
Embedded Service SDK for
Android
Developer Guide
Version 224.0

 @salesforcedocs
Last updated: May 25, 2021

https://twitter.com/salesforcedocs


© Copyright 2000–2020 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Embedded Service SDK for Android Developer Guide . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Service Cloud Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
SDK Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Android Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Case Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
SOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
SDK Customizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Data Protection and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Reference Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178





EMBEDDED SERVICE SDK FOR ANDROID DEVELOPER GUIDE

The Embedded Service SDK for Mobile Apps makes it easy to give customers access to powerful features right from within your native
app. You can make these Service Cloud features feel organic to your app and have things up and running quickly using this SDK.

April 2021 Release (Version 224.1.0)

This documentation describes the Service SDK, which uses the following components.

Version NumberComponent

4.2.0Chat

4.3.4Knowledge

4.2.5Case Management

4.0.9SOS

8.0.2Common

Release Notes

Check out the new features and known issues for the Android Service SDK.

Service Cloud Setup for the Embedded Service SDK for Mobile Apps

Set up Service Cloud in your org before using the Service SDK.

Embedded Service SDK for Mobile Apps Setup

Set up the SDK to start using Service Cloud features in your mobile app.

Android Examples

Use these examples to learn more about the Service SDK.

Using Chat with the Service SDK

Add the Chat experience to your mobile app.

Using Knowledge with the Service SDK

Add the Knowledge experience to your mobile app.

Using Case Management with the Service SDK

Add the Case Management experience to your mobile app.

Using SOS with the Service SDK

Add the SOS experience to your mobile app.

SDK Customizations with the Service SDK for Android

Once you’ve played around with some of the SDK features, use this section to learn how to customize the Service SDK so that it fits
the look and feel of your app. This section also contains instructions for localizing strings in all supported languages.

Troubleshooting the Service SDK

Get some guidance when you run into issues.

Data Protection and Security in the Service SDK for Android

The Service SDK does not collect or store personal data from its users. We ensure that data is secure both locally and when in transit.

1



Reference Documentation

Reference documentation for Service SDK for Android.

Additional Resources

If you’re looking for other resources, check out this list of links to related documentation.

Release Notes

Check out the new features and known issues for the Android Service SDK.

To review the latest releases for the Service SDK for Android, visit github.com/forcedotcom/ServiceSDK-Android/releases.

Service Cloud Setup for the Embedded Service SDK for Mobile Apps

Set up Service Cloud in your org before using the Service SDK.

Org Setup for Chat in Lightning Experience with a Guided Flow

Use the guided setup flow in Lightning Experience to add chat to your org.

Org Setup for Chat in Salesforce Classic

To use Chat in your mobile app, first set up Chat in your org.

Cloud Setup for Knowledge

To use Knowledge in your mobile app, enable it in your org, create knowledge articles, and set up an Experience Cloud.

Cloud Setup for Case Management

To use Case Management in your mobile app, set up an Experience Cloud site and create a quick action.

Console Setup for SOS

To use SOS in your mobile app, set up Omni-Channel and SOS for your console.

Org Setup for Chat in Lightning Experience with a Guided Flow
Use the guided setup flow in Lightning Experience to add chat to your org.

Note:  If you’re using Salesforce Classic, see Org Setup for Chat in Salesforce Classic.

These instructions walk you through a basic chat setup in Lightning Experience. To learn more about chat, check out the Web Chat
Basics Trailhead module.

1. Click the Setup gear icon and select Service Setup.

2

Release NotesEmbedded Service SDK for Android Developer Guide

https://github.com/forcedotcom/ServiceSDK-Android/releases
https://trailhead.salesforce.com/content/learn/modules/web-chat
https://trailhead.salesforce.com/content/learn/modules/web-chat


2. Under Recommended Setup, click View All.

3. In the search box, enter Chat, and select Chat with Customers.

Note:  If you don’t see the Chat with Customers setup flow, verify that your org includes the Digital Engagement add-on
SKU.

4. After you read the overview page, click Start.

5. Enter the name of your queue (for example, Chats) and agent group name (for example, Chat Agents). Then select the
members for this group and click Next.

