li>
    <li class="green">I'm green.</li>
</ul>
```

Output

Here is the source for helloAttributes.cmp.

```
<!--c:helloAttributes-->
<aura:component>
    <aura:attribute name="whom" type="String" default="world"/>
    Hello {!v.whom}!
</aura:component>
```

NestedComponents.cmp uses composition to include other components in its markup.

```
<!--c:nestedComponents-->
<aura:component>
    Observe! Components within components!

    <c:helloHTML/>

    <c:helloAttributes whom="component composition"/>
</aura:component>
```
Including an existing component is similar to including an HTML tag. Reference the component by its "descriptor", which is of the form namespace:component. nestedComponents.cmp references the helloHTML.cmp component, which lives in the c namespace. Hence, its descriptor is c:helloHTML.

Note how nestedComponents.cmp also references c:helloAttributes. Just like adding attributes to an HTML tag, you can set attribute values in a component as part of the component tag. nestedComponents.cmp sets the whom attribute of helloAttributes.cmp to "component composition".

Attribute Passing

You can also pass attributes to nested components. nestedComponents2.cmp is similar to nestedComponents.cmp, except that it includes an extra passthrough attribute. This value is passed through as the attribute value for c:helloAttributes.

```html
<aura:component>
  <aura:attribute name="passthrough" type="String" default="passed attribute"/>
  <c:helloHTML/>
  <c:helloAttributes whom={#v.passthrough} />
</aura:component>
```

Output

helloAttributes is now using the passed through attribute value.

Note: {#v.passthrough} is an unbound expression. This means that any change to the value of the whom attribute in c:helloAttributes doesn’t propagate back to affect the value of the passthrough attribute in c:nestedComponents2. For more information, see Data Binding Between Components on page 77.

Definitions versus Instances

In object-oriented programming, there’s a difference between a class and an instance of that class. Components have a similar concept. When you create a .cmp resource, you are providing the definition (class) of that component. When you put a component tag in a .cmp, you are creating a reference to (instance of) that component.
It shouldn’t be surprising that we can add multiple instances of the same component with different attributes. nestedComponents3.cmp adds another instance of c:helloAttributes with a different attribute value. The two instances of the c:helloAttributes component have different values for their whom attribute.

```
<aura:component>
    <aura:attribute name="passthrough" type="String" default="passed attribute"/>
    Observe! Components within components!
    <c:helloHTML/>
    <c:helloAttributes whom="#{v.passthrough}"/>
    <c:helloAttributes whom="separate instance"/>
</aura:component>
```

Output

```
Observe! Components within components!
Hello HTML!
Hello passed attribute! Hello separate instance!
```

Component Body

The root-level tag of every component is `<aura:component>`. Every component inherits the `body` attribute from `<aura:component>`.

The `<aura:component>` tag can contain tags, such as `<aura:attribute>`, `<aura:registerEvent>`, `<aura:handler>`, `<aura:set>`, and so on. Any free markup that is not enclosed in one of the tags allowed in a component is assumed to be part of the body and is set in the `body` attribute.

The `body` attribute has type `Aura.Component[]`. It can be an array of one component, or an empty array, but it’s always an array. In a component, use `"v"` to access the collection of attributes. For example, `{!v.body}` outputs the body of the component.

Setting the Body Content

To set the `body` attribute in a component, add free markup within the `<aura:component>` tag. For example:

```
<aura:component>
    <!--START BODY-->
    <div>Body part</div>
    <lightning:button label="Push Me" onclick="{!c.doSomething}"/>
    <!--END BODY-->
</aura:component>
```

To set the value of an inherited attribute, use the `<aura:set>` tag. Setting the body content is equivalent to wrapping that free markup inside `<aura:set attribute="body">`. Since the body attribute has this special behavior, you can omit `<aura:set attribute="body">`.
The previous sample is a shortcut for this markup. We recommend the less verbose syntax in the previous sample.

```aura:component>
   <aura:set attribute="body">
      <!--START BODY-->
      <div>Body part</div>
      <lightning:button label="Push Me" onclick="!c.doSomething"/>
      <!--END BODY-->
   </aura:set>
</aura:component>
```

The same logic applies when you use any component that has a `body` attribute, not just `<aura:component>`. For example:

```lightning:tabset>
   <lightning:tab label="Tab 1">
      Hello world!
   </lightning:tab>
</lightning:tabset>
```

This is a shortcut for:

```lightning:tabset>
   <lightning:tab label="Tab 1">
      <aura:set attribute="body">
         Hello World!
      </aura:set>
   </lightning:tab>
</lightning:tabset>
```

Accessing the Component Body

To access a component body in JavaScript, use `component.get("v.body")`.

SEE ALSO:
- `aura:set`
- Working with a Component Body in JavaScript

Component Facets

A facet is any attribute of type `Aura.Component[]`. The `body` attribute is an example of a facet.

To define your own facet, add an `aura:attribute` tag of type `Aura.Component[]` to your component. For example, let’s create a new component called `facetHeader.cmp`.

```
<!--c:facetHeader-->
<aura:component>
   <aura:attribute name="header" type="Aura.Component[]"/>
   <div>
      <span class="header">{!v.header}</span><br/>
      <span class="body">{!v.body}</span>
   </div>
</aura:component>
```
This component has a header facet. Note how we position the output of the header using the v.header expression.
The component doesn't have any output when you access it directly as the header and body attributes aren't set. Let's create another component, helloFacets.cmp, that sets these attributes.

<!--c:helloFacets-->
<aura:component>
 See how we set the header facet.

 <c:facetHeader>
 Nice body!
 <aura:set attribute="header">
 Hello Header!
 </aura:set>
 </c:facetHeader>
</aura:component>

Note that aura:set sets the value of the header attribute of facetHeader.cmp, but you don’t need to use aura:set if you’re setting the body attribute.

SEE ALSO:
Component Body

Controlling Access

The framework enables you to control access to your applications, attributes, components, events, interfaces, and methods via the access system attribute. The access system attribute indicates whether the resource can be used outside of its own namespace.

Use the access system attribute on these tags:

- <aura:application>
- <aura:attribute>
- <aura:component>
- <aura:event>
- <aura:interface>
- <aura:method>

Access Values

You can specify these values for the access system attribute.

private
 Available within the component, app, interface, event, or method and can’t be referenced outside the resource. This value can only be used for <aura:attribute> or <aura:method>.
Marking an attribute as private makes it easier to refactor the attribute in the future as the attribute can only be used within the resource.

Accessing a private attribute returns `undefined` unless you reference it from the component in which it's declared. You can’t access a private attribute from a sub-component that extends the component containing the private attribute.

public
Available within your org only. This is the default access value.

global
Available in all orgs.

Note: Mark your resources, such as a component, with `access="global"` to make the resource usable outside of your own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community Builder user in another org.

Example

This sample component has global access.

```html
<aura:component access="global">
  ...
</aura:component>
```

Access Violations

If your code accesses a resource, such as a component, that doesn’t have an `access` system attribute allowing you to access the resource:

- Client-side code doesn’t execute or returns `undefined`. If you enabled debug mode, you see an error message in your browser console.
- Server-side code results in the component failing to load. If you enabled debug mode, you see a popup error message.

Anatomy of an Access Check Error Message

Here is a sample access check error message for an access violation.

```
Access Check Failed! ComponentService.getDef():'markup://c:targetComponent' is not visible to 'markup://c:sourceComponent'.
```

An error message has four parts:

1. The context (who is trying to access the resource). In our example, this is `markup://c:sourceComponent`.
2. The target (the resource being accessed). In our example, this is `markup://c:targetComponent`.
3. The type of failure. In our example, this is `not visible`.
4. The code that triggered the failure. In our example, this is `ComponentService.getDef()`, which means that the target definition (component) was not accessible. A definition describes metadata for a resource, such as a component.
Fixing Access Check Errors

Tip: If your code isn’t working as you expect, enable debug mode to get better error reporting.

You can fix access check errors using one or more of these techniques.

- Add appropriate `access` system attributes to the resources that you own.
- Remove references in your code to resources that aren’t available. In the earlier example, `markup://c:targetComponent` doesn’t have an access value allowing `markup://c:sourceComponent` to access it.
- Ensure that an attribute that you’re accessing exists by looking at its `<aura:attribute>` definition. Confirm that you’re using the correct case-sensitive spelling for the name.

Accessing an undefined attribute or an attribute that is out of scope, for example a private attribute, triggers the same access violation message. The access context doesn’t know whether the attribute is undefined or inaccessible.

Example: `is not visible to 'undefined'`

```
ComponentService.getDef(): 'markup://c:targetComponent' is not visible to 'undefined'
```

The key word in this error message is `undefined`, which indicates that the framework has lost context. This happens when your code accesses a component outside the normal framework lifecycle, such as in a `setTimeout()` or `setInterval()` call or in an ES6 Promise.

Fix this error by wrapping the code in a `$A.getCallback()` call. For more information, see Modifying Components Outside the Framework Lifecycle.

Example: `Cannot read property 'Yb' of undefined`

```
Action failed: c$sourceComponent$controller$doInit [Cannot read property 'Yb' of undefined]
```

This error message happens when you reference a property on a variable with a value of `undefined`. The error can happen in many contexts, one of which is the side-effect of an access check failure. For example, let’s see what happens when you try to access an undefined attribute, `imaginaryAttribute`, in JavaScript.

```
var whatDoYouExpect = cmp.get("v.imaginaryAttribute");
```

This is an access check error and `whatDoYouExpect` is set to `undefined`. Now, if you try to access a property on `whatDoYouExpect`, you get an error.

```
Action failed: c$sourceComponent$controller$doInit [Cannot read property 'Yb' of undefined]
```

The `c$sourceComponent$controller$doInit` portion of the error message tells you that the error is in the `doInit` method of the controller of the `sourceComponent` component in the `c` namespace.

IN THIS SECTION:

Application Access Control
The `access` attribute on the `<aura:application>` tag controls whether the app can be used outside of the app’s namespace.

Interface Access Control
The `access` attribute on the `<aura:interface>` tag controls whether the interface can be used outside of the interface’s namespace.
Component Access Control

The `access` attribute on the `aura:component` tag controls whether the component can be used outside of the component's namespace.

Attribute Access Control

The `access` attribute on the `aura:attribute` tag controls whether the attribute can be used outside of the attribute's namespace.

Event Access Control

The `access` attribute on the `aura:event` tag controls whether the event can be used outside of the event's namespace.

SEE ALSO:

* Enable Debug Mode for Lightning Components

Application Access Control

The `access` attribute on the `aura:application` tag controls whether the app can be used outside of the app's namespace.

Possible values are listed below.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>Available within your org only. This is the default access value.</td>
</tr>
<tr>
<td>global</td>
<td>Available in all orgs.</td>
</tr>
</tbody>
</table>

Interface Access Control

The `access` attribute on the `aura:interface` tag controls whether the interface can be used outside of the interface's namespace.

Possible values are listed below.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>Available within your org only. This is the default access value.</td>
</tr>
<tr>
<td>global</td>
<td>Available in all orgs.</td>
</tr>
</tbody>
</table>

A component can implement an interface using the `implements` attribute on the `aura:component` tag.

Component Access Control

The `access` attribute on the `aura:component` tag controls whether the component can be used outside of the component's namespace.

Possible values are listed below.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>Available within your org only. This is the default access value.</td>
</tr>
<tr>
<td>Modifier</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>global</td>
<td>Available in all orgs.</td>
</tr>
</tbody>
</table>

Note: Components aren’t directly addressable via a URL. To check your component output, embed your component in a .app resource.

Attribute Access Control

The `access` attribute on the `aura:attribute` tag controls whether the attribute can be used outside of the attribute’s namespace. Possible values are listed below.

<table>
<thead>
<tr>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
</table>
| private | Available within the component, app, interface, event, or method and can’t be referenced outside the resource.
 Note: Accessing a private attribute returns `undefined` unless you reference it from the component in which it’s declared. You can’t access a private attribute from a sub-component that extends the component containing the private attribute. |
| public | Available within your org only. This is the default access value. |
| global | Available in all orgs. |

Event Access Control

The `access` attribute on the `aura:event` tag controls whether the event can be used outside of the event’s namespace. Possible values are listed below.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>Available within your org only. This is the default access value.</td>
</tr>
<tr>
<td>global</td>
<td>Available in all orgs.</td>
</tr>
</tbody>
</table>

Using Object-Oriented Development

The framework provides the basic constructs of inheritance and encapsulation from object-oriented programming and applies them to presentation layer development.

For example, components are encapsulated and their internals stay private. Consumers of the component can access the public shape (attributes and registered events) of the component, but can’t access other implementation details in the component bundle. This strong separation gives component authors freedom to change the internal implementation details and insulates component consumers from those changes.

You can extend a component, app, or interface, or you can implement a component interface.
What is Inherited?

This topic lists what is inherited when you extend a definition, such as a component.

When a component contains another component, we refer in the documentation to parent and child components in the containment hierarchy. When a component extends another component, we refer to sub and super components in the inheritance hierarchy.

Component Attributes

A sub component that extends a super component inherits the attributes of the super component. Use `<aura:set>` in the markup of a sub component to set the value of an attribute inherited from a super component.

Events

A sub component that extends a super component can handle events fired by the super component. The sub component automatically inherits the event handlers from the super component.

The super and sub component can handle the same event in different ways by adding an `<aura:handler>` tag to the sub component. The framework doesn’t guarantee the order of event handling.

Helpers

A sub component’s helper inherits the methods from the helper of its super component. A sub component can override a super component’s helper method by defining a method with the same name as an inherited method.

Controllers

A sub component that extends a super component can call actions in the super component’s client-side controller. For example, if the super component has an action called `doSomething`, the sub component can directly call the action using the `{!c.doSomething}` syntax.

Note: We don’t recommend using inheritance of client-side controllers as this feature may be deprecated in the future to preserve better component encapsulation. We recommend that you put common code in a helper instead.

SEE ALSO:

- Component Attributes
- Communicating with Events
- Sharing JavaScript Code in a Component Bundle
- Handling Events with Client-Side Controllers
- `aura:set`

Inherited Component Attributes

A sub component that extends a super component inherits the attributes of the super component.

Attribute values are identical at any level of extension. There is an exception to this rule for the `body` attribute, which we’ll look at more closely soon.
Let's start with a simple example. c:super has a description attribute with a value of "Default description",

```
<aura:component extensible="true">
  <aura:attribute name="description" type="String" default="Default description" />
  <p>super.cmp description: {!v.description}</p>
</aura:component>
```

Don't worry about the {!v.body} expression for now. We'll explain that when we talk about the body attribute.

c:sub extends c:super by setting extends="c:super" in its <aura:component> tag.

```
<aura:component extends="c:super">
  <p>sub.cmp description: {!v.description}</p>
</aura:component>
```

Note that sub.cmp has access to the inherited description attribute and it has the same value in sub.cmp and super.cmp.

Use <aura:set> in the markup of a sub component to set the value of an inherited attribute.

Inherited body Attribute

Every component inherits the body attribute from <aura:component>. The inheritance behavior of body is different than other attributes. It can have different values at each level of component extension to enable different output from each component in the inheritance chain. This will be clearer when we look at an example.

Any free markup that is not enclosed in another tag is assumed to be part of the body. It's equivalent to wrapping that free markup inside <aura:set attribute="body">.

The default renderer for a component iterates through its body attribute, renders everything, and passes the rendered data to its super component. The super component can output the data passed to it by including {!v.body} in its markup. If there is no super component, you've hit the root component and the data is inserted into document.body.

Let's look at a simple example to understand how the body attribute behaves at different levels of component extension. We have three components.

c:superBody is the super component. It inherently extends <aura:component>.

```
<aura:component extensible="true">
  Parent body: {!v.body}
</aura:component>
```

At this point, c:superBody doesn't output anything for {!v.body} as it's just a placeholder for data that will be passed in by a component that extends c:superBody.


```
<aura:component extends="c:superBody">
  Child body: {!v.body}
</aura:component>
```
c:subBody outputs:

Parent body: Child body:

In other words, c:subBody sets the value for {!v.body} in its super component, c:superBody.

c:containerBody contains a reference to c:subBody.

```xml
<aura:component>
 <c:subBody>
   Body value
 </c:subBody>
</aura:component>
```

In c:containerBody, we set the body attribute of c:subBody to Body value. c:containerBody outputs:

Parent body: Child body: Body value

SEE ALSO:
- aura:set
- Component Body
- Component Markup

Abstract Components

Object-oriented languages, such as Java, support the concept of an abstract class that provides a partial implementation for an object but leaves the remaining implementation to concrete sub-classes. An abstract class in Java can’t be instantiated directly, but a non-abstract subclass can.

Similarly, the Lightning Component framework supports the concept of abstract components that have a partial implementation but leave the remaining implementation to concrete sub-components.

To use an abstract component, you must extend it and fill out the remaining implementation. An abstract component can’t be used directly in markup.

The <aura:component> tag has a boolean abstract attribute. Set abstract="true" to make the component abstract.

SEE ALSO:
- Interfaces

Interfaces

Interfaces define a component’s shape by defining attributes, events, or methods that any implementing component contains. To use an interface, a component must implement it. An interface can’t be used directly in markup.

An interface starts with the <aura:interface> tag, and can contain only these tags:

```xml
<aura:attribute>
  This tag defines an attribute. An interface can have zero or more attributes.
</aura:attribute>
```

Note: To set the value of an attribute inherited from an interface, redefine the attribute in the sub component using <aura:attribute> and set the value in its default attribute. When you extend a component, you can use <aura:set>
in a sub component to set the value of any attribute that's inherited from the super component. However, this usage of `<aura:set>` doesn't work for attributes inherited from an interface.

<aura:registerEvent>
This tag registers an event that can be fired by a component that implements the interface. There's no logic in the interface for firing the event. A component that implements the interface contains the code to fire the event.

<aura:method>
This tag defines a method as part of the API of a component that implements the interface. There's no logic for the method in the interface. A component that implements the interface contains the method logic.

You can't use markup, renderers, controllers, or anything else in an interface.

Implement an Interface
To implement an interface, set the `implements` system attribute in the `<aura:component>` tag to the name of the interface that you are implementing. For example:

```
<aura:component implements="mynamespace:myinterface"/>
```

A component can implement an interface and extend another component.

```
<aura:component extends="ns1:cmp1" implements="ns2:intf1"/>
```

An interface can extend multiple interfaces using a comma-separated list.

```
<aura:interface extends="ns:intf1,ns:int2"/>
```

Since there are fewer restrictions on the content of abstract components, they are more common than interfaces. A component can implement multiple interfaces but can only extend one abstract component, so interfaces can be more useful for some design patterns.

Example
Here's an example of an interface.

```
<aura:interface>
  <aura:attribute name="value" type="String"/>
  <aura:registerEvent name="onItemSelected" type="ui:response"
    description="The event fired when the user selects an item"/>
  <aura:method name="methodFromInterface">
    <aura:attribute name="stringAttribute" type="String" default="default string"/>
  </aura:method>
</aura:interface>
```

SEE ALSO:
- Setting Attributes Inherited from an Interface
- Abstract Components

Marker Interfaces
A marker interface is an empty interface with no attributes, events, or methods. A marker interface is used to enable specific usage for a component in an app.
For example, a component that implements the `force:appHostable` interface can be used as a custom tab in Lightning Experience or the Salesforce mobile app.

In JavaScript, you can determine if a component implements an interface by using `myCmp.isInstanceOf("mynamespace:myinterface")`.

SEE ALSO: Configure Components for Custom Tabs

Inheritance Rules

This table describes the inheritance rules for various elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>extends</th>
<th>implements</th>
<th>Default Base Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>component</td>
<td>one extensible component</td>
<td>multiple interfaces</td>
<td><code><aura:component></code></td>
</tr>
<tr>
<td>app</td>
<td>one extensible app</td>
<td>N/A</td>
<td><code><aura:application></code></td>
</tr>
<tr>
<td>interface</td>
<td>multiple interfaces using a comma-separated list (extends="ns:intf1,ns:int2")</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

SEE ALSO: Interfaces

Best Practices for Conditional Markup

Using the `<aura:if>` tag is the preferred approach to conditionally display markup but there are alternatives. Consider the performance cost and code maintainability when you design components. The best design choice depends on your use case.

Conditionally Create Elements with `<aura:if>`

Let’s look at a simple example that shows an error message when an error occurs.

```xml
<aura:if isTrue="{"v.isError"}">
  <div>{!v.errorMessage}</div>
</aura:if>
```

The `<div>` component and its contents are only created and rendered if the value of the `isTrue` expression evaluates to `true`. If the value of the `isTrue` expression changes and evaluates to `false`, all the components inside the `<aura:if>` tag are destroyed. The components are created again if the `isTrue` expression changes again and evaluates to `true`.

The general guideline is to use `<aura:if>` because it helps your components load faster initially by deferring the creation and rendering of the enclosed element tree until the condition is fulfilled.

Toggle Visibility Using CSS

You can use CSS to toggle visibility of markup by calling `$.util.toggleClass(cmp, 'class')` in JavaScript code.

Elements in markup are created and rendered up front, but they’re hidden. For an example, see Dynamically Showing or Hiding Markup.
The conditional markup is created and rendered even if it’s not used, so `<aura:if>` is preferred.

Dynamically Create Components in JavaScript

You can dynamically create components in JavaScript code. However, writing code is usually harder to maintain and debug than using markup. Again, using `<aura:if>` is preferred but the best design choice depends on your use case.

SEE ALSO:

- Conditional Expressions
- Dynamically Creating Components

Component Versioning

Component versioning enables you to declare dependencies against specific revisions of an installed managed package.

By assigning a version to your component, you have granular control over how the component functions when new versions of a managed package are released. For example, imagine that a `<packageNamespace>:button` is pinned to version 2.0 of a package. Upon installing version 3.0, the button retains its version 2.0 functionality.

Note: The package developer is responsible for inserting versioning logic into the markup when updating a component. If the component wasn’t changed in the update or if the markup doesn’t account for version, the component behaves in the context of the most recent version.

Versions are assigned declaratively in the Developer Console. When you’re working on a component, click **Bundle Version Settings** in the right panel to define the version. You can only version a component if you’ve installed a package, and the valid versions for the component are the available versions of that package. Versions are in the format `<major>.<minor>`. So if you assign a component version 1.4, its behavior depends on the first major release and fourth minor release of the associated package.

![Bundle Version Settings](image)

When working with components, you can version:

- Apex controllers
- JavaScript controllers
- JavaScript helpers
- JavaScript renderers
- Bundle markup
You can't version any other types of resources in bundles. Unsupported types include:

- Styles (.css)
- Documentation (.doc)
- Design (.design)
- SVG (.svg)

Once you've assigned versions to components, or if you're developing components for a package, you can retrieve the version in several contexts.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Return Type</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td>Version</td>
<td>System.requestVersion()</td>
</tr>
<tr>
<td>JavaScript</td>
<td>String</td>
<td>cmp.getVersion()</td>
</tr>
<tr>
<td>Lightning component markup</td>
<td>String</td>
<td>{!Version}</td>
</tr>
</tbody>
</table>

You can use the retrieved version to add logic to your code or markup to assign different functionality to different versions. Here's an example of using versioning in an <aura:if> statement.

```aura:component
<aura:if isTrue="{"Version > 1.0"}">
  <c:newVersionFunctionality/>
</aura:if>
<c:oldVersionFunctionality/>
...
</aura:component>
```

SEE ALSO:

- Components with Minimum API Version Requirements
- Don't Mix Component API Versions

Components with Minimum API Version Requirements

Some built-in components require that custom components that use them are set to a minimum API version. A custom component must be equal to or later than the latest API version required by any of the components it uses.

There are several different ways a custom component can use another component that has a minimum version requirement, and become subject to that requirement.

- The custom component can extend from the component with the minimum version requirement.
- The custom component can add another component as a child component in markup.
- The custom component can dynamically create and add a child component in JavaScript.
In cases where the relationship between components can be determined by static analysis, the version dependency is checked when the component is saved. If a custom component has an API version earlier than a minimum version required by any of the components used, an error is reported, and the component isn’t saved. Depending on the tool you’re using, this error is presented in different ways.

If a component is created dynamically, it isn’t possible to determine the relationship between it and its parent component at save time. Instead, the minimum version requirement is checked at run time, and if it fails a run-time error is reported to the current user.

Set the API version for your component in the Developer Console, the Force.com IDE, or via API.

Versioning of Built-In Components

The minimum API version required to use a built-in component is listed on the component’s reference page in the Lightning Components Developer Guide. Components that don’t specify a minimum API version are usable with any API version supported for Lightning components.

The minimum version for built-in components that are Generally Available (GA) won’t increase in future releases. (However, as with Visualforce components, their behavior might change depending on the API version of the containing component.)

SEE ALSO:
Component Versioning
Don’t Mix Component API Versions

Validations for Lightning Component Code

Validate your Lightning component code to ensure compatibility with Lightning component APIs, best practices, and avoidance of anti-patterns. There are several ways to validate your code. Minimal save-time validations catch the most significant issues only, while Salesforce DX tools provide more comprehensive static code analysis.

IN THIS SECTION:
Validation When You Save Code Changes

Lightning component JavaScript code is validated when you save it. Validation ensures that your components are written using best practices and avoid common pitfalls that can make them incompatible with Locker Service. Validation happens automatically when you save Lightning component resources in the Developer Console, in your favorite IDE, and via API.
Validation During Development Using the Salesforce CLI
Salesforce DX includes a code analysis and validation tool usable via the Salesforce CLI. Use `force:lightning:lint` to scan and improve your code during development. Validation using the Salesforce CLI doesn’t just help you avoid Locker Service conflicts and anti-patterns. It’s a terrific practice for improving your code quality and consistency, and to uncover subtle bugs before you commit them to your codebase.

Review and Resolve Validation Errors and Warnings
When you run validations on your Lightning component code, the results include details for each issue found in the files scanned. Review the results and resolve problems in your code.

Lightning Component Validation Rules
Rules built into Lightning component code validations cover restrictions under Locker Service, correct use of Lightning APIs, and a number of best practices for writing Lightning component code. Each rule, when triggered by your code, points to an area where your code might have an issue.

Salesforce Lightning CLI (Deprecated)
Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues. Lightning CLI is deprecated in favor of the `force:lightning:lint` tool available in the Salesforce DX CLI.

Validation When You Save Code Changes
Lightning component JavaScript code is validated when you save it. Validation ensures that your components are written using best practices and avoid common pitfalls that can make them incompatible with Locker Service. Validation happens automatically when you save Lightning component resources in the Developer Console, in your favorite IDE, and via API.

Validation failures are treated as errors and block changes from being saved. Error messages explain the failures. Depending on the tool you’re using, these errors are presented in different ways. For example, the Developer Console shows an alert for the first error it encounters (1), and lists all of the validation errors discovered in the Problems tab (2).
Validations are applied only to components set to API version 41.0 and later. If the validation service prevents you from saving important changes, set the component version to API 40.0 or earlier to disable validations temporarily. When you’ve corrected the coding errors, return your component to API 41.0 or later to save it with passing validations.

Validation During Development Using the Salesforce CLI

Salesforce DX includes a code analysis and validation tool usable via the Salesforce CLI. Use `force:lightning:lint` to scan and improve your code during development. Validation using the Salesforce CLI doesn’t just help you avoid Locker Service conflicts and anti-patterns. It’s a terrific practice for improving your code quality and consistency, and to uncover subtle bugs before you commit them to your codebase.

Validations using the Salesforce CLI are done separately from saving your code to Salesforce. The results are informational only. Validations performed by the Salesforce CLI fall into two categories, failures and warnings. Error messages explain both, and are displayed in your shell window. Here’s some example output:

```
error secure-document Invalid SecureDocument API
Line:109:29
scraping = document.innerHTML;
^  
```
Validations performed using the Salesforce CLI are different from validations performed at save time in the following important ways.

- The Salesforce CLI uses many more rules to analyze your component code. Save time validations prevent you from making the most fundamental mistakes only. Validation with the Salesforce CLI errs on the side of giving you more information.
- Validation via the Salesforce CLI ignores the API version of your components. Save time validations are performed only for components set to API 41.0 and later.

IN THIS SECTION:

Use force:lightning:lint

Run force:lightning:lint just like any other lint command-line tool. The only trick is invoking it through the sfdx command. Your shell window shows the results.

force:lightning:lint Options

Use options to modify the behavior of force:lightning:lint.

Custom "House Style" Rules

Customize the JavaScript style rules that force:lightning:lint applies to your code.

Use force:lightning:lint

Run force:lightning:lint just like any other lint command-line tool. The only trick is invoking it through the sfdx command. Your shell window shows the results.

Normal Use

You can run the force:lightning:lint lint tool on any folder that contains Lightning components:

```
sfdx force:lightning:lint ./path/to/lightning/components/
```

Note: force:lightning:lint runs only on local files. Use Salesforce DX or third-party tools to download your component code to your machine. Options include Salesforce CLI commands like force:mdapi:retrieve and force:source:pull, or other tools such as the Force.com IDE, the Ant Migration Tool, or various third-party options.

The default output only shows errors. To see warnings too, use the verbose mode option.
See “Review and Resolve Validation Errors and Warnings” for what to do with the output of running `force:lightning:lint`.

SEE ALSO:
- `force:lightning:lint Options`

`force:lightning:lint` Options

Use options to modify the behavior of `force:lightning:lint`.

Common Options

Filtering Files

Sometimes, you just want to scan a particular kind of file. The `--files` argument allows you to set a pattern to match files against.

For example, the following command allows you to scan controllers only:

```
    sfdx force:lightning:lint ./path/to/lightning/components/ --files **/*Controller.js
```

Verbose Mode

The default output shows only errors so you can focus on bigger issues. The `--verbose` argument allows you to see both warning messages and errors during the linting process.

For a complete list of command line parameters and how they affect tool behavior, see the [Salesforce CLI Command Reference](#).

`force:lightning:lint` has built-in help, which you can access with the following command:

```
    sfdx force:lightning:lint --help
```

SEE ALSO:
- Use `force:lightning:lint`

Custom “House Style” Rules

Customize the JavaScript style rules that `force:lightning:lint` applies to your code.

It’s common that different organizations or projects will adopt different JavaScript rules. Lightning component validations help you work with Lightning component APIs, not enforce Salesforce coding conventions. To that end, the validation rules are divided into two sets, `security` rules and `style` rules. The security rules can’t be modified, but you can modify or add to the style rules.

Use the `--config` argument to provide a custom rules configuration file. A custom rules configuration file allows you to define your own code style rules, which affect the `style` rules used by `force:lightning:lint`.

Note: If failure of a custom rule generates a warning, the warning doesn’t appear in the default output. To see warnings, use the `--verbose` flag.

The default style rules are provided below. Copy the rules to a new file, and modify them to match your preferred style rules. Alternatively, you can use your existing ESLint rule configuration file directly. For example:

```
    sfdx force:lightning:lint ./path/to/lightning/components/ --config ~/.eslintrc
```

Note: Not all ESLint rules can be added or modified using `--config`. Only rules that we consider benign are usable. And again, you can’t override the security rules.
Default Style Rules

Here are the default style rules used by `force:lightning:lint`.

```javascript
/*
 * Copyright (C) 2016 salesforce.com, inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

module.exports = {
  rules: {
    // code style rules, these are the default value, but the user can
    // customize them via --config in the linter by providing custom values
    // for each of these rules.
    "no-trailing-spaces": 1,
    "no-spaced-func": 1,
    "no-mixed-spaces-and-tabs": 0,
    "no-multi-spaces": 0,
    "no-multiple-empty-lines": 0,
    "no-lone-blocks": 1,
    "no-lonely-if": 1,
    "no-inline-comments": 0,
    "no-extra-parens": 0,
    "no-extra-semi": 1,
    "no-warning-comments": [0, { "terms": ["todo", "fixme", "xxx"], "location": "start" }],
    "block-scoped-var": 1,
    "brace-style": [1, "1tbs"],
    "camelcase": 1,
    "comma-dangle": [1, "never"],
    "comma-spacing": 1,
    "comma-style": 1,
    "complexity": [0, 11],
    "consistent-this": [0, "that"],
    "curly": [1, "all"],
    "eol-last": 0,
    "func-names": 0,
    "func-style": [0, "declaration"],
    "generator-star-spacing": 0,
    "indent": 0,
    "key-spacing": 0,
    "keyword-spacing": [0, "always"],
    "max-depth": [0, 4],
    "max-len": [0, 80, 4],
  }
};
```
Review and Resolve Validation Errors and Warnings

When you run validations on your Lightning component code, the results include details for each issue found in the files scanned. Review the results and resolve problems in your code.

For example, here is some example output from the `force:lightning:lint` command.

```javascript
"max-nested-callbacks": [0, 2],
"max-params": [0, 3],
"max-statements": [0, 10],
"new-cap": 0,
"newline-after-var": 0,
"one-var": [0, "never"],
"operator-assignment": [0, "always"],
"padded-blocks": 0,
"quote-props": 0,
"quotes": 0,
"semi": 1,
"semi-spacing": [0, {"before": false, "after": true}],
"sort-vars": 0,
"space-after-function-name": [0, "never"],
"space-before-blocks": [0, "always"],
"space-before-function-paren": [0, "always"],
"space-before-function-parentheses": [0, "always"],
"space-in-brackets": [0, "never"],
"space-in-parens": [0, "never"],
"space-infix-ops": 0,
"space-unary-ops": [1, {"words": true, "nonwords": false}],
"spaced-comment": [0, "always"],
"vars-on-top": 0,
"valid-javadoc": 0,
"wrap-regex": 0,
"yoda": [1, "never"]
}
```
switch (e.keyCode) {
 ^
}

Results vary in appearance depending on the tool you use to run validations. However, the essential elements are the same for each issue found.

Issues are displayed, one for each warning or error. Each issue includes the line number, severity, and a brief description of the issue. It also includes the rule name, which you can use to look up a more detailed description of the issue. See "Lightning Component Validation Rules" for the rules applied by Lightning code validations, as well as possible resolutions and options for further reading.

Your mission is to review each issue, examine the code in question, and to revise it to eliminate all of the genuine problems.

While no automated tool is perfect, we expect that most errors and warnings generated by Lightning code validations will point to genuine issues in your code, which you should plan to fix as soon as you can.

SEE ALSO:
 Lightning Component Validation Rules

Lightning Component Validation Rules

Rules built into Lightning component code validations cover restrictions under Locker Service, correct use of Lightning APIs, and a number of best practices for writing Lightning component code. Each rule, when triggered by your code, points to an area where your code might have an issue.

In addition to the Lightning-specific rules we've created, other rules are active in Lightning validations, included from ESLint basic rules. Documentation for these rules is available on the ESLint project site. If you encounter an error or warning from a rule not described here, search for it on the ESLint Rules page.

The set of rules used to validate your code varies depending on the tool you use, and the way you use it. Minimal save-time validations catch the most significant issues only, while Salesforce DX tools provide more comprehensive static code analysis.

IN THIS SECTION:
 Validation Rules Used at Save Time
 The following rules are used for validations that are done when you save your Lightning component code.
 Validate JavaScript Intrinsic APIs (ecma-intrinsics)
 This rule deals with the intrinsic APIs in JavaScript, more formally known as ECMAscript.
 Validate Aura API (aura-api)
 This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private features is disallowed.
 Validate Lightning Component Public API (secure-component)
 This rule validates that only public, supported framework API functions and properties are used.
 Validate Secure Document Public API (secure-document)
 This rule validates that only supported functions and properties of the `document` global are accessed.
 Validate Secure Window Public API (secure-window)
 This rule validates that only supported functions and properties of the `window` global are accessed.
 Disallow Use of `arguments.caller` and `arguments.callee` (no-caller)
 Prevent the use of `arguments.caller` and `arguments.callee`. These are also forbidden in ECMAscript 5 and later when in strict mode, which is enabled under Locker Service. This is a standard rule built into ESLint.
Disallow Script URLs (no-script-url)
Prevents the use of `javascript:` URLs. This is a standard rule built into ESLint.

Disallow Extending Native Objects (no-extend-native)
Prevent changing the behavior of built-in JavaScript objects, such as `Object` or `Array`, by modifying their prototypes. This is a standard rule built into ESLint.

Disallow Calling Global Object Properties as Functions (no-obj-calls)
Prevents calling the `Math`, `JSON`, and `Reflect` global objects as though they were functions. For example, `Math()` is disallowed. This follows the ECMAScript 5 specification. This is a standard rule built into ESLint.

Disallow Use of `__iterator__` Property (no-iterator)
Prevents using the obsolete `__iterator__` property. Use standard JavaScript iterators and generators instead. This is a standard rule built into ESLint.

Disallow Use of `__proto__` (no-proto)
Prevents using the obsolete `__proto__` property, which was deprecated in ECMAScript 3.1. Use `Object.getPrototypeOf()` instead. This is a standard rule built into ESLint.

Disallow with Statements (no-with)
Prevents using `with` statements, which adds members of an object to the current scope in a way that makes it hard to predict or view impact or behavior. This is a standard rule built into ESLint.

Validation Rules Used at Save Time
The following rules are used for validations that are done when you save your Lightning component code. Validation failures for any of these rules prevents saving changes to your code.

Lightning Platform Rules
These rules are specific to Lightning component JavaScript code. These custom rules are written and maintained by Salesforce.

Validate Aura API (aura-api)
This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private features is disallowed.

Validate Secure Document Public API (secure-document)
This rule validates that only supported functions and properties of the `document` global are accessed.

Validate Secure Window Public API (secure-window)
This rule validates that only supported functions and properties of the `window` global are accessed.

General JavaScript Rules
These rules are general JavaScript rules, which enforce basic correct use of JavaScript required for Lightning components. These rules are built into the ESLint tool.

Disallow Use of `caller` and `callee` (no-caller)
Prevent the use of `arguments.caller` and `arguments.callee`. These are also forbidden in ECMAScript 5 and later when in strict mode, which is enabled under Locker Service.

Disallow Extending Native Objects (no-extend-native)
Prevent changing the behavior of built-in JavaScript objects, such as `Object` or `Array`, by modifying their prototypes.
Disallow Use of __iterator_ Property (no-iterator)
Prevents using the obsolete __iterator_ property. Use standard JavaScript iterators and generators instead.

Disallow Calling Global Object Properties as Functions (no-obj-calls)
Prevents calling the Math, JSON, and Reflect global objects as though they were functions. For example, Math() is disallowed. This follows the ECMAScript 5 specification.

Disallow Use of __proto_ (no-proto)
Prevents using the obsolete __proto_ property, which was deprecated in ECMAScript 3.1. Use Object.getPrototypeOf() instead.

Disallow Script URLs (no-script-url)
Prevents the use of javascript: URLs.

Disallow with Statements (no-with)
Prevents using with statements, which adds members of an object to the current scope in a way that makes it hard to predict or view impact or behavior.

Validate JavaScript Intrinsic APIs (ecma-intrinsics)
This rule deals with the intrinsic APIs in JavaScript, more formally known as ECMAScript.

When Locker Service is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning components code is allowed to use:

- Features built into JavaScript ("intrinsic" features)
- Published, supported features built into the Lightning Component framework
- Published, supported features built into Locker Service SecureObject objects

What exactly are these "intrinsic APIs"? They’re the APIs defined in the ECMAScript Language Specification. That is, things built into JavaScript. This includes Annex B of the specification, which deals with legacy browser features that aren’t part of the “core” of JavaScript, but are nevertheless still supported for JavaScript running inside a web browser.

Note that some features of JavaScript that you might consider intrinsic—for example, the window and document global variables—are superceded by SecureObject objects, which offer a more constrained API.

Rule Details
This rule verifies that use of the intrinsic JavaScript APIs is according to the published specification. The use of non-standard, deprecated, and removed language features is disallowed.

Further Reading
- ECMAScript specification
- Annex B: Additional ECMAScript Features for Web Browsers
- Intrinsic Objects (JavaScript)

SEE ALSO:
- Validate Aura API (aura-api)
- Validate Lightning Component Public API (secure-component)
- Validate Secure Document Public API (secure-document)
- Validate Secure Window Public API (secure-window)
Validate Aura API (**aura-api**)

This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private features is disallowed.

When Locker Service is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning components code is allowed to use:

- Features built into JavaScript ("intrinsic" features)
- Published, supported features built into the Lightning Component framework
- Published, supported features built into Locker Service SecureObject objects

This rule deals with the supported, public framework APIs, for example, those available through the framework global `$A`.

Why is this rule called “Aura API”? Because the core of the Lightning Component framework is the open source Aura Framework. And this rule verifies permitted uses of that framework, rather than anything specific to Lightning Components.

Rule Details

The following patterns are considered problematic:

```javascript
Aura.something(); // Use $A instead
$A.util.fake(); // fake is not available in $A.util
```

Further Reading

For details of all of the methods available in the framework, including `$A`, see the JavaScript API at
https://myDomain.lightning.force.com/auradocs/reference.app, where `myDomain` is the name of your custom Salesforce domain.

SEE ALSO:

- Validate Lightning Component Public API (**secure-component**)
- Validate Secure Document Public API (**secure-document**)
- Validate Secure Window Public API (**secure-window**)

Validate Lightning Component Public API (**secure-component**)

This rule validates that only public, supported framework API functions and properties are used.

When Locker Service is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning components code is allowed to use:

- Features built into JavaScript ("intrinsic" features)
- Published, supported features built into the Lightning Component framework
- Published, supported features built into Locker Service SecureObject objects

Prior to Locker Service, when you created or obtained a reference to a component, you could call any function and access any property available on that component, even if it wasn’t public. When Locker Service is enabled, components are "wrapped" by a new SecureComponent object, which controls access to the component and its functions and properties. SecureComponent restricts you to using only published, supported component API.
Rule Details
The reference doc app lists the API for SecureComponent. Access the reference doc app at:
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain.
The API for SecureComponent is listed at JavaScript API > Component.

SEE ALSO:
Validate Aura API (aura-api)
Validate Secure Document Public API (secure-document)
Validate Secure Window Public API (secure-window)

Validate Secure Document Public API (secure-document)
This rule validates that only supported functions and properties of the document global are accessed.
When Locker Service is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning components code is allowed to use:
• Features built into JavaScript ("intrinsic" features)
• Published, supported features built into the Lightning Component framework
• Published, supported features built into Locker Service SecureObject objects
Prior to Locker Service, when you accessed the document global, you could call any function and access any property available. When Locker Service is enabled, the document global is "wrapped" by a new SecureDocument object, which controls access to document and its functions and properties. SecureDocument restricts you to using only "safe" features of the document global.

SEE ALSO:
Validate Aura API (aura-api)
Validate Lightning Component Public API (secure-component)
Validate Secure Window Public API (secure-window)

Validate Secure Window Public API (secure-window)
This rule validates that only supported functions and properties of the window global are accessed.
When Locker Service is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning components code is allowed to use:
• Features built into JavaScript ("intrinsic" features)
• Published, supported features built into the Lightning Component framework
• Published, supported features built into Locker Service SecureObject objects
Prior to Locker Service, when you accessed the `window` global, you could call any function and access any property available. When Locker Service is enabled, the `window` global is “wrapped” by a new SecureWindow object, which controls access to `window` and its functions and properties. SecureWindow restricts you to using only “safe” features of the `window` global.

SEE ALSO:
- Validate Aura API (aura-api)
- Validate Lightning Component Public API (secure-component)
- Validate Secure Document Public API (secure-document)

Disallow Use of `caller` and `callee` (no-caller)

Prevent the use of `arguments.callee` and `arguments.callee`. These are also forbidden in ECMAScript 5 and later when in strict mode, which is enabled under Locker Service. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Use of caller/callee (no-caller).

Disallow Script URLs (no-script-url)

Prevents the use of `javascript:` URLs. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Script URLs (no-script-url).

Disallow Extending Native Objects (no-extend-native)

Prevent changing the behavior of built-in JavaScript objects, such as `Object` or `Array`, by modifying their prototypes. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Extending of Native Objects (no-extend-native).

Disallow Calling Global Object Properties as Functions (no-obj-calls)

Prevents calling the `Math`, `JSON`, and `Reflect` global objects as though they were functions. For example, `Math()` is disallowed. This follows the ECMAScript 5 specification. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, disallow calling global object properties as functions (no-obj-calls).

Disallow Use of `__iterator__` Property (no-iterator)

Prevents using the obsolete `__iterator__` property. Use standard JavaScript iterators and generators instead. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Iterator (no-iterator).

Disallow Use of `__proto__` (no-proto)

Prevents using the obsolete `__proto__` property, which was deprecated in ECMAScript 3.1. Use `Object.getPrototypeOf()` instead. This is a standard rule built into ESLint.
For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Use of __proto__ (no-proto).

Disallow **with** Statements (**no-with**)

Prevents using **with** statements, which adds members of an object to the current scope in a way that makes it hard to predict or view impact or behavior. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, disallow with statements (**no-with**).

Salesforce Lightning CLI (Deprecated)

Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues. Lightning CLI is deprecated in favor of the `force:lightning:lint` tool available in the Salesforce DX CLI.

For more information about code validation using Salesforce DX, see the Salesforce CLI Command Reference.

IN THIS SECTION:

Install Salesforce Lightning CLI (Deprecated)

Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues. Lightning CLI is deprecated in favor of the `force:lightning:lint` tool available in the Salesforce DX CLI.

Install Salesforce Lightning CLI (Deprecated)

Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues. Lightning CLI is deprecated in favor of the `force:lightning:lint` tool available in the Salesforce DX CLI.

For instructions on how to install the Salesforce DX CLI, see “Install the Salesforce CLI” in the Salesforce DX Setup Guide.

Using Expressions

Expressions allow you to make calculations and access property values and other data within component markup. Use expressions for dynamic output or passing values into components by assigning them to attributes.

An expression is any set of literal values, variables, sub-expressions, or operators that can be resolved to a single value. Method calls are not allowed in expressions.

The expression syntax is: `{! expression}

`expression` is a placeholder for the expression.

Anything inside the `{! }` delimiters is evaluated and dynamically replaced when the component is rendered or when the value is used by the component. Whitespace is ignored.

The resulting value can be a primitive, such as an integer, string, or boolean. It can also be a JavaScript object, a component or collection, a controller method such as an action method, and other useful results.

Note: If you're familiar with other languages, you may be tempted to read the `!` as the "bang" operator, which negates boolean values in many programming languages. In the Lightning Component framework, `{! }` is simply the delimiter used to begin an expression.

If you're familiar with Visualforce, this syntax will look familiar.
There is a second expression syntax: `{ expression }`. For more details on the difference between the two forms of expression syntax, see Data Binding Between Components.

Identifiers in an expression, such as attribute names accessed through the view, controller values, or labels, must start with a letter or underscore. They can also contain numbers or hyphens after the first character. For example, `{ !v.2count }` is not valid, but `{ !v.count }` is.

Important: Only use the `{! }` syntax in markup in `.app` or `.cmp` files. In JavaScript, use string syntax to evaluate an expression. For example:

```javascript
var theLabel = cmp.get("v.label");
```

If you want to escape `{!`, use this syntax:

```aura:text value="{"/>
```

This renders `{!` in plain text because the `aura:text` component never interprets `{!` as the start of an expression.

IN THIS SECTION:

- **Dynamic Output in Expressions**
 The simplest way to use expressions is to output dynamic values.

- **Conditional Expressions**
 Here are examples of conditional expressions using the ternary operator and the `<aura:if>` tag.

- **Data Binding Between Components**
 When you add a component in markup, you can use an expression to initialize attribute values in the component based on attribute values of the container component. There are two forms of expression syntax, which exhibit different behaviors for data binding between the components.

- **Value Providers**
 Value providers are a way to access data. Value providers encapsulate related values together, similar to how an object encapsulates properties and methods.

- **Expression Evaluation**
 Expressions are evaluated much the same way that expressions in JavaScript or other programming languages are evaluated.

- **Expression Operators Reference**
 The expression language supports operators to enable you to create more complex expressions.

- **Expression Functions Reference**
 The expression language contains math, string, array, comparison, boolean, and conditional functions. All functions are case-sensitive.

Dynamic Output in Expressions

The simplest way to use expressions is to output dynamic values.

Values used in the expression can be from component attributes, literal values, booleans, and so on. For example:

```{!v.desc}
```

In this expression, `v` represents the view, which is the set of component attributes, and `desc` is an attribute of the component. The expression is simply outputting the `desc` attribute value for the component that contains this markup.

If you're including literal values in expressions, enclose text values within single quotes, such as `{! 'Some text' }`.
Include numbers without quotes, for example, {!123}.
For booleans, use {!true} for true and {!false} for false.

SEE ALSO:
 Component Attributes
 Value Providers

Conditional Expressions

Here are examples of conditional expressions using the ternary operator and the <aura:if> tag.

Ternary Operator

This expression uses the ternary operator to conditionally output one of two values dependent on a condition.

```apex
<a class="{!v.location == '/active' ? 'selected' : ''}" href="#/active">Active</a>
```

The {!v.location == '/active' ? 'selected' : ''} expression conditionally sets the class attribute of an HTML <a> tag, by checking whether the location attribute is set to /active. If true, the expression sets class to selected.

Using <aura:if> for Conditional Markup

This snippet of markup uses the <aura:if> tag to conditionally display an edit button.

```apex
<aura:attribute name="edit" type="Boolean" default="true"/>
<aura:if isTrue="{!v.edit}"
  <ui:button label="Edit"/>
  <aura:set attribute="else">
    You can't edit this.
  </aura:set>
</aura:if>
```

If the edit attribute is set to true, a ui:button displays. Otherwise, the text in the else attribute displays.

SEE ALSO:
 Best Practices for Conditional Markup

Data Binding Between Components

When you add a component in markup, you can use an expression to initialize attribute values in the component based on attribute values of the container component. There are two forms of expression syntax, which exhibit different behaviors for data binding between the components.

This concept is a little tricky, but it will make more sense when we look at an example. Consider a c:parent component that has a parentAttr attribute. c:parent contains a c:child component with a childAttr attribute that's initialized to the value of the parentAttr attribute. We're passing the parentAttr attribute value from c:parent into the c:child component, which results in a data binding, also known as a value binding, between the two components.

```apex
<!--c:parent-->
<aura:component>
```
(!v.parentAttr) is a bound expression. Any change to the value of the childAttr attribute in c:child also affects the parentAttr attribute in c:parent and vice versa.

Now, let's change the markup from:

```xml
<c:child childAttr="{"v.parentAttr}" />
```

to:

```xml
<#v.parentAttr>
```

(#v.parentAttr) is an unbound expression. Any change to the value of the childAttr attribute in c:child doesn't affect the parentAttr attribute in c:parent and vice versa.

Here's a summary of the differences between the forms of expression syntax.

#{expression} (Unbound Expressions)

Data updates behave as you would expect in JavaScript. Primitives, such as String, are passed by value, and data updates for the expression in the parent and child are decoupled.

Objects, such as Array or Map, are passed by reference, so changes to the data in the child propagate to the parent. However, change handlers in the parent aren't notified. The same behavior applies for changes in the parent propagating to the child.

{!expression} (Bound Expressions)

Data updates in either component are reflected through bidirectional data binding in both components. Similarly, change handlers are triggered in both the parent and child components.

⚠️ Tip: Bi-directional data binding is expensive for performance and it can create hard-to-debug errors due to the propagation of data changes through nested components. We recommend using the #{expression} syntax instead when you pass an expression from a parent component to a child component unless you require bi-directional data binding.

Unbound Expressions

Let's look at another example of a c:parentExpr component that contains another component, c:childExpr.

Here is the markup for c:childExpr.

```xml
<!--c:childExpr-->
<aura:component>
  <aura:attribute name="childAttr" type="String" />

  <p>childExpr childAttr: {!v.childAttr}</p>
  <p>&lt;lightning:button label="Update childAttr"
  onclick="{!c.updateChildAttr}"&/&gt;
</aura:component>
```

Here is the markup for c:parentExpr.

```xml
<!--c:parentExpr-->
<aura:component>
  <aura:attribute name="parentAttr" type="String" default="parent attribute"/>
```
The **c:parentExpr** component uses an unbound expression to set an attribute in the **c:childExpr** component.

When we instantiate **childExpr**, we set the **childAttr** attribute to the value of the **parentAttr** attribute in **c:parentExpr**. Since the **{#v.parentAttr}** syntax is used, the **v.parentAttr** expression is not bound to the value of the **childAttr** attribute.

The **c:exprApp** application is a wrapper around **c:parentExpr**.

In the Developer Console, click **Preview** in the sidebar for **c:exprApp** to view the app in your browser.

Both **parentAttr** and **childAttr** are set to “parent attribute”, which is the default value of **parentAttr**.

Now, let’s create a client-side controller for **c:childExpr** so that we can dynamically update the component. Here is the source for **childExprController.js**.

```javascript
/* childExprController.js */

{{
    updateChildAttr: function(cmp) {
        cmp.set("v.childAttr", "updated child attribute");
    }
}}
```

In the Developer Console, click **Update Preview** for **c:exprApp**.

Press the **Update childAttr** button. This updates **childAttr** to “updated child attribute”. The value of **parentAttr** is unchanged since we used an unbound expression.

Let’s add a client-side controller for **c:parentExpr**. Here is the source for **parentExprController.js**.

```javascript
/* parentExprController.js */

{{
    updateParentAttr: function(cmp) {
        cmp.set("v.parentAttr", "updated parent attribute");
    }
}}
```

In the Developer Console, click **Update Preview** for **c:exprApp**.

Press the **Update parentAttr** button. This time, **parentAttr** is set to “updated parent attribute” while **childAttr** is unchanged due to the unbound expression.
Warning: Don’t use a component’s *init* event and client-side controller to initialize an attribute that is used in an unbound expression. The attribute will not be initialized. Use a bound expression instead. For more information on a component’s *init* event, see *Invoking Actions on Component Initialization* on page 339.

Alternatively, you can wrap the component in another component. When you instantiate the wrapped component in the wrapper component, initialize the attribute value instead of initializing the attribute in the wrapped component’s client-side controller.

Bound Expressions

Now, let’s update the code to use a bound expression instead. Change this line in *c:parentExpr*:

```xml
<c:childExpr childAttr="#{v.parentAttr}" />
```

To:

```xml
<c:childExpr childAttr="!v.parentAttr" />
```

In the Developer Console, click Update Preview for *c:exprApp*.

Press the Update childAttr button. This updates both childAttr and parentAttr to “updated child attribute” even though we only set *v.childAttr* in the client-side controller of *childExpr*. Both attributes were updated since we used a bound expression to set the childAttr attribute.

Change Handlers and Data Binding

You can configure a component to automatically invoke a change handler, which is a client-side controller action, when a value in one of the component’s attributes changes.

When you use a bound expression, a change in the attribute in the parent or child component triggers the change handler in both components. When you use an unbound expression, the change is not propagated between components so the change handler is only triggered in the component that contains the changed attribute.

Let’s add change handlers to our earlier example to see how they are affected by bound versus unbound expressions.

Here is the updated markup for *c:childExpr*.

```xml
<!-- c:childExpr -->
<aura:component>
    <aura:attribute name="childAttr" type="String" />
    <aura:handler name="change" value="{!v.childAttr}" action="{!c.onChildAttrChange}" />
    <p>childExpr childAttr: {!v.childAttr}</p>
    <p><lightning:button label="Update childAttr" onclick="{!c.updateChildAttr}" /></p>
</aura:component>
```

Notice the `<aura:handler>` tag with name="change", which signifies a change handler. value="{"v.childAttr}" tells the change handler to track the childAttr attribute. When childAttr changes, the onChildAttrChange client-side controller action is invoked.

Here is the client-side controller for *c:childExpr*.

```javascript
/* childExprController.js */

{*
    updateChildAttr: function(cmp) {
```
Here is the updated markup for `c:parentExpr` with a change handler.

```html
<!--c:parentExpr-->
<aura:component>
  <aura:attribute name="parentAttr" type="String" default="parent attribute"/>
  <aura:handler name="change" value="{"v.parentAttr}" action="{"c.onParentAttrChange}"/>

  <!-- Instantiate the child component -->
  <c:childExpr childAttr="{"v.parentAttr}" />

  <p>parentExpr parentAttr: {!v.parentAttr}</p>
  <p><lightning:button label="Update parentAttr"
    onclick="{"c.updateParentAttr}"/></p>
</aura:component>
```

Here is the client-side controller for `c:parentExpr`.

```javascript
/* parentExprController.js */
({
  updateParentAttr: function(cmp) {
    cmp.set("v.parentAttr", "updated parent attribute");
  },
  onParentAttrChange: function(cmp, evt) {
    console.log("parentAttr has changed");
    console.log("old value: " + evt.getParam("oldValue"));
    console.log("current value: " + evt.getParam("value"));
  }
})
```

In the Developer Console, click **Update Preview** for `c:exprApp`.

Open your browser’s console (More tools > Developer tools in Chrome).

Press the **Update parentAttr** button. The change handlers for `c:parentExpr` and `c:childExpr` are both triggered as we’re using a bound expression.

```html
<c:childExpr childAttr="{"v.parentAttr}" />
```

Change `c:parentExpr` to use an unbound expression instead.

```html
<c:childExpr childAttr="#{v.parentAttr}" />
```

In the Developer Console, click **Update Preview** for `c:exprApp`.
Press the **Update childAttr** button. This time, only the change handler for `c:childExpr` is triggered as we're using an unbound expression.

SEE ALSO:
- Detecting Data Changes with Change Handlers
- Dynamic Output in Expressions
- Component Composition

Value Providers

Value providers are a way to access data. Value providers encapsulate related values together, similar to how an object encapsulates properties and methods.

The value providers for a component are `v` (view) and `c` (controller).

<table>
<thead>
<tr>
<th>Value Provider</th>
<th>Description</th>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>A component’s attribute set. This value provider enables you to access the value of a component's attribute in the component’s markup.</td>
<td>Component Attributes</td>
</tr>
<tr>
<td>c</td>
<td>A component’s controller, which enables you to wire up event handlers and actions for the component</td>
<td>Handling Events with Client-Side Controllers</td>
</tr>
</tbody>
</table>

All components have a `v` value provider, but aren’t required to have a controller. Both value providers are created automatically when defined for a component.

Note: Expressions are bound to the specific component that contains them. That component is also known as the attribute value provider, and is used to resolve any expressions that are passed to attributes of its contained components.

Global Value Providers

Global value providers are global values and methods that a component can use in expressions.

<table>
<thead>
<tr>
<th>Global Value Provider</th>
<th>Description</th>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>globalID</td>
<td>The <code>globalId</code> global value provider returns the global ID for a component. Every component has a unique <code>globalId</code>, which is the generated runtime-unique ID of the component instance.</td>
<td>Component IDs</td>
</tr>
<tr>
<td>$Browser</td>
<td>The <code>$Browser</code> global value provider returns information about the hardware and operating system of the browser accessing the application.</td>
<td>$Browser</td>
</tr>
<tr>
<td>$Label</td>
<td>The <code>$Label</code> global value provider enables you to access labels stored outside your code.</td>
<td>Using Custom Labels</td>
</tr>
</tbody>
</table>
Accessing Fields and Related Objects

Values in a value provider are accessed as named properties. To use a value, separate the value provider and the property name with a dot (period). For example, v.body. You can access value providers in markup or in JavaScript code.

When an attribute of a component is an object or other structured data (not a primitive value), access the values on that attribute using the same dot notation.

For example, {v.accounts.id} accesses the id field in the accounts record.

For deeply nested objects and attributes, continue adding dots to traverse the structure and access the nested values.

SEE ALSO:
Dynamic Output in Expressions

$Browser

The $Browser global value provider returns information about the hardware and operating system of the browser accessing the application.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formFactor</td>
<td>Returns a FormFactor enum value based on the type of hardware the browser is running on.</td>
</tr>
<tr>
<td></td>
<td>• DESKTOP for a desktop client</td>
</tr>
<tr>
<td></td>
<td>• PHONE for a phone including a mobile phone with a browser and a smartphone</td>
</tr>
<tr>
<td></td>
<td>• TABLET for a tablet client (for which isTablet returns true)</td>
</tr>
<tr>
<td>isAndroid</td>
<td>Indicates whether the browser is running on an Android device (true) or not (false).</td>
</tr>
<tr>
<td>isIOS</td>
<td>Not available in all implementations. Indicates whether the browser is running on an iOS device (true) or not (false).</td>
</tr>
<tr>
<td>isIPad</td>
<td>Not available in all implementations. Indicates whether the browser is running on an iPad (true) or not (false).</td>
</tr>
<tr>
<td>isIPhone</td>
<td>Not available in all implementations. Indicates whether the browser is running on an iPhone (true) or not (false).</td>
</tr>
<tr>
<td>isPhone</td>
<td>Indicates whether the browser is running on a phone including a mobile phone with a browser and a smartphone (true), or not (false).</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>isTablet</td>
<td>Indicates whether the browser is running on an iPad or a tablet with Android 2.2 or later (true) or not (false).</td>
</tr>
<tr>
<td>isWindowsPhone</td>
<td>Indicates whether the browser is running on a Windows phone (true) or not (false). Note that this only detects Windows phones and does not detect tablets or other touch-enabled Windows 8 devices.</td>
</tr>
</tbody>
</table>

Example: This example shows usage of the $Browser global value provider.

```aura:component>
 {!$Browser.isTablet}
 {!$Browser.isPhone}
 {!$Browser.isAndroid}
 {!$Browser.formFactor}
</aura:component>
```

Similarly, you can check browser information in a client-side controller using $A.get().

```javascript
({
 checkBrowser: function(component) {
 var device = $A.get("$Browser.formFactor");
 alert("You are using a " + device);
 }
})
```

$Locale

The $Locale global value provider returns information about the current user’s preferred locale.

These attributes are based on Java’s Calendar, Locale and TimeZone classes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Sample Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
<td>The ISO 3166 representation of the country code based on the language locale.</td>
<td>"US", "DE", "GB"</td>
</tr>
<tr>
<td>currency</td>
<td>The currency symbol.</td>
<td>"$"</td>
</tr>
<tr>
<td>currencyCode</td>
<td>The ISO 4217 representation of the currency code.</td>
<td>"USD"</td>
</tr>
<tr>
<td>decimal</td>
<td>The decimal separator.</td>
<td>"."</td>
</tr>
<tr>
<td>firstDayOfWeek</td>
<td>The first day of the week, where 1 is Sunday.</td>
<td>1</td>
</tr>
<tr>
<td>grouping</td>
<td>The grouping separator.</td>
<td>""</td>
</tr>
<tr>
<td>isEasternNameStyle</td>
<td>Specifies if a name is based on eastern style, for example, last name first name [middle] [suffix].</td>
<td>false</td>
</tr>
<tr>
<td>labelForToday</td>
<td>The label for the Today link on the date picker.</td>
<td>“Today”</td>
</tr>
<tr>
<td>language</td>
<td>The language code based on the language locale.</td>
<td>"en", "de", "zh"</td>
</tr>
</tbody>
</table>
Attribute | Description | Sample Value
--- | --- | ---
langLocale | The locale ID. | “en_US”, “en_GB”
nameOfMonths | The full and short names of the calendar months | { fullName: “January”, shortName: “Jan” } |
nameOfWeekdays | The full and short names of the calendar weeks | { fullName: “Sunday”, shortName: “SUN” } |
timezone | The time zone ID. | “America/Los_Angeles” |
userLocaleCountry | The country based on the current user’s locale | “US” |
userLocaleLang | The language based on the current user’s locale | “en” |
variant | Deprecated. The variation for a language dialect. | |

Number and Date Formatting
The framework’s number and date formatting are based on Java’s DecimalFormat and DateFormat classes.

Attribute	Description	Sample Value
currencyformat	The currency format.	“¤#,##0.00;(¤#,##0.00)”
		$ represents the currency sign, which is replaced by the currency symbol.
dateFormat	The date format.	“MMM d, yyyy”
datetimeFormat	The date time format.	“MMM d, yyyy h:mm:ss a”
numberFormat	The number format.	“#,##0.###”
	# represents a digit, the comma is a placeholder for the grouping separator, and the period is a placeholder for the decimal separator. Zero (0) replaces # to represent trailing zeros.	
percentFormat | The percentage format. | “#,#0%” |
timeFormat | The time format. | “h:mm:ss a” |
zero | The character for the zero digit. | “0” |

Example: This example shows how to retrieve different $Locale attributes.

Component source

```aura:component>
    {%$Locale.language%
    {%$Locale.timezone%
    {%$Locale.numberFormat%
    {%$Locale.currencyFormat%
</aura:component>`
Similarly, you can check locale information in a client-side controller using $A.get().

```javascript
{
 checkDevice: function(component) {
 var locale = $A.get("$Locale.language");
 alert("You are using " + locale);
 }
}
```

SEE ALSO:
 Localization

$Resource

The $Resource global value provider lets you reference images, style sheets, and JavaScript code you’ve uploaded in static resources. Using $Resource lets you reference assets by name, without worrying about the gory details of URLs or file paths. You can use $Resource in Lightning components markup and within JavaScript controller and helper code.

Using $Resource in Component Markup

To reference a specific resource in component markup, use $Resource.resourceName within an expression. resourceName is the Name of the static resource. In a managed packaged, the resource name must include the package namespace prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic or script, that's all you need. To reference an item within an archive static resource, add the rest of the path to the item using string concatenation. Here are a few examples.

```html
<aura:component>
<!-- Stand-alone static resources -->

<!-- Asset from an archive static resource -->

</aura:component>
```

Include CSS style sheets or JavaScript libraries into a component using the <ltng:require> tag. For example:

```html
<aura:component>
<ltng:require
 styles="{!$Resource.SLDSv2 + '/assets/styles/lightning-design-system-ltng.css'}"
 scripts="{!$Resource.jsLibraries + '/jsLibOne.js'}"
 afterScriptsLoaded="{!c.scriptsLoaded}" />
</aura:component>
```

Note: Due to a quirk in the way $Resource is parsed in expressions, use the join operator to include multiple $Resource references in a single attribute. For example, if you have more than one JavaScript library to include into a component the scripts attribute should be something like the following.

```html
scripts="{!join(',
 $Resource.jsLibraries + '/jsLibOne.js',
 $Resource.jsLibraries + '/jsLibTwo.js'})"
```
Using \$Resource in JavaScript

To obtain a reference to a static resource in JavaScript code, use \$A.get('\$Resource.resourceName').

resourceName is the Name of the static resource. In a managed packaged, the resource name must include the package namespace prefix, such as \$Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic or script, that's all you need. To reference an item within an archive static resource, add the rest of the path to the item using string concatenation. For example:

```javascript
{
 profileUrl: function(component) {
 var profUrl = \$A.get('\$Resource.SLDSv2') + '/assets/images/avatar1.jpg';
 alert("Profile URL: " + profUrl);
 }
}
```

**Note:** Static resources referenced in JavaScript aren't automatically added to packages. If your JavaScript depends on a resource that isn't referenced in component markup, add it manually to any packages the JavaScript code is included in.

\$Resource Considerations

Global value providers in the Lightning Component framework are, behind the scenes, implemented quite differently from global variables in Salesforce. Although \$Resource looks like the global variable with the same name available in Visualforce, formula fields, and elsewhere, there are important differences. Don't use other documentation as a guideline for its use or behavior.

Here are two specific things to keep in mind about \$Resource in the Lightning Component framework.

First, \$Resource isn't available until the Lightning Component framework is loaded on the client. Some very simple components that are composed of only markup can be rendered server-side, where \$Resource isn't available. To avoid this, when you create a new app, stub out a client-side controller to force components to be rendered on the client.

Second, if you've worked with the \$Resource global variable, in Visualforce or elsewhere, you've also used the URLFOR() formula function to construct complete URLs to specific resources. There's nothing similar to URLFOR() in the Lightning Component framework. Instead, use simple string concatenation, as illustrated in the preceding examples.

SEE ALSO:

*Salesforce Help: Static Resources*

Expression Evaluation

Expressions are evaluated much the same way that expressions in JavaScript or other programming languages are evaluated.

Operators are a subset of those available in JavaScript, and evaluation order and precedence are generally the same as JavaScript. Parentheses enable you to ensure a specific evaluation order. What you may find surprising about expressions is how often they are evaluated. The framework notices when things change, and trigger re-rendering of any components that are affected. Dependencies are handled automatically. This is one of the fundamental benefits of the framework. It knows when to re-render something on the page.

When a component is re-rendered, any expressions it uses will be re-evaluated.

Action Methods

Expressions are also used to provide action methods for user interface events: onclick, onhover, and any other component attributes beginning with "on".
Action methods must be assigned to attributes using an expression, for example `{!c.theAction}`. This expression assigns a reference to the controller function that handles the action.

Assigning action methods via expressions allows you to assign them conditionally, based on the state of the application or user interface. For more information, see Conditional Expressions on page 77.

```aura:component>
 <aura:attribute name="liked" type="Boolean" default="true"/>
 <lightning:button aura:id="likeBtn"
 label="{"v.liked} ? 'Like It' : 'Unlike It'}"
 onclick="{"v.liked} ? c.likeIt : c.unlikeIt}" />
</aura:component>
```

This button will show "Like It" for items that have not yet been liked, and clicking it will call the likeIt action method. Then the component will re-render, and the opposite user interface display and method assignment will be in place. Clicking a second time will unlike the item, and so on.

Note: The example demonstrates how attributes can help you control the state of a button. To create a button that toggles between states, we recommend using the lightning:buttonStateful component.

Expression Operators Reference

The expression language supports operators to enable you to create more complex expressions.

Arithmetic Operators

Expressions based on arithmetic operators result in numerical values.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>1 + 1</td>
<td>Add two numbers.</td>
</tr>
<tr>
<td>−</td>
<td>2 − 1</td>
<td>Subtract one number from the other.</td>
</tr>
<tr>
<td>*</td>
<td>2 * 2</td>
<td>Multiply two numbers.</td>
</tr>
<tr>
<td>/</td>
<td>4 / 2</td>
<td>Divide one number by the other.</td>
</tr>
<tr>
<td>%</td>
<td>5 % 2</td>
<td>Return the integer remainder of dividing the first number by the second.</td>
</tr>
<tr>
<td>−</td>
<td>−v.exp</td>
<td>Unary operator. Reverses the sign of the succeeding number. For example if the value of expenses is 100, then −expenses is −100.</td>
</tr>
</tbody>
</table>

Numeric Literals

<table>
<thead>
<tr>
<th>Literal</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>2</td>
<td>Integers are numbers without a decimal point or exponent.</td>
</tr>
</tbody>
</table>
### Literal

<table>
<thead>
<tr>
<th>Literal</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float</td>
<td>3.14</td>
<td>Numbers with a decimal point, or numbers with an exponent.</td>
</tr>
<tr>
<td></td>
<td>-1.1e10</td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td>null</td>
<td>A literal null number. Matches the explicit null value and numbers with an undefined value.</td>
</tr>
</tbody>
</table>

### String Operators

Expressions based on string operators result in string values.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>'Title: ' + v.note.title</td>
<td>Concatenates two strings together.</td>
</tr>
</tbody>
</table>

### String Literals

String literals must be enclosed in single quotation marks 'like this'.

<table>
<thead>
<tr>
<th>Literal</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>'hello world'</td>
<td>Literal strings must be enclosed in single quotation marks. Double quotation marks are reserved for enclosing attribute values, and must be escaped in strings.</td>
</tr>
<tr>
<td>&lt;escape&gt;</td>
<td>'\n'</td>
<td>Whitespace characters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• \t (tab)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• \n (newline)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• \r (carriage return)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Escaped characters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• &quot; (literal &quot;)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• \ (literal )</td>
</tr>
<tr>
<td>Unicode</td>
<td>'\u#####'</td>
<td>A Unicode code point. The # symbols are hexadecimal digits. A Unicode literal requires four digits.</td>
</tr>
<tr>
<td>null</td>
<td>null</td>
<td>A literal null string. Matches the explicit null value and strings with an undefined value.</td>
</tr>
</tbody>
</table>

### Comparison Operators

Expressions based on comparison operators result in a true or false value. For comparison purposes, numbers are treated as the same type. In all other cases, comparisons check both value and type.
Expressions based on logical operators result in a `true` or `false` value.

### Logical Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&amp;&amp;</code></td>
<td>isEnabled &amp;&amp; hasPermission</td>
<td>Returns <code>true</code> if both operands are individually true. You must escape the <code>&amp;&amp;</code> operator to <code>&amp;amp;&amp;amp;</code> to use it in component markup. Alternatively, you can use the <code>and()</code> function and pass it two arguments. For example, <code>and(isEnabled, hasPermission)</code>.</td>
</tr>
<tr>
<td>`</td>
<td></td>
<td>`</td>
</tr>
</tbody>
</table>
| `!`      | !isRequired   | Unary operator. Returns `true` if the operand is false. This operator should not be confused with the `!` delimiter used to start an expression in `{!}. You can combine the expression...
Logical Literals

Logical values are never equivalent to non-logical values. That is, only `true == true`, and only `false == false`; `1 != true`, and `0 != false`, and `null != false`.

<table>
<thead>
<tr>
<th>Literal</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>A boolean <code>true</code> value.</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>A boolean <code>false</code> value.</td>
</tr>
</tbody>
</table>

Conditional Operator

There is only one conditional operator, the traditional ternary operator.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>? :</code></td>
<td><code>(1 != 2) ? &quot;Obviously&quot; : &quot;Black is White&quot;</code></td>
<td>The operand before the <code>?</code> operator is evaluated as a boolean. If true, the second operand is returned. If false, the third operand is returned.</td>
</tr>
</tbody>
</table>

SEE ALSO:

Expression Functions Reference

Expression Functions Reference

The expression language contains math, string, array, comparison, boolean, and conditional functions. All functions are case-sensitive.

Math Functions

The math functions perform math operations on numbers. They take numerical arguments. The Corresponding Operator column lists equivalent operators, if any.

<table>
<thead>
<tr>
<th>Function</th>
<th>Alternative</th>
<th>Usage</th>
<th>Description</th>
<th>Corresponding Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>concat</td>
<td><code>add(1,2)</code></td>
<td>Adds the first argument to the second.</td>
<td>+</td>
</tr>
<tr>
<td>sub</td>
<td>subtract</td>
<td><code>sub(10,2)</code></td>
<td>Subtracts the second argument from the first.</td>
<td>-</td>
</tr>
<tr>
<td>mult</td>
<td>multiply</td>
<td><code>mult(2,10)</code></td>
<td>Multiplies the first argument by the second.</td>
<td>*</td>
</tr>
</tbody>
</table>
### Expression Functions Reference

<table>
<thead>
<tr>
<th>Function</th>
<th>Alternative</th>
<th>Usage</th>
<th>Description</th>
<th>Corresponding Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>div</td>
<td>divide</td>
<td>div(4,2)</td>
<td>Divides the first argument by the second.</td>
<td>/</td>
</tr>
<tr>
<td>mod</td>
<td>modulus</td>
<td>mod(5,2)</td>
<td>Returns the integer remainder resulting from dividing the first argument by the second.</td>
<td>%</td>
</tr>
<tr>
<td>abs</td>
<td></td>
<td>abs(-5)</td>
<td>Returns the absolute value of the argument: the same number if the argument is positive, and the number without its negative sign if the number is negative. For example, abs(-5) is 5.</td>
<td>None</td>
</tr>
<tr>
<td>neg</td>
<td>negate</td>
<td>neg(100)</td>
<td>Reverses the sign of the argument. For example, neg(100) is -100.</td>
<td>- (unary)</td>
</tr>
</tbody>
</table>

### String Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Alternative</th>
<th>Usage</th>
<th>Description</th>
<th>Corresponding Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>concat</td>
<td>add</td>
<td>concat('Hello ', 'world')</td>
<td>Concatenates the two arguments.</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>add('Walk ', 'the dog')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>format</td>
<td></td>
<td>format($Label.ns.labelName, v.myVal)</td>
<td>Replaces any parameter placeholders with comma-separated attribute values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong> This function works for arguments of type String, Decimal, Double, Integer, Long, Array, String[], List, and Set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>join</td>
<td></td>
<td>join(separator, subStr1, subStr2, subStrN)</td>
<td>Joins the substrings adding the separator String (first argument) between each subsequent argument.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>join(' ', 'class1', 'class2', v.class)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Label Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>format</td>
<td>format($Label.np.labelName, v.attribute1, v.attribute2) format($Label.np.hello, v.name)</td>
<td>Outputs a label and updates it. Replaces any parameter placeholders with comma-separated attribute values. Supports ternary operators in labels and attributes.</td>
</tr>
</tbody>
</table>

## Informational Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>myArray.length</td>
<td>Returns the length of an array or a string.</td>
</tr>
<tr>
<td>empty</td>
<td>empty(v.attributeName)</td>
<td>Returns true if the argument is empty. An empty argument is undefined, null, an empty array, or an empty string. An object with no properties is not considered empty. Note: This function works for arguments of type String, Array, Object, List, Map, or Set.</td>
</tr>
</tbody>
</table>

Tip: `{! !empty(v.myArray)}` evaluates faster than `{!v.myArray && v.myArray.length > 0}` so we recommend `empty()` to improve performance. The $A.util.isEmpty() method in JavaScript is equivalent to the `empty()` expression in markup.

## Comparison Functions

Comparison functions take two number arguments and return true or false depending on the comparison result. The eq and ne functions can also take other data types for their arguments, such as strings.

<table>
<thead>
<tr>
<th>Function</th>
<th>Usage</th>
<th>Description</th>
<th>Corresponding Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>equals</td>
<td>equals(1,1)</td>
<td>Returns true if the specified arguments are equal. The arguments can be any data type.</td>
<td>== or eq</td>
</tr>
<tr>
<td>notequals</td>
<td>notequals(1,2)</td>
<td>Returns true if the specified arguments are not equal. The arguments can be any data type.</td>
<td>!= or ne</td>
</tr>
<tr>
<td>lessthan</td>
<td>lessthan(1,5)</td>
<td>Returns true if the first argument is numerically less than the second argument.</td>
<td>&lt; or lt</td>
</tr>
</tbody>
</table>
### Corresponding Operator

<table>
<thead>
<tr>
<th>Function</th>
<th>Usage</th>
<th>Description</th>
<th>Corresponding Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>greaterthan</td>
<td>greaterthan(5,1)</td>
<td>Returns true if the first argument is numerically greater than the second argument.</td>
<td>&gt; or gt</td>
</tr>
<tr>
<td>lessthanorequal</td>
<td>lessthanorequal(1,2)</td>
<td>Returns true if the first argument is numerically less than or equal to the second argument.</td>
<td>&lt;= or le</td>
</tr>
<tr>
<td>greaterthanorequal</td>
<td>greaterthanorequal(2,1)</td>
<td>Returns true if the first argument is numerically greater than or equal to the second argument.</td>
<td>&gt;= or ge</td>
</tr>
</tbody>
</table>

### Boolean Functions

Boolean functions operate on Boolean arguments. They are equivalent to logical operators.

<table>
<thead>
<tr>
<th>Function</th>
<th>Usage</th>
<th>Description</th>
<th>Corresponding Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>and(isEnabled, hasPermission)</td>
<td>Returns true if both arguments are true.</td>
<td>&amp;&amp;</td>
</tr>
<tr>
<td>or</td>
<td>or(hasPermission, hasVIPPass)</td>
<td>Returns true if either one of the arguments is true.</td>
<td></td>
</tr>
<tr>
<td>not</td>
<td>not(isNew)</td>
<td>Returns true if the argument is false.</td>
<td>!</td>
</tr>
</tbody>
</table>

### Conditional Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Usage</th>
<th>Description</th>
<th>Corresponding Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>if</td>
<td>if(isEnabled, 'Enabled', 'Not enabled')</td>
<td>Evaluates the first argument as a boolean. If true, returns the second argument. Otherwise, returns the third argument.</td>
<td>?: (ternary)</td>
</tr>
</tbody>
</table>

### Using Labels

Labels are text that presents information about the user interface, such as in the header (1), input fields (2), or buttons (3). While you can specify labels by providing text values in component markup, you can also access labels stored outside your code using the $Label global value provider in expression syntax.
This section discusses how to use the $Label global value provider in these contexts:

- The label attribute in input components
- The format() expression function for dynamically populating placeholder values in labels

**IN THIS SECTION:**

**Using Custom Labels**

Custom labels are custom text values that can be translated into any language that Salesforce supports. To access custom labels in Lightning components, use the $Label global value provider.

**Input Component Labels**

A label describes the purpose of an input component. To set a label on an input component, use the label attribute.

**Dynamically Populating Label Parameters**

Output and update labels using the format() expression function.

**Getting Labels in JavaScript**

You can retrieve labels in JavaScript code. Your code performs optimally if the labels are statically defined and sent to the client when the component is loaded.

**Getting Labels in Apex**

You can retrieve label values in Apex code and set them on your component using JavaScript.

**Setting Label Values via a Parent Attribute**

Setting label values via a parent attribute is useful if you want control over labels in child components.

**Using Custom Labels**

Custom labels are custom text values that can be translated into any language that Salesforce supports. To access custom labels in Lightning components, use the $Label global value provider.

Custom labels enable developers to create multilingual applications by automatically presenting information (for example, help text or error messages) in a user’s native language.
Note: Label translations require the Translation Workbench is enabled.

To create custom labels, from Setup, enter Custom Labels in the Quick Find box, then select Custom Labels.

Use the following syntax to access custom labels in Lightning components.

- $Label.c.labelName for the default namespace
- $Label.namespace.labelName if your org has a namespace, or to access a label in a managed package

You can reference custom labels in component markup and in JavaScript code. Here are some examples.

**Label in a markup expression using the default namespace**

```html
{!$Label.c.labelName}
```

Note: Label expressions in markup are supported in .cmp and .app resources only.

**Label in JavaScript code if your org has a namespace**

```javascript
$A.get("$Label.namespace.labelName")
```

Note: Updates to a label locale or translation are not immediately in the application. To verify the change immediately, log out and in.

SEE ALSO:

Value Providers

### Input Component Labels

A label describes the purpose of an input component. To set a label on an input component, use the label attribute.

This example shows how to use labels using the label attribute on an input component.

```html
<lightning:input type="number" name="myNumber" label="Pick a Number:" value="54" />
```

The label is placed on the left of the input field and can be hidden by setting variant="label-hidden", which applies the slds-assistive-text class to the label to support accessibility.

### Using $Label

Use the $Label global value provider to access labels stored in an external source. For example:

```html
<lightning:input type="number" name="myNumber" label="{!$Label.Number.PickOne}" />
```

To output a label and dynamically update it, use the format() expression function. For example, if you have np.labelName set to Hello {0}, the following expression returns Hello World if v.name is set to World.

```html
{!format($Label.np.labelName, v.name)}
```

SEE ALSO:

Supporting Accessibility

### Dynamically Populating Label Parameters

Output and update labels using the format() expression function.
You can provide a string with placeholders, which are replaced by the substitution values at runtime.

Add as many parameters as you need. The parameters are numbered and are zero-based. For example, if you have three parameters, they will be named \(0\), \(1\), and \(2\), and they will be substituted in the order they're specified.

Let's look at a custom label, \$Label.mySection.myLabel, with a value of \texttt{Hello \{0\} and \{1\}}, where \$Label is the global value provider that accesses your labels.

This expression dynamically populates the placeholder parameters with the values of the supplied attributes.

\[
\text{\{!format($Label.mySection.myLabel, v.attribute1, v.attribute2)\}}
\]

The label is automatically refreshed if one of the attribute values changes.

**Note:** Always use the \$Label global value provider to reference a label with placeholder parameters. You can't set a string with placeholder parameters as the first argument for \texttt{format()}. For example, this syntax doesn't work:

\[
\text{\{!format('Hello \{0\}', v.name)\}}
\]

Use this expression instead.

\[
\text{\{!format($Label.mySection.salutation, v.name)\}}
\]

where \$Label.mySection.salutation is set to \texttt{Hello \{0\}}.

### Getting Labels in JavaScript

You can retrieve labels in JavaScript code. Your code performs optimally if the labels are statically defined and sent to the client when the component is loaded.

#### Static Labels

Static labels are defined in one string, such as \texttt{"$Label.c.task_mode_today"}. The framework parses static labels in markup or JavaScript code and sends the labels to the client when the component is loaded. A server trip isn't required to resolve the label.

Use \$A.get() to retrieve static labels in JavaScript code. For example:

```javascript
var staticLabel = $A.get("$Label.c.task_mode_today");
component.set("v.mylabel", staticLabel);
```

You can also retrieve label values using Apex code and send them to the component via JavaScript code. For more information, see Getting Labels in Apex.

#### Dynamic Labels

\$A.get(\texttt{labelReference}) must be able to resolve the label reference at compile time, so that the label values can be sent to the client along with the component definition.

If you must defer label resolution until runtime, you can dynamically create labels in JavaScript code. This technique can be useful when you need to use a label, but which specific label isn't known until runtime.

```javascript
// Assume the day variable is dynamically generated
// earlier in the code
// THIS CODE WON'T WORK
var dynamicLabel = $A.get("$Label.c." + day);
```
If the label is already known on the client, $A.get() displays the label. If the value is not known, an empty string is displayed in production mode, or a placeholder value showing the label key is displayed in debug mode.