3

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide



6. If you're asked to prioritize chats with your other work, enter the routing configuration name (for example, Chats) and give it a
priority (for example, 1).

7. (Optional) Adjust the work item size and agent capacity.

4

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide



8. For the website URL, enter https://*.force.com  or the URL for your site. Create or select a Salesforce site.

9. For the type of chat, select Service.

5

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide



10. Choose whether you want to provide offline support for customers.

11. Copy the code snippet by clicking Copy to Clipboard, and paste it into a text editor. You must extract a few pieces of information
from this code snippet.

6

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide



12. In the text editor, copy the following configuration information from the embedded_svc.init  function.

• (1) Chat Endpoint Hostname—This value is the hostname of the baseLiveAgentURL  property. When copying the hostname,
be sure not to include the protocol or the path. For instance, if the value for baseLiveAgentURL  is
https://MyDomainName.my.salesforcescrt.com/chat, then the hostname is
MyDomainName.my.salesforcescrt.com.

• (2) Org ID—If you don’t already know this value, it’s the fourth argument in the embedded_svc.init  function call.

• (3) Deployment ID—This value can be found in the deploymentId  property.

• (4) Button ID—This value can be found in the buttonId  property.

7

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide



Give these four settings to your developer.

Note:  If you don’t copy this information now, you can copy it later using the instructions in Get Chat Settings from Your Org.

13. Go back to the guided setup flow and click Finish.

14. (Optional) If you want to build a chatbot to complement your chat experience, see Einstein Bots in Salesforce Help. In broad strokes,
you must enable Einstein Bots, deploy the bot to your channel, and activate the bot. If you want to learn about building a more
robust bot, see the Einstein Bots Developer Cookbook.

8

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide

https://help.salesforce.com/articleView?id=bots_service_intro.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_enable.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_deploy_to_channels.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_activate_bot.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.230.0.bot_cookbook.meta/bot_cookbook/bot_cookbook_overview.htm


You’re all set! Chat is now set up in your org. You can always fine-tune these settings from Setup. To learn more, see Chat in Salesforce
Help.

Note:  To learn about chat timeout limitations on iOS devices, see When does a chat session time out?

Get Chat Settings from Your Org

After you’ve set up chat in the console, supply your app developer with four values: the chat endpoint hostname, the organization
ID, the deployment ID, and the button ID. You can get this information from your org’s setup.

Get Chat Settings from Your Org
After you’ve set up chat in the console, supply your app developer with four values: the chat endpoint hostname, the organization ID,
the deployment ID, and the button ID. You can get this information from your org’s setup.

Note:  If the endpoint for your server changes (due to an org migration, for example), the SDK automatically reroutes you to the
correct server. However, to avoid unnecessary rerouting, you should still update the server endpoint when you notice it has changed
inside your org’s settings.

Chat Endpoint Hostname
The hostname for the Chat endpoint that your organization has been assigned. To get this value, from Setup, search for Chat Settings
and copy the hostname from the API Endpoint.

Be sure not to include the protocol or the path. For instance, if the API Endpoint is:

https://d.gla5.gus.salesforce.com/chat/rest/

The chat endpoint hostname is:

d.gla5.gus.salesforce.com

Org ID
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization ID.

9

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide

https://help.salesforce.com/articleView?id=live_agent_intro.htm&language=en_US
https://github.com/forcedotcom/ServiceSDK-iOS/wiki/When-does-a-chat-session-time-out%3F


Deployment ID
The unique ID of your Chat deployment. To get this value, from Setup, select Chat > Deployments. The script at the bottom of the
page contains a call to the liveagent.init  function with the pod, the deploymentId, and orgId as arguments. Copy the
deploymentId value.

For instance, if the deployment code contains the following information:

<script type='text/javascript'
src='https://d.gla3.gus.salesforce.com/content/g/js/44.0/deployment.js'></script>

<script type='text/javascript'>
liveagent.init('https://d.gla5.gus.salesforce.com/chat', '573B00000005KXz',
'00DB00000003Rxz');
</script>

The deployment ID value is:

573B00000005KXz

Be sure not to use the org ID value (which is also in this deployment code) for the deployment ID.

10

Org Setup for Chat in Lightning Experience with a Guided
Flow

Embedded Service SDK for Android Developer Guide



Button ID
The unique button ID for your chat configuration. To get this value, from Setup, search for Chat Buttons and select Chat Buttons
& Invitations. Copy the id  for the button from the JavaScript snippet.

For instance, if your chat button code contains the following information:

<a id="liveagent_button_online_575C00000004h3m"
href="javascript://Chat"
style="display: none;"
onclick="liveagent.startChat('575C00000004h3m')">
<!-- Online Chat Content -->

</a>
<div id="liveagent_button_offline_575C00000004h3m"

style="display: none;">
<!-- Offline Chat Content -->

</div>
<script type="text/javascript">
if (!window._laq) { window._laq = []; }
window._laq.push(function() { liveagent.showWhenOnline('575C00000004h3m',
document.getElementById('liveagent_button_online_575C00000004h3m'));
liveagent.showWhenOffline('575C00000004h3m',
document.getElementById('liveagent_button_offline_575C00000004h3m'));

});
</script>

The button ID value is:

575C00000004h3m

Be sure to omit the liveagent_button_online_  text from the ID when using it in the SDK.

Org Setup for Chat in Salesforce Classic
To use Chat in your mobile app, first set up Chat in your org.

Note:  This topic shows you how to set up Chat in Salesforce Classic. If you’re using Lightning Experience, see Org Setup for Chat
in Lightning Experience with a Guided Flow.

11

Org Setup for Chat in Salesforce ClassicEmbedded Service SDK for Android Developer Guide



1. Create a Chat implementation in Service Cloud, as described in Chat for Administrators (PDF). Your implementation needs a deployment
and a chat button.

Note:  By default, a mobile chat session times out around two minutes after you leave the app or lose connectivity. To change
this value, update the Idle Connection Timeout Duration field when setting up your chat deployment. Keep in mind that
the actual timeout on the app can be up to 40 seconds longer than the specified value in this field. See Chat Deployment
Settings.

2. (Optional) If you want to use Omni-Channel for routing, configure it as described in Omni-Channel for Administrators (PDF).

Omni-Channel enables your agents to use the same widget for all real-time routing (for example, Chat, SOS, email, case management).
However, you can use Chat without setting up Omni-Channel.

3. (Optional) If you want to build a chatbot to complement your chat experience, see Einstein Bots in Salesforce Help. In broad strokes,
you must enable Einstein Bots, deploy the bot to your channel, and activate the bot. If you want to learn about building a more
robust bot, see the Einstein Bots Developer Cookbook.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Chat Settings from Your Org.

Cloud Setup for Knowledge
To use Knowledge in your mobile app, enable it in your org, create knowledge articles, and set up an Experience Cloud.

1. Enable Salesforce Knowledge and verify that you have Knowledge licenses. To learn more, see Enable Salesforce Knowledge in
Salesforce Help.

2. In the user settings for those users you choose to administer the knowledge base, select Knowledge User.

3. Create Knowledge articles. When building out your knowledge base, make sure that you define the article types and associate articles
with data categories within a category group.

To learn more about setting up your Knowledge articles, check out: Salesforce Knowledge Documentation (HTML, PDF).

When creating articles, ensure that they are accessible to the Public Knowledge Base channel.

12

Cloud Setup for KnowledgeEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=live_agent_administrators_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/chat_administrator.pdf
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=service_presence_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/service_presence_administrators.pdf
https://help.salesforce.com/articleView?id=bots_service_intro.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_enable.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_deploy_to_channels.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_activate_bot.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.230.0.bot_cookbook.meta/bot_cookbook/bot_cookbook_overview.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_settings.htm&language=en_US
https://help.salesforce.com/articleView?id=knowledge_map.htm&type=0&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_map.htm&language=en_US
http://resources.docs.salesforce.com/sfdc/pdf/salesforce_knowledge_implementation_guide.pdf


4. Create an Experience Cloud or Salesforce site. Your Salesforce org must have an available Experience Cloud or Salesforce site. Your
app developer needs the site URL for the site to use the Knowledge or Case Management feature in the SDK.

If you've never set up a site, see Set Up and Manage Experience Cloud Sites.