Using $A.get() with a label that can’t be determined at runtime means that dynamicLabel is an empty string, and won’t be updated to the retrieved value. Since the label, "$Label.c." + day, is dynamically generated, the framework can’t parse it or send it to the client when the component is requested.

There are a few alternative approaches to using $A.get() so that you can work with dynamically generated labels.

If your component uses a known set of dynamically constructed labels, you can avoid a server roundtrip for the labels by adding a reference to the labels in a JavaScript resource. The framework sends these labels to the client when the component is requested. For example, if your component dynamically generates $Label.c.task_mode_today and $Label.c.task_mode_tomorrow label keys, you can add references to the labels in a comment in a JavaScript resource, such as a client-side controller or helper.

```javascript
// hints to ensure labels are preloaded
// $Label.c.task_mode_today
// $Label.c.task_mode_tomorrow
```

If your code dynamically generates many labels, this approach doesn’t scale well.

If you don’t want to add comment hints for all the potential labels, the alternative is to use $A.getReference(). This approach comes with the added cost of a server trip to retrieve the label value.

This example dynamically constructs the label value by calling $A.getReference() and updates a tempLabelAttr component attribute with the retrieved label.

```javascript
var labelSubStr = "task_mode_today";
var labelReference = $A.getReference("$Label.c." + labelSubStr);
cmp.set("v.tempLabelAttr", labelReference);
var dynamicLabel = cmp.get("v.tempLabelAttr");
```

$A.getReference() returns a reference to the label. This isn’t a string, and you shouldn’t treat it like one. You never get a string label directly back from $A.getReference().

Instead, use the returned reference to set a component’s attribute value. Our code does this in cmp.set("v.tempLabelAttr", labelReference);

When the label value is asynchronously returned from the server, the attribute value is automatically updated as it’s a reference. The component is rerendered and the label value displays.

**Note:** Our code sets dynamicLabel = cmp.get("v.tempLabelAttr") immediately after getting the reference. This code displays an empty string until the label value is returned from the server. If you don’t want that behavior, use a comment hint to ensure that the label is sent to the client without requiring a later server trip.

**SEE ALSO:**
- Using JavaScript
- Input Component Labels
- Dynamically Populating Label Parameters

**Getting Labels in Apex**

You can retrieve label values in Apex code and set them on your component using JavaScript.
Custom Labels

Custom labels have a limit of 1,000 characters and can be accessed from an Apex class. To define custom labels, from Setup, in the Quick Find box, enter Custom Labels, and then select Custom Labels.

In your Apex class, reference the label with the syntax `System.Label.MyLabelName`.

```java
public with sharing class LabelController {
 @AuraEnabled
 public static String getLabel() {
 String s1 = 'Hello from Apex Controller, ';
 String s2 = System.Label.MyLabelName;
 return s1 + s2;
 }
}
```

**Note:** Return label values as plain text strings. You can’t return a label expression using the `$Label` global value provider.

The component loads the labels by requesting it from the server, such as during initialization. For example, the label is retrieved in JavaScript code.

```javascript
({
 doInit : function(component, event, helper) {
 var action = component.get("c.getLabel");
 action.setCallback(this, function(response) {
 var state = response.getState();
 if (state === "SUCCESS") {
 component.set("v.mylabel", response.getReturnValue());
 }
 // error handling when state is "INCOMPLETE" or "ERROR"
 });
 $A.enqueueAction(action);
 }
})
```

Finally, make sure you wire up the Apex class to your component. The label is set on the component during initialization.

```html
<aura:component controller="LabelController">
 <aura:handler name="init" value="{!this}" action="{!c.doInit}" />
 <aura:attribute name="mylabel" type="String" default=" "/>
 {!v.mylabel}
</aura:component>
```

### Passing in Label Values

Pass label values into components using the expression syntax `{!v.mylabel}`. You must provide a default value to the String attribute. Depending on your use case, the default value might be the label in the default language or, if the specific label can’t be known until runtime, perhaps just a single space.

```html
<aura:component controller="LabelController">
 <aura:attribute name="mylabel" type="String" default=" "/>
 <lightning:input name="mytext" label="{!v.mylabel}"/>
</aura:component>
```

You can also retrieve labels in JavaScript code, including dynamically creating labels that are generated during runtime. For more information, see Getting Labels in JavaScript.
Setting Label Values via a Parent Attribute

Setting label values via a parent attribute is useful if you want control over labels in child components.

Let’s say that you have a container component, which contains another component, inner.cmp. You want to set a label value in inner.cmp via an attribute on the container component. This can be done by specifying the attribute type and default value. You must set a default value in the parent attribute if you are setting a label on an inner component, as shown in the following example.

This is the container component, which contains a default value My Label for the _label attribute.

```
<aura:component>
 <aura:attribute name="_label" type="String" default="My Label"/>
 <lightning:button label="Set Label" aura:id="button1" onclick="!c.setLabel"/>
 <auradocs:inner aura:id="inner" label="{!v._label}"/>
</aura:component>
```

This inner component contains a text area component and a label attribute that’s set by the container component.

```
<aura:component>
 <aura:attribute name="label" type="String"/>
 <lightning:textarea aura:id="textarea" name="myTextarea" label="{!v.label}"/>
</aura:component>
```

This client-side controller action updates the label value.

```
({
 setLabel:function(cmp) {
 cmp.set("v._label", 'new label');
 }
})
```

When the component is initialized, you’ll see a button and a text area with the label My Label. When the button in the container component is clicked, the setLabel action updates the label value in the inner component. This action finds the label attribute and sets its value to new label.

SEE ALSO:
- Input Component Labels
- Component Attributes

Localization

The framework provides client-side localization support on input and output components.

The following example shows how you can override the default timezone attribute. The output displays the time in the format hh:mm by default.

```
<aura:component>
 <ui:outputDateTime value="2013-10-07T00:17:08.997Z" timezone="Europe/Berlin"/>
</aura:component>
```

The component renders as Oct 7, 2013 2:17:08 AM.
To customize the date and time formatting, we recommend using `lightning:formattedDateTime`. This example sets the date and time using the `init` handler.

```html
<aura:component>
 <aura:handler name="init" value="{"this}" action="{"c.doInit}"/>
 <aura:attribute name="datetime" type="DateTime"/>
 <lightning:formattedDateTime value="{"v.datetime}" timeZone="Europe/Berlin"
 year="numeric" month="short" day="2-digit" hour="2-digit"
 minute="2-digit" second="2-digit"/>
</aura:component>

({
 doInit : function(component, event, helper) {
 var date = new Date();
 component.set("v.datetime", date)
 }
})
```

This example creates a JavaScript Date instance, which is rendered in the format **MMM DD, YYYY HH:MM:SS AM**. Although the output for this example is similar to `<ui:outputDateTime value="{"v.datetime}" timezone="Europe/Berlin" />`, the attributes on `lightning:formattedDateTime` enable you to control formatting at a granular level. For example, you can display the date using the **MM/DD/YYYY** format.

```html
<lightning:formattedDateTime value="{"v.datetime}" timeZone="Europe/Berlin" year="numeric"
 month="numeric" day="numeric"/>
```

Additionally, you can use the global value provider, `$Locale`, to obtain the locale information. The locale settings in your organization overrides the browser's locale information.

## Working with Locale Information

In a single currency organization, Salesforce administrators set the currency locale, default language, default locale, and default time zone for their organizations. Users can set their individual language, locale, and time zone on their personal settings pages.

**Note:** Single language organizations cannot change their language, although they can change their locale.

For example, setting the time zone on the Language & Time Zone page to **(GMT+02:00)** returns 28.09.2015 09:00:00 when you run the following code.

```html
<ui:outputDateTime value="09/28/2015" />
```

Running `$A.get("$Locale.timezone")` returns the time zone name, for example, **Europe/Paris**. For more information, see "Supported Time Zones" in the Salesforce Help.

Setting the currency locale on the Company Information page to **Japanese (Japan) - JPY** returns ¥100,000 when you run the following code.

```html
<ui:outputCurrency value="100000" />
```

**Note:** To change between using the currency symbol, code, or name, use `lightning:formattedNumber` instead.
Similarly, running `$A.get("$Locale.currency")` returns "¥" when your org's currency locale is set to Japanese (Japan) - JPY. For more information, see "Supported Currencies" in the Salesforce Help.

SEE ALSO:
- Formatting Dates in JavaScript
- Providing Component Documentation

Providing Component Documentation

Component documentation helps others understand and use your components.

You can provide two types of component reference documentation:

- **Documentation definition (DocDef):** Full documentation on a component, including a description, sample code, and a reference to an example. DocDef supports extensive HTML markup and is useful for describing what a component is and what it does.
- **Inline descriptions:** Text-only descriptions, typically one or two sentences, set via the `description` attribute in a tag.

To provide a DocDef, click **DOCUMENTATION** in the component sidebar of the Developer Console. The following example shows the DocDef for `c:myComponent`.

Note: DocDef is supported for components and applications. Events and interfaces support inline descriptions only.

```
<aura:documentation>
 <aura:description>
 <p>An `<code>c:myComponent</code>` component represents an element that executes an action defined by a controller.</p>
 <!--More markup here, such as `<pre>` for code samples-->
 </aura:description>
 <aura:example name="myComponentExample" ref="c:myComponentExample" label="Using the c:myComponent Component">
 <p>This example shows a simple setup of `<code>myComponent</code>).</p>
 </aura:example>
 <aura:example name="mySecondExample" ref="c:mySecondExample" label="Customizing the c:myComponent Component">
 <p>This example shows how you can customize `<code>myComponent</code>`.</p>
 </aura:example>
</aura:documentation>
```

A documentation definition contains these tags.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;aura:documentation&gt;</code></td>
<td>The top-level definition of the DocDef</td>
</tr>
<tr>
<td><code>&lt;aura:description&gt;</code></td>
<td>Describes the component using extensive HTML markup. To include code samples in the description, use the <code>&lt;pre&gt;</code> tag, which renders as a code block. Code entered in the <code>&lt;pre&gt;</code> tag must be escaped. For example, escape <code>&lt;aura:component&gt;</code> by entering <code>&amp;lt;aura:component&amp;gt;</code>;</td>
</tr>
<tr>
<td><code>&lt;aura:example&gt;</code></td>
<td>References an example that demonstrates how the component is used. Supports extensive HTML markup, which displays as text preceding the visual output and example component source. The example is displayed as interactive output. Multiple examples are supported and should be wrapped in individual <code>&lt;aura:example&gt;</code> tags.</td>
</tr>
</tbody>
</table>
Providing an Example Component

Recall that the DocDef includes a reference to an example component. The example component is rendered as an interactive demo in the component reference documentation when it’s wired up using aura:example.

```aura:example name="myComponentExample" ref="c:myComponentExample" label="Using the c:myComponent Component"```

The following is an example component that demonstrates how c:myComponent can be used.

```html
<!--The c:myComponentExample example component-->
<aura:component>
  <c:myComponent>
    <aura:set attribute="myAttribute">This sets the attribute on the c:myComponent component.</aura:set>
    <!--More markup that demonstrates the usage of c:myComponent-->
  </c:myComponent>
</aura:component>
```

Supported HTML Tags in Document Definitions

Some HTML tags are unsafe or unnecessary. The framework doesn’t support these tags in document definitions.

The SUPPORTED_HTML_TAGS key in this open-source Aura file lists the supported HTML tags. The SUPPORTED_ATTRS key lists the supported HTML tag attributes.

Note: The linked file is in the master branch of the open-source Aura project. The master branch is our current development branch and is ahead of the current release of the Lightning Component framework. However, this file changes infrequently and is the best place to see if a tag is supported now or in the near future.

Providing Inline Descriptions

Inline descriptions provide a brief overview of what an element is about. HTML markup is not supported in inline descriptions. These tags support inline descriptions via the description attribute.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>aura:component</td>
<td><aura:component description="Represents a button element"/></td>
</tr>
<tr>
<td>aura:attribute</td>
<td><aura:attribute name="label" type="String" description="The text to be displayed inside the button."/></td>
</tr>
</tbody>
</table>
Tag | Example |
---|---|
<aura:event> | <aura:event type="COMPONENT" description="Indicates that a keyboard key has been pressed and released"/>
<aura:interface> | <aura:interface description="A common interface for date components"/>
<aura:registerEvent> | <aura:registerEvent name="keydown" type="ui:keydown" description="Indicates that a key is pressed"/>

Viewing the Documentation
The documentation you create will be available in the Component Library.

SEE ALSO:
Reference

Working with Base Lightning Components
Base Lightning components are the building blocks that make up the modern Lightning Experience, Salesforce app, and Lightning Communities user interfaces.

Base Lightning components incorporate Lightning Design System markup and classes, providing improved performance and accessibility with a minimum footprint.

These base components handle the details of HTML and CSS for you. Each component provides simple attributes that enable variations in style. This means that you typically don’t need to use CSS at all. The simplicity of the base Lightning component attributes and their clean and consistent definitions make them easy to use, enabling you to focus on your business logic.

You can find base Lightning components in the `lightning` namespace to complement the existing `ui` namespace components. In instances where there are matching `ui` and `lightning` namespace components, we recommend that you use the `lightning` namespace component. The `lightning` namespace components are optimized for common use cases. Beyond being equipped with the Lightning Design System styling, they handle accessibility, real-time interaction, and enhanced error messages.

In subsequent releases, we intend to provide additional base Lightning components. We expect that in time the `lightning` namespace will have parity with the `ui` namespace and go beyond it.

In addition, the base Lightning components will evolve with the Lightning Design System over time. This ensures that your customizations continue to match Lightning Experience and the Salesforce app.

The API version column denotes the minimum API version you must set to use the component in the Developer Console, the Force.com IDE, or via API. Components that don’t specify a minimum API version are usable with any API version 37.0 and later.

Tip: Interactive examples for the following components are available in the Component Library.

Container Components
The following components group related information together.
Creating Components

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accordion</td>
<td><code>lightning:accordion</code></td>
<td>A collection of vertically stacked sections with multiple content areas.</td>
<td>Accordion</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td><code>lightning:accordionSection</code></td>
<td>A single section that is nested in a <code>lightning:accordion</code> component.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card</td>
<td><code>lightning:card</code></td>
<td>Applies a container around a related grouping of information.</td>
<td>Cards</td>
<td></td>
</tr>
<tr>
<td>Carousel</td>
<td><code>lightning:carousel</code></td>
<td>A collection of images that are displayed horizontally one at a time.</td>
<td>Carousel</td>
<td>42.0</td>
</tr>
<tr>
<td>Layout</td>
<td><code>lightning:layout</code></td>
<td>Responsive grid system for arranging containers on a page.</td>
<td>Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>lightning:layoutItem</code></td>
<td>A container within a <code>lightning:layout</code> component.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record Edit Form</td>
<td><code>lightning:recordEditForm</code></td>
<td>A grouping of <code>lightning:inputField</code> components of record fields to be edited in a form.</td>
<td>Form Layout</td>
<td>42.0</td>
</tr>
<tr>
<td>Record Form</td>
<td><code>lightning:recordForm</code></td>
<td>A container to simplify form creation for viewing and editing record fields.</td>
<td>Form Layout</td>
<td>43.0</td>
</tr>
<tr>
<td>Record View Form</td>
<td><code>lightning:recordViewForm</code></td>
<td>A grouping of <code>lightning:outputField</code> components and other formatted display components to display record fields in a form.</td>
<td>Form Layout</td>
<td>42.0</td>
</tr>
<tr>
<td>Tabs</td>
<td><code>lightning:tab</code></td>
<td>A single tab that is nested in a <code>lightning:tabset</code> component.</td>
<td>Tabs</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>lightning:tabset</code></td>
<td>Represents a list of tabs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tile</td>
<td><code>lightning:tile</code></td>
<td>A grouping of related information associated with a record.</td>
<td>Tiles</td>
<td></td>
</tr>
</tbody>
</table>

Input Control Components

The following components are based on buttons.

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button</td>
<td><code>lightning:button</code></td>
<td>Represents a button element.</td>
<td>Buttons</td>
<td></td>
</tr>
<tr>
<td>Button Icon</td>
<td><code>lightning:buttonIcon</code></td>
<td>An icon-only HTML button.</td>
<td>Button Icons</td>
<td></td>
</tr>
<tr>
<td>Button Icon (Stateful)</td>
<td><code>lightning:buttonIconStateful</code></td>
<td>An icon-only button that retains state.</td>
<td>Button Icons</td>
<td>41.0</td>
</tr>
</tbody>
</table>
Navigation Components

The following components organize links and actions in a hierarchy or to visit other locations in an app.

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadcrumb</td>
<td>lightning:breadcrumb</td>
<td>An item in the hierarchy path of the page the user is on.</td>
<td>Breadcrumbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lightning:breadcrums</td>
<td>A hierarchy path of the page you’re currently visiting within the website or app.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Button Menu</td>
<td>lightning:buttonMenu</td>
<td>A dropdown menu with a list of actions or functions.</td>
<td>Menus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lightning:menuItem</td>
<td>A list item in lightning:buttonMenu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lightning:menuDivider</td>
<td>A horizontal line separating menu items in lightning:buttonMenu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lightning:menuSubheader</td>
<td>A subheading for menu items in lightning:buttonMenu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td>lightning:navigation</td>
<td>Generates a URL for a page reference.</td>
<td>N/A</td>
<td>43.0</td>
</tr>
<tr>
<td>Map</td>
<td>lightning:map</td>
<td>Displays a map of one or more locations</td>
<td>Map</td>
<td>44.0</td>
</tr>
<tr>
<td>Tree</td>
<td>lightning:tree</td>
<td>Displays a structural hierarchy with nested items.</td>
<td>Trees</td>
<td>41.0</td>
</tr>
<tr>
<td>Vertical Navigation</td>
<td>lightning:verticalNavigation</td>
<td>A vertical list of links that take you to another page or parts of the page you’re in.</td>
<td>Vertical Navigation</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>lightning:verticalNavigationItem</td>
<td>A text-only link within lightning:verticalNavigationSection or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lightning:verticalNavigationOverflow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creating Components

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>A link and badge within</td>
<td>lightning:verticalNavigationSection or lightning:verticalNavigationOverflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A link and icon within</td>
<td>lightning:verticalNavigationSection or lightning:verticalNavigationOverflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An overflow of items in</td>
<td>lightning:verticalNavigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A section within</td>
<td>lightning:verticalNavigation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Components

The following components provide informative cues, for example, like icons and loading spinners.

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avatar</td>
<td>lightning:avatar</td>
<td>A visual representation of an object.</td>
<td>Avatars</td>
<td></td>
</tr>
<tr>
<td>Badge</td>
<td>lightning:badge</td>
<td>A label that holds a small amount of information.</td>
<td>Badges</td>
<td></td>
</tr>
<tr>
<td>Data Table</td>
<td>lightning:datatable</td>
<td>A table that displays columns of data, formatted according to type.</td>
<td>Data Tables</td>
<td>41.0</td>
</tr>
<tr>
<td>Dynamic Icon</td>
<td>lightning:dynamicIcon</td>
<td>A variety of animated icons.</td>
<td>Dynamic Icons</td>
<td>41.0</td>
</tr>
<tr>
<td>Help Text (Tooltip)</td>
<td>lightning:helptext</td>
<td>An icon with a popover container a small amount of text.</td>
<td>Tooltips</td>
<td></td>
</tr>
<tr>
<td>Icon</td>
<td>lightning:icon</td>
<td>A visual element that provides context.</td>
<td>Icons</td>
<td></td>
</tr>
<tr>
<td>ListView</td>
<td>lightning:listView</td>
<td>Displays a list view of the specified object</td>
<td>N/A</td>
<td>42.0</td>
</tr>
<tr>
<td>Messaging</td>
<td>lightning:overlayLibrary</td>
<td>Displays messages via modals and popovers.</td>
<td>Messaging</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>lightning:notificationsLibrary</td>
<td>Displays messages via notices and toasts.</td>
<td>Messaging</td>
<td>41.0</td>
</tr>
<tr>
<td>Path</td>
<td>lightning:path</td>
<td>Displays a path driven by a picklist field and Path Setup metadata.</td>
<td>Path</td>
<td>41.0</td>
</tr>
<tr>
<td>Picklist Path</td>
<td>lightning:picklistPath</td>
<td>Displays a path based on a specified picklist field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Lightning Component Name</td>
<td>Description</td>
<td>Lightning Design System</td>
<td>API Version</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pill</td>
<td>lightning:pill</td>
<td>A pill represents an existing item in a database, as opposed to user-generated freeform text.</td>
<td>Pills</td>
<td></td>
</tr>
<tr>
<td>Pill Container</td>
<td>lightning:pillContainer</td>
<td>A list of pills grouped in a container.</td>
<td>Pills</td>
<td>42.0</td>
</tr>
<tr>
<td>Progress Bar</td>
<td>lightning:progressBar</td>
<td>A horizontal progress bar from left to right to indicate the progress of an operation.</td>
<td>Progress Bars</td>
<td>41.0</td>
</tr>
<tr>
<td>Progress Indicator and Path</td>
<td>lightning:progressIndicator</td>
<td>Displays steps in a process to indicate what has been completed.</td>
<td>Progress Indicators Path</td>
<td>41.0</td>
</tr>
<tr>
<td>Tree Grid</td>
<td>lightning:treeGrid</td>
<td>A hierarchical view of data presented in a table.</td>
<td>Trees</td>
<td>42.0</td>
</tr>
<tr>
<td>Spinner</td>
<td>lightning:spinner</td>
<td>Displays an animated spinner.</td>
<td>Spinners</td>
<td></td>
</tr>
</tbody>
</table>

Field Components

The following components enable you to enter values in a form.

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>lightning:inputAddress</td>
<td>Represents an address compound field.</td>
<td>Form Layout</td>
<td>42.0</td>
</tr>
<tr>
<td>Checkbox Group</td>
<td>lightning:checkboxGroup</td>
<td>Enables single or multiple selection on a group of options.</td>
<td>Checkbox</td>
<td>41.0</td>
</tr>
<tr>
<td>Combobox</td>
<td>lightning:combobox</td>
<td>An input element that enables single selection from a list of options.</td>
<td>Combobox</td>
<td></td>
</tr>
<tr>
<td>Dual Listbox</td>
<td>lightning:dualListbox</td>
<td>Provides an input listbox accompanied with a listbox of selectable options. Options can be moved between the two lists.</td>
<td>Dueling Picklist</td>
<td>41.0</td>
</tr>
<tr>
<td>File Uploader and Preview</td>
<td>lightning:fileUpload</td>
<td>Enables file uploads to a record.</td>
<td>File Selector</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>lightning:fileCard</td>
<td>Displays a representation of uploaded content.</td>
<td>Files</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>lightning:input</td>
<td>Represents interactive controls that accept user input depending on the type attribute.</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Input Field</td>
<td>lightning:inputField</td>
<td>Represents an editable input for a field on a Salesforce object.</td>
<td>Form Layout</td>
<td>42.0</td>
</tr>
</tbody>
</table>
Lightning Design System

API Version

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Name</td>
<td>lightning:inputName</td>
<td>Represents a name compound field.</td>
<td>Form Layout</td>
<td>42.0</td>
</tr>
<tr>
<td>Input Location</td>
<td>lightning:inputLocation</td>
<td>A geolocation compound field that accepts a latitude and longitude value.</td>
<td>Form Layout</td>
<td>41.0</td>
</tr>
<tr>
<td>Radio Group</td>
<td>lightning:radioGroup</td>
<td>Enables single selection on a group of options.</td>
<td>Radio Button</td>
<td>41.0</td>
</tr>
<tr>
<td>Select</td>
<td>lightning:select</td>
<td>Creates an HTML select element.</td>
<td>Select</td>
<td></td>
</tr>
<tr>
<td>Slider</td>
<td>lightning:slider</td>
<td>An input range slider for specifying a value between two specified numbers.</td>
<td>Slider</td>
<td>41.0</td>
</tr>
<tr>
<td>Rich Text Area</td>
<td>lightning:inputRichText</td>
<td>A WYSIWYG editor with a customizable toolbar for entering rich text.</td>
<td>Rich Text Editor</td>
<td></td>
</tr>
<tr>
<td>Text Area</td>
<td>lightning:textArea</td>
<td>A multiline text input.</td>
<td>Textarea</td>
<td></td>
</tr>
</tbody>
</table>

Formatted Components

The following components enable you to display read-only formatted values.

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>lightning:formattedAddress</td>
<td>Displays a formatted address that provides a link to the given location on Google Maps.</td>
<td>N/A</td>
<td>42.0</td>
</tr>
<tr>
<td>Date/Time</td>
<td>lightning:formattedDateTime</td>
<td>Displays formatted date and time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td>lightning:formattedEmail</td>
<td>Displays an email as a hyperlink with the mailto: URL scheme.</td>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>Geolocation</td>
<td>lightning:formattedLocation</td>
<td>Displays a geolocation using the format latitude, longitude.</td>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>Name</td>
<td>lightning:formattedName</td>
<td>Displays a formatted name that can include a salutation and suffix.</td>
<td></td>
<td>42.0</td>
</tr>
<tr>
<td>Number</td>
<td>lightning:formattedNumber</td>
<td>Displays formatted numbers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Field</td>
<td>lightning:outputField</td>
<td>Displays a label, help text, and value for a field on a Salesforce object.</td>
<td></td>
<td>41.0</td>
</tr>
</tbody>
</table>
Feature-Specific Components

The following components are usable only in the context of specific Salesforce features.

<table>
<thead>
<tr>
<th>Type</th>
<th>Lightning Component Name</th>
<th>Description</th>
<th>Lightning Design System</th>
<th>API Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning Page Region</td>
<td>lightning:flexRegionInfo</td>
<td>Provides Lightning page region information to the component that contains it.</td>
<td>N/A</td>
<td>41.0</td>
</tr>
<tr>
<td>Flow Interview</td>
<td>lightning:flow</td>
<td>Represents a flow interview in Lightning runtime.</td>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>Omni-Channel Toolkit</td>
<td>lightning:omniToolkitAPI</td>
<td>Provides API access to methods for the Omni-channel toolkit.</td>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>Lightning Console Utility Bar</td>
<td>lightning:utilityBarAPI</td>
<td>Provides API access to methods for the utility bar in Lightning Console.</td>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>Lightning Console Workspace</td>
<td>lightning:workspaceAPI</td>
<td>Provides API access to methods for the workspace in Lightning Console.</td>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>Snap-ins Chat</td>
<td>lightning:prechatAPI</td>
<td>Enables customization of the user interface for the pre-chat page.</td>
<td></td>
<td>42.0</td>
</tr>
<tr>
<td>Snap-ins Chat</td>
<td>lightning:settingsAPI</td>
<td>Provides API access to Snap-ins settings within your custom Snap-ins components.</td>
<td></td>
<td>43.0</td>
</tr>
</tbody>
</table>
Base Lightning Components Considerations

Learn about the guidelines on using the base Lightning components.

⚠️ **Warning:** Don’t depend on the markup of a Lightning component as its internals can change in future releases. Reaching into the component internals can also cause unrecoverable errors in the app. For example, using `cmp.get("v.body")` and examining the DOM elements can cause issues in your code if the component markup changes down the road.

With Locker Service enforced, you can’t traverse the DOM for components you don’t own. Instead of accessing the DOM tree, take advantage of value binding with component attributes and use component methods that are available to you. For example, to get an attribute on a component, use `cmp.find("myInput").get("v.name")` instead of `cmp.find("myInput").getElement().name`. The latter doesn’t work if you don’t have access to the component, such as a component in another namespace.

Many of the base Lightning components are still evolving and the following considerations can help you while you’re building your apps.

lightning:buttonMenu

This component contains menu items that are created only if the button is triggered. You can’t reference the menu items during initialization or if the button isn’t triggered yet.

lightning:input

Fields for percentage and currency input must specify a step increment of 0.01 as required by the native implementation.

```html
<lightning:input type="number" name="percentVal" label="Enter a percentage value" formatter="percent" step="0.01" />
<lightning:input type="number" name="currencyVal" label="Enter a dollar amount" formatter="currency" step="0.01" />
```

When working with checkboxes, radio buttons, and toggle switches, use `aura:id` to group and traverse the array of components. Grouping them enables you to use `get("v.checked")` to determine which elements are checked or unchecked without reaching into the DOM. You can also use the `name` and `value` attributes to identify each component during the iteration. The following example groups three checkboxes together using `aura:id`.

```html
<aura:component>
  <form>
    <fieldset>
      <legend>Select your favorite color:</legend>
      <lightning:input type="checkbox" label="Red" name="color1" value="1" aura:id="colors"/>
      <lightning:input type="checkbox" label="Blue" name="color2" value="2" aura:id="colors"/>
      <lightning:input type="checkbox" label="Green" name="color3" value="3" aura:id="colors"/>
    </fieldset>
    <lightning:button label="Submit" onclick="!c.submitForm"/>
  </form>
</aura:component>
```
In your client-side controller, you can retrieve the array using `cmp.find("colors")` and inspect the checked values.

When working with `type="file"`, you must provide your own server-side logic for uploading files to Salesforce. Read the file using the FileReader HTML object, and then encode the file contents before sending them to your Apex controller. In your Apex controller, you can use the `EncodingUtil` methods to decode the file data. For example, you can use the Attachment object to upload files to a parent object. In this case, you pass in the base64 encoded file to the `Body` field to save the file as an attachment in your Apex controller.

Uploading files using this component is subject to regular Apex controller limits, which is 1 MB. To accommodate file size increase due to base64 encoding, we recommend that you set the maximum file size to 750 KB. You must implement chunking for file size larger than 1 MB. Files uploaded via chunking are subject to a size limit of 4 MB. For more information, see the Apex Developer Guide.

Alternatively, you can use `lightning:fileUpload` to upload files directly to records.

lightning:tab (Beta)

This component creates its body during runtime. You can’t reference the component during initialization. Referencing the component using `aura:id` can return unexpected results, such as the component returning an undefined value when implementing `cmp.find("myComponent")`.

lightning:tabset (Beta)

When you load more tabs than can fit the width of the viewport, the tabset provides navigation buttons that scrolls horizontally to display the overflow tabs.

Methods with Limited Support on Some Components

Some methods have limited support or no support on these components:

- `lightning:avatar`
- `lightning:badge`
- `lightning:breadcrumb`
- `lightning:formattedDateTime`
- `lightning:formattedNumber`
- `lightning:icon`
- `lightning:input`
- `lightning:inputField`
- `lightning:outputField`
- `lightning:relativeDateTime`
- `lightning:textarea`

getDef()

`getDef()` can’t get API methods or attach change handlers in the specified components. The correct way to work with base Lightning components is to work with the instances, and not attempt to access the component or its definition.

getReference()

`getReference()` method support is limited. You can’t use it with controllers with these components. For example, `getReference('v.value')` works but `getReference('c.myFunc')` doesn’t work.

afterRender()

`afterRender()` isn’t supported by the specified components. You shouldn’t call `afterRender()` on Lightning base components directly. For example, `component.find('lightning:input').afterRender()` doesn’t work.
No nested component access

You can't access sub-components inside a base Lightning component. You can only use the exposed API. For example, `cmp.find('mylightning:inputField').find('innercomponent')` doesn't work.

Event Handling in Base Lightning Components

Base components are lightweight and closely resemble HTML markup. They follow standard HTML practices by providing event handlers as attributes, such as `onfocus`, instead of registering and firing Lightning component events, like components in the `ui` namespace.

Because of their markup, you might expect to access DOM elements for base components via `event.target` or `event.currentTarget`. However, this type of access breaks encapsulation because it provides access to another component's DOM elements, which are subject to change.

Locker Service enforces encapsulation. Use the methods described here to make your code compliant with Locker Service.

To retrieve the component that fired the event, use `event.getSource()`.

```aura:component>
  <lightning:button name="myButton" onclick="!c.doSomething"/>
</aura:component>

{{
  doSomething: function(cmp, event, helper) {
    var button = event.getSource();

    //The following patterns are not supported
    //when you're trying to access another component's
    //DOM elements.
    var el = event.target;
    var currentEl = event.currentTarget;
  }
}}
```

Note: For events fired by standard HTML elements, you can use `event.currentTarget` and `event.target`. For events fired by base Lightning components, use `event.getSource()` instead.

Retrieve a component attribute that's passed to the event by using this syntax.

`event.getSource().get("v.name")`

Reusing Event Handlers

`event.getSource()` helps you determine which component fired an event. Let's say you have several buttons that reuse the same `onclick` handler. To retrieve the name of the button that fired the event, use `event.getSource().get("v.name")`.

```aura:component>
  <lightning:button label="New Record" name="new" onclick="!c.handleClick"/>
  <lightning:button label="Edit" name="edit" onclick="!c.handleClick"/>
  <lightning:button label="Delete" name="delete" onclick="!c.handleClick"/>
</aura:component>

{{
  handleClick: function(cmp, event, helper) {
    //returns "new", "edit", or "delete"
```
Retrieving the Active Component Using the \textit{onactive} Handler

When working with tabs, you want to know which one is active. The \texttt{lightning:tab} component enables you to obtain a reference to the target component when it becomes active using the \textit{onactive} handler. Clicking the component multiple times invokes the handler once only.

```xml
<aura:component>
  <lightning:tabset>
    <lightning:tab onactive="{! c.handleActive }" label="Tab 1" id="tab1" />
    <lightning:tab onactive="{! c.handleActive }" label="Tab 2" id="tab2" />
  </lightning:tabset>
</aura:component>
```

```javascript
({
    handleActive: function (cmp, event) {
      var tab = event.getSource();
      switch (tab.get('v.id')) {
        case 'tab1':
          //do something when tab1 is clicked
          break;
        case 'tab2':
          //do something when tab2 is clicked
          break;
      }
    }
})
```

Retrieving the ID and Value Using the \textit{onselect} Handler

Some components provide event handlers to pass in events to child components, such as the \textit{onselect} event handler on the following components.

- \texttt{lightning:buttonMenu}
- \texttt{lightning:tabset}

Although the \texttt{event.detail} syntax continues to be supported, we recommend that you update your JavaScript code to use the following patterns for the \textit{onselect} handler as we plan to deprecate \texttt{event.detail} in a future release.

- \texttt{event.getParam("id")}
- \texttt{event.getParam("value")}

For example, you want to retrieve the value of a selected menu item in a \texttt{lightning:buttonMenu} component from a client-side controller.

```javascript
//Before
var menuItem = event.detail.menuItem;
var itemValue = menuItem.get("v.value");
//After
var itemValue = event.getParam("value");
```
Similarly, to retrieve the ID of a selected tab in a `lightning:tabset` component:

```
//Before
var tab = event.detail.selectedTab;
var tabId = tab.get("v.id");
//After
var tabId = event.getParam("id");
```

Note: If you need a reference to the target component, use the `onactive` event handler instead.

Lightning Design System Considerations

Although the base Lightning components provide Salesforce Lightning Design System styling out-of-the-box, you may still want to write some CSS depending on your requirements.

If you’re using the components outside of the Salesforce app and Lightning Experience, such as in standalone apps and Lightning Out, extend `force:slds` to apply Lightning Design System styling to your components. Here are several guidelines for using Lightning Design System in base components.

Using Utility Classes in Base Components

Lightning Design System utility classes are the fundamentals of your component’s visual design and promote reusability, such as for alignments, grid, spacing, and typography. Most base components provide a `class` attribute, so you can add a utility class or custom class to the outer element of the components. For example, you can apply a spacing utility class to `lightning:button`.

```
<lightning:button name="submit" label="Submit" class="slds-m-around_medium"/>
```

The class you add is appended to other base classes that are applied to the component, resulting in the following markup.

```
<button class="slds-button slds-button_neutral slds-m-around_medium" type="button" name="submit">Submit</button>
```

Similarly, you can create a custom class and pass it into the `class` attribute.

```
<lightning:badge label="My badge" class="myCustomClass"/>
```

You have the flexibility to customize the components at a granular level beyond the CSS scaffolding we provide. Let's look at the `lightning:card` component, where you can create your own body markup. You can apply the `slds-p-horizontal_small` or `slds-card__body_inner` class in the body markup to add padding around the body.

```
<!-- lightning:card example using slds-p-horizontal_small class -->
<lightning:card>
  <aura:set attribute="title">My Account</aura:set>
  <aura:set attribute="footer">Footer</aura:set>
  <aura:set attribute="actions">
    <lightning:button label="New"/>
  </aura:set>
  <p class="slds-p-horizontal_small">
    Card Body
  </p>
</lightning:card>

<!-- lightning:card example using slds-card__body_inner -->
<lightning:card>
  <aura:set attribute="title">My Account</aura:set>
</lightning:card>
```

115
Block-Element-Modifier (BEM) Notation

CSS class names used by Lightning base components match the Block-Element-Modifier (BEM) notation that Salesforce Lightning Design System uses. Class names that previously contained a double dash now use a single underscore in place of the double dash. A CSS class that used to be `slds-p-around--small` is now `slds-p-around_small`, for example. If you have created custom CSS in your components that reference an SLDS class that contains a double dash, update your selectors to use a single underscore. For more information, see Lightning Design System FAQ.

Applying Custom Component Styling

Sometimes the utility classes aren’t enough and you want to add custom styling in your component bundle. You saw earlier that you can create a custom class and pass it into the `class` attribute. We recommend that you create a class instead of targeting a class name you don’t own, since those classes might change anytime. For example, don’t try to target `.slds-input` or `.lightningInput`, as they are CSS classes that are available by default in base components. You can also consider using tokens to ensure that your design is consistent across your components. Specify values in the token bundle and reuse them in your components’ CSS resources.

Showing and Hiding with Styles

Lightning Design System utility classes include visibility classes that enable you to show and hide elements. These classes are designed as show/hide pairs that you add and remove, or toggle, with JavaScript. Apply only one class at a time. See Lightning Design System: Utilities: Visibility for descriptions of the classes. For information about using JavaScript to toggle markup see Dynamically Showing or Hiding Markup.

Using the Grid for Layout

`lightning:layout` is your answer to a flexible grid system. You can achieve a simple layout by enclosing `lightning:layoutItem` components within `lightning:layout`, which creates a div container with the `slds-grid` class. To apply additional Lightning Design System grid classes, specify any combination of the `lightning:layout` attributes. For example, specify `vertical-align="stretch"` to append the `slds-grid_vertical-stretch` class. You can apply Lightning Design System grid classes to the component using the `horizontalAlign`, `verticalAlign`, and `pullToBoundary` attributes. However, not all grid classes are available through these attributes. To provide additional grid classes, use the `class` attribute. The following grid classes can be added using the `class` attribute.

- `.slds-grid_frame`
- `.slds-grid_vertical`
- `.slds-grid_reverse`
- `.slds-grid_vertical-reverse`
- `.slds-grid_pull-padded-x-small`
- `.slds-grid_pull-padded-xx-small`
This example adds the `slds-grid_reverse` class to the `slds-grid` class.

```html
<lightning:layout horizontalAlign="space" class="slds-grid_reverse">
  <lightning:layoutItem padding="around-small">
    <!-- more markup here -->
  </lightning:layoutItem>
  <!-- more lightning:layoutItem components here -->
</lightning:layout>
```

For more information, see [Grid utility](#)

Applying Variants to Base Components

Variants on a component refer to design variations for that component, enabling you to change the appearance of the component easily. While we try to match base component variants to their respective Lightning Design System variants, it’s not a one-to-one correspondence. Most base components provide a `variant` attribute. For example, `lightning:button` support many variants—base, neutral, brand, destructive, and inverse—to apply different text and background colors on the buttons.

```html
<lightning:button variant="brand" label="Brand" onclick="! c.handleClick ">
</lightning:button>
```

Notice the `success` variant is not supported. However, you can add the `slds-button_success` class to achieve the same result.

```html
<lightning:button name="submit" label="Submit" class="slds-button_success"/>
```

Let’s look at another example. You can create a group of related information using the `lightning:tile` component. Although this component doesn’t provide a `variant` attribute, you can achieve the Lightning Design System board variant by passing in the `slds-tile_board` class.

```html
<aura:component>
  <ul class="slds-has-dividers_around-space">
    <li class="slds-item">
      <lightning:tile label="Anypoint Connectors" href="/path/to/somewhere" class="slds-tile_board">
        <p class="slds-text-heading_medium">$500,000</p>
        <p class="slds-truncate title="Company One" a href="#">Company One</a><p>
        <p class="slds-truncate">Closing 9/30/2015</p>
      </lightning:tile>
    </li>
  </ul>
</aura:component>
```

If you don’t see a variant you need, check to see if you can pass in a Lightning Design System class to the base component before creating your own custom CSS class. Don’t be afraid to experiment with Lightning Design System classes and variants in base components. For more information, see [Lightning Design System](#)

SEE ALSO:

- [Styling Apps](#)
- [Styling with Design Tokens](#)

Working with Lightning Design System Variants

Base component variants correspond to variants in Lightning Design System. Variants change the appearance of a component and are controlled by the `variant` attribute.

If you pass in a variant that’s not supported, the default variant is used instead. This example creates a button with the base variant.

```xml
<lightning:button variant="base" label="Base" onclick="! c.handleClick "/>
```

The following reference describes how variants in base components correspond to variants in Lightning Design System. Base components that don’t have any visual styling, such as `lightning:formattedDateTime`, are not listed here. For more information on any of these components, see the Component Library.

Accordion

A `lightning:accordion` component is a collection of vertically stacked sections with content areas. The sections are defined with `lightning:accordionSection` components. By default, only one section is expanded at a time. The `allowMultipleSectionsOpen` attribute enables you to expand more than one section. This component does not support the `variant` attribute. `lightning:accordion` uses the styling from Accordion in the Lightning Design System.

Avatar

A `lightning:avatar` component is an image that represents an object, such as an account or user. You can create avatars in different sizes and two variants. `lightning:avatar` uses the styling from Avatar in the Lightning Design System.

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>square (default)</td>
<td>slds-avatar</td>
<td>An avatar with a rounded square shape</td>
</tr>
<tr>
<td>circle</td>
<td>slds-avatar_circle</td>
<td>An avatar with a circular shape</td>
</tr>
</tbody>
</table>

Badge

A `lightning:badge` component is a label containing a small amount of information. This component does not support the `variant` attribute. `lightning:badge` uses the styling from Badges in the Lightning Design System.

Breadcrumb

A `lightning:breadcrumb` component displays the path of a page relative to a parent page. Breadcrumbs are nested in a `lightning:breadcrumbs` component. This component does not support the `variant` attribute. `lightning:breadcrumb` uses the styling from Breadcrumbs in the Lightning Design System.
Button

A `lightning:button` component is a button that executes an action in a client-side controller. Buttons can be one of three types: button (default), reset, and submit. Buttons support icons to the left or right of the text label. `lightning:button` uses the styling from Buttons in the Lightning Design System.

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutral (default)</td>
<td>slds-button_neutral</td>
<td>A button with gray border and white background</td>
</tr>
<tr>
<td>base</td>
<td>slds-button</td>
<td>A button without a border, which appears like a text link</td>
</tr>
<tr>
<td>brand</td>
<td>slds-button_brand</td>
<td>A blue button with white text</td>
</tr>
<tr>
<td>destructive</td>
<td>slds-buttondestructive</td>
<td>A red button with white text</td>
</tr>
<tr>
<td>inverse</td>
<td>slds-button_inverse</td>
<td>A button for dark backgrounds</td>
</tr>
<tr>
<td>success</td>
<td>slds-button_success</td>
<td>A green button</td>
</tr>
</tbody>
</table>

Button Group

A `lightning:buttonGroup` component is a group of buttons that can be displayed together to create a navigational bar. You can nest `lightning:button` and `lightning:buttonMenu` components in the group. Although the button group itself doesn’t support the `variant` attribute, variants are supported for buttons and the button menu components. For example, you can nest `<lightning:button variant="inverse" label="Refresh" />` in a button group. If including `lightning:buttonMenu`, place it after the buttons and pass in the `slds-button_last` class to adjust the border. `lightning:buttonGroup` uses the styling from Button Groups in the Lightning Design System.

Button Icon

A `lightning:buttonIcon` component is an icon-only button that executes an action in a client-side controller. You can create button icons in different sizes. Only Lightning Design System utility icons are supported. `lightning:buttonIcon` uses the styling from Button Icons in the Lightning Design System.
Button Icon (Stateful)

A `lightning:buttonIconStateful` component is an icon-only button that retains state. You can press the button to toggle between states. You can create button icons in different sizes. Only Lightning Design System utility icons are supported. The `selected` attribute appends the `slds-is-selected` class when it's set to `true`. `lightning:buttonIconStateful` uses the styling from Button Icons in the Lightning Design System.

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>border (default)</td>
<td>slds-button_icon-border</td>
<td>A button that contains an icon with gray border</td>
</tr>
<tr>
<td>bare</td>
<td>slds-button_icon</td>
<td>A button that looks like a plain icon</td>
</tr>
<tr>
<td>brand</td>
<td>slds-button_icon-brand</td>
<td>A button that uses the Salesforce blue background color</td>
</tr>
<tr>
<td>container</td>
<td>slds-button_icon-container</td>
<td>A 32px by 32px button that looks like a plain icon</td>
</tr>
<tr>
<td>border-filled</td>
<td>slds-button_icon-border-filled</td>
<td>A button that contains an icon with gray border and white background</td>
</tr>
<tr>
<td>bare-inverse</td>
<td>slds-button_icon-inverse</td>
<td>A button that contains a white icon without borders for a dark background</td>
</tr>
<tr>
<td>border-inverse</td>
<td>slds-button_icon-border-inverse</td>
<td>A button that contains a white icon for a dark background</td>
</tr>
</tbody>
</table>

Button Menu

A `lightning:buttonMenu` component is a dropdown menu with a list of menu items, represented by `lightning:menuItem` components. Menu items can be checked or unchecked, or execute an action in a client-side controller. You can create button menus with icons in different sizes and position the dropdown menu in different locations relative to the button. The variants change the appearance of the button, and are similar to the variants on button icons. `lightning:buttonMenu` supports the `lightning:menuDivider` component for creating horizontal lines between menu items. The menu divider has a `compact` variant for reducing the space above and below the line. The `lightning:menuSubheader` component enables you to create subheadings in the list of menu items. It has no variants. `lightning:buttonMenu` uses the styling from Menus in the Lightning Design System.
Base Component Variant

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>border (default)</td>
<td>slds-button_icon-border</td>
<td>A button that contains an icon with gray border</td>
</tr>
<tr>
<td>bare</td>
<td>slds-button_icon</td>
<td>A button that looks like a plain icon</td>
</tr>
<tr>
<td>container</td>
<td>slds-button_icon-container</td>
<td>A 32px by 32px button that looks like a plain icon</td>
</tr>
<tr>
<td>border-filled</td>
<td>slds-button_icon-border-filled</td>
<td>A button that contains an icon with gray border and white background</td>
</tr>
<tr>
<td>bare-inverse</td>
<td>slds-button_icon-inverse</td>
<td>A button that contains a white icon without borders for a dark background</td>
</tr>
<tr>
<td>border-inverse</td>
<td>slds-button_icon-border-inverse</td>
<td>A button that contains a white icon for a dark background</td>
</tr>
</tbody>
</table>

Button (Stateful)

A `lightning:buttonStateful` component is a button that toggles between states. Stateful buttons can show a different label and icon based on their states. Only Lightning Design System utility icons are supported. `lightning:buttonStateful` uses the styling from Buttons in the Lightning Design System.
Card

A `lightning:card` component is used to apply a stylized container around a grouping of information in an `article` HTML tag. The information could be a single item or a group of items such as a related list. `lightning:card` uses the styling from Cards in the Lightning Design System.

Carousel

A `lightning:carousel` component is a collection of images that are displayed horizontally one at a time. Specify the images using `lightning:carouselImage` child components. The carousel doesn’t support the `variant` attribute, and it uses the `slds-carousel` class on the outer element. `lightning:carousel` uses the styling from Carousel in the Lightning Design System.
Checkbox Group

A `lightning:checkboxGroup` component is a group of checkboxes that enables selection of single or multiple options. This component is different from `lightning:input` of type="checkbox" as the latter is not suitable for grouping a set of checkboxes together. Although the checkbox group doesn’t support the variant attribute, the `sls-form-element` class is appended to the `fieldset` element that encloses the checkbox group. `lightning:checkboxGroup` uses the styling from Checkbox in the Lightning Design System.

Combobox

A `lightning:combobox` component is an input element that enables single selection from a list of options. The result of the selection is displayed as the value of the input. In a multi-select combobox, each selected option is displayed in a pill below the input element. `lightning:combobox` uses the styling from Combobox in the Lightning Design System.

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard (default)</td>
<td><code>sls-input</code></td>
<td>A combobox that enables single or multiple selection</td>
</tr>
<tr>
<td></td>
<td><code>sls-form-element</code></td>
<td></td>
</tr>
<tr>
<td>Base Component Variant</td>
<td>Lightning Design System Class Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>slds-form-element__control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slds-combobox</td>
<td></td>
</tr>
<tr>
<td>label-hidden</td>
<td>N/A</td>
<td>An input element with a hidden label</td>
</tr>
</tbody>
</table>

Data Table and Tree Grid

A `lightning:datatable` component is a table that displays columns of data, formatted according to type. It enables resizing of columns, header-level actions, row-level actions, selecting of rows, sorting of columns, text wrapping and clipping, row numbering, and cell content alignment. Although the data table doesn’t support the `variant` attribute, the `slds-table` and `slds-table_bordered` classes are appended to the `table` element. Component attributes and column properties set in the client-side controller enable you to customize tables. `lightning:datatable` uses the styling from Data Tables in the Lightning Design System.

<table>
<thead>
<tr>
<th>OPPORTUNITY ...</th>
<th>ACCOUNT NAME</th>
<th>CLOSE DATE</th>
<th>CONFIDENCE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schimmel, Schim...</td>
<td>Myra</td>
<td>7/23/2017</td>
<td>93%</td>
<td>€73,640.00</td>
</tr>
<tr>
<td>McKenzie, McKen...</td>
<td>Kaley</td>
<td>7/18/2017</td>
<td>29%</td>
<td>€29,027.00</td>
</tr>
<tr>
<td>Bartoletti-Bartoletti</td>
<td>Letitia</td>
<td>7/15/2017</td>
<td>80%</td>
<td>€13,000.00</td>
</tr>
<tr>
<td>Pagac-Pagac</td>
<td>Beryl</td>
<td>7/17/2017</td>
<td>37%</td>
<td>€70,094.00</td>
</tr>
<tr>
<td>Emard LLC</td>
<td>Myron</td>
<td>7/23/2017</td>
<td>35%</td>
<td>€90,457.00</td>
</tr>
</tbody>
</table>

Similar in appearance to `lightning:datatable`, `lightning:treeGrid` is a hierarchical view of data presented in a table. It uses the styling from Trees in the Lightning Design System.

<table>
<thead>
<tr>
<th>ACCOUNT NAME</th>
<th>EMPLOYEES</th>
<th>PHONE NUMBER</th>
<th>ACCOUNT OWNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revis Inc</td>
<td>3,100</td>
<td>837-555-1212</td>
<td>Jane Doe</td>
</tr>
<tr>
<td>[] Acme Corporation</td>
<td>10,000</td>
<td>837-555-1212</td>
<td>John Doe</td>
</tr>
<tr>
<td>[] Acme Corporation (Bay Area)</td>
<td>3,000</td>
<td>837-555-1212</td>
<td>John Doe</td>
</tr>
<tr>
<td>[] Acme Corporation (Oakland)</td>
<td>745</td>
<td>837-555-1212</td>
<td>John Doe</td>
</tr>
<tr>
<td>[] Acme Corporation (San Francisco)</td>
<td>578</td>
<td>837-555-1212</td>
<td>Jane Doe</td>
</tr>
</tbody>
</table>

Dual Listbox

A `lightning:dualListbox` component provides two list boxes, where you can move one or more options to the second list box and reorder the selected options. `lightning:dualListbox` uses the styling from Dueling Picklist in the Lightning Design System.
Creating Components

Lightning Design System Considerations

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard (default)</td>
<td>slds-dueling-list</td>
<td>A dual listbox with a visible label</td>
</tr>
<tr>
<td>label-hidden</td>
<td>N/A</td>
<td>A dual listbox with a hidden label</td>
</tr>
</tbody>
</table>

Dynamic Icon

A `lightning:dynamicIcon` component represents various animated icons. The `type` attribute determines the animated icon to display and corresponds to the dynamic icons in the Lightning Design System. `lightning:dynamicIcon` uses the styling from Dynamic Icons in the Lightning Design System.

File Uploader

A `lightning:fileUpload` component enables file uploads to a record. The file uploader includes drag-and-drop functionality and filtering by file types. Although it doesn't support the `variant` attribute, the `slds-file-selector` class is appended to the component. `lightning:fileUpload` uses the styling from FileSelector in the Lightning Design System.

Form Layout

A form layout represents a set of interactive controls to submit user input, which can include compound fields such as fields for addresses, names, or geolocation. These components use the styling from Form Layout in the Lightning Design System. `lightning:inputAddress` displays an address compound field.
lightning:inputName displays a name compound field.

lightning:inputField displays an editable field with a label, help text, and value that correspond to a record field on a Salesforce object. The field’s data type determines the component that’s used for the input field. The lightning:inputField component must be nested in a lightning:recordEditForm component.

lightning:outputField displays a read-only field with a label, help text, and value of a record field on a Salesforce object. The component has a label-hidden variant to hide the label. lightning:outputField is used in

lightning:recordViewForm and lightning:recordEditForm components.

The lightning:recordForm component eases record form creation. It accepts a mode attribute to specify variants of the form. The component creates an edit form that can create or update records, a view form with the option to edit fields, and a read-only form. The layout of the form is set with other attributes. The lightning:recordForm component uses

lightning:recordEditForm and lightning:recordViewForm to create the forms.

The edit mode form with a single column layout:
Help Text (Tooltip)

A `lightning:helptext` component displays an icon with a popover containing a small amount of text describing an element on screen. The `iconVariant` attribute changes the appearance of the help text icon and supports the same variants as the `lightning:icon` component. You can also change the default icon using the `iconName` attribute to specify a different utility icon. The `slds-popover` and `slds-popover_tooltip` classes are applied to the tooltip. `lightning:helptext` uses the styling from `Tooltips` in the Lightning Design System.
Icon

A `lightning:icon` component is a visual element that provides context and enhances usability. Although all Lightning Design System icons are supported, only utility icons support variants. You can create icons in different sizes. You can also use a custom svg sprite and specify a path to the resource instead of using Lightning Design System icons. `lightning:icon` uses the styling from Icons in the Lightning Design System.

<table>
<thead>
<tr>
<th>Icon Description</th>
<th>Class Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>An icon with a white fill</td>
<td>slds-icon</td>
</tr>
<tr>
<td>An icon with a red fill</td>
<td>slds-icon-text-error</td>
</tr>
<tr>
<td>An icon with a yellow fill</td>
<td>slds-icon-text-warning</td>
</tr>
</tbody>
</table>

Input

A `lightning:input` component is an interactive control, such as an input field or checkbox, which accepts user input. `lightning:input` uses the styling from Input in the Lightning Design System.
Base Component

<table>
<thead>
<tr>
<th>Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>slds-input, sllds-form-element, sllds-form-element__control</td>
<td>An input element, which can be an input field, checkbox, toggle, radio button, or other types. The class appended to the element depends on the input type.</td>
</tr>
<tr>
<td>label-hidden</td>
<td>N/A</td>
<td>An input element with a hidden label</td>
</tr>
</tbody>
</table>

Layout

A `lightning:layout` component is a flexible grid system for arranging containers within a page or another container. The `lightning:layoutItem` component is used to specify the items inside the layout. The component does not support the `variant` attribute. Customization of the layout is controlled by `horizontalAlign`, `verticalAlign`, `pullToBoundary`, and `multipleRows` attributes of `lightning:layout`. The attributes of `lightning:layoutItem` enable you to configure the size of the layout item, and change how the layout is configured on different device sizes.

`lightning:layout` uses the styling from Grid in the Lightning Design System. For more information, see Lightning Design System Considerations.

List View

A `lightning:listView` component represents a list view of records that you own or have read or write access to, and records shared with you. Inline edit, row level actions, and the action bar are supported in Lightning Experience, the Salesforce app, and communities only. On a desktop, this component renders a full list view. On all other form factors, such as a tablet or mobile devices, the component renders a mobile-friendly alternative.

Map

A `lightning:map` component securely displays a map of one or more locations. The component does not support the `variant` attribute. It supports attributes that enable you to add a title for a list of locations and a footer. `lightning:map` uses the styling from Map in the Lightning Design System.
Messaging

Messaging components communicate relevant information, such as for engagement or feedback. These components use styling from Messaging in the Lightning Design System. `lightning:overlayLibrary` display messages via modals and popovers. A modal blocks everything else on the page until it’s dismissed, while popovers display contextual information on a reference element and don’t interrupt like modals.

`lightning:notificationsLibrary` display messages via notices and toasts. Notices interrupt the user’s workflow and block everything else on the page, while toasts are less intrusive than notices and are suitable for providing feedback following an action.
Pill

A `lightning:pill` component is a text label that's wrapped by a rounded border and displayed with a remove button. Pills can contain an icon or avatar next to the text label. This component does not support the `variant` attribute, but its content and other attributes determine the styling applied to them. For example, a pill with `hasError="true"` displays as a pill with a red border and error icon. `lightning:pill` uses the styling from Pills in the Lightning Design System.

```
With link ✗  Pill Label ✗  Pill Label ✗  Pill Label ✗  Pill Label ✗
```

Additionally, you can display pills in a container using the `lightning:pillContainer` component.

```
Avatar Pill ✗  Icon Pill ✗
```

Progress Bar

A `lightning:progressBar` component displays a horizontal progress bar from left to right to indicate the progress of an operation. It uses the styling from Progress Bar in the Lightning Design System.

```
progressBar
```

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>base (default)</td>
<td>slds-progress-bar</td>
<td>A basic progress bar</td>
</tr>
<tr>
<td>circular</td>
<td>slds-progress-bar_circular</td>
<td>A progress bar with rounded ends</td>
</tr>
</tbody>
</table>

Progress Indicator and Path

A `lightning:progressIndicator` component displays the steps in a process and indicates what has been completed. The nested `lightning:progressStep` component defines the label and value to display for each step. The `type` attribute determines if progress indicators or a path is displayed. When using `type="base"`, the `variant` attribute is available. `lightning:progressIndicator` uses the styling from Progress Indicator and Path in the Lightning Design System.
The **variant** attribute is not available when `type="path"`.

Additionally, **lightning:path** and **lightning:picklistPath** enables you to display the progress of a process on a record based on a specified picklist field. **lightning:path** displays a path based on your Path Settings in Setup and **lightning:picklistPath** displays a path derived from the `picklistFieldApiName` attribute.

Description

<table>
<thead>
<tr>
<th>Base Component</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>base (default)</td>
<td>sdlsp-progress</td>
<td>For <code>type="base"</code> only. Indicates steps in a process.</td>
</tr>
<tr>
<td>shaded</td>
<td>sdlsp-progress_shade</td>
<td>For <code>type="base"</code> only. Adds a shaded background to the current step.</td>
</tr>
</tbody>
</table>

Radio Group

A **lightning:radioGroup** component is a group of radio buttons that enables selection of a single option. The `type` attribute determines if a group of typical radio buttons or rectangular buttons is displayed. **lightning:radioGroup** uses the styling from **Radio Group** in the Lightning Design System.

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard (default)</td>
<td>sdlsp-radio</td>
<td>A group of radio buttons or rectangular buttons</td>
</tr>
<tr>
<td></td>
<td>sdlsp-radio_button-group</td>
<td></td>
</tr>
<tr>
<td>label-hidden</td>
<td>N/A</td>
<td>A group of radio buttons or rectangular buttons with a label that's hidden</td>
</tr>
</tbody>
</table>

Rich Text Editor

A **lightning:inputRichText** component is a rich text editor with a customizable toolbar. The toolbar displays at the top of the editor but you can change its position to below the editor using the `bottom-toolbar` variant. To add an image button to the toolbar, nest the **lightning:insertImageButton** component inside **lightning:inputRichText**. The button opens a file browser to upload an image to insert in the text editor. **lightning:inputRichText** uses the styling from **Rich Text Editor** in the Lightning Design System.
Select

A `lightning:select` component is a dropdown list that enables you to select a single option. `lightning:select` uses the styling from Select in the Lightning Design System.

Base Component:
- **Variant:** bottom-toolbar
- **Class Name:** slds-rich-text-editor__toolbar-bottom
- **Description:** A rich text editor with a toolbar placed below the editor

Select

A `lightning:select` component is a dropdown list that enables you to select a single option. `lightning:select` uses the styling from Select in the Lightning Design System.

Base Component:
- **Variant:** standard (default)
- **Class Name:** slds-select
- **Description:** A select input element that supports single selection of values
- **Variant:** label-hidden
- **Class Name:** N/A
- **Description:** A select input element with a hidden label

Slider

A `lightning:slider` component is a slider for specifying a value between two specified numbers. The `type` attribute determines if a horizontal (default) or vertical slider is displayed. `lightning:slider` uses the styling from Slider in the Lightning Design System.
Spinner

A `lightning:spinner` component is a spinner that indicates data is loading. You can create spinners in different sizes. `lightning:spinner` uses the styling from Spinners in the Lightning Design System.

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>base (default)</td>
<td>slds-spinner</td>
<td>A gray spinner</td>
</tr>
<tr>
<td>brand</td>
<td>slds-spinner_brand</td>
<td>A blue spinner</td>
</tr>
<tr>
<td>inverse</td>
<td>slds-spinner_inverse</td>
<td>A white spinner for a dark background</td>
</tr>
</tbody>
</table>

Tabs

A `lightning:tabset` component is a list of tabs with corresponding content areas, represented by `lightning:tab` components. `lightning:tabset` uses the styling from Tabs in the Lightning Design System.

<table>
<thead>
<tr>
<th>Base Component Variant</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>slds-tabs_default</td>
<td>A list of tabs and content areas without borders</td>
</tr>
<tr>
<td>scoped</td>
<td>slds-tabs_scoped</td>
<td>A list of tabs and content areas with borders</td>
</tr>
<tr>
<td>vertical</td>
<td>slds-vertical-tabs</td>
<td>A list of tabs that are displayed vertically to the left of the content areas</td>
</tr>
</tbody>
</table>

Textarea

A `lightning:textarea` component is an input field for multi-line text input. It uses the styling from Textarea in the Lightning Design System.
Creating Components

Lightning Design System Considerations

<table>
<thead>
<tr>
<th>Base Component</th>
<th>Lightning Design System Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard (default)</td>
<td>slds-form-element</td>
<td>A textarea element with a text label</td>
</tr>
<tr>
<td>label-hidden</td>
<td>N/A</td>
<td>A textarea element with a hidden label</td>
</tr>
</tbody>
</table>

Tile

A **lightning:tile** component is a group of related information associated with a record. This component does not support variants, but you can pass in the `slds-tile_board` class to create a board. Similarly, use a definition list in the tile body to create a tile with an icon or use an unordered list to create a list of tiles with avatars. **lightning:tile** uses the styling from **Tiles** in the Lightning Design System.

Tree

A **lightning:tree** component is a visualization of a structure hierarchy. A tree item, also known as a branch, can be expanded or collapsed. Although this component does not support the `variant` attribute, it uses the styling from **Trees** in the Lightning Design System.

Vertical Navigation

A **lightning:verticalNavigation** component is a list of links that are one level deep, with support for icons and overflow sections that collapse and expand. Although this component does not support the `variant` attribute, you can use the `compact` and `shaded` attributes to achieve compact spacing and styling for a shaded background. The component supports subcomponents that enable you to add icons, badges, and overflow content.

lightning:verticalNavigation uses the styling from **Vertical Navigation** in the Lightning Design System.
Working with UI Components

The framework provides common user interface components in the ui namespace. All of these components extend either aura:component or a child component of aura:component. aura:component is an abstract component that provides a default rendering implementation. User interface components such as ui:input and ui:output provide easy handling of common user interface events like keyboard and mouse interactions. Each component can be styled and extended accordingly.

Note: If you are looking for components that apply the Lightning Design System styling, consider using the base lightning components instead.

For all the components available, see the component reference at https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain.

Complex, Interactive Components

The following components contain one or more sub-components and are interactive.

<table>
<thead>
<tr>
<th>Type</th>
<th>Key Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message</td>
<td>ui:message</td>
<td>A message notification of varying severity levels</td>
</tr>
<tr>
<td>Menu</td>
<td>ui:menu</td>
<td>A drop-down list with a trigger that controls its visibility</td>
</tr>
<tr>
<td></td>
<td>ui:menuItemList</td>
<td>A list of menu items</td>
</tr>
<tr>
<td></td>
<td>ui:actionMenuItem</td>
<td>A menu item that triggers an action</td>
</tr>
<tr>
<td></td>
<td>ui:checkboxMenuItem</td>
<td>A menu item that supports multiple selection and can be used to trigger an action</td>
</tr>
<tr>
<td></td>
<td>ui:radioMenuItem</td>
<td>A menu item that supports single selection and can be used to trigger an action</td>
</tr>
<tr>
<td></td>
<td>ui:menuItemSeparator</td>
<td>A visual separator for menu items</td>
</tr>
</tbody>
</table>
Creating Components

Input Control Components
The following components are interactive, for example, like buttons and checkboxes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Key Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button</td>
<td>ui:button</td>
<td>An actionable button that can be pressed or clicked</td>
</tr>
<tr>
<td>Checkbox</td>
<td>ui:inputCheckbox</td>
<td>A selectable option that supports multiple selections</td>
</tr>
<tr>
<td></td>
<td>ui:outputCheckbox</td>
<td>Displays a read-only value of the checkbox</td>
</tr>
<tr>
<td>Radio button</td>
<td>ui:inputRadio</td>
<td>A selectable option that supports only a single selection</td>
</tr>
<tr>
<td>Drop-down List</td>
<td>ui:inputSelect</td>
<td>A drop-down list with options</td>
</tr>
<tr>
<td></td>
<td>ui:inputSelectOption</td>
<td>An option in a ui:inputSelect component</td>
</tr>
</tbody>
</table>

Visual Components
The following components provides informative cues, for example, like error messages and loading spinners.

<table>
<thead>
<tr>
<th>Type</th>
<th>Key Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-level error</td>
<td>ui:inputDefaultError</td>
<td>An error message that is displayed when an error occurs</td>
</tr>
<tr>
<td>Spinner</td>
<td>ui:spinner</td>
<td>A loading spinner</td>
</tr>
</tbody>
</table>

Field Components
The following components enables you to enter or display values.

<table>
<thead>
<tr>
<th>Type</th>
<th>Key Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency</td>
<td>ui:inputCurrency</td>
<td>An input field for entering currency</td>
</tr>
<tr>
<td></td>
<td>ui:outputCurrency</td>
<td>Displays currency in a default or specified format</td>
</tr>
<tr>
<td>Email</td>
<td>ui:inputEmail</td>
<td>An input field for entering an email address</td>
</tr>
<tr>
<td></td>
<td>ui:outputEmail</td>
<td>Displays a clickable email address</td>
</tr>
<tr>
<td>Date and time</td>
<td>ui:inputDate</td>
<td>An input field for entering a date</td>
</tr>
<tr>
<td>Type</td>
<td>Key Components</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>An input field for entering a date and time</td>
<td>ui:inputDateTime</td>
<td>An input field for entering a date and time</td>
</tr>
<tr>
<td>Displays a date in the default or specified format</td>
<td>ui:outputDate</td>
<td>Displays a date in the default or specified format</td>
</tr>
<tr>
<td>Displays a date and time in the default or specified format</td>
<td>ui:outputDateTime</td>
<td>Displays a date and time in the default or specified format</td>
</tr>
<tr>
<td>An input field for entering secret text</td>
<td>ui:inputSecret</td>
<td>An input field for entering secret text</td>
</tr>
<tr>
<td>An input field for entering a telephone number</td>
<td>ui:inputPhone</td>
<td>An input field for entering a telephone number</td>
</tr>
<tr>
<td>Displays a phone number</td>
<td>ui:outputPhone</td>
<td>Displays a phone number</td>
</tr>
<tr>
<td>An input field for entering a numerical value</td>
<td>ui:inputNumber</td>
<td>An input field for entering a numerical value</td>
</tr>
<tr>
<td>Displays a number</td>
<td>ui:outputNumber</td>
<td>Displays a number</td>
</tr>
<tr>
<td>An input field for entering a value within a range</td>
<td>ui:inputRange</td>
<td>An input field for entering a value within a range</td>
</tr>
<tr>
<td>An input field for entering rich text</td>
<td>ui:inputRichText</td>
<td>An input field for entering rich text</td>
</tr>
<tr>
<td>Displays rich text</td>
<td>ui:outputRichText</td>
<td>Displays rich text</td>
</tr>
<tr>
<td>An input field for entering a single line of text</td>
<td>ui:inputText</td>
<td>An input field for entering a single line of text</td>
</tr>
<tr>
<td>Displays text</td>
<td>ui:outputText</td>
<td>Displays text</td>
</tr>
<tr>
<td>An input field for entering multiple lines of text</td>
<td>ui:inputTextArea</td>
<td>An input field for entering multiple lines of text</td>
</tr>
<tr>
<td>Displays a read-only text area</td>
<td>ui:outputTextArea</td>
<td>Displays a read-only text area</td>
</tr>
<tr>
<td>An input field for entering a URL</td>
<td>ui:inputURL</td>
<td>An input field for entering a URL</td>
</tr>
<tr>
<td>Displays a clickable URL</td>
<td>ui:outputURL</td>
<td>Displays a clickable URL</td>
</tr>
</tbody>
</table>

SEE ALSO:
- Using the UI Components
- Creating Components
- Component Bundles

Event Handling in UI Components

UI components provide easy handling of user interface events such as keyboard and mouse interactions. By listening to these events, you can also bind values on UI input components using the `updateon` attribute, such that the values update when those events are fired.

Capture a UI event by defining its handler on the component. For example, you want to listen to the HTML DOM event, `onblur`, on a `ui:inputTextArea` component.

```html
<ui:inputTextArea aura:id="textarea" value="My text area" label="Type something" blur="{!c.handleBlur}" />
```
The blur="{!c.handleBlur}" listens to the onblur event and wires it to your client-side controller. When you trigger the event, the following client-side controller handles the event.

```javascript
handleBlur : function(cmp, event, helper){
    var elem = cmp.find("textarea").getElement();
    //do something else
}
```

For all available events on all components, see the Component Library on page 461.

Value Binding for Browser Events

Any changes to the UI are reflected in the component attribute, and any change in that attribute is propagated to the UI. When you load the component, the value of the input elements are initialized to those of the component attributes. Any changes to the user input causes the value of the component variable to be updated. For example, a `ui:inputText` component can contain a value that’s bound to a component attribute, and the `ui:outputText` component is bound to the same component attribute. The `ui:inputText` component listens to the onkeyup browser event and updates the corresponding component attribute values.

```html
<aura:attribute name="first" type="String" default="John"/>
<aura:attribute name="last" type="String" default="Doe"/>

<ui:inputText label="First Name" value="{!v.first}" updateOn="keyup"/>
<ui:inputText label="Last Name" value="{!v.last}" updateOn="keyup"/>

<!-- Returns "John Doe" -->
<ui:outputText value="{!v.first + ' ' + v.last}"/>
```

The next example takes in numerical inputs and returns the sum of those numbers. The `ui:inputNumber` component listens to the onkeyup browser event. When the value in this component changes on the keyup event, the value in the `ui:outputNumber` component is updated as well, and returns the sum of the two values.

```html
<aura:attribute name="number1" type="integer" default="1"/>
<aura:attribute name="number2" type="integer" default="2"/>

<ui:inputNumber label="Number 1" value="{!v.number1}" updateOn="keyup"/>
<ui:inputNumber label="Number 2" value="{!v.number2}" updateOn="keyup"/>

<!-- Adds the numbers and returns the sum -->
<ui:outputNumber value="{!(v.number1 * 1) + (v.number2 * 1)}"/>
```

Note: The input fields return a string value and must be properly handled to accommodate numerical values. In this example, both values are multiplied by 1 to obtain their numerical equivalents.

Using the UI Components

Users interact with your app through input elements to select or enter values. Components such as `ui:inputText` and `ui:inputCheckbox` correspond to common input elements. These components simplify event handling for user interface events.

Note: For all available component attributes and events, see the component reference at https://<myDomain>.lightning.force.com/auradocs/reference.app, where `<myDomain>` is the name of your custom Salesforce domain.
To use input components in your own custom component, add them to your .cmp or .app resource. This example is a basic set up of a text field and button. The aura:id attribute defines a unique ID that enables you to reference the component from your JavaScript code using cmp.find("myID");.

```html
<ui:inputText label="Name" aura:id="name" placeholder="First, Last"/>
<ui:outputText aura:id="nameOutput" value=""/>
<ui:button aura:id="outputButton" label="Submit" press="(!c.getInput)"/>
```

Note: All text fields must specify the label attribute to provide a textual label of the field. If you must hide the label from view, set labelClass="assistiveText" to make the label available to assistive technologies.

The ui:outputText component acts as a placeholder for the output value of its corresponding ui:inputText component. The value in the ui:outputText component can be set with the following client-side controller action.

```javascript
getInput : function(cmp, event) {
    var fullName = cmp.find("name").get("v.value");
    var outName = cmp.find("nameOutput");
    outName.set("v.value", fullName);
}
```

The following example is similar to the previous, but uses value binding without a client-side controller. The ui:outputText component reflects the latest value on the ui:inputText component when the onkeyup browser event is fired.

```html
<aura:attribute name="first" type="String" default="John"/>
<aura:attribute name="last" type="String" default="Doe"/>

<ui:inputText label="First Name" value="{!v.first}" updateOn="keyup"/>
<ui:inputText label="Last Name" value="{!v.last}" updateOn="keyup"/>

<!-- Returns "John Doe" -->
<ui:outputText value="{!v.first + ' ' + v.last}"/>
```

Tip: To create and edit records in the Salesforce app, use the force:createRecord and force:recordEdit events to utilize the built-in record create and edit pages.

Supporting Accessibility

When customizing components, be careful in preserving code that ensures accessibility, such as the aria attributes.

Accessible software and assistive technology enable users with disabilities to use and interact with the products you build. Aura components are created according to W3C specifications so that they work with common assistive technologies. While we always recommend that you follow the WCAG Guidelines for accessibility when developing with the Lightning Component framework, this guide explains the accessibility features that you can leverage when using components in the ui namespace.

IN THIS SECTION:
- Button Labels
- Audio Messages
- Forms, Fields, and Labels
- Events
- Menus
Button Labels

Buttons can appear with text only, an icon and text, or an icon without text. To create an accessible button, use `lightning:button` and set a textual label using the `label` attribute.

Note: You can create accessible buttons using `ui:button` but they don't come with Lightning Design System styling. We recommend using `lightning:button` instead.

Button with text only:

```html
<lightning:button label="Search" onclick="!c.doSomething"/>
```

Button with icon and text:

```html
<lightning:button label="Download" iconName="utility:download" onclick="!c.doSomething"/>
```

Button with icon only:

```html
<lightning:buttonIcon iconName="utility:settings" alternativeText="Settings" onclick="!c.doSomething"/>
```

The `alternativeText` attribute provides a text label that's hidden from view and available to assistive technology.

This example shows the HTML generated by `lightning:button`:

```html
<!-- Good: using span/assistiveText to hide the label visually, but show it to screen readers -->
<button>
  ::before
  <span class="slds-assistive-text">Settings</span>
</button>
```

Audio Messages

To convey audio notifications, use the `ui:message` component, which has `role="alert"` set on the component by default. The "alert" aria role will take any text inside the div and read it out loud to screen readers without any additional action by the user.

```html
<ui:message title="Error" severity="error" closable="true">
  This is an error message.
</ui:message>
```

Forms, Fields, and Labels

Input components are designed to make it easy to assign labels to form fields. Labels build a programmatic relationship between a form field and its textual label. When using a placeholder in an input component, set the `label` attribute for accessibility.

Use `lightning:input` to create accessible input fields and forms. You can use `lightning:textarea` in preference to the `<textarea>` tag for multi-line text input or `lightning:select` instead of the `<select>` tag.

```html
<lightning:input name="myInput" label="Search"/>
```

If your code fails, check the label element during component rendering. A label element should have the `for` attribute and match the value of input control id attribute, OR the label should be wrapped around an input. Input controls include `<input>`, `<textarea>`, and `<select>`.
Here’s an example of the HTML generated by `lightning:input`.

```html
<!-- Good: using label/for -->
<label for="fullname">Enter your full name:</label>
<input type="text" id="fullname" />

<!-- Good: --using implicit label -->
<label>Enter your full name:
  <input type="text" id="fullname"/>
</label>
```

See Also:

- Using Labels

Events

Although you can attach an `onclick` event to any type of element, for accessibility, consider only applying this event to elements that are actionable in HTML by default, such as `<a>`, `<button>`, or `<input>` tags in component markup. You can use an `onclick` event on a `<div>` tag to prevent event bubbling of a click.

Menus

A menu is a dropdown list with a trigger that controls its visibility. You must provide the trigger, which displays a text label, and a list of menu items. The dropdown menu and its menu items are hidden by default. You can change this by setting the `visible` attribute on the `ui:menuList` component to `true`. The menu items are shown only when you click the `ui:menuTriggerLink` component.

This example code creates a menu with several items:

```html
<ui:menu>
  <ui:menuTriggerLink aura:id="trigger" label="Opportunity Status"/>
  <ui:menuList class="actionMenu" aura:id="actionMenu">
    <ui:actionMenuItem aura:id="item2" label="Open" click="{!c.updateTriggerLabel}"/>
    <ui:actionMenuItem aura:id="item3" label="Closed" click="{!c.updateTriggerLabel}"/>
    <ui:actionMenuItem aura:id="item4" label="Closed Won" click="{!c.updateTriggerLabel}"/>
  </ui:menuList>
</ui:menu>
```

Different menus achieve different goals. Make sure you use the right menu for the desired behavior. The three types of menus are:

Actions

Use the `ui:actionMenuItem` for items that create an action, like print, new, or save.

Radio button

If you want users to pick only one from a list several items, use `ui:radioMenuItem`.

Checkbox style

If users can pick multiple items from a list of several items, use `ui:checkboxMenuItem`. Checkboxes can also be used to turn one item on or off.
Note: To create a dropdown menu with a trigger that's a button, use `lightning:buttonMenu` instead.
You can use components in many different contexts. This section shows you how.

- Lightning Component Bundle Design Resources
- Use Lightning Components in Lightning Experience and the Salesforce Mobile App
- Navigation in Lightning Experience and the Salesforce Mobile App Using Page References
- Get Your Lightning Components Ready to Use on Lightning Pages
- Use Lightning Components in Community Builder
- Use Lightning Components with Flows
- Add Components to Apps
- Integrate Your Custom Apps into the Chatter Publisher
- Using Background Utility Items
- Use Lightning Components in Visualforce Pages
- Add Lightning Components to Any App with Lightning Out (Beta)
- Lightning Container
Lightning Component Bundle Design Resources

Use a design resource to control which attributes are exposed to builder tools like the Lightning App Builder, Community Builder, or Cloud Flow Designer. A design resource lives in the same folder as your .cmp resource, and describes the design-time behavior of the Lightning component—information that visual tools need to display the component in a page or app.

For example, here’s a simple design resource that goes in a bundle with a “Hello World” component.

```
<design:component label="Hello World">
  <design:attribute name="subject" label="Subject" description="Name of the person you want to greet" />
  <design:attribute name="greeting" label="Greeting" />
</design:component>
```

design:component

This is the root element for the design resource. It contains the component’s design-time configuration for tools such as the App Builder to use.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>Sets the label of the component when it displays in the Lightning App Builder. When creating a custom Lightning page template component, this text displays as the name of the template in the Lightning App Builder new page wizard.</td>
</tr>
</tbody>
</table>

Note: Label expressions in markup are supported in .cmp and .app resources only.

design:attribute

To make a Lightning component attribute available for admins to edit in tools such as the App Builder, add a design:attribute node for the attribute into the design resource. An attribute marked as required in the component definition automatically appears, unless it has a default value assigned to it.

For Lightning page interfaces, the design resource supports only attributes of type Integer, String, or Boolean. To see which attribute types the lightning:availableForFlowScreens interface supports, go to Which Aura Attribute Types Are Supported in Flows?.

Note: In a design:attribute node, the Cloud Flow Designer supports only the name, label, and description attributes. The other attributes, like min and max, are ignored.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datasource</td>
<td>Renders a field as a picklist, with static values. Only supported for String attributes.</td>
</tr>
</tbody>
</table>

<design:attribute name="Name" datasource="value1,value2,value3" />

You can also set the picklist values dynamically using an Apex class. See Create Dynamic Picklists for Your Custom Components on page 177 for more information.

Any String attribute with a datasource in a design resource is treated as a picklist.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Sets a default value on an attribute in a design resource.</td>
</tr>
<tr>
<td>describes</td>
<td>Displays as an i-bubble for the attribute in the tool.</td>
</tr>
<tr>
<td>label</td>
<td>Attribute label that displays in the tool.</td>
</tr>
<tr>
<td>max</td>
<td>If the attribute is an Integer, this sets its maximum allowed value. If the attribute is a String, this is the maximum length allowed.</td>
</tr>
<tr>
<td>min</td>
<td>If the attribute is an Integer, this sets its minimum allowed value. If the attribute is a String, this is the minimum length allowed.</td>
</tr>
<tr>
<td>name</td>
<td>Required attribute. Its value must match the aura:attribute name value in the .cmp resource.</td>
</tr>
<tr>
<td>placeholder</td>
<td>Input placeholder text for the attribute when it displays in the tool.</td>
</tr>
<tr>
<td>required</td>
<td>Denotes whether the attribute is required. If omitted, defaults to false.</td>
</tr>
</tbody>
</table>

Note: Label expressions in markup are supported in .cmp and .app resources only.

<sfdc:object> and <sfdc:objects>

Use these tag sets to restrict your component to one or more objects.

Note: <sfdc:object> and <sfdc:objects> aren't supported in Community Builder or the Cloud Flow Designer. They're also ignored when setting a component to use as an object-specific action or to override a standard action.

Here's the same "Hello World" component's design resource restricted to two objects.

```xml
<design:component label="Hello World">
  <design:attribute name="subject" label="Subject" description="Name of the person you want to greet" />
  <design:attribute name="greeting" label="Greeting" />
  <sfdc:objects>
    <sfdc:object>Custom__c</sfdc:object>
    <sfdc:object>Opportunity</sfdc:object>
  </sfdc:objects>
</design:component>
```

If an object is installed from a package, add the `namespace__` string to the beginning of the object name when including it in the `<sfdc:object>` tag set. For example: `objectNamespace__ObjectApiName__c`.

SEE ALSO:
Configure Components for Lightning Pages and the Lightning App Builder
Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder
Use Lightning Components in Lightning Experience and the Salesforce Mobile App

Customize and extend Lightning Experience and the Salesforce app with Lightning components. Launch components from tabs, apps, and actions.

IN THIS SECTION:

Configure Components for Custom Tabs
Add the `force:appHostable` interface to a Lightning component to allow it to be used as a custom tab in Lightning Experience or the Salesforce mobile app.

Add Lightning Components as Custom Tabs in a Lightning Experience App
Make your Lightning components available for Lightning Experience users by displaying them in a custom tab in a Lightning Experience app.

Add Lightning Components as Custom Tabs in the Salesforce App
Make your Lightning components available for Salesforce for Android, Salesforce for iOS, and Salesforce mobile web users by displaying them in a custom tab.

Lightning Component Actions
Lightning component actions are custom actions that invoke a Lightning component. They support Apex and JavaScript and provide a secure way to build client-side custom functionality. Lightning component actions are supported only in the Salesforce mobile app and Lightning Experience.

Override Standard Actions with Lightning Components
Add the `lightning:actionOverride` interface to a Lightning component to enable the component to be used to override a standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom components. Overriding standard actions allows you to customize your org using Lightning components, including completely customizing the way you view, create, and edit records.

Configure Components for Custom Tabs
Add the `force:appHostable` interface to a Lightning component to allow it to be used as a custom tab in Lightning Experience or the Salesforce mobile app.

Components that implement this interface can be used to create tabs in both Lightning Experience and the Salesforce app.

Example: Example Component

```
<!--simpleTab.cmp-->
<aura:component implements="force:appHostable">
  <!-- Simple tab content -->
  <h1>Lightning Component Tab</h1>
</aura:component>
```

The `appHostable` interface makes the component available for use as a custom tab. It doesn’t require you to add anything else to the component.
Add Lightning Components as Custom Tabs in a Lightning Experience App

Make your Lightning components available for Lightning Experience users by displaying them in a custom tab in a Lightning Experience app.

In the components you wish to include in Lightning Experience, add `implements="force:appHostable"` in the `aura:component` tag and save your changes.

```<aura:component implements="force:appHostable">```

To create Lightning components, use the Developer Console.

To display Lightning components in a custom tab in a Lightning Experience app, you must enable My Domain.

Follow these steps to include your components in Lightning Experience and make them available to users in your organization.

1. Create a custom tab for this component.
   a. From Setup, enter Tabs in the Quick Find box, then select Tabs.
   b. Click New in the Lightning Component Tabs related list.
   c. Select the Lightning component that you want to make available to users.
   d. Enter a label to display on the tab.
   e. Select the tab style and click Next.
   f. When prompted to add the tab to profiles, accept the default and click Save.

2. Add your Lightning components to the App Launcher.
   a. From Setup, enter Apps in the Quick Find box, then select App Manager > New Lightning App.
   b. Follow the steps in the wizard. On the Select Items page, select the Lightning tab from the Available Items list and move it to the Selected Items list.
   c. Finish the steps in the wizard, and click Save & Finish.
3. To check your output, navigate to the App Launcher in Lightning Experience. Click the custom app to see the components that you added.

Add Lightning Components as Custom Tabs in the Salesforce App

Make your Lightning components available for Salesforce for Android, Salesforce for iOS, and Salesforce mobile web users by displaying them in a custom tab.

In the component you wish to add, include `implements="force:appHostable"` in your `aura:component` tag and save your changes.

```
<aura:component implements="force:appHostable">

The `appHostable` interface makes the component available as a custom tab.

To create Lightning components, use the Developer Console.

Include your components in the navigation menu by following these steps.

1. Create a custom Lightning component tab for the component. From Setup, enter `Tabs` in the Quick Find box, then select `Tabs`.

 Note: You must create a custom Lightning component tab before you can add your component to the navigation menu. Accessing your Lightning component from the full Salesforce site is not supported.

2. Add your Lightning component to the Salesforce app navigation menu.
 a. From Setup, enter `Navigation` in the Quick Find box, then select `Salesforce Navigation`.
 b. Select the custom tab you just created and click `Add`.
 c. Sort items by selecting them and clicking `Up` or `Down`.

In the navigation menu, items appear in the order you specify. The first item in the Selected list becomes your users’ landing page.
3. Check your output by going to Salesforce mobile web. Your new menu item should appear in the navigation menu.

Note: By default, Salesforce mobile web is turned on for your org. For more information on using mobile web, see the Salesforce App Developer Guide.

Lightning Component Actions

Lightning component actions are custom actions that invoke a Lightning component. They support Apex and JavaScript and provide a secure way to build client-side custom functionality. Lightning component actions are supported only in the Salesforce mobile app and Lightning Experience.

Note: My Domain must be deployed in your org for Lightning component actions to work properly.

You can add Lightning component actions to an object’s page layout using the page layout editor. If you have Lightning component actions in your org, you can find them in the Mobile & Lightning Actions category in the page layout editor’s palette.

Lightning component actions can’t call just any Lightning component in your org. For a component to work as a Lightning component action, it must be configured for that purpose and implement either the force:LightningQuickAction or force:LightningQuickActionWithoutHeader interfaces. You must also set a default value for each component attribute marked as required.

If you plan on packaging a Lightning component action, the component the action invokes must be marked as access=global.

IN THIS SECTION:

Configure Components for Custom Actions

Add the force:lightningQuickAction or force:lightningQuickActionWithoutHeader interface to a Lightning component to enable it to be used as a custom action in Lightning Experience or the Salesforce mobile app. You can use components that implement one of these interfaces as object-specific or global actions in both Lightning Experience and the Salesforce app.

Configure Components for Record-Specific Actions

Add the force:hasRecordId interface to a Lightning component to enable the component to be assigned the ID of the current record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or action override in Lightning Experience or the Salesforce app, and so on.

Configure Components for Custom Actions

Add the force:lightningQuickAction or force:lightningQuickActionWithoutHeader interface to a Lightning component to enable it to be used as a custom action in Lightning Experience or the Salesforce mobile app. You can use components that implement one of these interfaces as object-specific or global actions in both Lightning Experience and the Salesforce app.

When used as actions, components that implement the force:lightningQuickAction interface display in a panel with standard action controls, such as a Cancel button. These components can display and implement their own controls in the body of the panel, but can’t affect the standard controls. It should nevertheless be prepared to handle events from the standard controls.

If instead you want complete control over the user interface, use the force:lightningQuickActionWithoutHeader interface. Components that implement force:lightningQuickActionWithoutHeader display in a panel without additional controls and are expected to provide a complete user interface for the action.
These interfaces are mutually exclusive. That is, components can implement either the `force:lightningQuickAction` interface or the `force:lightningQuickActionWithoutHeader` interface, but not both. This should make sense; a component can’t both present standard user interface elements and not present standard user interface elements.

Note: For your Lightning component to work as a custom action, you must set a default value for each component attribute marked as required.

Example: Example Component

Here’s an example of a component that can be used for a custom action, which you can name whatever you want—perhaps “Quick Add”. (A component and an action that uses it don’t need to have matching names.) This component quickly adds two numbers together.

```html
<!--quickAdd.cmp-->
<aura:component implements="force:lightningQuickAction">
  <!-- Very simple addition -->
  <lightning:input type="number" name="myNumber" aura:id="num1" label="Number 1"/>
  +
  <lightning:input type="number" name="myNumber" aura:id="num2" label="Number 2"/>
  
  <br/>
  <lightning:button label="Add" onclick="!c.clickAdd"/>
</aura:component>
</!
```

The component markup simply presents two input fields, and an **Add** button.

The component’s controller does all the real work.

```javascript
/*quickAddController.js*/
{}
  clickAdd: function(component, event, helper) {

    // Get the values from the form
    var n1 = component.find("num1").get("v.value");
    var n2 = component.find("num2").get("v.value");

    // Display the total in a "toast" status message
    var resultsToast = $A.get("e.force:showToast");
    resultsToast.setParams({
      "title": "Quick Add: " + n1 + " + " + n2,
      "message": "The total is: " + (n1 + n2) + "."
    });
    resultsToast.fire();

    // Close the action panel
    var dismissActionPanel = $A.get("e.force:closeQuickAction");
    dismissActionPanel.fire();
  }
}
```

Retrieving the two numbers entered by the user is straightforward, though a more robust component would check for valid inputs, and so on. The interesting part of this example is what happens to the numbers and how the custom action resolves.
The results of the add calculation are displayed in a “toast,” which is a status message that appears at the top of the page. The toast is created by firing the `force:showToast` event. A toast isn’t the only way you could display the results, nor are actions the only use for toasts. It’s just a handy way to show a message at the top of the screen in Lightning Experience or the Salesforce app.

What’s interesting about using a toast here, though, is what happens afterward. The `clickAdd` controller action fires the `force:closeQuickAction` event, which dismisses the action panel. But, even though the action panel is closed, the toast still displays. The `force:closeQuickAction` event is handled by the action panel, which closes. The `force:showToast` event is handled by the `one.app` container, so it doesn’t need the panel to work.

SEE ALSO:
Configure Components for Record-Specific Actions

Configure Components for Record-Specific Actions

Add the `force:hasRecordId` interface to a Lightning component to enable the component to be assigned the ID of the current record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or action override in Lightning Experience or the Salesforce app, and so on.

`force:hasRecordId` is a marker interface. A marker interface is a signal to the component’s container to add the interface’s behavior to the component.

The `recordId` attribute is set only when you place or invoke the component in an explicit record context. For example, when you place the component directly on a record page layout, or invoke it as an object-specific action from a record page or object home. In all other cases, such as when you invoke the component as a global action, or create the component programmatically inside another component, `recordId` isn’t set, and your component shouldn’t depend on it.

Example: Example of a Component for a Record-Specific Action

This extended example shows a component designed to be invoked as a custom object-specific action from the detail page of an account record. After creating the component, you need to create the custom action on the account object, and then add the action to an account page layout. When opened using an action, the component appears in an action panel that looks like this:
The component definition begins by implementing both the `force:lightningQuickActionWithoutHeader` and the `force:hasRecordId` interfaces. The first makes it available for use as an action and prevents the standard controls from displaying. The second adds the interface’s automatic record ID attribute and value assignment behavior, when the component is invoked in a record context.

`quickContact.cmp`

```xml
<aura:component controller="QuickContactController"
    implements="force:lightningQuickActionWithoutHeader,force:hasRecordId">
    <aura:attribute name="account" type="Account" />
    <aura:attribute name="newContact" type="Contact"
        default="{'sobjectType': 'Contact'}" />
    <aura:handler name="init" value="{!this}" action="{!c.doInit}" />

    <!-- Display a header with details about the account -->
    <div class="slds-page-header" role="banner">
        <p class="slds-text-heading_label">{!v.account.Name}</p>
        <h1 class="slds-page-header__title slds-m-right_small slds-truncate slds-align-left">Create New Contact</h1>
    </div>

    <!-- Display the new contact form -->
    <lightning:input aura:id="contactField" name="firstName" label="First Name"
        value="{!v.newContact.FirstName}" required="true"/>
    <lightning:input aura:id="contactField" name="lastname" label="Last Name"/>
</aura:component>
```
The component defines the following attributes, which are used as member variables.

- **account**—holds the full account record, after it’s loaded in the init handler
- **newContact**—an empty contact, used to capture the form field values

The rest of the component definition is a standard form that displays an error on the field if the required fields are empty or the phone field doesn’t match the specified pattern.

The component’s controller has all of the interesting code, in three action handlers.

quickContactController.js

```javascript
{{
  doInit : function(component, event, helper) {
    // Prepare the action to load account record
    var action = component.get("c.getAccount");
    action.setParams({"accountId": component.get("v.recordId")});

    // Configure response handler
    action.setCallback(this, function(response) {
      var state = response.getState();
      if(state == "SUCCESS") {
        component.set("v.account", response.getReturnValue());
      } else {
        console.log('Problem getting account, response state: ' + state);
      }
    });
    $A.enqueueAction(action);
  },

  handleSaveContact: function(component, event, helper) {
    if(helper.validateContactForm(component)) { (154
```
// Prepare the action to create the new contact
var saveContactAction = component.get("c.saveContactWithAccount");
saveContactAction.setParams({
 "contact": component.get("v.newContact"),
 "accountId": component.get("v.recordId")
});

// Configure the response handler for the action
saveContactAction.setCallback(this, function(response) {
 var state = response.getState();
 if(state === "SUCCESS") {

 // Prepare a toast UI message
 var resultsToast = $A.get("e.force:showToast");
 resultsToast.setParams({
 "title": "Contact Saved",
 "message": "The new contact was created."
 });

 // Update the UI: close panel, show toast, refresh account page
 $A.get("e.force:closeQuickAction").fire();
 resultsToast.fire();
 $A.get("e.force:refreshView").fire();
 } else if (state === "ERROR") {
 console.log('Problem saving contact, response state: ' + state);
 } else {
 console.log('Unknown problem, response state: ' + state);
 }
});

// Send the request to create the new contact
$A.enqueueAction(saveContactAction);

},

handleCancel: function(component, event, helper) {
 $A.get("e.force:closeQuickAction").fire();
}
})

The first action handler, doInit, is an init handler. Its job is to use the record ID that’s provided via the force:hasRecordId interface and load the full account record. Note that there’s nothing to stop this component from being used in an action on another object, like a lead, opportunity, or custom object. In that case, doInit will fail to load a record, but the form will still display.

The handleSaveContact action handler validates the form by calling a helper function. If the form isn’t valid, the field-level errors are displayed. If the form is valid, then the action handler:

• Prepares the server action to save the new contact.
• Defines a callback function, called the response handler, for when the server completes the action. The response handler is discussed in a moment.
Enqueues the server action.
The server action’s response handler does very little itself. If the server action was successful, the response handler:

- Closes the action panel by firing the `force:closeQuickAction` event.
- Displays a “toast” message that the contact was created by firing the `force:showToast` event.
- Updates the record page by firing the `force:refreshView` event, which tells the record page to update itself.

This last item displays the new record in the list of contacts, once that list updates itself in response to the refresh event.

The `handleCancel` action handler closes the action panel by firing the `force:closeQuickAction` event.

The component helper provided here is minimal, sufficient to illustrate its use. You’ll likely have more work to do in any production quality form validation code.

quickContactHelper.js

```javascript
{{
  validateContactForm: function(component) {
    var validContact = true;

    // Show error messages if required fields are blank
    var allValid = component.find('contactField').reduce(function (validFields, inputCmp) {
      inputCmp.showHelpMessageIfInvalid();
      return validFields && inputCmp.get('v.validity').valid;
    }, true);

    if (allValid) {
      // Verify we have an account to attach it to
      var account = component.get("v.account");
      if (!$A.util.isEmpty(account)) {
        validContact = false;
        console.log("Quick action context doesn't have a valid account.");
      }

      return validContact;
    }
  }
}}
```

Finally, the Apex class used as the server-side controller for this component is deliberately simple to the point of being obvious.

QuickContactController.apxc

```java
public with sharing class QuickContactController {
  @AuraEnabled
  public static Account getAccount(Id accountId) {
    // Perform isAccessible() checks here
    return [SELECT Name, BillingCity, BillingState FROM Account WHERE Id = :accountId];
  }

  @AuraEnabled
  public static Contact saveContactWithAccount(Contact contact, Id accountId) {
    // Perform isAccessible() and isUpdateable() checks here
```
One method retrieves an account based on the record ID. The other associates a new contact record with an account, and then saves it to the database.

SEE ALSO:
Configure Components for Custom Actions

Override Standard Actions with Lightning Components

Add the `lightning:actionOverride` interface to a Lightning component to enable the component to be used to override a standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom components. Overriding standard actions allows you to customize your org using Lightning components, including completely customizing the way you view, create, and edit records.

Overriding an action with a Lightning component closely parallels overriding an action with a Visualforce page. Choose a Lightning component instead of a Visualforce page in the Override Properties for an action.

Override Standard Button or Link

View

Overriding a standard button or link changes what happens when a user clicks on it. For example, instead of having a standard Salesforce page appear when a user clicks View, you can have the View button launch a custom s-control, Visualforce page, Lightning component, or Lightning page instead.

Overrides also apply to programmatic customizations of the same actions. For example, firing the View record event uses the same setting, and performs the same action, as the user clicking View for that record.

You can set different override behavior for Salesforce Classic, Lightning Experience, and mobile.

<table>
<thead>
<tr>
<th>Override Properties</th>
<th>Save</th>
<th>Cancel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salesforce Classic Override</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning Experience Override</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Override</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salesforce Classic Override</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No override (use default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualforce page --None--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lightning Experience Override</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning component c:expenseOverrideView</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use the Salesforce Classic override</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mobile Override</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning component --None--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use the Salesforce Classic override</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
However, there are important differences from Visualforce in how you create Lightning components that can be used as action overrides, and significant differences in how Salesforce uses them. You’ll want to read the details thoroughly before you get started, and test carefully in your sandbox or Developer Edition org before deploying to production.

IN THIS SECTION:

Standard Actions and Overrides Basics
There are six standard actions available on most standard and all custom objects: Tab, List, View, Edit, New, and Delete. In Salesforce Classic, these are all distinct actions.

Override a Standard Action with a Lightning Component
You can override a standard action with a Lightning component in both Lightning Experience and mobile.

Creating a Lightning Component for Use as an Action Override
Add the `lightning:actionOverride` interface to a Lightning component to allow it to be used as an action override in Lightning Experience or the Salesforce mobile app. Only components that implement this interface appear in the Lightning component menu of an object action Override Properties panel.

Packaging Action Overrides
Action overrides for custom objects are automatically packaged with the custom object. Action overrides for standard objects can’t be packaged.

Standard Actions and Overrides Basics

There are six standard actions available on most standard and all custom objects: Tab, List, View, Edit, New, and Delete. In Salesforce Classic, these are all distinct actions.

Lightning Experience and the Salesforce mobile app combine the Tab and List actions into one action, Object Home. However, Object Home is reached via the Tab action in Lightning Experience, and the List action in the Salesforce mobile app. Finally, the Salesforce mobile app has a unique Search action (reached via Tab). (Yes, it’s a bit awkward and complicated.)

This table lists the standard actions you can override for an object as the actions are named in Setup, and the resulting action that’s overridden in the three different user experiences.

<table>
<thead>
<tr>
<th>Override in Setup</th>
<th>Salesforce Classic</th>
<th>Lightning Experience</th>
<th>Mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab</td>
<td>object tab</td>
<td>object home</td>
<td>search</td>
</tr>
<tr>
<td>List</td>
<td>object list</td>
<td>n/a</td>
<td>object home</td>
</tr>
<tr>
<td>View</td>
<td>record view</td>
<td>record home</td>
<td>record home</td>
</tr>
<tr>
<td>Edit</td>
<td>record edit</td>
<td>record edit</td>
<td>record edit</td>
</tr>
<tr>
<td>New</td>
<td>record create</td>
<td>record create</td>
<td>record create</td>
</tr>
<tr>
<td>Delete</td>
<td>record delete</td>
<td>record delete</td>
<td>record delete</td>
</tr>
</tbody>
</table>

Note:
- “n/a” doesn’t mean you can’t access the standard behavior, and it doesn’t mean you can’t override the standard behavior. It means you can’t access the override. It’s the override’s functionality that’s not available.
- There are two additional standard actions, Accept and Clone. These actions are more complex, and overriding them is an advanced project. Overriding them with Lightning components isn’t supported.

158
• Action overrides using Lightning components aren’t supported in communities.

How and Where You Can Use Lightning Component Action Overrides

Lightning components can be used to override the View, New, New Event, Edit, and Tab standard actions in Lightning Experience and the Salesforce mobile app. You can use a Lightning component as an override in Lightning Experience and mobile, but not Salesforce Classic.

Override a Standard Action with a Lightning Component

You can override a standard action with a Lightning component in both Lightning Experience and mobile.

You need at least one Lightning component in your org that implements the `lightning:actionOverride` interface. You can use a custom component of your own, or a component from a managed package.

Go to the object management settings for the object with the action you plan to override.

1. Select Buttons, Links, and Actions.
2. Select Edit for the action you want to override.
3. Select Lightning component for the area you want to set the override.
4. From the drop-down menu, select the name of the Lightning component to use as the action override.
5. Select Save.

Note: Users won’t see changes to action overrides until they reload Lightning Experience or the Salesforce mobile app.

SEE ALSO:
Salesforce Help: Find Object Management Settings
Salesforce Help: Override Standard Buttons and Tab Home Pages

Creating a Lightning Component for Use as an Action Override

Add the `lightning:actionOverride` interface to a Lightning component to allow it to be used as an action override in Lightning Experience or the Salesforce mobile app. Only components that implement this interface appear in the Lightning component menu of an object action Override Properties panel.

```html
<aura:component
    implements="lightning:actionOverride,force:hasRecordId,force:hasSObjectName">

    <article class="slds-card">
        <div class="slds-card__header slds-grid">
            <header class="slds-media slds-media_center slds-has-flexi-truncate">
                <div class="slds-media__body">
                    <h2><span class="slds-text-heading_small">Expense Details</span></h2>
                </div>
            </header>
            <div class="slds-no-flex">
                <lightning:button label="Edit" onclick="!c.handleEdit"/>
            </div>
        </div>
        <div class="slds-card__body">
            (expense details go here)
        </div>
    </article>
</aura:component>
```
In Lightning Experience, the standard Tab and View actions display as a page, while the standard New and Edit actions display in an overlaid panel. When used as action overrides, Lightning components that implement the `lightning:actionOverride` interface replace the standard behavior completely. However, overridden actions always display as a page, not as a panel. Your component displays without controls, except for the main Lightning Experience navigation bar. Your component is expected to provide a complete user interface for the action, including navigation or actions beyond the navigation bar.

One important difference from Visualforce that’s worth noting is how components are added to the Lightning component menu. The Visualforce page menu lists pages that either use the standard controller for the specific object, or that don’t use a standard controller at all. This filtering means that the menu options vary from object to object, and offer only pages that are specific to the object, or completely generic.

The Lightning component menu includes every component that implements the `lightning:actionOverride` interface. A component that implements `lightning:actionOverride` can’t restrict an admin to overriding only certain actions, or only for certain objects. We recommend that your organization adopt processes and component naming conventions to ensure that components are used to override only the intended actions on intended objects. Even so, it’s your responsibility as the component developer to ensure that components that implement the `lightning:actionOverride` interface gracefully respond to being used with any action on any object.

Access Current Record Details

Components you plan to use as action overrides usually need details about the object type they’re working with, and often the ID of the current record. Your component can implement the following interfaces to access those object and record details.

- **force:hasRecordId**

 Add the `force:hasRecordId` interface to a Lightning component to enable the component to be assigned the ID of the current record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or action override in Lightning Experience or the Salesforce app, and so on.

- **force:hasSObjectName**

 Add the `force:hasSObjectName` interface to a Lightning component to enable the component to be assigned the API name of current record’s sObject type. The sObject name is useful if the component can be used with records of different sObject types, and needs to adapt to the specific type of the current record.

Packaging Action Overrides

Action overrides for custom objects are automatically packaged with the custom object. Action overrides for standard objects can’t be packaged.

When you package a custom object, overrides on that object’s standard actions are packaged with it. This includes any Lightning components used by the overrides. Your experience should be “it just works.”

However, standard objects can’t be packaged. As a consequence, there’s no way to package overrides on the object’s standard actions.

To override standard actions on standard objects in a package, do the following:

- Manually package any Lightning components that are used by the overrides.
• Provide instructions for subscribing orgs to manually override the relevant standard actions on the affected standard objects.

SEE ALSO:

Override a Standard Action with a Lightning Component
Metadata API Developer Guide: ActionOverride

Navigation in Lightning Experience and the Salesforce Mobile App Using Page References

The pageReference JavaScript object represents a URL for a page. You can use a pageReference instead of parsing or creating a URL directly. This approach helps you avoid broken navigation if Salesforce changes URL formats in the future.

These navigation resources are supported only in Lightning Experience and the Salesforce mobile app. They’re not supported in other containers, such as Lightning Components for Visualforce, Lightning Out, or Communities. This is true even if you access these containers inside Lightning Experience or the Salesforce mobile app.

Use the following resources to simplify navigation across your apps. URLs for components using these resources are case-sensitive. For examples, see the Component Library.

lightning:navigation
To navigate to a page or component, use the navigate() method in lightning:navigation. This approach is a substitute for a navigateTo* event, and both are supported.

To generate a URL in your component, use the generateUrl() method in lightning:navigation to resolve the URL.

Note: generateUrl() returns a promise, which calls back with the resulting URL.

lightning:isUrlAddressable
To enable a component to navigate directly via a URL, add the lightning:isUrlAddressable interface to your component.

Tip: pageReference and lightning:isUrlAddressable replace the force:navigateToComponent event for navigating directly to a component. Unlike the force:navigateToComponent event information-mapping protocol, the only attribute populated through the navigation dispatching system is the pageReference attribute. Information is passed to the addressed component through the state properties on the target page reference. lightning:isUrlAddressable doesn’t automatically set attributes on the target component. Get parameters from v.pageReference.state and manually set them using the target component’s init handler.

pageReference provides a well-defined structure that describes the page type and its corresponding attributes. pageReference supports the following properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>String</td>
<td>The API name of the pageReference type, for example, standard__objectPage.</td>
<td>Y</td>
</tr>
<tr>
<td>attributes</td>
<td>Object</td>
<td>Values for each attribute specified by the page definition, for example, objectAPIName or actionName.</td>
<td>Y</td>
</tr>
<tr>
<td>state</td>
<td>Object</td>
<td>Parameters that are tied to the query string of the URL in Lightning Experience, such as filterName. The routing framework doesn’t depend on state to render a page.</td>
<td></td>
</tr>
</tbody>
</table>
A pageReference object contains key-value pairs to describe the pageReference type that you are navigating to. The pageReference looks like:

```javascript
var pageReference = {
    type: 'standard__objectPage',
    attributes: {
        objectApiName: 'Account',
        actionName: 'list'
    },
    state: {
        filterName: 'MyAccounts'
    }
};
```

Because the key-value pairs of pageReference.state are serialized to URL query parameters, all its values are strings. Code that consumes values from the state must properly parse the value into the correct format. To delete a value from the state array, define it as undefined.

You can’t directly change the pageReference object. To update the state, create a new pageReference object, and copy the values using Object.assign().

State parameters must be namespaced. For example, a managed package with the namespace abc with a parameter accountId is represented as abc__accountId. The namespace for custom components is c__Parameters without a namespace are reserved for Salesforce use. This namespace restriction is introduced under a CRUC in Winter ’18 and enforced in Spring ’19.

Migrate to lightning:isUrlAddressable from force:navigateToComponent

If you’re currently using the force:navigateToComponent event, you can provide backward compatibility for bookmarked links by redirecting requests to a component that uses lightning:isUrlAddressable.

First, copy your original component, including its definition, controller, helper, renderer, and CSS. Make the new component implement the lightning:isUrlAddressable interface.

Change the new component to read the values passed through the navigation request from cmp.get("v.pageReference").state.

Note: You can’t use two-way binding to map values from pageReference.state to a subcomponent that sets those values. You can’t modify the state object. As a workaround, copy the values from pageReference.state into your own component’s attribute using a handler.

```javascript
// Add a handler to your component
<aura:handler name="init" value="{!this}" action="{!c.init}" />

// Controller example

// Controller example

```
In the new component, remove the attributes mapped from the URL that aren’t used to copy values from the page state in the component’s init handler.

Change the instances that navigate to your old component to the new API and address of your new component. For example, remove instances of force:navigateToComponent, like

```javascript
$A.get("e.force:navigateToComponent").setParams({componentDef: "c:oldCmp", attributes: {"myAttr": "foo"}}).fire();
```

Add `<lightning:navigation aura:id="navigationService" />` to your component markup, and update it to use navigationService. Pass in a pageReference.

```javascript
cmp.find("navigationService").navigate({
  type: "standard__component",
  attributes: {
    name: "c:myCmpCopy" },
  state: { "c__myAttr": "foo" });
```

In the original component’s init handler, send a navigation redirect request to navigate to the new component. Pass the third argument in the navigate API call as true. This argument indicates that the request replaces the current entry in the browser history and avoids an extra entry when using a browser’s navigation buttons.

```javascript
({
  init: function(cmp, event, helper) {
    cmp.find("navigation").navigate({
      type: "standard__component",
      attributes: {
        componentName: "c__componentB" },
      state: {
        c__myAttr: cmp.get("v.myAttr")
      },
    }, true); // replace = true
  }
})
```

Remove all other code from the original component’s definition, controller, helper, renderer, and CSS. Leave only the navigation redirect call.

IN THIS SECTION:

pageReference Types

A pageReference must be defined with a specific type. The type generates a unique URL format and provides attributes that apply to all pages of that type.

Add Links to Lightning Pages from Your Custom Components

To link to Lightning Experience pages, use `lightning:formattedUrl` in your custom component. The `lightning:formattedUrl` component displays a URL as a hyperlink.

pageReference Types

A pageReference must be defined with a specific type. The type generates a unique URL format and provides attributes that apply to all pages of that type.

The following types are supported:

- Lightning Component (must implement `lightning:isUrlAddressable`)
• Knowledge Article
• Named Page
• Navigation Item Page
• Object Page
• Record Page
• Record Relationship Page

Lightning Component Type
A Lightning component that implements the `lightning:isUrlAddressable` interface, which enables the component to be navigated directly via URL.

Type

```
standard__component
```

Type Attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>componentName</td>
<td>String</td>
<td>The Lightning component name in the format <code>namespace__componentName</code>.</td>
</tr>
</tbody>
</table>

Example

```json
{
    "type": "standard__component",
    "attributes": {
        "componentName": "c__MyLightningComponent"
    },
    "state": {
        "myAttr": "attrValue"
    }
}
```

URL Format

```
/cmp/{componentName}?myAttr=attrValue
```

Knowledge Article Page Type
A page that interacts with a Knowledge Article record.

Type

```
standard__knowledgeArticlePage
```

Type Attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>articleType</td>
<td>String</td>
<td>The <code>ArticleType</code> API name of the Knowledge Article record.</td>
</tr>
</tbody>
</table>

```
### Using Components

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>urlName</td>
<td>String</td>
<td>The value of the <code>urlName</code> field on the target KnowledgeArticleVersion record. The <code>urlName</code> is the article’s URL.</td>
<td>Y</td>
</tr>
</tbody>
</table>

**Example**

```json
{
 "type": "standard__knowledgeArticlePage",
 "attributes": {
 "articleType": "Briefings",
 "urlName": "February-2017"
 }
}
```

**URL Format**

`/articles/{articleType}/{urlName}`

### Named Page Type

A standard page with a unique name. Only `home`, `chatter`, `today`, and `dataAssessment` are supported.

**Type**

`standard__namedPage`

**Type Attributes**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>pageName</td>
<td>String</td>
<td>The unique name of the page.</td>
<td>Y</td>
</tr>
</tbody>
</table>

**Example**

```json
{
 "type": "standard__namedPage",
 "attributes": {
 "pageName": "home"
 }
}
```

**URL Format**

`/page/{pageName}`

### Navigation Item Page Type

A page that displays the content mapped to a CustomTab. Visualforce tabs, Web tabs, Lightning Pages, and Lightning Component tabs are supported.
Type

standard__navItemPage

Type Attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>apiName</td>
<td>String</td>
<td>The unique name of the CustomTab.</td>
<td>Y</td>
</tr>
</tbody>
</table>

Example

```json
{
 "type": "standard__navItemPage",
 "attributes": {
 "apiName": "MyCustomTabName"
 }
}
```

URL Format

/n/{devName}

Object Page Type

A page that interacts with a standard or custom object in the org and supports standard actions for that object.

Note: The standard__objectPage type replaces the force:navigateToObjectHome and the force:navigateToList events.

Type

standard__objectPage

Type Attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>actionName</td>
<td>String</td>
<td>The action name to invoke. Valid values include home, list, and new.</td>
<td>Y</td>
</tr>
<tr>
<td>objectApiName</td>
<td>String</td>
<td>The API name of the standard or custom object. For custom objects that are part of a managed package, prefix the custom object with ns__.</td>
<td>Y</td>
</tr>
</tbody>
</table>

Standard Object Example

```json
{
 "type": "standard__objectPage",
 "attributes": {
 "objectApiName": "Case",
 "actionName": "home"
 }
}
```
Navigate to a Specific List View Example

```json
{
 "type": "standard__objectPage",
 "attributes": {
 "objectApiName": "ns__Widget__c",
 "actionName": "list"
 },
 "state": {
 "filterName": "Recent"
 }
}
```

**URL Format**

/o/{objectApiName}/{actionName}
/o/{objectApiName}/{actionName}?filterName=Recent

**Record Page Type**

A page that interacts with a record in the org and supports standard actions for that record.

⚠️ **Note:** The `standard__recordPage` type replaces the `force:navigateToSObject` event.

**Type**

`standard__recordPage`

**Type Attributes**

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>actionName</td>
<td>String</td>
<td>The action name to invoke. Valid values include <code>clone</code>, <code>edit</code>, and <code>view</code>.</td>
<td>Y</td>
</tr>
<tr>
<td>objectApiName</td>
<td>String</td>
<td>The API name of the record's object. Optional for lookups.</td>
<td></td>
</tr>
<tr>
<td>recordId</td>
<td>String</td>
<td>The 18 character record ID.</td>
<td>Y</td>
</tr>
</tbody>
</table>
Example

```json
{
 "type": "standard__recordPage",
 "attributes": {
 "recordId": "001xx000003DGg0AAG",
 "objectApiName": "PersonAccount",
 "actionName": "view"
 }
}
```

URL Format

```
/r/{objectApiName}/{recordId}/{actionName}
/r/{recordId}/{actionName}
```

Record Relationship Page Type

A page that interacts with a relationship on a particular record in the org. Only related lists are supported.

⚠️ Note: The `standard__recordRelationshipPage` type replaces the `force:navigateToRelatedList` event.

Type

`standard__recordRelationshipPage`

Type Attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>actionName</td>
<td>String</td>
<td>The action name to invoke. Only <code>view</code> is supported.</td>
<td>Y</td>
</tr>
<tr>
<td>objectApiName</td>
<td>String</td>
<td>The API name of the object that defines the relationship. Optional for lookups.</td>
<td></td>
</tr>
<tr>
<td>recordId</td>
<td>String</td>
<td>The 18 character record ID of the record that defines the relationship.</td>
<td>Y</td>
</tr>
<tr>
<td>relationshipApiName</td>
<td>String</td>
<td>The API name of the object's relationship field</td>
<td></td>
</tr>
</tbody>
</table>

Example

```json
{
 "type": "standard__recordRelationshipPage",
 "attributes": {
 "recordId": "500xx000000Ykt4AAC",
 "objectApiName": "Case",
 "relationshipApiName": "CaseComments",
 "actionName": "view"
 }
}
```

URL Format

```
/r/{objectApiName}/{recordId}/related/{relationshipApiName}/{actionName}
/r/{recordId}/related/{relationshipApiName}/{actionName}
```
Add Links to Lightning Pages from Your Custom Components

To link to Lightning Experience pages, use `lightning:formattedUrl` in your custom component. The `lightning:formattedUrl` component displays a URL as a hyperlink.

If you use raw anchor tags or the `ui:outputUrl` component for links, the page does a full reload each time you click the link. To avoid full page reloads, replace your link components with `lightning:formattedUrl`.

For examples, see the Component Library.

Migrate from `ui:outputUrl` to `lightning:formattedUrl`

Copy the attributes from the `ui:outputUrl` component.

```aura:component>
 <ui:outputURL value="https://my/path" label="Contact ID" />
</aura:component>
```

Paste the same attributes into the `lightning:formattedUrl` component. `lightning:formattedUrl` supports more attributes, like `tooltip`.

```aura:component>
 <div aura:id="container">
 <p><lightning:formattedUrl value="https://my/path" label="Contact ID" tooltip="Go to Contact's recordId" /></p>
 </div>
</aura:component>
```

SEE ALSO:

Lightning Component Library: `lightning:formattedUrl` Reference

Get Your Lightning Components Ready to Use on Lightning Pages

Custom Lightning components don’t work on Lightning pages or in the Lightning App Builder right out of the box. To use a custom component in either of these places, you must configure the component and its component bundle so that they’re compatible.

IN THIS SECTION:

Configure Components for Lightning Pages and the Lightning App Builder

There are a few steps to take before you can use your custom Lightning components in either Lightning pages or the Lightning App Builder.

Configure Components for Lightning Experience Record Pages

After your component is set up to work on Lightning pages and in the Lightning App Builder, use these guidelines to configure the component so it works on record pages in Lightning Experience.

Create Components for Outlook Integration and Lightning for Gmail

Create custom Lightning components that are available for drag-and-drop in the Email Application Pane for Outlook integration and Lightning for Gmail.

Create Dynamic Picklists for Your Custom Components

You can expose a component property as a picklist when the component is configured in the Lightning App Builder. The picklist’s values are provided by an Apex class that you create.
Create a Custom Lightning Page Template Component

Every standard Lightning page is associated with a default template component, which defines the page’s regions and what components the page includes. Custom Lightning page template components let you create page templates to fit your business needs with the structure and components that you define. Once implemented, your custom template is available in the Lightning App Builder’s new page wizard for your page creators to use.

Lightning Page Template Component Best Practices

Keep these best practices and limitations in mind when creating Lightning page template components.

Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo

When you add a component to a region on a page in the Lightning App Builder, the lightning:flexipageRegionInfo sub-component passes the width of that region to its parent component. With lightning:flexipageRegionInfo and some strategic CSS, you can tell the parent component to render in different ways in different regions at runtime.

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Keep these guidelines in mind when creating components and component bundles for Lightning pages and the Lightning App Builder.

Configure Components for Lightning Pages and the Lightning App Builder

There are a few steps to take before you can use your custom Lightning components in either Lightning pages or the Lightning App Builder.

1. Deploy My Domain in Your Org

You must deploy My Domain in your org if you want to use Lightning components in Lightning tabs, Lightning pages, as custom Lightning page templates, or as standalone apps.

For more information about My Domain, see the Salesforce Help.

2. Add a New Interface to Your Component

To appear in the Lightning App Builder or on a Lightning page, a component must implement one of these interfaces.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flexipage:availableForAllPageTypes</td>
<td>Makes your component available for record pages and any other type of page, including a Lightning app’s utility bar.</td>
</tr>
<tr>
<td>flexipage:availableForRecordHome</td>
<td>If your component is designed for record pages only, implement this interface instead of flexipage:availableForAllPageTypes.</td>
</tr>
<tr>
<td>clients:availableForMailAppAppPage</td>
<td>Enables your component to appear on a Mail App Lightning page in the Lightning App Builder and in the Outlook integration or Lightning for Gmail.</td>
</tr>
</tbody>
</table>

Here’s the sample code for a simple “Hello World” component.

```xml
<aura:component implements="flexipage:availableForAllPageTypes" access="global">
 <aura:attribute name="greeting" type="String" default="Hello" access="global" />
</aura:component>
```
Note: Mark your resources, such as a component, with `access="global"` to make the resource usable outside of your own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community Builder user in another org.

3. Add a Design Resource to Your Component Bundle

Use a design resource to control which attributes are exposed to builder tools like the Lightning App Builder, Community Builder, or Cloud Flow Designer. A design resource lives in the same folder as your .cmp resource, and describes the design-time behavior of the Lightning component—information that visual tools need to display the component in a page or app.

For example, if you want to restrict a component to one or more objects, set a default value on an attribute, or make a Lightning component attribute available for administrators to edit in the Lightning App Builder, you need a design resource in your component bundle.

Here's the design resource that goes in the bundle with the "Hello World" component.

```xml
<design:component label="Hello World">
 <design:attribute name="subject" label="Subject" description="Name of the person you want to greet" />
 <design:attribute name="greeting" label="Greeting" />
</design:component>
```

Design resources must be named `componentName.design`.

Optional: Add an SVG Resource to Your Component Bundle

You can use an SVG resource to define a custom icon for your component when it appears in the Lightning App Builder’s component pane. Include it in the component bundle.

Here's a simple red circle SVG resource to go with the "Hello World" component.

```xml
<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg"
 width="400" height="400">
 <circle cx="100" cy="100" r="50" stroke="black" stroke-width="5" fill="red" />
</svg>
```
SVG resources must be named `componentName.svg`.

SEE ALSO:
- Lightning Component Bundle Design Resources
- Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder
- Component Bundles

Configure Components for Lightning Experience Record Pages

After your component is set up to work on Lightning pages and in the Lightning App Builder, use these guidelines to configure the component so it works on record pages in Lightning Experience.

Record pages are different from app pages in a key way: they have the context of a record. To make your components display content that is based on the current record, use a combination of an interface and an attribute.

- If your component is available for both record pages and any other type of page, implement `flexipage:availableForAllPageTypes`.
- If your component is designed only for record pages, implement the `flexipage:availableForRecordHome` interface instead of `flexipage:availableForAllPageTypes`.
- If your component needs the record ID, also implement the `force:hasRecordId` interface.
  
  **Note:** Don’t expose the `recordId` attribute to the Lightning App Builder—don’t put it in the component’s design resource. You don’t want admins supplying a record ID.

- If your component needs the object’s API name, also implement the `force:hasSObjectName` interface.
  
  **Note:** If your managed component implements the `flexipage` or `forceCommunity` interfaces, its upload is blocked if the component and its attributes aren’t set to `access="global"`. For more information on access checks, see Controlling Access.

  **Note:** When you use the Lightning App Builder, there is a known limitation when you edit a group page. Your changes appear when you visit the group from the Groups tab. Your changes don’t appear when you visit the group from the Recent Groups list on the Chatter tab.

SEE ALSO:
- Configure Components for Lightning Pages and the Lightning App Builder
- Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder
- Working with Salesforce Records

Create Components for Outlook Integration and Lightning for Gmail

Create custom Lightning components that are available for drag-and-drop in the Email Application Pane for Outlook integration and Lightning for Gmail.

To add a component to email application panes in Outlook integration or Lightning for Gmail, implement the `clients:availableForMailAppAppPage` interface.

To allow the component access to email or calendar events, implement the `clients:hasItemContext` interface.

The `clients:hasItemContext` interface adds attributes to your component that it can use to implement record- or context-specific logic. The attributes included are:
• The `source` attribute, which indicates the email or appointment source. Possible values include `email` and `event`.

```xml
<aura:attribute name="source" type="String" />
```

• The `mode` attribute, which indicates viewing or composing an email or event. Possible values include `view` and `edit`.

```xml
<aura:attribute name="mode" type="String" />
```

• The `people` attribute indicates recipients’ email addresses on the current email or appointment.

```xml
<aura:attribute name="people" type="Object" />
```

The shape of the `people` attribute changes according to the value of the `source` attribute.

When the `source` attribute is set to `email`, the `people` object contains the following elements.

```json
{
 to: [{ name: nameString, email: emailString }, ...],
 cc: [...],
 from: [{ name: senderName, email: senderEmail }],
}
```

When the `source` attribute is set to `event`, the `people` object contains the following elements.

```json
{
 requiredAttendees: [{ name: attendeeNameString, email: emailString }, ...],
 optionalAttendees: [{ name: optAttendeeNameString, email: emailString }, ...],
 organizer: [{ name: organizerName, email: senderEmail }],
}
```

• The `subject` indicates the subject on the current email.

```xml
<aura:attribute name="subject" type="String" />
```

• The `messageBody` indicates the email message on the current email.

```xml
<aura:attribute name="messageBody" type="String" />
```

To provide the component with an event’s date or location, implement the `clients:hasEventContext` interface.

```json
dates: {
 "start": value (String),
 "end": value (String),
}
```

Outlook integration and Lightning for Gmail don’t support the following events:

• `force:navigateToList`
• `force:navigateToRelatedList`
• `force:navigateToObjectHome`
• `force:refreshView`

⚠️ **Note:** To ensure that custom components appear correctly, enable them to adjust to variable widths.
Sample Custom Components for Outlook Integration and Lightning for Gmail

Review samples of custom Lightning components that you can implement in the email application pane for Outlook integration and Lightning for Gmail.

Here's an example of a custom Lightning Component you can include in your email application pane for Outlook integration or Lightning for Gmail. This component applies the context of the selected email or appointment.

```aura:component implements="clients:availableForMailAppAppPage, clients:hasItemContext">

<!-- Add these handlers to customize what happens when the attributes change -->
<aura:handler name="change" value="{"v.subject}" action="{"c.handleSubjectChange}" />
<aura:handler name="change" value="{"v.people}" action="{"c.handlePeopleChange}" />

<div id="content">

<aura:if isTrue="{"v.mode == 'edit'}"/>

You are composing the following Item:

<aura:set attribute="else">
You are reading the following Item:

</aura:set>

</aura:if>

<h1>Email subject</h1>
{"v.subject}

<h1>To:</h1>
<aura:iteration items="{"v.people.to}" var="to">
 {!to.name} - {!to.email}

</aura:iteration>

<h1>From:</h1>
{"v.people.from.name} - {!v.people.from.email}

<h1>CC:</h1>
<aura:iteration items="{"v.people.cc}" var="cc">
 {!cc.name} - {!cc.email}

</aura:iteration>

New Email Arrived, {!v.subject}!
</div>
</aura:component>
```

In this example, the custom component displays account and opportunity information based on the email recipients' email addresses. The component calls a JavaScript controller function, handlePeopleChange(), on initialization. The JavaScript controller calls...
methods on an Apex server-side controller to query the information and compute the accounts ages and opportunities days until closing. The Apex controller, JavaScript controller, and helper are listed next.

```aura:component
 implements="clients:availableForMailAppAppPage, clients:hasItemContext"
 controller="ComponentController">

 <aura:handler name="init" value="{"this}" action="{"c.handlePeopleChange}" />
 <aura:attribute name="accounts" type="List" />
 <aura:attribute name="opportunities" type="List" />
 <aura:iteration items="{"v.accounts}" var="acc">
 {"acc.name" => "{"acc.age"}
 </aura:iteration>
 <aura:iteration items="{"v.opportunities}" var="opp">
 {"opp.name" => "{"opp.closesIn} Days till closing
 </aura:iteration>

</aura:component>

/*
 On the server side, the Apex controller includes
 Aura-enabled methods that accept a list of emails as parameters.
*/

public class ComponentController {

 /*
 This method searches for Contacts with matching emails in the email list,
 and includes Account information in the fields. Then, it filters the
 information to return a list of objects to use on the client side.
 */
 @AuraEnabled
 public static List<Map<String, Object>> findAccountAges(List<String> emails) {
 List<Map<String, Object>> ret = new List<Map<String, Object>>() {
 List<Contact> contacts = [SELECT Name, Account.Name, Account.CreatedDate
 FROM Contact
 WHERE Contact.Email IN :emails];
 for (Contact c: contacts) {
 Map<String, Object> item = new Map<String, Object>()
 item.put('name', c.Account.Name);
 item.put('age',
 Date.valueOf(c.Account.CreatedDate).daysBetween(
 System.Date.today()));
 ret.add(item);
 }
 return ret;
 }"
This method searches for OpportunityContactRoles with matching emails in the email list. Then, it calculates the number of days until closing to return a list of objects to use on the client side.

```java
@AuraEnabled
public static List<Map<String, Object>> findOpportunityCloseDateTime(List<String> emails) {
    List<Map<String, Object>> ret = new List<Map<String, Object>>();
    List<OpportunityContactRole> contacts =
        [SELECT Opportunity.Name, Opportunity.CloseDate
         FROM OpportunityContactRole
         WHERE isPrimary=true AND Contact.Email IN :emails];
    for (OpportunityContactRole c: contacts) {
        Map<String, Object> item = new Map<String, Object>();
        item.put('name', c.Opportunity.Name);
        item.put('closesIn',
            System.Date.today().daysBetween(
                Date.valueOf(c.Opportunity.CloseDate)));
        ret.add(item);
    }
    return ret;
}
```
var action = component.get("c.findAccountAges");
action.setParam("emails", peopleEmails);

action.setCallback(this, function(response){
 var state = response.getState();
 if(state === "SUCCESS"){
 component.set("v.accounts", response.getReturnValue());
 } else{
 component.set("v.accounts",[]);
 }
});
$A.enqueueAction(action);
})

({
 filterEmails : function(people){
 return this.getEmailsFromList(people.to).concat(
 this.getEmailsFromList(people.cc))
 },
 getEmailsFromList : function(list){
 var ret = [];
 for (var i in list) {
 ret.push(list[i].email);
 }
 return ret;
 }
})

Create Dynamic Picklists for Your Custom Components

You can expose a component property as a picklist when the component is configured in the Lightning App Builder. The picklist’s values are provided by an Apex class that you create.

For example, let’s say you’re creating a component for the Home page to display a custom Company Announcement record. You can use an Apex class to put the titles of all Company Announcement records in a picklist in the component’s properties in the Lightning App Builder. Then, when admins add the component to a Home page, they can easily select the appropriate announcement to place on the page.

1. Create a custom Apex class to use as a datasource for the picklist. The Apex class must extend the VisualEditor.DynamicPickList abstract class.

2. Add an attribute to your design file that specifies your custom Apex class as the datasource.

Here’s a simple example.
Create an Apex Class

```apex
global class MyCustomPickList extends VisualEditor.DynamicPickList{

    global override VisualEditor.DataRow getDefaultValue(){
        VisualEditor.DataRow defaultValue = new VisualEditor.DataRow('red', 'RED');
        return defaultValue;
    }

    global override VisualEditor.DynamicPickListRows getValues() {
        VisualEditor.DataRow value1 = new VisualEditor.DataRow('red', 'RED');
        VisualEditor.DataRow value2 = new VisualEditor.DataRow('yellow', 'YELLOW');
        VisualEditor.DynamicPickListRows myValues = new VisualEditor.DynamicPickListRows();

        myValues.addRow(value1);
        myValues.addRow(value2);
        return myValues;
    }
}
```

Note: Although VisualEditor.DataRow allows you to specify any Object as its value, you can specify a datasource only for String attributes. The default implementation for isValid() and getLabel() assumes that the object passed in the parameter is a String for comparison.

For more information on the VisualEditor.DynamicPickList abstract class, see the Apex Developer Guide.

Add the Apex Class to Your Design File

To specify an Apex class as a datasource in an existing component, add the datasource property to the attribute with a value consisting of the Apex namespace and Apex class name.

```
<design:component>
    <design:attribute name="property1" datasource="apex://MyCustomPickList"/>
</design:component>
```

Dynamic Picklist Considerations

- Specifying the Apex datasource as public isn’t respected in managed packages. If an Apex class is public and part of a managed package, it can be used as a datasource for custom components in the subscriber org.
- Profile access on the Apex class isn’t respected when the Apex class is used as a datasource. If an admin’s profile doesn’t have access to the Apex class but does have access to the custom component, the admin sees values provided by the Apex class on the component in the Lightning App Builder.

Create a Custom Lightning Page Template Component

Every standard Lightning page is associated with a default template component, which defines the page’s regions and what components the page includes. Custom Lightning page template components let you create page templates to fit your business needs with the structure and components that you define. Once implemented, your custom template is available in the Lightning App Builder’s new page wizard for your page creators to use.

Note: My Domain must be enabled in your org before you can use custom template components in the Lightning App Builder.
Custom Lightning page template components are supported for record pages, app pages, and Home pages. Each page type has a different interface that the template component must implement.

- `lightning:appHomeTemplate`
- `lightning:homeTemplate`
- `lightning:recordHomeTemplate`

Important: Each template component should implement only one template interface. Template components shouldn’t implement any other type of interface, such as `flexipage:availableForAllPageTypes` or `force:hasRecordId`. A template component can’t multi-task as a regular Lightning component. It’s either a template, or it’s not.

1. Build the Template Component Structure

A custom template is a Lightning component bundle that should include at least a `.cmp` resource and a design resource. The `.cmp` resource must implement a template interface, and declare an attribute of type `Aura.Component[]` for each template region. The `Aura.Component[]` type defines the attribute as a collection of components.

Note: The `Aura.Component[]` attribute is interpreted as a region only if it’s also specified as a region in the design resource.

Here’s an example of a two-column app page template `.cmp` resource that uses the `lightning:layout` component and the Salesforce Lightning Design System (SLDS) for styling.

When the template is viewed on a desktop, its right column takes up 30% (4 SLDS columns). The left column takes up the remaining 70% of the page width. On non-desktop form factors, the columns display as 50/50.

```xml
<aura:component implements="lightning:appHomeTemplate" description="Main column and right sidebar. On a phone, the regions are of equal width">
  <aura:attribute name="left" type="Aura.Component[]" />
  <aura:attribute name="right" type="Aura.Component[]" />

  <div>
    <lightning:layout>
      <lightning:layoutItem flexibility="grow"
        class="slds-m-right_small">
        {!v.left}
      </lightning:layoutItem>
      <lightning:layoutItem size="{! $Browser.isDesktop ? '4' : '6' }"
        class="slds-m-left_small">
        {!v.right}
      </lightning:layoutItem>
    </lightning:layout>
  </div>
</aura:component>
```

The `description` attribute on the `aura:component` tag is optional, but recommended. If you define a description, it displays as the template description beneath the template image in the Lightning App Builder new page wizard.

2. Configure Template Regions and Components in the Design Resource

The design resource controls what kind of page can be built on the template. The design resource specifies what regions a page that uses the template must have. It also specifies what kinds of components can be put into those regions.

Regions inherit the interface assignments that you set for the overall page, as set in the `.cmp` resource.
Specify regions and components using these tags:

flexipage:template
This tag has no attributes and acts as a wrapper for the `flexipage:region` tag. Text literals are not allowed.

flexipage:region
This tag defines a region on the template and has these attributes. Text literals are not allowed.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of an attribute in the .cmp resource marked type Aura.Component[]. Flags the attribute as a region.</td>
</tr>
<tr>
<td>defaultWidth</td>
<td>Specifies the default width of the region. This attribute is required for all regions. Valid values are: Small, Medium, Large, and Xlarge.</td>
</tr>
</tbody>
</table>

flexipage:formFactor
Use this tag to specify how much space the component takes on the page based on the type of device that it renders on. This tag should be specified as a child of the `flexipage:region` tag. Use multiple `flexipage:formFactor` tags per `flexipage:region` to define flexible behavior across form factors.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>The type of form factor or device the template renders on, such as a desktop or tablet. Valid values are: Medium (tablet), and Large (desktop). Because the only reasonable width value for a Small form factor (phone) is Small, you don’t have to specify a Small type. Salesforce takes care of that association automatically.</td>
</tr>
<tr>
<td>width</td>
<td>The available size of the area that the component in this region has to render in. Valid values are: Small, Medium, Large, and Xlarge.</td>
</tr>
</tbody>
</table>

For example, in this code snippet, the region has a large width to render in when the template is rendered on a large form factor. The region has a small width to render in when the template is rendered on a medium form factor.

```html
<flexipage:region name="right" defaultWidth="Large">
  <flexipage:formFactor type="Large" width="Large" />
  <flexipage:formFactor type="Medium" width="Small" />
</flexipage:region>
```

Tip: You can use the `lightning:flexipageRegionInfo` subcomponent to pass region width information to a component. Doing so lets you configure your page components to render differently based on what size region they display in.

Here’s the design file that goes with the sample .cmp resource. The label text in the design file displays as the name of the template in the new page wizard.

```xml
<design:component label="Two Column Custom App Page Template">
  <flexipage:template >
  <!-- The default width for the "left" region is "MEDIUM". In tablets, the width is "SMALL" -->
    <flexipage:region name="left" defaultWidth="MEDIUM">
      <flexipage:formfactor type="MEDIUM" width="SMALL" />
    </flexipage:region>
  </flexipage:template>
</design:component>
```
3. (Optional) Add a Template Image

If you added a description to your .cmp resource, both it and the template image display when a user selects your template in the Lightning App Builder new page wizard.

You can use an SVG resource to define the custom template image.

We recommend that your SVG resource is no larger than 150 KB, and no more than 160 px high and 560 px wide.

SEE ALSO:

- Lightning Page Template Component Best Practices
- Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo

Lightning Page Template Component Best Practices

Keep these best practices and limitations in mind when creating Lightning page template components.

- Don’t add custom background styling to a template component. It interferes with Salesforce’s Lightning Experience page themes.
- Including scrolling regions in your template component can cause problems when you try to view it in the Lightning App Builder.
- Custom templates can’t be extensible nor extended—you can’t extend a template from anything else, nor can you extend other things from a template.
- Using getters to get the regions as variables works at design time but not at run time. Here’s an example of what we mean.

```xml
<aura:component implements="lightning:appHomeTemplate">
    <aura:attribute name="region" type="Aura.Component[]" />
    <aura:handler name="init" value="{"this}" action="{"c.init}" />
</aura:component>
```
• You can remove regions from a template as long as it’s not being used by a Lightning page, and as long as it’s not set to access=global. You can add regions at any time.
• A region can be used more than once in the code, but only one instance of the region should render at run time.
• A template component can contain up to 25 regions.

Make Your Lightning Page Components Width-Aware with `lightning:flexipageRegionInfo`

When you add a component to a region on a page in the Lightning App Builder, the `lightning:flexipageRegionInfo` sub-component passes the width of that region to its parent component. With `lightning:flexipageRegionInfo` and some strategic CSS, you can tell the parent component to render in different ways in different regions at runtime.

For example, the List View component renders differently in a large region than it does in a small region as it’s a width-aware component.
Valid region width values are: Small, Medium, Large, and Xlarge.

You can use CSS to style your component and to help determine how your component renders. Here's an example.

This simple component has two fields, field1 and field2. The component renders with the fields side by side, filling 50% of the region’s available width when not in a small region. When the component is in a small region, the fields render as a list, using 100% of the region’s width.

```html
<aura:component implements="flexipage:availableForAllPageTypes">
  <aura:attribute name="width" type="String"/>
  <lightning:flexipageRegionInfo width="{{v.width}}"/>
  <div class="{{'container' + (v.width=='SMALL'?'narrowRegion':'')}}">
    <div class="{{'eachField f1' + (v.width=='SMALL'?'narrowRegion':'')}}">
      <lightning:input name="field1" label="First Name"/>
    </div>
    <div class="{{'eachField f2' + (v.width=='SMALL'?'narrowRegion':'')}}">
      <lightning:input name="field2" label="Last Name"/>
    </div>
  </div>
</aura:component>
```

Here's the CSS file that goes with the component.

```css
.THIS .eachField.narrowRegion{
  width:100%;
}
.THIS .eachField{
  width:50%;
  display:inline-block;
}
```

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Keep these guidelines in mind when creating components and component bundles for Lightning pages and the Lightning App Builder.

Note: Mark your resources, such as a component, with `access="global"` to make the resource usable outside of your own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community Builder user in another org.

Components

- Set a friendly name for the component using the `label` attribute in the element in the design file, such as `<design:component label="foo">`.
- Make your components fill 100% of the width (including margins) of the region that they display in.
- If components require interaction, they must provide an appropriate placeholder behavior in declarative tools.
- A component must never display a blank box. Think of how other sites work. For example, Facebook displays an outline of the feed before the actual feed items come back from the server. The outline improves the user’s perception of UI responsiveness.
- If the component depends on a fired event, then give it a default state that displays before the event fires.
- Style components in a manner consistent with the styling of Lightning Experience and consistent with the Salesforce Design System.
• If your org doesn’t have My Domain enabled and you activate a Lightning page with a custom component, the component is dropped from the page at runtime.

Attributes

• Use the design file to control which attributes are exposed to the Lightning App Builder.
• Make your attributes easy to use and understandable to an administrator. Don’t expose SOQL queries, JSON objects, or Apex class names.
• Give your required attributes default values. When a component that has required attributes with no default values is added to the App Builder, it appears invalid, which is a poor user experience.
• Use basic supported types (string, integer, boolean) for any exposed attributes.
• Specify a min and max attribute for integer attributes in the <design:attribute> element to control the range of accepted values.
• String attributes can provide a datasource with a set of predefined values allowing the attribute to expose its configuration as a picklist.
• Give all attributes a label with a friendly display name.
• Provide descriptions to explain the expected data and any guidelines, such as data format or expected range of values. Description text appears as a tooltip in the Property Editor.
• To delete a design attribute for a component that implements the flexipage:availableForAllPageTypes or forceCommunity:availableForAllPageTypes interface, first remove the interface from the component before deleting the design attribute. Then reimplement the interface. If the component is referenced in a Lightning page, you must remove the component from the page before you can change it.

Limitations

• The Lightning App Builder doesn’t support the Map, Object, or java:// complex types.
• When you use the Lightning App Builder, there is a known limitation when you edit a group page. Your changes appear when you visit the group from the Groups tab. Your changes don’t appear when you visit the group from the Recent Groups list on the Chatter tab.

SEE ALSO:
- Configure Components for Lightning Pages and the Lightning App Builder
- Configure Components for Lightning Experience Record Pages

Use Lightning Components in Community Builder

To use a custom Lightning component in Community Builder, you must configure the component and its component bundle so that they’re compatible.

IN THIS SECTION:
- Configure Components for Communities
 Make your custom Lightning components available for drag and drop in the Lightning Components pane in Community Builder.
- Create Custom Theme Layout Components for Communities
 Create a custom theme layout to transform the appearance and overall structure of the pages in the Customer Service template.
Create Custom Component for Guest User Flows
Allow flows for your community guest users to provide alternative user registration screens, complex decision trees, and conditional forms to gather user information. The following example uses the Site Class API. For more information, see “Site Class” in the Salesforce Apex Developer Guide.

Create Custom Search and Profile Menu Components for Communities
Create custom components to replace the Customer Service template’s standard Profile Header and Search & Post Publisher components in Community Builder.

Create Custom Content Layout Components for Communities
Community Builder includes several ready-to-use layouts that define the content regions of your page, such as a two-column layout with a 2:1 ratio. However, if you need a layout that’s customized for your community, create a custom content layout component to use when building new pages in Community Builder. You can also update the content layout of the default pages that come with your community template.

Configure Components for Communities
Make your custom Lightning components available for drag and drop in the Lightning Components pane in Community Builder.

Add a New Interface to Your Component
To appear in Community Builder, a component must implement the forceCommunity:availableForAllPageTypes interface.

Here’s the sample code for a simple “Hello World” component.

```aura:component implements="forceCommunity:availableForAllPageTypes" access="global">
  <aura:attribute name="greeting" type="String" default="Hello" access="global" />
  <aura:attribute name="subject" type="String" default="World" access="global" />

  <div style="box">
    <span class="greeting">{!v.greeting}</span>, {!v.subject}!
  </div>
</aura:component>
```

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community Builder user in another org.

Next, add a design resource to your component bundle. A design resource describes the design-time behavior of a Lightning component—information that visual tools need to allow adding the component to a page or app. It contains attributes that are available for administrators to edit in Community Builder.

Adding this resource is similar to adding it for the Lightning App Builder. For more information, see Configure Components for Lightning Pages and the Lightning App Builder.

Important: When you add custom components to your community, they can bypass the object- and field-level security (FLS) you set for the guest user profile. Lightning components don’t automatically enforce CRUD and FLS when referencing objects or...
retrieving the objects from an Apex controller. This means that the framework continues to display records and fields for which users don’t have CRUD permissions and FLS visibility. You must manually enforce CRUD and FLS in your Apex controllers.

SEE ALSO:
- Component Bundles
- Standard Design Tokens for Communities

Create Custom Theme Layout Components for Communities

Create a custom theme layout to transform the appearance and overall structure of the pages in the Customer Service template.

A theme layout component is the top-level layout for the template pages (1) in your community. Theme layout components are organized and applied to your pages through theme layouts. Theme layout components include the common header and footer (2), and often include navigation, search, and the user profile menu. In contrast, the content layout (3) defines the content regions of your pages, such as a two-column layout.

A theme layout type categorizes the pages in your community that share the same theme layout.

When you create a custom theme layout component in the Developer Console, it appears in Community Builder in the **Settings > Theme** area. Here you can assign it to new or existing theme layout types. Then you apply the theme layout type—and thereby the theme layout—in the page’s properties.

1. Add an Interface to Your Theme Layout Component

A theme layout component must implement the `forceCommunity:themeLayout` interface to appear in Community Builder in the **Settings > Theme** area.

Explicitly declare `{!v.body}` in your code to ensure that your theme layout includes the content layout. Add `{!v.body}` wherever you want the page’s contents to appear within the theme layout.

You can add components to the regions in your markup or leave regions open for users to drag-and-drop components into. Attributes declared as `Aura.Component[]` and included in your markup are rendered as open regions in the theme layout that users can add components to.

In Customer Service, the Template Header consists of these locked regions:
• search, which contains the Search Publisher component
• profileMenu, which contains the User Profile Menu component
• navBar, which contains the Navigation Menu component

To create a custom theme layout that reuses the existing components in the Template Header region, declare search, profileMenu, or navBar as the attribute name value, as appropriate. For example:

```xml
<aura:attribute name="navBar" type="Aura.Component[]" required="false" />
```

⚠️ Tip: If you create a custom profile menu or a search component, declaring the attribute name value also lets users select the custom component when using your theme layout.

Here’s the sample code for a simple theme layout.

```xml
<aura:component implements="forceCommunity:themeLayout" access="global" description="Sample Custom Theme Layout">
  <aura:attribute name="search" type="Aura.Component[]" required="false" />
  <aura:attribute name="profileMenu" type="Aura.Component[]" required="false" />
  <aura:attribute name="navBar" type="Aura.Component[]" required="false" />
  <aura:attribute name="newHeader" type="Aura.Component[]" required="false" />
  <div class="searchRegion">
    {!v.search}
  </div>
  <div class="profileMenuRegion">
    {!v.profileMenu}
  </div>
  <div class="navigation">
    {!v.navBar}
  </div>
  <div class="newHeader">
    {!v.newHeader}
  </div>
  <div class="mainContentArea">
    {!v.body}
  </div>
</aura:component>
```

⚠️ Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community Builder user in another org.

2. Add a Design Resource to Include Theme Properties

You can expose theme layout properties in Community Builder by adding a design resource to your bundle. This example adds two checkboxes to a theme layout called Small Header.

```xml
<design:component label="Small Header">
  <design:attribute name="blueBackground" label="Blue Background" />
  <design:attribute name="smallLogo" label="Small Logo" />
</design:component>
```
The design resource only exposes the properties. You must implement the properties in the component.

```xml
<aura:component implements="forceCommunity:themeLayout" access="global" description="Small Header">
  <aura:attribute name="blueBackground" type="Boolean" default="false"/>
  <aura:attribute name="smallLogo" type="Boolean" default="false"/>
  ...
</aura:component>
```

Design resources must be named `componentName.design`.

3. Add a CSS Resource to Avoid Overlapping Issues

Add a CSS resource to your bundle to style the theme layout as needed.

To avoid overlapping issues with positioned elements, such as dialog boxes or hovers:

- Apply CSS styles.

  ```css
  .THIS {
    position: relative;
    z-index: 1;
  }
  ```

- Wrap the elements in your custom theme layout in a `div` tag.

  ```html
  <div class="mainContentArea">
    {!v.body}
  </div>
  ```

Note: For custom theme layouts, SLDS is loaded by default.

CSS resources must be named `componentName.css`.

SEE ALSO:

- Create Custom Search and Profile Menu Components for Communities
- Salesforce Help: Custom Theme Layouts and Theme Layout Types

Create Custom Component for Guest User Flows

Allow flows for your community guest users to provide alternative user registration screens, complex decision trees, and conditional forms to gather user information. The following example uses the Site Class API. For more information, see “Site Class” in the Salesforce Apex Developer Guide.

1. Create a Custom Lightning Component

Using Guest User Flows for login or self registration requires a custom component that implements `lightning:availableForFlowScreens`.

Here’s the sample code for a simple data collection preferences flow.

```xml
<aura:component implements="lightning:availableForFlowScreens" controller="CommunitySelfRegController">
  <aura:attribute name="email" type="String" default=""/>
</aura:component>
```
Controller file:

```javascript
{{
    init : function(cmp) {
        let email = cmp.get("v.email"),
            fname = cmp.get("v.fname"),
            lname = cmp.get("v.lname"),
            pass = cmp.get("v.password"),
            startUrl = cmp.get("v.starturl"),
            hasOptedSolicit = cmp.get("v.hasOptedSolicit"),
            hasOptedTracking = cmp.get("v.hasOptedTracking");

        let action = cmp.get("c.createExternalUser");
        action.setParams( {
            username: email,
            password: pass,
            startUrl: startUrl,
            fname: fname,
            lname: lname,
            hasOptedTracking: hasOptedTracking,
            hasOptedSolicit: hasOptedSolicit
        });

        action.setCallback(this, function(res) {
            if (action.getState() === "SUCCESS") {
                cmp.set("v.op_url", res.getReturnValue());
            }
        });
        $A.enqueueAction(action);
    }
}}
```
Design file:

```xml
<design:component>
  <design:attribute name="email" />
  <design:attribute name="fname" />
  <design:attribute name="lname" />
  <design:attribute name="password" />
  <design:attribute name="hasOptedTracking" />
  <design:attribute name="hasOptedSolicit" />
</design:component>
```

2. Create an Apex Class

The following example creates a class, `CommunitySelfRegController`, which is used with your Lightning Component to register new community users.

Note: Adding self registration with a flow requires the following:

- The `UserPreferencesHideS1BrowserUI` preference should be set to True. This prevents the mobile UI from defaulting to the Salesforce Mobile App interface rather than your community.
- `CommunityNickname` is required and must be a unique value.
- The self registration preference should be enabled in your community with a valid profile and account.

```java
public class CommunitySelfRegController {
    @AuraEnabled
    public static String createExternalUser(String username, String password, String startUrl, String fname, String lname, Boolean hasOptedTracking, Boolean hasOptedSolicit) {
        Savepoint sp = null;
        try {
            sp = Database.setsavepoint();
            system.debug(sp);

            // Creating a user object.
            User u = new User();
            u.Username = username;
            u.Email = username;
            u.FirstName = fname;
            u.LastName = lname;

            // Default UI for mobile is set to S1 for user created using site object.

            // Enable this perm to change it to community.
            u.UserPreferencesHideS1BrowserUI = true;

            // Generating unique value for community nickname.
        }
    }
}
```
String nickname = ((fname != null && fname.length() > 0) ? fname.substring(0,1) : '');

nickname += String.valueOf(Crypto.getRandomInteger()).substring(1,7);

u.CommunityNickname = nickname;

System.debug('creating user');

// Creating portal user.
// Passing in null account ID forces the system to read this from the
// network setting (set using Community Workspaces).
String userId = Site.createPortalUser(u, null, password);

// Setting consent selection values.
// For this, GDPR (Individual and Consent Management) needs to be enabled
in the org.
Individual ind = new Individual();
ind.LastName = lname;
ind.HasOptedOutSolicit = !hasOptedSolicit;
ind.HasOptedOutTracking = !hasOptedTracking;
insert(ind);

// Other contact information can be updated here.
Contact contact = new Contact();
contact.Id = u.ContactId;
contact.IndividualId = ind.Id;
update(contact);

// return login url.
if (userId != null && password != null && password.length() > 1) {
 ApexPages.PageReference lgn = Site.login(username, password, startUrl);
 return lgn.getUrl();
}

catch (Exception ex) {
 Database.rollback(sp);
 System.debug(ex.getMessage());
 return null;
}
return null;
}

SEE ALSO:

Salesforce Help: Allow Guest Users to Access Flows
Create Custom Search and Profile Menu Components for Communities

Create custom components to replace the Customer Service template’s standard Profile Header and Search & Post Publisher components in Community Builder.

forceCommunity:profileMenuInterface

Add the `forceCommunity:profileMenuInterface` interface to a Lightning component to allow it to be used as a custom profile menu component for the Customer Service community template. After you create a custom profile menu component, admins can select it in Community Builder in `Settings > Theme` to replace the template’s standard Profile Header component.

Here’s the sample code for a simple profile menu component.

```xml
<aura:component implements="forceCommunity:profileMenuInterface" access="global">
  <aura:attribute name="options" type="String[]" default="Option 1, Option 2"/>
  <ui:menu>
    <ui:menuTriggerLink aura:id="trigger" label="Profile Menu"/>
    <ui:menuList class="actionMenu" aura:id="actionMenu">
      <aura:iteration items="{!v.options}" var="itemLabel">
        <ui:actionMenuItem label="{!itemLabel}" click="{!c.handleClick}"/>
      </aura:iteration>
    </ui:menuList>
  </ui:menu>
</aura:component>
```

forceCommunity:searchInterface

Add the `forceCommunity:searchInterface` interface to a Lightning component to allow it to be used as a custom search component for the Customer Service community template. After you create a custom search component, admins can select it in Community Builder in `Settings > Theme` to replace the template’s standard Search & Post Publisher component.

Here’s the sample code for a simple search component.

```xml
<aura:component implements="forceCommunity:searchInterface" access="global">
  <div class="search">
    <div class="search-wrapper">
      <form class="search-form">
        <div class="search-input-wrapper">
          <input class="search-input" type="text" placeholder="My Search"/>
        </div>
        <input type="hidden" name="language" value="en"/>
      </form>
    </div>
  </div>
</aura:component>
```

SEE ALSO:

Create Custom Theme Layout Components for Communities

Salesforce Help: Custom Theme Layouts and Theme Layout Types
Create Custom Content Layout Components for Communities

Community Builder includes several ready-to-use layouts that define the content regions of your page, such as a two-column layout with a 2:1 ratio. However, if you need a layout that's customized for your community, create a custom content layout component to use when building new pages in Community Builder. You can also update the content layout of the default pages that come with your community template.

When you create a custom content layout component in the Developer Console, it appears in Community Builder in the New Page and the Change Layout dialog boxes.

1. Add a New Interface to Your Content Layout Component

To appear in the New Page and the Change Layout dialog boxes in Community Builder, a content layout component must implement the `forceCommunity:layout` interface.

Here's the sample code for a simple two-column content layout.

```aura:component implements="forceCommunity:layout" description="Custom Content Layout" access="global">
  <aura:attribute name="column1" type="Aura.Component[]" required="false"></aura:attribute>
  <aura:attribute name="column2" type="Aura.Component[]" required="false"></aura:attribute>

  <div class="container">
    <div class="contentPanel">
      <div class="left">
        {!v.column1}
      </div>
      <div class="right">
        {!v.column2}
      </div>
    </div>
  </div>
</aura:component>
```

Note: Mark your resources, such as a component, with `access="global"` to make the resource usable outside of your own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community Builder user in another org.

2. Add a CSS Resource to Your Component Bundle

Next, add a CSS resource to style the content layout as needed.

Here's the sample CSS for our simple two-column content layout.

```css
.THIS .contentPanel:before, .THIS .contentPanel:after {
  content: " ";
  display: table;
}
.THIS .contentPanel:after {
  clear: both;
}
```
CSS resources must be named `componentName.css`.

3. Optional: Add an SVG Resource to Your Component Bundle

You can include an SVG resource in your component bundle to define a custom icon for the content layout component when it appears in the Community Builder.

The recommended image size for a content layout component in Community Builder is 170px by 170px. However, if the image has different dimensions, Community Builder scales the image to fit.

SVG resources must be named `componentName.svg`.

SEE ALSO:
- Component Bundles
- Standard Design Tokens for Communities

Use Lightning Components with Flows

Customize the look-and-feel and functionality of your flows by adding Lightning components to them. Or wrap a flow in a Lightning component to configure the flow at runtime, such as to control how a paused flow is resumed.

IN THIS SECTION:
- **Considerations for Configuring Components for Flows**
 Before you configure Lightning components for a flow, determine whether it should be available in flow screens or as flow actions and understand how to map data types between a flow and a Lightning component. Then review some considerations for defining attributes and how components behave in flows at runtime.

- **Customize Flow Screens Using Lightning Components**
 To customize the look and feel of your flow screen, build a custom Lightning component. Configure the component and its design resource so that they're compatible with the Cloud Flow Designer. Then in the flow add a Lightning component field to the screen.

- **Create Flow Local Actions Using Lightning Components**
 To execute client-side logic in your flow, build or modify custom Lightning components to use as local actions in flows. For example, get data from third-party systems without going through the Salesforce server, or open a URL in another browser tab. Once you configure the Lightning component's markup, client-side controller, and design resource, it appears in the Cloud Flow Designer as a Local Action element.

- **Embed a Flow in a Custom Lightning Component**
 Once you embed a flow in a Lightning component, use JavaScript and Apex code to configure the flow at runtime. For example, pass values into the flow or to control what happens when the flow finishes. `lightning:flow` supports only screen flows and autolaunched flows.
Using Components

Considerations for Configuring Components for Flows

Before you configure Lightning components for a flow, determine whether it should be available in flow screens or as flow actions and understand how to map data types between a flow and a Lightning component. Then review some considerations for defining attributes and how components behave in flows at runtime.

Note:
- Lightning components in flows must comply with LockerService restrictions.
- Flows that include Lightning components are supported only in Lightning runtime.

IN THIS SECTION:

Flow Screen Components vs. Flow Action Components
You can make your Lightning component available in flow screens or as a flow action. When choosing between the flow interfaces, consider what purpose the component serves in the flow.

Which Aura Attribute Types Are Supported in Flows?
Not all Aura data types are supported in flows. You can map only these types and their associated collection types between flows and Lightning components.

Design Attribute Considerations for Flow Screen and Action Components
To expose an attribute in the Cloud Flow Designer, define a corresponding `design:attribute` in the component bundle’s design resource. Keep these guidelines in mind when defining design attributes for flows.

Runtime Considerations for Flows That Include Lightning Components
Depending on where you run your flow, Lightning components may look or behave differently than expected. The flow runtime app that’s used for some distribution methods doesn’t include all the necessary resources from the Lightning component framework. When a flow is run from the Cloud Flow Designer or a direct flow URL (https://yourDomain.my.salesforce.com/flow/MyFlowName), some base Lightning components look different because styling resources are missing, and `force` and `lightning` events aren’t handled.

SEE ALSO:
- Component Library: lightning:availableForFlowScreens Interface
- Component Library: lightning:availableForFlowActions Interface
- What is Locker Service?

Flow Screen Components vs. Flow Action Components
You can make your Lightning component available in flow screens or as a flow action. When choosing between the flow interfaces, consider what purpose the component serves in the flow.

<table>
<thead>
<tr>
<th>For this use case...</th>
<th>Create a...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide UI for the user to interact with</td>
<td>Flow screen component</td>
</tr>
</tbody>
</table>
For this use case...

- Update the screen in real time
- Prevent the flow from continuing until the component is done
- Make direct data queries to on-premise or private cloud data

Create a...

- Flow screen component
- Flow action component

SEE ALSO:

- [Component Library: lightning:availableForFlowScreens Interface](#)
- [Component Library: lightning:availableForFlowActions Interface](#)

Which Aura Attribute Types Are Supported in Flows?

Not all Aura data types are supported in flows. You can map only these types and their associated collection types between flows and Lightning components.

<table>
<thead>
<tr>
<th>Flow Data Type</th>
<th>Aura Attribute Type</th>
<th>Valid Values</th>
</tr>
</thead>
</table>
| Boolean | Boolean | • True values: `true`, `1`, or equivalent expression
| | | • False values: `false`, `0`, or equivalent expression |
| Currency | Number | Numeric value or equivalent expression |
| Date | Date | "YYYY-MM-DD" or equivalent expression |
| DateTime | DateTime | "YYYY-MM-DDThh:mm:ssZ" or equivalent expression |
| Number | Number | Numeric value or equivalent expression |
| Multipicklist | String | String value or equivalent expression using this format:
| (Label is Multi-Select Picklist.) | | "Blue; Green; Yellow" |
| Picklist | String | String value or equivalent expression |
| SObject | SObject, such as Account or Case | Map of key-value pairs or equivalent expression.
Flow sObject values map only to attributes whose type is the specific object. For example, an account sObject variable can be mapped only to an attribute whose type is Account. Flow data types aren’t compatible with attributes whose type is Object.
Valid Values

<table>
<thead>
<tr>
<th>Flow Data Type</th>
<th>Aura Attribute Type</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>String</td>
<td>String value or equivalent expression</td>
</tr>
</tbody>
</table>

* (Label is Text.)*

Design Attribute Considerations for Flow Screen and Action Components

To expose an attribute in the Cloud Flow Designer, define a corresponding `design:attribute` in the component bundle's design resource. Keep these guidelines in mind when defining design attributes for flows.

Supported Attributes on `design:attribute` Nodes

In a `design:attribute` node, the Cloud Flow Designer supports only the `name`, `label`, and `description` attributes. The other attributes, like `min` and `max`, are ignored.

For example, for this design attribute definition, the Cloud Flow Designer ignores required and placeholder.

```
<design:attributename="greeting" label="Greeting" placeholder="Hello" required="true"/>
```

Calculating Minimum and Maximum Values for an Attribute

To validate min and max lengths for a component attribute, use a flow formula or the component’s client-side controller.

Modifying or Deleting `design:attribute` Nodes

If a component’s attribute is referenced in a flow, you can’t change the attribute’s type or remove it from the design resource. This limitation applies to all flow versions, not just active ones. Remove references to the attribute in all flow versions, and then edit or delete the attribute in the design resource.

Runtime Considerations for Flows That Include Lightning Components

Depending on where you run your flow, Lightning components may look or behave differently than expected. The flow runtime app that’s used for some distribution methods doesn’t include all the necessary resources from the Lightning component framework. When a flow is run from the Cloud Flow Designer or a direct flow URL (https://yourDomain.my.salesforce.com/flow/MyFlowName), some base Lightning components look different because styling resources are missing, and `force` and `lightning` events aren’t handled.

To verify the behavior of your Lightning components, test your flow in a way that handles `force` and `lightning` events, such as `force:showToast`. You can also add the appropriate event handlers directly to your component.

<table>
<thead>
<tr>
<th>Distribution Method</th>
<th>Handles <code>force</code> and <code>lightning</code> Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct flow URL</td>
<td></td>
</tr>
</tbody>
</table>
Distribution Method

<table>
<thead>
<tr>
<th>Distribution Method</th>
<th>Handles force and lightning Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run, Run Latest, and Debug buttons in the Cloud Flow Designer</td>
<td></td>
</tr>
<tr>
<td>Run links on the flow detail and list pages</td>
<td></td>
</tr>
<tr>
<td>Web tab</td>
<td></td>
</tr>
<tr>
<td>Custom button or link</td>
<td></td>
</tr>
<tr>
<td>Lightning page</td>
<td>✓</td>
</tr>
<tr>
<td>Lightning community page</td>
<td>✓</td>
</tr>
<tr>
<td>Flow action</td>
<td>✓</td>
</tr>
<tr>
<td>Utility bar</td>
<td>✓</td>
</tr>
<tr>
<td>flow:interview Visualforce component</td>
<td></td>
</tr>
<tr>
<td>lightning:flow Lightning component</td>
<td>Depends on where you embed the component or whether your component includes the appropriate event handlers</td>
</tr>
</tbody>
</table>
Dynamically Update a Flow Screen with a Lightning Component

To conditionally display a field on your screen, build a Lightning component that uses `aura:if` to check when parts of the component should appear.

SEE ALSO:

Component Library: `lightning:availableForFlowScreens` Interface
Create Flow Local Actions Using Lightning Components

Configure Components for Flow Screens

Make your custom Lightning components available to flow screens in the Cloud Flow Designer by implementing the `lightning:availableForFlowScreens` interface. In the Cloud Flow Designer, flow screen components appear as options for Lightning component screen fields.

Here's the sample code for a simple "Hello World" component.

```aura:component implements="lightning:availableForFlowScreens" access="global">
    <aura:attribute name="greeting" type="String" access="global" />
    <aura:attribute name="subject" type="String" access="global" />

    <div style="box">
        <span class="greeting">{!v.greeting}</span>, {!v.subject}!
    </div>
</aura:component>
```

Note: Mark your resources with `access="global"` to make it usable outside of your own org, such as to make a component usable by a flow admin in another org.

To make an attribute's value customizable in the Cloud Flow Designer, add it to the component's design resource. That way, flow admins can pass values between that attribute and the flow when they configure the Local Action element. That way, flow admins can pass values between that attribute and the flow when they configure the screen field.

With this sample design resource, flow admins can customize the values for the "Hello World" component's attributes.

```design:component>
    <design:attribute name="greeting" label="Greeting" />
    <design:attribute name="subject" label="Subject" />
</design:component>
```

A design resource describes the design-time behavior of a Lightning component—information that visual tools need to allow adding the component to a page or app. Adding this resource is similar to adding it for the Lightning App Builder.

When admins reference this component in a flow, they can pass data between the flow and the Lightning component. Use the Inputs tab to set an attribute using values from the flow. Use the Outputs tab to store an attribute's value in a flow variable.

In this example, the Inputs tab sets the Greeting attribute to `Hello` and the Subject attribute to `World`.
Control Flow Navigation from a Lightning Component

By default, users navigate a flow by clicking standard buttons at the bottom of each screen. The `lightning:availableForFlowScreens` interface provides two attributes to help you fully customize your screen’s navigation. To figure out which navigation actions are available for the screen, loop through the `availableActions` attribute. To programmatically trigger one of those actions, call the `navigateFlow` action from your JavaScript controller.

When you override the screen's navigation with a Lightning component, remember to hide the footer so that the screen has only one navigation model.

IN THIS SECTION:
- Flow Navigation Actions
 - The `availableActions` attribute lists the valid navigation actions for that screen.
- Customize the Flow Footer with a Lightning Component
 - To replace the flow footer with a Lightning component, use the parameters that the `lightning:availableForFlowScreens` interface provides. The `availableActions` array lists which actions are available for the screen, and the `navigateFlow` action lets you invoke one of the available actions.
- Build a Custom Navigation Model for Your Flow Screens
 - Since Lightning components have access to a flow screen’s navigation actions, you can fully customize how the user moves between screens. For example, hide the default navigation buttons and have the flow move to the next screen when the user selects a choice.

SEE ALSO:
- Component Library: `lightning:availableForFlowScreens` Interface

Flow Navigation Actions

The `availableActions` attribute lists the valid navigation actions for that screen.

A screen's available actions are determined by:
• Where in the flow the screen is. For example, Previous isn’t supported on the first screen in a flow, Finish is supported for only the last screen in a flow, and you can never have both Next and Finish.

• Whether the flow creator opted to hide any of the actions in the screen’s Navigation Actions controls. For example, if Allow Pause is de-selected, the Pause action isn’t included in availableActions.

Here are the possible actions, their default button label, and what’s required for that action to be valid.

<table>
<thead>
<tr>
<th>Action</th>
<th>Button Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td>Next</td>
<td>Navigates to the next screen</td>
</tr>
<tr>
<td>BACK</td>
<td>Previous</td>
<td>Navigates to the previous screen</td>
</tr>
<tr>
<td>PAUSE</td>
<td>Pause</td>
<td>Saves the interview in its current state to the database, so that the user can resume it later</td>
</tr>
<tr>
<td>RESUME</td>
<td>Resume</td>
<td>Resumes a paused interview</td>
</tr>
<tr>
<td>FINISH</td>
<td>Finish</td>
<td>Finishes the interview. This action is available only before the final screen in the flow.</td>
</tr>
</tbody>
</table>

SEE ALSO:
Component Library: lightning:availableForFlowScreens Interface

Customize the Flow Footer with a Lightning Component

To replace the flow footer with a Lightning component, use the parameters that the lightning:availableForFlowScreens interface provides. The availableActions array lists which actions are available for the screen, and the navigateFlow action lets you invoke one of the available actions.

By default, the flow footer displays the available actions as standard buttons. Next and Finish use the brand variant style, and Previous and Pause use the neutral variant. Also, Pause floats left, while the rest of the buttons float right.

Example: This component (c:flowFooter) customizes the default flow footer in two ways.
- It swaps the Pause and Previous buttons, so that Previous floats to the left and Pause floats to the right with Next or Finish.
- It changes the label for the Finish button to Done.

![Example](image)

Example: This component (c:flowFooter) customizes the default flow footer in two ways.

- It swaps the Pause and Previous buttons, so that Previous floats to the left and Pause floats to the right with Next or Finish.
- It changes the label for the Finish button to Done.

c:flowFooter Component

Since the component implements lightning:availableForFlowScreens, it has access to the availableActions attribute, which contains the valid actions for the screen. The declared attributes, like canPause and canBack, determine which buttons to display. Those attributes are set by the JavaScript controller when the component initializes.

```aura:component access="global" implements="lightning:availableForFlowScreens">

<!-- Determine which actions are available -->
<aura:attribute name="canPause" type="Boolean" />
<aura:attribute name="canBack" type="Boolean" />
<aura:attribute name="canNext" type="Boolean" />
<aura:attribute name="canFinish" type="Boolean" />
```
The `init` function loops through the screen’s available actions and determines which buttons the component should show. When the user clicks one of the buttons in the footer, the `onButtonPressed` function calls the `navigateFlow` action to perform that action.

```javascript
{{
  init : function(cmp, event, helper) {
    // Figure out which buttons to display
    var availableActions = cmp.get('v.availableActions');
    for (var i = 0; i < availableActions.length; i++) {
      if (availableActions[i] == "PAUSE") {
        cmp.set("v.canPause", true);
      } else if (availableActions[i] == "BACK") {
        cmp.set("v.canBack", true);
      } else if (availableActions[i] == "NEXT") {
        cmp.set("v.canNext", true);
      } else if (availableActions[i] == "FINISH") {
        cmp.set("v.canFinish", true);
      }
    }
  },

  onButtonPressed: function(cmp, event, helper) {
    // Figure out which action was called
    var actionClicked = event.getSource().getLocalId();
    // Fire that action
  }
}}
```
Control Screen Navigation from a Child Component

If you’re using a child component to handle the screen’s navigation, pass the `navigateFlow` action and the `availableActions` attribute down from the parent component — the one that implements `lightning:availableForFlowScreens`. You can pass the available actions by setting the child component’s attributes, but you can’t pass the action. Instead, use a custom event to send the selected action up to the parent component.

Example: `c:navigateFlow Event`

Create an event with an action attribute, so that you can pass the selected action into the event.

```html
<aura:event type="APPLICATION">
  <aura:attribute name="action" type="String"/>
</aura:event>
```

c:flowFooter Component

In your component, before the handler:

- Define an attribute to pass the screen’s available actions from the parent component
- Register an event to pass the `navigateFlow` action to the parent component

```html
<aura:attribute name="availableActions" type="String[]"/>
<aura:registerEvent name="navigateFlowEvent" type="c:navigateFlow"/>
```

c:flowFooter Controller

Since `navigateFlow` is only available in the parent component, the `onButtonPressed` function fails. Update the `onButtonPressed` function so that it fires `navigateFlowEvent` instead.

```javascript
onButtonPressed: function(cmp, event, helper) {
  // Figure out which action was called
  var actionClicked = event.getSource().getLocalId();

  // Call that action
  var navigate = cmp.getEvent("navigateFlowEvent");
  navigate.setParam("action", actionFired);
  navigate.fire();
}
```

c:flowParent Component

In the parent component’s markup, pass `availableActions` into the child component’s `availableActions` attribute and the `handleNavigate` function into the child component’s `navigateFlowEvent` event.

```html
<c:flowFooter availableActions="{!v.availableActions}" navigateFlowEvent="{!c.handleNavigate}"/>
```

c:flowParent Controller
When `navigateFlowEvent` fires in the child component, the `handleNavigate` function calls the parent component’s `navigateFlow` action, using the action selected in the child component.

```javascript
handleNavigate: function(cmp, event) {
  var navigate = cmp.get("v.navigateFlow");
  navigate(event.getParam("action"));
}
```

SEE ALSO:

- Customize the Flow Header with a Lightning Component
- Dynamically Update a Flow Screen with a Lightning Component
- Component Library: `lightning:availableForFlowScreens` Interface

Build a Custom Navigation Model for Your Flow Screens

Since Lightning components have access to a flow screen’s navigation actions, you can fully customize how the user moves between screens. For example, hide the default navigation buttons and have the flow move to the next screen when the user selects a choice.

Example: This component (`c:choiceNavigation`) displays a script and a choice in the form of buttons.

![Navigate via Choice](image)

c:choiceNavigation Component

```html
<aura:component implements="lightning:availableForFlowScreens" access="global" >
  <!-- Get the script text from the flow -->
  <aura:attribute name="scriptText" type="String" required="true" />
  <!-- Pass the value of the selected option back to the flow -->
  <aura:attribute name="value" type="String" />

  <!-- Display the script to guide the agent’s call -->
  <div class="script-container">
    <div class="slds-card__header slds-grid slds-p-bottom_small slds-m-bottom_none">
      <div class="slds-media slds-media_center slds-has-flexi-truncate">
        <div class="slds-media__figure slds-align-top">
          <h2><lightning:icon iconName="utility:quotation_marks" title="Suggested script" /></h2>
        </div>
        <div class="slds-media__text">
          According to our records, you are currently a Preferred Repair customer. We are very interested in hearing about your experience with this service. Do you have time to answer a few short questions?
        </div>
      </div>
    </div>
    <div class="slds-card__body">
      <div class="slds-card__header slds-grid">
        <div class="slds-grid__column slds-grid__column--default-2 slds-grid__column--default-4">
          Customer Response
        </div>
        <div class="slds-grid__column slds-grid__column--default-2 slds-grid__column--default-4">
          Yes
        </div>
        <div class="slds-grid__column slds-grid__column--default-2 slds-grid__column--default-4">
          No
        </div>
      </div>
    </div>
  </div>
</aura:component>
```
c:choiceNavigation Design
The design resource includes the scriptText attribute, so you can set the script from the flow.

```
<design:component>
  <design:attribute name="scriptText" label="Script Text"
    description="What the agent should say to the customer" />
</design:component>
```

c:choiceNavigation Style
```
.THIS.script-container {
  border: t(borderWidthThick) solid t(colorBorderBrand);
  border-radius: t(borderRadiusMedium);
}

.THIS .script {
  font-size: 1.125rem; /*t(fontSizeTextLarge)*/
  font-weight: t(fontWeightRegular);
  line-height: t(lineHeightHeading);
}
```

c:choiceNavigation Controller
When the user clicks either of the buttons, the JavaScript controller calls navigateFlow ("NEXT"), which is the equivalent of the user clicking Next.
```
```
```
**defaultTokens.tokens**

The script in `c:choiceNavigation` uses tokens to stay in sync with the Salesforce Lightning Design System styles.

```html
<aura:tokens extends="force:base" />
</aura:tokens>
```

**SEE ALSO:**

*Component Library: lightning:availableForFlowScreens Interface*

---

**Customize the Flow Header with a Lightning Component**

To replace the flow header with a Lightning component, use the `screenHelpText` parameter from the `lightning:availableForFlowScreens` interface.

By default, the flow header includes the title of the flow that’s running and a button, where users can access screen-level help.

**Example:** Instead of displaying the flow title and the help button, this component (`c:flowHeader`) displays the company logo and the help button. The help text appears in a tooltip when the user hovers, instead of in a modal when the user clicks.

```html
<aura:component access="global" implements="lightning:availableForFlowScreens">
 <div class="slds-p-top_medium slds-clearfix">
 <div class="slds-float_left">
 <!-- Display company logo -->
 <h2></h2>
 </div>
 <div class="slds-float_right" style="position:relative;">
 <aura:if isTrue="{!v.screenHelpText ne null}"
 <!-- If the screen has help text, display an info icon in the header. On hover, display the screen's help text -->
 <lightning:helptext content="{!v.screenHelpText}" />
 </aura:if>
 </div>
 </div>
</aura:component>
```
Dynamically Update a Flow Screen with a Lightning Component

To conditionally display a field on your screen, build a Lightning component that uses `aura:if` to check when parts of the component should appear.

Example: This component (`c:flowDynamicScreen`) displays a custom script component and a group of radio buttons. The component gets the contact’s existing phone number from the flow, and uses that value to fill in the script.

If the user selects the No radio button, the component displays an input field, where the user can enter the new phone number.
<!-- Displays script to guide the agent's call -->
<div class="script-container">
  <div class="slds-card__header slds-grid slds-p-bottom_small slds-m-bottom_none">
    <div class="slds-media slds-media_center slds-has-flexi-truncate">
      <div class="slds-media__figure slds-align-top">
        <h2><lightning:icon iconName="utility:quotation_marks" title="Suggested script" /></h2>
      </div>
      <div class="slds-media__body">
        <!-- Inserts the user’s current number, pulled from the flow, into the script -->
        <ui:outputRichText class="script" value="{"Let me verify your phone number. Is ' + v.oldPhone + ' still a good phone number to reach you?'"} />
      </div>
    </div>
  </div>
</div>

<!-- Displays a radio button group to enter the customer’s response -->
<div class="slds-p-top_medium slds-p-bottom_medium">
  <lightning:radioGroup aura:id="rbg_correct" name="rbg_correct" label="Is the phone number correct?" options="[{! v.radioOptions }]" value="{! v.radioValue }">
    <!-- If the current number is wrong, displays a field to enter the correct number -->
    <aura:if isTrue="{"v.radioValue}"">
      <lightning:input type="tel" aura:id="phone_updated" label="Phone" onblur="{"c.handleNewPhone}" class="slds-p-top_small" />
    </aura:if>
  </lightning:radioGroup>
</div>
</aura:component>

c:flowDynamicScreen Style

.THIS.script-container {
  border: t(borderWidthThick) solid t(colorBorderBrand);
  border-radius: t(borderRadiusMedium);
}

.THIS .script {
  font-size: 1.125rem; /*t(fontSizeTextLarge)*/
  font-weight: t(fontWeightRegular);
  line-height: t(lineHeightHeading);
}

c:flowDynamicScreen Controller

When the user tabs out, or otherwise removes focus from the Phone field, the controller sets the newPhone attribute to the input value, so that you can reference the new number in the flow.

{{
  handleNewPhone: function(cmp, event, helper) {
    cmp.set('v.newPhone', cmp.find('phone_updated').get('v.value'));
  }
}}
The script in `c:flowDynamicScreen` uses tokens to stay in sync with the Salesforce Lightning Design System styles.

```html
<aura:tokens extends="force:base" />
</aura:tokens>
```

SEE ALSO:
- Customize the Flow Header with a Lightning Component
- Customize the Flow Footer with a Lightning Component
- Component Library: `lightning:availableForFlowScreens` Interface

Create Flow Local Actions Using Lightning Components

To execute client-side logic in your flow, build or modify custom Lightning components to use as local actions in flows. For example, get data from third-party systems without going through the Salesforce server, or open a URL in another browser tab. Once you configure the Lightning component’s markup, client-side controller, and design resource, it appears in the Cloud Flow Designer as a Local Action element.

**Note:**
- Lightning components in flows must comply with `LockerService` restrictions.
- Flows that include Lightning components are supported only in Lightning runtime.
- Lightning components require a browser context to run, so flow action components are supported only in screen flows.

**Example:** Here’s a sample “chelloWorld” component and its client-side controller, which triggers a JavaScript alert that says Hello, World. In the Cloud Flow Designer, local actions appear as Local Action elements.

```html
<aura:component implements="lightning:availableForFlowActions" access="global">
 <aura:attribute name="greeting" type="String" default="Hello" access="global" />
 <aura:attribute name="subject" type="String" default="World" access="global" />
</aura:component>

{{
 // When a flow executes this component, it calls the invoke method
 invoke : function(component, event, helper) {
 alert(component.get("v.greeting") + ", " + component.get("v.subject"));
 }
}}
```

IN THIS SECTION:
- Configure the Component Markup and Design Resource for a Flow Action
  Make your custom Lightning components available as flow local actions by implementing the `lightning:availableForFlowActions` interface.
Configure the Client-Side Controller for a Flow Local Action
When a component is executed as a flow local action, the flow calls the `invoke` method in the client-side controller. To run the code asynchronously in your client-side controller, such as when you’re making an XML HTTP request (XHR), return a Promise. When the method finishes or the Promise is fulfilled, control is returned back to the flow.

Cancel an Asynchronous Request in a Flow Local Action
If an asynchronous request times out, the flow executes the Local Action element’s fault connector and sets `$Flow.FaultMessage` to the error message. However, the original request isn’t automatically canceled. To abort an asynchronous request, use the `cancelToken` parameter available in the `invoke` method.

SEE ALSO:
- Component Library: `lightning:availableForFlowActions` Interface
- What is Locker Service?
- Customize Flow Screens Using Lightning Components

Configure the Component Markup and Design Resource for a Flow Action
Make your custom Lightning components available as flow local actions by implementing the `lightning:availableForFlowActions` interface.

⚠️ Tip: We recommend that you omit markup from local actions. Local actions tend to execute quickly, and any markup you add to them will likely disappear before the user can make sense of it. If you want to display something to users, check out Customize Flow Screens Using Lightning Components instead.

Here’s sample code for a simple “Hello World” component that sets a couple of attributes.

```xml
<aura:component implements="lightning:availableForFlowActions" access="global">
 <aura:attribute name="greeting" type="String" access="global" />
 <aura:attribute name="subject" type="String" access="global" />
</aura:component>
```

⚠️ Note: Mark your resources with `access="global"` to make it usable outside of your own org, such as to make a component usable by a flow admin in another org.

To make an attribute’s value customizable in the Cloud Flow Designer, add it to the component’s design resource. That way, flow admins can pass values between that attribute and the flow when they configure the Local Action element. That way, flow admins can pass values between that attribute and the flow when they configure the corresponding Local Action element.

With this sample design resource, flow admins can customize the values for the “Hello World” component’s attributes.

```xml
<design:component>
 <design:attribute name="greeting" label="Greeting" />
 <design:attribute name="subject" label="Subject" />
</design:component>
```

A design resource describes the design-time behavior of a Lightning component—information that visual tools need to allow adding the component to a page or app. Adding this resource is similar to adding it for the Lightning App Builder.

When admins reference this component in a flow, they can pass data between the flow and the Lightning component. Use the Inputs tab to set an attribute using values from the flow. Use the Outputs tab to store an attribute’s value in a flow variable.

In this example, the Inputs tab sets the Greeting attribute to `Hello` and the Subject attribute to `World`. 
Configure the Client-Side Controller for a Flow Local Action

When a component is executed as a flow local action, the flow calls the `invoke` method in the client-side controller. To run the code asynchronously in your client-side controller, such as when you’re making an XML HTTP request (XHR), return a Promise. When the method finishes or the Promise is fulfilled, control is returned back to the flow.

Asynchronous Code

When a Promise is resolved, the next element in the flow is executed. When a Promise is rejected or hits the timeout, the flow takes the Local Action element’s fault connector and sets `$Flow.FaultMessage` to the error message.

By default, the error message is “An error occurred when the elementName element tried to execute the c.myComponent component.” To customize the error message in `$Flow.FaultMessage`, return it as a new Error object in the `reject()` call.

```javascript
{
 invoke : function(component, event, helper) {
 return new Promise(function(resolve, reject) {
 // Do something asynchronously, like get data from
 // an on-premise database

 // Complete the call and return to the flow
 if (/* request was successful */) {
 // Set output values for the appropriate attributes
 resolve();
 } else {
 reject(new Error("My error message"));
 }
 });
 }
}
```

Note: If you’re making callouts to an external server, whitelist the external server in your org and enable or configure CORS in the external server.
Synchronous Code

When the method finishes, the next element in the flow is executed.

```javascript
({
 invoke : function(component, event, helper) {
 // Do something synchronously, like open another browser tab
 // with a specified URL

 // Set output values for the appropriate attributes
 }
})
```

SEE ALSO:

- Component Library: lightning:availableForFlowActions Interface
- Cancel an Asynchronous Request in a Flow Local Action
- Using External JavaScript Libraries
- Create CSP Trusted Sites to Access Third-Party APIs

Cancel an Asynchronous Request in a Flow Local Action

If an asynchronous request times out, the flow executes the Local Action element’s fault connector and sets $Flow.FaultMessage to the error message. However, the original request isn’t automatically canceled. To abort an asynchronous request, use the cancelToken parameter available in the `invoke` method.

Note: By default, requests time out after 120 seconds. To override the default, assign a different Integer to the component’s `timeout` attribute.

Example: In this client-side controller, the `invoke` method returns a Promise. When the method has done all it needs to do, it completes the call and control returns to the flow.

- If the request is successful, the method uses `resolve()` to execute the next element in the flow after this action.
- If the request isn’t successful, it uses `reject()` to execute the Local Action element’s fault connector and sets `$Flow.FaultMessage` to “My error message”.
- If the request takes too long, it uses `cancelToken.promise.then` to abort the request.

```javascript
({
 invoke : function(component, event, helper) {
 var cancelToken = event.getParam("arguments").cancelToken;

 return new Promise(function(resolve, reject) {
 var xhttp = new XMLHttpRequest();

 // Do something, like get data from
 // a database behind your firewall
 xhttp.onreadystatechange = $A.getCallback(function() {
 if (/* request was successful */) {
 // Complete the call and return to the flow
 resolve();
 } else {
 reject(new Error("My error message"));
 }
 });
 });
 }
})
```
Embed a Flow in a Custom Lightning Component

Once you embed a flow in a Lightning component, use JavaScript and Apex code to configure the flow at run time. For example, pass values into the flow or to control what happens when the flow finishes. `lightning:flow` supports only screen flows and autolaunched flows.

A flow is an application, built with the Cloud Flow Designer, that collects, updates, edits, and creates Salesforce information.

To embed a flow in your Lightning component, add the `<lightning:flow>` component to it.

```js
{{
 init : function (component) {
 // Find the component whose aura:id is "flowData"
 var flow = component.find("flowData");
 // In that component, start your flow. Reference the flow's Unique Name.
 flow.startFlow("myFlow");
 },
}}
```

**Note:** When a page loads that includes a flow component, such as Lightning App Builder or an active Lightning page, the flow runs. Make sure that the flow doesn't perform any actions – such as create or delete records – before the first screen.

IN THIS SECTION:

Reference Flow Output Variable Values in a Wrapper Lightning Component

When you embed a flow in a Lightning component, you can display or reference the flow's variable values. Use the `onstatuschange` action to get values from the flow's output variables. Output variables are returned as an array.
Set Flow Input Variable Values from a Wrapper Lightning Component
When you embed a flow in a custom Lightning component, give the flow more context by initializing its variables, sObject variables, collection variables, or sObject collection variables. In the component’s controller, create a list of maps, then pass that list to the startFlow method.

Control a Flow’s Finish Behavior by Wrapping the Flow in a Custom Lightning Component
By default, when a flow user clicks Finish, a new interview starts and the user sees the first screen of the flow again. By embedding a flow in a custom Lightning component, you can shape what happens when the flow finishes by using the onstatuschange action. To redirect to another page, use one of the force:navigateTo* events such as force:navigateToFirstChild or force:navigateToUrl.

Resume a Flow Interview from a Lightning Component
By default, users can resume their paused interviews from the Paused Interviews component on their home page. To customize how and where users can resume their interviews, embed the lightning:flow component in a custom Lightning component. In your client-side controller, pass the interview ID into the resumeFlow method.

SEE ALSO:
Component Library: lightning:flow Component

Reference Flow Output Variable Values in a Wrapper Lightning Component
When you embed a flow in a Lightning component, you can display or reference the flow’s variable values. Use the onstatuschange action to get values from the flow’s output variables. Output variables are returned as an array.

Note: The variable must allow output access. For each flow variable, output access is controlled by:
- The Input/Output Type variable field in Cloud Flow Designer
- The isOutput field on FlowVariable in Metadata API
If you reference a variable that doesn’t allow output access, attempts to get the variable are ignored.

Example: This example uses the JavaScript controller to pass the flow’s accountName and numberOfEmployees variables into attributes on the component. Then, the component displays those values in output components.

```html
<aura:component>
 <aura:attribute name="accountName" type="String" />
 <aura:attribute name="numberOfEmployees" type="Decimal" />

 <p><lightning:formattedText value="{!v.accountName}" /></p>
 <p><lightning:formattedNumber style="decimal" value="{!v.numberOfEmployees}" /></p>

 <aura:handler name="init" value="{"this}" action="{!c.init}" />
 <lightning:flow aura:id="flowData" onstatuschange="{!c.handleStatusChange}" />
</aura:component>

{| init : function (component) { |
 // Find the component whose aura:id is "flowData"
 var flow = component.find("flowData");
 // In that component, start your flow. Reference the flow's Unique Name.
 flow.startFlow("myFlow");
|}
```
handleStatusChange : function (component, event) {
    if(event.getParam("status") === "FINISHED") {
        // Get the output variables and iterate over them
        var outputVariables = event.getParam("outputVariables");
        var outputVar;
        for(var i = 0; i < outputVariables.length; i++) {
            outputVar = outputVariables[i];
            // Pass the values to the component's attributes
            if(outputVar.name === "accountName") {
                component.set("v.accountName", outputVar.value);
            } else {
                component.set("v.numberOfEmployees", outputVar.value);
            }
        }
    }
},
}

SEE ALSO:
Component Library: lightning:flow Component

Set Flow Input Variable Values from a Wrapper Lightning Component

When you embed a flow in a custom Lightning component, give the flow more context by initializing its variables, sObject variables, collection variables, or sObject collection variables. In the component’s controller, create a list of maps, then pass that list to the startFlow method.

Note: You can set variables only at the beginning of an interview, and the variables you set must allow input access. For each flow variable, input access is controlled by:

- The Input/Output Type variable field in the Cloud Flow Designer
- The isInput field on FlowVariable in the Metadata API

If you reference a variable that doesn’t allow input access, attempts to set the variable are ignored.

For each variable you set, provide the variable’s name, type, and value. For type, use the flow data type.

```
{
 name : "varName",
 type : "flowDataType",
 value : valueToSet
},
{
 name : "varName",
 type : "flowDataType",
 value : [value1, value2]
}, ...
```

Example: This JavaScript controller sets values for a number variable, a date collection variable, and a couple of sObject variables.

```
({
 init : function (component) {
```
Find the component whose aura:id is "flowData"

```javascript
var flow = component.find("flowData");
var inputVariables = [
 { name : "numVar", type : "Number", value: 30 },
 { name : "dateColl", type : "String", value: ["2016-10-27", "2017-08-01"]
},

// Sets values for fields in the account sObject variable. Id uses the
// value of the component’s accountId attribute. Rating uses a string.
{ name : "account", type : "SObject", value: {
 "Id" : component.get("v.accountId"),
 "Rating" : "Warm"
}},
// Set the contact sObject variable to the value of the component’s contact
// attribute. We're assuming the attribute contains the entire sObject for
// a contact record.
{ name : "contact", type : "SObject", value: component.get("v.contact") }
];
flow.startFlow("myFlow", inputVariables);
```

**Example:** Here’s an example of a component that gets an account via an Apex controller. The Apex controller passes the data to the flow’s sObject variable through the JavaScript controller.

```html
<aura:component controller="AccountController">
 <aura:attribute name="account" type="Account" />
 <aura:handler name="init" value="{!this}" action="{!c.init}" />
 <lightning:flow aura:id="flowData" />
</aura:component>

public with sharing class AccountController {
 @AuraEnabled
 public static Account getAccount() {
 return [SELECT Id, Name, LastModifiedDate FROM Account LIMIT 1];
 }
}

{!
 init : function (component) {
 // Create action to find an account
 var action = component.get("c.getAccount");

 // Add callback behavior for when response is received
 action.setCallback(this, function(response) {
 if (state === "SUCCESS") {
 // Pass the account data into the component’s account attribute
 component.set("v.account", response.getReturnValue());
 // Find the component whose aura:id is "flowData"
 var flow = component.find("flowData");
 // Set the account sObject variable to the value of the component’s
 // account attribute.
 }
 });
 }
}
var inputVariables = [
 {
 name: "account",
 type: "SObject",
 value: component.get("v.account")
 }
];

// In the component whose aura:id is "flowData, start your flow
// and initialize the account sObject variable. Reference the flow's
// Unique Name.
flow.startFlow("myFlow", inputVariables);

else {
 console.log("Failed to get account date.");
}

// Send action to be executed
$A.enqueueAction(action);
}
}

SEE ALSO:

Component Library: lightning:flow Component
Which Aura Attribute Types Are Supported in Flows?

Control a Flow’s Finish Behavior by Wrapping the Flow in a Custom Lightning Component

By default, when a flow user clicks Finish, a new interview starts and the user sees the first screen of the flow again. By embedding a flow in a custom Lightning component, you can shape what happens when the flow finishes by using the onstatuschange action. To redirect to another page, use one of the force:navigateTo* events such as force:navigateToObjectHome or force:navigateToUrl.

Tip: To control a flow’s finish behavior at design time, make your custom Lightning component available as a flow action by using the lightning:availableForFlowActions interface. To control what happens when an autolaunched flow finishes, check for the FINISHED_SCREEN status.

<a:component access="global">
 <a:handler name="init" value="{!this}" action="{!c.init}" />
 <l:flow aura:id="flowData" onstatuschange="{!c.handleStatusChange}" />
</a:component>

// init function here
handleStatusChange : function (component, event) {
 if(event.getParam("status") === "FINISHED") {
 // Redirect to another page in Salesforce, or
 // Redirect to a page outside of Salesforce, or
 // Show a toast, or...
 }
Example: This function redirects the user to a case created in the flow by using the `force:navigateToSObject` event.

```javascript
handleStatusChange : function (component, event) {
    if(event.getParam("status") === "FINISHED") {
        var outputVariables = event.getParam("outputVariables");
        var outputVar;
        for(var i = 0; i < outputVariables.length; i++) {
            outputVar = outputVariables[i];
            if(outputVar.name === "redirect") {
                var urlEvent = $A.get("e.force:navigateToSObject");
                urlEvent.setParams({
                    "recordId": outputVar.value,
                    "isredirect": "true"
                });
                urlEvent.fire();
            }
        }
    }
}
```

SEE ALSO:
- Component Library: `lightning:flow` Component
- Create Flow Local Actions Using Lightning Components

Resume a Flow Interview from a Lightning Component

By default, users can resume their paused interviews from the Paused Interviews component on their home page. To customize how and where users can resume their interviews, embed the `lightning:flow` component in a custom Lightning component. In your client-side controller, pass the interview ID into the `resumeFlow` method.

```javascript
{
    init : function (component) {
        // Find the component whose aura:id is "flowData"
        var flow = component.find("flowData");
        // In that component, resume a paused interview. Provide the method with
        // the ID of the interview that you want to resume.
        flow.resumeFlow("pausedInterviewId");
    },
}
```

Example: This example shows how you can resume an interview—or start a new one. When users click **Survey Customer** from a contact record, the Lightning component does one of two things:

- If the user has any paused interviews for the Survey Customers flow, it resumes the first one.
- If the user doesn’t have any paused interviews for the Survey Customers flow, it starts a new one.

```xml
<aura:component controller="InterviewsController">
    <aura:handler name="init" value="{"this}" action="{"c.init}" />
</aura:component>
```
This Apex controller gets a list of paused interviews by performing a SOQL query. If nothing is returned from the query, getPausedId() returns a null value, and the component starts a new interview. If at least one interview is returned from the query, the component resumes the first interview in that list.

```java
public class InterviewsController {
  @AuraEnabled
  public static String getPausedId() {
    // Get the ID of the running user
    String currentUser = UserInfo.getUserId();
    // Find all of that user's paused interviews for the Survey customers flow
    List<FlowInterview> interviews =
        [ SELECT Id FROM FlowInterview
          WHERE CreatedById = :currentUser AND InterviewLabel LIKE '%Survey customers%'];

    if (interviews == null || interviews.isEmpty()) {
      return null; // early out
    }
    // Return the ID for the first interview in the list
    return interviews.get(0).Id;
  }
}
```

If the Apex controller returned an interview ID, the client-side controller resumes that interview. If the Apex controller returned a null interview ID, the component starts a new interview.

```javascript
({
  init : function (component) {
    //Create request for interview ID
    var action = component.get("c.getPausedId");
    action.setCallback(this, function(response) {
      var interviewId = response.getReturnValue();
      // Find the component whose aura:id is "flowData"
      var flow = component.find("flowData");
      // If an interview ID was returned, resume it in the component
      // whose aura:id is "flowData".
      if ( interviewId !== null ) {
        flow.resumeFlow(interviewId);
      }
      // Otherwise, start a new interview in that component. Reference
      // the flow's Unique Name.
      else {
        flow.startFlow("Survey_customers");
      }
    });
    //Send request to be enqueued
    $A.enqueueAction(action);
  }
});
```
SEE ALSO:

Component Library: lightning:flow Component

Display Flow Stages with a Lightning Component

If you've added stages to your flow, display them to flow users with a Lightning component, such as lightning:progressindicator.

To add a progress indicator component to your flow, you have two options:

- Wrap the progress indicator with a lightning:flow component in a parent component.

```
<aura:component>
    <lightning:progressindicator/>
    <lightning:flow/>
</aura:component>
```

- Add the progress indicator to your flow screen directly, by using a Lightning component screen field.

IN THIS SECTION:

Display Flow Stages by Wrapping a Progress Indicator

If you're tracking stages in your flow, display them at runtime by creating a custom component that wraps a progress indicator with the lightning:flow component. Use the progress indicator to display the flow's active stages and current stage, and use the lightning:flow component to display the flow's screens. To pass the flow's active stages and current stage to the progress indicator, use the lightning:flow component's onstatuschange action.

Display Flow Stages By Adding a Progress Indicator to a Flow Screen

If you're tracking stages in your flow, display them at runtime by adding a custom component to the flow's screens. Create a progress indicator component that displays the flow's active stages and current stage, and make sure that it's available as a Lightning component screen field. When you add the component to each flow screen, pass the $Flow.ActiveStages and $Flow.CurrentStage system variables into the component's attributes.

SEE ALSO:

Cloud Flow Designer Guide: Show Users Progress Through a Flow with Stages
Display Flow Stages By Adding a Progress Indicator to a Flow Screen

Display Flow Stages by Wrapping a Progress Indicator

If you're tracking stages in your flow, display them at runtime by creating a custom component that wraps a progress indicator with the lightning:flow component. Use the progress indicator to display the flow's active stages and current stage, and use the lightning:flow component to display the flow's screens. To pass the flow's active stages and current stage to the progress indicator, use the lightning:flow component's onstatuschange action.

Example: This c:flowStages_global component uses lightning:progressindicator to display the flow's stages and lightning:flow to display the flow.
The design resource includes the `flowName` attribute, so you can specify which flow to start from Lightning App Builder.

```html
<design:component>
  <design:attribute name="flowName" label="Flow Name"/>
</design:component>
```

Controller

The controller uses the `flowName` attribute to determine which flow to start.

Each time a new screen loads, the `onstatuschange` action fires, which gives the controller access to a handful of parameters about the flow. The `currentStage` and `activeStages` parameters return the labels and names of the relevant stages.

When `onstatuschange` fires in this component, it calls the controller’s `statusChange` method. That method passes the flow’s `currentStage` and `activeStages` parameters into the component’s attributes. For each item in the `activeStages` attribute, the method adds a `lightning:progressStep` component to the component markup.

```javascript
({
  init : function(component, event, helper) {
    var flow = component.find("flow");
    flow.startFlow(component.get("v.flowName"));
  },

  // When each screen loads ...
  statusChange : function(component, event, helper) {
    // Pass $Flow.ActiveStages into the activeStages attribute
    // and $Flow.CurrentStage into the currentStage attribute
    component.set("v.currentStage", event.getParam("currentStage"));
  }
})
```
component.set("v.activeStages", event.getParam("activeStages"));

var progressIndicator = component.find("progressIndicator");
var body = [];

for(let stage of component.get("v.activeStages")) {
 // For each stage in activeStages...
 $A.createComponent(
 "lightning:progressStep",
 {
 // Create a progress step where label is the
 // stage label and value is the stage name
 "aura:id": "step_" + stage.name,
 "label": stage.label,
 "value": stage.name
 },
 function(newProgressStep, status, errorMessage) {
 // Add the new step to the progress array
 if (status === "SUCCESS") {
 body.push(newProgressStep);
 }
 else if (status === "INCOMPLETE") {
 // Show offline error
 console.log("No response from server or client is offline.");
 }
 else if (status === "ERROR") {
 // Show error message
 console.log("Error: " + errorMessage);
 }
 }
);
}

progressIndicator.set("v.body", body);

SEE ALSO:

Cloud Flow Designer Guide: Show Users Progress Through a Flow with Stages
Display Flow Stages with a Lightning Component
Component Library: lightning:flow Component

Display Flow Stages By Adding a Progress Indicator to a Flow Screen

If you’re tracking stages in your flow, display them at runtime by adding a custom component to the flow’s screens. Create a progress indicator component that displays the flow’s active stages and current stage, and make sure that it’s available as a Lightning component screen field. When you add the component to each flow screen, pass the $Flow.ActiveStages and $Flow.CurrentStage system variables into the component’s attributes.

Pass the $Flow.ActiveStages and $Flow.CurrentStage system variables to the component’s attributes. Then use those attributes to display the flow’s active stages and select the current one.
Example: The c:flowStages_field component uses lightning:progressindicator to display the flow's stages.

```html
<aura:component implements="lightning:availableForFlowScreens">
    <!-- Attributes that store $Flow.ActiveStages and $Flow.CurrentStage -->
    <aura:attribute name="stages" type="String[]"/>
    <aura:attribute name="currentStage" type="String"/>

    <aura:handler name="init" value="{!this}" action="{!c.init}"/>
    <lightning:progressIndicator aura:id="progressIndicator" currentStep="{!v.currentStage}" type="path"/>
</aura:component>
```

c:flowStages_field Design

The design resource includes the stages and currentStage attributes so that they're available in the Cloud Flow Designer. In the flow screen, pass $Flow.ActiveStages into the stages attribute, and pass $Flow.CurrentStage into the currentStage attribute.

```html
<design:component>
    <design:attribute name="stages" label="Stages" description="What stages are active"/>

    <design:attribute name="currentStage" label="Current Stage" description="What is the current stage?"/>
</design:component>
```

c:flowStages_field Style

```css
.THIS .slds-path__nav { margin-right: 0; }
.THIS .slds-path__item:only-child { border-radius: 15rem; }
```

c:flowStages_field Controller

When you add this component to a flow screen, you pass $Flow.ActiveStages into the stages attribute and $Flow.CurrentStage into the currentStage attribute. As a result, the component's attributes contain the relevant stages' labels but not the associated names. Each step in the progress indicator requires a label and a value, so this example sets both label and value to the stage label.

Tip: Make sure that none of your flow's stages have the same label.

For each item in the stages attribute, the init method adds a lightning:progressStep component to the c:flowStages_field component markup.

```javascript
{!
    init : function(component, event, helper) {
      var progressIndicator = component.find('progressIndicator');
      for (let step of component.get('v.stages')) {
```
$A.createComponent(
 "lightning:progressStep",
 {
 "aura:id": "step_" + step,
 "label": step,
 "value": step
 },
 function(newProgressStep, status, errorMessage){
 // Add the new step to the progress array
 if (status === "SUCCESS") {
 var body = progressIndicator.get("v.body");
 body.push(newProgressStep);
 progressIndicator.set("v.body", body);
 }
 else if (status === "INCOMPLETE") {
 // Show offline error
 console.log("No response from server, or client is offline.")
 }
 else if (status === "ERROR") {
 // Show error message
 console.log("Error: " + errorMessage);
 }
 });
});

SEE ALSO:

Cloud Flow Designer Guide: Show Users Progress Through a Flow with Stages
Display Flow Stages with a Lightning Component
Display Flow Stages with a Lightning Component
Component Library: lightning:availableForFlowScreens Interface

Add Components to Apps

When you’re ready to add components to your app, you should first look at the out-of-the-box components that come with the framework. You can also leverage these components by extending them or using composition to add them to custom components that you’re building.

Note: For all the out-of-the-box components, see the Components folder at https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain. The ui namespace includes many components that are common on Web pages.

Components are encapsulated and their internals stay private, while their public shape is visible to consumers of the component. This strong separation gives component authors freedom to change the internal implementation details and insulates component consumers from those changes.
The public shape of a component is defined by the attributes that can be set and the events that interact with the component. The shape is essentially the API for developers to interact with the component. To design a new component, think about the attributes that you want to expose and the events that the component should initiate or respond to.

Once you have defined the shape of any new components, developers can work on the components in parallel. This is a useful approach if you have a team working on an app.

To add a new custom component to your app, see Using the Developer Console on page 6.

SEE ALSO:
- Component Composition
- Using Object-Oriented Development
- Component Attributes
- Communicating with Events

Integrate Your Custom Apps into the Chatter Publisher

Use the Chatter Rich Publisher Apps API to integrate your custom apps into the Chatter publisher. The Rich Publisher Apps API enables developers to attach any custom payload to a feed item. Rich Publisher Apps uses lightning components for composition and rendering. We provide two lightning interfaces and a lightning event to assist with integration. You can package your apps and upload them to AppExchange. A community admin page provides a selector for choosing which five of your apps to add to the Chatter publisher for that community.

Note: Rich Publisher Apps are available to Lightning communities in topics, group, and profile feeds and in direct messages.

Use the `lightning:availableForChatterExtensionComposer` and `lightning:availableForChatterExtensionRenderer` interfaces with the `lightning:sendChatterExtensionPayload` event to integrate your custom apps into the Chatter publisher and carry your apps’ payload into a Chatter feed.

Note: The payload must be an object.

Example: Example of a Custom App Integrated into a Chatter Publisher

This example shows a Chatter publisher with three custom app integrations. There are icons for a video meeting app (1), an emoji app (2), and an app for selecting a daily quotation (3).
Example of a Custom App Payload in a Chatter Feed Post

This example shows the custom app's payload included in a Chatter feed.

The next sections describe how we integrated the custom quotation app with the Chatter publisher.
1. Set Up the Composer Component

For the composer component, we created component, controller, helper, and style files. Here is the component markup in quotesCompose.cmp. In this file, we implement the `lightning:availableForChatterExtensionComposer` interface.

```aura
comp:component implements="lightning:availableForChatterExtensionComposer">
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:container>
    <span class="quote" aura:id="quote"></span>
    <span class="author" aura:id="author"></span>
    <ui:button label="Get next Quote" press="{!c.getQuote}"/>
</aura:container>
</aura:component>
```

Use your controller and helper to initialize the composer component and to get the quote from a source. Once you get the quote, fire the event `sendChatterExtensionPayload`. Firing the event enables the Add button so the platform can associate the app's payload with the feed item. You can also add a title and description as metadata for the payload. The title and description are shown in a non-Lightning context, like Salesforce Classic.

```javascript
gQuote: function(cmp, event, helper) {
    // get quote from the source
    var compEvent = cmp.getEvent("sendChatterExtensionPayload");
    compEvent.setParams({
        "payload" : "<payload object>",
        "extensionTitle" : "<title to use when extension is rendered>",
        "extensionDescription" : "<description to use when extension is rendered>"
    });
    compEvent.fire();
}
```

Add a CSS resource to your component bundle to style your composition component.

2. Set Up the Renderer Component

For the renderer component, we created component, controller, and style files. Here is the component markup in quotesRender.cmp. In this file, we implement the `lightning:availableForChatterExtensionRenderer` interface, which provides the payload as an attribute in the component.

```aura
comp:component implements="lightning:availableForChatterExtensionRenderer">
<aura:quote type="String"/>
<aura:author type="String"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:container>
    <span class="quote" aura:id="quote">{!v._quote}</span>
    <span class="author" aura:id="author">--- {!v._author} ---</span>
</aura:container>
</aura:component>
```
You have a couple of ways of dealing with the payload. You can use the payload directly in the component `{!v.payload}`. You can use your controller to parse the payload provided by the `lightning:availableForChatterExtensionRenderer` interface and set its attributes yourself. Add a CSS resource to your renderer bundle to style your renderer component.

3. Set Up a New ChatterExtension Entity

After you create these components, go to Workbench (or install your own instance). Make sure that you're using at least API version 41.0. Log in to your org, and create a ChatterExtension entity.

From the Data menu, select **Insert**.

From the **Object Type** list, select **ChatterExtension**.

In the **Value** column, provide values for ChatterExtension fields (see ChatterExtension for values and descriptions).
Get the IconId for the file asset. Go to Workbench > utilities > REST Explorer and make a new POST request for creating a file asset with a fileId from your org.

Note: Rich Publisher Apps information is cached, so there can be a 5-minute wait before your app appears in the publisher.

4. Package Your App and Upload It to the AppExchange

The ISVforce Guide provides useful information about packaging your apps and uploading them to the AppExchange.
5. Select the Apps to Embed in the Chatter Publisher

An admin page is available in each community for selecting and arranging the apps to show in the Chatter publisher. Select up to five apps, and arrange them in the order you like. The order you set here controls the order the app icons appear in the publisher.

In your community, go to Community Workspaces and open the Administration page. Click Rich Publisher Apps to open the page.

After you move apps to the Selected Items column and click **Save**, the selected apps appear in the Chatter Publisher.

Using Background Utility Items

Implement the `lightning:backgroundUtilityItem` interface to create a component that fires and responds to events without rendering in the utility bar.

This component implements `lightning:backgroundUtilityItem` and listens for `lightning:tabCreated` events when the app loads. The component prevents more than 5 tabs from opening.

```xml
<aura:component implements="lightning:backgroundUtilityItem">
  <aura:attribute name="limit" default="5" type="Integer" />
  <aura:handler event="lightning:tabCreated" action="{!c.onTabCreated}" />
  <lightning:workspaceAPI aura:id="workspace" />
</aura:component>
```

When a tab is created, the event handler calls `onTabCreated` in the component’s controller and checks how many tabs are open. If the number of tabs is more than 5, the newly created tab automatically closes.

```javascript
({
  onTabCreated: function(cmp) {
    var workspace = cmp.find("workspace");
    var limit = cmp.get("v.limit");
    workspace.getAllTabInfo().then(function (tabInfo) {
      if (tabInfo.length > limit) {
        workspace.closeTab({
          tabId: tabInfo[0].tabId
        });
      }
    });
  }
});
```
Background utility items are added to an app the same way normal utility items are, but they don’t appear in the utility bar. The icon appears next to background utility items on the utility item list.

Use Lightning Components in Visualforce Pages

Add Lightning components to your Visualforce pages to combine features you’ve built using both solutions. Implement new functionality using Lightning components and then use it with existing Visualforce pages.

Important: Lightning Components for Visualforce is based on Lightning Out, a powerful and flexible feature that lets you embed Lightning components into almost any web page. When used with Visualforce, some of the details become simpler. For example, you don’t need to deal with authentication, and you don’t need to configure a Connected App.

In other ways using Lightning Components for Visualforce is just like using Lightning Out. Refer to the Lightning Out section of this guide for additional details.

There are three steps to add Lightning components to a Visualforce page.

1. Add the Lightning Components for Visualforce JavaScript library to your Visualforce page using the `<apex:includeLightning/>` component.
2. Create and reference a Lightning app that declares your component dependencies.
3. Write a JavaScript function that creates the component on the page using `$Lightning.createComponent()`.

Add the Lightning Components for Visualforce JavaScript Library

Add `<apex:includeLightning/>` at the beginning of your page. This component loads the JavaScript file used by Lightning Components for Visualforce.

Create and Reference a Lightning Dependency App

To use Lightning Components for Visualforce, define component dependencies by referencing a Lightning dependency app. This app is globally accessible and extends `ltng:outApp`. The app declares dependencies on any Lightning definitions (like components) that it uses.

Here’s an example of a simple app named `lcvfTest.app`. The app uses the `<aura:dependency>` tag to indicate that it uses the standard Lightning component, `ui:button`.

```
<aura:application access="GLOBAL" extends="ltng:outApp">
  <aura:dependency resource="ui:button"/>
</aura:application>
```

Note: Extending from `ltng:outApp` adds SLDS resources to the page to allow your Lightning components to be styled with the Salesforce Lightning Design System (SLDS). If you don’t want SLDS resources added to the page, extend from `ltng:outAppUnstyled` instead.

To reference this app on your page, use the following JavaScript code, where `theNamespace` is the namespace prefix for the app. That is, either your org’s namespace, or the namespace of the managed package that provides the app.

```
$Lightning.use("theNamespace:lcvfTest", function() {});
```
If the app is defined in your org (that is, not in a managed package), you can use the default “c” namespace instead, as shown in the next example. If your org doesn’t have a namespace defined, you must use the default namespace.

For further details about creating a Lightning dependency app, see Lightning Out Dependencies.

Creating a Component on a Page

Finally, add your top-level component to a page using \$Lightning.createComponent(String type, Object attributes, String locator, function callback). This function is similar to \$A.createComponent(), but includes an additional parameter, domLocator, which specifies the DOM element where you want the component inserted.

Let’s look at a sample Visualforce page that creates a ui:button using the lcvfTest.app from the previous example.

```apex
<apex:page>
  <apex:includeLightning />
  
  <div id="lightning" />
  
  <script>
  \$Lightning.use("c:lcvfTest", function() {
  \$Lightning.createComponent("ui:button",
   { label : "Press Me!" },
   "lightning",
   function(cmp) {
   // do some stuff
   });
  });
  
  </script>
</apex:page>
```

This code creates a DOM element with the ID “lightning”, which is then referenced in the \$Lightning.createComponent() method. This method creates a ui:button that says “Press Me!”, and then executes the callback function.

Important: You can call \$Lightning.use() multiple times on a page, but all calls must reference the same Lightning dependency app.

For further details about using \$Lightning.use() and \$Lightning.createComponent(), see Lightning Out Markup.

SEE ALSO:
- Lightning Out Dependencies
- Add Lightning Components to Any App with Lightning Out (Beta)
- Lightning Out Markup
- Share Lightning Out Apps with Non-Authenticated Users
- Lightning Out Considerations and Limitations

Add Lightning Components to Any App with Lightning Out (Beta)

Use Lightning Out to run Lightning components apps outside of Salesforce servers. Whether it’s a Node.js app running on Heroku, a department server inside the firewall, or even SharePoint, build your custom app with Lightning Platform and run it wherever your users are.
This release contains a beta version of Lightning Out, which means it’s a high quality feature with known limitations. You can provide feedback and suggestions for Lightning Out on the IdeaExchange.

Developing Lightning components that you can deploy anywhere is for the most part the same as developing them to run within Salesforce. Everything you already know about Lightning components development still applies. The only real difference is in how you embed your Lightning components app in the remote web container, or origin server.

Lightning Out is added to external apps in the form of a JavaScript library you include in the page on the origin server, and markup you add to configure and activate your Lightning components app. Once initialized, Lightning Out pulls in your Lightning components app over a secure connection, spins it up, and inserts it into the DOM of the page it’s running on. Once it reaches this point, your “normal” Lightning components code takes over and runs the show.

This approach is quite different from embedding an app using an iframe. Lightning components running via Lightning Out are full citizens on the page. If you choose to, you can enable interaction between your Lightning components app and the page or app you’ve embedded it in. This interaction is handled using Lightning events.

In addition to some straightforward markup, there’s a modest amount of setup and preparation within Salesforce to enable the secure connection between Salesforce and the origin server. And, because the origin server is hosting the app, you need to manage authentication with your own code.

This setup process is similar to what you’d do for an application that connects to Salesforce using the Lightning Platform REST API, and you should expect it to require an equivalent amount of work.

IN THIS SECTION:
- Lightning Out Requirements
- Lightning Out Dependencies
- Lightning Out Markup
- Authentication from Lightning Out
- Share Lightning Out Apps with Non-Authenticated Users
- Lightning Out Considerations and Limitations

SEE ALSO:
- Idea Exchange: Lightning Components Anywhere / Everywhere
Lightning Out Requirements

Deploying a Lightning components app using Lightning Out has a few modest requirements to ensure connectivity and security.

The remote web container, or origin server, must support the following.

- Ability to modify the markup served to the client browser, including both HTML and JavaScript. You need to be able to add the Lightning Out markup.
- Ability to acquire a valid Salesforce session ID. This will most likely require you to configure a Connected App for the origin server.
- Ability to access your Salesforce instance. For example, if the origin server is behind a firewall, it needs permission to access the Internet, at least to reach Salesforce.

Your Salesforce org must be configured to allow the following.

- The ability for the origin server to authenticate and connect. This will most likely require you to configure a Connected App for the origin server.
- The origin server must be added to the Cross-Origin Resource Sharing (CORS) whitelist.

Finally, you create a special Lightning components app that contains dependency information for the Lightning components to be hosted on the origin server. This app is only used by Lightning Out or Lightning Components for Visualforce.

Lightning Out Dependencies

Create a special Lightning dependency app to describe the component dependencies of a Lightning components app to be deployed using Lightning Out or Lightning Components for Visualforce.

When a Lightning components app is initialized using Lightning Out, Lightning Out loads the definitions for the components in the app. To do this efficiently, Lightning Out requires you to specify the component dependencies in advance, so that the definitions can be loaded once, at startup time.

The mechanism for specifying dependencies is a Lightning dependency app. A dependency app is simply an <aura:application> with a few attributes, and the dependent components described using the <aura:dependency> tag. A Lightning dependency app isn’t one you’d ever actually deploy as an app for people to use directly. A Lightning dependency app is used only to specify the dependencies for Lightning Out. (Or for Lightning Components for Visualforce, which uses Lightning Out under the covers.)

A basic Lightning dependency app looks like the following.

```xml
<aura:application access="GLOBAL" extends="ltng:outApp">
  <aura:dependency resource="c:myAppComponent"/>
</aura:application>
```

A Lightning dependency app must do the following.

- Set access control to GLOBAL.
- Extend from either ltng:outApp or ltng:outAppUnstyled.
- List as a dependency every component that is referenced in a call to $Lightning.createComponent().

In this example, `<c:myAppComponent>` is the top-level component for the Lightning components app you are planning to create on the origin server using $Lightning.createComponent(). Create a dependency for each different component you add to the page with $Lightning.createComponent().

Note: Don’t worry about components used within the top-level component. The Lightning Component framework handles dependency resolution for child components.
Defining a Styling Dependency

You have two options for styling your Lightning Out apps: Salesforce Lightning Design System and unstyled. Lightning Design System styling is the default, and Lightning Out automatically includes the current version of the Lightning Design System onto the page that’s using Lightning Out. To omit Lightning Design System resources and take full control of your styles, perhaps to match the styling of the origin server, set your dependency app to extend from `ltng:outAppUnstyled` instead of `ltng:outApp`.

Usage Notes

A Lightning dependency app isn’t a normal Lightning app, and you shouldn’t treat it like one. Use it only to specify the dependencies for your Lightning Out app.

In particular, note the following.

- You can’t add a template to a Lightning dependency app.
- Content you add to the body of the Lightning dependency app won’t be rendered.

SEE ALSO:

- Create a Connected App
- Use CORS to Access Salesforce Resources from Web Browsers
- aura:dependency
- Using the Salesforce Lightning Design System in Apps

Lightning Out Markup

Lightning Out requires some simple markup on the page, and is activated using two straightforward JavaScript functions.

The markup and JavaScript functions in the Lightning Out library are the only things specific to Lightning Out. Everything else is the Lightning components code you already know and love.

Adding the Lightning Out Library to the Page

Enable an origin server for use with Lightning Out by including the Lightning Out JavaScript library in the app or page hosting your Lightning components app. Including the library requires a single line of markup.

```html
<script src="https://myDomain.my.salesforce.com/lightning/lightning.out.js"></script>
```

Important: Use your custom domain for the host. Don’t copy-and-paste someone else’s instance from example source code. If you do this, your app will break whenever there’s a version mismatch between your Salesforce instance and the instance from which you’re loading the Lightning Out library. This happens at least three times a year, during regular upgrades of Salesforce. Don’t do it!

Loading and Initializing Your Lightning Components App

Load and initialize the Lightning Component framework and your Lightning components app with the `$Lightning.use()` function.

The `$Lightning.use()` function takes four arguments.
Using Components

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>appName</td>
<td>string</td>
<td>Required. The name of your Lightning dependency app, including the namespace. For example, "c:expenseAppDependencies".</td>
</tr>
<tr>
<td>callback</td>
<td>function</td>
<td>A function to call once the Lightning Component framework and your app have fully loaded. The callback receives no arguments. This callback is usually where you call $Lightning.createComponent() to add your app to the page (see the next section). You might also update your display in other ways, or otherwise respond to your Lightning components app being ready.</td>
</tr>
<tr>
<td>lightningEndPointURI</td>
<td>string</td>
<td>The URL for the Lightning domain on your Salesforce instance. For example, "https://myDomain.lightning.force.com".</td>
</tr>
<tr>
<td>authToken</td>
<td>string</td>
<td>The session ID or OAuth access token for a valid, active Salesforce session. Note: You must obtain this token in your own code. Lightning Out doesn't handle authentication for you. See Authentication from Lightning Out.</td>
</tr>
</tbody>
</table>

appName is required. The other three parameters are optional. In normal use you provide all four parameters.

Note: You can’t use more than one Lightning dependency app on a page. You can call $Lightning.use() more than once, but you must reference the same dependency app in every call.

Adding Your Lightning Components to the Page

Add to and activate your Lightning components on the page with the $Lightning.createComponent() function.

The $Lightning.createComponent() function takes four arguments.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>componentName</td>
<td>string</td>
<td>Required. The name of the Lightning component to add to the page, including the namespace. For example, "c:newExpenseForm".</td>
</tr>
</tbody>
</table>
| attributes | Object| Required. The attributes to set on the component when it’s created. For example, { name: theName, amount: theAmount }. If the component doesn’t require any attributes, pass in an empty object, {}.
| domLocator | Element or string | Required. The DOM element or element ID that indicates where on the page to insert the created component. |
| callback | function | A function to call once the component is added to and active on the page. The callback receives the component created as its only argument. |

Note: You can add more than one Lightning component to a page. That is, you can call $Lightning.createComponent() multiple times, with multiple DOM locators, to add components to different parts of the page. Each component created this way must be specified in the page’s Lightning dependency app.
Behind the scenes `$Lightning.createComponent()` calls the standard `$A.createComponent()` function. Except for the DOM locator, the arguments are the same. And except for wrapping the call in some Lightning Out semantics, the behavior is the same, too.

SEE ALSO:
- Dynamically Creating Components

Authentication from Lightning Out

Lightning Out doesn’t handle authentication. Instead, you manually provide a Salesforce session ID or authentication token when you initialize a Lightning Out app.

There are two supported ways to obtain an authentication token for use with Lightning Out.

- On a Visualforce page, using Lightning Components for Visualforce, you can obtain the current Visualforce session ID using the expression `{! $Api.Session_ID }`. Sessions initiated using the session ID are intended for use only on Visualforce pages.
- Elsewhere, an authenticated session is obtained using OAuth, following the same process you’d use to obtain an authenticated session to use with the REST API. In this case, you obtain an OAuth token, and can use it anywhere.

Important: Lightning Out isn’t in the business of authentication. The `$Lightning.use()` function simply passes along to the security subsystem whatever authentication token you provide. For most organizations, the token is a session ID or an OAuth token.

Lightning Out has the same privileges as the session from which you obtain the authentication token. For Visualforce using `{! $Api.Session_ID }`, the session has the privileges of the current user. For OAuth it’s whatever OAuth scope setting that the OAuth Connected App is defined with. Usually, using Lightning Out with OAuth requires you to grant “Full Access” scope to the Connected App returning the OAuth token.

When a Lightning Out authenticated session is granted with a session access token, the session persists access to any lightning.force.com domain running in the active browser session. Once a user is logged in with a valid access token, the session credentials are validated across all Salesforce applications running in the active browser session.

To prevent session persistence, system administrators can lock the session to the originating IP address. To select this option, navigate to:

Setup > Security > Session Settings

Activate the **Lock sessions to the IP address from which they originated** check box.
Share Lightning Out Apps with Non-Authenticated Users

Add the `ltng:allowGuestAccess` interface to your Lightning Out dependency app to make it available to users without requiring them to authenticate with Salesforce. This interface lets you build your app with Lightning components, and deploy it anywhere and to anyone.

A Lightning Out dependency app with the `ltng:allowGuestAccess` interface can be used with Lightning Components for Visualforce and with Lightning Out.

- Using Lightning Components for Visualforce, you can add your Lightning app to a Visualforce page, and then use that page in Salesforce Tabs + Visualforce communities. Then you can allow public access to that page.
- Using Lightning Out, you can deploy your Lightning app anywhere Lightning Out is supported—which is almost anywhere!

The `ltng:allowGuestAccess` interface is only usable in orgs that have Communities enabled, and your Lightning Out app is associated with all community endpoints that you’ve defined in your org.

Important: When you make a Lightning app accessible to guest users by adding the `ltng:allowGuestAccess` interface, it’s available through **every** community in your org, whether that community is enabled for public access or not. You can’t prevent it from being accessible via community URLs, and you can’t make it available for some communities but not others.

Warning: Be extremely careful about apps you open for guest access. Apps enabled for guest access bypass the object- and field-level security (FLS) you set for your community’s guest user profile. Lightning components don’t automatically enforce CRUD and FLS when you reference objects or retrieve the objects from an Apex controller. This means that the framework continues to display records and fields for which users don’t have CRUD access and FLS visibility. You must manually enforce CRUD and FLS in your Apex controllers. A mistake in code used in an app enabled for guest access can open your org’s data to the world.

Lightning Out Lightning Components for Visualforce

Usage

To begin with, add the `ltng:allowGuestAccess` interface to your Lightning Out dependency app. For example:

```html
<aura:application access="GLOBAL" extends="ltng:outApp"
    implements="ltng:allowGuestAccess">
    <aura:dependency resource="c:storeLocatorMain"/>
</aura:application>
```

Note: You can only add the `ltng:allowGuestAccess` interface to Lightning apps, not to individual components.

Next, add the Lightning Out JavaScript library to your page.

- With Lightning Components for Visualforce, simply add the `<apex:includeLightning />` tag anywhere on your page.
- With Lightning Out, add a `<script>` tag that references the library directly, using a community endpoint URL. For example:

```html
<script src="https://yourCommunityDomain/communityURL/lightning/lightning.out.js"></script>
```

For example, https://universalcontainers.force.com/ourstores/lightning/lightning.out.js
Finally, add the JavaScript code to load and activate your Lightning app. This code is standard Lightning Out, with the important addition that you must use one of your org’s community URLs for the endpoint. The endpoint URL takes the form https://yourCommunityDomain/communityURL/. The relevant line is emphasized in the following sample.

```
<script>
    $Lightning.use("c:locatorApp", // name of the Lightning app
        function() { // Callback once framework and app loaded
            $Lightning.createComponent(
                "c:storeLocatorMain", // top-level component of your app
                { }, // attributes to set on the component when created
                "lightningLocator", // the DOM location to insert the component
                function(cmp) {
                    // callback when component is created and active on the page
                },
            ),
            'https://universalcontainers.force.com/ourstores/' // Community endpoint
        );
</script>
```

SEE ALSO:
- Salesforce Help: Create Communities
- Use Lightning Components in Visualforce Pages

Lightning Out Considerations and Limitations

Creating an app using Lightning Out is, for the most part, much like creating any app with Lightning components. However, because your components are running “outside” of Salesforce, there are a few issues you want to be aware of. And it’s possible there are changes you might need to make to your components or your app.

The issues you should be aware of can be divided into two categories.

Considerations for Using Lightning Out

Because Lightning Out apps run outside of any Salesforce container, there are things you need to keep in mind, and possibly address.

First, Lightning components depend on setting cookies in a user’s browser. Since Lightning Out runs Lightning components outside of Salesforce, those cookies are “third-party” cookies. Your users need to allow third-party cookies in their browser settings.

The most significant and obvious issue is authentication. There’s no Salesforce container to handle authentication for you, so you have to handle it yourself. This essential topic is discussed in detail in “Authentication from Lightning Out.”

Another important consideration is more subtle. Many important actions your apps support are accomplished by firing various Lightning events. But events are sort of like that tree that falls in the forest. If no one’s listening, does it have an effect? In the case of many core Lightning events, the “listener” is the Lightning Experience or Salesforce app container, one.app. And if one.app isn’t there to handle the events, they indeed have no effect. Firing those events silently fails.

Standard events are listed in “Event Reference.” Events not supported for use in Lightning Out include the following note:

- **Note:** This event is handled by the one.app container. It’s supported in Lightning Experience and Salesforce app only.

Lightning Out doesn’t support the Lightning Console JavaScript API.
Limitations With Standard Components

While the core Lightning Out functionality is stable and complete, there are a few interactions with other Salesforce features that we’re still working on.

Chief among these is the standard components built into the Lightning Component framework. Many standard components don’t behave correctly when used in a stand-alone context, such as Lightning Out, and Lightning Components for Visualforce, which is based on Lightning Out. This is because the components implicitly depend on resources available in the one.app container.

Avoid this issue with your own components by making all of their dependencies explicit. Use ltng:require to reference all required JavaScript and CSS resources that aren’t embedded in the component itself.

If you’re using standard components in your apps, they might not be fully styled, or behave as documented, when they’re used in Lightning Out or Lightning Components for Visualforce.

SEE ALSO:
- Browser Support Considerations for Lightning Components
- Authentication from Lightning Out
- Use Lightning Components in Visualforce Pages

Lightning Container

Upload an app developed with a third-party framework as a static resource, and host the content in a Lightning component using lightning:container. Use lightning:container to use third-party frameworks like AngularJS or React within your Lightning pages.

The lightning:container component hosts content in an iframe. You can implement communication to and from the framed application, allowing it to interact with the Lightning component. lightning:container provides the message() method, which you can use in the JavaScript controller to send messages to the application. In the component, specify a method for handling messages with the onmessage attribute.

IN THIS SECTION:
- Lightning Container Component Limits
 Understand the limits of lightning:container.
- The Lightning Realty App
 The Lightning Realty App is a more robust example of messaging between the Lightning Container Component and Salesforce.
- lightning-container NPM Module Reference
 Use methods included in the lightning-container NPM module in your JavaScript code to send and receive messages to and from your custom Lightning component, and to interact with the Salesforce REST API.

Using a Third-Party Framework

lightning:container allows you to use an app developed with a third-party framework, such as AngularJS or React, in a Lightning component. Upload the app as a static resource.

Your application must have a launch page, which is specified with the lightning:container src attribute. By convention, the launch page is index.html, but you can specify another launch page by adding a manifest file to your static resource. The following
example shows a simple Lightning component that references myApp, an app uploaded as a static resource, with a launch page of index.html.

```aura:component>
  <lightning:container src="{!$Resource.myApp + '/index.html'}" />
</aura:component>
```

The contents of the static resource are up to you. It should include the JavaScript that makes up your app, any associated assets, and a launch page.

As in other Lightning components, you can specify custom attributes. This example references the same static resource, myApp, and has three attributes, messageToSend, messageReceived, and error. Because this component includes `implements="flexipage:availableForAllPageTypes"`, it can be used in the Lightning App Builder and added to Lightning pages.

Note: The examples in this section are accessible on the Developerforce Github Repository.

```aura:component access="global" implements="flexipage:availableForAllPageTypes">
  <aura:attribute access="private" name="messageToSend" type="String" default=""/>
  <aura:attribute access="private" name="messageReceived" type="String" default=""/>
  <aura:attribute access="private" name="error" type="String" default=""/>
  
  <div>
    <lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message to send to React app: "/>
    <lightning:button label="Send" onclick="{!c.sendMessage}"/>
    <br/>
    <lightning:textarea value="{!v.messageReceived}" label="Message received from React app: "/>
    <br/>
    <aura:if isTrue="{! !empty(v.error)}">
      <lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>
    </aura:if>
  </div>
  <lightning:container aura:id="ReactApp" src="{!$Resource.SendReceiveMessages + '/index.html'}"
    onmessage="{!c.handleMessage}"
    onerror="{!c.handleError}"/>
</aura:component>
```

The component includes a `lightning:input` element, allowing users to enter a value for messageToSend. When a user hits Send, the component calls the controller method sendMessage. This component also provides methods for handling messages and errors.

This snippet doesn’t include the component’s controller or other code, but don’t worry. We’ll dive in, break it down, and explain how to implement message and error handling as we go in Sending Messages from the Lightning Container Component and Handling Errors in Your Container.

SEE ALSO:

- Lightning Container
- Sending Messages from the Lightning Container Component
- Handling Errors in Your Container
Sending Messages from the Lightning Container Component

Use the `onmessage` attribute of `lightning:container` to specify a method for handling messages to and from the contents of the component—that is, the embedded app. The contents of `lightning:container` are wrapped within an iframe, and this method allows you to communicate across the frame boundary.

This example shows a Lightning component that includes `lightning:container` and has three attributes, `messageToSend`, `messageReceived`, and `error`.

This example uses the same code as the one in Using a Third-Party Framework. You can download the complete version of this example from the Developerforce Github Repository.

```aura:component access="global" implements="flexipage:availableForAllPageTypes">
    <aura:attribute access="private" name="messageToSend" type="String" default=""/>
    <aura:attribute access="private" name="messageReceived" type="String" default=""/>
    <aura:attribute access="private" name="error" type="String" default=""/>

    <div>
        <lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message to send to React app: "/>
        <lightning:button label="Send" onclick="{!c.sendMessage}"/>
        <br/>
        <lightning:textarea value="{!v.messageReceived}" label="Message received from React app: "/>
        <br/>
        <aura:if isTrue="{! !empty(v.error)}">
            <lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>
        </aura:if>
    </div>
    <lightning:container aura:id="ReactApp"
        src="{!$Resource.SendReceiveMessages + '/index.html'}"
        onmessage="{!c.handleMessage}"
        onerror="{!c.handleError}"/>
</aura:component>
```

`messageToSend` represents a message sent from Salesforce to the framed app, while `messageReceived` represents a message sent by the app to the Lightning component. `lightning:container` includes the required `src` attribute, an `aura:id`, and the `onmessage` attribute. The `onmessage` attribute specifies the message-handling method in your JavaScript controller, and the `aura:id` allows that method to reference the component.

This example shows the component’s JavaScript controller.

```js
{{
    sendMessage : function(component, event, helper) {
        var msg = {
            name: "General",
            value: component.get("v.messageToSend")
        };
        component.find("ReactApp").message(msg);
    },

    handleMessage: function(component, message, helper) {
        var payload = message.getParams().payload;
```
```javascript
var name = payload.name;
if (name === "General") {
    var value = payload.value;
    component.set("v.messageReceived", value);
} else if (name === "Foo") {
    // A different response
}

handleError: function(component, error, helper) {
    var e = error;
}
```

This code does a couple of different things. The `sendMessage` action sends a message from the enclosing Lightning component to the embedded app. It creates a variable, `msg`, that has a JSON definition including a `name` and a `value`. This definition of the message is user-defined—the message's payload can be a value, a structured JSON response, or something else. The `messageToSend` attribute of the Lightning component populates the `value` of the message. The method then uses the component's `aura:id` and the `message()` function to send the message back to the Lightning component.

The `handleMessage` method receives a message from the embedded app and handles it appropriately. It takes a component, a message, and a helper as arguments. The method uses conditional logic to parse the message. If this is the message with the `name` and `value` we’re expecting, the method sets the Lightning component's `messageReceived` attribute to the `value` of the message. Although this code only defines one message, the conditional statement allows you to handle different types of message, which are defined in the `sendMessage` method.

The handler code for sending and receiving messages can be complicated. It helps to understand the flow of a message between the Lightning component, its controller, and the app. The process begins when user enters a message as the `messageToSend` attribute. When the user clicks `Send`, the component calls `sendMessage`. `sendMessage` defines the message payload and uses the `message()` method to send it to the app. Within the static resource that defines the app, the specified message handler function receives the message. Specify the message handling function within your JavaScript code using the `lightning-container` module's `addMessageHandler()` method. See the `lightning-container NPM Module Reference` for more information.

When `lightning:container` receives a message from the framed app, it calls the component controller’s `handleMessage` method, as set in the `onmessage` attribute of `lightning:container`. The `handleMessage` method takes the message, and sets its value as the `messageReceived` attribute. Finally, the component displays `messageReceived` in a `lightning:textarea`.

This is a simple example of message handling across the container. Because you implement the controller-side code and the functionality of the app, you can use this functionality for any kind of communication between Salesforce and the app embedded in `lightning:container`.

⚠️ **Important:** Don’t send cryptographic secrets like an API key in a message. It’s important to keep your API key secure.

SEE ALSO:
- Lightning Container
- Using a Third-Party Framework
- Handling Errors in Your Container
Sending Messages to the Lightning Container Component

Use the methods in the lightning-container NPM module to send messages from the JavaScript code framed by `lightning:container`.

The Lightning-container NPM module provides methods to send and receive messages between your JavaScript app and the Lightning container component. You can see the lightning-container module on the NPM website.

Add the lightning-container module as a dependency in your code to implement the messaging framework in your app.

```javascript
import LCC from 'lightning-container';
```

`lightning-container` must also be listed as a dependency in your app's `package.json` file.

The code to send a message to `lightning:container` from the app is simple. This code corresponds to the code samples in Sending Messages from the Lightning Container Component and Handling Errors in Your Container, and can be downloaded from the Developerforce Github Repository.

```javascript
sendMessage() {
  LCC.sendMessage({name: "General", value: this.state.messageToSend});
}
```

This code, part of the static resource, sends a message as an object containing a name and a value, which is user-defined.

When the app receives a message, it's handled by the function mounted by the `addMessageHandler()` method. In a React app, functions must be mounted to be part of the document-object model and rendered in the output.

The lightning-container module provides similar methods for defining a function to handle errors in the messaging framework. For more information, see lightning-container NPM Module Reference

⚠️ Important: Don’t send cryptographic secrets like an API key in a message. It’s important to keep your API key secure.

Handling Errors in Your Container

Handle errors in Lightning container with a method in your component's controller.

This example uses the same code as the examples in Using a Third-Party Framework and Sending Messages from the Lightning Container Component.

In this component, the `onerror` attribute of `lightning:container` specifies `handleError` as the error handling method. To display the error, the component markup uses a conditional statement, and another attribute, `error`, for holding an error message.

```aura
<aura:component access="global" implements="flexipage:availableForAllPageTypes" >

  <aura:attribute access="private" name="messageToSend" type="String" default=""/>
  <aura:attribute access="private" name="messageReceived" type="String" default=""/>
  <aura:attribute access="private" name="error" type="String" default=""/>

  <div>
    <lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message to send to React app: "/><lightning:button label="Send" onclick="{!c.sendMessage}"/>
    <br/>
    <lightning:textarea name="messageReceived" value="{!v.messageReceived}" label="Message received from React app: "/>
    <br/>
  </div>

</aura:component>
```
This is the component’s controller.

```javascript
{{
  sendMessage: function(component, event, helper) {
    var msg = {
      name: "General",
      value: component.get("v.messageToSend")
    };
    component.find("ReactApp").message(msg);
  },

  handleMessage: function(component, message, helper) {
    var payload = message.getParams().payload;
    var name = payload.name;
    if (name === "General") {
      var value = payload.value;
      component.set("v.messageReceived", value);
    } else if (name === "Foo") {
      // A different response
    }
  },

  handleError: function(component, error, helper) {
    var description = error.getParams().description;
    component.set("v.error", description);
  }
}}
```

If the Lightning container application throws an error, the error handling function sets the `error` attribute. Then, in the component markup, the conditional expression checks if the error attribute is empty. If it isn’t, the component populates a `lightning:textarea` element with the error message stored in `error`.

SEE ALSO:
- Lightning Container
- Using a Third-Party Framework
- Sending Messages from the Lightning Container Component
Using Apex Services from Your Container

Use the `lightning-container` NPM module to call Apex methods from your Lightning container component.

To call Apex methods from `lightning:container`, you must set the CSP level to `low` in the `manifest.json` file. A CSP level of `low` allows the Lightning container component load resources from outside of the Lightning domain.

This is a Lightning component that including a Lightning container component that uses Apex services:

```aura
<aura:component access="global" implements="flexipage:availableForAllPageTypes">
    <aura:attribute access="private" name="error" type="String" default=""/>
    <div>
        <aura:if isTrue="{! !empty(v.error)}">
            <lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>
        </aura:if>
        <lightning:container aura:id="ReactApp" src="/ApexController/index.html" onerror="{!c.handleError}"/>
    </div>
</aura:component>
```

This is the component’s controller:

```javascript
({
    handleError: function(component, error, helper) {
        var description = error.getParams().description;
        component.set("v.error", description);
    }
})
```

Note: You can download the complete version of this example from the Developerforce Github Repository.

There’s not a lot going on in the component’s JavaScript controller—the real action is in the JavaScript app, uploaded as a static resource, that the Lightning container references.

```javascript
import React, { Component } from 'react';
import LCC from "lightning-container";
import logo from './logo.svg';
import './App.css';

class App extends Component {
    callApex() {
        LCC.callApex("lcc1.ApexController.getAccount", 
            this.state.name,
            this.handleAccountQueryResponse, 
            {escape: true});
    }

    handleAccountQueryResponse(result, event) {
        if (event.status) {
            this.setState({account: result});
        }
    }
}
```
else if (event.type === "exception") {
 console.log(event.message + " : " + event.where);
}

render() {
 var account = this.state.account;

 return {
 <div className="App">
 <div className="App-header">

 <h2>Welcome to LCC</h2>
 </div>
 <p className="App-intro">
 Account Name: <input type="text" id="accountName" value={this.state.name} onChange={this.onAccountNameChange} />
 <input type="submit" value="Call Apex Controller" onClick={this.callApex} />
 Id: {account.Id}

 Phone: {account.Phone}

 Type: {account.Type}

 Number of Employees: {account.NumberOfEmployees}

 </p>
 </div>
 };
}

constructor(props) {
 super(props);
 this.state = {
 name: "",
 account: {}
 };

 this.handleAccountQueryResponse = this.handleAccountQueryResponse.bind(this);
 this.onAccountNameChange = this.onAccountNameChange.bind(this);
 this.callApex = this.callApex.bind(this);
}

onAccountNameChange(e) {
 this.setState({name: e.target.value});
}

export default App;

The first function, callApex(), uses the LCC.callApex method to call getAccount, an Apex method that gets and displays an account’s information.

Lightning Container Component Limits

Understand the limits of lightning:container.
lightning:container has known limitations. You might observe performance and scrolling issues associated with the use of iframes. This component isn't designed for the multi-page model, and it doesn't integrate with browser navigation history.

If you navigate away from the page and a lightning:container component is on, the component doesn't automatically remember its state. The content within the iframe doesn't use the same offline and caching schemes as the rest of Lightning Experience.

Creating a Lightning app that loads a Lightning container static resource from another namespace is not supported. If you install a package, your apps should use the custom Lightning components published by that package, not their static resources directly. Any static resource you use as the lightning:container src attribute should have your own namespace.

Previous versions of lightning:container allowed developers to specify the Content Security Policy (CSP) of the iframed content. We removed this functionality for security reasons. The CSP level of all pages is now set to high. This value provides the greatest security, because content can be loaded only from the Lightning domain.

Apps that use lightning:container should work with data, not metadata. Don't use the session key for your app to manage custom objects or fields. You can use the session key to create and update object records.

Content in lightning:container is served from the Lightning container domain and is available in Lightning Experience and the Salesforce mobile app. lightning:container can't be used in Lightning pages that aren't served from the Lightning domain, such as Visualforce pages, Community Builder, or in external apps through Lightning Out.

IN THIS SECTION:

Lightning Container Component Security Requirements
Ensure that your Lightning container components meet security requirements.

SEE ALSO:

Lightning Container

Lightning Container Component Security Requirements
Ensure that your Lightning container components meet security requirements.

Namespace Validity
The Lightning container component's security measures check the validity of its namespaces. Suppose that you develop a <lightning:container> component with the namespace "vendor1." The static resource's namespace must also be "vendor1." If they don't match, an error message appears.

```aura:component
<aura:component>
<lightning:container
    src="{!$Resource.vendor1__resource + '/code_belonging_to_vendor1'}"
    onmessage="{!c.vendor1__handles}"/>
<aura:component>
```

Static Resource Content Access
You can't use raw <iframe> elements to access a Lightning container component. The <lightning:container> component enforces this requirement with the query parameter _CONFIRMATIONTOKEN, which generates a unique ID for each user session. The following code isn't permitted, because the <iframe> src attribute doesn't contain a _CONFIRMATIONTOKEN query parameter.

```aura:component
<aura:component>
<iframe
```
Instead, use the $Resource global value provider to build the resource URL for the <lightning:container> component.

```html
<aura:component>
  <lightning:container
    src="{!$Resource.vendor2__resource + '/index.html' }"/>
</aura:component>
```

Distribution Requirements

To upload a package to AppExchange, you must supply all the Lightning container component’s original sources and dependencies. When you provide minified or transpiled code, you must also include the source files for that code and the source map (.js.map) files for the minified code.

The Lightning Realty App

The Lightning Realty App is a more robust example of messaging between the Lightning Container Component and Salesforce.

The Lightning realty app’s messaging framework relies on code in a Lightning component, the component’s handler, and the static resource referenced by `lightning:container`. The Lightning container component points to the message handling function in the Lightning component’s JavaScript controller. The message handling function takes in a message sent by the source JavaScript, which uses a method provided by the lightning-container NPM module.

See [Install the Example Lightning Realty App](#) for instructions to install this example in your development org.

Let’s look at the Lightning component first. Although the code that defines the Realty component is simple, it allows the JavaScript of the realty app to communicate with Salesforce and load sample data.

```html
<aura:component access="global" implements="flexipage:availableForAllPageTypes">

  <aura:attribute access="global" name="mainTitle" type="String" required="true" default="My Properties"/>

  <aura:attribute access="private" name="messageReceived" type="String" default=""/>
  <aura:attribute access="private" name="error" type="String" default=""/>

  <div>
    <aura:if isTrue="{! !empty(v.messageReceived)}">
      <lightning:textarea name="messageReceivedTextArea" value="{!v.messageReceived}" label=" "/>
    </aura:if>

    <aura:if isTrue="{! !empty(v.error)}">
      <lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>
    </aura:if>

    <lightning:container aura:id="ReactApp"
      src="{!$Resource.Realty + '/index.html?mainTitle=' + v.mainTitle}"
      onmessage="{!c.handleMessage}"
      onerror="{!c.handleError}"/>

</aura:component>
```
This code is similar to the example code in Sending Messages from the Lightning Container Component and Handling Errors in Your Container.

There’s also code in the Lightning component’s controller and in the source JavaScript that allows the iframed app to communicate with Salesforce. In PropertyHome.js, part of the source, the realty app calls LCC.sendMessage. This segment of code filters the list of properties, then creates a message to send back to the container that includes the selected property’s address, price, city, state, zip code, and description.

```
saveHandler(property) {
  let filteredProperty = propertyService.filterProperty(property);
  propertyService.createItem(filteredProperty).then(() => {
    propertyService.findAll(this.state.sort).then(properties => {
      let filteredProperties = propertyService.filterFoundProperties(properties);
      this.setState({addingProperty: false, properties:filteredProperties});
    });
    let message = {};
    message.address = property.address;
    message.price = property.price;
    message.city = property.city;
    message.state = property.state;
    message.zip = property.zip;
    message.description = property.description;
    LCC.sendMessage({name: "PropertyCreated", value: message});
  });
},
```

Then, the JavaScript calls LCC.sendMessage with a name-value pair. This code uses the sendMessage method, which is part of the messaging API provided by the lightning-container NPM module. For more information, see Sending Messages to the Lightning Container Component.

The last bit of action happens in the component’s controller, in the handleMessage() function.

```
handleMessage: function(component, message, helper) {
  var payload = message.getParams().payload;
  var name = payload.name;
  if (name === "PropertyCreated") {
    var value = payload.value;
    var messageToUser;
    if (value.price > 1000000) {
      messageToUser = "Big Real Estate Opportunity in " + value.city + ", " + value.state + " : $" + value.price;
    } else {
      messageToUser = "Small Real Estate Opportunity in " + value.city + ", " + value.state + " : $" + value.price;
    }
    var log = component.get("v.log");
    log.push(messageToUser);
    component.set("v.log", log);
  },
},
```

250
This function takes a message as an argument, and checks that the name is "PropertyCreated". This is the same name set by LCC.sendMessage in the app's JavaScript.

This function takes the message payload—in this case, a JSON array describing a property—and checks the value of the property. If the value is over $1 million, it sends a message to the user telling him or her that there's a big real estate opportunity. Otherwise, it returns a message telling the user that there's a smaller real estate opportunity.

IN THIS SECTION:

Install the Example Lightning Realty App
See further examples of lightning:container in the Developerforce Git repository.

Install the Example Lightning Realty App

See further examples of lightning:container in the Developerforce Git repository.

Implement a more in-depth example of lightning:container with the code included in https://github.com/developerforce/LightningContainerExamples. This example uses React and lightning:container to show a real estate listing app in a Lightning page.

To implement this example, use npm. The easiest way to install npm is by installing node.js. Once you've installed npm, install the latest version by running npm install --save latest-version from the command line.

To create custom Lightning components, you also need to have enabled My Domain in your org. For more information on My Domain, see My Domain in the Salesforce Help.

1. Clone the Git repository. From the command line, enter git clone https://github.com/developerforce/LightningContainerExamples
2. From the command line, navigate to LightningContainerExamples/ReactJS/JavaScript/Realty and build the project's dependencies by entering npm install.
3. From the command line, build the app by entering npm run build.
4. Edit package.json and add your Salesforce login credentials where indicated.
5. From the command line, enter npm run deploy.
6. Log in to Salesforce and activate the new Realty Lightning page in the Lightning App Builder by adding it to a Lightning app.
7. To upload sample data to your org, enter npm run load from the command line.

See the Lightning realty app in action in your org. The app uses lightning:container to embed a React app in a Lightning page, displaying sample real estate listing data.
The component and handler code are similar to the examples in Sending Messages from the Lightning Container Component and Handling Errors in Your Container.

lightning-container NPM Module Reference

Use methods included in the lightning-container NPM module in your JavaScript code to send and receive messages to and from your custom Lightning component, and to interact with the Salesforce REST API.

IN THIS SECTION:

- **addMessageErrorHandler()**
 Mounts an error handling function, to be called when the messaging framework encounters an error.

- **addMessageHandler()**
 Mounts a message handling function, used to handle messages sent from the Lightning component to the framed JavaScript app.

- **callApex()**
 Makes an Apex call.

- **getRESTAPISessionKey()**
 Returns the Salesforce REST API session key.

- **removeMessageErrorHandler()**
 Unmounts the error handling function.

- **removeMessageHandler()**
 Unmounts the message-handling function.
sendMessage()

Sends a message from the framed JavaScript code to the Lightning component.

addMessageErrorHandler()

Mounts an error handling function, to be called when the messaging framework encounters an error.

Sample

Used within a JavaScript app uploaded as a static resource and referenced by `lightning:container`, this example mounts a message error handling function. In a React app, functions must be mounted to be part of the document-object model and rendered in the output.

```javascript
componentDidMount() {
  LCC.addMessageErrorHandler(this.onMessageError);
}
```

You can view and download this example in the Developerforce Github Repository.

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handler</td>
<td>function (errorMsg: string) => void)</td>
<td>The function that handles error messages encountered in the messaging framework.</td>
</tr>
</tbody>
</table>

Response

None.

addMessageHandler()

Mounts a message handling function, used to handle messages sent from the Lightning component to the framed JavaScript app.

Sample

Used within a JavaScript app uploaded as a static resource and referenced by `lightning:container`, this example mounts a message handling function. In a React app, functions must be mounted to be part of the document-object model and rendered in the output.

```javascript
componentDidMount() {
  LCC.addMessageHandler(this.onMessage);
}

onMessage(msg) {
  let name = msg.name;
  if (name === "General") {
    let value = msg.value;
    this.setState({messageReceived: value});
  }
}
else if (name === "Foo") {
    // A different response
}

You can view and download this example in the Developerforce Github Repository.

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handler: (userMsg: any) function =&gt; void</td>
<td></td>
<td>The function that handles messages sent from the Lightning component.</td>
</tr>
</tbody>
</table>

Response

None.

callApex()

Makes an Apex call.

Sample

Used within a JavaScript app uploaded as a static resource and referenced by `lightning:container`, this example calls the Apex method `getAccount`.

callApex() {
    LCC.callApex("lcc1.ApexController.getAccount",
                this.state.name,
                this.handleAccountQueryResponse,
                {escape: true});
}

You can view and download this example in the Developerforce Github Repository.

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fullyQualifiedApexMethodName</td>
<td>string</td>
<td>The name of the Apex method.</td>
</tr>
<tr>
<td>apexMethodParameters</td>
<td>array</td>
<td>A JSON array of arguments for the Apex method.</td>
</tr>
<tr>
<td>callbackFunction</td>
<td>function</td>
<td>A callback function.</td>
</tr>
<tr>
<td>apexCallConfiguration</td>
<td>array</td>
<td>Configuration parameters for the Apex call.</td>
</tr>
</tbody>
</table>

Response

None.
getRESTAPISessionKey()

Returns the Salesforce REST API session key.

Use this method when your embedded app needs to interact with the Salesforce REST API, such as executing a SOQL query.

Don’t use the session key to manage custom objects or fields. You can use the session key to create and update object records. Apps that use `lightning:container` should work with data, not metadata.

⚠️ **Important:** It's important to keep your API key secure. Don’t give this key to code you don’t trust, and don’t include it in URLs or hyperlinks, even to another page in your app.

Salesforce uses the no-referrer policy to protect against leaking your app’s URL to outside servers, such as image hosts. However, this policy doesn’t protect some browsers, meaning your app’s URLs could be included in outside requests.

**Sample**

Used within a JavaScript app uploaded as a static resource and referenced by `lightning:container`, this example gets the REST API session key and uses it to execute a SOQL query.

```javascript
componentDidMount() {
 let sid = LCC.getRESTAPISessionKey();
 let conn = new JSForce.Connection({accessToken: sid});
 conn.query("SELECT Id, Name from Account LIMIT 50", this.handleAccountQueryResponse);
}
```

You can view and download this example in the Developerforce Github Repository.

**Arguments**

None.

**Response**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>string</td>
<td>The REST API session key.</td>
</tr>
</tbody>
</table>

removeMessageErrorHandler()

Unmounts the error handling function.

When using React, it’s necessary to unmount functions to remove them from the DOM and perform necessary cleanup.

**Sample**

Used within a JavaScript app uploaded as a static resource and referenced by `lightning:container`, this example unmounts a message error handling function. In a React app, functions must be mounted to be part of the document-object model and rendered in the output.

```javascript
componentWillUnmount() {
 LCC.removeMessageErrorHandler(this.onMessageError);
}
```
You can view and download this example in the Developerforce Github Repository.

### Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handler: (errorMsg: string) =&gt; void)</td>
<td>function</td>
<td>The function that handles error messages encountered in the messaging framework.</td>
</tr>
</tbody>
</table>

### Response

None.

### removeMessageHandler()

Unmounts the message-handling function.

When using React, it’s necessary to unmount functions to remove them from the DOM and perform necessary cleanup.

### Sample

Used within a JavaScript app uploaded as a static resource and referenced by `lightning:container`, this example unmounts a message handling function.

```javascript
componentWillUnmount() {
 LCC.removeMessageHandler(this.onMessage);
}
```

You can view and download this example in the Developerforce Github Repository.

### Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handler: (userMsg: any) =&gt; void</td>
<td>function</td>
<td>The function that handles messages sent from the Lightning component.</td>
</tr>
</tbody>
</table>

### Response

None.

### sendMessage()

Sends a message from the framed JavaScript code to the Lightning component.
Sample

Used within a JavaScript app uploaded as a static resource and referenced by `lightning:container`, this example sends a message from the app to `lightning:container`.

```javascript
sendMessage() {
 LCC.sendMessage({name: "General", value: this.state.messageToSend});
}
```

You can view and download this example in the Developerforce Github Repository.

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>userMsg</td>
<td>any</td>
<td>While the data sent in the message is entirely under your control, by convention it’s an object with name and value fields.</td>
</tr>
</tbody>
</table>

Response

None.
CHAPTER 5

Communicating with Events

In this chapter ...

- Actions and Events
- Handling Events with Client-Side Controllers
- Component Events
- Application Events
- Event Handling Lifecycle
- Advanced Events Example
- Firing Lightning Events from Non-Lightning Code
- Events Best Practices
- Events Fired During the Rendering Lifecycle
- Events Handled in the Salesforce mobile app and Lightning Experience
- System Events

The framework uses event-driven programming. You write handlers that respond to interface events as they occur. The events may or may not have been triggered by user interaction.

In the Lightning Component framework, events are fired from JavaScript controller actions. Events can contain attributes that can be set before the event is fired and read when the event is handled.

Events are declared by the `aura:event` tag in a `.evt` resource, and they can have one of two types: component or application.

**Component Events**

A component event is fired from an instance of a component. A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives the event.

**Application Events**

Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All components that provide a handler for the event are notified.

**Note**: Always try to use a component event instead of an application event, if possible. Component events can only be handled by components above them in the containment hierarchy so their usage is more localized to the components that need to know about them. Application events are best used for something that should be handled at the application level, such as navigating to a specific record. Application events allow communication between components that are in separate parts of the application and have no direct containment relationship.
Actions and Events

The framework uses events to communicate data between components. Events are usually triggered by a user action.

**Actions**

User interaction with an element on a component or app. User actions trigger events, but events aren’t always explicitly triggered by user actions. This type of action is not the same as a client-side JavaScript controller, which is sometimes known as a controller action. The following button is wired up to a browser onclick event in response to a button click.

```html
<lightning:button label = "Click Me" onclick = "{!c.handleClick}" />
```

Clicking the button invokes the handleClick method in the component’s client-side controller.

**Events**

A notification by the browser regarding an action. Browser events are handled by client-side JavaScript controllers, as shown in the previous example. A browser event is not the same as a framework component event or application event, which you can create and fire in a JavaScript controller to communicate data between components. For example, you can wire up the click event of a checkbox to a client-side controller, which fires a component event to communicate relevant data to a parent component.

Another type of event, known as a system event, is fired automatically by the framework during its lifecycle, such as during component initialization, change of an attribute value, and rendering. Components can handle a system event by registering the event in the component markup.

The following diagram describes what happens when a user clicks a button that requires the component to retrieve data from the server.

1. User clicks a button or interacts with a component, triggering a browser event. For example, you want to save data from the server when the button is clicked.
2. The button click invokes a client-side JavaScript controller, which provides some custom logic before invoking a helper function.
3. The JavaScript controller invokes a helper function. A helper function improves code reuse but it’s optional for this example.
4. The helper function calls an Apex controller method and queues the action.
5. The Apex method is invoked and data is returned.
6. A JavaScript callback function is invoked when the Apex method completes.
7. The JavaScript callback function evaluates logic and updates the component’s UI.
8. User sees the updated component.

SEE ALSO:
- Handling Events with Client-Side Controllers
- Detecting Data Changes with Change Handlers
- Calling a Server-Side Action
- Events Fired During the Rendering Lifecycle

Handling Events with Client-Side Controllers

A client-side controller handles events within a component. It’s a JavaScript resource that defines the functions for all of the component’s actions.

A client-side controller is a JavaScript object in object-literal notation containing a map of name-value pairs. Each name corresponds to a client-side action. Its value is the function code associated with the action. Client-side controllers are surrounded by parentheses and curly braces. Separate action handlers with commas (as you would with any JavaScript map).

```javascript
({
 myAction : function(cmp, event, helper) {
 // add code for the action
 },

 anotherAction : function(cmp, event, helper) {
 // add code for the action
 }
})
```

Each action function takes in three parameters:
1. `cmp`—The component to which the controller belongs.
2. `event`—The event that the action is handling.
3. `helper`—The component’s helper, which is optional. A helper contains functions that can be reused by any JavaScript code in the component bundle.

Creating a Client-Side Controller

A client-side controller is part of the component bundle. It is auto-wired via the naming convention, `componentNameController.js`.

To create a client-side controller using the Developer Console, click **CONTROLLER** in the sidebar of the component.

Calling Client-Side Controller Actions

The following example component creates two buttons to contrast an HTML button with `<lightning:button>`, which is a standard Lightning component. Clicking on these buttons updates the `text` component attribute with the specified values.

`target.get("v.label")` refers to the `label` attribute value on the button.
## Component source

<aura:component>
  <aura:attribute name="text" type="String" default="Just a string. Waiting for change."/>

  <input type="button" value="Flawed HTML Button"
        onclick="alert('this will not work')"/>
  <br/>
  <lightning:button label="Framework Button" onclick="!c.handleClick"/>
  <br/>
  {!v.text}
</aura:component>

If you know some JavaScript, you might be tempted to write something like the first "Flawed" button because you know that HTML tags are first-class citizens in the framework. However, the "Flawed" button won't work because arbitrary JavaScript, such as the `alert()` call, in the component is ignored.

The framework has its own event system. DOM events are mapped to Lightning events, since HTML tags are mapped to Lightning components.

Any browser DOM element event starting with `on`, such as `onclick` or `onkeypress`, can be wired to a controller action. You can only wire browser events to controller actions.

The "Framework" button wires the `onclick` attribute in the `<lightning:button>` component to the `handleClick` action in the controller.

### Client-side controller source

```javascript
handleClick : function(cmp, event) {
 var attributeValue = cmp.get("v.text");
 console.log("current text: " + attributeValue);

 var target = event.getSource();
 cmp.set("v.text", target.get("v.label"));
}
```

The `handleClick` action uses `event.getSource()` to get the source component that fired this component event. In this case, the source component is the `<lightning:button>` in the markup.

The code then sets the value of the `text` component attribute to the value of the button's `label` attribute. The `text` component attribute is defined in the `<aura:attribute>` tag in the markup.

⚠️ **Tip:** Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the same name as an Apex method (server-side action) can lead to hard-to-debug issues. In debug mode, the framework logs a browser console warning about the clashing client-side and server-side action names.

## Handling Framework Events

Handle framework events using actions in client-side component controllers. Framework events for common mouse and keyboard interactions are available with out-of-the-box components.
Accessing Component Attributes

In the `handleClick` function, notice that the first argument to every action is the component to which the controller belongs. One of the most common things you'll want to do with this component is look at and change its attribute values.

```javascript
cmp.get("v.attributeName") returns the value of the attributeName attribute.

cmp.set("v.attributeName", "attribute value") sets the value of the attributeName attribute.
```

Invoking Another Action in the Controller

To call an action method from another method, put the common code in a helper function and invoke it using `helper.someFunction(cmp)`. 

SEE ALSO:
- Sharing JavaScript Code in a Component Bundle
- Event Handling Lifecycle
- Creating Server-Side Logic with Controllers

Component Events

A component event is fired from an instance of a component. A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives the event.

IN THIS SECTION:
- Component Event Propagation
  The framework supports `capture` and `bubble` phases for the propagation of component events. These phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for subsequent handlers.
- Create Custom Component Events
  Create a custom component event using the `<aura:event>` tag in a `.evt` resource. Events can contain attributes that can be set before the event is fired and read when the event is handled.
- Fire Component Events
  Fire a component event to communicate data to another component. A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives the event.
Handling Component Events

A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives the event.

SEE ALSO:
aura:method
Application Events
Handling Events with Client-Side Controllers
Advanced Events Example
What is Inherited?

Component Event Propagation

The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for subsequent handlers.

The component that fires an event is known as the source component. The framework allows you to handle the event in different phases. These phases give you flexibility for how to best process the event for your application.

The phases are:

Capture
The event is captured and trickles down from the application root to the source component. The event can be handled by a component in the containment hierarchy that receives the captured event.

Event handlers are invoked in order from the application root down to the source component that fired the event.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase or the bubble phase.

Bubble
The component that fired the event can handle it. The event then bubbles up from the source component to the application root.

The event can be handled by a component in the containment hierarchy that receives the bubbled event.

Event handlers are invoked in order from the source component that fired the event up to the application root.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase.

Here’s the sequence of component event propagation.

1. Event fired—A component event is fired.
2. Capture phase—The framework executes the capture phase from the application root to the source component until all components are traversed. Any handling event can stop propagation by calling stopPropagation() on the event.
3. Bubble phase—The framework executes the bubble phase from the source component to the application root until all components are traversed or stopPropagation() is called.

Note: Application events have a separate default phase. There’s no separate default phase for component events. The default phase is the bubble phase.
Create Custom Component Events

Create a custom component event using the <aura:event> tag in a .evt resource. Events can contain attributes that can be set before the event is fired and read when the event is handled.

Use type="COMPONENT" in the <aura:event> tag for a component event. For example, this c:compEvent component event has one attribute with a name of message.

```xml
<aura:event type="COMPONENT">
 <!-- Add aura:attribute tags to define event shape. One sample attribute here. -->
 <aura:attribute name="message" type="String"/>
</aura:event>
```

The component that fires an event can set the event’s data. To set the attribute values, call event.setParam() or event.setParams(). A parameter name set in the event must match the name attribute of an <aura:attribute> in the event. For example, if you fire c:compEvent, you could use:

```javascript
event.setParam("message", "event message here");
```

The component that handles an event can retrieve the event data. To retrieve the attribute value in this event, call event.getParam("message") in the handler’s client-side controller.

Fire Component Events

Fire a component event to communicate data to another component. A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives the event.

Register an Event

A component registers that it may fire an event by using <aura:registerEvent> in its markup. For example:

```xml
<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
```

We’ll see how the value of the name attribute is used for firing and handling events.

Fire an Event

To get a reference to a component event in JavaScript, use cmp.getEvent("evtName") where evtName matches the name attribute in <aura:registerEvent>.

Use fire() to fire the event from an instance of a component. For example, in an action function in a client-side controller:

```javascript
var compEvent = cmp.getEvent("sampleComponentEvent");
// Optional: set some data for the event (also known as event shape)
// A parameter’s name must match the name attribute
// of one of the event’s <aura:attribute> tags
// compEvent.setParams({"myParam" : myValue });
compEvent.fire();
```

SEE ALSO:

Fire Application Events
Handling Component Events

A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives the event.

Use `<aura:handler>` in the markup of the handler component. For example:

```html
<aura:handler name="sampleComponentEvent" event="c:compEvent"
 action="{"c.handleComponentEvent}"/>
```

The `name` attribute in `<aura:handler>` must match the `name` attribute in the `<aura:registerEvent>` tag in the component that fires the event.

The `action` attribute of `<aura:handler>` sets the client-side controller action to handle the event.

The `event` attribute specifies the event being handled. The format is `namespace:eventName`.

In this example, when the event is fired, the `handleComponentEvent` client-side controller action is called.

Event Handling Phases

Component event handlers are associated with the bubble phase by default. To add a handler for the capture phase instead, use the `phase` attribute.

```html
<aura:handler name="sampleComponentEvent" event="ns:eventName"
 action="{"c.handleComponentEvent}" phase="capture"/>
```

Get the Source of an Event

In the client-side controller action for an `<aura:handler>` tag, use `evt.getSource()` to find out which component fired the event, where `evt` is a reference to the event. To retrieve the source element, use `evt.getSource().getElement()`.

IN THIS SECTION:

- **Component Handling Its Own Event**
  A component can handle its own event by using the `<aura:handler>` tag in its markup.

- **Handle Component Event of Instantiated Component**
  A parent component can set a handler action when it instantiates a child component in its markup.

- **Handling Bubbled or Captured Component Events**
  Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

- **Handling Component Events Dynamically**
  A component can have its handler bound dynamically via JavaScript. This is useful if a component is created in JavaScript on the client-side.

SEE ALSO:

- Component Event Propagation
- Handling Application Events
Component Handling Its Own Event

A component can handle its own event by using the `<aura:handler>` tag in its markup. The `action` attribute of `<aura:handler>` sets the client-side controller action to handle the event. For example:

```xml
<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
<aura:handler name="sampleComponentEvent" event="c:compEvent" action="{!c.handleSampleEvent}"/>
```

Note: The name attributes in `<aura:registerEvent>` and `<aura:handler>` must match, since each event is defined by its name.

SEE ALSO:

Handle Component Event of Instantiated Component

Handle Component Event of Instantiated Component

A parent component can set a handler action when it instantiates a child component in its markup. Let’s take a look at an example. `c:child` registers that it may fire a `sampleComponentEvent` event by using `<aura:registerEvent>` in its markup.

```xml
<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
```

`c:parent` sets a handler for this event when it instantiates `c:child` in its markup.

```xml
<c:child sampleComponentEvent="{!c.handleChildEvent}"/>
```

Note how `c:parent` uses the following syntax to set a handler for the `sampleComponentEvent` event fired by `c:child`.

```xml
<c:child sampleComponentEvent="{!c.handleChildEvent}"/>
```

The syntax looks similar to how you set an attribute called `sampleComponentEvent`. However, in this case, `sampleComponentEvent` isn’t an attribute. `sampleComponentEvent` matches the event name declared in `c:child`.

```xml
<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
```

The preceding syntax is a convenient shortcut for the normal way that a component declares a handler for an event. The parent component can only use this syntax to handle events from a direct descendent. If you want to be more explicit in `c:parent` that you’re handling an event, or if the event might be fired by a component further down the component hierarchy, use an `<aura:handler>` tag instead of declaring the handler within the `<c:child>` tag.

```xml
<c:child />
```
The two versions of `c:parent` markup behave the same. However, using `<aura:handler>` makes it more obvious that you’re handling a `sampleComponentEvent` event.

SEE ALSO:
- Component Handling Its Own Event
- Handling Bubbled or Captured Component Events

**Handling Bubbled or Captured Component Events**

Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for subsequent handlers. The capture phase executes before the bubble phase.

**Default Event Propagation Rules**

By default, every parent in the containment hierarchy can’t handle an event during the capture and bubble phases. Instead, the event propagates to every owner in the containment hierarchy.

A component’s owner is the component that is responsible for its creation. For declaratively created components, the owner is the outermost component containing the markup that references the component firing the event. For programmatically created components, the owner component is the component that invoked `$A.createComponent` to create it.

The same rules apply for the capture phase, although the direction of event propagation (down) is the opposite of the bubble phase (up).

Confused? It makes more sense when you look at an example in the bubbling phase.

```xml
<!--c:owner-->
<aura:component>
 <c:container>
 <c:eventSource />
 </c:container>
</aura:component>
```

If `c:eventSource` fires an event, it can handle the event itself. The event then bubbles up the containment hierarchy.

`c:container` contains `c:eventSource` but it’s not the owner because it’s not the outermost component in the markup, so it can’t handle the bubbled event.

`c:owner` is the owner because `c:container` is in its markup. `c:owner` can handle the event.

**Propagation to All Container Components**

The default behavior doesn’t allow an event to be handled by every parent in the containment hierarchy. Some components contain other components but aren’t the owner of those components. These components are known as container components. In the example, `c:container` is a container component because it’s not the owner for `c:eventSource`. By default, `c:container` can’t handle events fired by `c:eventSource`. 
A container component has a facet attribute whose type is `Aura.Component[]`, such as the default `body` attribute. The container component includes those components in its definition using an expression, such as `{!v.body}`. The container component isn't the owner of the components rendered with that expression.

To allow a container component to handle the event, add `includeFacets="true"` to the `<aura:handler>` tag of the container component. For example, adding `includeFacets="true"` to the handler in the container component, `c:container`, enables it to handle the component event bubbled from `c:eventSource`.

```
<aura:handler name="bubblingEvent" event="c:compEvent" action="{"c.handleBubbling}" includeFacets="true" />
```

Handle Bubbled Event

A component that fires a component event registers that it fires the event by using the `<aura:registerEvent>` tag.

```
<aura:component>
 <aura:registerEvent name="compEvent" type="c:compEvent" />
</aura:component>
```

A component handling the event in the bubble phase uses the `<aura:handler>` tag to assign a handling action in its client-side controller.

```
<aura:component>
 <aura:handler name="compEvent" event="c:compEvent" action="{"c.handleBubbling}" />
</aura:component>
```

Note: The name attribute in `<aura:handler>` must match the name attribute in the `<aura:registerEvent>` tag in the component that fires the event.

Handle Captured Event

A component handling the event in the capture phase uses the `<aura:handler>` tag to assign a handling action in its client-side controller.

```
<aura:component>
 <aura:handler name="compEvent" event="c:compEvent" action="{"c.handleCapture}" phase="capture" />
</aura:component>
```

The default handling phase for component events is bubble if no `phase` attribute is set.

Stop Event Propagation

Use the `stopPropagation()` method in the `Event` object to stop the event propagating to other components.

Pausing Event Propagation for Asynchronous Code Execution

Use `event.pause()` to pause event handling and propagation until `event.resume()` is called. This flow-control mechanism is useful for any decision that depends on the response from the execution of asynchronous code. For example, you might make a decision about event propagation based on the response from an asynchronous call to native mobile code.

You can call `pause()` or `resume()` in the capture or bubble phases.
Event Bubbling Example

Let’s look at an example so you can play around with it yourself.

```html
<!--c:eventBubblingParent-->
<aura:component>
 <c:eventBubblingChild>
 <c:eventBubblingGrandchild />
 </c:eventBubblingChild>
</aura:component>

Note: This sample code uses the default `c` namespace. If your org has a namespace, use that namespace instead.

First, we define a simple component event.

```html
<!--c:compEvent-->
<aura:event type="COMPONENT">
    <!--simple event with no attributes-->
</aura:event>

`c:eventBubblingEmitter` is the component that fires `c:compEvent`.

```html
<!--c:eventBubblingEmitter-->
<aura:component>
 <aura:registerEvent name="bubblingEvent" type="c:compEvent" />
 <lightning:button onclick=" {!c.fireEvent }" label="Start Bubbling"/>
</aura:component>

Here’s the controller for `c:eventBubblingEmitter`. When you press the button, it fires the `bubblingEvent` event registered in the markup.

```js
/*eventBubblingEmitterController.js*/
{
    fireEvent : function(cmp) {
        var cmpEvent = cmp.getEvent("bubblingEvent");
        cmpEvent.fire();
    }
}
```

`c:eventBubblingGrandchild` contains `c:eventBubblingEmitter` and uses `<aura:handler>` to assign a handler for the event.

```html
<!--c:eventBubblingGrandchild-->
<aura:component>
    <aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

    <div class="grandchild">
        <c:eventBubblingEmitter />
    </div>
</aura:component>

Here’s the controller for `c:eventBubblingGrandchild`.

```js
/*eventBubblingGrandchildController.js*/
{
 handleBubbling : function(component, event) {
```
console.log("Grandchild handler for " + event.getName());
}
}

The controller logs the event name when the handler is called.

Here's the markup for c:eventBubblingChild. We will pass c:eventBubblingGrandchild in as the body of c:eventBubblingChild when we create c:eventBubblingParent later in this example.

<!--c:eventBubblingChild-->
<aura:component>
    <aura:handler name="bubblingEvent" event="c:compEvent" action="{"c.handleBubbling}"/>

    <div class="child">
        {!v.body}
    </div>
</aura:component>

Here's the controller for c:eventBubblingChild.

/*eventBubblingChildController.js*/
{
    handleBubbling : function(component, event) {
        console.log("Child handler for " + event.getName());
    }
}

c:eventBubblingParent contains c:eventBubblingChild, which in turn contains c:eventBubblingGrandchild.

<!--c:eventBubblingParent-->
<aura:component>
    <aura:handler name="bubblingEvent" event="c:compEvent" action="{"c.handleBubbling}"/>

    <div class="parent">
        <c:eventBubblingChild>
            <c:eventBubblingGrandchild />
        </c:eventBubblingChild>
    </div>
</aura:component>

Here's the controller for c:eventBubblingParent.

/*eventBubblingParentController.js*/
{
    handleBubbling : function(component, event) {
        console.log("Parent handler for " + event.getName());
    }
}

Now, let's see what happens when you run the code.

1. In your browser, navigate to c:eventBubblingParent. Create a .app resource that contains <c:eventBubblingParent />.

2. Click the Start Bubbling button that is part of the markup in c:eventBubblingEmitter.
3. Note the output in your browser’s console:

```
Grandchild handler for bubblingEvent
Parent handler for bubblingEvent
```

The `c:compEvent` event is bubbled to `c:eventBubblingGrandchild` and `c:eventBubblingParent` as they are owners in the containment hierarchy. The event is not handled by `c:eventBubblingChild` as `c:eventBubblingChild` is in the markup for `c:eventBubblingParent` but it’s not an owner as it’s not the outermost component in that markup.

Now, let’s see how to stop event propagation. Edit the controller for `c:eventBubblingGrandchild` to stop propagation.

```javascript
/*eventBubblingGrandchildController.js*/
{
 handleBubbling : function(component, event) {
 console.log("Grandchild handler for " + event.getName());
 event.stopPropagation();
 }
}
```

Now, navigate to `c:eventBubblingParent` and click the Start Bubbling button.

Note the output in your browser’s console:

```
Grandchild handler for bubblingEvent
```

The event no longer bubbles up to the `c:eventBubblingParent` component.

SEE ALSO:

- Component Event Propagation
- Handle Component Event of Instantiated Component

## Handling Component Events Dynamically

A component can have its handler bound dynamically via JavaScript. This is useful if a component is created in JavaScript on the client-side.

For more information, see Dynamically Adding Event Handlers To a Component on page 371.

## Component Event Example

Here’s a simple use case of using a component event to update an attribute in another component.

1. A user clicks a button in the notifier component, `ceNotifier.cmp`.
2. The client-side controller for `ceNotifier.cmp` sets a message in a component event and fires the event.
3. The handler component, `ceHandler.cmp`, contains the notifier component, and handles the fired event.
4. The client-side controller for `ceHandler.cmp` sets an attribute in `ceHandler.cmp` based on the data sent in the event.

**Note:** The event and components in this example use the default `c` namespace. If your org has a namespace, use that namespace instead.
Component Event

The `ceEvent.evt` component event has one attribute. We'll use this attribute to pass some data in the event when it's fired.

```xml
<!--c:ceEvent-->
<aura:event type="COMPONENT">
 <aura:attribute name="message" type="String"/>
</aura:event>
<!--/c:ceEvent-->
```

Notifier Component

The `c:ceNotifier` component uses `aura:registerEvent` to declare that it may fire the component event.

The button in the component contains an `onclick` browser event that is wired to the `fireComponentEvent` action in the client-side controller. The action is invoked when you click the button.

```xml
<!--c:ceNotifier-->
<aura:component>
 <aura:registerEvent name="cmpEvent" type="c:ceEvent"/>

 <h1>Simple Component Event Sample</h1>
 <p><lightning:button
 label="Click here to fire a component event"
 onclick="!c.fireComponentEvent" />
 </p>
</aura:component>
<!--/c:ceNotifier-->
```

The client-side controller gets an instance of the event by calling `cmp.getEvent("cmpEvent")`, where `cmpEvent` matches the value of the name attribute in the `<aura:registerEvent>` tag in the component markup. The controller sets the `message` attribute of the event and fires the event.

```javascript
/* ceNotifierController.js */
{
 fireComponentEvent : function(cmp, event) {
 // Get the component event by using the
 // name value from aura:registerEvent
 var cmpEvent = cmp.getEvent("cmpEvent");
 cmpEvent.setParams({
 "message" : "A component event fired me. " +
 "It all happened so fast. Now, I'm here! " });
 cmpEvent.fire();
 }
}
```

Handler Component

The `c:ceHandler` handler component contains the `c:ceNotifier` component. The `<aura:handler>` tag uses the same value of the name attribute, `cmpEvent`, from the `<aura:registerEvent>` tag in `c:ceNotifier`. This wires up `c:ceHandler` to handle the event bubbled up from `c:ceNotifier`.

When the event is fired, the `handleComponentEvent` action in the client-side controller of the handler component is invoked.

```xml
<!--c:ceHandler-->
<aura:component>
 <aura:attribute name="messageFromEvent" type="String"/>
</aura:component>
<!--/c:ceHandler-->
```
<aura:attribute name="numEvents" type="Integer" default="0"/>

<!-- Note that name="cmpEvent" in aura:registerEvent in ceNotifier.cmp -->
<aura:handler name="cmpEvent" event="c:ceEvent" action="{"c.handleComponentEvent}"/>

<!-- handler contains the notifier component -->
<c:ceNotifier />

<p>Number of events: {!v.numEvents}</p>

</aura:component>

The controller retrieves the data sent in the event and uses it to update the messageFromEvent attribute in the handler component.

/* ceHandlerController.js */
{
    handleComponentEvent : function(cmp, event) {
        var message = event.getParam("message");

        // set the handler attributes based on event data
        cmp.set("v.messageFromEvent", message);
        var numEventsHandled = parseInt(cmp.get("v.numEvents")) + 1;
        cmp.set("v.numEvents", numEventsHandled);
    }

Put It All Together

Add the c:ceHandler component to a c:ceHandlerApp application. Navigate to the application and click the button to fire the component event.

https://<myDomain>.lightning.force.com/c/ceHandlerApp.app, where <myDomain> is the name of your custom Salesforce domain.

If you want to access data on the server, you could extend this example to call a server-side controller from the handler's client-side controller.

SEE ALSO:

Component Events
Creating Server-Side Logic with Controllers
Application Event Example

Application Events

Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All components that provide a handler for the event are notified.
IN THIS SECTION:

Application Event Propagation
The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

Create Custom Application Events
Create a custom application event using the `<aura:event>` tag in a `.evt` resource. Events can contain attributes that can be set before the event is fired and read when the event is handled.

Fire Application Events
Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All components that provide a handler for the event are notified.

Handling Application Events
Use `<aura:handler>` in the markup of the handler component.

SEE ALSO:
Component Events
Handling Events with Client-Side Controllers
Application Event Propagation
Advanced Events Example

Application Event Propagation
The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

The component that fires an event is known as the source component. The framework allows you to handle the event in different phases. These phases give you flexibility for how to best process the event for your application.

The phases are:
Capture

The event is captured and trickles down from the application root to the source component. The event can be handled by a component in the containment hierarchy that receives the captured event.

Event handlers are invoked in order from the application root down to the source component that fired the event.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase or the bubble phase. If a component stops the event propagation using `event.stopPropagation()`, the component becomes the root node used in the default phase.

Any registered handler in this phase can cancel the default behavior of the event by calling `event.preventDefault()`. This call prevents execution of any of the handlers in the default phase.

Bubble

The component that fired the event can handle it. The event then bubbles up from the source component to the application root. The event can be handled by a component in the containment hierarchy that receives the bubbled event.

Event handlers are invoked in order from the source component that fired the event up to the application root.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers will be called in this phase. If a component stops the event propagation using `event.stopPropagation()`, the component becomes the root node used in the default phase.

Any registered handler in this phase can cancel the default behavior of the event by calling `event.preventDefault()`. This call prevents execution of any of the handlers in the default phase.

Default

Event handlers are invoked in a non-deterministic order from the root node through its subtree. The default phase doesn’t have the same propagation rules related to component hierarchy as the capture and bubble phases. The default phase can be useful for handling application events that affect components in different sub-trees of your app.

If the event’s propagation wasn’t stopped in a previous phase, the root node defaults to the application root. If the event’s propagation was stopped in a previous phase, the root node is set to the component whose handler invoked `event.stopPropagation()`.

Here is the sequence of application event propagation.

1. **Event fired**—An application event is fired. The component that fires the event is known as the source component.

2. **Capture phase**—The framework executes the capture phase from the application root to the source component until all components are traversed. Any handling event can stop propagation by calling `stopPropagation()` on the event.

3. **Bubble phase**—The framework executes the bubble phase from the source component to the application root until all components are traversed or `stopPropagation()` is called.

4. **Default phase**—The framework executes the default phase from the root node unless `preventDefault()` was called in the capture or bubble phases. If the event’s propagation wasn’t stopped in a previous phase, the root node defaults to the application root. If the event’s propagation was stopped in a previous phase, the root node is set to the component whose handler invoked `event.stopPropagation()`.

Create Custom Application Events

Create a custom application event using the `<aura:event>` tag in a `.evt` resource. Events can contain attributes that can be set before the event is fired and read when the event is handled.

Use `type="APPLICATION"` in the `<aura:event>` tag for an application event. For example, this `c:appEvent` application event has one attribute with a name of `message`.

```
<!--c:appEvent-->
<aura:event type="APPLICATION">
```
The component that fires an event can set the event’s data. To set the attribute values, call `event.setParam()` or `event.setParams()`. A parameter name set in the event must match the `name` attribute of an `<aura:attribute>` in the event. For example, if you fire `c:appEvent`, you could use:

```javascript
event.setParam("message", "event message here");
```

The component that handles an event can retrieve the event data. To retrieve the attribute in this event, call `event.getParam("message")` in the handler’s client-side controller.

## Fire Application Events

Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All components that provide a handler for the event are notified.

### Register an Event

A component registers that it may fire an application event by using `<aura:registerEvent>` in its markup. The `name` attribute is required but not used for application events. The `name` attribute is only relevant for component events. This example uses `name="appEvent"` but the value isn’t used anywhere.

```html
<aura:registerEvent name="appEvent" type="c:appEvent"/>
```

### Fire an Event

Use `$A.get("e.myNamespace:myAppEvent")` in JavaScript to get an instance of the `myAppEvent` event in the `myNamespace` namespace.

> Note: The syntax to get an instance of an application event is different than the syntax to get a component event, which is `cmp.getEvent("evtName")`.

Use `fire()` to fire the event.

```javascript
var appEvent = $A.get("e.c:appEvent");
// Optional: set some data for the event (also known as event shape)
// A parameter’s name must match the name attribute
// of one of the event’s <aura:attribute> tags
//appEvent.setParams({ "myParam" : myValue });
appEvent.fire();
```

### Events Fired on App Rendering

Some events are automatically fired when an app is rendering. For more information, see Events Fired During the Rendering Lifecycle on page 289.

SEE ALSO:

Fire Component Events
Handling Application Events

Use `<aura:handler>` in the markup of the handler component.

For example:

```html
<aura:handler event="c:appEvent" action="{!c.handleApplicationEvent}"/>
```

The `event` attribute specifies the event being handled. The format is `namespace:eventName`.

The `action` attribute of `<aura:handler>` sets the client-side controller action to handle the event.

Note: The handler for an application event won’t work if you set the `name` attribute in `<aura:handler>`. Use the `name` attribute only when you’re handling component events.

In this example, when the event is fired, the `handleApplicationEvent` client-side controller action is called.

Event Handling Phases

The framework allows you to handle the event in different phases. These phases give you flexibility for how to best process the event for your application.

Application event handlers are associated with the default phase. To add a handler for the capture or bubble phases instead, use the `phase` attribute.

Get the Source of an Event

In the client-side controller action for an `<aura:handler>` tag, use `evt.getSource()` to find out which component fired the event, where `evt` is a reference to the event. To retrieve the source element, use `evt.getSource().getElement()`.

IN THIS SECTION:

Handling Bubbled or Captured Application Events

Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

SEE ALSO:

Handling Component Events

Handling Bubbled or Captured Application Events

Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

The framework supports `capture`, `bubble`, and `default` phases for the propagation of application events. The capture and bubble phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

Default Event Propagation Rules

By default, every parent in the containment hierarchy can’t handle an event during the capture and bubble phases. Instead, the event propagates to every owner in the containment hierarchy.
A component’s owner is the component that is responsible for its creation. For declaratively created components, the owner is the outermost component containing the markup that references the component firing the event. For programmatically created components, the owner component is the component that invoked $A.createComponent to create it.

The same rules apply for the capture phase, although the direction of event propagation (down) is the opposite of the bubble phase (up).

Confused? It makes more sense when you look at an example in the bubbling phase.

```
c:owner contains c:container, which in turn contains c:eventSource.
```

If c:eventSource fires an event, it can handle the event itself. The event then bubbles up the containment hierarchy.

If c:container contains c:eventSource but it’s not the owner because it’s not the outermost component in the markup, so it can’t handle the bubbled event.

```
c:owner is the owner because c:container is in its markup. c:owner can handle the event.
```

**Propagation to All Container Components**

The default behavior doesn’t allow an event to be handled by every parent in the containment hierarchy. Some components contain other components but aren’t the owner of those components. These components are known as container components. In the example, c:container is a container component because it’s not the owner for c:eventSource. By default, c:container can’t handle events fired by c:eventSource.

A container component has a facet attribute whose type is Aura.Component[], such as the default body attribute. The container component includes those components in its definition using an expression, such as {!v.body}. The container component isn’t the owner of the components rendered with that expression.

To allow a container component to handle the event, add includeFacets="true" to the <aura:handler> tag of the container component. For example, adding includeFacets="true" to the handler in the container component, c:container, enables it to handle the component event bubbled from c:eventSource.

```
<aura:handler name="bubblingEvent" event="c:compEvent" action="{"c.handleBubbling}" includeFacets="true" />
```

**Handle Bubbled Event**

To add a handler for the bubble phase, set phase="bubble".

```
<aura:handler event="c:appEvent" action="{"c.handleBubbledEvent}" phase="bubble" />
```

The event attribute specifies the event being handled. The format is namespace:eventName.

The action attribute of <aura:handler> sets the client-side controller action to handle the event.
Handle Captured Event

To add a handler for the capture phase, set `phase="capture"`.

```xml
<aura:handler event="c:appEvent" action="{!c.handleCapturedEvent}"
 phase="capture"/>
```

Stop Event Propagation

Use the `stopPropagation()` method in the `Event` object to stop the event propagating to other components.

Pausing Event Propagation for Asynchronous Code Execution

Use `event.pause()` to pause event handling and propagation until `event.resume()` is called. This flow-control mechanism is useful for any decision that depends on the response from the execution of asynchronous code. For example, you might make a decision about event propagation based on the response from an asynchronous call to native mobile code.

You can call `pause()` or `resume()` in the capture or bubble phases.

Application Event Example

Here’s a simple use case of using an application event to update an attribute in another component.

1. A user clicks a button in the notifier component, `aeNotifier.cmp`.
2. The client-side controller for `aeNotifier.cmp` sets a message in a component event and fires the event.
3. The handler component, `aeHandler.cmp`, handles the fired event.
4. The client-side controller for `aeHandler.cmp` sets an attribute in `aeHandler.cmp` based on the data sent in the event.

Note: The event and components in this example use the default `c` namespace. If your org has a namespace, use that namespace instead.

Application Event

The `aeEvent.evt` application event has one attribute. We’ll use this attribute to pass some data in the event when it’s fired.

```xml
<!--c:aeEvent-->
<aura:event type="APPLICATION">
 <aura:attribute name="message" type="String"/>
</aura:event>
```

Notifier Component

The `aeNotifier.cmp` notifier component uses `aura:registerEvent` to declare that it may fire the application event. The `name` attribute is required but not used for application events. The `name` attribute is only relevant for component events.

The button in the component contains an `onclick` browser event that is wired to the `fireApplicationEvent` action in the client-side controller. Clicking this button invokes the action.

```xml
<!--c:aeNotifier-->
<aura:component>
 <aura:registerEvent name="appEvent" type="c:aeEvent"/>
</aura:component>
```
The client-side controller gets an instance of the event by calling $A.get("e.c:aeEvent"). The controller sets the message attribute of the event and fires the event.

```javascript
/* aeNotifierController.js */

fireApplicationEvent : function(cmp, event) {
 // Get the application event by using the
 // e.<namespace>.<event> syntax
 var appEvent = $A.get("e.c:aeEvent");
 appEvent.setParams({
 "message" : "An application event fired me. " +
 "It all happened so fast. Now, I'm everywhere!"
 });
 appEvent.fire();
}
```

**Handler Component**

The `aeHandler.cmp` handler component uses the `<aura:handler>` tag to register that it handles the application event.

*Note:* The handler for an application event won’t work if you set the `name` attribute in `<aura:handler>`. Use the `name` attribute only when you’re handling component events.

When the event is fired, the `handleApplicationEvent` action in the client-side controller of the handler component is invoked.

```javascript
/* aeHandlerController.js */

handleApplicationEvent : function(cmp, event) {
 var message = event.getParam("message");
 // set the handler attributes based on event data
 cmp.set("v.messageFromEvent", message);
 var numEventsHandled = parseInt(cmp.get("v.numEvents")) + 1;
 cmp.set("v.numEvents", numEventsHandled);
}
```

The controller retrieves the data sent in the event and uses it to update the `messageFromEvent` attribute in the handler component.
Container Component

The `aeContainer.cmp` container component contains the notifier and handler components. This is different from the component event example where the handler contains the notifier component.

```xml
<!-c:aeContainer->
<aura:component>
 <c:aeNotifier/>
 <c:aeHandler/>
</aura:component>
```

Put It All Together

You can test this code by adding `<c:aeContainer>` to a sample `aeWrapper.app` application and navigating to the application. https://<myDomain>.lightning.force.com/c/aeWrapper.app, where `<myDomain>` is the name of your custom Salesforce domain.

If you want to access data on the server, you could extend this example to call a server-side controller from the handler's client-side controller.

SEE ALSO:
- Application Events
- Creating Server-Side Logic with Controllers
- Component Event Example

Event Handling Lifecycle

The following chart summarizes how the framework handles events.
1 Detect Firing of Event

The framework detects the firing of an event. For example, the event could be triggered by a button click in a notifier component.

2 Determine the Event Type

2.1 Component Event

The parent or container component instance that fired the event is identified. This container component locates all relevant event handlers for further processing.

2.2 Application Event

Any component can have an event handler for this event. All relevant event handlers are located.

3 Execute each Handler

3.1 Executing a Component Event Handler

Each of the event handlers defined in the container component for the event are executed by the handler controller, which can also:
• Set attributes or modify data on the component (causing a re-rendering of the component).
• Fire another event or invoke a client-side or server-side action.

3.2 Executing an Application Event Handler
All event handlers are executed. When the event handler is executed, the event instance is passed into the event handler.

4 Re-render Component (optional)
After the event handlers and any callback actions are executed, a component might be automatically re-rendered if it was modified during the event handling process.

SEE ALSO:
Create a Custom Renderer

Advanced Events Example

This example builds on the simpler component and application event examples. It uses one notifier component and one handler component that work with both component and application events. Before we see a component wired up to events, let’s look at the individual resources involved.

This table summarizes the roles of the various resources used in the example. The source code for these resources is included after the table.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Resource Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event files</td>
<td>Component event (compEvent.evt) and application event (appEvent.evt)</td>
<td>Defines the component and application events in separate resources.</td>
</tr>
<tr>
<td></td>
<td>eventsContainer.cmp</td>
<td>eventsContainer.cmp shows how to use both component and application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>events.</td>
</tr>
<tr>
<td>Notifier</td>
<td>Component (eventsNotifier.cmp) and its controller</td>
<td>The notifier contains an onclick browser event to initiate the event.</td>
</tr>
<tr>
<td></td>
<td>(eventsNotifierController.js)</td>
<td>The controller fires the event.</td>
</tr>
<tr>
<td>Handler</td>
<td>Component (eventsHandler.cmp) and its controller</td>
<td>The handler component contains the notifier component (or a <a href="">aura:handler</a> tag for application events), and calls the controller action that is executed after the event is fired.</td>
</tr>
<tr>
<td></td>
<td>(eventsHandlerController.js)</td>
<td></td>
</tr>
<tr>
<td>Container Component</td>
<td>eventsContainer.cmp</td>
<td>Displays the event handlers on the UI for the complete demo.</td>
</tr>
</tbody>
</table>

The definitions of component and application events are stored in separate .evt resources, but individual notifier and handler component bundles can contain code to work with both types of events.

The component and application events both contain a context attribute that defines the shape of the event. This is the data that is passed to handlers of the event.
**Component Event**

Here is the markup for `compEvent.evt`.

```xml
<!--c:compEvent-->
<aura:event type="COMPONENT">
 <!-- pass context of where the event was fired to the handler. -->
 <aura:attribute name="context" type="String"/>
</aura:event>
</c:compEvent-->
```

**Application Event**

Here is the markup for `appEvent.evt`.

```xml
<!--c:appEvent-->
<aura:event type="APPLICATION">
 <!-- pass context of where the event was fired to the handler. -->
 <aura:attribute name="context" type="String"/>
</aura:event>
</c:appEvent-->
```

**Notifier Component**

The `eventsNotifier.cmp` notifier component contains buttons to initiate a component or application event. The notifier uses `aura:registerEvent` tags to declare that it may fire the component and application events. Note that the `name` attribute is required but the value is only relevant for the component event; the value is not used anywhere else for the application event. The `parentName` attribute is not set yet. We will see how this attribute is set and surfaced in `eventsContainer.cmp`.

```xml
<!--c:eventsNotifier-->
<aura:component>
 <aura:attribute name="parentName" type="String"/>
 <aura:registerEvent name="componentEventFired" type="c:compEvent"/>
 <aura:registerEvent name="appEvent" type="c:appEvent"/>

 <div>
 <h3>This is {!v.parentName}'s eventsNotifier.cmp instance</h3>
 <p><ui:button
 label="Click here to fire a component event"
 press="{!c.fireComponentEvent}" />
 </p>
 <p><ui:button
 label="Click here to fire an application event"
 press="{!c.fireApplicationEvent}" />
 </p>
 </div>
</aura:component>
</c:eventsNotifier-->
```

**CSS source**

The CSS is in `eventsNotifier.css`.

```css
/* eventsNotifier.css */
.cEventsNotifier {
```
Client-side controller source

The `eventsNotifierController.js` controller fires the event.

```javascript
/* eventsNotifierController.js */
{
 fireComponentEvent : function(cmp, event) {
 var parentName = cmp.get("v.parentName");

 // Look up event by name, not by type
 var compEvents = cmp.getEvent("componentEventFired");
 compEvents.setParams({ "context" : parentName });
 compEvents.fire();
 },

 fireApplicationEvent : function(cmp, event) {
 var parentName = cmp.get("v.parentName");

 // note different syntax for getting application event
 var appEvent = $A.get("e.c:appEvent");
 appEvent.setParams({ "context" : parentName });
 appEvent.fire();
 }
}
```

You can click the buttons to fire component and application events but there is no change to the output because we haven’t wired up the handler component to react to the events yet.

The controller sets the `context` attribute of the component or application event to the `parentName` of the notifier component before firing the event. We will see how this affects the output when we look at the handler component.

**Handler Component**

The `eventsHandler.cmp` handler component contains the `c:eventsNotifier` notifier component and `<aura:handler>` tags for the application and component events.

```html
<aura:component>
 <aura:attribute name="name" type="String"/>
 <aura:attribute name="mostRecentEvent" type="String" default="Most recent event handled:"/>

 <aura:attribute name="numComponentEventsHandled" type="Integer" default="0"/>
 <aura:attribute name="numApplicationEventsHandled" type="Integer" default="0"/>

 <aura:handler event="c:appEvent" action="{!c.handleApplicationEventFired}"/>
 <aura:handler name="componentEventFired" event="c:compEvent" action="{!c.handleComponentEventFired}"/>
</aura:component>
```
Note: #{v.name} is an unbound expression. This means that any change to the value of the parentName attribute in c:eventsNotifier doesn’t propagate back to affect the value of the name attribute in c:eventsHandler. For more information, see Data Binding Between Components on page 77.

CSS source

The CSS is in eventsHandler.css.

/* eventsHandler.css */
.cEventsHandler {
    display: block;
    margin: 10px;
    padding: 10px;
    border: 1px solid black;
}

Client-side controller source

The client-side controller is in eventsHandlerController.js.

/* eventsHandlerController.js */
{
    handleComponentEventFired : function(cmp, event) {
        var context = event.getParam("context");
        cmp.set("v.mostRecentEvent",
            "Most recent event handled: COMPONENT event, from " + context);

        var numComponentEventsHandled =
            parseInt(cmp.get("v.numComponentEventsHandled")) + 1;
        cmp.set("v.numComponentEventsHandled", numComponentEventsHandled);
    },

    handleApplicationEventFired : function(cmp, event) {
        var context = event.getParam("context");
        cmp.set("v.mostRecentEvent",
            "Most recent event handled: APPLICATION event, from " + context);

        var numApplicationEventsHandled =
            parseInt(cmp.get("v.numApplicationEventsHandled")) + 1;
        cmp.set("v.numApplicationEventsHandled", numApplicationEventsHandled);
    }
}

The name attribute is not set yet. We will see how this attribute is set and surfaced in eventsContainer.cmp.
You can click buttons and the UI now changes to indicate the type of event. The click count increments to indicate whether it's a component or application event. We aren't finished yet though. Notice that the source of the event is undefined as the event context attribute hasn't been set.

**Container Component**

Here is the markup for `eventsContainer.cmp`.

```xml
<aura:component>
 <c:eventsHandler name="eventsHandler1"/>
 <c:eventsHandler name="eventsHandler2"/>
</aura:component>
```

The container component contains two handler components. It sets the `name` attribute of both handler components, which is passed through to set the `parentName` attribute of the notifier components. This fills in the gaps in the UI text that we saw when we looked at the notifier or handler components directly.

Add the `c:eventsContainer` component to a `c:eventsContainerApp` application. Navigate to the application. https://<myDomain>.lightning.force.com/c/eventsContainerApp.app, where `<myDomain>` is the name of your custom Salesforce domain.

Click the **Click here to fire a component event** button for either of the event handlers. Notice that the **# component events handled** counter only increments for that component because only the firing component’s handler is notified.

Click the **Click here to fire an application event** button for either of the event handlers. Notice that the **# application events handled** counter increments for both the components this time because all the handling components are notified.

SEE ALSO:
- Component Event Example
- Application Event Example
- Event Handling Lifecycle

**Firing Lightning Events from Non-Lightning Code**

You can fire Lightning events from JavaScript code outside a Lightning app. For example, your Lightning app might need to call out to some non-Lightning code, and then have that code communicate back to your Lightning app once it’s done.

For example, you could call external code that needs to log into another system and return some data to your Lightning app. Let’s call this event `mynamespace:externalEvent`. You’ll fire this event when your non-Lightning code is done by including this JavaScript in your non-Lightning code.

```javascript
var myExternalEvent;
if(window.opener.$A &&
 (myExternalEvent = window.opener.$A.get("e.mynamespace:externalEvent"))) {
 myExternalEvent.setParams({isOauthed:true});
 myExternalEvent.fire();
}
```
Events Best Practices

Here are some best practices for working with events.

Use Component Events Whenever Possible

Always try to use a component event instead of an application event, if possible. Component events can only be handled by components above them in the containment hierarchy so their usage is more localized to the components that need to know about them. Application events are best used for something that should be handled at the application level, such as navigating to a specific record. Application events allow communication between components that are in separate parts of the application and have no direct containment relationship.

Separate Low-Level Events from Business Logic Events

It's a good practice to handle low-level events, such as a click, in your event handler and refire them as higher-level events, such as an approvalChange event or whatever is appropriate for your business logic.

Dynamic Actions based on Component State

If you need to invoke a different action on a click event depending on the state of the component, try this approach:

1. Store the component state as a discrete value, such as New or Pending, in a component attribute.
2. Put logic in your client-side controller to determine the next action to take.
3. If you need to reuse the logic in your component bundle, put the logic in the helper.

For example:

1. Your component markup contains `<ui:button label="do something" press="{!c.click}" />
2. In your controller, define the `click` function, which delegates to the appropriate helper function or potentially fires the correct event.

Using a Dispatcher Component to Listen and Relay Events

If you have a large number of handler component instances listening for an event, it may be better to identify a dispatcher component to listen for the event. The dispatcher component can perform some logic to decide which component instances should receive further information and fire another component or application event targeted at those component instances.

SEE ALSO:

Handling Events with Client-Side Controllers

Events Anti-Patterns
Events Anti-Patterns

These are some anti-patterns that you should avoid when using events.

Don’t Fire an Event in a Renderer

Firing an event in a renderer can cause an infinite rendering loop.

Don’t do this!

```javascript
afterRender: function(cmp, helper) {
 this.superAfterRender();
 $A.get("e.myns:mycmp").fire();
}
```

Instead, use the `init` hook to run a controller action after component construction but before rendering. Add this code to your component:

```html
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
```

For more details, see Invoking Actions on Component Initialization on page 339.

Don’t Use `onclick` and `ontouchend` Events

You can’t use different actions for `onclick` and `ontouchend` events in a component. The framework translates touch-tap events into clicks and activates any `onclick` handlers that are present.

SEE ALSO:

- Create a Custom Renderer
- Events Best Practices

Events Fired During the Rendering Lifecycle

A component is instantiated, rendered, and rerendered during its lifecycle. A component is rerendered only when there’s a programmatic or value change that would require a rerender, such as when a browser event triggers an action that updates its data.

Component Creation

The component lifecycle starts when the client sends an HTTP request to the server and the component configuration data is returned to the client. No server trip is made if the component definition is already on the client from a previous request and the component has no server dependencies.

Let’s look at an app with several nested components. The framework instantiates the app and goes through the children of the `v.body` facet to create each component. First, it creates the component definition, its entire parent hierarchy, and then creates the facets within those components. The framework also creates any component dependencies on the server, including definitions for attributes, interfaces, controllers, and actions.

The following image lists the order of component creation.
After creating a component instance, the serialized component definitions and instances are sent down to the client. Definitions are cached but not the instance data. The client deserializes the response to create the JavaScript objects or maps, resulting in an instance tree that's used to render the component instance. When the component tree is ready, the `init` event is fired for all the components, starting from the children component and finishing in the parent component.

**Component Rendering**

The rendering lifecycle happens once in the lifetime of a component unless the component gets explicitly unrendered. When you create a component:

1. The component service that constructs the components fires the `init` event to signal that initialization has completed.

   `<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

   You can customize the `init` handler and add your own controller logic before the component starts rendering. For more information, see [Invoking Actions on Component Initialization on page 339](#).

2. For each component in the tree, the base implementation of `render()` or your custom renderer is called to start component rendering. For more information, see [Create a Custom Renderer on page 356](#). Similar to the component creation process, rendering starts at the root component, its children components and their super components, if any, and finally the subchildren components.

3. Once your components are rendered to the DOM, `afterRender()` is called to signal that rendering is completed for each of these component definitions. It enables you to interact with the DOM tree after the framework rendering service has created the DOM elements.

4. To indicate that the client is done waiting for a response to the server request XHR, the `aura:doneWaiting` event is fired. You can handle this event by adding a handler wired to a client-side controller action.

   **Note:** The `aura:doneWaiting` event is deprecated. The `aura:doneWaiting` application event is fired for every server response, even for responses from other components in your app. Unless your component is running in complete isolation in a standalone app and not included in Lightning Experience or the Salesforce app, the container app may trigger your event handler multiple times. This behavior makes it difficult to handle each event appropriately.

5. The framework fires a `render` event, enabling you to interact with the DOM tree after the framework's rendering service has inserted DOM elements. Handling the `render` event is preferred to creating a custom renderer and overriding `afterRender()`. For more information, see [Handle the render Event](#).
6. Finally, the aura:doneRendering event is fired at the end of the rendering lifecycle.

Note: The aura:doneRendering event is deprecated. Unless your component is running in complete isolation in a standalone app and not included in complex apps, such as Lightning Experience or the Salesforce app, the container app may trigger your event handler multiple times. This behavior makes it difficult to handle each event appropriately.

Rendering Nested Components

Let’s say that you have an app MyApp.app that contains a component myCmp.cmp with a ui:button component.

During initialization, the init() event is fired in this order: ui:button, ui:myCmp, and myApp.app.

SEE ALSO:
Create a Custom Renderer

Events Handled in the Salesforce mobile app and Lightning Experience

The Salesforce app and Lightning Experience handle some events, which you can fire in your Lightning component.

If you fire one of these force or lightning events in your Lightning apps or components outside of the Salesforce app or Lightning Experience:

- You must handle the event by using the <aura:handler> tag in the handling component.
- Use the <aura:registerEvent> or <aura:dependency> tags to ensure that the event is sent to the client, when needed.

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>force:closeQuickAction</td>
<td>Closes a quick action panel. Only one quick action panel can be open in the app at a time.</td>
</tr>
<tr>
<td>force:createRecord</td>
<td>Opens a page to create a record for the specified entityApiName, for example, “Account” or “myNamespace__MyObject__c”.</td>
</tr>
<tr>
<td>force:editRecord</td>
<td>Opens the page to edit the record specified by recordId.</td>
</tr>
<tr>
<td>force:navigateToComponent</td>
<td>Navigates from one Lightning component to another.</td>
</tr>
<tr>
<td>force:navigateToList</td>
<td>Navigates to the list view specified by listViewId.</td>
</tr>
</tbody>
</table>
### Customizing Client-Side Logic for the Salesforce app, Lightning Experience, and Standalone Apps

Since the Salesforce app and Lightning Experience automatically handle many events, you have to do extra work if your component runs in a standalone app. Instantiating the event using `$A.get()` can help you determine if your component is running within the Salesforce app and Lightning Experience or a standalone app. For example, you want to display a toast when a component loads in the Salesforce app and Lightning Experience. You can fire the `force:showToast` event and set its parameters for the Salesforce app and Lightning Experience, but you have to create your own implementation for a standalone app.

```javascript
displayToast : function (component, event, helper) {
 var toast = $A.get("e.force:showToast");
 if (toast)
 //fire the toast event in Salesforce app and Lightning Experience
 toast.setParams({
 "title": "Success!",
 "message": "The component loaded successfully."
 });
 toast.fire();
 } else {
 //your toast implementation for a standalone app here
 }
}
```

### SEE ALSO:
- `aura:dependency`
- Fire Component Events
- Fire Application Events
## System Events

The framework fires several system events during its lifecycle.

You can handle these events in your Lightning apps or components, and within the Salesforce mobile app.

For examples, see the [Component Library](#).

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>aura:doneRendering (deprecated)</td>
<td>Indicates that the initial rendering of the root application has completed.</td>
<td>✅ Note: The <code>aura:doneRendering</code> event is deprecated. Unless your component is running in complete isolation in a standalone app and not included in complex apps, such as Lightning Experience or the Salesforce app, the container app may trigger your event handler multiple times. This behavior makes it difficult to handle each event appropriately.</td>
</tr>
<tr>
<td>aura:doneWaiting (deprecated)</td>
<td>Indicates that the app is done waiting for a response to a server request. This event is preceded by an <code>aura:waiting</code> event.</td>
<td>✅ Note: The <code>aura:doneWaiting</code> event is deprecated. The <code>aura:doneWaiting</code> application event is fired for every server response, even for responses from other components in your app. Unless your component is running in complete isolation in a standalone app and not included in Lightning Experience or the Salesforce app, the container app may trigger your event handler multiple times. This behavior makes it difficult to handle each event appropriately.</td>
</tr>
<tr>
<td>aura:locationChange</td>
<td>Indicates that the hash part of the URL has changed.</td>
<td></td>
</tr>
<tr>
<td>aura:noAccess</td>
<td>Indicates that a requested resource is not accessible due to security constraints on that resource.</td>
<td></td>
</tr>
<tr>
<td>aura:systemError</td>
<td>Indicates that an error has occurred.</td>
<td></td>
</tr>
<tr>
<td>aura:valueChange</td>
<td>Indicates that an attribute value has changed.</td>
<td></td>
</tr>
<tr>
<td>aura:valueDestroy</td>
<td>Indicates that a component has been destroyed.</td>
<td></td>
</tr>
<tr>
<td>aura:valueInit</td>
<td>Indicates that an app or component has been initialized.</td>
<td></td>
</tr>
<tr>
<td>aura:valueRender</td>
<td>Indicates that an app or component has been rendered or rerendered.</td>
<td></td>
</tr>
<tr>
<td>aura:waiting (deprecated)</td>
<td>Indicates that the app is waiting for a response to a server request.</td>
<td>✅ Note: The <code>aura:waiting</code> event is deprecated. The <code>aura:waiting</code> application event is fired for every server request, even for requests from other components in your app. Unless your component is running in complete isolation in a standalone app and not included in Lightning Experience or the Salesforce app, the container app may trigger your event handler multiple times. This behavior makes it difficult to handle each event appropriately.</td>
</tr>
</tbody>
</table>
Components are the building blocks of an app. This section shows you a typical workflow to put the pieces together to create a new app.

First, you should decide whether you’re creating a component for a standalone app or for Salesforce apps, such as Lightning Experience or Salesforce for Android, iOS, and mobile web. Both components can access your Salesforce data, but only a component created for Lightning Experience or Salesforce for Android, iOS, and mobile web can automatically handle Salesforce events that take advantage of record create and edit pages, among other benefits.

The Quick Start on page 9 walks you through creating components for a standalone app and components for Salesforce for Android, iOS, and mobile web to help you determine which one you need.
App Overview

An app is a special top-level component whose markup is in a .app resource.

On a production server, the .app resource is the only addressable unit in a browser URL. Access an app using the URL:

https://<myDomain>.lightning.force.com/<namespace>/<appName>.app, where <myDomain> is the name of your custom Salesforce domain

SEE ALSO:
aura:application

Supported HTML Tags

Designing App UI

Design your app's UI by including markup in the .app resource. Each part of your UI corresponds to a component, which can in turn contain nested components. Compose components to create a sophisticated app.

An app's markup starts with the <aura:application> tag.

Note: Creating a standalone app enables you to host your components outside of Salesforce for Android, iOS, and mobile web or Lightning Experience, such as with Lightning Out or Lightning components in Visualforce pages. To learn more about the <aura:application> tag, see aura:application.

Let's look at a sample.app file, which starts with the <aura:application> tag.

```html
<aura:application extends="force:slds">
 <lightning:layout>
 <lightning:layoutItem padding="around-large">
 <h1 class="slds-text-heading_large">Sample App</h1>
 </lightning:layoutItem>
 </lightning:layout>
 <lightning:layout>
 <lightning:layoutItem padding="around-small">
 Sidebar
 <!-- Other component markup here -->
 </lightning:layoutItem>
 <lightning:layoutItem padding="around-small">
 Content
 <!-- Other component markup here -->
 </lightning:layoutItem>
 </lightning:layout>
</aura:application>
```

The sample.app file contains HTML tags, such as <h1>, as well as components, such as <lightning:layout>. We won't go into the details for all the components here but note how simple the markup is. The <lightning:layoutItem> component can contain other components or HTML markup.

SEE ALSO:
aura:application
Creating App Templates

An app template bootstraps the loading of the framework and the app. Customize an app's template by creating a component that extends the default aura:template template.

A template must have the isTemplate system attribute in the <aura:component> tag set to true. This informs the framework to allow restricted items, such as <script> tags, which aren't allowed in regular components.

For example, a sample app has a np:template template that extends aura:template. np:template looks like:

```html
<aura:component isTemplate="true" extends="aura:template">
 <aura:set attribute="title" value="My App"/>
 ...
</aura:component>
```

Note how the component extends aura:template and sets the title attribute using aura:set.

The app points at the custom template by setting the template system attribute in <aura:application>.

```html
<aura:application template="np:template">
 ...
</aura:application>
```

A template can only extend a component or another template. A component or an application can’t extend a template.

Using the AppCache

AppCache support is deprecated. Browser vendors have deprecated AppCache, so we followed their lead. Remove the useAppcache attribute in the <aura:application> tag of your standalone apps (.app resources) to avoid cross-browser support issues due to deprecation by browser vendors.

If you don’t currently set useAppcache in an <aura:application> tag, you don’t have to do anything because the default value of useAppcache is false.

Note: See an introduction to AppCache for more information.

SEE ALSO:

aura:application

Distributing Applications and Components

As an ISV or Salesforce partner, you can package and distribute applications and components to other Salesforce users and organizations, including those outside your company.

Publish applications and components to and install them from AppExchange. When adding an application or component to a package, all definition bundles referenced by the application or component are automatically included, such as other components, events, and interfaces. Custom fields, custom objects, list views, page layouts, and Apex classes referenced by the application or component are also included. However, when you add a custom object to a package, the application and other definition bundles that reference that custom object must be explicitly added to the package. Other dependencies that must be explicitly added to a package include the following.

- CSP Trusted Sites
- Remote Site Settings
A managed package ensures that your application and other resources are fully upgradeable. To create and work with managed packages, you must use a Developer Edition organization and register a namespace prefix. A managed package includes your namespace prefix in the component names and prevents naming conflicts in an installer’s organization. An organization can create a single managed package that can be downloaded and installed by other organizations. After installation from a managed package, the application or component names are locked, but the following attributes are editable.

- API Version
- Description
- Label
- Language
- Markup

Any Apex that is included as part of your definition bundle must have at least 75% cumulative test coverage. When you upload your package to AppExchange, all tests are run to ensure that they run without errors. The tests are also run when the package is installed. For more information on packaging and distributing, see the ISVforce Guide.

SEE ALSO:
- Testing Your Apex Code
An app is a special top-level component whose markup is in a .app resource. Just like any other component, you can put CSS in its bundle in a resource called <appName>.css.

For example, if the app markup is in notes.app, its CSS is in notes.css.

When viewed in Salesforce for Android, iOS, and mobile web and Lightning Experience, the UI components include styling that matches those visual themes. For example, the ui:button includes the button--neutral class to display a neutral style. The input components that extend ui:input include the uiInput--input class to display the input fields using a custom font in addition to other styling.

Note: Styles added to UI components in Salesforce for Android, iOS, and mobile web and Lightning Experience don’t apply to components in standalone apps.

SEE ALSO:
CSS in Components
Add Lightning Components as Custom Tabs in the Salesforce App
Using the Salesforce Lightning Design System in Apps

The Salesforce Lightning Design System (SLDS) provides a look and feel that's consistent with Lightning Experience. Use Lightning Design System styles to give your custom stand-alone Lightning applications a UI that is consistent with Salesforce, without having to reverse-engineer our styles.

Your application automatically gets Lightning Design System styles and design tokens if it extends force:slds. This method is the easiest way to stay up to date and consistent with Lightning Design System enhancements.

To extend force:slds:

```xml
<aura:application extends="force:slds">
 <!-- customize your application here -->
</aura:application>
```

Using a Static Resource

When you extend force:slds, the version of Lightning Design System styles is automatically updated whenever the CSS changes. If you want to use a specific Lightning Design System version, download the version and add it to your org as a static resource.

Note: We recommend extending force:slds instead so that you automatically get the latest Lightning Design System styles. If you stick to a specific Lightning Design System version, your app's styles will gradually start to drift from later versions in Lightning Experience or incur the cost of duplicate CSS downloads.

To download a version of Lightning Design System that doesn't exceed the maximum size for a static resource, go to the Lightning Design System downloads page.

Salesforce recommends that you name the Lightning Design System archive static resource using the name format SLDS###, where ### is the Lightning Design System version number (for example, SLDS252). This lets you have multiple versions of the Lightning Design System installed, and manage version usage in your components.

To use the static version of the Lightning Design System in a component, include it using `<ltng:require/>`. For example:

```xml
<aura:component>
 <ltng:require
 styles="{!$Resource.SLDS252 + '/styles/salesforce-lightning-design-system.min.css'}" />
</aura:component>
```

SEE ALSO:

Styling with Design Tokens

Using External CSS

To reference an external CSS resource that you've uploaded as a static resource, use a `<ltng:require>` tag in your .cmp or .app markup.

Here's an example of using `<ltng:require>`:

```xml
<ltng:require styles="{!$Resource.resourceName}" />
```

resourceName is the Name of the static resource. In a managed packaged, the resource name must include the package namespace prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic.
or script, that’s all you need. To reference an item within an archive static resource, add the rest of the path to the item using string concatenation.

Here are some considerations for loading styles:

**Loading Sets of CSS**

Specify a comma-separated list of resources in the `styles` attribute to load a set of CSS.

[`Note:` Due to a quirk in the way `$Resource` is parsed in expressions, use the `join` operator to include multiple `$Resource` references in a single attribute. For example, if you have more than one style sheet to include into a component the `styles` attribute should be something like the following.]

```html
styles="{!join(',',
 $Resource.myStyles + '/stylesheetOne.css',
 $Resource.myStyles + '/moreStyles.css')}"
```

**Loading Order**

The styles are loaded in the order that they are listed.

**One-Time Loading**

The styles load only once, even if they’re specified in multiple `<ltng:require>` tags in the same component or across different components.

**Encapsulation**

To ensure encapsulation and reusability, add the `<ltng:require>` tag to every `.cmp` or `.app` resource that uses the CSS resource. `<ltng:require>` also has a `scripts` attribute to load a list of JavaScript libraries. The `afterScriptsLoaded` event enables you to call a controller action after the `scripts` are loaded. It’s only triggered by loading of the `scripts` and is never triggered when the CSS in `styles` is loaded.

For more information on static resources, see “Static Resources” in the Salesforce online help.

**Styling Components for Lightning Experience or Salesforce for Android, iOS, and mobile web**

To prevent styling conflicts in Lightning Experience or Salesforce for Android, iOS, and mobile web, prefix your external CSS with a unique namespace. For example, if you prefix your external CSS declarations with `.myBootstrap`, wrap your component markup with a `<div>` tag that specifies the `myBootstrap` class.

```html
<ltng:require styles="{!$Resource.bootstrap}"/>
<div class="myBootstrap">
 <c:myComponent />
 <!-- Other component markup -->
</div>
```

[`Note:` Prefixing your CSS with a unique namespace only applies to external CSS. If you’re using CSS within a component bundle, the `.THIS` keyword becomes `.namespaceComponentName` during runtime.]

**SEE ALSO:**

- Using External JavaScript Libraries
- CSS in Components
- `$Resource`
More Readable Styling Markup with the **join** Expression

Markup can get messy when you specify the class names to apply based on the component attribute values. Try using a **join** expression for easier-to-read markup.

This example sets the class names based on the component attribute values. It’s readable, but the spaces between class names are easy to forget.

```html
<!-- content here -->
```

Sometimes, if the markup is not broken into multiple lines, it can hurt your eyes or make you mutter profanities under your breath.

```html
<!-- content here -->
```

Try using a **join** expression instead for easier-to-read markup. This example **join** expression sets `' '` as the first argument so that you don’t have to specify it for each subsequent argument in the expression.

```html
<!-- content here -->
```

You can also use a **join** expression for dynamic styling.

```html
<div style="{'join('; 'top:' + v.timeOffsetTop + '%', 'left:' + v.timeOffsetLeft + '%', 'width:' + v.timeOffsetWidth + '%"}">
<!-- content here --></div>
```

SEE ALSO:

*Expression Functions Reference*
Tips for CSS in Components

Here are some tips for configuring the CSS for components that you plan to use in Lightning pages, the Lightning App Builder, or the Community Builder.

Components must be set to 100% width
Because they can be moved to different locations on a Lightning page, components must not have a specific width nor a left or right margin. Components should take up 100% of whatever container they display in. Adding a left or right margin changes the width of a component and can break the layout of the page.

Don’t remove HTML elements from the flow of the document
Some CSS rules remove the HTML element from the flow of the document. For example:

```css
float: left;
float: right;
position: absolute;
position: fixed;
```

Because they can be moved to different locations on the page as well as used on different pages entirely, components must rely on the normal document flow. Using floats and absolute or fixed positions breaks the layout of the page the component is on. Even if they don’t break the layout of the page you’re looking at, they will break the layout of some page the component can be put on.

Child elements shouldn’t be styled to be larger than the root element
The Lightning page maintains consistent spacing between components, and can’t do that if child elements are larger than the root element.

For example, avoid these patterns:

```html
<div style="height: 100px">
 <div style="height: 200px">
 <!--Other markup here-->
 </div>
</div>
```

```html
<!--Margin increases the element’s effective size-->
<div style="height: 100px">
 <div style="height: 100px margin: 10px">
 <!--Other markup here-->
 </div>
</div>
```

Vendor Prefixes

Vendor prefixes, such as –moz– and –webkit– among many others, are automatically added in Lightning.

You only need to write the unprefixed version, and the framework automatically adds any prefixes that are necessary when generating the CSS output. If you choose to add them, they are used as-is. This enables you to specify alternative values for certain prefixes.

Example: For example, this is an unprefixed version of border-radius.

```css
.class {
 border-radius: 2px;
}
```
The previous declaration results in the following declarations.

```
.class {
 -webkit-border-radius: 2px;
 -moz-border-radius: 2px;
 border-radius: 2px;
}
```

### Styling with Design Tokens

Capture the essential values of your visual design into named tokens. Define the token values once and reuse them throughout your Lightning components CSS resources. Tokens make it easy to ensure that your design is consistent, and even easier to update it as your design evolves.

Design tokens are visual design “atoms” for building a design for your components or apps. Specifically, they’re named entities that store visual design attributes, such as pixel values for margins and spacing, font sizes and families, or hex values for colors. Tokens are a terrific way to centralize the low-level values, which you then use to compose the styles that make up the design of your component or app.

**IN THIS SECTION:**

- **Tokens Bundles**
  Tokens are a type of bundle, just like components, events, and interfaces.

- **Create a Tokens Bundle**
  Create a tokens bundle in your org using the Developer Console.

- **Defining and Using Tokens**
  A token is a name-value pair that you specify using the `<aura:token>` component. Define tokens in a tokens bundle, and then use tokens in your components’ CSS styles resources.

- **Using Expressions in Tokens**
  Tokens support a restricted set of expressions. Use expressions to reuse one token value in another token, or to combine tokens to form a more complex style property.

- **Extending Tokens Bundles**
  Use the `extends` attribute to extend one tokens bundle from another.

- **Using Standard Design Tokens**
  Salesforce exposes a set of “base” tokens that you can access in your component style resources. Use these standard tokens to mimic the look-and-feel of the Salesforce Lightning Design System (SLDS) in your own custom components. As the SLDS evolves, components that are styled using the standard design tokens will evolve along with it.

#### Tokens Bundles

Tokens are a type of bundle, just like components, events, and interfaces.

A tokens bundle contains only one resource, a tokens collection definition.
### Create a Tokens Bundle

Create a tokens bundle in your org using the Developer Console.

To create a tokens bundle:

1. In the Developer Console, select **File > New > Lightning Tokens**.
2. Enter a name for the tokens bundle.
   
   Your first tokens bundle should be named `defaultTokens`. The tokens defined within `defaultTokens` are automatically accessible in your Lightning components. Tokens defined in any other bundle won’t be accessible in your components unless you import them into the `defaultTokens` bundle.

You have an empty tokens bundle, ready to edit.

```aura
<aura:tokens>
 ...
</aura:tokens>
```

**Note:** You can’t edit the tokens bundle name or description in the Developer Console after you create it. The bundle’s `AuraBundleDefinition` can be modified using the Metadata API.

### Defining and Using Tokens

A token is a name-value pair that you specify using the `<aura:token>` component. Define tokens in a tokens bundle, and then use tokens in your components’ CSS styles resources.

#### Defining Tokens

Add new tokens as child components of the bundle’s `<aura:tokens>` component. For example:

```aura
<aura:tokens>
 <aura:token name="myBodyTextFontFace"
```
The only allowed attributes for the `<aura:token>` tag are `name` and `value`.

### Using Tokens

Tokens created in the `defaultTokens` bundle are automatically available in components in your namespace. To use a design token, reference it using the `token()` function and the token name in the CSS resource of a component bundle. For example:

```css
.THIRS p {
 font-family: token(myBodyTextFontFace);
 font-weight: token(myBodyTextFontWeight);
}
```

If you prefer a more concise function name for referencing tokens, you can use the `t()` function instead of `token()`. The two are equivalent. If your token names follow a naming convention or are sufficiently descriptive, the use of the more terse function name won’t affect the clarity of your CSS styles.

### Using Expressions in Tokens

Tokens support a restricted set of expressions. Use expressions to reuse one token value in another token, or to combine tokens to form a more complex style property.

### Cross-Referencing Tokens

To reference one token’s value in another token’s definition, wrap the token to be referenced in standard expression syntax.

In the following example, we’ll reference tokens provided by Salesforce in our custom tokens. Although you can’t see the standard tokens directly, we’ll imagine they look something like the following.

```xml
<!-- force:base tokens (SLDS standard tokens) -->
<aura:tokens>
 ...
 <aura:token name="colorBackground" value="rgb(244, 246, 249)" />
 <aura:token name="fontFamily" value="'Salesforce Sans', Arial, sans-serif" />
 ...
</aura:tokens>
```

With the preceding in mind, you can reference the standard tokens in your custom tokens, as in the following.

```xml
<!-- defaultTokens.tokens (your tokens) -->
<aura:tokens extends="force:base">
 <aura:token name="mainColor" value="{! colorBackground }" />
 <aura:token name="btnColor" value="{! mainColor }" />
 <aura:token name="myFont" value="{! fontFamily }" />
</aura:tokens>
```

You can only cross-reference tokens defined in the same file or a parent.

Expression syntax in tokens resources is restricted to references to other tokens.
Combining Tokens

To support combining individual token values into more complex CSS style properties, the `token()` function supports string concatenation. For example, if you have the following tokens defined:

```
<!-- defaultTokens.tokens (your tokens) -->
<aura:tokens>
 <aura:token name="defaultHorizentalSpacing" value="12px" />
 <aura:token name="defaultVerticalSpacing" value="6px" />
</aura:tokens>
```

You can combine these two tokens in a CSS style definition. For example:

```
/* myComponent.css */
.THIS div.notification {
 margin: token(defaultVerticalSpacing + ' ' + defaultHorizentalSpacing);
/* more styles here */
}
```

You can mix tokens with strings as much as necessary to create the right style definition. For example, use `margin: token(defaultVerticalSpacing + ' ' + defaultHorizentalSpacing + ' 3px');` to hard code the bottom spacing in the preceding definition.

The only operator supported within the `token()` function is `+` for string concatenation.

SEE ALSO:
- Defining and Using Tokens
- Extending Tokens Bundles

Extending Tokens Bundles

Use the `extends` attribute to extend one tokens bundle from another.

To add tokens from one bundle to another, extend the “child” tokens bundle from the “parent” tokens, like this:

```
<aura:tokens extends="yourNamespace:parentTokens">
 <!-- additional tokens here -->
</aura:tokens>
```

Overriding tokens values works mostly as you’d expect: tokens in a child tokens bundle override tokens with the same name from a parent bundle. The exception is if you’re using standard tokens. You can’t override standard tokens in Lightning Experience or the Salesforce app.

**Important:** Overriding standard token values is undefined behavior and unsupported. If you create a token with the same name as a standard token, it overrides the standard token’s value in some contexts, and has no effect in others. This behavior will change in a future release. Don’t use it.

SEE ALSO:
- Using Standard Design Tokens
Using Standard Design Tokens

Salesforce exposes a set of “base” tokens that you can access in your component style resources. Use these standard tokens to mimic the look-and-feel of the Salesforce Lightning Design System (SLDS) in your own custom components. As the SLDS evolves, components that are styled using the standard design tokens will evolve along with it.

To add the standard tokens to your org, extend a tokens bundle from the base tokens, like so.

```aura:tokens extends="force:base">
 <!-- your own tokens here -->
</aura:tokens>
```

Once added to defaultTokens (or another tokens bundle that defaultTokens extends) you can reference tokens from force:base just like your own tokens, using the token() function and token name. For example:

```css
.THIS p {
 font-family: token(fontFamily);
 font-weight: token(fontWeightRegular);
}
```

You can mix-and-match your tokens with the standard tokens. It’s a best practice to develop a naming system for your own tokens to make them easily distinguishable from standard tokens. Consider prefixing your token names with "my", or something else easily identifiable.

**IN THIS SECTION:**

- **Overriding Standard Tokens (Developer Preview)**
  Standard tokens provide the look-and-feel of the Lightning Design System in your custom components. You can override standard tokens to customize and apply branding to your Lightning apps.

- **Standard Design Tokens—force:base**
  The standard tokens available are a subset of the design tokens offered in the Salesforce Lightning Design System (SLDS). The following tokens are available when extending from force:base.

- **Standard Design Tokens for Communities**
  Use a subset of the standard design tokens to make your components compatible with the Theme panel in Community Builder. The Theme panel enables administrators to quickly style an entire community using these properties. Each property in the Theme panel maps to one or more standard design tokens. When an administrator updates a property in the Theme panel, the system automatically updates any Lightning components that use the tokens associated with that branding property.

**SEE ALSO:**

- Extending Tokens Bundles

**Overriding Standard Tokens (Developer Preview)**

Standard tokens provide the look-and-feel of the Lightning Design System in your custom components. You can override standard tokens to customize and apply branding to your Lightning apps.

**Note:** Overriding standard tokens is available as a developer preview. This feature isn’t generally available unless or until Salesforce announces its general availability in documentation or in press releases or public statements. You can provide feedback and suggestions for this feature on the IdeaExchange.
To override a standard token for your Lightning app, create a tokens bundle with a unique name, for example `myOverrides`. In the tokens resource, redefine the value for a standard token:

```xml
<aura:tokens>
 <aura:token name="colorTextBrand" value="#8d7d74"/>
</aura:tokens>
```

In your Lightning app, specify the tokens bundle in the `tokens` attribute:

```xml
<aura:application tokens="c:myOverrides">
 <!-- Your app markup here -->
</aura:application>
```

Token overrides apply across your app, including resources and components provided by Salesforce and components of your own that use tokens.

Packaging apps that use the tokens attribute is unsupported.

**Important:** Overriding standard token values within `defaultTokens.tokens`, a required resource in a tokens bundle, is unsupported. If you create a token with the same name as a standard token, it overrides the standard token’s value in some contexts, and has no effect in others. Overrides should only be done in a separate resource as described above.

**SEE ALSO:**
- [Standard Design Tokens—force:base](#)

### Standard Design Tokens—force:base

The standard tokens available are a subset of the design tokens offered in the Salesforce Lightning Design System (SLDS). The following tokens are available when extending from `force:base`.

#### Available Tokens

**Important:** The standard token values evolve along with SLDS. Available tokens and their values can change without notice. Token values presented here are for example only.

<table>
<thead>
<tr>
<th>Token Name</th>
<th>Example Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>borderWidthThin</td>
<td>1px</td>
</tr>
<tr>
<td>borderWidthThick</td>
<td>2px</td>
</tr>
<tr>
<td>spacingXxxSmall</td>
<td>0.125rem</td>
</tr>
<tr>
<td>spacingXxSmall</td>
<td>0.25rem</td>
</tr>
<tr>
<td>spacingXSsmall</td>
<td>0.5rem</td>
</tr>
<tr>
<td>spacingSmall</td>
<td>0.75rem</td>
</tr>
<tr>
<td>spacingMedium</td>
<td>1rem</td>
</tr>
<tr>
<td>spacingLarge</td>
<td>1.5rem</td>
</tr>
<tr>
<td>spacingXLarge</td>
<td>2rem</td>
</tr>
<tr>
<td>varSpacingXxSmall</td>
<td>0.25rem</td>
</tr>
<tr>
<td>Token Name</td>
<td>Example Value</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>varSpacingXSmall</td>
<td>0.5rem</td>
</tr>
<tr>
<td>varSpacingSmall</td>
<td>0.75rem</td>
</tr>
<tr>
<td>varSpacingMedium</td>
<td>1rem</td>
</tr>
<tr>
<td>varSpacingLarge</td>
<td>1.5rem</td>
</tr>
<tr>
<td>varSpacingXLarge</td>
<td>2rem</td>
</tr>
<tr>
<td>varSpacingXxLarge</td>
<td>3rem</td>
</tr>
<tr>
<td>varSpacingVerticalXxSmall</td>
<td>0.25rem</td>
</tr>
<tr>
<td>varSpacingVerticalXSsmall</td>
<td>0.5rem</td>
</tr>
<tr>
<td>varSpacingVerticalSmall</td>
<td>0.75rem</td>
</tr>
<tr>
<td>varSpacingVerticalMedium</td>
<td>1rem</td>
</tr>
<tr>
<td>varSpacingVerticalLarge</td>
<td>1.5rem</td>
</tr>
<tr>
<td>varSpacingVerticalXLarge</td>
<td>2rem</td>
</tr>
<tr>
<td>varSpacingVerticalXxLarge</td>
<td>3rem</td>
</tr>
<tr>
<td>varSpacingHorizontalXxSmall</td>
<td>0.25rem</td>
</tr>
<tr>
<td>varSpacingHorizontalXSsmall</td>
<td>0.5rem</td>
</tr>
<tr>
<td>varSpacingHorizontalSmall</td>
<td>0.75rem</td>
</tr>
<tr>
<td>varSpacingHorizontalMedium</td>
<td>1rem</td>
</tr>
<tr>
<td>varSpacingHorizontalLarge</td>
<td>1.5rem</td>
</tr>
<tr>
<td>varSpacingHorizontalXLarge</td>
<td>2rem</td>
</tr>
<tr>
<td>varSpacingHorizontalXxLarge</td>
<td>3rem</td>
</tr>
<tr>
<td>sizeXxSmall</td>
<td>6rem</td>
</tr>
<tr>
<td>sizeXSsmall</td>
<td>12rem</td>
</tr>
<tr>
<td>sizeSmall</td>
<td>15rem</td>
</tr>
<tr>
<td>sizeMedium</td>
<td>20rem</td>
</tr>
<tr>
<td>sizeLarge</td>
<td>25rem</td>
</tr>
<tr>
<td>sizeXLarge</td>
<td>40rem</td>
</tr>
<tr>
<td>sizeXxLarge</td>
<td>60rem</td>
</tr>
<tr>
<td>squareIconUtilitySmall</td>
<td>1rem</td>
</tr>
<tr>
<td>squareIconUtilityMedium</td>
<td>1.25rem</td>
</tr>
<tr>
<td>squareIconUtilityLarge</td>
<td>1.5rem</td>
</tr>
<tr>
<td>Token Name</td>
<td>Example Value</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>squareIconLargeBoundary</td>
<td>3rem</td>
</tr>
<tr>
<td>squareIconLargeBoundaryAlt</td>
<td>5rem</td>
</tr>
<tr>
<td>squareIconLargeContent</td>
<td>2rem</td>
</tr>
<tr>
<td>squareIconMediumBoundary</td>
<td>2rem</td>
</tr>
<tr>
<td>squareIconMediumBoundaryAlt</td>
<td>2.25rem</td>
</tr>
<tr>
<td>squareIconMediumContent</td>
<td>1rem</td>
</tr>
<tr>
<td>squareIconSmallBoundary</td>
<td>1.5rem</td>
</tr>
<tr>
<td>squareIconSmallContent</td>
<td>0.75rem</td>
</tr>
<tr>
<td>squareIconXSmallBoundary</td>
<td>1.25rem</td>
</tr>
<tr>
<td>squareIconXSmallContent</td>
<td>0.5rem</td>
</tr>
<tr>
<td>fontWeightLight</td>
<td>300</td>
</tr>
<tr>
<td>fontWeightRegular</td>
<td>400</td>
</tr>
<tr>
<td>fontWeightBold</td>
<td>700</td>
</tr>
<tr>
<td>lineHeightHeading</td>
<td>1.25</td>
</tr>
<tr>
<td>lineHeightText</td>
<td>1.375</td>
</tr>
<tr>
<td>lineHeightReset</td>
<td>1</td>
</tr>
<tr>
<td>lineHeightTab</td>
<td>2.5rem</td>
</tr>
<tr>
<td>fontFamily</td>
<td>'Salesforce Sans', Arial, sans-serif</td>
</tr>
<tr>
<td>borderRadiusSmall</td>
<td>0.125rem</td>
</tr>
<tr>
<td>borderRadiusMedium</td>
<td>0.25rem</td>
</tr>
<tr>
<td>borderRadiusLarge</td>
<td>0.5rem</td>
</tr>
<tr>
<td>borderRadiusPill</td>
<td>15rem</td>
</tr>
<tr>
<td>borderRadiusCircle</td>
<td>50%</td>
</tr>
<tr>
<td>colorBorder</td>
<td>rgb(216, 221, 230)</td>
</tr>
<tr>
<td>colorBorderBrand</td>
<td>rgb(21, 137, 238)</td>
</tr>
<tr>
<td>colorBorderError</td>
<td>rgb(194, 57, 52)</td>
</tr>
<tr>
<td>colorBorderSuccess</td>
<td>rgb(75, 202, 129)</td>
</tr>
<tr>
<td>colorBorderWarning</td>
<td>rgb(255, 183, 93)</td>
</tr>
<tr>
<td>colorBorderTabSelected</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorBorderSeparator</td>
<td>rgb(244, 246, 249)</td>
</tr>
</tbody>
</table>
### Using Standard Design Tokens

<table>
<thead>
<tr>
<th>Token Name</th>
<th>Example Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>colorBorderSeparatorAlt</td>
<td>rgb(216, 221, 230)</td>
</tr>
<tr>
<td>colorBorderSeparatorInverse</td>
<td>rgb(42, 66, 108)</td>
</tr>
<tr>
<td>colorBorderRowSelected</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorBorderRowSelectedHover</td>
<td>rgb(21, 137, 238)</td>
</tr>
<tr>
<td>colorBorderButtonBrand</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorBorderButtonBrandDisabled</td>
<td>rgba(0, 0, 0, 0)</td>
</tr>
<tr>
<td>colorBorderButtonDefault</td>
<td>rgb(216, 221, 230)</td>
</tr>
<tr>
<td>colorBorderButtonInverseDisabled</td>
<td>rgba(255, 255, 255, 0.15)</td>
</tr>
<tr>
<td>colorBorderInput</td>
<td>rgb(216, 221, 230)</td>
</tr>
<tr>
<td>colorBorderInputActive</td>
<td>rgb(21, 137, 238)</td>
</tr>
<tr>
<td>colorBorderInputDisabled</td>
<td>rgb(168, 183, 199)</td>
</tr>
<tr>
<td>colorBorderInputCheckboxSelectedCheckmark</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackground</td>
<td>rgb(244, 246, 249)</td>
</tr>
<tr>
<td>colorBackgroundAlt</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundAltInverse</td>
<td>rgb(22, 50, 92)</td>
</tr>
<tr>
<td>colorBackgroundRowHover</td>
<td>rgb(244, 246, 249)</td>
</tr>
<tr>
<td>colorBackgroundRowActive</td>
<td>rgb(238, 241, 246)</td>
</tr>
<tr>
<td>colorBackgroundRowSelected</td>
<td>rgb(240, 248, 252)</td>
</tr>
<tr>
<td>colorBackgroundRowNew</td>
<td>rgb(217, 255, 223)</td>
</tr>
<tr>
<td>colorBackgroundInverse</td>
<td>rgb(6, 28, 63)</td>
</tr>
<tr>
<td>colorBackgroundBrowser</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorBackgroundChromeMobile</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorBackgroundChromeDesktop</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundHighlight</td>
<td>rgb(250, 255, 189)</td>
</tr>
<tr>
<td>colorBackgroundModal</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundModalBrand</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorBackgroundNotificationBadge</td>
<td>rgb(194, 57, 52)</td>
</tr>
<tr>
<td>colorBackgroundNotificationBadgeHover</td>
<td>rgb(0, 95, 178)</td>
</tr>
<tr>
<td>colorBackgroundNotificationBadgeFocus</td>
<td>rgb(0, 95, 178)</td>
</tr>
<tr>
<td>colorBackgroundNotificationBadgeActive</td>
<td>rgb(0, 57, 107)</td>
</tr>
<tr>
<td>Token Name</td>
<td>Example Value</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>colorBackgroundNotificationNew</td>
<td>rgb(240, 248, 252)</td>
</tr>
<tr>
<td>colorBackgroundPayload</td>
<td>rgb(244, 246, 249)</td>
</tr>
<tr>
<td>colorBackgroundShade</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorBackgroundStencil</td>
<td>rgb(238, 241, 246)</td>
</tr>
<tr>
<td>colorBackgroundStencilAlt</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorBackgroundScrollbar</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorBackgroundScrollbarTrack</td>
<td>rgb(168, 183, 199)</td>
</tr>
<tr>
<td>colorBrand</td>
<td>rgb(21, 137, 238)</td>
</tr>
<tr>
<td>colorBrandDark</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorBackgroundModalButton</td>
<td>rgba(0, 0, 0, 0.07)</td>
</tr>
<tr>
<td>colorBackgroundModalButtonActive</td>
<td>rgba(0, 0, 0, 0.16)</td>
</tr>
<tr>
<td>colorBackgroundInput</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundInputActive</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundInputCheckbox</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundInputCheckboxDisabled</td>
<td>rgb(216, 221, 230)</td>
</tr>
<tr>
<td>colorBackgroundInputCheckboxSelected</td>
<td>rgb(21, 137, 238)</td>
</tr>
<tr>
<td>colorBackgroundInputDisabled</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorBackgroundInputError</td>
<td>rgb(255, 211, 225)</td>
</tr>
<tr>
<td>colorBackgroundPill</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundToast</td>
<td>rgb(4, 132, 75)</td>
</tr>
<tr>
<td>colorBackgroundToastSuccess</td>
<td>rgb(4, 132, 75)</td>
</tr>
<tr>
<td>colorBackgroundToastError</td>
<td>rgba(194, 57, 52, 0.95)</td>
</tr>
<tr>
<td>shadowDrag</td>
<td>0.2px 4px 0 rgba(0, 0, 0, 0.40)</td>
</tr>
<tr>
<td>shadowDropDown</td>
<td>0.2px 3px 0 rgba(0, 0, 0, 0.16)</td>
</tr>
<tr>
<td>shadowHeader</td>
<td>0.2px 4px rgba(0, 0, 0, 0.07)</td>
</tr>
<tr>
<td>shadowButtonFocus</td>
<td>0 0 3px #0070D2</td>
</tr>
<tr>
<td>shadowButtonFocusInverse</td>
<td>0 0 3px #E0E5EE</td>
</tr>
<tr>
<td>colorTextActionLabel</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorTextActionLabelActive</td>
<td>rgb(22, 50, 92)</td>
</tr>
<tr>
<td>colorTextBrand</td>
<td>rgb(21, 137, 238)</td>
</tr>
<tr>
<td>Token Name</td>
<td>Example Value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>colorTextBrowser</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextBrowserActive</td>
<td>rgba(0, 0, 0, 0.4)</td>
</tr>
<tr>
<td>colorTextDefault</td>
<td>rgb(22, 50, 92)</td>
</tr>
<tr>
<td>colorTextError</td>
<td>rgb(194, 57, 52)</td>
</tr>
<tr>
<td>colorTextInputDisabled</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorTextInputFocusInverse</td>
<td>rgb(22, 50, 92)</td>
</tr>
<tr>
<td>colorTextInputIcon</td>
<td>rgb(159, 170, 181)</td>
</tr>
<tr>
<td>colorTextInverse</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextInverseWeak</td>
<td>rgb(159, 170, 181)</td>
</tr>
<tr>
<td>colorTextInverseActive</td>
<td>rgb(94, 180, 255)</td>
</tr>
<tr>
<td>colorTextInverseHover</td>
<td>rgb(159, 170, 181)</td>
</tr>
<tr>
<td>colorTextLink</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorTextLinkActive</td>
<td>rgb(0, 57, 107)</td>
</tr>
<tr>
<td>colorTextLinkDisabled</td>
<td>rgb(22, 50, 92)</td>
</tr>
<tr>
<td>colorTextLinkFocus</td>
<td>rgb(0, 95, 178)</td>
</tr>
<tr>
<td>colorTextLinkHover</td>
<td>rgb(0, 95, 178)</td>
</tr>
<tr>
<td>colorTextLinkInverse</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextLinkInverseHover</td>
<td>rgba(255, 255, 255, 0.75)</td>
</tr>
<tr>
<td>colorTextLinkInverseActive</td>
<td>rgba(255, 255, 255, 0.5)</td>
</tr>
<tr>
<td>colorTextLinkInverseDisabled</td>
<td>rgba(255, 255, 255, 0.15)</td>
</tr>
<tr>
<td>colorTextModal</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextModalButton</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorTextStageLeft</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorTextTabLabel</td>
<td>rgb(22, 50, 92)</td>
</tr>
<tr>
<td>colorTextTabLabelSelected</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorTextTabLabelHover</td>
<td>rgb(0, 95, 178)</td>
</tr>
<tr>
<td>colorTextTabLabelFocus</td>
<td>rgb(0, 95, 178)</td>
</tr>
<tr>
<td>colorTextTabLabelActive</td>
<td>rgb(0, 57, 107)</td>
</tr>
<tr>
<td>colorTextTabLabelDisabled</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorTextToast</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>Token Name</td>
<td>Example Value</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------------------------</td>
</tr>
<tr>
<td>colorTextWeak</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorTextIconBrand</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorTextButtonBrand</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextButtonBrandHover</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextButtonBrandActive</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextButtonBrandDisabled</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextButtonDefault</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorTextButtonDefaultHover</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorTextButtonDefaultActive</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorTextButtonDefaultDisabled</td>
<td>rgb(216, 221, 230)</td>
</tr>
<tr>
<td>colorTextButtonDefaultHint</td>
<td>rgb(159, 170, 181)</td>
</tr>
<tr>
<td>colorTextButtonInverse</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorTextButtonInverseDisabled</td>
<td>rgba(255, 255, 255, 0.15)</td>
</tr>
<tr>
<td>colorTextIconDefault</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorTextIconDefaultHint</td>
<td>rgb(159, 170, 181)</td>
</tr>
<tr>
<td>colorTextIconDefaultHover</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorTextIconDefaultActive</td>
<td>rgb(0, 57, 107)</td>
</tr>
<tr>
<td>colorTextIconDefaultDisabled</td>
<td>rgb(216, 221, 230)</td>
</tr>
<tr>
<td>colorTextIconInverse</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextIconInverseHover</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextIconInverseActive</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorTextIconInverseDisabled</td>
<td>rgba(255, 255, 255, 0.15)</td>
</tr>
<tr>
<td>colorTextLabel</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorTextPlaceholder</td>
<td>rgb(84, 105, 141)</td>
</tr>
<tr>
<td>colorTextPlaceholderInverse</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorTextRequired</td>
<td>rgb(194, 57, 52)</td>
</tr>
<tr>
<td>colorTextPill</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>durationInstantly</td>
<td>0s</td>
</tr>
<tr>
<td>durationImmediately</td>
<td>0.05s</td>
</tr>
<tr>
<td>durationQuickly</td>
<td>0.1s</td>
</tr>
<tr>
<td>Token Name</td>
<td>Example Value</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>durationPromptly</td>
<td>0.2s</td>
</tr>
<tr>
<td>durationSlowly</td>
<td>0.4s</td>
</tr>
<tr>
<td>durationPaused</td>
<td>3.2s</td>
</tr>
<tr>
<td>colorBackgroundButtonBrand</td>
<td>rgb(0, 112, 210)</td>
</tr>
<tr>
<td>colorBackgroundButtonBrandActive</td>
<td>rgb(0, 57, 107)</td>
</tr>
<tr>
<td>colorBackgroundButtonBrandHover</td>
<td>rgb(0, 95, 178)</td>
</tr>
<tr>
<td>colorBackgroundButtonBrandDisabled</td>
<td>rgb(224, 229, 238)</td>
</tr>
<tr>
<td>colorBackgroundButtonDefault</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundButtonDefaultHover</td>
<td>rgb(244, 246, 249)</td>
</tr>
<tr>
<td>colorBackgroundButtonDefaultFocus</td>
<td>rgb(244, 246, 249)</td>
</tr>
<tr>
<td>colorBackgroundButtonDefaultActive</td>
<td>rgb(238, 241, 246)</td>
</tr>
<tr>
<td>colorBackgroundButtonDefaultDisabled</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundButtonIcon</td>
<td>rgba(0, 0, 0, 0)</td>
</tr>
<tr>
<td>colorBackgroundButtonIconHover</td>
<td>rgb(244, 246, 249)</td>
</tr>
<tr>
<td>colorBackgroundButtonIconFocus</td>
<td>rgb(244, 246, 249)</td>
</tr>
<tr>
<td>colorBackgroundButtonIconActive</td>
<td>rgb(238, 241, 246)</td>
</tr>
<tr>
<td>colorBackgroundButtonIconDisabled</td>
<td>rgb(255, 255, 255)</td>
</tr>
<tr>
<td>colorBackgroundButtonInverse</td>
<td>rgba(0, 0, 0, 0)</td>
</tr>
<tr>
<td>colorBackgroundButtonInverseActive</td>
<td>rgba(0, 0, 0, 0.24)</td>
</tr>
<tr>
<td>colorBackgroundButtonInverseDisabled</td>
<td>rgba(0, 0, 0, 0)</td>
</tr>
<tr>
<td>lineHeightButton</td>
<td>1.875rem</td>
</tr>
<tr>
<td>lineHeightButtonSmall</td>
<td>1.75rem</td>
</tr>
<tr>
<td>colorBackgroundAnchor</td>
<td>rgb(244, 246, 249)</td>
</tr>
</tbody>
</table>

For a complete list of the design tokens available in the SLDS, see [Design Tokens](#) on the Lightning Design System site.

**SEE ALSO:**
- [Extending Tokens Bundles](#)
Standard Design Tokens for Communities

Use a subset of the standard design tokens to make your components compatible with the Theme panel in Community Builder. The Theme panel enables administrators to quickly style an entire community using these properties. Each property in the Theme panel maps to one or more standard design tokens. When an administrator updates a property in the Theme panel, the system automatically updates any Lightning components that use the tokens associated with that branding property.

Available Tokens for Communities

For Communities using the Customer Service template, the following standard tokens are available when extending from `forceCommunity:base`.

⚠️ **Important:** The standard token values evolve along with SLDS. Available tokens and their values can change without notice.
<table>
<thead>
<tr>
<th>Branding panel properties</th>
<th>...map to these standard design tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Color</td>
<td>colorTextDefault</td>
</tr>
<tr>
<td>Detail Text Color</td>
<td>• colorTextActionLabel</td>
</tr>
<tr>
<td></td>
<td>• colorTextLabel</td>
</tr>
<tr>
<td></td>
<td>• colorTextPlaceholder</td>
</tr>
<tr>
<td></td>
<td>• colorTextWeak</td>
</tr>
<tr>
<td>Action Color</td>
<td>• colorBackgroundButtonBrand</td>
</tr>
<tr>
<td></td>
<td>• colorBorderBrand</td>
</tr>
<tr>
<td></td>
<td>• colorBorderButtonBrand</td>
</tr>
<tr>
<td></td>
<td>• colorBrand</td>
</tr>
<tr>
<td></td>
<td>• colorTextBrand</td>
</tr>
<tr>
<td></td>
<td>• colorTextTabLabelSelected</td>
</tr>
<tr>
<td></td>
<td>• colorTextActionLabelActive</td>
</tr>
<tr>
<td></td>
<td>• colorTextLink</td>
</tr>
<tr>
<td>Company Logo</td>
<td>brandLogoImage</td>
</tr>
<tr>
<td>Overlay Text Color</td>
<td>• colorTextButtonBrand</td>
</tr>
<tr>
<td></td>
<td>• colorTextButtonBrandHover</td>
</tr>
<tr>
<td></td>
<td>• colorTextInverse</td>
</tr>
<tr>
<td>Border Color</td>
<td>• colorBorder</td>
</tr>
<tr>
<td></td>
<td>• colorBorderButtonDefault</td>
</tr>
<tr>
<td></td>
<td>• colorBorderInput</td>
</tr>
<tr>
<td></td>
<td>• colorBorderSeparatorAlt</td>
</tr>
<tr>
<td>Primary Font</td>
<td>fontFamily</td>
</tr>
<tr>
<td>Text Case</td>
<td>textTransform</td>
</tr>
</tbody>
</table>

In addition, the following standard tokens are available for derived theme properties in the Customer Service template. You can indirectly access derived properties when you update the properties in the Theme panel. For example, if you change the Action Color property in the Theme panel, the system automatically recalculates the Action Color Darker value based on the new value.

<table>
<thead>
<tr>
<th>Derived branding properties</th>
<th>...map to these standard design tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Color Darker</td>
<td>• colorBackgroundButtonBrandActive</td>
</tr>
<tr>
<td>(Derived from Action Color)</td>
<td>• colorBackgroundButtonBrandHover</td>
</tr>
</tbody>
</table>

Note: As of Summer '18 colorBackgroundHighlight is no longer mapped to Action Color.
These derived branding properties...	...map to these standard design tokens
Hover Color (Derived from Action Color)	• colorBackgroundButtonDefaultHover
• colorBackgroundRowHover	
• colorBackgroundRowSelected	
• colorBackgroundShade	

Link Color Darker (Derived from Link Color) | • colorTextLinkActive
| • colorTextLinkHover

For a complete list of the design tokens available in the SLDS, see Design Tokens on the Lightning Design System site.

SEE ALSO:
  Configure Components for Communities
The Locker Service architectural layer enhances security by isolating individual Lightning namespaces in their own containers and enforcing coding best practices.

The framework also uses JavaScript Strict mode to turn on native security features in the browser, and Content Security Policy (CSP) rules to control the source of content that can be loaded on a page.
What is Locker Service?

Locker Service is a powerful security architecture for Lightning components. Locker Service enhances security by isolating Lightning components that belong to one namespace from components in a different namespace. Locker Service also promotes best practices that improve the supportability of your code by only allowing access to supported APIs and eliminating access to non-published framework internals.

IN THIS SECTION:

JavaScript ES5 Strict Mode Enforcement

Locker Service implicitly enables JavaScript ES5 strict mode. You don’t need to specify "use strict" in your code. JavaScript strict mode makes code more secure, robust and supportable.

DOM Access Containment

A component can only traverse the DOM and access elements created by a component in the same namespace. This behavior prevents the anti-pattern of reaching into DOM elements owned by components in another namespace.

Secure Wrappers

Locker Service applies restrictions to global objects by hiding the objects or providing secure versions of those objects. For example, the secure version of window is SecureWindow. You can interact with the secure version in the same way you interact with the non-secure one, except that some methods and properties are filtered, and others are hidden.

eval() Function is Limited by Locker Service

In Locker Service, use of the eval() function is supported to enable use of third-party libraries that evaluate code dynamically. However, it is limited to work only in the global scope of the namespace. The eval() function can’t access the local variables within the scope in which it’s called.

MIME Types Permitted

Locker Service analyzes the MIME types of files sent through the browser. Locker permits some MIME types, sanitizes some MIME types, and blocks the rest.

Access to Supported JavaScript API Framework Methods Only

You can access published, supported JavaScript API framework methods only. These methods are published in the reference doc app at https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain. Previously, unsupported methods were accessible, which exposed your code to the risk of breaking when unsupported methods were changed or removed.

What Does Locker Service Affect?

Find out what’s affected and what’s not affected by Locker Service.

Locker Service Tools

Locker Service tools help you develop more secure code that is compatible and runs efficiently with Locker Service.

Disabling Locker Service for a Component

You can disable Locker Service for a component by setting API version 39.0 or lower for the component. If a component is set to at least API version 40.0, Locker Service is enabled. API version 40.0 corresponds to Summer ’17, when Locker Service was enabled for all orgs.

Don’t Mix Component API Versions

For consistency and ease of debugging, we recommend that you set the same API version for all custom components in your app, containment hierarchy (component within component), or extension hierarchy (component extending component).
Locker Service Disabled for Unsupported Browsers

Locker Service relies on some JavaScript features in the browser: support for strict mode, the Map object, and the Proxy object. If a browser doesn’t meet the requirements, Locker Service can’t enforce all its security features and is disabled.

SEE ALSO:
- Content Security Policy Overview
- Modifying the DOM
- Component Library
- Salesforce Lightning CLI (Deprecated)
- Salesforce Help: Supported Browsers for Lightning Experience

JavaScript ES5 Strict Mode Enforcement

Locker Service implicitly enables JavaScript ES5 strict mode. You don’t need to specify "use strict" in your code. JavaScript strict mode makes code more secure, robust and supportable.

When strict mode is enabled and unsafe actions are taken, JavaScript throws errors that would otherwise be suppressed. Examples of unsafe actions include assigning values to non-writable properties and using a variable that hasn’t been declared. Reporting these actions can catch situations when a variable name has been mistyped.

A few common stumbling points when using strict mode are:

- You must declare variables with the var keyword.
- You must explicitly attach a variable to the window object to create a global variable that’s available across components or libraries. For more information, see Sharing JavaScript Code Across Components.
- The libraries that your components use must also work in strict mode.

For more information about JavaScript strict mode, see the Mozilla Developer Network.

DOM Access Containment

A component can only traverse the DOM and access elements created by a component in the same namespace. This behavior prevents the anti-pattern of reaching into DOM elements owned by components in another namespace.

⚠️ Note: It’s an anti-pattern for any component to “reach into” another component, regardless of namespace, because it breaks encapsulation. Locker Service only prevents cross-namespace access. Your good judgment should prevent cross-component access within your own namespace as it makes components tightly coupled and more likely to break.

Let’s look at a sample component that demonstrates DOM containment.

```xml
<!--c:domLocker-->
<aura:component>
 <div id="myDiv" aura:id="div1">
 <p>See how Locker Service restricts DOM access</p>
 </div>
 <lightning:button name="myButton" label="Peek in DOM" aura:id="button1" onclick="!c.peekInDom"/>
</aura:component>
```

The c:domLocker component creates a <div> element and a lightning:button component.
Here's the client-side controller that peeks around in the DOM.

```javascript
/* domLockerController.js */
peekInDom : function(cmp, event, helper) {
 console.log("cmp.getElements(): ", cmp.getElements());
 // access the DOM in c:domLocker
 console.log("div1: ", cmp.find("div1").getElement());
 console.log("button1: ", cmp.find("button1");
 console.log("button name: ", event.getSource().get("v.name");

 // returns an error
 //console.log("button1 element: ", cmp.find("button1").getElement());
}
```

## Valid DOM Access

The following methods are valid DOM access because the elements are created by `c:domLocker`.

- **cmp.getElements()**
  Returns the elements in the DOM rendered by the component.

- **cmp.find()**
  Returns the div and button components, identified by their `aura:id` attributes.

- **cmp.find("div1").getElement()**
  Returns the DOM element for the div as `c:domLocker` created the div.

- **event.getSource().get("v.name")**
  Returns the name of the button that dispatched the event; in this case, `myButton`.

## Invalid DOM Access

You can't use `cmp.find("button1").getElement()` to access the DOM element created by `lightning:button`. Locker Service doesn't allow `c:domLocker` to access the DOM for `lightning:button` because the button is in the `lightning` namespace and `c:domLocker` is in the `c` namespace.

If you uncomment the code for `cmp.find("button1").getElement()`, you'll see an error:

```
c:domLocker$controller$peekInDom [cmp.find(...).getElement is not a function]
```

## IN THIS SECTION:

- **How Locker Service Uses the Proxy Object**
  Locker Service uses the standard JavaScript `Proxy` object to filter a component's access to underlying JavaScript objects. The `Proxy` object ensures that a component only sees DOM elements created by a component in the same namespace.

## SEE ALSO:

- **What is Locker Service?**
- **Using JavaScript**
How Locker Service Uses the **Proxy** Object

Locker Service uses the standard JavaScript **Proxy** object to filter a component’s access to underlying JavaScript objects. The **Proxy** object ensures that a component only sees DOM elements created by a component in the same namespace.

You can interact with a **Proxy** object in the same way as you interact with the raw JavaScript object, but the object shows up in the browser’s console as a **Proxy**. It’s useful to understand Locker Service’s usage of **Proxy** if you drop into your browser’s debugger and start poking around.

When a component creates a JavaScript object, Locker Service returns the raw JavaScript object. When Locker Service filters the object, it returns a **Proxy** object. Some scenarios where Locker Service filters an object and returns a **Proxy** object are:

- Passing an object to a component in a different namespace.
- Passing an object from a component on API version less than 40.0 to the method of a component on API version greater than or equal to 40.0.
- Calling `cmp.get()` to retrieve an attribute value that you set with the value of a native JavaScript object or array. The object or array isn’t filtered when it’s originally created.

When you access these objects, Locker Service returns a **Proxy** object.

- Any object that implements the **HTMLCollection** interface
- A **SecureElement** object, which represents an HTML element.

For more information about standard JavaScript **Proxy** object, see the Mozilla Developer Network.

**SEE ALSO:**
- **DOM Access Containment**
- **Secure Wrappers**
- **Don’t Mix Component API Versions**

## Secure Wrappers

Locker Service applies restrictions to global objects by hiding the objects or providing secure versions of those objects. For example, the secure version of `window` is **SecureWindow**. You can interact with the secure version in the same way you interact with the non-secure one, except that some methods and properties are filtered, and others are hidden.

Instances of other objects, such as components and events, are also replaced by secure wrapped versions. Here’s a list of the most common ones that you’ll encounter.

**SecureAura**
- Secure wrapper for `$A`, which is the entry point for using the framework in JavaScript code.

**SecureComponent**
- Secure wrapper for the **Component** object inside the same namespace.

**SecureComponentRef**
- SecureComponentRef is a subset of **SecureComponent** that provides the external API for a component in a different namespace.

When you’re in a controller or helper, you have access to a **SecureComponent**, essentially the **this** object. You get a **SecureComponentRef** instead if you reference a component in a different namespace. For example, if your markup includes a `lightning:button` and you call `cmp.find("buttonAuraId")`, you get a **SecureComponentRef** as `lightning:button` is in a different namespace from the component containing the button markup.
SecureDocument
Secure wrapper for the `document` object, which represents the root node of the HTML document or page. The `document` object is the entry point into the page’s content, which is the DOM tree.

SecureElement
Secure wrapper for the `Element` object, which represents various HTML elements. `SecureElement` is wrapped in a Proxy object as a performance optimization so that its data can be lazily filtered when it’s accessed. Therefore, the HTML element is represented by a Proxy object if you’re debugging in the browser console.

SecureObject
Secure wrapper for an object that is wrapped by Locker Service. When you see a `SecureObject`, it typically means that you don’t have access to the underlying object and some properties aren’t available.

SecureWindow
Secure wrapper for the `window` object, which represents a window containing a DOM document.

Use the Locker Service API Viewer to quickly see the difference between the DOM APIs exposed by Locker Service versus the standard DOM APIs for the most complex wrappers: `SecureDocument`, `SecureElement`, and `SecureWindow`.

Example
Let’s look at a sample component that demonstrates some of the secure wrappers.

```html
<!--c:secureWrappers-->
<aura:component>
 <div id="myDiv" aura:id="div1">
 <p>See how Locker Service uses secure wrappers</p>
 </div>
 <lightning:button name="myButton" label="Peek in DOM"
 aura:id="button1" onclick="!c.peekInDom"/>
</aura:component>
```

The `c:secureWrappers` component creates a `div` HTML element and a `lightning:button` component. Here’s the client-side controller that peeks around in the DOM.

```javascript
/* secureWrappersController.js */
peekInDom : function(cmp, event, helper) {
 console.log("div1: ", cmp.find("div1").getElement());
 console.log("button1: ", cmp.find("button1").get("v.name"));
 // add debugger statement for inspection
 // always remove this from production code
 debugger;
}
}
```

We use `console.log()` to look at the `div` element and the button. The `div` `SecureElement` is wrapped in a Proxy object as a performance optimization so that its data can be lazily filtered when it’s accessed.

We put a debugger statement in the code so that we could inspect the elements in the browser console.

Type these expressions into the browser console and look at the results.
We add an empty string to some expressions so that the object is converted to a String. You could also use the `toString()` method.

Here's the output.

```
let cmp = window.$A;

cmp.find("button1") + ""
returns a SecureComponent object for cmp, which represents the c:secureWrappers component.

cmp.find("button1").find("") + ""
returns a SecureComponentRef, which represents the external API for a component in a different namespace. In this example, the component is lightning:button.

window + ""
returns a SecureWindow object.

$A + ""
returns a SecureAura object.
```

SEE ALSO:
- Locker Service API Viewer
- How Locker Service Uses the Proxy Object

### eval() Function is Limited by Locker Service

In Locker Service, use of the `eval()` function is supported to enable use of third-party libraries that evaluate code dynamically. However, it is limited to work only in the global scope of the namespace. The `eval()` function can’t access the local variables within the scope in which it’s called.
Normally, `eval()` has two modes of execution. When you invoke `eval()` directly, it works in the local scope. When you invoke it via a reference, it works in the global scope. Locker Service only supports the latter.

For example, suppose that you execute the following code:

```javascript
window.foo = 1;
function bar() {
 var foo = 2;
 return eval("foo");
}
```

A call to `bar()` returns 2 when evaluation is performed in the local scope, and returns 1 when it’s performed in the global scope. If you must use variables from the local scope, refactor your code. Use a `Function()`, declare the local variables as parameters, pass them as arguments, and add a return statement:

```javascript
window.foo = 1;
function bar() {
 var foo = 2;
 return Function("foo","return foo")(foo);
}
```

### MIME Types Permitted

Locker Service analyzes the MIME types of files sent through the browser. Locker permits some MIME types, sanitizes some MIME types, and blocks the rest.

These MIME types are allowed, or white-listed, by Locker Service.

- `application/octet-stream` — Default value for binary files
- `application/json` — JSON format
- `video/` — All `video/*` mime types
- `audio/` — All `audio/*` mime types
- `image/` — All `image/*` mime types
- `font/` — All `font/*` mime types
- `text/plain` — Text (.txt)
- `text/markdown` — Markdown (.md)
- `application/zip` — Zip archive (.zip)
- `application/x-bzip` — Bzip archive (.bz)
- `application/x-rar-compressed` — RAR archive (.rar)
- `application/x-tar` — Tape archive (.tar)

Locker sanitizes `text/html`, `image/svg+xml`, and `text/xml` MIME types. These types are permitted but Locker removes potentially malicious code.

Any other types are blocked with the error message **Unsupported MIME type**.

If you need to send binary files that are not explicitly permitted, specify the MIME type as `application/octet-stream`. 
Access to Supported JavaScript API Framework Methods Only

You can access published, supported JavaScript API framework methods only. These methods are published in the reference doc app at https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain. Previously, unsupported methods were accessible, which exposed your code to the risk of breaking when unsupported methods were changed or removed.

What Does Locker Service Affect?

Find out what's affected and what's not affected by Locker Service.

Locker Service enforces security and best practices for custom Lightning components you use in:

- Lightning Experience
- Salesforce app
- Lightning Communities
- Flows
- Standalone apps that you create (for example, myApp.app)
- Any other app where you can add a custom Lightning component, such as Salesforce Console in Lightning Experience
- Lightning Out

Locker Service doesn't affect the following except for usage of Lightning components in Visualforce in these contexts:

- Salesforce Classic
- Visualforce-based communities
- Any apps for Salesforce Classic, such as Salesforce Console in Salesforce Classic

 Locker Service Tools

Locker Service tools help you develop more secure code that is compatible and runs efficiently with Locker Service.

IN THIS SECTION:

- **Locker Service API Viewer**
  The Locker Service API Viewer shows the DOM APIs exposed by Locker Service versus the standard DOM APIs for the most complex wrappers: SecureDocument, SecureElement, and SecureWindow.

- **Locker Console Overview**
  Use Locker Console to check your JavaScript code's compatibility with Locker Service, and compare how it runs with Locker Service enabled and disabled. Access Locker Console in the Component Library.

 locker Service API Viewer

The Locker Service API Viewer shows the DOM APIs exposed by Locker Service versus the standard DOM APIs for the most complex wrappers: SecureDocument, SecureElement, and SecureWindow.

Access the API Viewer in the Component Library.

The API Viewer lets you quickly see the difference between the standard DOM APIs and the Locker Service APIs.

- A **white** row indicates an API that behaves the same in Locker Service.
- An **orange** row indicates an API that behaves differently in Locker Service.
A red row means that the API isn’t supported in Locker Service.

There are several ways to validate your code to ensure compatibility with Lightning component APIs. For more information, see Validations for Lightning Component Code.

Use the Locker Console to check JavaScript code’s compatibility with Locker Service.

**Reference Doc App**

The reference doc app lists the API for SecureComponent under *JavaScript API > Component*.

SecureAura is the wrapper for $A.

Access the reference doc app at:

https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain.

SEE ALSO:

Secure Wrappers

Locker Console Overview

**Locker Console Overview**

Use Locker Console to check your JavaScript code’s compatibility with Locker Service, and compare how it runs with Locker Service enabled and disabled. Access Locker Console in the Component Library.

Locker Console enables you to quickly evaluate JavaScript code for issues or benchmark code, without requiring you to create an app to test your component. You can evaluate only JavaScript code in Locker Console. You can’t evaluate a complete component bundle or component markup.

Here’s an overview of the user interface of the Locker Console tool.

![Code Console](image)

**Code Console (1)**

Paste or type your JavaScript code here to evaluate or benchmark it.
Toggles (2)

- Enable or disable Locker Service.
- Enable or disable Strict CSP.

Actions (3)

- Click **Evaluate** to run the code that’s displayed in the code console.
- Click **Benchmark** to run your code with and without Locker Service and view relative performance metrics.
- Click **Clear Results** to clear all the displayed results.

IN THIS SECTION:

**Evaluate JavaScript Code Compatibility with Locker Service**

Ensure that your code is compatible with Locker Service by running the code with Locker Service enabled. Run the code a second time with Locker Service disabled to see if any errors are due to Locker Service restrictions.

**Benchmark Locker Service Effect on JavaScript Code**

Benchmark your JavaScript code with and without Locker Service and view relative performance metrics.

SEE ALSO:

- Locker Service API Viewer
- Component Library
- Stricter CSP Restrictions

**Evaluate JavaScript Code Compatibility with Locker Service**

Ensure that your code is compatible with Locker Service by running the code with Locker Service enabled. Run the code a second time with Locker Service disabled to see if any errors are due to Locker Service restrictions.

Let’s look at an example that uses a prohibited DOM API.

1. Paste this code into the console.

   ```javascript
 var controller = new AbortController();
 controller;
   ```

2. Click **Evaluate**.

   Note the error in the LOCKER ON column of the results window.

   ```javascript
 TypeError: AbortController is not a constructor
   ```

   You get this error because `AbortController` is an experimental interface in the DOM API and is not allowed by Locker Service. The LOCKER OFF column shows – (dash) as this column isn’t relevant when the Locker toggle is enabled.

3. Click the **Locker** toggle to disable Locker Service.

4. Click **Evaluate** to rerun the code sample with Locker Service disabled.

   The second row of the results window shows there’s no longer an error when Locker Service is disabled. The LOCKER OFF column shows `[object AbortController]`, which is the return value of the sample code.
Use the Locker Service API Viewer to see the DOM APIs exposed by Locker Service versus the standard DOM APIs for the most complex wrappers: SecureDocument, SecureElement, and SecureWindow.

SEE ALSO:
- Locker Console Overview
- Locker Service API Viewer

**Benchmark Locker Service Effect on JavaScript Code**

Benchmark your JavaScript code with and without Locker Service and view relative performance metrics.

Benchmarking enables you to see the performance difference with Locker Service enabled and disabled, without requiring you to create an app to test your component.

**Example**

Let’s look at an example where you study the performance of a series of nested loops.

1. Paste this code into the code console.

```javascript
function build(count) {
 var table = document.createElement("table");
 for (var contact = 0; contact < count; contact++) {
 for (var day = 0; day < 7; day++) {
 var tr = document.createElement("tr");
 var td = document.createElement("td");
 td.textContent = contact;
 tr.appendChild(td);
 for (var hour = 6; hour < 22; hour++) {
 td = document.createElement("td");
 td.className = "officeDivider"
 tr.appendChild(td);
 td = document.createElement("td");
 td.className = "officeHourIn"
 tr.appendChild(td);
 td = document.createElement("td");
 td.className = "officeHourIn"
 tr.appendChild(td);
 }
 }
 }
}
```
2. Click Benchmark.

The FASTEST column in the results window shows that the code runs 6.5 times faster when Locker Service is disabled. This difference in speed is the cost of security, and whether the performance loss is acceptable depends on each specific case.

The benchmark action allows you to tweak your code and see how the change affects running time. This rapid iterative process is useful when you’re optimizing computationally intensive sections of the code.
Example with Improved Performance

To show how to reduce the overhead of Locker Service, let's build the same table using a string of HTML and benchmark to evaluate the difference.

1. Paste this code into the code console.

```javascript
function build(count) {
 var html = "<body>"
 for (var contact = 0; contact < count; contact++) {
 for (var day = 0; day < 7; day++) {
 html += "<td>" + contact + "</td>"
 for (var hour = 6; hour < 22; hour++) {
 html += "<td class='officeDivider'></td>"
 html += "<td class='officeHourIn'></td>"
 html += "<td class='officeHourIn'></td>"
 html += "<td class='officeHourIn'></td>"
 }
 }
 }
 html += "</body>";
 return html;
}
var div = document.createElement('div');
div.innerHTML = build(10);
```

2. Click Benchmark.

Because there are no DOM API calls, such as `document.createElement()`, inside the loops in this example, the performance of the `build()` function is similar whether Locker is on or off. The code runs 1.08 times faster when Locker Service is disabled, as opposed to 6.5 times faster in the previous example that had multiple DOM API calls.
Plain JavaScript is generally much faster than the DOM API, and the more often a section of code connects to the DOM, the slower the code runs. The DOM API causes most of the Locker overhead. Here, we accelerate the code by reducing the number of times we touch the DOM, which also greatly reduces the overall Locker overhead.

SEE ALSO:
- Locker Console Overview

Disabling Locker Service for a Component

You can disable Locker Service for a component by setting API version 39.0 or lower for the component. If a component is set to at least API version 40.0, Locker Service is enabled. API version 40.0 corresponds to Summer ’17, when Locker Service was enabled for all orgs. Locker Service is disabled for any component created before Summer ’17 because these components have an API version less than 40.0.

Component versioning enables you to associate a component with an API version. When you create a component, the default version is the latest API version. In Developer Console, click Bundle Version Settings in the right panel to set the component version.

For consistency and ease of debugging, we recommend that you set the same API version for all components in your app, when possible.

SEE ALSO:
- Don’t Mix Component API Versions
- Component Versioning
- Create Lightning Components in the Developer Console

Don’t Mix Component API Versions

For consistency and ease of debugging, we recommend that you set the same API version for all custom components in your app, containment hierarchy (component within component), or extension hierarchy (component extending component).

If you mix API versions in your containment or extension hierarchy and Locker Service is enabled for some components and disabled for other components, your app will be harder to debug.

Extension Hierarchy

Locker Service is enabled for a component or an application purely based on component version. The extension hierarchy for a component doesn’t factor into Locker Service enforcement.

Let’s look at an example where a Car component extends a Vehicle component. Car has API version 39.0 so Locker Service is disabled. Vehicle has API version 40.0 so Locker Service is enabled.

Now, let’s say that Vehicle adds an expando property, _counter, to the window object by assigning a value to window._counter. Since Locker Service is enabled for Vehicle, the _counter property is added to SecureWindow, the secure wrapper for window for the component’s namespace. The property isn’t added to the native window object.

Locker Service is disabled for Car so the component has access to the native window object. Car can’t see the _counter property as it’s only available in the SecureWindow object.

This subtle behavior can cause much gnashing of teeth when your code doesn’t work as you expect. You’ll never get that debugging time back! Save yourself some grief and use the same API version for all components in an extension hierarchy.
Containment Hierarchy

The containment hierarchy within an application or a component doesn’t factor into Locker Service enforcement.

Let’s look at an example where a Bicycle component contains a Wheel component. If Bicycle has API version 40.0, Locker Service is enabled. If Wheel has API version 39.0, Locker Service is disabled for Wheel even though it’s contained in a component, Bicycle, that has Locker Service enabled.

Due to the mix of component API versions, you’re likely to run into issues similar to those for the extension hierarchy. We recommend that you set the same API version for all components in your app or component hierarchy, when possible.

SEE ALSO:
- Component Versioning
- Disabling Locker Service for a Component
- Secure Wrappers
- Sharing JavaScript Code Across Components

Locker Service Disabled for Unsupported Browsers

Locker Service relies on some JavaScript features in the browser: support for strict mode, the Map object, and the Proxy object. If a browser doesn’t meet the requirements, Locker Service can’t enforce all its security features and is disabled.

Locker Service is disabled for unsupported browsers. If you use an unsupported browser, you’re likely to encounter issues that won’t be fixed. Make your life easier and your browsing experience more secure by using a supported browser.

⚠️ Note: The Locker Service requirements align with the supported browsers for Lightning Experience, except for IE11. Locker Service is disabled for IE11. We recommend using supported browsers other than IE11 for enhanced security.

SEE ALSO:
- Browser Support Considerations for Lightning Components
- Salesforce Help: Supported Browsers for Lightning Experience

Content Security Policy Overview

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that can be loaded on a page.

CSP is a Candidate Recommendation of the W3C working group on Web Application Security. The framework uses the Content-Security-Policy HTTP header recommended by the W3C.

The framework’s CSP covers these resources:

- **JavaScript Libraries**
  - All JavaScript libraries must be uploaded to Salesforce static resources. For more information, see Using External JavaScript Libraries on page 343.

- **HTTPS Connections for Resources**
  - All external fonts, images, frames, and CSS must use an HTTPS URL.

You can change the CSP policy and expand access to third-party resources by adding CSP Trusted Sites.
Browser Support

CSP isn’t enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

Note: IE11 doesn’t support CSP, so we recommend using other supported browsers for enhanced security.

Finding CSP Violations

Any policy violations are logged in the browser’s developer console. The violations look like the following message.

Refused to load the script 'https://externaljs.docsample.com/externalLib.js' because it violates the following Content Security Policy directive: ...

If your app’s functionality isn’t affected, you can ignore the CSP violation.

IN THIS SECTION:

Stricter CSP Restrictions

The Lightning Component framework already uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that can be loaded on a page. The “Enable Stricter Content Security Policy” org setting tightens CSP to mitigate the risk of cross-site scripting attacks. The CSP rules work at the page level, and apply to all components, whether Locker Service is enabled or not.

SEE ALSO:

Browser Support Considerations for Lightning Components
Making API Calls from Components
Create CSP Trusted Sites to Access Third-Party APIs
Salesforce Help: Supported Browsers for Lightning Experience
Salesforce Help: Script Level Security in Communities

Stricter CSP Restrictions

The Lightning Component framework already uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that can be loaded on a page. The “Enable Stricter Content Security Policy” org setting tightens CSP to mitigate the risk of cross-site scripting attacks. The CSP rules work at the page level, and apply to all components, whether Locker Service is enabled or not.

Stricter CSP disallows unsafe-inline for script-src. This means that script tags can’t be used to load JavaScript, and event handlers can’t use inline JavaScript. For example, this is prevented:

<button onclick="doSomething()"></button>

When stricter CSP is enabled, you must ensure that all your code, including third-party libraries, respects the stricter CSP restrictions.

Note:

- Prior to Summer ’18, stricter CSP also disabled unsafe-eval. This is no longer the case. Locker Service in Summer ’18 supports secure versions of both eval() and Function() functions. For more information, see eval() Function is Limited by Locker Service.
- Prior to Winter ’19, stricter CSP was controlled by the “Enable Stricter Content Security Policy for Lightning Components” critical update. We changed the critical update to an org setting to give you greater control over its enablement.
What Does Stricter CSP Affect?

Stricter CSP affects:

- Lightning Experience
- Salesforce app
- Standalone apps that you create (for example, myApp.app)

Stricter CSP doesn’t affect:

- Salesforce Classic
- Any apps for Salesforce Classic, such as Salesforce Console in Salesforce Classic
- Communities
- Lightning Out, which allows you to run Lightning components in a container outside of Lightning apps, such as Lightning components in Visualforce and Visualforce-based Communities. The container defines the CSP rules.

Note: CSP in Communities is controlled separately through each community’s settings.

Disable Stricter CSP

Stricter CSP is enabled by default. To disable it:

1. From Setup, enter Session in the Quick Find box, and then select Session Settings.
2. Deselect the checkbox for “Enable Stricter Content Security Policy”.
3. Click Save.

Freeze JavaScript Prototypes

Freeze JavaScript prototypes to prevent Lightning component authors from modifying JavaScript prototypes of global objects that are shared between namespaces. This restriction enables better code separation between components and prevents malicious or inadvertent tampering of shared objects, such as the JavaScript APIs or DOM APIs.

In JavaScript, each object has a prototype object. An object inherits methods and properties from its prototype object. Prototypes enable a JavaScript object to inherit features from another object. If a component author modifies a JavaScript prototype of a shared object, it can introduce unexpected behavior and potential security issues. Freezing JavaScript prototypes eliminates this risk.

This setting is disabled by default.

1. From Setup, enter Session in the Quick Find box, and then select Session Settings.
2. Select the checkbox for “Freeze JavaScript Prototypes”.
3. Click Save.

Note: Cisco Webex Teams and Meetings features aren’t compatible with the Freeze JavaScript Prototypes setting. If you have one of these Webex features enabled, you can’t enable this setting.

336
CHAPTER 9 Using JavaScript

In this chapter ...

- Invoking Actions on Component Initialization
- Sharing JavaScript Code in a Component Bundle
- Sharing JavaScript Code Across Components
- Using External JavaScript Libraries
- Dynamically Creating Components
- Detecting Data Changes with Change Handlers
- Finding Components by ID
- Working with Attribute Values in JavaScript
- Working with a Component Body in JavaScript
- Working with Events in JavaScript
- Modifying the DOM
- Checking Component Validity
- Modifying Components Outside the Framework Lifecycle
- Validating Fields
- Throwing and Handling Errors

Use JavaScript for client-side code. The $A namespace is the entry point for using the framework in JavaScript code.

For all the methods available in $A, see the JavaScript API at https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain.

A component bundle can contain JavaScript code in a client-side controller, helper, or renderer. Client-side controllers are the most commonly used of these JavaScript resources.

Expressions in JavaScript Code

In JavaScript, use string syntax to evaluate an expression. For example, this expression retrieves the label attribute in a component.

```javascript
var theLabel = cmp.get("v.label");
```

**Note:** Only use the {! } expression syntax in markup in .app or .cmp resources.

SEE ALSO:

- Handling Events with Client-Side Controllers
• Calling Component Methods
• Dynamically Adding Event Handlers To a Component
• Dynamically Showing or Hiding Markup
• Adding and Removing Styles
• Which Button Was Pressed?
• Formatting Dates in JavaScript
• Using JavaScript Promises
• Making API Calls from Components
• Create CSP Trusted Sites to Access Third-Party APIs
Invoking Actions on Component Initialization

Use the `init` event to initialize a component or fire an event after component construction but before rendering. If a component is contained in another component or app, the inner component is initialized first.

Let’s look at an example.

**Component source**

```aura:component>
 <aura:attribute name="setMeOnInit" type="String" default="default value" />
 <aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

 <p>This value is set in the controller after the component initializes and before rendering.</p>
 <p>{!v.setMeOnInit}</p>
</aura:component>
```

**Client-side controller source**

```javascript

{
 doInit: function(cmp) {
 // Set the attribute value.
 // You could also fire an event here instead.
 cmp.set("v.setMeOnInit", "controller init magic!");
 }
}
```

Let’s look at the **Component source** to see how this works. The magic happens in this line.

```aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
```

This registers an `init` event handler for the component. `init` is a predefined event sent to every component. After the component is initialized, the `doInit` action is called in the component’s controller. In this sample, the controller action sets an attribute value, but it could do something more interesting, such as firing an event.

Setting `value="{!this}"` marks this as a value event. You should always use this setting for an `init` event.

SEE ALSO:
- Handling Events with Client-Side Controllers
- Create a Custom Renderer
- Component Attributes
- Detecting Data Changes with Change Handlers

Sharing JavaScript Code in a Component Bundle

Put functions that you want to reuse in the component’s helper. Helper functions also enable specialization of tasks, such as processing data and firing server-side actions.

A helper function can be called from any JavaScript code in a component’s bundle, such as from a client-side controller or renderer.
Helper functions are similar to client-side controller functions in shape, surrounded by parentheses and curly braces to denote a JavaScript object in object-literal notation containing a map of name-value pairs. A helper function can pass in any arguments required by the function, such as the component it belongs to, a callback, or any other objects.

```javascript
{{
 helperMethod1 : function() {
 // logic here
 },
 helperMethod2 : function(component) {
 // logic here
 this.helperMethod3(var1, var2);
 },
 helperMethod3 : function(var1, var2) {
 // do something with var1 and var2 here
 }
}}
```

To call another function in the same helper, use the syntax: `this.methodName`, where `this` is a reference to the helper itself. For example, helperMethod2 calls helperMethod3 with this code.

```javascript
this.helperMethod3(var1, var2);
```

### Creating a Helper

A helper resource is part of the component bundle and is auto-wired via the naming convention, `<componentName>Helper.js`. To create a helper using the Developer Console, click HELPER in the sidebar of the component. This helper file is valid for the scope of the component to which it’s auto-wired.

### Using a Helper in a Controller

Add a helper argument to a controller function to enable the function to use the helper. Specify `(component, event, helper)` in the controller. These are standard parameters and you don’t have to access them in the function. You can also pass in an instance variable as a parameter, for example, `createExpense: function(component, expense){...}`, where expense is a variable defined in the component.

The following code shows you how to call the `updateItem` helper function in a controller, which can be used with a custom event handler.

```javascript
/* controller */

{{
 newItemEvent: function(component, event, helper) {
 helper.updateItem(component, event.getParam("item"));
 }
}}
```

Helper functions are local to a component, improve code reuse, and move the heavy lifting of JavaScript logic away from the client-side controller where possible. The following code shows the helper function, which takes in the value parameter set in the controller via
the `item` argument. The code walks through calling a server-side action and returning a callback but you can do something else in the helper function.

```javascript
/* helper */
{
 updateItem : function(component, item, callback) {
 // Update the items via a server-side action
 var action = component.get("c.saveItem");
 action.setParams({"item" : item});
 // Set any optional callback and enqueue the action
 if (callback) {
 action.setCallback(this, callback);
 } else {
 $A.enqueueAction(action);
 }
 }
}
```

### Using a Helper in a Renderer

Add a helper argument to a renderer function to enable the function to use the helper. In the renderer, specify `(component, helper)` as parameters in a function signature to enable the function to access the component’s helper. These are standard parameters and you don’t have to access them in the function. The following code shows an example on how you can override the `afterRender()` function in the renderer and call `open` in the helper method.

**detailsRenderer.js**

```javascript
({
 afterRender : function(component, helper){
 helper.open(component, null, "new");
 }
})
```

**detailsHelper.js**

```javascript
({
 open : function(component, note, mode, sort){
 if (mode === "new") {
 // do something
 } else {
 // do something else, such as firing an event
 }
 }
})
```

SEE ALSO:

- Create a Custom Renderer
- Component Bundles
- Handling Events with Client-Side Controllers
Sharing JavaScript Code Across Components

You can build simple Lightning components that are entirely self-contained. However, if you build more complex applications, you probably want to share code, or even client-side data, between components.

The `<ltng:require>` tag enables you to load external JavaScript libraries after you upload them as static resources. You can also use `<ltng:require>` to import your own JavaScript libraries of utility methods.

Let's look at a simple counter library that provides a `getValue()` method, which returns the current value of the counter, and an `increment()` method, which increments the value of that counter.

Create the JavaScript Library

1. In the Developer Console, click File > New > Static Resource.
2. Enter `counter` in the Name field.
3. Select `text/javascript` in the MIME Type field.
4. Click Submit.
5. Enter this code and click File > Save.

```javascript
window._counter = (function() {
 var value = 0; // private

 return { // public API
 increment: function() {
 value = value + 1;
 return value;
 },

 getValue: function() {
 return value;
 }
 };
})();
```

This code uses the JavaScript module pattern. Using this closure-based pattern, the `value` variable remains private to your library. Components using the library can't access `value` directly.

The most important line of the code to note is:

```javascript
window._counter = (function() {
```

You must attach `_counter` to the `window` object as a requirement of JavaScript strict mode, which is implicitly enabled in Locker Service. Even though `window._counter` looks like a global declaration, `_counter` is attached to the Locker Service secure window object and therefore is a namespace variable, not a global variable.

If you use `_counter` instead of `window._counter`, `_counter` isn't available. When you try to access it, you get an error similar to:

```
Action failed: ... [_counter is not defined]
```
Use the JavaScript Library

Let’s use the library in a MyCounter component that has a simple UI to exercise the counter methods.

```html
<!-c:MyCounter-->
<aura:component access="global">
 <ltng:require scripts="{!$Resource.counter}"
 afterScriptsLoaded="{!c.getValue}"/>
 <aura:attribute name="value" type="Integer"/>

 <h1>MyCounter</h1>
 <p>{!v.value}</p>
 <lightning:button label="Get Value" onclick="{!c.getValue}"/>
 <lightning:button label="Increment" onclick="{!c.increment}"/>
</aura:component>
```

The `<ltng:require>` tag loads the counter library and calls the `getValue` action in the component’s client-side controller after the library is loaded.

Here’s the client-side controller.

```javascript
/* MyCounterController.js */

 getValue : function(component, event, helper) {
 component.set("v.value", _counter.getValue());
 },

 increment : function(component, event, helper) {
 component.set("v.value", _counter.increment());
 }
}
```

You can access properties of the window object without having to type the `window.` prefix. Therefore, you can use `_counter.getValue()` as shorthand for `window._counter.getValue()`.

Click the buttons to get the value or increment it.

Our counter library shares the counter value between any components that use the library. If you need each component to have a separate counter, you could modify the counter implementation. To see the per-component code and for more details, see this blog post about Modularizing Code in Lightning Components.

SEE ALSO:
- Using External JavaScript Libraries
- JavaScript ES5 Strict Mode Enforcement

Using External JavaScript Libraries

To reference a JavaScript library that you’ve uploaded as a static resource, use a `<ltng:require>` tag in your .cmp or .app markup.

The framework’s content security policy mandates that external JavaScript libraries must be uploaded to Salesforce static resources. For more information on static resources, see “Static Resources” in the Salesforce online help.
Here’s an example of using `<ltng:require>`.

```html
<ltng:require scripts='"{!$Resource.resourceName}"' afterScriptsLoaded='"{!c.afterScriptsLoaded}"' />
```

`resourceName` is the Name of the static resource. In a managed packaged, the resource name must include the package namespace prefix, such as `$Resource.yourNamespace__resourceName`. For a stand-alone static resource, such as an individual graphic or script, that’s all you need. To reference an item within an archive static resource, add the rest of the path to the item using string concatenation.

The `afterScriptsLoaded` action in the client-side controller is called after the scripts are loaded and the component is rendered. Don’t use the `init` event to access scripts loaded by `<ltng:require>`. These scripts load asynchronously and are most likely not available when the `init` event handler is called.

Here are some considerations for loading scripts:

**Loading Sets of Scripts**
Specify a comma-separated list of resources in the `scripts` attribute to load a set of resources.

```
Note: Due to a quirk in the way `$Resource` is parsed in expressions, use the `join` operator to include multiple `$Resource` references in a single attribute. For example, if you have more than one JavaScript library to include into a component the `scripts` attribute should be something like the following.

```html
<scripts='"{!join(',
  $Resource.jsLibraries + '/jsLibOne.js,'
  $Resource.jsLibraries + '/jsLibTwo.js')}"'></script>
```
```

**Loading Order**
The scripts are loaded in the order that they are listed.

**One-Time Loading**
Scripts load only once, even if they’re specified in multiple `<ltng:require>` tags in the same component or across different components.

**Parallel Loading**
Use separate `<ltng:require>` tags for parallel loading if you have multiple sets of scripts that are not dependent on each other.

**Encapsulation**
To ensure encapsulation and reusability, add the `<ltng:require>` tag to every `.cmp` or `.app` resource that uses the JavaScript library.

`<ltng:require>` also has a `styles` attribute to load a list of CSS resources. You can set the `scripts` and `styles` attributes in one `<ltng:require>` tag.

If you’re using an external library to work with your HTML elements after rendering, use `afterScriptsLoaded` to wire up a client-side controller. The following example sets up a chart using the Chart.js library, which is uploaded as a static resource.

```html
<ltng:require scripts='"{!$Resource.chart}"' afterScriptsLoaded='"{!c.setup}"'/>
<canvas aura:id='chart' id='myChart' width='400' height='400'/>
```

The component’s client-side controller sets up the chart after component initialization and rendering.

```
setup : function(component, event, helper) {
 var data = {
 labels: ['January', 'February', 'March'],
 datasets: [{
```
```javascript
 var el = component.find("chart").getElement();
 var ctx = el.getContext("2d");
 var myNewChart = new Chart(ctx).Line(data);
```

SEE ALSO:
- Component Library
- Content Security Policy Overview
- Using External CSS
- $Resource

**Dynamically Creating Components**

Create a component dynamically in your client-side JavaScript code by using the `$A.createComponent()` method. To create multiple components, use `$A.createComponents()`.

>Note: Use `$A.createComponent()` instead of the deprecated `$A.newCmp()` and `$A.newCmpAsync()` methods.

**Client-Side Versus Server-Side Component Creation**

The `$A.createComponent()` and `$A.createComponents()` methods support both client-side (synchronous) and server-side (asynchronous) component creation. For performance and other reasons, client-side creation is preferred.

To use `$A.createComponent()`, we need the component definition. If we don’t have the definition already on the client, the framework makes a server trip to get it. You can avoid this server trip by adding an `<aura:dependency>` tag for the component you’re creating in the markup of the component that calls `$A.createComponent()`. The tag ensures that the component definition is always available on the client. The tradeoff is that the definition is always downloaded instead of only when it’s needed. This performance tradeoff decision should depend on your use case.

If no server-side dependencies are found, the methods are executed synchronously on the client-side. The top-level component determines whether a server request is necessary for component creation. A component with server-side dependencies must be created on the server. Server-side dependencies include component definitions or dynamically loaded labels that aren’t already on the client, and other elements that can’t be predetermined by static markup analysis.

>Note: A server-side controller isn’t a server-side dependency for component creation because controller actions are only called after the component has been created.

A single call to `$A.createComponent()` or `$A.createComponents()` can result in many components being created. The call creates the requested component and all its child components. In addition to performance considerations, server-side component creation has a limit of 10,000 components that can be created in a single request. If you hit this limit, ensure you’re explicitly declaring component dependencies with the `<aura:dependency>` tag or otherwise pre-loading dependent elements, so that your component can be created on the client side instead.

There’s no limit on component creation on the client side.

>Note: Creating components where the top-level components don’t have server dependencies but nested inner components do isn’t currently supported.
Syntax

The syntax is:

```javascript
$A.createComponent(String type, Object attributes, function callback)
```

1. **type**—The type of component to create; for example, "lightning:button".
2. **attributes**—A map of attributes for the component, including the local ID (aura:id).
3. **callback(cmp, status, errorMessage)**—The callback to invoke after the component is created.

**Tip:** Component creation is asynchronous if it requires a server trip. You should follow good asynchronous practices, such as only using the new component in the callback.

The callback has three parameters.

- **cmp**—The component that was created. This enables you to do something with the new component, such as add it to the body of the component that creates it. If there’s an error, cmp is null.

- **status**—The status of the call. The possible values are SUCCESS, INCOMPLETE, or ERROR. Always check that the status is SUCCESS before you try to use the component.

- **errorMessage**—The error message if the status is ERROR.

Example

Let’s add a dynamically created button to this sample component.

```html
<!--c:createComponent-->
<aura:component>
 <aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

 <p>Dynamically created button</p>
 {!v.body}
</aura:component>
```

The client-side controller calls $A.createComponent() to create a lightning:button with a local ID (aura:id) and a handler for the onclick attribute. The `function(newButton, ...)` callback appends the button to the body of c:createComponent. The newButton that’s dynamically created by $A.createComponent() is passed as the first argument to the callback.

```javascript
/*createComponentController.js*/
{
 doInit : function(cmp) {
 $A.createComponent(
 "lightning:button",
 {
 "aura:id": "findableAuraId",
 "label": "Press Me",
 "onclick": cmp.getReference("c.handlePress")
 },
 function(newButton, status, errorMessage){
 //Add the new button to the body array
 if (status == "SUCCESS") {
 var body = cmp.get("v.body");
 body.push(newButton);
```
Note: c:createComponent contains a {!v.body} expression. When you use cmp.set("v.body", ...) to set the component body, you must explicitly include {!v.body} in your component markup.

Creating Nested Components

To dynamically create a component in the body of another component, use $A.createComponent() to create the components. In the function callback, nest the components by setting the inner component in the body of the outer component. This example creates a ui:outputText component in the body of a ui:message component.
### Destroying Dynamically Created Components

After a component that is declared in markup is no longer in use, the framework automatically destroys it and frees up its memory.

If you create a component dynamically in JavaScript and that component isn’t added to a facet (v.body or another attribute of type Aura.Component[]), you have to destroy it manually using Component.destroy() to avoid memory leaks.

**SEE ALSO:**
- aura:dependency
- Invoking Actions on Component Initialization
- Dynamically Adding Event Handlers To a Component

---

### Detecting Data Changes with Change Handlers

Configure a component to automatically invoke a change handler, which is a client-side controller action, when a value in one of the component’s attributes changes.

When the value changes, the valueChange.evt event is automatically fired. The event has type="VALUE".

In the component, define a handler with name="change".

```html
<aura:handler name="change" value="{"v.numItems}" action="{"c.itemsChange}"/>
```

The value attribute sets the component attribute that the change handler tracks. The action attribute sets the client-side controller action to invoke when the attribute value changes.

A component can have multiple `<aura:handler name="change">` tags to detect changes to different attributes.

In the controller, define the action for the handler.

```javascript
({
 itemsChange: function(cmp, evt) {
 console.log("numItems has changed");
 console.log("old value: "+evt.getParam("oldValue"));
 console.log("current value: "+evt.getParam("value"));
 }
})
```

The valueChange event gives you access to the previous value (oldValue) and the current value (value) in the handler action.

When a change occurs to a value that is represented by the change handler, the framework handles the firing of the event and rerendering of the component.

**SEE ALSO:**
- Invoking Actions on Component Initialization
Finding Components by ID

Retrieve a component by its ID in JavaScript code.

Use `aura:id` to add a local ID of `button1` to the `lightning:button` component.

```html
<lightning:button aura:id="button1" label="button1"/>
```

You can find the component by calling `cmp.find("button1")`, where `cmp` is a reference to the component containing the button. The `find()` function has one parameter, which is the local ID of a component within the markup.

- If the local ID is unique, `find()` returns the component.
- If there are multiple components with the same local ID, `find()` returns an array of the components.
- If there is no matching local ID, `find()` returns `undefined`.

SEE ALSO:
- Component IDs
- Value Providers

Working with Attribute Values in JavaScript

These common patterns are useful for working with attribute values in JavaScript.

`component.get(String key)` and `component.set(String key, Object value)` retrieves and assigns values associated with the specified key on the component. Keys are passed in as an expression, which represents an attribute value.

To retrieve an attribute value of a component reference, use `component.find("cmpId").get("v.value")`.

Similarly, to set the attribute value of a component reference, use `component.find("cmpId").set("v.value", myValue)`.

This example shows how you can retrieve and set attribute values on a component reference, represented by the button with an ID of `button1`.

```html
<aura:component>
 <aura:attribute name="buttonLabel" type="String"/>
 <lightning:button aura:id="button1" label="Button 1"/>
 {!v.buttonLabel}
 <lightning:button label="Get Label" onclick="!c.getLabel"/>
</aura:component>
```

This controller action retrieves the `label` attribute value of a button in a component and sets its value on the `buttonLabel` attribute.

```javascript
({
 getLabel : function(component, event, helper) {
 var myLabel = component.find("button1").get("v.label");
 component.set("v.buttonLabel", myLabel);
 }
})
```

In the following examples, `cmp` is a reference to a component in your JavaScript code.
Get an Attribute Value

To get the value of a component’s label attribute:

```javascript
var label = cmp.get("v.label");
```

Set an Attribute Value

To set the value of a component’s label attribute:

```javascript
cmp.set("v.label","This is a label");
```

Deep Set an Attribute Value

If an attribute has an object or collection type, such as Map, you can deep set properties in the attribute value using the dot notation for expressions. For example, this code sets a value for the firstName property in the user attribute.

```javascript
component.set("v.user.firstName", "Nina");
```

For deeply nested objects and attributes, continue adding dots to traverse the structure and access the nested values.

Let’s look at a component with a user attribute of type Map.

```html
<aura:component >
 <aura:attribute name="user" type="Map"
 default="{
 'id': 99,
 'firstName': 'Eunice',
 'lastName': 'Gomez'
 }" />
 <p>First Name: {!v.user.firstName}</p>
 <lightning:button onclick="!c.deepSet" label="Deep Set" />
</aura:component>
```

When you click the button in the component, you call the deepSet action in the client-side controller.

```javascript
({
 deepSet : function(component, event, helper) {
 console.log(component.get("v.user.firstName"));
 component.set("v.user.firstName", "Nina");
 console.log(component.get("v.user.firstName"));
 }
})
```

The component.set("v.user.firstName", "Nina") line sets a value for the firstName property in the user attribute.

Validate That an Attribute Value Is Defined

To determine if a component’s label attribute is defined:

```javascript
var isDefined = !$A.util.isUndefined(cmp.get("v.label"));
```
Validate That an Attribute Value Is Empty

To determine if a component’s `label` attribute is empty:

```javascript
var isEmpty = $A.util.isEmpty(cmp.get("v.label"));
```

SEE ALSO:

- Working with a Component Body in JavaScript

Working with a Component Body in JavaScript

These are useful and common patterns for working with a component’s body in JavaScript.

In these examples, `cmp` is a reference to a component in your JavaScript code. It’s usually easy to get a reference to a component in JavaScript code. Remember that the `body` attribute is an array of components, so you can use the JavaScript `Array` methods on it.

Note: When you use `cmp.set("v.body", ...)` to set the component body, you must explicitly include `{!v.body}` in your component markup.

Replace a Component’s Body

To replace the current value of a component’s body with another component:

```javascript
// newCmp is a reference to another component
cmp.set("v.body", newCmp);
```

Clear a Component’s Body

To clear or empty the current value of a component’s body:

```javascript
cmp.set("v.body", []);
```

Append a Component to a Component’s Body

To append a `newCmp` component to a component’s body:

```javascript
var body = cmp.get("v.body");
// newCmp is a reference to another component
body.push(newCmp);
cmp.set("v.body", body);
```

Prepend a Component to a Component’s Body

To prepend a `newCmp` component to a component’s body:

```javascript
var body = cmp.get("v.body");
body.unshift(newCmp);
cmp.set("v.body", body);
```
Remove a Component from a Component’s Body

To remove an indexed entry from a component’s body:

```javascript
var body = cmp.get("v.body");
// Index (3) is zero-based so remove the fourth component in the body
body.splice(3, 1);
cmp.set("v.body", body);
```

SEE ALSO:

- Component Body
- Working with Attribute Values in JavaScript

Working with Events in JavaScript

These are useful and common patterns for working with events in JavaScript. Events communicate data across components. Events can contain attributes with values set before the event is fired and read when the event is handled.

Fire an Event

Fire a component event or an application event that’s registered on a component.

```javascript
//Fire a component event
var compEvent = cmp.getEvent("sampleComponentEvent");
compEvent.fire();

//Fire an application event
var appEvent = $A.get("e.c:appEvent");
appEvent.fire();
```

For more information, see:

- Fire Component Events
- Fire Application Events

Get an Event Name

To get the name of the event that’s fired:

```javascript
event.getSource().getName();
```

Get an Event Parameter

To get an attribute that’s passed into an event:

```javascript
event.getParam("value");
```
Get Parameters on an Event

To get all attributes that are passed into an event:

```javascript
event.getParams();
```

`event.getParams()` returns an object containing all event parameters.

Get the Current Phase of an Event

To get the current phase of an event:

```javascript
event.getPhase();
```

If the event hasn’t been fired, `event.getPhase()` returns `undefined`. Possible return values for component and application events are `capture`, `bubble`, and `default`. Value events return `default`. For more information, see:

- Component Event Propagation
- Application Event Propagation

Get the Source Component

To get the component that fired the event:

```javascript
event.getSource();
```

To retrieve an attribute on the component that fired the event:

```javascript
event.getSource().get("v.myName");
```

Pause the Event

To pause the fired event:

```javascript
event.pause();
```

If paused, the event is not handled until `event.resume()` is called. You can pause an event in the `capture` or `bubble` phase only. For more information, see:

- Handling Bubbled or Captured Component Events
- Handling Bubbled or Captured Application Events

Prevent the Default Event Execution

To cancel the default action on the event:

```javascript
event.preventDefault();
```

For example, you can prevent a `lightning:button` component from submitting a form when it’s clicked.
Resume a Paused Event

To resume event handling for a paused event:

```javascript
event.resume();
```

You can resume a paused event in the capture or bubble phase only. For more information, see:

- Handling Bubbled or Captured Component Events
- Handling Bubbled or Captured Application Events

Set a Value for an Event Parameter

To set a value for an event parameter:

```javascript
event.setParam("name", cmp.get("v.myName"));
```

If the event has already been fired, setting a parameter value has no effect on the event.

Set Values for Event Parameters

To set values for parameters on an event:

```javascript
event.setParams({
 key : value
});
```

If the event has already been fired, setting the parameter values has no effect on the event.

Stop Event Propagation

To prevent further propagation of an event:

```javascript
event.stopPropagation();
```

You can stop event propagation in the capture or bubble phase only.

Modifying the DOM

The Document Object Model (DOM) is the language-independent model for representing and interacting with objects in HTML and XML documents. It's important to know how to modify the DOM safely so that the framework's rendering service doesn't stomp on your changes and give you unexpected results.

IN THIS SECTION:

- Modifying DOM Elements Managed by the Lightning Component Framework

The framework creates and manages the DOM elements owned by a component. If you want to modify these DOM elements created by the framework, modify the DOM elements in the handler for the component's `render` event or in a custom renderer. Otherwise, the framework will override your changes when the component is rerendered.
Modifying DOM Elements Managed by External Libraries

You can use different libraries, such as a charting library, to create and manage DOM elements. You don't have to modify these DOM elements within the render event handler or a renderer because they are managed by the external library.

Modifying DOM Elements Managed by the Lightning Component Framework

The framework creates and manages the DOM elements owned by a component. If you want to modify these DOM elements created by the framework, modify the DOM elements in the handler for the component’s render event or in a custom renderer. Otherwise, the framework will override your changes when the component is rerendered.

For example, if you modify DOM elements directly from a client-side controller, the changes may be overwritten when the component is rendered.

You can read from the DOM outside a render event handler or a custom renderer.

The simplest approach is to leave DOM updates to the framework. Update a component’s attribute and use an expression in the markup. The framework’s rendering service takes care of the DOM updates.

You can modify CSS classes for a component outside a renderer by using the $A.util.addClass(), $A.util.removeClass(), and $A.util.toggleClass() methods.

There are some use cases where you want to perform post-processing on the DOM or react to rendering or rerendering of a component. For these use cases, there are a few options.

IN THIS SECTION:

Handle the render Event

When a component is rendered or rerendered, the aura:valueRender event, also known as the render event, is fired. Handle this event to perform post-processing on the DOM or react to component rendering or rerendering. The event is preferred and easier to use than the alternative of creating a custom renderer.

Create a Custom Renderer

The framework’s rendering service takes in-memory component state and creates and manages the DOM elements owned by the component. If you want to modify DOM elements created by the framework for a component, you can modify the DOM elements in the component’s renderer. Otherwise, the framework will override your changes when the component is rerendered.

SEE ALSO:

Modifying DOM Elements Managed by External Libraries
Using Expressions
Dynamically Showing or Hiding Markup

Handle the render Event

When a component is rendered or rerendered, the aura:valueRender event, also known as the render event, is fired. Handle this event to perform post-processing on the DOM or react to component rendering or rerendering. The event is preferred and easier to use than the alternative of creating a custom renderer.

The render event is fired after all methods in a custom renderer are invoked. For more details on the sequence in the rendering or rerendering lifecycles, see Create a Custom Renderer.

Handling the aura:valueRender event is similar to handling the init hook. Add a handler to your component's markup.

```xml
<aura:handler name="render" value="{!this}" action="{!c.onRender}"/>
```
In this example, the `onRender` action in your client-side controller handles initial rendering and rerendering of the component. You can choose any name for the `action` attribute.

SEE ALSO:
- Invoking Actions on Component Initialization
- Create a Custom Renderer

Create a Custom Renderer

The framework's rendering service takes in-memory component state and creates and manages the DOM elements owned by the component. If you want to modify DOM elements created by the framework for a component, you can modify the DOM elements in the component's renderer. Otherwise, the framework will override your changes when the component is rerendered.

The DOM is the language-independent model for representing and interacting with objects in HTML and XML documents. The framework automatically renders your components so you don’t have to know anything more about rendering unless you need to customize the default rendering behavior for a component.

Note: It's preferred and easier to handle the `render` event rather than the alternative of creating a custom renderer.

Base Component Rendering

The base component in the framework is `aura:component`. Every component extends this base component.

The renderer for `aura:component` is in `componentRenderer.js`. This renderer has base implementations for the four phases of the rendering and rerendering cycles:

- `render()`
- `rerender()`
- `afterRender()`
- `unrender()`

The framework calls these functions as part of the rendering and rerendering lifecycles and we will learn more about them soon. You can override the base rendering functions in a custom renderer.

Rendering Lifecycle

The rendering lifecycle happens once in the lifetime of a component unless the component gets explicitly unrendered. When you create a component:

1. The framework fires an `init` event, enabling you to update a component or fire an event after component construction but before rendering.
2. The `render()` method is called to render the component's body.
3. The `afterRender()` method is called to enable you to interact with the DOM tree after the framework's rendering service has inserted DOM elements.
4. The framework fires a `render` event, enabling you to interact with the DOM tree after the framework's rendering service has inserted DOM elements. Handling the `render` event is preferred to creating a custom renderer and overriding `afterRender()`.
Rerendering Lifecycle

The rerendering lifecycle automatically handles rerendering of components whenever the underlying data changes. Here is a typical sequence:

1. A browser event triggers one or more Lightning events.
2. Each Lightning event triggers one or more actions that can update data. The updated data can fire more events.
3. The rendering service tracks the stack of events that are fired.
4. The framework rerenders all the components that own modified data by calling each component’s `rerender()` method.
5. The framework fires a `render` event, enabling you to interact with the DOM tree after the framework rerenders a component.

Handling the `render` event is preferred to creating a custom renderer and overriding `rerender()`.

The component rerendering lifecycle repeats whenever the underlying data changes as long as the component is valid and not explicitly unrendered.

For more information, see Events Fired During the Rendering Lifecycle.

Custom Renderer

You don’t normally have to write a custom renderer, but it’s useful when you want to interact with the DOM tree after the framework’s rendering service has inserted DOM elements. If you want to customize rendering behavior and you can’t do it in markup or by using the `init` event, you can create a client-side renderer.

A renderer file is part of the component bundle and is auto-wired if you follow the naming convention, `<componentName>Renderer.js`. For example, the renderer for `sample.cmp` would be in `sampleRenderer.js`.

⚠️ Note: These guidelines are important when you customize rendering.

- Only modify DOM elements that are part of the component. Never break component encapsulation by reaching in to another component and changing its DOM elements, even if you are reaching in from the parent component.
- Never fire an event as it can trigger new rendering cycles. An alternative is to use an `init` event instead.
- Don’t set attribute values on other components as these changes can trigger new rendering cycles.
- Move as much of the UI concerns, including positioning, to CSS.

Customize Component Rendering

Customize rendering by creating a `render()` function in your component’s renderer to override the base `render()` function, which updates the DOM.

The `render()` function returns a DOM node, an array of DOM nodes, or nothing. The base HTML component expects DOM nodes when it renders a component.

You generally want to extend default rendering by calling `superRender()` from your `render()` function before you add your custom rendering code. Calling `superRender()` creates the DOM nodes specified in the markup.

This code outlines a custom `render()` function.

```javascript
render : function(cmp, helper) {
 var ret = this.superRender();
 // do custom rendering here
 return ret;
},
```
Rerender Components

When an event is fired, it may trigger actions to change data and call `rerender()` on affected components. The `rerender()` function enables components to update themselves based on updates to other components since they were last rendered. This function doesn’t return a value.

If you update data in a component, the framework automatically calls `rerender()`.

You generally want to extend default rerendering by calling `superRerender()` from your `renderer()` function before you add your custom rerendering code. Calling `superRerender()` chains the rerendering to the components in the body attribute.

This code outlines a custom `rerender()` function.

```javascript
rerender : function(cmp, helper){
 this.superRerender();
 // do custom rerendering here
}
```

Access the DOM After Rendering

The `afterRender()` function enables you to interact with the DOM tree after the framework’s rendering service has inserted DOM elements. It’s not necessarily the final call in the rendering lifecycle; it’s simply called after `render()` and it doesn’t return a value.

You generally want to extend default after rendering by calling `superAfterRender()` function before you add your custom code.

This code outlines a custom `afterRender()` function.

```javascript
afterRender: function (component, helper) {
 this.superAfterRender();
 // interact with the DOM here
},
```

Unrender Components

The base `unrender()` function deletes all the DOM nodes rendered by a component’s `render()` function. It is called by the framework when a component is being destroyed. Customize this behavior by overriding `unrender()` in your component’s renderer. This method can be useful when you are working with third-party libraries that are not native to the framework.

You generally want to extend default unrendering by calling `superUnrender()` from your `unrender()` function before you add your custom code.

This code outlines a custom `unrender()` function.

```javascript
unrender: function () {
 this.superUnrender();
 // do custom unrendering here
}
```

SEE ALSO:
- Modifying the DOM
- Invoking Actions on Component Initialization
- Component Bundles
- Modifying Components Outside the Framework Lifecycle
- Sharing JavaScript Code in a Component Bundle
Modifying DOM Elements Managed by External Libraries

You can use different libraries, such as a charting library, to create and manage DOM elements. You don’t have to modify these DOM elements within the render event handler or a renderer because they are managed by the external library.

A render event handler or a renderer are used only to customize DOM elements created and managed by the Lightning Component framework.

To use external libraries, use `<ltng:require>`. The afterScriptsLoaded attribute enables you to interact with the DOM after your libraries have loaded and the DOM is ready. `<ltng:require>` tag orchestrates the loading of your library of choice with the rendering cycle of the Lightning Component framework to ensure that everything works in concert.

SEE ALSO:
- Using External JavaScript Libraries
- Modifying DOM Elements Managed by the Lightning Component Framework

Checking Component Validity

If you navigate elsewhere in the UI while asynchronous code is executing, the framework unrenders and destroys the component that made the asynchronous request. You can still have a reference to that component, but it is no longer valid. The `cmp.isValid()` call returns false for an invalid component.

If you call `cmp.get()` on an invalid component, `cmp.get()` returns null.

If you call `cmp.set()` on an invalid component, nothing happens and no error occurs. It’s essentially a no op.

In many scenarios, the `cmp isValid()` call isn’t necessary because a null check on a value retrieved from `cmp.get()` is sufficient. The main reason to call `cmp.isValid()` is if you’re making multiple calls against the component and you want to avoid a null check for each result.

Inside the Framework Lifecycle

You don’t need a `cmp.isValid()` check in the callback in a client-side controller when you reference the component associated with the client-side controller. The framework automatically checks that the component is valid. Similarly, you don’t need a `cmp.isValid()` check during event handling or in a framework lifecycle hook, such as the `init` event.

Let’s look at a sample client-side controller.

```javascript
({
 "doSomething" : function(cmp) {
 var action = cmp.get("c.serverEcho");
 action.setCallback(this, function(response) {
 var state = response.getState();
 if (state === "SUCCESS") {
 if (cmp.get("v.displayResult")) {
 alert("From server: " + response.getReturnValue());
 }
 }
 // other state handling omitted for brevity
 });
 });

 $A.enqueueAction(action);
}
```
The component wired to the client-side controller is passed into the `doSomething` action as the `cmp` parameter. When `cmp.get("v.displayResult) is called, we don’t need a `cmp.isValid()` check.

However, if you hold a reference to another component that may not be valid despite your component being valid, you might need a `cmp.isValid()` check for the other component. Let’s look at another example of a component that has a reference to another component with a local ID of `child`.

```javascript
{{
 "doSomething" : function(cmp) {
 var action = cmp.get("c.serverEcho");
 var child = cmp.find("child");
 action.setCallback(this, function(response) {
 var state = response.getState();
 if (state === "SUCCESS") {
 if (child.get("v.displayResult)) {
 alert("From server: " + response.getReturnValue());
 }
 }
 // other state handling omitted for brevity
 });
 $A.enqueueAction(action);
 }
}}
```

This line in the previous example without the child component:

```javascript
if (cmp.get("v.displayResult)) {
```

changed to:

```javascript
if (child.get("v.displayResult)) {
```

You don’t need a `child.isValid()` call here as `child.get("v.displayResult) will return null if the child component is invalid. Add a `child.isValid()` check only if you’re making multiple calls against the child component and you want to avoid a null check for each result.

### Outside the Framework Lifecycle

If you reference a component in asynchronous code, such as `setTimeout()` or `setInterval()`, or when you use Promises, a `cmp.isValid()` call checks that the component is still valid before processing the results of the asynchronous request. In many scenarios, the `cmp.isValid()` call isn’t necessary because a null check on a value retrieved from `cmp.get()` is sufficient. The main reason to call `cmp.isValid()` is if you’re making multiple calls against the component and you want to avoid a null check for each result.

For example, you don’t need a `cmp.isValid()` check within this `setTimeout()` call as the `cmp.set()` call doesn’t do anything when the component is invalid.

```javascript
window.setTimeout(
 $A.getCallback(function() {
 cmp.set("v.visible", true);
 }));
```
USE \$A.getCallback() to wrap any code that modifies a component outside the normal rerendering lifecycle, such as in a setTimeout() call. The \$A.getCallback() call ensures that the framework rerenders the modified component and processes any enqueued actions.

**Note:** \$A.run() is deprecated. Use \$A.getCallback() instead.

You don't need to use \$A.getCallback() if your code is executed as part of the framework's call stack; for example, your code is handling an event or in the callback for a server-side controller action. An exception is when you want to pass the callback to Lightning Data Service, such as when you are creating a record using force:recordData. If the callback is passed in without being wrapped in \$A.getCallback(), any attempt to access private attributes of your component results in access check failures.

An example of where you need to use \$A.getCallback() is calling window.setTimeout() in an event handler to execute some logic after a time delay. This puts your code outside the framework's call stack.

This sample sets the visible attribute on a component to true after a five-second delay.

```javascript
window.setTimeout(
 \$A.getCallback(function() {
 cmp.set("v.visible", true);
 }), 5000
);
```

Note how the code updating a component attribute is wrapped in \$A.getCallback(), which ensures that the framework rerenders the modified component.

**Note:** You don't need a cmp.isValid() check within this setTimeout() call as the cmp.set() call doesn't do anything when the component is invalid.

**Warning:** Don't save a reference to a function wrapped in \$A.getCallback(). If you use the reference later to send actions, the saved transaction state will cause the actions to be aborted.

SEE ALSO:

- Creating a Record
- Handling Events with Client-Side Controllers
- Checking Component Validity
- Firing Lightning Events from Non-Lightning Code
- Communicating with Events
Validating Fields

Validate user input, handle errors, and display error messages on input fields.

Client-side input validation is available for the following components:

- lightning:input
- lightning:select
- lightning:textarea
- ui:input*

Components in the lightning namespace simplify input validation by providing attributes to define error conditions, enabling you to handle errors by checking the component’s validity state. For example, you can set a minimum length for a field, display an error message when the condition is not met, and handle the error based on the given validity state. For more information, see the lightning namespace components in the https://developer.salesforce.com/docs/component-library.

Alternatively, input components in the ui namespace let you define and handle errors in a client-side controller, enabling you to iterate through a list of errors.

The following sections discuss error handling for ui:input* components.

Default Error Handling

The framework can handle and display errors using the default error component, ui:inputDefaultError. This component is dynamically created when you set the errors using the inputCmp.set("v.errors", [{message:"my error message"}]) syntax. The following example shows how you can handle a validation error and display an error message. Here is the markup.

<!--c:errorHandling-->
<aura:component>
    Enter a number: <ui:inputNumber aura:id="inputCmp"/> <br/>
    <lightning:button label="Submit" onclick="!c.doAction"/>
</aura:component>

Here is the client-side controller.

/*errorHandlingController.js*/
{
    doAction : function(component) {
        var inputCmp = component.find("inputCmp");
        var value = inputCmp.get("v.value");

        // Is input numeric?
        if (isNaN(value)) {
            // Set error
            inputCmp.set("v.errors", [{message:"Input not a number: " + value]});
        } else {
            // Clear error
            inputCmp.set("v.errors", null);
        }
    }
}
When you enter a value and click **Submit**, `doAction` in the controller validates the input and displays an error message if the input is not a number. Entering a valid input clears the error. Add error messages to the input component using the `errors` attribute.

### Custom Error Handling

`ui:input` and its child components can handle errors using the `onError` and `onClearErrors` events, which are wired to your custom error handlers defined in a controller. `onError` maps to a `ui:validationError` event, and `onClearErrors` maps to `ui:clearErrors`.

The following example shows how you can handle a validation error using custom error handlers and display the error message using the default error component. Here is the markup.

```html
<!--c:errorHandlingCustom-->
<aura:component>
 Enter a number: <ui:inputNumber aura:id="inputCmp" onError="{!c.handleError}" onClearErrors="{!c.handleClearError}"/>

 <ui:button label="Submit" press="{!c.doAction}"/>
</aura:component>
```

Here is the client-side controller.

```javascript
/*errorHandlingCustomController.js*/

var doAction = function(component, event) {
 var inputCmp = component.find("inputCmp");
 var value = inputCmp.get("v.value");

 // is input numeric?
 if (isNaN(value)) {
 inputCmp.set("v.errors", [{message:"Input not a number: " + value}]);
 } else {
 inputCmp.set("v.errors", null);
 }
},

handleError: function(component, event) {
 /* do any custom error handling */
 // get v.errors, which is an Object[
 var errorsArr = event.getParam("errors");
 for (var i = 0; i < errorsArr.length; i++) {
 console.log("error " + i + ": " + JSON.stringify(errorsArr[i]));
 }
},

handleClearError: function(component, event) {
 /* do any custom error handling */
}

/*errorHandlingCustomController.js*/
```

When you enter a value and click **Submit**, `doAction` in the controller executes. However, instead of letting the framework handle the errors, we define a custom error handler using the `onError` event in `<ui:inputNumber>`. If the validation fails, `doAction` adds an error message using the `errors` attribute. This automatically fires the `handleError` custom error handler.
Similarly, you can customize clearing the errors by using the `onClearErrors` event. See the `handleClearError` handler in the controller for an example.

SEE ALSO:
- Handling Events with Client-Side Controllers
- Component Events

## Throwing and Handling Errors

The framework gives you flexibility in handling unrecoverable and recoverable app errors in JavaScript code. For example, you can throw these errors in a callback when handling an error in a server-side response.

### Unrecoverable Errors

Use `throw new Error("error message here")` for unrecoverable errors, such as an error that prevents your app from starting successfully. The error message is displayed.

ℹ️ **Note:** `$A.error()` is deprecated. Throw the native JavaScript `Error` object instead by using `throw new Error()`.

This example shows you the basics of throwing an unrecoverable error in a JavaScript controller.

```html
<!--c:unrecoverableError-->
<aura:component>
 <lightning:button label="throw error" onclick="!c.throwError"/>
</aura:component>
</html>
```

Here is the client-side controller source.

```javascript
/*unrecoverableErrorController.js*/
({
 throwError : function(component, event){
 throw new Error("I can’t go on. This is the end.");
 }
})
```

### Recoverable Errors

To handle recoverable errors, use a component, such as `ui:message`, to tell users about the problem.

This sample shows you the basics of throwing and catching a recoverable error in a JavaScript controller.

```html
<!--c:recoverableError-->
<aura:component>
 <p>Click the button to trigger the controller to throw an error.</p>
 <div aura:id="div1"></div>
 <lightning:button label="Throw an Error" onclick="!c.throwErrorForKicks"/>
</aura:component>
```
Here is the client-side controller source.

```javascript
/*recoverableErrorController.js*/
({
 throwErrorForKicks: function(cmp) {
 // this sample always throws an error to demo try/catch
 var hasPerm = false;
 try {
 if (!hasPerm) {
 throw new Error("You don't have permission to edit this record.");
 }
 } catch (e) {
 $A.createComponent(["ui:message",{
 "title" : "Sample Thrown Error",
 "severity" : "error",
 }],
 ["ui:outputText",{
 "value" : e.message
 }],
 function(components, status, errorMessage){
 if (status === "SUCCESS") {
 var message = components[0];
 var outputText = components[1];
 // set the body of the ui:message to be the ui:outputText
 message.set("v.body", outputText);
 var div1 = cmp.find("div1");
 // Replace div body with the dynamic component
 div1.set("v.body", message);
 }
 else if (status === "INCOMPLETE") {
 console.log("No response from server or client is offline.");
 // Show offline error
 }
 else if (status === "ERROR") {
 console.log("Error: " + errorMessage);
 // Show error message
 }
 });
 }
 }
});
```

The controller code always throws an error and catches it in this example. The message in the error is displayed to the user in a dynamically created `ui:message` component. The body of the `ui:message` is a `ui:outputText` component containing the error text.

**SEE ALSO:**
- Validating Fields
- Dynamically Creating Components

365
Calling Component Methods

Use `<aura:method>` to define a method as part of a component’s API. This enables you to directly call a method in a component’s client-side controller instead of firing and handling a component event. Using `<aura:method>` simplifies the code needed for a parent component to call a method on a child component that it contains.

Communicate Between Components

Use `aura:method` to communicate down the containment hierarchy. For example, a parent component calls an `aura:method` on a child component that it contains.

To communicate up the containment hierarchy, fire a component event in the child component and handle it in the parent component.

Syntax

Use this syntax to call a method in JavaScript code.

```javascript
cmp.sampleMethod(arg1, ... argN);
```

`cmp` is a reference to the component.

`sampleMethod` is the name of the `aura:method`.

`arg1, ... argN` is an optional comma-separated list of arguments passed to the method. Each argument corresponds to an `aura:attribute` defined in the `aura:method` markup.

Using Inherited Methods

A sub component that extends a super component has access to any methods defined in the super component.

An interface can also include an `aura:method` tag. A component that implements the interface can access the method.

Example

Let’s look at an example app.

```xml
<!-- c:auraMethodCallerWrapper.app -->
<aura:application >
 <c:auraMethodCaller />
</aura:application>
```

`c:auraMethodCallerWrapper.app` contains a `c:auraMethodCaller` component.

```xml
<!-- c:auraMethodCaller.cmp -->
<aura:component>
 <p>Parent component calls aura:method in child component</p>
 <c:auraMethod aura:id="child" />
 ...
</aura:component>
```

`c:auraMethodCaller` is the parent component. `c:auraMethodCaller` contains the child component, `c:auraMethod`. We’ll show how `c:auraMethodCaller` calls an `aura:method` defined in `c:auraMethod`. 
We'll use `c:auraMethodCallerWrapper.app` to see how to return results from synchronous and asynchronous code.

**IN THIS SECTION:**

- **Return Result for Synchronous Code**
  
  `aura:method` executes synchronously. A synchronous method finishes executing before it returns. Use the `return` statement to return a value from synchronous JavaScript code.

- **Return Result for Asynchronous Code**
  
  `aura:method` executes synchronously. Use the `return` statement to return a value from synchronous JavaScript code. JavaScript code that calls a server-side action is asynchronous. Asynchronous code can continue to execute after it returns. You can't use the `return` statement to return the result of an asynchronous call because the `aura:method` returns before the asynchronous code completes. For asynchronous code, use a callback instead of a `return` statement.

**SEE ALSO:**

- `aura:method`
- Component Events

## Return Result for Synchronous Code

`aura:method` executes synchronously. A synchronous method finishes executing before it returns. Use the `return` statement to return a value from synchronous JavaScript code.

An asynchronous method can continue to execute after it returns. JavaScript code often uses the callback pattern to return a result after asynchronous code completes. We'll describe later how to return a result for an asynchronous action.

### Step 1: Define `aura:method` in Markup

Let's look at a `logParam` `aura:method` that executes synchronous code. We'll use the `c:auraMethodCallerWrapper.app` and components outlined in Calling Component Methods. Here's the markup that defines the `aura:method`.

```xml
<!-- c:auraMethod -->
<aura:component>
 <aura:method name="logParam" description="Sample method with parameter">
 <aura:attribute name="message" type="String" default="default message" />
 </aura:method>

 <p>This component has an aura:method definition.</p>
</aura:component>
```

The `logParam` `aura:method` has an `aura:attribute` with a name of `message`. This attribute enables you to set a `message` parameter when you call the `logParam` method.

The name attribute of `logParam` configures the `aura:method` to invoke `logParam()` in the client-side controller.

An `aura:method` can have multiple `aura:attribute` tags. Each `aura:attribute` corresponds to a parameter that you can pass into the `aura:method`. For more details on the syntax, see `aura:method`.

You don't explicitly declare a return value in the `aura:method` markup. You just use a `return` statement in the JavaScript controller.
Step 2: Implement **aura:method** Logic in Controller

The `logParam` `aura:method` invokes `logParam()` in `auraMethodController.js`. Let’s look at that source.

```javascript
/* auraMethodController.js */

/**
 * logParam : function(cmp, event) {
 * var params = event.getParam('arguments');
 * if (params) {
 * var message = params.message;
 * console.log("message: " + message);
 * return message;
 * }
 * },
 */
```

`logParam()` simply logs the parameter passed in and returns the parameter value to demonstrate how to use the `return` statement. If your code is synchronous, you can use a `return` statement; for example, you’re not making an asynchronous server-side action call.

Step 3: Call **aura:method** from Parent Controller

callAuraMethod() in the controller for `c:auraMethodCaller` calls the `logParam` `aura:method` defined in its child component, `c:auraMethod`. Here’s the controller for `c:auraMethodCaller`.

```javascript
/* auraMethodCallerController.js */

/**
 * callAuraMethod : function(component, event, helper) {
 * var childCmp = component.find("child");
 * // call the aura:method in the child component
 * var auraMethodResult =
 * childCmp.logParam("message sent by parent component");
 * console.log("auraMethodResult: " + auraMethodResult);
 * },
 */
```

callAuraMethod() finds the child component, `c:auraMethod`, and calls its `logParam` `aura:method` with an argument for the message parameter of the `aura:method`.

```javascript
childCmp.logParam("message sent by parent component");
```

`auraMethodResult` is the value returned from `logParam`.

Step 4: Add Button to Initiate Call to **aura:method**

The `c:auraMethodCaller` markup contains a `lightning:button` that invokes `call AuraMethod()` in `auraMethodCallerController.js`. We use this button to initiate the call to `aura:method` in the child component.

```html
<!-- c:auraMethodCaller.cmp -->
<aura:component>
 <p>Parent component calls aura:method in child component</p>
 <c:auraMethod aura:id="child" />
 <lightning:button label="Call aura:method in child component"
```
Return Result for Asynchronous Code

*aura:method* executes synchronously. Use the *return* statement to return a value from synchronous JavaScript code. JavaScript code that calls a server-side action is asynchronous. Asynchronous code can continue to execute after it returns. You can’t use the *return* statement to return the result of an asynchronous call because the *aura:method* returns before the asynchronous code completes. For asynchronous code, use a callback instead of a *return* statement.

**Step 1: Define *aura:method* in Markup**

Let’s look at an echo *aura:method* that uses a callback. We’ll use the *c:auraMethodCallerWrapper.app* and components outlined in Calling Component Methods. Here’s the echo *aura:method* in the *c:auraMethod* component.

```xml
<aura:component controller="SimpleServerSideController">
 <aura:method name="echo" description="Sample method with server-side call">
 <aura:attribute name="callback" type="Function" />
 </aura:method>

 <p>This component has an *aura:method* definition.</p>
</aura:component>
```

The echo *aura:method* has an *aura:attribute* with a name of callback. This attribute enables you to set a callback that’s invoked by the *aura:method* after execution of the server-side action in SimpleServerSideController.

**Step 2: Implement *aura:method* Logic in Controller**

The echo *aura:method* invokes echo() in auraMethodController.js. Let’s look at the source.

```javascript
/* auraMethodController.js */

function echo(cmp, event) {
 var params = event.getParam('arguments');
 var callback;
 if (params) {
 callback = params.callback;
 }

 var action = cmp.get("c.serverEcho");
 action.setCallback(this, function(response) {
 var state = response.getState();
 if (state === "SUCCESS") {
```
Step 3: Create Apex Server-Side Controller

The **echo aura:method** calls a server-side controller action called **serverEcho**. Here’s the source for the server-side controller.

```java
public with sharing class SimpleServerSideController {
 @AuraEnabled
 public static String serverEcho() {
 return ('Hello from the server');
 }
}
```

The **serverEcho**() method returns a **String**.

Step 4: Call **aura:method** from Parent Controller

Here’s the controller for **c:auraMethodCaller**. It calls the **echo aura:method** in its child component, **c:auraMethod**.

```javascript
/* auraMethodCallerController.js */

 callAuraMethodServerTrip : function(component, event, helper) {
 var childCmp = component.find("child");
 // call the aura:method in the child component
 childCmp.echo(function(result) {
 console.log("From server: " + result);
 // return doesn't work for async server action call
 // return response.getReturnValue();
 // call the callback passed into aura:method
 if (callback) callback(result);
 } else if (state === "INCOMPLETE") {
 // do something
 } else if (state === "ERROR") {
 var errors = response.getError();
 if (errors) {
 if (errors[0] && errors[0].message) {
 console.log("Error message: " + errors[0].message);
 } else {
 console.log("Unknown error");
 }
 } else {
 console.log("Unknown error");
 }
 });
 $A.enqueueAction(action);
 },
};
```

Note: You can’t return the result with a **return** statement. The **aura:method** returns before the asynchronous server-side action call completes. Instead, we invoke the callback passed into the **aura:method** and set the result as a parameter in the callback.
console.log("callback for aura:method was executed");
console.log("result: " + result);
}
,
})
}
callAuraMethodServerTrip() finds the child component, c:auraMethod, and calls its echo aura:method.echo() passes a callback function into the aura:method.
The callback configured in auraMethodCallerController.js logs the result;

```javascript
function(result) {
 console.log("callback for aura:method was executed");
 console.log("result: " + result);
}
```

Step 5: Add Button to Initiate Call to aura:method

The c:auraMethodCaller markup contains a lightning:button that invokes callAuraMethodServerTrip() in auraMethodCallerController.js. We use this button to initiate the call to the aura:method in the child component. Here's the markup for c:auraMethodCaller.

<!-- c:auraMethodCaller.cmp -->
<aura:component>
    <p>Parent component calls aura:method in child component</p>
    <c:auraMethod aura:id="child" />
    
    <lightning:button label="Call aura:method (server trip) in child component" onclick="! c.callAuraMethodServerTrip()" />
</aura:component>

SEE ALSO:
- Return Result for Synchronous Code
- Calling Component Methods
- aura:method

Dynamically Adding Event Handlers To a Component

You can dynamically add a handler for an event that a component fires.
The addEventHandler() method in the Component object replaces the deprecated addHandler() method.
To add an event handler to a component dynamically, use the addEventHandler() method.

```javascript
addEventHandler(String event, Function handler, String phase, String includeFacets)
```

**event**
The first argument is the name of the event that triggers the handler. You can’t force a component to start firing events that it doesn’t fire, so make sure that this argument corresponds to an event that the component fires. The `<aura:registerEvent>` tag in a component’s markup advertises an event that the component fires.

- For a component event, set this argument to match the name attribute of the `<aura:registerEvent>` tag.
For an application event, set this argument to match the event descriptor in the format `namespace:eventName`.

**handler**
The second argument is the action that handles the event. The format is similar to the value you would put in the `action` attribute in the `<aura:handler>` tag if the handler was statically defined in the markup. There are two options for this argument.

- To use a controller action, use the format: `cmp.getReference("c.actionName")`.
- To use an anonymous function, use the format:

  ```javascript
 function(auraEvent) {
 // handling logic here
 }
  ```

For a description of the other arguments, see the JavaScript API in the Aura Reference app.

You can also add an event handler to a component that is created dynamically in the callback function of `$A.createComponent()`.

For more information, see Dynamically Creating Components.

### Example
This component has buttons to fire and handle a component event and an application event.

```xml
<!--c:dynamicHandler-->
<aura:component >
 <aura:registerEvent name="compEvent" type="c:sampleEvent"/>
 <aura:registerEvent name="appEvent" type="c:appEvent"/>
 <h1>Add dynamic handler for event</h1>
 <p>
 <lightning:button label="Fire component event" onclick="!c.fireEvent" />
 <lightning:button label="Add dynamic event handler for component event" onclick="!c.addEventHandler" />
 </p>
 <p>
 <lightning:button label="Fire application event" onclick="!c.fireAppEvent" />
 <lightning:button label="Add dynamic event handler for application event" onclick="!c.addAppEventHandler" />
 </p>
</aura:component>
```

Here's the client-side controller.

```javascript
/* dynamicHandlerController.js */

fireEvent : function(cmp, event) {
 // Get the component event by using the
 // name value from <aura:registerEvent> tag
 var compEvent = cmp.getEvent("compEvent");
 compEvent.fire();
 console.log("Fired a component event");
},

addEventHandler : function(cmp, event) {
 // First param matches name attribute in <aura:registerEvent> tag
 cmp.addEventHandler("compEvent", cmp.getReference("c.handleEvent"));
```
console.log("Added handler for component event");
,
handleEvent : function(cmp, event) {
    alert("Handled the component event");
},

fireAppEvent : function(cmp, event) {
    var appEvent = $A.get("e.c:appEvent");
    appEvent.fire();
    console.log("Fired an application event");
},

addAppEventHandler : function(cmp, event) {
    // Can use cmp.getReference() or anonymous function for handler
    // First param is event descriptor, "c:appEvent", for application events
    cmp.addEventHandler("c:appEvent", cmp.getReference("c.handleAppEvent"));
    // Can alternatively use anonymous function for handler
    // cmp.addEventHandler("c:appEvent", function(auraEvent) {
    //     console.log("Handled the application event in anonymous function");
    // });
    console.log("Added handler for application event");
},

handleAppEvent : function(cmp, event) {
    alert("Handled the application event");
}]
}

Notice the first parameter of the addEventHandler() calls. The syntax for a component event is:

```
cmp.addEventHandler("compEvent", cmp.getReference("c.handleEvent"));
```

The syntax for an application event is:

```
cmp.addEventHandler("c:appEvent", cmp.getReference("c.handleAppEvent"));
```

For either a component or application event, you can use an anonymous function as a handler instead of using cmp.getReference() for a controller action. For example, the application event handler could be:

```
cmp.addEventHandler("c:appEvent", function(auraEvent) {
 // add handler logic here
 console.log("Handled the application event in anonymous function");
});
```

SEE ALSO:
- Handling Events with Client-Side Controllers
- Handling Component Events
- Component Library
Dynamically Showing or Hiding Markup

You can use CSS to toggle markup visibility. However, `<aura:if>` is the preferred approach because it defers the creation and rendering of the enclosed element tree until needed.

For an example using `<aura:if>`, see Best Practices for Conditional Markup.

This example uses `$A.util.toggleClass(cmp, 'class')` to toggle visibility of markup.

```html
<!--c:toggleCss-->
<aura:component>
 <lightning:button label="Toggle" onclick="!c.toggle"/>
 <p aura:id="text">Now you see me</p>
</aura:component>

/*toggleCssController.js*/
{
 toggle : function(component, event, helper) {
 var toggleText = component.find("text");
 $A.util.toggleClass(toggleText, "toggle");
 }
}

/*toggleCss.css*/
.THIS.toggle {
 display: none;
}
```

Note: There's no space in the `.THIS.toggle` selector because we're using the rule to match a `<p>` tag, which is a top-level element. For more information, see CSS in Components.

Add the `c:toggleCss` component to an app. To hide or show the text by toggling the CSS class, click the **Toggle** button.

SEE ALSO:
- Handling Events with Client-Side Controllers
- Component Attributes
- Adding and Removing Styles

Adding and Removing Styles

You can add or remove a CSS style on a component or element during runtime.

To retrieve the class name on a component, use `component.find('myCmp').get('v.class')`, where `myCmp` is the `aura:id` attribute value.

To append and remove CSS classes from a component or element, use the `$A.util.addClass(cmpTarget, 'class')` and `$A.util.removeClass(cmpTarget, 'class')` methods.

Component source

```html
<aura:component>
 <div aura:id="changeIt">Change Me!</div>

 <lightning:button onclick="!c.applyCSS" label="Add Style" />
</aura:component>
```
The buttons in this demo are wired to controller actions that append or remove the CSS styles. To append a CSS style to a component, use \$A.util.addClass(cmpTarget, 'class'). Similarly, remove the class by using \$A.util.removeClass(cmpTarget, 'class') in your controller. cmp.find() locates the component using the local ID, denoted by aura:id="changeIt" in this demo.

### Toggling a Class

To toggle a class, use \$A.util.toggleClass(cmp, 'class'), which adds or removes the class.

The cmp parameter can be component or a DOM element.

> **Note:** We recommend using a component instead of a DOM element. If the utility function is not used inside afterRender() or rerender(), passing in cmp.getElementById() might result in your class not being applied when the components are rerendered. For more information, see Events Fired During the Rendering Lifecycle on page 289.

To hide or show markup dynamically, see Dynamically Showing or Hiding Markup on page 374.

To conditionally set a class for an array of components, pass the array to \$A.util.toggleClass().

```javascript
mapClasses: function(arr, cssClass) {
 for(var cmp in arr) {
 \$A.util.toggleClass(arr[cmp], cssClass);
 }
}
```

**SEE ALSO:**

- Handling Events with Client-Side Controllers
- CSS in Components
- Component Bundles
Which Button Was Pressed?

To find out which button was pressed in a component containing multiple buttons, use `Component.getLocalId()`.

The framework provides two button components—`ui:button` and `lightning:button`.

**Note:** We recommend that you use `lightning:button`, a button component that comes with Lightning Design System styling.

Let’s look at an example with multiple `ui:button` components. Each button has a unique local ID, set by an `aura:id` attribute.

```xml
<!--c:buttonPressed-->
<aura:component>
 <aura:attribute name="whichButton" type="String" />
 <p>You clicked: {!v.whichButton}</p>
 <ui:button aura:id="button1" label="Click me" press="{!c.nameThatButton}"/>
 <ui:button aura:id="button2" label="Click me too" press="{!c.nameThatButton}"/>
</aura:component>

Use `event.getSource()` in the client-side controller to get the button component that was clicked. Call `getLocalId()` to get the `aura:id` of the clicked button.

```javascript
/* buttonPressedController.js */
{
    nameThatButton : function(cmp, event, helper) {
        var whichOne = event.getSource().getLocalId();
        console.log(whichOne);
        cmp.set("v.whichButton", whichOne);
    }
}
```

If you're using `lightning:button`, use the `onclick` event handler instead of the `press` event handler.

```xml
<aura:component>
    <aura:attribute name="whichButton" type="String" />
    <p>You clicked: {!v.whichButton}</p>
    <lightning:button aura:id="button1" name="buttonname1" label="Click me" onclick="{!c.nameThatButton}"/>
    <lightning:button aura:id="button2" name="buttonname2" label="Click me" onclick="{!c.nameThatButton}"/>
</aura:component>
```

In the client-side controller, you can use one of the following methods to find out which button was clicked.

- `event.getSource().getLocalId()` returns the `aura:id` of the clicked button.
- `event.getSource().get("v.name")` returns the name of the clicked button.

SEE ALSO:
- Component IDs
- Finding Components by ID
Formatting Dates in JavaScript

The AuraLocalizationService JavaScript API provides methods for formatting and localizing dates. For example, the `formatDate()` method formats a date based on the `formatString` parameter set as the second argument.

```
formatDate (String | Number | Date date, String formatString)
```

The `date` parameter can be a String, Number, or most typically a JavaScript Date. If you provide a String value, use ISO 8601 format to avoid parsing warnings.

The `formatString` parameter contains tokens to format a date and time. For example, "YYYY-MM-DD" formats 15th January, 2017 as "2017-01-15". The default format string comes from the $Locale value provider.

This table shows the list of tokens supported in `formatString`:

<table>
<thead>
<tr>
<th>Description</th>
<th>Token</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of month</td>
<td>d</td>
<td>1 ... 31</td>
</tr>
<tr>
<td>Day of month</td>
<td>dd</td>
<td>01 ... 31</td>
</tr>
<tr>
<td>Day of month. Deprecated. Use <code>dd</code>, which is identical.</td>
<td>DD</td>
<td>01 ... 31</td>
</tr>
<tr>
<td>Day of week (number)</td>
<td>E</td>
<td>0 ... 6</td>
</tr>
<tr>
<td>Day of week (short name)</td>
<td>EEE</td>
<td>Sun ... Sat</td>
</tr>
<tr>
<td>Day of week (long name)</td>
<td>EEEE</td>
<td>Sunday ... Saturday</td>
</tr>
<tr>
<td>Month</td>
<td>M</td>
<td>1 ... 12</td>
</tr>
<tr>
<td>Month</td>
<td>MM</td>
<td>01 ... 12</td>
</tr>
<tr>
<td>Month (short name)</td>
<td>MMMM</td>
<td>Jan ... Dec</td>
</tr>
<tr>
<td>Month (full name)</td>
<td>MMMMM</td>
<td>January ... December</td>
</tr>
<tr>
<td>Year (two digits)</td>
<td>yy</td>
<td>17</td>
</tr>
<tr>
<td>Year (four digits)</td>
<td>yyyy</td>
<td>2017</td>
</tr>
<tr>
<td>Year. Deprecated. Use <code>yyy</code>, which is identical.</td>
<td>y</td>
<td>2017</td>
</tr>
<tr>
<td>Year. Deprecated. Use <code>yyyy</code>, which is identical.</td>
<td>Y</td>
<td>2017</td>
</tr>
<tr>
<td>Year. Deprecated. Use <code>yy</code>, which is identical.</td>
<td>YY</td>
<td>17</td>
</tr>
<tr>
<td>Year. Deprecated. Use <code>yyyy</code>, which is identical.</td>
<td>YYYY</td>
<td>2017</td>
</tr>
<tr>
<td>Hour of day (1-12)</td>
<td>h</td>
<td>1 ... 12</td>
</tr>
<tr>
<td>Hour of day (0-23)</td>
<td>H</td>
<td>0 ... 23</td>
</tr>
<tr>
<td>Hour of day (00-23)</td>
<td>HH</td>
<td>00 ... 23</td>
</tr>
<tr>
<td>Hour of day (1-24)</td>
<td>k</td>
<td>1 ... 24</td>
</tr>
<tr>
<td>Hour of day (01-24)</td>
<td>kk</td>
<td>01 ... 24</td>
</tr>
<tr>
<td>Description</td>
<td>Token</td>
<td>Output</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Minute</td>
<td>m</td>
<td>0...59</td>
</tr>
<tr>
<td>Minute</td>
<td>mm</td>
<td>00...59</td>
</tr>
<tr>
<td>Second</td>
<td>s</td>
<td>0...59</td>
</tr>
<tr>
<td>Second</td>
<td>ss</td>
<td>00...59</td>
</tr>
<tr>
<td>Fraction of second</td>
<td>SSS</td>
<td>000...999</td>
</tr>
<tr>
<td>AM or PM</td>
<td>a</td>
<td>AM or PM</td>
</tr>
<tr>
<td>AM or PM. Deprecated. Use a, which is identical.</td>
<td>A</td>
<td>AM or PM</td>
</tr>
<tr>
<td>Zone offset from UTC</td>
<td>Z</td>
<td>-12:00...+14:00</td>
</tr>
<tr>
<td>Quarter of year</td>
<td>Q</td>
<td>1...4</td>
</tr>
<tr>
<td>Week of year</td>
<td>w</td>
<td>1...53</td>
</tr>
<tr>
<td>Week of year</td>
<td>ww</td>
<td>01...53</td>
</tr>
</tbody>
</table>

There are similar methods that differ in their default output values.

- `formatDateTime()` — The default formatString outputs datetime instead of date.
- `formatDateTimeUTC()` — Formats a datetime in UTC standard time.
- `formatDateUTC()` — Formats a date in UTC standard time.

For more information on all the methods in `AuraLocalizationService`, see the JavaScript API in the Aura Reference Doc App.

Example: Use `$A.localizationService` to use the methods in `AuraLocalizationService`.

```javascript
var now = new Date();
var dateString = "2017-01-15";

// Returns date in the format "Jun 8, 2017"
console.log($A.localizationService.formatDate(now));

// Returns date in the format "Jan 15, 2017"
console.log($A.localizationService.formatDate(dateString));

// Returns date in the format "2017 01 15"
console.log($A.localizationService.formatDate(dateString, "yyyy MM dd"));

// Returns date in the format "June 08 2017, 01:45:49 PM"
console.log($A.localizationService.formatDate(now, "MMMM dd yyyy, hh:mm:ss a"));

// Returns date in the format "Jun 08 2017, 01:48:26 PM"
console.log($A.localizationService.formatDate(now, "MMMM dd yyyy, hh:mm:ss a"));
```

SEE ALSO:
Localization
Using JavaScript Promises

You can use ES6 Promises in JavaScript code. Promises can simplify code that handles the success or failure of asynchronous calls, or code that chains together multiple asynchronous calls.

If the browser doesn’t provide a native version, the framework uses a polyfill so that promises work in all browsers supported for Lightning Experience.

We assume that you are familiar with the fundamentals of promises. For a great introduction to promises, see https://developers.google.com/web/fundamentals/getting-started/primers/promises.

Promises are an optional feature. Some people love them, some don’t. Use them if they make sense for your use case.

Create a Promise

This `firstPromise` function returns a Promise.

```javascript
function() {
  return new Promise($A.getCallback(function(resolve, reject) {
    // do something
    if (/* success */) {
      resolve("Resolved");
    } else {
      reject("Rejected");
    }
  }));
}
```

The promise constructor determines the conditions for calling `resolve()` or `reject()` on the promise.

Chaining Promises

When you need to coordinate or chain together multiple callbacks, promises can be useful. The generic pattern is:

```javascript
firstPromise()
  .then()
    // resolve handler
    $A.getCallback(function(result) {
      return anotherPromise();
    }),
    // reject handler
    $A.getCallback(function(error) {
      console.log("Promise was rejected: ", error);
      return errorRecoveryPromise();
    })
  )
  .then()
    // resolve handler
    $A.getCallback(function() {
      return yetAnotherPromise();
    })
```
The `then()` method chains multiple promises. In this example, each resolve handler returns another promise.

`then()` is part of the Promises API. It takes two arguments:

1. A callback for a fulfilled promise (resolve handler)
2. A callback for a rejected promise (reject handler)

The first callback, `function(result)`, is called when `resolve()` is called in the promise constructor. The `result` object in the callback is the object passed as the argument to `resolve()`.

The second callback, `function(error)`, is called when `reject()` is called in the promise constructor. The `error` object in the callback is the object passed as the argument to `reject()`.

Note: The two callbacks are wrapped by `$A.getCallback()` in our example. What's that all about? Promises execute their resolve and reject functions asynchronously so the code is outside the Lightning event loop and normal rendering lifecycle. If the resolve or reject code makes any calls to the Lightning Component framework, such as setting a component attribute, use `$A.getCallback()` to wrap the code. For more information, see Modifying Components Outside the Framework Lifecycle on page 361.

Always Use `catch()` or a Reject Handler

The reject handler in the first `then()` method returns a promise with `errorRecoveryPromise()`. Reject handlers are often used “midstream” in a promise chain to trigger an error recovery mechanism.

The Promises API includes a `catch()` method to optionally catch unhandled errors. Always include a reject handler or a `catch()` method in your promise chain.

Throwing an error in a promise doesn’t trigger `window.onerror`, which is where the framework configures its global error handler. If you don’t have a `catch()` method, keep an eye on your browser’s console during development for reports about uncaught errors in a promise. To show an error message in a `catch()` method, use `$A.reportError()`. The syntax for `catch()` is:

```javascript
promise.then("");
catch(function(error) {
    $A.reportError("error message here", error);
});
```

For more information on `catch()`, see the Mozilla Developer Network.

Don’t Use Storable Actions in Promises

The framework stores the response for storable actions in client-side cache. This stored response can dramatically improve the performance of your app and allow offline usage for devices that temporarily don’t have a network connection. Storable actions are only suitable for read-only actions.

Storable actions might have their callbacks invoked more than once: first with cached data, then with updated data from the server. The multiple invocations don’t align well with promises, which are expected to resolve or reject only once.

SEE ALSO:

Storable Actions
Making API Calls from Components

By default, you can’t make calls to third-party APIs from client-side code. Add a remote site as a CSP Trusted Site to allow client-side component code to load assets from and make API requests to that site’s domain.

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that can be loaded on a page. Lightning apps are served from a different domain than Salesforce APIs, and the default CSP policy doesn’t allow API calls from JavaScript code. You change the policy, and the content of the CSP header, by adding CSP Trusted Sites.

Important: You can’t load JavaScript resources from a third-party site, even a CSP Trusted Site. To use a JavaScript library from a third-party site, add it to a static resource, and then add the static resource to your component. After the library is loaded from the static resource, you can use it as normal.

Sometimes, you have to make API calls from server-side controllers rather than client-side code. In particular, you can’t make calls to Salesforce APIs from client-side Lightning component code. For information about making API calls from server-side controllers, see **Making API Calls from Apex** on page 406.

SEE ALSO:
- Content Security Policy Overview
- Create CSP Trusted Sites to Access Third-Party APIs

Create CSP Trusted Sites to Access Third-Party APIs

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that can be loaded on a page. To use third-party APIs that make requests to an external (non-Salesforce) server, add the server as a CSP Trusted Site.

CSP is a Candidate Recommendation of the W3C working group on Web Application Security. The framework uses the `Content-Security-Policy` HTTP header recommended by the W3C. By default, the framework’s headers allow content to be loaded only from secure (HTTPS) URLs and forbid XHR requests from JavaScript.

When you define a CSP Trusted Site, the site’s URL is added to the list of allowed sites for the following directives in the CSP header.

- `connect-src`
- `frame-src`
- `img-src`
- `style-src`
- `font-src`
- `media-src`

This change to the CSP header directives allows Lightning components to load resources, such as images, styles, and fonts, from the site. It also allows client-side code to make requests to the site.

Important: You can’t load JavaScript resources from a third-party site, even a CSP Trusted Site. To use a JavaScript library from a third-party site, add it to a static resource, and then add the static resource to your component. After the library is loaded from the static resource, you can use it as normal.

1. From Setup, enter CSP in the Quick Find box, then select CSP Trusted Sites.
This page displays a list of any CSP Trusted Sites already registered, and provides additional information about each site, including site name and URL.

2. Select **New Trusted Site**.

3. Name the Trusted Site.
 For example, enter *Google Maps*.

4. Enter the URL for the Trusted Site.
 The URL must begin with `http://` or `https://`. It must include a domain name, and can include a port.

 ⚠️ **Warning:** The default CSP requires secure (HTTPS) connections for external resources. Configuring a CSP Trusted Site with an insecure (HTTP) URL is an anti-pattern, and compromises the security of your org.

5. Optional: Enter a description for the Trusted Site.

6. Optional: To temporarily disable a Trusted Site without actually deleting it, deselect the **Active** checkbox.

7. Select the Context for this trusted site to control the scope of the approval.

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>(Default) CSP header is approved for both your organization’s Lightning Experience and Lightning Communities.</td>
</tr>
<tr>
<td>LEX</td>
<td>CSP header is approved only for your organization’s Lightning Experience.</td>
</tr>
<tr>
<td>Communities</td>
<td>CSP header is approved only for your organization’s Lightning Communities.</td>
</tr>
</tbody>
</table>

⚠️ **Note:** To enable corresponding access for Visualforce or Apex, create a Remote Site.

8. Select **Save**.

CSP isn’t enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

IE11 doesn’t support CSP, so we recommend using other supported browsers for enhanced security.

SEE ALSO:

- Content Security Policy Overview
- Making API Calls from Components
- Browser Support Considerations for Lightning Components

382
CHAPTER 10 Using Apex

In this chapter ...

- Creating Server-Side Logic with Controllers
- Working with Salesforce Records
- Testing Your Apex Code
- Making API Calls from Apex
- Creating Components in Apex

Use Apex to write server-side code, such as controllers and test classes.

Server-side controllers handle requests from client-side controllers. For example, a client-side controller might handle an event and call a server-side controller action to persist a record. A server-side controller can also load your record data.
Creating Server-Side Logic with Controllers

The framework supports client-side and server-side controllers. An event is always wired to a client-side controller action, which can in turn call a server-side controller action. For example, a client-side controller might handle an event and call a server-side controller action to persist a record.

Server-side actions need to make a round trip, from the client to the server and back again, so they usually complete more slowly than client-side actions.

For more details on the process of calling a server-side action, see Calling a Server-Side Action on page 389.

IN THIS SECTION:

- Apex Server-Side Controller Overview
 - Create a server-side controller in Apex and use the `@AuraEnabled` annotation to enable access to the controller method.

- AuraEnabled Annotation
 - The `AuraEnabled` annotation enables Lightning components to access Apex methods and properties.

- Creating an Apex Server-Side Controller
 - Use the Developer Console to create an Apex server-side controller.

- Returning Data from an Apex Server-Side Controller
 - Return results from a server-side controller to a client-side controller using the `return` statement. Results data must be serializable into JSON format.

- Returning Errors from an Apex Server-Side Controller
 - Create and throw a `System.AuraHandledException` from your server-side controller to return a custom error message.

- Calling a Server-Side Action
 - Call a server-side controller action from a client-side controller. In the client-side controller, you set a callback, which is called after the server-side action is completed. A server-side action can return any object containing serializable JSON data.

- Queueing of Server-Side Actions
 - The framework queues up actions before sending them to the server. This mechanism is largely transparent to you when you’re writing code but it enables the framework to minimize network traffic by batching multiple actions into one request (XHR).

- Foreground and Background Actions
 - Foreground actions are the default. An action can be marked as a background action. This is useful when you want your app to remain responsive to a user while it executes a low priority, long-running action. A rough guideline is to use a background action if it takes more than five seconds for the response to return from the server.

- Storable Actions
 - Enhance your component’s performance by marking actions as storable (cacheable) to quickly show cached data from client-side storage without waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is especially beneficial for users on high latency, slow, or unreliable connections such as 3G networks.

- Abortable Actions
 - Mark an action as abortable to make it potentially abortable while it’s queued to be sent to the server. An abortable action in the queue is not sent to the server if the component that created the action is no longer valid, that is `cmp.isValid() == false`. A component is automatically destroyed and marked invalid by the framework when it is unrendered.
Apex Server-Side Controller Overview

Create a server-side controller in Apex and use the `@AuraEnabled` annotation to enable access to the controller method. Only methods that you have explicitly annotated with `@AuraEnabled` are exposed. Calling server-side actions aren’t counted against your org’s API limits. However, your server-side controller actions are written in Apex, and as such are subject to all the usual Apex limits.

This Apex controller contains a `serverEcho` action that prepends a string to the value passed in.

```apex
public with sharing class SimpleServerSideController {
    // Use @AuraEnabled to enable client- and server-side access to the method
    @AuraEnabled
    public static String serverEcho(String firstName) {
        return ('Hello from the server, ' + firstName);
    }
}
```

In addition to using the `@AuraEnabled` annotation, your Apex controller must follow these requirements.

- Methods must be static and marked public or global. Non-static methods aren’t supported.
- If a method returns an object, instance methods that retrieve the value of the object’s instance field must be public.
- Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the same name as an Apex method (server-side action) can lead to hard-to-debug issues. In debug mode, the framework logs a browser console warning about the clashing client-side and server-side action names.

⚠️ Tip: Don’t store component state in your controller (client-side or server-side). Store state in a component’s client-side attributes instead.

For more information, see Classes in the *Apex Developer Guide*.

SEE ALSO:

- Calling a Server-Side Action
- Creating an Apex Server-Side Controller
- `AuraEnabled` Annotation

AuraEnabled Annotation

The `AuraEnabled` annotation enables Lightning components to access Apex methods and properties. The `AuraEnabled` annotation is overloaded, and is used for two separate and distinct purposes.

- Use `@AuraEnabled` on Apex **class static methods** to make them accessible as remote controller actions in your Lightning components.
- Use `@AuraEnabled` on Apex **instance methods and properties** to make them serializable when an instance of the class is returned as data from a server-side action.

⚠️ **Important:**

- Don’t mix-and-match these different uses of `@AuraEnabled` in the same Apex class.
- Only static `@AuraEnabled` Apex methods can be called from client-side code. Visualforce-style instance properties and getter/setter methods aren’t available. Use client-side component attributes instead.
Caching Method Results

To improve runtime performance, set `@AuraEnabled(cacheable=true)` to cache the method results on the client. To set `cacheable=true`, a method must only get data; it can’t mutate data.

Marking a method as storable (cacheable) improves your component’s performance by quickly showing cached data from client-side storage without waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is especially beneficial for users on high latency, slow, or unreliable connections such as 3G networks.

To cache data returned from an Apex method for any component with an API version of 44.0 or higher, you must annotate the Apex method with `@AuraEnabled(cacheable=true)`. For example:

```java
@AuraEnabled(cacheable=true)
public static Account getAccount(Id accountId) {
    // your code here
}
```

Prior to API version 44.0, to cache data returned from an Apex method, you had to call `setStorable()` in JavaScript code on every action that called the Apex method. For API version of 44.0 or higher, you must mark the Apex method as storable (cacheable) and you can get rid of any `setStorable()` calls in JavaScript code. The Apex annotation approach is better because it centralizes your caching notation for a method in the Apex class.

SEE ALSO:
- Returning Data from an Apex Server-Side Controller
- Custom Apex Class Types
- Storable Actions

Creating an Apex Server-Side Controller

Use the Developer Console to create an Apex server-side controller.

1. Open the Developer Console.
2. Click **File > New > Apex Class**.
3. Enter a name for your server-side controller.
4. Click **OK**.
5. Enter a method for each server-side action in the body of the class.
 - Add the `@AuraEnabled` annotation to a method to expose it as a server-side action. Additionally, server-side actions must be `static` methods, and either `global` or `public`.
6. Click **File > Save**.
7. Open the component that you want to wire to the new controller class.
8. Add a controller system attribute to the <aura:component> tag to wire the component to the controller. For example:

```html
<aura:component controller="SimpleServerSideController"/>
```

SEE ALSO:

- Salesforce Help: Open the Developer Console
- Returning Data from an Apex Server-Side Controller
- AuraEnabled Annotation

Returning Data from an Apex Server-Side Controller

Return results from a server-side controller to a client-side controller using the `return` statement. Results data must be serializable into JSON format.

Return data types can be any of the following.

- **Simple**—String, Integer, and so on. See Basic Types for details.
- **sObject**—standard and custom sObjects are both supported. See Standard and Custom Object Types.
- **Apex**—an instance of an Apex class. (Most often a custom class.) See Custom Apex Class Types.
- **Collection**—a collection of any of the other types. See Collection Types.

Returning Apex Objects

Here’s an example of a controller that returns a collection of custom Apex objects.

```java
public with sharing class SimpleAccountController {
    @AuraEnabled
    public static List<SimpleAccount> getAccounts() {
        // Perform isAccessible() check here
        // SimpleAccount is a simple "wrapper" Apex class for transport
        List<SimpleAccount> simpleAccounts = new List<SimpleAccount>();
        List<Account> accounts = [SELECT Id, Name, Phone FROM Account LIMIT 5];
        for (Account acct : accounts) {
            simpleAccounts.add(new SimpleAccount(acct.Id, acct.Name, acct.Phone));
        }
        return simpleAccounts;
    }
}
```

When an instance of an Apex class is returned from a server-side action, the instance is serialized to JSON by the framework. Only the values of `public` instance properties and methods annotated with `@AuraEnabled` are serialized and returned.

For example, here’s a simple “wrapper” Apex class that contains a few details for an account record. This class is used to package a few details of an account record in a serializable format.

```java
public class SimpleAccount {
```
@AuraEnabled public String Id { get; set; }
@AuraEnabled public String Name { get; set; }
public String Phone { get; set; }

// Trivial constructor, for server-side Apex -> client-side JavaScript
public SimpleAccount(String id, String name, String phone) {
 this.Id = id;
 this.Name = name;
 this.Phone = phone;
}

// Default, no-arg constructor, for client-side -> server-side
public SimpleAccount() {}

When returned from a remote Apex controller action, the Id and Name properties are defined on the client-side. However, because it doesn't have the @AuraEnabled annotation, the Phone property isn't serialized on the server side, and isn't returned as part of the result data.

SEE ALSO:
- AuraEnabled Annotation
- Custom Apex Class Types

Returning Errors from an Apex Server-Side Controller

Create and throw a System.AuraHandledException from your server-side controller to return a custom error message.

Errors happen. Sometimes they're expected, such as invalid input from a user, or a duplicate record in a database. Sometimes they're unexpected, such as... Well, if you've been programming for any length of time, you know that the range of unexpected errors is nearly infinite.

When your server-side controller code experiences an error, two things can happen. You can catch it there and handle it in Apex. Otherwise, the error is passed back in the controller's response.

If you handle the error Apex, you again have two ways you can go. You can process the error, perhaps recovering from it, and return a normal response to the client. Or, you can create and throw an AuraHandledException.

The benefit of throwing AuraHandledException, instead of letting a system exception be returned, is that you have a chance to handle the exception more gracefully in your client code. System exceptions have important details stripped out for security purposes, and result in the dreaded "An internal server error has occurred..." message. Nobody likes that. When you use an AuraHandledException you have an opportunity to add some detail back into the response returned to your client-side code. More importantly, you can choose a better message to show your users.

Here's an example of creating and throwing an AuraHandledException in response to bad input. However, the real benefit of using AuraHandledException comes when you use it in response to a system exception. For example, throw an AuraHandledException in response to catching a DML exception, instead of allowing that to propagate down to your client component code.

```java
public with sharing class SimpleErrorController {
    static final List<String> BAD_WORDS = new List<String> {
        'bad',
        'words',
        ...
    }
...}
```
@AuraEnabled
public static String helloOrThrowAnError(String name) {
 // Make sure we're not seeing something naughty
 for(String badWordStem : BAD_WORDS) {
 if(name.containsIgnoreCase(badWordStem)) {
 // How rude! Gracefully return an error...
 throw new AuraHandledException('NSFW name detected.');
 }
 }
 // No bad word found, so...
 return ('Hello ' + name + '!');
}

Calling a Server-Side Action

Call a server-side controller action from a client-side controller. In the client-side controller, you set a callback, which is called after the server-side action is completed. A server-side action can return any object containing serializable JSON data.

A client-side controller is a JavaScript object in object-literal notation containing a map of name-value pairs.

Let’s say that you want to trigger a server-call from a component. The following component contains a button that’s wired to a client-side controller echo action. SimpleServerSideController contains a method that returns a string passed in from the client-side controller.

<aura:component controller="SimpleServerSideController">
 <aura:attribute name="firstName" type="String" default="world"/>
 <lightning:button label="Call server" onclick="!c.echo"/>
</aura:component>

This client-side controller includes an echo action that executes a serverEcho method on a server-side controller.

Tip: Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the same name as an Apex method (server-side action) can lead to hard-to-debug issues. In debug mode, the framework logs a browser console warning about the clashing client-side and server-side action names.

```javascript
({
    "echo" : function(cmp) {
        // create a one-time use instance of the serverEcho action
        // in the server-side controller
        var action = cmp.get("c.serverEcho");
        action.setParams({ firstName : cmp.get("v.firstName") });

        // Create a callback that is executed after
        // the server-side action returns
        action.setCallback(this, function(response) {
            var state = response.getState();
            if (state === "SUCCESS") {
                // Alert the user with the value returned
```
In the client-side controller, we use the value provider of c to invoke a server-side controller action. We also use the c syntax in markup to invoke a client-side controller action.

The cmp.get("c.serverEcho") call indicates that we’re calling the serverEcho method in the server-side controller. The method name in the server-side controller must match everything after the c in the client-side call. In this case, that’s serverEcho.

The implementation of the serverEcho Apex method is shown in Apex Server-Side Controller Overview.

Use action.setParams() to set data to be passed to the server-side controller. The following call sets the value of the firstName argument on the server-side controller’s serverEcho method based on the firstName attribute value.

```javascript
action.setParams({ firstName : cmp.get("v.firstName") });
```

action.setCallback() sets a callback action that is invoked after the server-side action returns.

```javascript
action.setCallback(this, function(response) { ... });
```

The server-side action results are available in the response variable, which is the argument of the callback.

response.getState() gets the state of the action returned from the server.

Note: You don’t need a cmp.isValid() check in the callback in a client-side controller when you reference the component associated with the client-side controller. The framework automatically checks that the component is valid.
response.getReturnValue() gets the value returned from the server. In this example, the callback function alerts the user with the value returned from the server.

$A.enqueueAction(action) adds the server-side controller action to the queue of actions to be executed. All actions that are enqueued will run at the end of the event loop. Rather than sending a separate request for each individual action, the framework processes the event chain and batches the actions in the queue into one request. The actions are asynchronous and have callbacks.

Tip: If your action is not executing, make sure that you’re not executing code outside the framework’s normal rerendering lifecycle. For example, if you use window.setTimeout() in an event handler to execute some logic after a time delay, wrap your code in $A.getCallback(). You don’t need to use $A.getCallback() if your code is executed as part of the framework’s call stack; for example, your code is handling an event or in the callback for a server-side controller action.

Client Payload Data Limit
Use action.setParams() to set data for an action to be passed to a server-side controller.

The framework batches the actions in the queue into one server request. The request payload includes all of the actions and their data serialized into JSON. The request payload limit is 4 MB.

IN THIS SECTION:
Action States
Call a server-side controller action from a client-side controller. The action can have different states during processing.

SEE ALSO:
Handling Events with Client-Side Controllers
Queueing of Server-Side Actions
Action States
Checking Component Validity

Action States
Call a server-side controller action from a client-side controller. The action can have different states during processing.

The possible action states are:

NEW
The action was created but is not in progress yet

RUNNING
The action is in progress

SUCCESS
The action executed successfully

ERROR
The server returned an error

INCOMPLETE
The server didn’t return a response. The server might be down or the client might be offline. The framework guarantees that an action’s callback is always invoked as long as the component is valid. If the socket to the server is never successfully opened, or closes abruptly, or any other network error occurs, the XHR resolves and the callback is invoked with state equal to INCOMPLETE.
ABORTED
The action was aborted. This action state is deprecated. A callback for an aborted action is never executed so you can’t do anything to handle this state.

SEE ALSO:
- Calling a Server-Side Action

Queueing of Server-Side Actions
The framework queues up actions before sending them to the server. This mechanism is largely transparent to you when you’re writing code but it enables the framework to minimize network traffic by batching multiple actions into one request (XHR).

The batching of actions is also known as *boxcar*’ing, similar to a train that couples boxcars together.

The framework uses a stack to keep track of the actions to send to the server. When the browser finishes processing events and JavaScript on the client, the enqueued actions on the stack are sent to the server in a batch.

Tip: If your action is not executing, make sure that you’re not executing code outside the framework’s normal rerendering lifecycle. For example, if you use `window.setTimeout()` in an event handler to execute some logic after a time delay, wrap your code in `$A.getCallback()`.

There are some properties that you can set on an action to influence how the framework manages the action while it’s in the queue waiting to be sent to the server. For more information, see:

- Foreground and Background Actions on page 392
- Storable Actions on page 393
- Abortable Actions on page 397

SEE ALSO:
- Modifying Components Outside the Framework Lifecycle

Foreground and Background Actions
Foreground actions are the default. An action can be marked as a background action. This is useful when you want your app to remain responsive to a user while it executes a low priority, long-running action. A rough guideline is to use a background action if it takes more than five seconds for the response to return from the server.

Batching of Actions
Multiple queued foreground actions are batched in a single request (XHR) to minimize network traffic. The batching of actions is also known as *boxcar*’ing, similar to a train that couples boxcars together.

The server sends the XHR response to the client when all actions have been processed on the server. If a long-running action is in the boxcar, the XHR response is held until that long-running action completes. Marking an action as background results in that action being sent separately from any foreground actions. The separate transmission ensures that the background action doesn’t impact the response time of the foreground actions.

When the server-side actions in the queue are executed, the foreground actions execute first and then the background actions execute. Background actions run in parallel with foreground actions and responses of foreground and background actions may come back in either order.
We don’t make any guarantees for the order of execution of action callbacks. XHR responses may return in a different order than the order in which the XHR requests were sent due to server processing time.

Note: Don’t rely on each background action being sent in its own request as that behavior isn’t guaranteed and it can lead to performance issues. Remember that the motivation for background actions is to isolate long-running requests into a separate request to avoid slowing the response for foreground actions.

If two actions must be executed sequentially, the component must orchestrate the ordering. The component can enqueue the first action. In the first action’s callback, the component can then enqueue the second action.

Framework-Managed Request Throttling

The framework throttles foreground and background requests separately. This means that the framework can control the number of foreground requests and the number of background actions running at any time. The framework automatically throttles requests and it’s not user controlled. The framework manages the number of foreground and background XHRs, which varies depending on available resources.

Even with separate throttling, background actions might affect performance in some conditions, such as an excessive number of requests to the server.

Setting Background Actions

To set an action as a background action, call the `setBackground()` method on the action object in JavaScript.

```javascript
// set up the server-action action
var action = cmp.get("c.serverEcho");
// optionally set actions params
//action.setParams({ firstName : cmp.get("v.firstName") });
// set as a background action
action.setBackground();
```

Note: A background action can’t be set back to a foreground action. In other words, calling `setBackground` to set it to `false` will have no effect.

SEE ALSO:

- Queueing of Server-Side Actions
- Calling a Server-Side Action

Storable Actions

Enhance your component’s performance by marking actions as storable (cacheable) to quickly show cached data from client-side storage without waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is especially beneficial for users on high latency, slow, or unreliable connections such as 3G networks.

Warning:

- A storable action might result in no call to the server. Never mark as storable an action that updates or deletes data.
- For storable actions in the cache, the framework returns the cached response immediately and also refreshes the data if it’s stale. Therefore, storable actions might have their callbacks invoked more than once: first with cached data, then with updated data from the server.
Most server requests are read-only and idempotent, which means that a request can be repeated or retried as often as necessary without causing data changes. The responses to idempotent actions can be cached and quickly reused for subsequent identical actions. For storable actions, the key for determining an identical action is a combination of:

- Apex controller name
- Method name
- Method parameter values

Marking an Action as Storable

To cache data returned from an Apex method for any component with an API version of 44.0 or higher, you must annotate the Apex method with `@AuraEnabled(cacheable=true)`. For example:

```java
@AuraEnabled(cacheable=true)
public static Account getAccount(Id accountId) {
    // your code here
}
```

Prior to API version 44.0, to cache data returned from an Apex method, you had to call `setStorable()` in JavaScript code on every action that called the Apex method. For API version of 44.0 or higher, you can mark the Apex method as storable (cacheable) and get rid of any `setStorable()` calls in JavaScript code. The Apex annotation approach is better because it centralizes your caching notation for a method in the Apex class.

Call `setStorable()` on an action in JavaScript code, as follows.

```javascript
action.setStorable();
```

The `setStorable` function takes an optional argument, which is a configuration map of key-value pairs representing the storage options and values to set. You can only set the following property:

ignoreExisting

Set to `true` to bypass the cache. The default value is `false`.

This property is useful when you know that any cached data is invalid, such as after a record modification. This property should be used rarely because it explicitly defeats caching.

To set the storage options for the action response, pass this configuration map into `setStorable(configObj)`.

IN THIS SECTION:

- **Lifecycle of Storable Actions**
 This image describes the sequence of callback execution for storable actions.

- **Enable Storable Actions in an Application**
 Storable actions are automatically configured in Lightning Experience and the Salesforce mobile app. To use storable actions in a standalone app (`.app` resource), you must configure client-side storage for cached action responses.

- **Storage Service Adapters**
 The Storage Service supports multiple implementations of storage and selects an adapter at runtime based on browser support and specified characteristics of persistence and security. Storage can be persistent and secure. With persistent storage, cached data is preserved between user sessions in the browser. With secure storage, cached data is encrypted.

Lifecycle of Storable Actions

This image describes the sequence of callback execution for storable actions.
Note: An action might have its callback invoked more than once:

- First with the cached response, if it’s in storage.
- Second with updated data from the server, if the stored response has exceeded the time to refresh entries.

Cache Miss

If the action is not a cache hit as it doesn’t match a storage entry:

1. The action is sent to the server-side controller.
2. If the response is SUCCESS, the response is added to storage.
3. The callback in the client-side controller is executed.

Cache Hit

If the action is a cache hit as it matches a storage entry:

1. The callback in the client-side controller is executed with the cached action response.
2. If the response has been cached for longer than the refresh time, the storage entry is refreshed.

 When an application enables storable actions, a refresh time is configured. The refresh time is the duration in seconds before an entry is refreshed in storage. The refresh time is automatically configured in Lightning Experience and the Salesforce mobile app.
3. The action is sent to the server-side controller.
4. If the response is SUCCESS, the response is added to storage.
5. If the refreshed response is different from the cached response, the callback in the client-side controller is executed for a second time.

SEE ALSO:

Storable Actions
Enable Storable Actions in an Application
Enable Storable Actions in an Application

Storable actions are automatically configured in Lightning Experience and the Salesforce mobile app. To use storable actions in a standalone app (.app resource), you must configure client-side storage for cached action responses.

To configure client-side storage for your standalone app, use `<auraStorage:init>` in the `auraPreInitBlock` attribute of your application’s template. For example:

```xml
<aura:component isTemplate="true" extends="aura:template">
    <aura:set attribute="auraPreInitBlock">
        <auraStorage:init
            name="actions"
            persistent="false"
            secure="true"
            maxSize="1024"
            defaultExpiration="900"
            defaultAutoRefreshInterval="30" />
    </aura:set>
</aura:component>
```

- **name**
 The storage name must be `actions`. Storable actions are the only currently supported type of storage.

- **persistent**
 Set to `true` to preserve cached data between user sessions in the browser.

- **secure**
 Set to `true` to encrypt cached data.

- **maxsize**
 The maximum size in KB of the storage.

- **defaultExpiration**
 The duration in seconds that an entry is retained in storage.

- **defaultAutoRefreshInterval**
 The duration in seconds before an entry is refreshed in storage.

Storable actions use the Storage Service. The Storage Service supports multiple implementations of storage and selects an adapter at runtime based on browser support and specified characteristics of persistence and security.

SEE ALSO:
Storage Service Adapters

Storage Service Adapters

The Storage Service supports multiple implementations of storage and selects an adapter at runtime based on browser support and specified characteristics of persistence and security. Storage can be persistent and secure. With persistent storage, cached data is preserved between user sessions in the browser. With secure storage, cached data is encrypted.

<table>
<thead>
<tr>
<th>Storage Adapter Name</th>
<th>Persistent</th>
<th>Secure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndexedDB</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>Memory</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>
IndexedDB
(Persistent but not secure) Provides access to an API for client-side storage and search of structured data. For more information, see
the Indexed Database API.

Memory
(Not persistent but secure) Provides access to JavaScript memory for caching data. The stored cache persists only per browser page.
Browsing to a new page resets the cache.

The Storage Service selects a storage adapter on your behalf that matches the persistent and secure options you specify when initializing
the service. For example, if you request a persistent and insecure storage service, the Storage Service returns the IndexedDB storage if
the browser supports it.

Abortable Actions

Mark an action as abortable to make it potentially abortable while it’s queued to be sent to the server. An abortable action in the queue
is not sent to the server if the component that created the action is no longer valid, that is cmp.isValid() == false. A component
is automatically destroyed and marked invalid by the framework when it is unrendered.

Note: We recommend that you only use abortable actions for read-only operations as they are not guaranteed to be sent to the
server.

An abortable action is sent to the server and executed normally unless the component that created the action is invalid before the action
is sent to the server.

A non-abortable action is always sent to the server and can’t be aborted in the queue.

If an action response returns from the server and the associated component is now invalid, the logic has been executed on the server
but the action callback isn’t executed. This is true whether or not the action is marked as abortable.

Marking an Action as Abortable

Mark a server-side action as abortable by using the setAbortable() method on the Action object in JavaScript. For example:

```javascript
var action = cmp.get("c.serverEcho");
action.setAbortable();
```

SEE ALSO:
Creating Server-Side Logic with Controllers
Queueing of Server-Side Actions
Calling a Server-Side Action

Working with Salesforce Records

It’s easy to work with your Salesforce records in Apex.

The term sObject refers to any object that can be stored in Lightning Platform. This could be a standard object, such as Account, or
a custom object that you create, such as a Merchandise object.
An sObject variable represents a row of data, also known as a record. To work with an object in Apex, declare it using the SOAP API name of the object. For example:

```
Account a = new Account();
MyCustomObject__c co = new MyCustomObject__c();
```

For more information on working on records with Apex, see Working with Data in Apex.

This example controller persists an updated Account record. Note that the `update` method has the `@AuraEnabled` annotation, which enables it to be called as a server-side controller action.

```java
public with sharing class AccountController {

    @AuraEnabled
    public static void updateAnnualRevenue(String accountId, Decimal annualRevenue) {
        Account acct = [SELECT Id, Name, BillingCity FROM Account WHERE Id = :accountId];
        acct.AnnualRevenue = annualRevenue;
        // Perform isAccessible() and isUpdateable() checks here
        update acct;
    }
}
```

For an example of calling Apex code from JavaScript code, see the Quick Start on page 9.

Loading Record Data from a Standard Object

Load records from a standard object in a server-side controller. The following server-side controller has methods that return a list of opportunity records and an individual opportunity record.

```java
public with sharing class OpportunityController {

    @AuraEnabled
    public static List<Opportunity> getOpportunities() {
        List<Opportunity> opportunities = [SELECT Id, Name, CloseDate FROM Opportunity];
        return opportunities;
    }

    @AuraEnabled
    public static Opportunity getOpportunity(Id id) {
        Opportunity opportunity = [SELECT Id, Account.Name, Name, CloseDate, Owner.Name, Amount, Description, StageName FROM Opportunity WHERE Id = :id ];
        // Perform isAccessible() check here
        return opportunity;
    }
}
```
This example component uses the previous server-side controller to display a list of opportunity records when you press a button.

```
<aura:component controller="OpportunityController">
    <aura:attribute name="opportunities" type="Opportunity[]"/>

    <ui:button label="Get Opportunities" press="{"c.getOpps}"/>
    <aura:iteration var="opportunity" items="{"v.opportunities}">
        <p>{!opportunity.Name} : {!opportunity.CloseDate}</p>
    </aura:iteration>
</aura:component>
```

When you press the button, the following client-side controller calls the `getOpportunities()` server-side controller and sets the `opportunities` attribute on the component. For more information about calling server-side controller methods, see Calling a Server-Side Action on page 389.

```
({
    getOpps: function(cmp){
        var action = cmp.get("c.getOpportunities");
        action.setCallback(this, function(response){
            var state = response.getState();
            if (state === "SUCCESS") {
                cmp.set("v.opportunities", response.getReturnValue());
            }
        });
    }

    $A.enqueueAction(action);
}
})
```

Note: To load record data during component initialization, use the `init` handler.

Loading Record Data from a Custom Object

Load record data using an Apex controller and setting the data on a component attribute. This server-side controller returns records on a custom object `myObj__c`.

```
public with sharing class MyObjController {
    @AuraEnabled
    public static List<MyObj__c> getMyObjects() {
        // Perform isAccessible() checks here
        return [SELECT Id, Name, myField__c FROM MyObj__c];
    }
}
```

This example component uses the previous controller to display a list of records from the `myObj__c` custom object.

```
<aura:component controller="MyObjController">
    <aura:attribute name="myObjects" type="namespace.MyObj__c[]"/>
    <aura:iteration items="{"v.myObjects}" var="obj">
        {!obj.Name}, {!obj.namespace__myField__c}
    </aura:iteration>
</aura:component>
```
This client-side controller sets the `myObjects` component attribute with the record data by calling the `getMyObjects()` method in the server-side controller. This step can also be done during component initialization using the `init` handler.

```javascript
getMyObjects: function(cmp){
    var action = cmp.get("c.getMyObjects");
    action.setCallback(this, function(response){
        var state = response.getState();
        if (state === "SUCCESS") {
            cmp.set("v.myObjects", response.getReturnValue());
        }
    });
    $A.enqueueAction(action);
}
```

For an example on loading and updating records using controllers, see the Quick Start on page 9.

IN THIS SECTION:

CRUD and Field-Level Security (FLS)

Lightning components don’t automatically enforce CRUD and FLS when you reference objects or retrieve the objects from an Apex controller. This means that the framework continues to display records and fields for which users don’t have CRUD access and FLS visibility. You must manually enforce CRUD and FLS in your Apex controllers.

Saving Records

You can take advantage of the built-in create and edit record pages in Salesforce for Android, iOS, and mobile web to create or edit records via a Lightning component.

Deleting Records

You can delete records via a Lightning component to remove them from both the view and database.

SEE ALSO:

CRUD and Field-Level Security (FLS)

CRUD and Field-Level Security (FLS)

Lightning components don’t automatically enforce CRUD and FLS when you reference objects or retrieve the objects from an Apex controller. This means that the framework continues to display records and fields for which users don’t have CRUD access and FLS visibility. You must manually enforce CRUD and FLS in your Apex controllers.

For example, including the `with sharing` keyword in an Apex controller ensures that users see only the records they have access to in Lightning component. Additionally, you must explicitly check `isAccessible()`, `isCreateable()`, `isDeletable()`, and `isUpdateable()` prior to performing operations on records or objects.

This example shows the recommended way to perform an operation on a custom expense object.

```java
public with sharing class ExpenseController {

    // ns refers to namespace; leave out ns__ if not needed
    // This method is vulnerable.
    @AuraEnabled
    public static List<ns__Expense__c> get_UNSAFE_Expenses() {
        return [SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,
                ns__Reimbursed__c, CreatedDate FROM ns__Expense__c];
    }
}
```
This method is recommended.
@AuraEnabled
public static List<ns__Expense__c> getExpenses() {
 String[] expenseAccessFields = new String[] {'Id',
 'Name',
 'ns__Amount__c',
 'ns__Client__c',
 'ns__Date__c',
 'ns__Reimbursed__c',
 'CreatedDate'};

 // Obtain the field name/token map for the Expense object
 Map<String, Schema.SObjectField> m = Schema.SObjectType.ns__Expense__c.fields.getMap();

 for (String fieldToCheck : expenseAccessFields) {
 // Check if the user has access to view field
 if (!m.get(fieldToCheck).getDescribe().isAccessible()) {
 // Pass error to client
 throw new System.NoAccessException();
 }
 }

 // Query the object safely
 return [SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,
 ns__Reimbursed__c, CreatedDate FROM ns__Expense__c];
}

Note: For more information, see the articles on Enforcing CRUD and FLS and Lightning Security.

Saving Records

You can take advantage of the built-in create and edit record pages in Salesforce for Android, iOS, and mobile web to create or edit records via a Lightning component.

The following component contains a button that calls a client-side controller to display the edit record page.

<aura:component>
 <lightning:button label="Edit Record" onclick="!c.edit"/>
</aura:component>

The client-side controller fires the force:recordEdit event, which displays the edit record page for a given contact ID. For this event to be handled correctly, the component must be included in Salesforce for Android, iOS, and mobile web.

edit : function(component, event, helper) {
 var editRecordEvent = $A.get("e.force:editRecord");
 editRecordEvent.setParams({
 "recordId": component.get("v.contact.Id")
 })
}
Saving Records using a Lightning Component

Alternatively, you might have a Lightning component that provides a custom form for users to add a record. To save the new record, wire up a client-side controller to an Apex controller. The following list shows how you can persist a record via a component and Apex controller.

Note: If you create a custom form to handle record updates, you must provide your own field validation.

Create an Apex controller to save your updates with the upsert operation. The following example is an Apex controller for upserting record data.

```java
@AuraEnabled
public static Expense__c saveExpense(Expense__c expense) {
    // Perform isUpdateable() check here
    upsert expense;
    return expense;
}
```

Call a client-side controller from your component. For example, `<lightning:button label="Submit" onclick="!c.createExpense"/>`.

In your client-side controller, provide any field validation and pass the record data to a helper function.

```javascript
createExpense : function(component, event, helper) {
    // Validate form fields
    // Pass form data to a helper function
    var newExpense = component.get("v.newExpense");
    helper.createExpense(component, newExpense);
}
```

In your component helper, get an instance of the server-side controller and set a callback. The following example upserts a record on a custom object. Recall that setParams() sets the value of the expense argument on the server-side controller's saveExpense() method.

```javascript
createExpense: function(component, expense) {
    //Save the expense and update the view
    this.upsertExpense(component, expense, function(a) {
        var expenses = component.get("v.expenses");
        expenses.push(a.getReturnValue());
        component.set("v.expenses", expenses);
    });
},
upsertExpense : function(component, expense, callback) {
    var action = component.get("c.saveExpense");
    action.setParams({
        "expense": expense
    });
    if (callback) {
        action.setCallback(this, callback);
    }
}```
SEE ALSO:

CRUD and Field-Level Security (FLS)

Deleting Records

You can delete records via a Lightning component to remove them from both the view and database.

Create an Apex controller to delete a specified record with the delete operation. The following Apex controller deletes an expense object record.

```apex
@AuraEnabled
public static Expense__c deleteExpense(Expense__c expense) {
 // Perform isDeletable() check here
 delete expense;
 return expense;
}
```

Depending on how your components are set up, you might need to create an event to tell another component that a record has been deleted. For example, you have a component that contains a sub-component that is iterated over to display the records. Your sub-component contains a button (1), which when pressed fires an event that’s handled by the container component (2), which deletes the record that’s clicked on.

```html
<aura:registerEvent name="deleteExpenseItem" type="c:deleteExpenseItem"/>
<lightning:button label="Delete" onclick="{!c.delete}"/>
```
Create a component event to capture and pass the record that's to be deleted. Name the event `deleteExpenseItem`.

```xml
<aura:event type="COMPONENT">
 <aura:attribute name="expense" type="Expense__c"/>
</aura:event>
```

Then, pass in the record to be deleted and fire the event in your client-side controller.

```javascript
delete : function(component, evt, helper) {
 var expense = component.get("v.expense");
 var deleteEvent = component.getEvent("deleteExpenseItem");
 deleteEvent.setParams({ "expense": expense }).fire();
}
```

In the container component, include a handler for the event. In this example, `c:expenseList` is the sub-component that displays records.

```xml
<aura:handler name="deleteExpenseItem" event="c:deleteExpenseItem" action="c:deleteEvent"/>
<aura:iteration items="{!v.expenses}" var="expense">
 <c:expenseList expense="{!expense}"/>
</aura:iteration>
```

And handle the event in the client-side controller of the container component.

```javascript
deleleEvent : function(component, event, helper) {
 // Call the helper function to delete record and update view
```
helper.deleteExpense(component, event.getParam("expense"));

Finally, in the helper function of the container component, call your Apex controller to delete the record and update the view.

define deleteExpense : function(component, expense, callback) {  
    // Call the Apex controller and update the view in the callback  
    var action = component.get("c.deleteExpense");  
    action.setParams({  
        "expense": expense  
    });  
    action.setCallback(this, function(response) {  
        var state = response.getState();  
        if (state === "SUCCESS") {  
            // Remove only the deleted expense from view  
            var expenses = component.get("v.expenses");  
            var items = [];  
            for (i = 0; i < expenses.length; i++) {  
                if(expenses[i]!==expense) {  
                    items.push(expenses[i]);  
                }  
            }  
            component.set("v.expenses", items);  
            // Other client-side logic  
        }  
    });  
    $A.enqueueAction(action);  
}

The helper function calls the Apex controller to delete the record in the database. In the callback function, component.set("v.expenses", items) updates the view with the updated array of records.

SEE ALSO:
- CRUD and Field-Level Security (FLS)
- Component Events
- Calling a Server-Side Action

Testing Your Apex Code

Before you can upload a managed package, you must write and execute tests for your Apex code to meet minimum code coverage requirements. Also, all tests must run without errors when you upload your package to AppExchange.

To package your application and components that depend on Apex code, the following must be true.

- Unit tests must cover at least 75% of your Apex code, and all of those tests must complete successfully.

  Note the following.
  - When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.
  - Calls to System.debug are not counted as part of Apex code coverage.
  - Test methods and test classes are not counted as part of Apex code coverage.
While only 75% of your Apex code must be covered by tests, don’t focus on the percentage of code that is covered. Instead, make sure that every use case of your application is covered, including positive and negative cases, as well as bulk and single records. This approach ensures that 75% or more of your code is covered by unit tests.

- Every trigger must have some test coverage.
- All classes and triggers must compile successfully.

This sample shows an Apex test class for a custom object that’s wired up to a component.

```apex
@isTest
class TestExpenseController {
 static testMethod void test() {
 // Create new expense and insert it into the database
 Expense__c exp = new Expense__c(name='My New Expense',
 amount__c=20, client__c='ABC',
 reimbursed__c=false, date__c=null);
 ExpenseController.saveExpense(exp);

 // Assert the name field and saved expense
 System.assertEquals('My New Expense',
 ExpenseController.getExpenses()[0].Name,
 'Name does not match');
 System.assertEquals(exp, ExpenseController.saveExpense(exp));
 }
}
```

Note: Apex classes must be manually added to your package.

For more information on distributing Apex code, see the Apex Code Developer’s Guide.

SEE ALSO:
- Distributing Applications and Components

Making API Calls from Apex

Make API calls from an Apex controller. You can’t make Salesforce API calls from JavaScript code.

For security reasons, the Lightning Component framework places restrictions on making API calls from JavaScript code. To call third-party APIs from your component’s JavaScript code, add the API endpoint as a CSP Trusted Site.

To call Salesforce APIs, make the API calls from your component’s Apex controller. Use a named credential to authenticate to Salesforce.

Note: By security policy, sessions created by Lightning components aren’t enabled for API access. This prevents even your Apex code from making API calls to Salesforce. Using a named credential for specific API calls allows you to carefully and selectively bypass this security restriction.

The restrictions on API-enabled sessions aren’t accidental. Carefully review any code that uses a named credential to ensure you’re not creating a vulnerability.
For information about making API calls from Apex, see the *Apex Developer Guide*.

SEE ALSO:
- *Apex Developer Guide: Named Credentials as Callout Endpoints*
- Making API Calls from Components
- Create CSP Trusted Sites to Access Third-Party APIs
- Content Security Policy Overview

## Creating Components in Apex

Creating components on the server side in Apex, using the `Cmp.<myNamespace>.<myComponent>` syntax, is deprecated. Use `$A.createComponent()` in client-side JavaScript code instead.

SEE ALSO:
- Dynamically Creating Components
Use Lightning Data Service to load, create, edit, or delete a record in your component without requiring Apex code. Lightning Data Service handles sharing rules and field-level security for you. In addition to not needing Apex, Lightning Data Service improves performance and user interface consistency.

At the simplest level, you can think of Lightning Data Service as the Lightning Components version of the Visualforce standard controller. While this statement is an over-simplification, it serves to illustrate a point. Whenever possible, use Lightning Data Service to read and modify Salesforce data in your components.

Data access with Lightning Data Service is simpler than the equivalent using a server-side Apex controller. Read-only access can be entirely declarative in your component’s markup. For code that modifies data, your component’s JavaScript controller is roughly the same amount of code, and you eliminate the Apex entirely. All your data access code is consolidated into your component, which significantly reduces complexity.

Lightning Data Service provides other benefits aside from the code. It’s built on highly efficient local storage that’s shared across all components that use it. Records loaded in Lightning Data Service are cached and shared across components. Components accessing the same record see significant performance improvements, because a record is loaded only once, no matter how many components are using it. Shared records also improve user interface consistency. When one component updates a record, the other components using it are notified, and in most cases, refresh automatically.
Loading a Record

Loading a record is the simplest operation in Lightning Data Service. You can accomplish it entirely in markup.

To load a record using Lightning Data Service, add the `force:recordData` tag to your component. In the `force:recordData` tag, specify the ID of the record to be loaded, a list of fields, and the attribute to which to assign the loaded record. `force:recordData` must specify the following.

- The ID of the record to load
- Which component attribute to assign the loaded record
- A list of fields to load

You can explicitly specify a list of fields to load with the `fields` attribute. For example,

```html
elements="Name,BillingCity,BillingState"
```

Alternatively, you can specify a layout using the `layoutType` attribute. All fields on that layout are loaded for the record. Layouts are typically modified by administrators, so `layoutType` isn’t as flexible as `fields` when you want to request specific fields. Loading record data using `layoutType` allows your component to adapt to layout definitions. Valid values for `layoutType` are `FULL` and `COMPACT`.

To access fields that an admin has added to a layout, specify a `layoutType`. To get a field from an object regardless of whether an admin has included it in a layout, use the `fields` attribute and request the field by name. To guarantee that a field is always there for the component, specify the field in addition to getting all the fields on a layout.

`targetRecord` is populated with the current record, containing the fields relevant to the requested `layoutType` or the fields listed in the `fields` attribute. `targetFields` is populated with a simplified view of the loaded record. For example, for the `Name` field, `v.targetRecord.fields.Name.value` is equivalent to `v.targetFields.Name`.

**Example: Loading a Record**

The following example illustrates the essentials of loading a record using Lightning Data Service. This component can be added to a record home page in the Lightning App Builder, or as a custom action. The record ID is supplied by the implicit `recordId` attribute added by the `force:hasRecordId` interface.

ldsLoad.cmp

```html
<aura:component
 implements="flexipage:availableForRecordHome,force:lightningQuickActionWithoutHeader,
 force:hasRecordId">

 <aura:attribute name="record" type="Object"/>
 <aura:attribute name="simpleRecord" type="Object"/>
 <aura:attribute name="recordError" type="String"/>

 <force:recordData aura:id="recordLoader"
 recordId="{!v.recordId}"
 targetFields="{!v.simpleRecord}"
 targetError="{!v.recordError}"
 recordUpdated="{!c.handleRecordUpdated}" />

 <!-- Display a lightning card with details about the record -->
 <div class="recordDetails">
 <lightning:card iconName="standard:account" title="{!v.simpleRecord.Name}">
 <div class="slds-p-horizontal--small">
 <p class="slds-text-heading--small">409</p>
 </div>
 </lightning:card>
 </div>

</aura:component>
```
<lightning:formattedText title="Billing City" value="{!v.simpleRecord.BillingCity}" /></p>
<p class="slds-text-heading--small">
<lightning:formattedText title="Billing State" value="{!v.simpleRecord.BillingState}" /></p>
</div>
</lightning:card>
</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{"not(empty(v.recordError))}">
<div class="recordError">
{!v.recordError}</div>
</aura:if>
</aura:component>

ldsLoadController.js

```javascript
{{
 handleRecordUpdated: function(component, event, helper) {
 var eventParams = event.getParams();
 if(eventParams.changeType === "LOADED") {
 console.log("Record is loaded successfully.");
 } else if(eventParams.changeType === "CHANGED") {
 // record is changed
 } else if(eventParams.changeType === "REMOVED") {
 // record is deleted
 } else if(eventParams.changeType === "ERROR") {
 // there’s an error while loading, saving, or deleting the record
 }
 }
}}
```

SEE ALSO:
Configure Components for Lightning Experience Record Pages
Configure Components for Record-Specific Actions

## Saving a Record

To save a record using Lightning Data Service, call `saveRecord` on the `force:recordData` component, and pass in a callback function to be invoked after the save operation completes.

The Lightning Data Service save operation is used in two cases:
- To save changes to an existing record
- To create and save a new record

To save changes to an existing record, load the record in EDIT mode and call `saveRecord` on the `force:recordData` component.

To save a new record, and thus create it, create the record from a record template, as described in Creating a Record. Then call `saveRecord` on the `force:recordData` component.
Load a Record in EDIT Mode

To load a record that might be updated, set the `force:recordData` tag's `mode` attribute to "EDIT". Other than explicitly setting the `mode`, loading a record for editing is the same as loading it for any other purpose.

**Note:** Since Lightning Data Service records are shared across multiple components, loading records load the component with a copy of the record instead of a direct reference. If a component loads a record in VIEW mode, Lightning Data Service will automatically overwrite that copy with a newer copy of the record when the record is changed. If a record is loaded in EDIT mode, the record is not updated when the record is changed. This prevents unsaved changes from appearing in components that reference the record while the record is being edited, and prevents any edits in progress from being overwritten. Notifications are still sent in both modes.

Call `saveRecord` to Save Record Changes

To perform the save operation, call `saveRecord` on the `force:recordData` component from the appropriate controller action handler. `saveRecord` takes one argument—a callback function to be invoked when the operation completes. This callback function receives a `SaveRecordResult` as its only parameter. `SaveRecordResult` includes a `state` attribute that indicates success or error, and other details you can use to handle the result of the operation.

**Example: Saving a Record**

The following example illustrates the essentials of saving a record using Lightning Data Service. It's intended for use on a record page. The record ID is supplied by the implicit `recordId` attribute added by the `force:hasRecordId` interface.

```aura
<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId">
 <aura:attribute name="record" type="Object"/>
 <aura:attribute name="simpleRecord" type="Object"/>
 <aura:attribute name="recordError" type="String"/>

 <force:recordData aura:id="recordHandler"
 recordId="{!v.recordId}"
 layoutType="FULL"
 targetRecord="{!v.record}"
 targetFields="{!v.simpleRecord}"
 targetError="{!v.recordError}"
 mode="EDIT"
 recordUpdated="{!c.handleRecordUpdated}" />

 <!-- Display a lightning card with details about the record -->
 <div class="Record Details">
 <lightning:card iconName="standard:account" title="{!v.simpleRecord.Name}">
 <div class="slds-p-horizontal--small">
 <p class="slds-text-heading--small">
 <lightning:formattedText title="Billing State" value="{!v.simpleRecord.BillingState}" />
 </p>
 <p class="slds-text-heading--small">
 <lightning:formattedText title="Billing City" value="{!v.simpleRecord.BillingCity}" />
 </p>
 </div>
 </lightning:card>
 </div>
</aura>
```
Note: If you’re using this component with an object that has a first and last name, such as contacts, create a separate lightning:input component for {!v.simpleRecord.FirstName} and {!v.simpleRecord.LastName}.

This component loads a record using force:recordData set to EDIT mode, and provides a form for editing record values. (In this simple example, just the record name field)

ldsSaveController.js

```javascript
{
 handleSaveRecord: function(component, event, helper) {
 component.find("recordHandler").saveRecord($A.getCallback(function(saveResult) {
 // NOTE: If you want a specific behavior (an action or UI behavior) when this action is successful
 // then handle that in a callback (generic logic when record is changed should be handled in recordUpdated event handler)
 if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {
 // handle component related logic in event handler
 } else if (saveResult.state === "INCOMPLETE") {
 console.log("User is offline, device doesn't support drafts.");
 } else if (saveResult.state === "ERROR") {
 console.log('Problem saving record, error: ' + JSON.stringify(saveResult.error));
 } else {
 console.log('Unknown problem, state: ' + saveResult.state + ', error: ' + JSON.stringify(saveResult.error));
 }
 }));
 }
}
```

/**
 * Control the component behavior here when record is changed (via any component)
handleRecordUpdated: function(component, event, helper) {
    var eventParams = event.getParams();
    if(eventParams.changeType === "CHANGED") {
        // get the fields that changed for this record
        var changedFields = eventParams.changedFields;
        console.log('Fields that are changed: ' + JSON.stringify(changedFields));

        // record is changed, so refresh the component (or other component logic)
        var resultsToast = $A.get("e.force:showToast");
        resultsToast.setParams({
            "title": "Saved",
            "message": "The record was updated."
        });
        resultsToast.fire();
    }
    else if(eventParams.changeType === "LOADED") {
        // record is loaded in the cache
    }
    else if(eventParams.changeType === "REMOVED") {
        // record is deleted and removed from the cache
    }
    else if(eventParams.changeType === "ERROR") {
        // there’s an error while loading, saving or deleting the record
    }
}
Create an Empty Record from a Record Template

To create an empty record from a record template, you can't set a recordId on the force:recordData tag. Without a recordId, Lightning Data Service doesn't load an existing record.

In your component's init or another handler, call the getNewRecord on force:recordData. getNewRecord takes the following arguments:

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>objectApiName</td>
<td>String</td>
<td>The object API name for the new record.</td>
</tr>
<tr>
<td>recordTypeId</td>
<td>String</td>
<td>The 18 character ID of the record type for the new record. If not specified, the default record type for the object is used, as defined in the user's profile.</td>
</tr>
<tr>
<td>skipCache</td>
<td>Boolean</td>
<td>Whether to load the record template from the server instead of the client-side Lightning Data Service cache. Defaults to false.</td>
</tr>
<tr>
<td>callback</td>
<td>Function</td>
<td>A function invoked after the empty record is created. This function receives no arguments.</td>
</tr>
</tbody>
</table>

getNewRecord doesn't return a result. It simply prepares an empty record and assigns it to the targetRecord attribute.

**Example: Creating a Record**

The following example illustrates the essentials of creating a record using Lightning Data Service. This example is intended to be added to an account record Lightning page.

```aura
<aura:component implements="flexipage:availableForRecordHome, force:hasRecordId">

 <aura:attribute name="newContact" type="Object"/>
 <aura:attribute name="simpleNewContact" type="Object"/>
 <aura:attribute name="newContactError" type="String"/>

 <aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

 <force:recordData aura:id="contactRecordCreator"
 layoutType="FULL"
 targetRecord="{!v.newContact}"
 targetFields="{!v.simpleNewContact}"
 targetError="{!v.newContactError}"/>

 <!-- Display the new contact form -->
 <div class="Create Contact">
 <lightning:card iconName="action:new_contact" title="Create Contact">
 <div class="slds-p-horizontal--small">
 <lightning:input aura:id="contactField" label="First Name" value="{!v.simpleNewContact.FirstName}"/>
 <lightning:input aura:id="contactField" label="Last Name" value="{!v.simpleNewContact.LastName}"/>
 <lightning:input aura:id="contactField" label="Title"
```
This component doesn’t set the `recordId` attribute of `force:recordData`. This tells Lightning Data Service to expect a new record. Here, that’s created in the component’s `init` handler.

`ldsCreateController.js`

```javascript

doInit: function(component, event, helper) {
 // Prepare a new record from template
 component.find("contactRecordCreator").getNewRecord(
 "Contact", // sObject type (objectApiName)
 null, // recordTypeId
 false, // skip cache?
 $A.getCallback(function() {
 var rec = component.get("v.newContact");
 var error = component.get("v.newContactError");
 if(error || (rec === null)) {
 console.log("Error initializing record template: " + error);
 return;
 }
 console.log("Record template initialized: " + rec.sobjectType);
 })
);
},

handleSaveContact: function(component, event, helper) {
 if(helper.validateContactForm(component)) {
 component.set("v.simpleNewContact.AccountId", component.get("v.recordId"));
 component.find("contactRecordCreator").saveRecord(function(saveResult) {
 if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {
 // record is saved successfully
 var resultsToast = $A.get("e.force:showToast");
 resultsToast.setParams({
 "title": "Saved",
 "message": "The record was saved."
 });
 resultsToast.fire();
 }
 });
 }
}
```
} else if (saveResult.state === "INCOMPLETE") {
  // handle the incomplete state
  console.log("User is offline, device doesn't support drafts.");
} else if (saveResult.state === "ERROR") {
  // handle the error state
  console.log('Problem saving contact, error: ' + JSON.stringify(saveResult.error));
} else {
  console.log('Unknown problem, state: ' + saveResult.state + ', error: ' + JSON.stringify(saveResult.error));
}
});
}
}
})

The `doInit` init handler calls `getNewRecord()` on the `force:recordData` component, passing in a simple callback handler. This call creates a new, empty contact record, which is used by the contact form in the component’s markup.

**Note:** The callback passed to `getNewRecord()` must be wrapped in `$A.getCallback()` to ensure correct access context when the callback is invoked. If the callback is passed in without being wrapped in `$A.getCallback()`, any attempt to access private attributes of your component results in access check failures.

Even if you’re not accessing private attributes, it’s a best practice to always wrap the callback function for `getNewRecord()` in `$A.getCallback()`. Never mix (contexts), never worry.

The `handleSaveContact` handler is called when the **Save Contact** button is clicked. It’s a straightforward application of saving the contact, as described in **Saving a Record**, and then updating the user interface.

**Note:** The helper function, `validateContactForm`, isn’t shown. It simply validates the form values. For an example of this validation, see **Lightning Data Service Example**.

SEE ALSO:
- **Saving a Record**
- **Configure Components for Lightning Experience Record Pages**
- **Configure Components for Record-Specific Actions**
- **Controlling Access**

## Deleting a Record

To delete a record using Lightning Data Service, call `deleteRecord` on the `force:recordData` component, and pass in a callback function to be invoked after the delete operation completes.

Delete operations with Lightning Data Service are straightforward. The `force:recordData` tag can include minimal details. If you don’t need any record data, set the `fields` attribute to just `Id`. If you know that the only operation is a delete, any `mode` can be used.

To perform the delete operation, call `deleteRecord` on the `force:recordData` component from the appropriate controller action handler. `deleteRecord` takes one argument, a callback function to be invoked when the operation completes. This callback function receives a `SaveRecordResult` as its only parameter. `SaveRecordResult` includes a `state` attribute that indicates success or error, and other details you can use to handle the result of the operation.
Example: Deleting a Record

The following example illustrates the essentials of deleting a record using Lightning Data Service. This component adds a Delete Record button to a record page, which deletes the record being displayed. The record ID is supplied by the implicit recordId attribute added by the force:hasRecordId interface.

ldsDelete.cmp

```html
<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId">
 <aura:attribute name="recordError" type="String" access="private"/>

 <force:recordData aura:id="recordHandler"
 recordId="{"recordId}"
 fields="Id"
 targetError="{"recordError}"
 recordUpdated="{"recordUpdated}"
 />

 <!-- Display the delete record form -->
 <div class="Delete Record">
 <lightning:card iconName="action:delete" title="Delete Record">
 <div class="slds-p-horizontal--small">
 <lightning:button label="Delete Record" variant="destructive"
 onclick="{!c.handleDeleteRecord}"/>
 </div>
 </lightning:card>
 </div>

 <!-- Display Lightning Data Service errors, if any -->
 <aura:if isTrue="{"recordError}"">
 <div class="recordError">
 {!recordError}
 </div>
 </aura:if>
</aura:component>
```

Notice that the force:recordData tag includes only the recordId and a nearly empty fields list—the absolute minimum required. If you want to display record values in the user interface, for example, as part of a confirmation message, define the force:recordData tag as you would for a load operation instead of this minimal delete example.

ldsDeleteController.js

```javascript
{"handleDeleteRecord: function(component, event, helper) {
 component.find("recordHandler").deleteRecord($A.getCallback(function(deleteResult) {
 // NOTE: If you want a specific behavior (an action or UI behavior) when this action is successful
 // then handle that in a callback (generic logic when record is changed should be handled in recordUpdated event handler)
 if (deleteResult.state === "SUCCESS" || deleteResult.state === "DRAFT") {
 console.log("Record is deleted.");
 } else if (deleteResult.state === "INCOMPLETE") {
 console.log("User is offline, device doesn't support drafts.");
 } else if (deleteResult.state === "ERROR") {
```
console.log('Problem deleting record, error: ' + JSON.stringify(deleteResult.error));
}

} else {
  console.log('Unknown problem, state: ' + deleteResult.state + ', error: ' + JSON.stringify(deleteResult.error));
}
)

/**
 * Control the component behavior here when record is changed (via any component)
 */

handleRecordUpdated: function(component, event, helper) {
  var eventParams = event.getParams();
  if(eventParams.changeType === "CHANGED") {
   // record is changed
  } else if(eventParams.changeType === "LOADED") {
   // record is loaded in the cache
  } else if(eventParams.changeType === "REMOVED") {
   // record is deleted, show a toast UI message
   var resultsToast = $A.get("e.force:showToast");
   resultsToast.setParams({
      "title": "Deleted",
      "message": "The record was deleted."
    });
   resultsToast.fire();
  } else if(eventParams.changeType === "ERROR") {
   // there’s an error while loading, saving, or deleting the record
  }
}
}

When the record is deleted, navigate away from the record page. Otherwise, you see a "record not found" error when the component refreshes. Here the controller uses the objectApiName property in the SaveRecordResult provided to the callback function, and navigates to the object home page.

SEE ALSO:
SaveRecordResult
Configure Components for Lightning Experience Record Pages
Configure Components for Record-Specific Actions

Record Changes

To perform tasks beyond rerendering the record when the record changes, handle the recordUpdated event. You can handle record loaded, updated, and deleted changes, applying different actions to each change type.

If a component performs logic that is record data specific, it must run that logic again when the record changes. A common example is a business process in which the actions that apply to a record change depending on the record’s values. For example, different actions apply to opportunities at different stages of the sales cycle.
Note: Lightning Data Service notifies listeners about data changes only if the changed fields are the same as in the listener’s fields or layout.

Example: Declare that your component handles the recordUpdated event.

```html
<force:recordData aura:id="forceRecord"
 recordId="{v.recordId}"
 layoutType="FULL"
 targetRecord="{v._record}"
 targetFields="{v.simpleRecord}"
 targetError="{v._error}"
 recordUpdated="{!c.recordUpdated}" />
```

Implement an action handler that handles the change.

```javascript
({
 recordUpdated: function(component, event, helper) {
 var changeType = event.getParams().changeType;

 if (changeType === "ERROR") { /* handle error; do this first! */ }
 else if (changeType === "LOADED") { /* handle record load */ }
 else if (changeType === "REMOVED") { /* handle record removal */ }
 else if (changeType === "CHANGED") { /* handle record change */ }
 }
})
```

When loading a record in edit mode, the record is not automatically updated to prevent edits currently in progress from being overwritten. To update the record, use the `reloadRecord` method in the action handler.

```html
<force:recordData aura:id="forceRecord"
 recordId="{v.recordId}"
 layoutType="FULL"
 targetRecord="{v._record}"
 targetFields="{v.simpleRecord}"
 targetError="{v._error}"
 mode="EDIT"
 recordUpdated="{!c.recordUpdated}" />
```

```javascript
({
 recordUpdated : function(component, event, helper) {
 var changeType = event.getParams().changeType;

 if (changeType === "ERROR") { /* handle error; do this first! */ }
 else if (changeType === "LOADED") { /* handle record load */ }
 else if (changeType === "REMOVED") { /* handle record removal */ }
 else if (changeType === "CHANGED") {
 /* handle record change; reloadRecord will cause you to lose your current record,
 including any changes you’ve made */
 component.find("forceRecord").reloadRecord();
 }
 }
})
```
Errors

To act when an error occurs, handle the `recordUpdated` event and handle the case where the `changeType` is "ERROR".

**Example**: Declare that your component handles the `recordUpdated` event.

```xml
<force:recordData aura:id="forceRecord"
 recordId="{!v.recordId}"
 layoutType="FULL"
 targetRecord="{!v._record}"
 targetFields="{!v.simpleRecord}"
 targetError="{!v._error}"
 recordUpdated="{!c.recordUpdated}" />
```

Implement an action handler that handles the error.

```javascript
({
 recordUpdated: function(component, event, helper) {

 var changeType = event.getParams().changeType;

 if (changeType === "ERROR") { /* handle error; do this first! */ }
 else if (changeType === "LOADED") { /* handle record load */ }
 else if (changeType === "REMOVED") { /* handle record removal */ }
 else if (changeType === "CHANGED") { /* handle record change */ }
 }
})
```

If an error occurs when the record begins to load, `targetError` is set to a localized error message. An error occurs if:

- Input is invalid because of an invalid attribute value, or combination of attribute values. For example, an invalid `recordId`, or omitting both the `layoutType` and the `fields` attributes.
- The record isn’t in the cache and the server is unreachable (offline).

If the record becomes inaccessible on the server, the `recordUpdated` event is fired with `changeType` set to "REMOVED." No error is set on `targetError`, since records becoming inaccessible is sometimes the expected outcome of an operation. For example, after lead convert the lead record becomes inaccessible.

Records can become inaccessible for the following reasons.

- Record or entity sharing or visibility settings
- Record or entity being deleted

When the record becomes inaccessible on the server, the record’s JavaScript object assigned to `targetRecord` is unchanged.

Considerations

Lightning Data Service is powerful and simple to use. However, it’s not a complete replacement for writing your own data access code. Here are some considerations to keep in mind when using it.

Lightning Data Service is available in the following containers:

- Lightning Experience
- Salesforce app
* Lightning Communities
* Lightning Out
* Lightning Components for Visualforce
* Standalone Lightning apps
* Lightning for Gmail
* Lightning for Outlook

Lightning Data Service supports primitive DML operations—create, read, update, and delete. It operates on one record at a time, which you retrieve or modify using the record ID. Lightning Data Service supports spanned fields with a maximum depth of five levels. Support for working with collections of records or for querying for a record by anything other than the record ID isn’t available. If you must support higher-level operations or multiple operations in one transaction, use standard @AuraEnabled Apex methods.

Lightning Data Service shared data storage provides notifications to all components that use a record whenever a component changes that record. It doesn’t notify components if that record is changed on the server, for example, if someone else modifies it. Records changed on the server aren’t updated locally until they’re reloaded. Lightning Data Service notifies listeners about data changes only if the changed fields are the same as in the listener’s fields or layout.

**Supported Objects**

Lightning Data Service supports custom objects and the following.

- Account
- AccountTeamMember
- Asset
- AssetRelationship
- AssignedResource
- AttachedContentNote
- BusinessAccount
- Campaign
- CampaignMember
- Case
- Contact
- ContentDocument
- ContentNote
- ContentVersion
- ContentWorkspace
- Contract
- ContractContactRole
- ContractLineItem
- CustomObject
- Entitlement
- EnvironmentHubMember
- Lead
- LicensingRequest
• MaintenanceAsset
• MaintenancePlan
• MarketingAction
• MarketingResource
• Note
• OperatingHours
• Opportunity
• OpportunityLineItem
• OpportunityTeamMember
• Order
• OrderLineItem
• PersonAccount
• Pricebook2
• PricebookEntry
• Product2
• Quote
• QuoteDocument
• QuoteLineItem
• ResourceAbsence
• ResourcePreference
• ServiceAppointment
• ServiceContract
• ServiceCrew
• ServiceCrewMember
• ServiceResource
• ServiceResourceCapacity
• ServiceResourceSkill
• ServiceTerritory
• ServiceTerritoryLocation
• ServiceTerritoryMember
• Shipment
• SkillRequirement
• SocialPost
• Tenant
• TimeSheet
• TimeSheetEntry
• TimeSlot
• UsageEntitlement
• UsageEntitlementPeriod
• User
Lightning Data Service Example

Here's a longer, more detailed example of using Lightning Data Service to create a Quick Contact action panel.

Example: This example is intended to be added as a Lightning action on the account object. Clicking the action’s button on the account layout opens a panel to create a new contact.

This example is similar to the example provided in Configure Components for Record-Specific Actions. Compare the two examples to better understand the differences between using @AuraEnabled Apex controllers and using Lightning Data Service.

```xml
<aura:component implements="force:lightningQuickActionWithoutHeader, force:hasRecordId">

 <aura:attribute name="account" type="Object"/>
 <aura:attribute name="simpleAccount" type="Object"/>
 <aura:attribute name="accountError" type="String"/>
 <force:recordData aura:id="accountRecordLoader" recordId="{"v.recordId}"
 fields="Name, BillingCity, BillingState"
 targetRecord="{"v.account}"
 targetFields="{"v.simpleAccount}" targetError="{"v.accountError}"
 />

</aura:component>
```
<aura:attribute name="newContact" type="Object" access="private"/>
<aura:attribute name="simpleNewContact" type="Object" access="private"/>
<aura:attribute name="newContactError" type="String" access="private"/>
<force:recordData aura:id="contactRecordCreator"
  layoutType="FULL"
  targetRecord="{!v.newContact}"
  targetFields="{!v.simpleNewContact}"
  targetError="{!v.newContactError}"/>

<aura:handler name="init" value="{"this}" action="{"c.doInit}"/>

<!-- Display a header with details about the account -->
<div class="slds-page-header" role="banner">
  <p class="slds-text-heading_label">{!v.simpleAccount.Name}</p>
  <h1 class="slds-page-header__title slds-m-right_small
      slds-truncate slds-align-left">Create New Contact</h1>
</div>

<!-- Display Lightning Data Service errors, if any -->
aura:if isTrue="{"!not(empty(v.accountError))}">
  <div class="recordError">
    <ui:message title="Error" severity="error" closable="true">
      {!v.accountError}
    </ui:message>
  </div>
</aura:if>

<!-- Display the new contact form -->
aura:if isTrue="{"!not(empty(v.newContactError))}">
  <div class="recordError">
    <ui:message title="Error" severity="error" closable="true">
      {!v.newContactError}
    </ui:message>
  </div>
</aura:if>

<!-- Display a header with details about the account -->
<lightning:input aura:id="contactField" name="firstName" label="First Name" value="{"v.simpleNewContact.FirstName}" required="true"/>

<lightning:input aura:id="contactField" name="lastname" label="Last Name" value="{"v.simpleNewContact.LastName}" required="true"/>

<lightning:input aura:id="contactField" name="title" label="Title" value="{"v.simpleNewContact.Title}"/>

<lightning:input aura:id="contactField" type="phone" name="phone" label="Phone Number"
  pattern="^[0-9]{7,11}$" messageWhenPatternMismatch="The phone number must contain 7, 10, or 11 digits. Hyphens are optional." value="{"v.simpleNewContact.Phone}" required="true"/>

<lightning:input aura:id="contactField" type="email" name="email" label="Email"
value="{!v.simpleNewContact.Email}" />

<lightning:button label="Cancel" onclick="{!c.handleCancel}" class="slds-m-top_medium" />
<lightning:button label="Save Contact" onclick="{!c.handleSaveContact}" variant="brand" class="slds-m-top_medium"/>

</aura:component>

ldsQuickContactController.js

{
    doInit: function(component, event, helper) {
        component.find("contactRecordCreator").getNewRecord("Contact", // objectApiName
          null, // recordTypeId
          false, // skip cache?
          $A.getCallback(function() {
            var rec = component.get("v.newContact");
            var error = component.get("v.newContactError");
            if(error || (rec === null)) {
                console.log("Error initializing record template: " + error);
            } else {
                console.log("Record template initialized: " + rec.sobjectType);
            }
        });
    },

    handleSaveContact: function(component, event, helper) {
        if(helper.validateContactForm(component)) {
            component.set("v.simpleNewContact.AccountId", component.get("v.recordId"));

            component.find("contactRecordCreator").saveRecord(function(saveResult) {
                if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {

                    // Success! Prepare a toast UI message
                    var resultsToast = $A.get("e.force:showToast");
                    resultsToast.setParams({
                        "title": "Contact Saved",
                        "message": "The new contact was created."
                    });
                }
            });
        }
    },

    else if (saveResult.state === "INCOMPLETE") {

    }

    else if (saveResult.state === "INCOMPLETE") {

}
console.log("User is offline, device doesn't support drafts.");
}
else if (saveResult.state === "ERROR") {
    console.log('Problem saving contact, error: ' +
        JSON.stringify(saveResult.error));
}
else {
    console.log('Unknown problem, state: ' + saveResult.state +
        ', error: ' + JSON.stringify(saveResult.error));
}
});
,

handleCancel: function(component, event, helper) {
    $A.get("e.force:closeQuickAction").fire();
},
}

Note: The callback passed to `getNewRecord()` must be wrapped in `$A.getCallback()` to ensure correct access context when the callback is invoked. If the callback is passed in without being wrapped in `$A.getCallback()`, any attempt to access private attributes of your component results in access check failures. Even if you’re not accessing private attributes, it’s a best practice to always wrap the callback function for `getNewRecord()` in `$A.getCallback()`. Never mix contexts, never worry.

ldsQuickContactHelper.js

```js
{
 validateContactForm: function(component) {
 var validContact = true;

 // Show error messages if required fields are blank
 var allValid = component.find('contactField').reduce(function (validFields, inputCmp) {
 inputCmp.showHelpMessageIfInvalid();
 return validFields && inputCmp.get('v.validity').valid;
 }, true);

 if (allValid) {
 // Verify we have an account to attach it to
 var account = component.get("v.account");
 if (!$A.util.isEmpty(account)) {
 validContact = false;
 console.log("Quick action context doesn't have a valid account.");
 }
 }
 return(validContact);
 }
}
SEE ALSO:
Configure Components for Record-Specific Actions
Controlling Access

SaveRecordResult

Represents the result of a Lightning Data Service operation that makes a persistent change to record data.

SaveRecordResult Object

Callback functions for the `saveRecord` and `deleteRecord` functions receive a `SaveRecordResult` object as their only argument.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>objectApiName</code></td>
<td>String</td>
<td>The object API name for the record.</td>
</tr>
<tr>
<td><code>entityLabel</code></td>
<td>String</td>
<td>The label for the name of the sObject of the record.</td>
</tr>
<tr>
<td><code>error</code></td>
<td>String</td>
<td>Error is one of the following.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A localized message indicating what went wrong.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An array of errors, including a localized message indicating what went wrong.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It might also include further data to help handle the error, such as field- or page-level errors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>error</code> is undefined if the <code>state</code> is SUCCESS or DRAFT.</td>
</tr>
<tr>
<td><code>recordId</code></td>
<td>String</td>
<td>The 18-character ID of the record affected.</td>
</tr>
<tr>
<td><code>state</code></td>
<td>String</td>
<td>The result state of the operation. Possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SUCCESS—The operation completed on the server successfully.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DRAFT—The server wasn’t reachable, so the operation was saved locally as a draft. The change is applied to the server when it’s reachable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INCOMPLETE—The server wasn’t reachable, and the device doesn’t support drafts. (Drafts are supported only in the Salesforce app.) Try this operation again later.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ERROR—The operation couldn’t be completed. Check the <code>error</code> attribute for more information.</td>
</tr>
</tbody>
</table>
CHAPTER 12 Testing Components with Lightning Testing Service

In this chapter ...

• How Lightning Testing Service Works
• Install Lightning Testing Service
• Get Started with Lightning Testing Service
• Explore the Example Test Suites
• Write Your Own Tests
• Use Other Frameworks

Use Lightning Testing Service (LTS) to ensure your components perform as expected. LTS is a full suite of tools and services integrated with Salesforce DX to make testing easy.

Automated tests are the best way to achieve predictable, repeatable assessments of the quality of your custom code. Writing automated tests for your custom components gives you confidence that they work as designed, and allows you to evaluate the impact of changes, such as refactoring, or of new versions of Salesforce or third-party JavaScript libraries.

LTS supports testing with standard JavaScript test frameworks. It provides easy-to-use wrappers for using Jasmine and Mocha. If you prefer to use an alternative test framework, you can wrap it yourself.
How Lightning Testing Service Works

LTS simplifies building test suites, and is fully integrated with Salesforce DX.

LTS consists of two major components:

- The LTS unmanaged package, listed by release version on the project Releases page
- The LTS install command for the Salesforce CLI

The unmanaged package includes LTS infrastructure, including a test runner app, and some example tests. Once the package is installed in your org, you can run the example tests by going to the following URL:

yourInstance/c/jasmineTests.app

When you run tests manually in a browser, you’re using only the pieces of LTS provided in the package.

For more sophisticated development processes, use the LTS commands included with the Salesforce DX CLI plugin. The Salesforce CLI allows you to integrate LTS into your automated testing, continuous integration, and other source-based development processes.

The command line tool automates running your test suites. It opens the same URL you can open manually, and uses WebDriver to observe the test suite as it runs. Then it parses and packages the results for use in command line-based development processes.

Installing LTS is a one line command in the Salesforce DX CLI. Once installed, you can work with your test suite in various ways from the command line.

Note: If you just want to “kick the tires,” that’s cool, too. You can manually install the LTS unmanaged package. The package provides the test service app and an example test suite. It also includes example components that the test suite runs against. You run the test suite by accessing the URL for the LTS app in your org.

Write your tests using a JavaScript testing framework of your choosing. We provide easy-to-use wrappers for Jasmine and Mocha.
A simple Jasmine test spec looks like the following:

```javascript
/**
 * This is a 'hello world' Jasmine test spec
 */
describe("A simple passing test", function() {
  it("checks that true is always true", function() {
    expect(true).toBe(true);
  });
});
```

A Mocha test looks similar.

```javascript
/**
 * This is a 'hello world' Mocha test
 */
var assert = require('assert');
describe('A simple passing test', function() {
  it('checks that true is always true', function() {
    assert.equal(true, true);
  });
});
```

You can write your own wrapper if you prefer a different testing framework. It’s not hard, but plan on half a day to a day of work.

LTS also provides utilities specific to Lightning Component framework, which let you test behavior specific to Lightning components. Details are explained in comments in the example tests.

Your test suite is deployed in the form of an archive (zip) static resource. Once LTS is installed and configured, you make changes to your test suite, create the archive, and upload it to your org. Once uploaded you can run the test suite via the command line or via URL.

⚠️ **Warning:** Don’t run tests in your production org. LTS doesn’t provide an isolated test context or transaction wrapper. The DML operations you perform in your tests won’t be rolled back at the end of the test. We recommend that you run your LTS test suites only in scratch orgs, using data provided by the test suite itself.

Install Lightning Testing Service

You have two ways to install LTS. The simplest way is to use the Salesforce DX CLI. If you’re not using Salesforce DX, you can manually install the unmanaged package.

Use Salesforce DX to Install Lightning Testing Service

Salesforce DX includes a one line command for automatically installing the LTS unmanaged package. The Salesforce DX CLI also allows you to use the `sfdx` command line tool to perform automated testing as part of your development process, including automated process, such as continuous integration.

1. If you haven’t already, enable Dev Hub in your org.
2. Install the Salesforce CLI and verify your installation.
3. Verify that the Salesforce DX CLI plug-in is updated.

```bash
sfdx update
```
4. Log in to your Dev Hub org.

 sfdx force:auth:web:login -d

5. (Optional but highly recommended) Clone the LightningTestingService Github repo, which contains the sample configuration file and more.

6. Create a scratch org. The following command uses the sample configuration file from the LightningTestingService repo.

 cd path/to/LightningTestingService
 sfdx force:org:create -s -f config/project-scratch-def.json -a scratch1

 To customize your scratch org settings with a company name, email address, and so on, edit the configuration file: /LightningTestingService/config/project-scratch-def.json.

 It’s best to perform automated testing in a clean org, created with consistent settings.

7. Install the LTS package.

 sfdx force:lightning:test:install

 This command installs the latest version of the LTS package into your default SFDX org. See the help for the install command for more options.

After you install Salesforce CLI and LTS, you can run your tests from the command line.

 sfdx force:lightning:test:run -a jasmineTests.app

When you run your tests, you see output in your CLI that tells you that the command line tools are working and connected to your development org.

 ![Test output]

 See the command line help for other useful details.

 sfdx force:lightning:test:run --help
Install Lightning Testing Service as an Unmanaged Package

If you're not using Salesforce DX, you're missing a lot, but you can still use LTS. Installing the LTS package is just like installing any other unmanaged package.

1. Log in to your org. We recommend that you use a new DE org for evaluating LTS.
2. Go to the project Releases page, and click the package installation URL for the latest release.
3. Authenticate again with the credentials for your DE org.
4. Follow the normal package installation prompts. We recommend installing the package for admins only.

LTS Package Contents

However you install it, the LTS package includes the following items:

1. Example test suites
 - Jasmine JavaScript files in archive static resources
 - Mocha JavaScript files in archive static resources
2. Example components to be tested
 - Components, an Apex class, and a custom label
3. LTS infrastructure
 - Jasmine framework and wrapper
 - Mocha framework and wrapper
 - LTS test utilities
 - Test runner component
 - Wrapper test app

Get Started with Lightning Testing Service

Let's see LTS in action.

These steps assume you’ve already followed the Install Lightning Testing Service instructions.

1. From your project directory, create another scratch org using the configuration file from the cloned LightningTestingService repo.
   ```bash
   sfdx force:org:create -s -f config/project-scratch-def.json -a scratch1
   ```
2. Push metadata to the scratch org.
   ```bash
   sfdx force:source:push
   ```
3. Run tests.
   ```bash
   sfdx force:org:open -p /c/jasmineTests.app
   ```

You see a screen that looks something like the following.
How to Push Data to a Developer Edition Org

Salesforce DX is designed to work with a Dev Hub and scratch orgs. If you have a normal DE org you’d like to work with, the commands are slightly different.

```
sfdx force:auth:web:login -s  # connect to your DE org
sfdx force:mdapi:convert # convert metadata for Salesforce DX projects
sfdx force:mdapi:deploy  # deploy local source to the DE org
```

Explore the Example Test Suites

To learn how to write tests for your Lightning components, dive into the test suites and explore the tests and components side-by-side.

Open the test suite file in one window, and in another window (perhaps in your IDE) open the simple components being tested. The components and the test suites included in the unmanaged package are also available in a repository on GitHub.

https://github.com/forcedotcom/LightningTestingService
Components for Testing

All of the testable components have names beginning with "eg" (from the abbreviation "e.g.", meaning for example). They contain extensive comments to guide you through each one. Access the components provided in the package as you would access any Lightning component.

- In the Developer Console
- In the Force.com IDE, in the /aura/ directory
- By converting your org’s metadata into a format that you can work with locally, using Salesforce DX
- Directly from the LightningTestingService repo in the lightning-component-tests/main/default/aura directory.

We include more than a dozen components, designed to be used in illustrative tests. Each of the components has a description of its behavior in its .auradoc documentation file.

Test Suites

The example tests are included in static resources. You can also review them directly in the LightningTestingService repo, in the lightning-component-tests/test/default/staticresources directory.

The LTS package includes four test suites, three for Jasmine and one for Mocha:

- jasmineHelloWorldTests.resource — A very simple Jasmine example including one passing and one failing test.
- jasmineExampleTests.resource — The main Jasmine example test suite.
- jasmineLightningDataServiceTests.resource — Some Jasmine examples specific to testing Lightning Data Service-based components.
- mochaExampleTests.resource — The Mocha example test suite, which provides examples parallel to the main Jasmine test suite.

The jasmineExampleTests.resource and mochaExampleTests.resource files are each a single JavaScript file containing a complete test suite. These are single files for convenience in delivery and exploration. Your own test suites can include many such files. The test suites are copiously commented to help you learn.

This directory also exposes the $T utility object. This object has methods that simplify routine testing operations. Notice that these methods are used throughout the example test scripts in the repo.

The remaining static resources are infrastructure used by LTS. They're briefly described in Use Other Frameworks.

Write Your Own Tests

Lightning Testing Service guides you through broad testing coverage of a component’s expected behavior using the Jasmine or Mocha test frameworks.

While working with Lightning components, consider writing tests for the following.

DOM rendering

- Validate that components are added where and when they should be.

Component state

- Ensure that components respond as expected.

Server-side callback response

- Get the right response from a call to another service or resource.
Validation of variables
Do you have variable values that load from other sources, especially remote ones? Make sure that they do.

Conditional UI rendering
Verify what users see when you want them to see it.

Event Handling
Test responses to events.

Fortunately, the LightningTestingService Github repo contains examples of all of these cases in the staticresources directory for both Jasmine and Mocha testing frameworks.

Jasmine is well documented here: https://jasmine.github.io and provides a simple setup.

Mocha is well documented here: https://mochajs.org. Mocha is newer and might require some plugins to get the results you want. Both test frameworks use a describe...it block structure.

Use an it function to define what you’re testing, and what you expect (or explicitly don’t expect) to happen. To provide a name for the test, wrap each function in a describe block. Group it functions together within the block. Grouped functions can share variables and other values within the block.

```javascript
describe("A suite that passes", function() {
    it("spec that verifies that true is true", function() {
        expect(true).toBe(true);
    });
    it("spec that verifies that false is false", function() {
        expect(false).toBe(false);
    });
});
```

You could rearrange the test to have both it functions within the one describe function, or also test for the negative case:

```javascript
expect(true).not.toBe(false);
```

You have several options to get similar results. The key is to focus on the outcome of the it function.

For example, the jasmineHelloWorldTests.resource contains a unit test that validates a state change.

```javascript
describe('c:egComponentMethod', function() {
    it("updates an attribute value when a method is invoked on the component's interface", function(done) {
        $T.createComponent("c:egComponentMethod", null)
        .then(function(component) {
            component.sampleMethod();
            expect(component.get("v.status")).toBe("sampleMethod invoked");
            done();
        }).catch(function(e) {
            done.fail(e);
        });
    });
});
```

When you’ve written your test suite, use the CLI to push and run the tests.
Use the $T Utility Object

LTS includes the $T utility object. This object has methods that simplify routine testing operations. In the example above, the $T.createComponent() method creates the component with the descriptor c: egComponentMethod with no specific attributes. However, you can use the $T.createComponent() method to add attributes or insert the component into the DOM.

Learn more

The LightningTestingService Github repo has ongoing solutions and discussions of known issues.

Use Other Frameworks

Create Lightning component wrappers to use testing frameworks other than Jasmine or Mocha.

LTS provides a way to use standard JavaScript test frameworks with your Lightning components. We’ve provided the example test suites implemented in Jasmine and Mocha. These are well-regarded test frameworks, and if you haven’t chosen one already, we recommend you start with one of them.

If you’d prefer to use another test framework, either because you’ve already selected one, or because you find something more to your taste, you can use it with LTS instead.

All of the packaged pieces of LTS are included in the project repository, in the lightning-component-tests/test/default directory. To create a wrapper for another test framework, modify or replace these items from the Jasmine wrapper.

- aura/jasmineTests — The front end of LTS is simple app includes the test runner component, and a list of test suites to feed it.
- aura/lts_jasmineRunner the test runner component for Jasmine. It includes references to the required Jasmine library, which it loads along with the test spec resources, and then fires the test runner.
- lts_jasmine.resource the Jasmine library, unmodified.
- lts_jasmineboot.resource JavaScript IIFE that launches Jasmine in the LTS context.
- lts_testutil.resource — A collection of utilities for use within your test specs, and by the test framework wrappers. They provide Lightning component-specific functions that make it easier to test your custom components from a test context.

The Mocha version of the framework wrapper provides similar files. You might find the similarities and differences instructive in creating your own adapter for other frameworks.
CHAPTER 13 Debugging

In this chapter ...

- **Enable Debug Mode for Lightning Components**
- **Disable Caching Setting During Development**
- **Salesforce Lightning Inspector Chrome Extension**
- **Log Messages**

There are a few basic tools and techniques that can help you to debug applications.

Use Chrome DevTools to debug your client-side code.

- To quickly find which line of code is failing, enable the **Pause on all exceptions** option before running your code.

To learn more about debugging JavaScript on Google Chrome, refer to the Google Chrome's DevTools website.
Enable Debug Mode for Lightning Components

Enable debug mode to make it easier to debug JavaScript code from Lightning components. Only enable debug mode for users who are actively debugging JavaScript. Salesforce is slower for users who have debug mode enabled.

The Lightning Component framework executes in one of two modes: production and debug.

Production Mode

By default, the framework runs in production mode. This mode is optimized for performance. Framework code is optimized and "minified" to reduce the size of the JavaScript code. As a result of this process, the JavaScript code served to the browser is obfuscated. Optimization and minification are performed on framework code only. Custom component code is not minified or obfuscated. Untouched custom component code includes both components you create yourself, and components installed as part of a managed package.

Important: Minification is a performance optimization, not intellectual property protection. Code that’s minified is hard to read, but it’s not encrypted or otherwise prevented from being viewed.

Debug Mode

When you enable debug mode, framework JavaScript code isn’t minified and is easier to read and debug. Debug mode also adds more detailed output for some warnings and errors. As with production mode, custom component code is not optimized or minified.

Important: Debug mode has a significant performance impact. Salesforce is slower for any user who has debug mode enabled. For this reason, we recommend using it only when actively debugging JavaScript code, and only for users involved in debugging activity. Don’t leave debug mode on permanently. Users who have debug mode enabled see a banner notification once a week while it’s enabled.

To enable debug mode for users in your org:

1. From Setup, enter Debug Mode in the Quick Find box, then select Debug Mode Users. Users with debug mode enabled have a check mark in the Debug Mode column.
2. In the user list, locate any users who need debug mode enabled. If necessary, use the standard list view controls to filter your org’s users.
3. Enable the selection checkbox next to users for whom you want to enable debug mode.
4. Click Enable.

To disable debug mode for a user, follow the preceding steps and click Disable instead of Enable.

Disable Caching Setting During Development

Disable the secure and persistent browser caching setting during development in a sandbox or Developer Edition org to see the effect of any code changes without needing to empty the cache.

The caching setting improves page reload performance by avoiding extra round trips to the server.

Warning: Disabling secure and persistent browser caching has a significant negative performance impact on Lightning Experience. Always enable the setting in production orgs.

1. From Setup, enter Session in the Quick Find box, and then select Session Settings.
2. Deselect the checkbox for “Enable secure and persistent browser caching to improve performance”.

3. Click Save.

SEE ALSO:
Enable Secure Browser Caching

Salesforce Lightning Inspector Chrome Extension

The Salesforce Lightning Inspector is a Google Chrome DevTools extension that enables you to navigate the component tree, inspect component attributes, and profile component performance. The extension also helps you to understand the sequence of event firing and handling.

The extension helps you to:

- Navigate the component tree in your app, inspect components and their associated DOM elements.
- Identify performance bottlenecks by looking at a graph of component creation time.
- Debug server interactions faster by monitoring and modifying responses.
- Test the fault tolerance of your app by simulating error conditions or dropped action responses.
- Track the sequence of event firing and handling for one or more actions.

This documentation assumes that you are familiar with Google Chrome DevTools.

IN THIS SECTION:
Install Salesforce Lightning Inspector
Install the Google Chrome DevTools extension to help you debug and profile component performance.

Salesforce Lightning Inspector
The Chrome extension adds a Lightning tab to the DevTools menu. Use it to inspect different aspects of your app.

Install Salesforce Lightning Inspector

Install the Google Chrome DevTools extension to help you debug and profile component performance.

1. In Google Chrome, navigate to the Salesforce Lightning Inspector extension page on the Chrome Web Store.
2. Click the Add to Chrome button.

Salesforce Lightning Inspector

The Chrome extension adds a Lightning tab to the DevTools menu. Use it to inspect different aspects of your app.

1. Navigate to a page containing a Lightning component, such as Lightning Experience (one.app).
2. Open the Chrome DevTools (More tools > Developer tools in the Chrome control menu).

You should see a Lightning tab in the DevTools menu.

To get information quickly about an element on a Lightning page, right-click the element and select Inspect Lightning Component.
You can also click a Lightning component in the DevTools Elements tab or an element with a data-aura-rendered-by attribute to see a description and attributes.

Use the following subtabs to inspect different aspects of your app.

IN THIS SECTION:

Component Tree Tab
This tab shows the component markup including the tree of nested components.

Performance Tab
The Performance tab shows a flame graph of the creation time for your components. Look at longer and deeper portions of the graph for potential performance bottlenecks.

Transactions Tab
Some apps delivered by Salesforce include transaction markers that enable you to see fine-grained metrics for actions within those transactions. You can’t create your own transactions.
Event Log Tab
This tab shows all the events fired. The event graph helps you to understand the sequence of events and handlers for one or more actions.

Actions Tab
This tab shows the server-side actions executed. The list automatically refreshes when the page updates.

Storage Tab
This tab shows the client-side storage for Lightning applications. Actions marked as storable are stored in the store. Use this tab to analyze storage in the Salesforce mobile app and Lightning Experience.

Component Tree Tab
This tab shows the component markup including the tree of nested components.

Collapse or Expand Markup
Expand or collapse the component hierarchy by clicking a triangle at the start of a line.

Refresh the Data
The component tree is expensive to serialize, and doesn’t respond to component updates. You must manually update the tree when necessary by scrolling to the top of the panel and clicking the Refresh icon.

See More Details for a Component
Click a node to see a sidebar with more details for that selected component. While you must manually refresh the component tree, the component details in the sidebar are automatically refreshed.
The sidebar contains these sections:

Top Panel

- **Descriptor**—Description of a component in a format of `prefix://namespace:name`
- **Global ID**—The unique identifier for the component for the lifetime of the application
- **aura:id**—The local ID for the component, if it’s defined
- **IsRendered**—A component can be present in the component tree but not rendered in the app. The component is rendered when it’s included in `v.body` or in an expression, such as `{!v.myCmp}`.
- **IsValid**—When a component is destroyed, it becomes invalid. While you can still hold a reference to an invalid component, it should not be used.
- **HTML Elements**—The count of HTML elements for the component (including children components)
- **Rerendered**—The number of times the component has been rerendered since you opened the Inspector. Changing properties on a component makes it dirty, which triggers a rerender. Rerendering can be an expensive operation, and you generally want to avoid it, if possible.
- **Attribute & Facet Value Provider**—The attribute value provider and facet value provider are usually the same component. If so, they are consolidated into one entry.

The attribute value provider is the component that provides attribute values for expressions. In the following example, the name attribute of `<c:myComponent>` gets its value from the `avpName` attribute of its attribute value provider.

```
<c:myComponent name='{!v.avpName}' />
```

The facet value provider is the value provider for facet attributes (attributes of type `Aura.Component[]`). The facet value provider can be different than the attribute value provider for the component. We won’t get into that here as it’s complicated! However, it’s important to know that if you have expressions in facets, the expressions use the facet value provider instead of the attribute value provider.

Attributes

Shows the attribute values for a component. Use `v.attributeName` when you reference an attribute in an expression or code.

[[Super]]

When a component extends another component, the sub component creates an instance of the super component during its creation. Each of these super components has their own set of properties. While a super component has its own attributes section, the super component only has a `body` attribute. All other attribute values are shared in the extension hierarchy.

Model

Some components you see might have a Model section. Models are a deprecated feature and they are included simply for debugging purposes. Don’t reference models or your code will break.
Get a Reference to a Component in the Console

Click a component reference anywhere in the Inspector to generate a $auraTemp variable that points at that component. You can explore the component further by referring to $auraTemp in the Console tab.

$auraTemp+"
Returns the component descriptor.

$auraTemp.get("v.attributeName")
Returns the value for the attributeName attribute.

$auraTemp.getElement()
Returns the corresponding DOM element.

inspect($auraTemp.getElementById())
Opens the Elements tab and inspects the DOM element for the component.

Performance Tab

The Performance tab shows a flame graph of the creation time for your components. Look at longer and deeper portions of the graph for potential performance bottlenecks.

Record Performance Data

Use the Record ●, Clear ○, and Show current collected ▪ buttons to gather performance data about specific user actions or collections of user actions.

1. To start gathering performance data, press ●.
2. Take one or more actions in the app.

3. To stop gathering performance data, press 🟢.

The flame graph for your actions displays. To see the graph before you stop recording, press the 🟣 button.

See More Performance Details for a Component

Hover over a component in the flame graph to see more detailed information about that component in the bottom-left corner. The component complexity and timing information can help diagnose performance issues.

<table>
<thead>
<tr>
<th>This measure...</th>
<th>Is the time it took to complete...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self time</td>
<td>The current function. It excludes the completion time for functions it invoked.</td>
</tr>
<tr>
<td>Aggregated self time</td>
<td>All invocations of the function across the recorded timeline. It excludes the completion time for functions it invoked.</td>
</tr>
<tr>
<td>Total time</td>
<td>The current function and all functions that it invoked.</td>
</tr>
<tr>
<td>Aggregated total time</td>
<td>All invocations of the function across the recorded timeline, including completion time for functions it invoked.</td>
</tr>
</tbody>
</table>

Narrow the Timeline

Drag the vertical handles on the timeline to select a time window to focus on. Zoom in on a smaller time window to inspect component creation time for potential performance hot spots.
Transactions Tab

Some apps delivered by Salesforce include transaction markers that enable you to see fine-grained metrics for actions within those transactions. You can’t create your own transactions.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>The page duration since the page start time, in milliseconds</td>
</tr>
<tr>
<td>Start Time</td>
<td>The start time when the page was last loaded or refreshed, in milliseconds</td>
</tr>
<tr>
<td>Timeline</td>
<td>The start and end times of a transaction, represented by a colored bar:</td>
</tr>
<tr>
<td></td>
<td>- Green — How long the action took on the server</td>
</tr>
<tr>
<td></td>
<td>- Yellow — XMLHttpRequest transaction</td>
</tr>
<tr>
<td></td>
<td>- Blue — Queued time until the XMLHttpRequest transaction was sent</td>
</tr>
<tr>
<td></td>
<td>- Purple — Custom transaction</td>
</tr>
</tbody>
</table>
Event Log Tab

This tab shows all the events fired. The event graph helps you to understand the sequence of events and handlers for one or more actions.

<table>
<thead>
<tr>
<th>Component Tree</th>
<th>Performance</th>
<th>Transactions</th>
<th>Event Log</th>
<th>Actions</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ui:scrollrRefreshed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ui:carouselPageEvent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ui:notify</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aura:methodCall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aura:methodCall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ui:notify</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Record Events

Use the Toggle recording and Clear buttons to capture specific user actions or collections of user actions.

1. To start gathering event data, press .
2. Take one or more actions in the app.
3. To stop gathering event data, press .

View Event Details

Expand an event to see more details. In the call stack, click an event handler (for example, c.handleDataChange) to see where it’s defined in code. The handler in the yellow row is the most current.

Filter the List of Events

By default, both application and component events are shown. You can hide or show both types of events by toggling the App Events and Cmp Events buttons.

Enter a search string in the Filter field to match any substring.
Invert the filter by starting the search string with !. For example, !aura returns all events that don’t contain the string aura.

Show Unhandled Events

Show events that are fired but are not handled. Unhandled events aren’t listed by default but can be useful to see during development.

View Graph of Events

Expand an event to see more details. Click the **Toggle Grid** button to generate a network graph showing the events fired before and after this event, and the components handling those events. Event-driven programming can be confusing when a cacophony of events explode. The event graph helps you to join the dots and understand the sequence of events and handlers.

The graph is color coded.

- **Black**—The current event
- **Maroon**—A controller action
- **Blue**—Another event fired before or after the current event

SEE ALSO:

Communicating with Events

Actions Tab

This tab shows the server-side actions executed. The list automatically refreshes when the page updates.
Filter the List of Actions

To filter the list of actions, toggle the buttons related to the different action types or states.

- **Storable**—Storable actions whose responses can be cached.
- **Cached**—Storable actions whose responses are cached. Toggle this button off to show cache misses and non-storable actions. This information can be valuable if you're investigating performance bottlenecks.
- **Background**—Not supported for Lightning components. Available in the open-source Aura framework.
- **Success**—Actions that were executed successfully.
- **Incomplete**—Actions with no server response. The server might be down or the client might be offline.
- **Error**—Actions that returned a server error.
- **Aborted**—Actions that were aborted.

Enter a search string in the **Filter** field to match any substring.

Invert the filter by starting the search string with `!`. For example, `!aura` returns all actions that don’t contain the string `aura` and filters out many framework-level actions.

IN THIS SECTION:

- **Manually Override Server Responses**

 The Overrides panel on the right side of the Actions tab lets you manually tweak the server responses and investigate the fault tolerance of your app.

SEE ALSO:

- **Calling a Server-Side Action**

Manually Override Server Responses

The Overrides panel on the right side of the Actions tab lets you manually tweak the server responses and investigate the fault tolerance of your app.
Drag an action from the list on the left side to the PENDING OVERRIDES section.

The next time the same action is enqueued to be sent to the server, the framework won’t send it. Instead, the framework mocks the response based on the override option that you choose. Here are the override options.

- Override the Result
- Error Response Next Time
- Drop the Action

Note: The same action means an action with the same name. The action parameters don’t have to be identical.

IN THIS SECTION:

Modify an Action Response

Modify an action response in the Salesforce Lightning Inspector by changing one of the JSON object values and see how the UI is affected. The server returns a JSON object when you call a server-side action.

Set an Error Response

Your app should degrade gracefully when an error occurs so that users understand what happened or know how to proceed. Use the Salesforce Lightning Inspector to simulate an error condition and see how the user experience is affected.

Drop an Action Response

Your app should degrade gracefully when a server-side action times out or the response is dropped. Use the Salesforce Lightning Inspector to simulate a dropped action response and see how the user experience is affected.

Modify an Action Response

Modify an action response in the Salesforce Lightning Inspector by changing one of the JSON object values and see how the UI is affected. The server returns a JSON object when you call a server-side action.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.
2. Select Override the Result in the drop-down list.
3. Select a response key to modify in the Key field.
4. Enter a modified value for the key in the New Value field.

5. Click Save.
6. To trigger execution of the action, refresh the page.
 The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.
7. Note the UI change, if any, related to your change.

Set an Error Response

Your app should degrade gracefully when an error occurs so that users understand what happened or know how to proceed. Use the Salesforce Lightning Inspector to simulate an error condition and see how the user experience is affected.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.
2. Select Error Response Next Time in the drop-down list.
3. Add an Error Message.
5. Click Save.
6. To trigger execution of the action, refresh the page.
 - The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.
 - The action response displays in the COMPLETED section in the left panel with a State equals ERROR.

7. Note the UI change, if any, related to your change. The UI should handle errors by alerting the user or allowing them to continue using the app.
 To degrade gracefully, make sure that your action response callback handles an error response (response.getState() === "ERROR").

SEE ALSO:
Calling a Server-Side Action

Drop an Action Response
Your app should degrade gracefully when a server-side action times out or the response is dropped. Use the Salesforce Lightning Inspector to simulate a dropped action response and see how the user experience is affected.
1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.
2. Select Drop the Action in the drop-down list.

3. To trigger execution of the action, refresh the page.
 - The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.
 - The action response displays in the COMPLETED section in the left panel with a State equals INCOMPLETE.

4. Note the UI change, if any, related to your change. The UI should handle the dropped action by alerting the user or allowing them to continue using the app.
 To degrade gracefully, make sure that your action response callback handles an incomplete response (`response.getState() === "INCOMPLETE"`).

SEE ALSO:
 Calling a Server-Side Action

Storage Tab
This tab shows the client-side storage for Lightning applications. Actions marked as storable are stored in the actions store. Use this tab to analyze storage in the Salesforce mobile app and Lightning Experience.
Log Messages

To help debug your client-side code, you can write output to the JavaScript console of a web browser using `console.log()` if your browser supports it.

For instructions on using the JavaScript console, refer to the instructions for your web browser.
There are a few settings and techniques that can help you to improve application performance. Only enable debug mode for users who are actively debugging JavaScript. Salesforce is slower for users who have debug mode enabled.

SEE ALSO:

Enable Debug Mode for Lightning Components
Performance Settings

There are a few Setup settings that can help you to improve application performance.

IN THIS SECTION:

Enable Secure Browser Caching
Enable secure data caching in the browser to improve page reload performance by avoiding extra round trips to the server.

Enable CDN to Load Applications Faster
Load Lightning Experience and other apps faster by enabling Akamai’s content delivery network (CDN) to serve the static content for Lightning Component framework. A CDN generally speeds up page load time, but it also changes the source domain that serves the files. If your company has IP range restrictions for content served from Salesforce, test thoroughly before enabling this setting.

Enable Secure Browser Caching

Enable secure data caching in the browser to improve page reload performance by avoiding extra round trips to the server.

This setting is selected by default.

⚠️ **Warning:** Disabling secure and persistent browser caching has a significant negative performance impact on Lightning Experience. Only disable in the following scenarios:

- Your company's policy doesn't allow browser caching, even if the data is encrypted.
- During development in a sandbox or Developer Edition org to see the effect of any code changes without needing to empty the secure cache.

To disable secure date caching:

1. From Setup, enter Session in the Quick Find box, and then select Session Settings.
2. Deselect the checkbox for “Enable secure and persistent browser caching to improve performance”.
3. Click Save.

Enable CDN to Load Applications Faster

Load Lightning Experience and other apps faster by enabling Akamai’s content delivery network (CDN) to serve the static content for Lightning Component framework. A CDN generally speeds up page load time, but it also changes the source domain that serves the files. If your company has IP range restrictions for content served from Salesforce, test thoroughly before enabling this setting.

CDNs improve the load time of static content by storing cached versions in multiple geographic locations. This setting turns on CDN delivery for the static JavaScript and CSS in the Lightning Component framework. It doesn't distribute your org's data or metadata in a CDN.

This setting is disabled by default for orgs created before the Winter '19 release, and enabled by default for new orgs. To enable the CDN:

1. From Setup, enter Session in the Quick Find box, and then select Session Settings.
2. Select the checkbox for “Enable Content Delivery Network (CDN) for Lightning Component framework”.
3. Click Save.

If you experience any issues, ask your IT department if your company’s firewall blocks any Akamai CDN content.
Fixing Performance Warnings

A few common performance anti-patterns in code prompt the framework to log warning messages to the browser console. Fix the warning messages to speed up your components!

The warnings display in the browser console only if you enabled debug mode.

IN THIS SECTION:

<aura:if>—Clean Unrendered Body
This warning occurs when you change the isTrue attribute of an <aura:if> tag from true to false in the same rendering cycle. The unrendered body of the <aura:if> must be destroyed, which is avoidable work for the framework that slows down rendering time.

<aura:iteration>—Multiple Items Set
This warning occurs when you set the items attribute of an <aura:iteration> tag multiple times in the same rendering cycle.

SEE ALSO:
Enable Debug Mode for Lightning Components

<aura:if>—Clean Unrendered Body
This warning occurs when you change the isTrue attribute of an <aura:if> tag from true to false in the same rendering cycle. The unrendered body of the <aura:if> must be destroyed, which is avoidable work for the framework that slows down rendering time.

Example
This component shows the anti-pattern.

```html
<!--c:ifCleanUnrendered-->
<aura:component>
    <aura:attribute name="isVisible" type="boolean" default="true"/>
    <aura:handler name="init" value="{!this}" action="{!c.init}"/>

    <aura:if isTrue="{!v.isVisible}">
        <p>I am visible</p>
    </aura:if>
</aura:component>
```

Here's the component's client-side controller.

```javascript
/* c:ifCleanUnrenderedController.js */

{
    init: function(cmp) {
        /* Some logic */
        cmp.set("v.isVisible", false); // Performance warning trigger
    }
}
```
When the component is created, the `isTrue` attribute of the `<aura:if>` tag is evaluated. The value of the `isVisible` attribute is `true` by default so the framework creates the body of the `<aura:if>` tag. After the component is created but before rendering, the `init` event is triggered.

The `init()` function in the client-side controller toggles the `isVisible` value from `true` to `false`. The `isTrue` attribute of the `<aura:if>` tag is now `false` so the framework must destroy the body of the `<aura:if>` tag. This warning displays in the browser console only if you enabled debug mode.

WARNING: [Performance degradation] markup://aura:if ["5:0"] in c:ifCleanUnrendered ["3:0"] needed to clear unrendered body.

Click the expand button beside the warning to see a stack trace for the warning.

Click the link for the `ifCleanUnrendered` entry in the stack trace to see the offending line of code in the Sources pane of the browser console.

How to Fix the Warning

Reverse the logic for the `isTrue` expression. Instead of setting the `isTrue` attribute to `true` by default, set it to `false`. Set the `isTrue` expression to `true` in the `init()` method, if needed.

Here’s the fixed component:

```aura
<!--c:ifCleanUnrenderedFixed-->
<aura:component>

<!-- FIX: Change default to false. Update isTrue expression in controller instead. -->
<aura:attribute name="isVisible" type="boolean" default="false"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:if isTrue="{"v.isVisible}">
<p>I am visible</p>
</aura:if>

</aura:component>
```

Here’s the fixed controller:

```javascript
/* c:ifCleanUnrenderedFixedController.js */

({
  init: function(cmp) {
    // Some logic
    // FIX: set isVisible to true if logic criteria met
    cmp.set("v.isVisible", true);
  }
})
```
This warning occurs when you set the `items` attribute of an `<aura:iteration>` tag multiple times in the same rendering cycle. There’s no easy and performant way to check if two collections are the same in JavaScript. Even if the old value of `items` is the same as the new value, the framework deletes and replaces the previously created body of the `<aura:iteration>` tag.

Example
This component shows the anti-pattern.

```xml
<!--c:iterationMultipleItemsSet-->
<aura:component>
  <aura:attribute name="groceries" type="List"
    default="['Eggs', 'Bacon', 'Bread']"/>
  
  <aura:handler name="init" value="{"this"}" action="{"c.init""} />
  
  <aura:iteration items="{"v.groceries}" var="item">
    <p> {!item} </p>
  </aura:iteration>
</aura:component>
```

Here’s the component’s client-side controller.

```javascript
/* c:iterationMultipleItemsSetController.js */

({
  init: function(cmp) {
    var list = cmp.get('v.groceries');
    // Some logic
    cmp.set('v.groceries', list); // Performance warning trigger
  }
})
```

When the component is created, the `items` attribute of the `<aura:iteration>` tag is set to the default value of the `groceries` attribute. After the component is created but before rendering, the `init` event is triggered. The `init()` function in the client-side controller sets the `groceries` attribute, which resets the `items` attribute of the `<aura:iteration>` tag. This warning displays in the browser console only if you enabled debug mode.

WARNING: [Performance degradation] markup://aura:iteration [id:5:0] in c:iterationMultipleItemsSet ["3:0"] had multiple items set in the same Aura cycle.

Click the expand button beside the warning to see a stack trace for the warning.
Click the link for the `iterationMultipleItemsSet` entry in the stack trace to see the offending line of code in the Sources pane of the browser console.

How to Fix the Warning

Make sure that you don’t modify the `items` attribute of an `<aura:iteration>` tag multiple times. The easiest solution is to remove the default value for the `groceries` attribute in the markup. Set the value for the `groceries` attribute in the controller instead.

The alternate solution is to create a second attribute whose only purpose is to store the default value. When you’ve completed your logic in the controller, set the `groceries` attribute.

Here’s the fixed component:

```xml
<!c:iterationMultipleItemsSetFixed-->
<aura:component>
  <!-- FIX: Remove the default from the attribute -->
  <aura:attribute name="groceries" type="List" />
  <!-- FIX (ALTERNATE): Create a separate attribute containing the default -->
  <aura:attribute name="groceriesDefault" type="List"
    default="[ 'Eggs', 'Bacon', 'Bread' ]"/>

  <aura:handler name="init" value="{!this}" action="{!c.init}"/>

  <aura:iteration items="{!v.groceries}" var="item">
    <p>{!item}</p>
  </aura:iteration>
</aura:component>
```

Here’s the fixed controller:

```javascript
/* c:iterationMultipleItemsSetFixedController.js */

{
  init: function(cmp) {
    // FIX (ALTERNATE) if need to set default in markup
    // use a different attribute
    // var list = cmp.get('v.groceriesDefault');
    // FIX: Set the value in code
    var list = [ 'Eggs', 'Bacon', 'Bread' ];
    // Some logic
    cmp.set('v.groceries', list);
  }
}
```

SEE ALSO:

- Enable Debug Mode for Lightning Components
CHAPTER 15 Reference

In this chapter ...

- Component Library
- System Tag
- Reference

This section contains links to reference documentation.

Note that the Lightning Component framework provides a subset of what’s available in the open-source Aura framework, in addition to components and events that are specific to Salesforce.
Component Library

Explore the look and feel of components to speed up your app development.

To see the complete collection of Lightning components available in your Salesforce organization, log in and navigate to the Component Library.

You can also use the Component Library without logging in to Salesforce.

- https://developer.salesforce.com/docs/component-library

For JavaScript API documentation, see the Aura Reference app.

- http://documentation.auraframework.org/

If you’re using Lightning Components on the Salesforce Platform, use only the JavaScript API section of the Aura Reference app. The other sections are for open-source developers and features may change.

IN THIS SECTION:

Aura Reference Doc App

Differences Between Documentation Sites

Here’s a breakdown of the differences between the Component Library, the reference section of this developer guide, and the Aura Reference app.

Aura Reference Doc App

Explore the look and feel of Lightning components in the Component Library at https://<myDomain>.lightning.force.com/componentReference/suite.app where <myDomain> is the name of your custom Salesforce domain.
You can also continue to use the reference doc app, which includes reference information, as well as the JavaScript API. Access the app at:
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of your custom Salesforce domain.

Differences Between Documentation Sites

Here's a breakdown of the differences between the Component Library, the reference section of this developer guide, and the Aura Reference app.

The Component Library is undergoing major enhancements to achieve parity with the other legacy sites. Meanwhile, we recommend that you refer to the respective sites for your documentation needs.

<table>
<thead>
<tr>
<th>Component Library</th>
<th>Aura Reference App</th>
<th>Reference Section in Lightning Components Developer Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component documentation and code samples</td>
<td>✓ (Documentation tab)</td>
<td>✓ (Overview tab)</td>
</tr>
<tr>
<td>Interactive examples</td>
<td>✓ (Usage tab)</td>
<td>✓ (Examples tab is not available for components in lightning namespace)</td>
</tr>
<tr>
<td>Lightning Design System support</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Components in custom namespaces and packages</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JavaScript API</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>System tags</td>
<td></td>
<td>✓ (aura:method, aura:set, etc.)</td>
</tr>
<tr>
<td>Event documentation</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>System event documentation</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Interface documentation</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Components in custom namespaces display both global and non-global attributes and methods. Components in managed and unmanaged packages display global attributes and methods only.

System Tag Reference

System tags represent framework definitions and are not available in the Component Library.
aura:application
An app is a special top-level component whose markup is in a .app resource.

aura:dependency
The <aura:dependency> tag enables you to declare dependencies, which improves their discoverability by the framework.

aura:event
An event is represented by the aura:event tag, which has the following attributes.

aura:interface
Interfaces determine a component’s shape by defining its attributes. Implement an interface to allow a component to be used in different contexts, such as on a record page or in Lightning App Builder.

aura:method
Use <aura:method> to define a method as part of a component’s API. This enables you to directly call a method in a component’s client-side controller instead of firing and handling a component event. Using <aura:method> simplifies the code needed for a parent component to call a method on a child component that it contains.

aura:set
Use <aura:set> in markup to set the value of an attribute inherited from a component or event.

aura:application
An app is a special top-level component whose markup is in a .app resource.

The markup looks similar to HTML and can contain components as well as a set of supported HTML tags. The .app resource is a standalone entry point for the app and enables you to define the overall application layout, style sheets, and global JavaScript includes. It starts with the top-level <aura:application> tag, which contains optional system attributes. These system attributes tell the framework how to configure the app.

<table>
<thead>
<tr>
<th>System Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access</td>
<td>String</td>
<td>Indicates whether the app can be extended by another app outside of a namespace. Possible values are public (default), and global.</td>
</tr>
<tr>
<td>controller</td>
<td>String</td>
<td>The server-side controller class for the app. The format is namespace.myController.</td>
</tr>
<tr>
<td>description</td>
<td>String</td>
<td>A brief description of the app.</td>
</tr>
<tr>
<td>extends</td>
<td>Component</td>
<td>The app to be extended, if applicable. For example, extends="namespace:yourApp".</td>
</tr>
<tr>
<td>extensible</td>
<td>Boolean</td>
<td>Indicates whether the app is extensible by another app. Defaults to false.</td>
</tr>
<tr>
<td>implements</td>
<td>String</td>
<td>A comma-separated list of interfaces that the app implements.</td>
</tr>
<tr>
<td>template</td>
<td>Component</td>
<td>The name of the template used to bootstrap the loading of the framework and the app. The default value is aura:template. You can customize the template by creating your own component that extends the default template. For example: <aura:component extends="aura:template" ... ></td>
</tr>
<tr>
<td>System Attribute</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>tokens</td>
<td>String</td>
<td>A comma-separated list of tokens bundles for the application. For example, tokens="ns:myAppTokens". Tokens make it easy to ensure that your design is consistent, and even easier to update it as your design evolves. Define the token values once and reuse them throughout your application.</td>
</tr>
<tr>
<td>useAppcache</td>
<td>Boolean</td>
<td>Deprecated. Browser vendors have deprecated AppCache, so we followed their lead. Remove the useAppcache attribute in the <code><aura:application></code> tag of your standalone apps (.app resources) to avoid cross-browser support issues due to deprecation by browser vendors. If you don't currently set useAppcache in an <code><aura:application></code> tag, you don't have to do anything because the default value of useAppcache is false.</td>
</tr>
</tbody>
</table>

`aura:application` also includes a `body` attribute defined in a `<aura:attribute>` tag. Attributes usually control the output or behavior of a component, but not the configuration information in system attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>body</td>
<td>Component[]</td>
<td>The body of the app. In markup, this is everything in the body of the tag.</td>
</tr>
</tbody>
</table>

SEE ALSO:
- Creating Apps
- Using the AppCache
- Application Access Control

aura:dependency

The `<aura:dependency>` tag enables you to declare dependencies, which improves their discoverability by the framework.

The framework automatically tracks dependencies between definitions, such as components, defined in markup. This enables the framework to send the definitions to the browser. However, if a component’s JavaScript code dynamically instantiates another component or fires an event that isn’t directly referenced in the component’s markup, use `<aura:dependency>` in the component’s markup to explicitly tell the framework about the dependency. Adding the `<aura:dependency>` tag ensures that a definition, such as a component, and its dependencies are sent to the client, when needed.

For example, adding this tag to a component marks the sampleNamespace:sampleComponent component as a dependency.

```
<aura:dependency resource="markup://sampleNamespace:sampleComponent" />
```

Add this tag to component markup to mark the event as a dependency.

```
<aura:dependency resource="markup://force:navigateToComponent" type="EVENT"/>
```

Use the `<aura:dependency>` tag if you fire an event in JavaScript code and you’re not registering the event in component markup using `<aura:registerEvent>`. Using an `<aura:registerEvent>` tag is the preferred approach.

The `<aura:dependency>` tag includes these system attributes.
System Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource</td>
<td>The resource that the component depends on, such as a component or event. For example, resource="markup://sampleNamespace:sampleComponent" refers to the sampleComponent in the sampleNamespace namespace. Note: Using an asterisk (*) for wildcard matching is deprecated. Instead, add an <code><aura:dependency></code> tag for each resource that’s not directly referenced in the component’s markup. Wildcard matching can cause save validation errors when no resources match. Wildcard matching can also slow page load time because it sends more definitions than needed to the client.</td>
</tr>
</tbody>
</table>
| type | The type of resource that the component depends on. The default value is COMPONENT. **Note:** Using an asterisk (*) for wildcard matching is deprecated. Instead, add an `<aura:dependency>` tag for each resource that’s not directly referenced in the component’s markup. Be as selective as possible in the types of definitions that you send to the client. The most commonly used values are:
 - COMPONENT
 - EVENT
 - INTERFACE
 - APPLICATION
 Use a comma-separated list for multiple types; for example: COMPONENT,APPLICATION. |

SEE ALSO:
- Dynamically Creating Components
- Fire Component Events
- Fire Application Events

aura:event

An event is represented by the `aura:event` tag, which has the following attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access</td>
<td>String</td>
<td>Indicates whether the event can be extended or used outside of its own namespace. Possible values are public (default), and global.</td>
</tr>
<tr>
<td>description</td>
<td>String</td>
<td>A description of the event.</td>
</tr>
<tr>
<td>extends</td>
<td>Component</td>
<td>The event to be extended. For example, extends="namespace:myEvent".</td>
</tr>
</tbody>
</table>
aura:interface

Interfaces determine a component’s shape by defining its attributes. Implement an interface to allow a component to be used in different contexts, such as on a record page or in Lightning App Builder.

The `aura:interface` tag has the following optional attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>String</td>
<td>Required. Possible values are COMPONENT or APPLICATION.</td>
</tr>
<tr>
<td>access</td>
<td>String</td>
<td>Indicates whether the interface can be extended or used outside of its own namespace. Possible values are public (default), and global.</td>
</tr>
<tr>
<td>description</td>
<td>String</td>
<td>A description of the interface.</td>
</tr>
<tr>
<td>extends</td>
<td>Component</td>
<td>The comma-separated list of interfaces to be extended. For example, <code>extends="namespace:intfB"</code>.</td>
</tr>
</tbody>
</table>

aura:method

Use `<aura:method>` to define a method as part of a component’s API. This enables you to directly call a method in a component’s client-side controller instead of firing and handling a component event. Using `<aura:method>` simplifies the code needed for a parent component to call a method on a child component that it contains.

The `<aura:method>` tag has these system attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>String</td>
<td>The method name. Use the method name to call the method in JavaScript code. For example: <code>cmp.sampleMethod(param1);</code></td>
</tr>
<tr>
<td>action</td>
<td>Expression</td>
<td>The client-side controller action to execute. For example: <code>action="{!c.sampleAction}"</code></td>
</tr>
<tr>
<td>Attribute</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td><code>sampleAction</code></td>
<td>String</td>
<td>sampleAction is an action in the client-side controller. If you don’t specify an action value, the controller action defaults to the value of the method name.</td>
</tr>
<tr>
<td><code>access</code></td>
<td>String</td>
<td>The access control for the method. Valid values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• public — Any component in the same namespace can call the method. This is the default access level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• global — Any component in any namespace can call the method.</td>
</tr>
<tr>
<td><code>description</code></td>
<td>String</td>
<td>The method description.</td>
</tr>
</tbody>
</table>

Declaring Parameters

An `<aura:method>` can optionally include parameters. Use an `<aura:attribute>` tag within an `<aura:method>` to declare a parameter for the method. For example:

```html
<aura:method name="sampleMethod" action="{!c.doAction}"
    description="Sample method with parameters">
    <aura:attribute name="param1" type="String" default="parameter 1"/>
    <aura:attribute name="param2" type="Object"/>
</aura:method>
```

Note: You don’t need an access system attribute in the `<aura:attribute>` tag for a parameter.

Creating a Handler Action

This handler action shows how to access the arguments passed to the method.

```javascript
({
  doAction : function(cmp, event) {
    var params = event.getParam('arguments');
    if (params) {
      var param1 = params.param1;
      // add your code here
    }
  }
})
```

Retrieve the arguments using `event.getParam('arguments')`. It returns an object if there are arguments or an empty array if there are no arguments.

Returning a Value

`aura:method` executes synchronously.

- A synchronous method finishes executing before it returns. Use the `return` statement to return a value from synchronous JavaScript code. See Return Result for Synchronous Code.
An asynchronous method may continue to execute after it returns. Use a callback to return a value from asynchronous JavaScript code. See Return Result for Asynchronous Code.

SEE ALSO:
- Calling Component Methods
- Component Events

aura:set

Use `<aura:set>` in markup to set the value of an attribute inherited from a component or event.

Setting Attributes Inherited from a Super Component

Use `<aura:set>` in the markup of a sub component to set the value of an inherited attribute.

Let's look at an example. Here is the `c:setTagSuper` component.

```xml
<!--c:setTagSuper-->
<aura:component extensible="true">
  <aura:attribute name="address1" type="String" />
  setTagSuper address1: {!v.address1}<br/>
</aura:component>
```

c:setTagSuper outputs:

```
setTagSuper address1:
```

The `address1` attribute doesn’t output any value yet as it hasn’t been set.

Here is the `c:setTagSub` component that extends `c:setTagSuper`.

```xml
<!--c:setTagSub-->
<aura:component extends="c:setTagSuper">
  <aura:set attribute="address1" value="808 State St" />
</aura:component>
```

c:setTagSub outputs:

```
setTagSuper address1: 808 State St
```

sampleSetTagExc: `c:setTagSub` sets a value for the `address1` attribute inherited from the super component, `c:setTagSuper`.

⚠️ **Warning:** This usage of `<aura:set>` works for components and abstract components, but it doesn’t work for interfaces. For more information, see Setting Attributes Inherited from an Interface on page 470.
If you're using a component by making a reference to it in your component, you can set the attribute value directly in the markup. For example, `c:setTagSuperRef` makes a reference to `c:setTagSuper` and sets the `address1` attribute directly without using `aura:set`.

```xml
<!--c:setTagSuperRef-->
<aura:component>
  <c:setTagSuper address1="1 Sesame St"/>
</aura:component>
```

c:setTagSuperRef outputs:

setTagSuper address1: 1 Sesame St

SEE ALSO:
Component Body
Inherited Component Attributes
Setting Attributes on a Component Reference

Setting Attributes on a Component Reference

When you include another component, such as `<ui:button>`, in a component, we call that a component reference to `<ui:button>`. You can use `<aura:set>` to set an attribute on the component reference. For example, if your component includes a reference to `<ui:button>`:

```xml
<ui:button label="Save">
  <aura:set attribute="buttonTitle" value="Click to save the record"/>
</ui:button>
```

This is equivalent to:

```xml
<ui:button label="Save" buttonTitle="Click to save the record" />
```

The latter syntax without `aura:set` makes more sense in this simple example. You can also use this simpler syntax in component references to set values for attributes that are inherited from parent components.

`aura:set` is more useful when you want to set markup as the attribute value. For example, this sample specifies the markup for the `else` attribute in the `aura:if` tag.

```xml
<aura:component>
  <aura:attribute name="display" type="Boolean" default="true"/>
  <aura:if isTrue="{!v.display}"
    Show this if condition is true
    <aura:set attribute="else">
    <ui:button label="Save" press="{!c.saveRecord}" />
    </aura:set>
    </aura:if>
</aura:component>
```

SEE ALSO:
Setting Attributes Inherited from a Super Component
Setting Attributes Inherited from an Interface

To set the value of an attribute inherited from an interface, redefine the attribute in the component and set its default value. Let’s look at an example with the c:myIntf interface.

```xml
<!--c:myIntf-->
<aura:interface>
    <aura:attribute name="myBoolean" type="Boolean" default="true" />
</aura:interface>

This component implements the interface and sets myBoolean to false.

```xml
<!--c:myIntfImpl-->
<aura:component implements="c:myIntf">
 <aura:attribute name="myBoolean" type="Boolean" default="false" />

 <p>myBoolean: {!v.myBoolean}</p>
</aura:component>
```
Components (continued)
  API version 333
  calling methods 366–367, 369
  conditional markup 59
  creating 345
  CSS 299, 303–308, 316
  custom app integration 225
  flow variables, get 214
  flow, finish behavior 217
  flow, output variables 214
  flow, resume 218
  HTML markup, using 32
  ID, local and global 31
  isValid() 359
  markup 20, 22, 25, 159
  methods 466
  modifying 361
  namespace 25–27
  overview 20
  packaging 160
  styling 299, 303–308, 316
  styling with CSS 35
  support level 20
  tabs 147
  token 303–308, 316
  token overrides 307
  unescaping HTML 32
  using 144, 147, 150, 152, 157, 194, 213, 215, 428
  validity 359

Conditional expressions 77
Content security policy 334–335, 381
Controllers
  calling server-side actions 389, 391
  client-side 260
  creating server-side 385
  results 387
  returning data 387
  server-side 385, 387–388
CRUD access 400
CSP
  stricter 335
CSS
  external 299
  tokens 303–308, 316
  tokens overrides 307
Custom Actions
  components 150, 152
  custom content layouts
    creating for Community Builder 193
  Custom labels 95
  Custom Lightning page template component
    best practices 181
  custom profile menu
    creating for Community Builder 192
  custom search
    creating for Community Builder 192
Custom Tabs
  components 147
  custom theme layouts
    creating for Community Builder 186
D
data access 408, 420, 423, 427
Data binding
  expressions 77
Data changes
  detecting 348
Dates
  JavaScript 377
Debug
  JavaScript 438
Debugging
  caching 438
  Chrome extension 439
  Salesforce Lightning Inspector 439
deleteRecord 416
dependency 234, 238
Detecting
  data changes 348
Developer Console 6
Developer Edition organization, sign up 10
DOM
  external libraries 355, 359
  DOM access 321
  DOM containment
    proxy 323
Dynamic output 76
E
error handling 420
errors 244, 247, 249, 252, 420
Errors
  handling 364
  throwing 364
ESLint 62–64, 68, 70–71, 74–75
eval() function limitations 325
Event bubbling 267, 277
Event capture 267, 277
Index

Event definitions
  dependency 464
Event handlers 371
Event handling
  base components 113
  Lightning components 113
Events
  anti-patterns 289
  application 273, 275–276, 279
  aura:event 465
  best practices 288
  bubbling 267, 277
  capture 267, 277
  component 262, 264, 271
  demo 283
  example 271, 279
  fire() 352
  firing from non-Lightning code 287
  flow 263, 274
  getName() 352
  getParam() 352
  getParams() 352
  getPhase() 352
  getSource() 352
  handling 281
  pause() 352
  preventDefault() 352
  propagation 263, 274
  resume() 352
  Salesforce 291
  Salesforce mobile and Lightning Experience demo 11
  Salesforce mobile demo 14, 18
  setParam() 352
  setParams() 352
  stopPropagation() 352
  system 293
Events and actions 259
  example 423
Expressions
  bound expressions 77
  conditional 77
  data binding 77
  dynamic output 76
  format() 96
  functions 91
  operators 88
  unbound expressions 77

F
  Field-level security 400
  force:lightning:lint 66
  format() 96

G
  getNewRecord 413
  globalID 82
  guest access 238
  guest user flows 188

H
  Handling Input Field Errors 362
  Helpers 339
  HTML, supported tags
    <a> 33
  HTML, unescaping 32

I
  Inheritance 55, 59
  Input Field Validation 362
  Inspector
    Actions tab 447
    Component Tree tab 441
    drop the action 451
    error response 450
    Event Log tab 446
    install 439
    modify action response 449
    override actions 448
    Performance tab 443
    Storage tab 452
    Transactions tab 445
    use 439
Interfaces
  marker 58
  Introduction 1–2
  isValid() 359

J
  JavaScript
    access control 361
    API calls 381
    attribute values 349
    calling component methods 366–367, 369
    component 351
    creating components 345
    dates 377
    ES6 promises 379
JavaScript (continued)
  events 352
  get() and set() methods 349
  global variable 342
  libraries 343
  promises 379
  secure wrappers 323
  sharing code 342
  sharing code in bundle 339
  strict mode 320–321
  window object 342

JavaScript API 230, 327
JavaScript console 453
JavaScript prototypes 336

Label
  setting via parent attribute 100
Label parameters 96
Labels
  Apex 98
  dynamically creating 97
  JavaScript 97
Lifecycle 361
Lightning 2
Lightning App Builder
  configuring custom components 170, 172, 183, 302
  configuring design resources 145, 177
  create dynamic picklists for components 177
  creating a custom page template 178, 181
  creating a width-aware component 182
  CSS tips 302
Lightning CLI 66, 69, 75
Lightning components
  action override 157–160
  base 104
  custom app integration 225
  interfaces 159
  Lightning Design System 115
  Lightning Design System variants 118
  Lightning Experience 147–148, 150, 152, 157–159
  markup 159
  overview 169
  packaging 160
  Salesforce 147, 150, 152, 157–159
  Salesforce app 149
  Styling base components 115
  variants 118
Lightning Components for Visualforce 234, 238
Lightning components interfaces
  force:hasRecordId 159
  force:hasSObjectName 159
  lightning:actionOverride 159
Lightning Container
  javascript 240
  messaging 242, 246, 251
Lightning Data Service
  create record 413
  delete record 416
  handling record changes 418
  load record 409
  saveRecord 410
Lightning Experience
  add Lightning components 148
Lightning Out
  beta 239
  Connected App 234
  considerations 239
  CORS 234
  events 239
  limitations 239
  OAuth 234
  requirements 234
  SLDS 239
  styling 239
lightning:flexipageRegionInfo 182
lightning:formattedUrl 169
lightning:hasPageReference 161
lightning:isUrlAddressable 161
lightning:navigation 161, 169
lightning:ui:outputUrl 169
lint 62–64, 68, 70–75
Linting 65
Localization 100
Locker Console
  benchmark 330
  evaluate compatibility 329
Locker Service
  API version 333
  API Viewer 327
  benchmark 328, 330
  compatibility 329
  disable for component 333
  effect 327
  global references 323
  JavaScript API 327
  Locker Console 328
  secure wrappers 327
Index

Locker Service (continued)
  strict mode 321
  tools 327
  unsupported browsers 334
  where 327
Log messages 453

M
Markup 374
MIME types permitted 326
minimum version 61

N
Namespace
  creating 27
  default 26
  examples 27
  explicit 26
  implicit 26
  organization 26
  prefix 26
Navigation
  Page Definitions 163
Node.js 232

O
OAuth 237
Object-oriented development
  inheritance 55
Online version 7
Open source 4

P
Package 25, 27
Packaging
  action override 160
Performance
  caching 455
  CDN 455
  settings 455
Performance warnings
  <aura:if> 456
  <aura:iteration> 458
Prerequisites 10
Promises 379
Prototypes 336
Proxy object 323

Q
Queueing
  queueing server-side actions 392

R
Reference
  Components 462
  doc app 461
  overview 460
Renderers 356
Rendering lifecycle 289
Rerendering 361
Rich Publisher Apps 225
rules 70–75

S
Salesforce app
  add Lightning components 149
Salesforce DX 64, 68, 75
Salesforce Lightning Design System 299
Salesforce Lightning Inspector
  Actions tab 447
  Component Tree tab 441
  drop the action 451
  error response 450
  Event Log tab 446
  install 439
  modify action response 449
  override actions 448
  Performance tab 443
  Storage tab 452
  Transactions tab 445
  use 439
SaveRecordResult 427
Secure wrappers 323
Security 319
Server-Side Controllers
  action queueing 392
  calling actions 389, 391
  errors 388
  overview 385
  results 387
  returning data 387
sfdx 64–66, 68, 71–75
SharePoint 232
SLDS 299
Standard Actions
  Lightning components 157–160
  override 157–160
Standard Actions (continued)
  packaging 160
  standard controller 408, 420, 423, 427
States 391
Static resource 86, 342
Storable actions
  enable 396
  lifecycle 394
Storage service
  adapters 396
  Memory adapter 396
  SmartStore 396
  WebSQL 396
Strict mode 321
Styles 374
Styling
  join 301
  markup 301
  readable 301
supported objects 420
syntax 230
T
Tags
  <a> 33
  anchor 33
Ternary operator 77
Testing
  components 429–430, 432–434, 436
  mode 430, 432
Themes
  vendor prefixes 302
Tokens
  Communities 316
    design 303–308, 316
    force:base 308
    overriding 307
Tools 327
troubleshooting 244, 247, 249, 252
U
ui components
  aura:component inheritance 136
ui components overview 139
ui events 138
V
validation 62–64, 68, 70–75
Value providers
  $Browser 83
  $Label 95
  $Resource 86
version dependency 61
versioning 61
Visualforce 231
W
Width-aware Lightning component 182
window object 342