5. To show Knowledge articles from your app, enable guest user access for the Article Types, Categories, and Fields associated with
your knowledge articles. Also ensure that Guest Access to the Support API is turned on.

Note:  If the Guest user profile isn’t set up properly, your Knowledge categories and articles do not appear.

For step-by-step instructions, see Guest User Access for Your Experience Cloud Site.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Knowledge Settings from Your
Org.

Guest User Access for Your Experience Cloud Site

Ensure that guest user access is set up correctly for your Experience Cloud site. To show Knowledge articles from your app, enable
guest user access for the Article Types, Categories, and Fields associated with your knowledge articles. To show Case Publisher,
ensure that your Quick Actions are accessible.

Get Knowledge Settings from Your Org

After you’ve set up your knowledge base and your Experience Cloud site, supply your app developer with the values for the site URL,
data category group, and root data category. You can get this information from your org’s setup.

Guest User Access for Your Experience Cloud Site
Ensure that guest user access is set up correctly for your Experience Cloud site. To show Knowledge articles from your app, enable guest
user access for the Article Types, Categories, and Fields associated with your knowledge articles. To show Case Publisher, ensure that
your Quick Actions are accessible.

These instructions describe how to enable guest user access for either an Experience Cloud or Salesforce site.

1. If you’re editing the settings for an Experience Cloud site:

a. From Setup, enter Digital Experiences  in the Quick Find box, then select All Sites.

b. Click Workspaces for the site you’d like to access to make sure it’s active.

13

Cloud Setup for KnowledgeEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/articleView?id=networks_overview.htm&language=en_US


c. From the Experience Workspaces page, select Administration.

d. Select Pages > Go to Force.com to get to the Site Detail page.

2. (Salesforce sites only) If you’re editing the settings for a Salesforce site:

a. From Setup, select Develop > Sites.

b. Click the Site Label for your site to get to the Site Detail page.

3. From the Site Detail section, click Edit.

a. Ensure that Guest Access to the Support API is checked.

b. (For Case Management feature only) Ensure that the desired Quick Actions are selected. The global quick action determines
which fields display when creating a case.

c. Click Save.

4. (For Knowledge feature only) From the Site Detail section, click Public Access Settings. This action displays the settings for the
Guest user profile in your org.

a. Verify that the user has read access to the Article Type from the Article Type Permissions section.

b. Verify that the user has read access to the fields in the Article Type from the Field-Level Security section.

c. Verify that the user has visibility to the categories from the Category Group Visibility Settings section.

Get Knowledge Settings from Your Org
After you’ve set up your knowledge base and your Experience Cloud site, supply your app developer with the values for the site URL,
data category group, and root data category. You can get this information from your org’s setup.

Experience Cloud site URL

From Setup, search for All Sites, and copy the URL for the desired site.

Data Category Group

From Setup, search for Data Category Assignments inside the Knowledge section, and copy the name of the desired data category
group.

14

Cloud Setup for KnowledgeEmbedded Service SDK for Android Developer Guide



Data Category

From Setup, search for Data Category Assignments inside the Knowledge section, select the data category group, and copy the
name for the desired root data category.

Cloud Setup for Case Management
To use Case Management in your mobile app, set up an Experience Cloud site and create a quick action.

1. Create an Experience Cloud or Salesforce site. Your Salesforce org must have an available Experience Cloud or Salesforce site. Your
app developer needs the site URL for the site to use the Knowledge or Case Management feature in the SDK.

If you've never set up a site, see Set Up and Manage Experience Cloud Sites.

2. When setting up the site, add the Quick Actions that you'd like to use in your app for the Case Management functionality. You must
specify a quick action to use Case Management. The global quick action determines which fields display when creating a case. To
learn more about quick actions, see Create Global Quick Actions in Salesforce Help. Also ensure that Guest Access to the Support
API is turned on.

For step-by-step instructions, see Guest User Access for Your Experience Cloud Site.

15

Cloud Setup for Case ManagementEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/articleView?id=networks_overview.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=creating_global_actions.htm&language=en_US


Note:  Be sure that your global action is accessible to the Guest user profile. Also note that the case publisher screen does not
respect field-level security for guest users. If you want to specify different security levels for different users, use different quick
actions.

3. If you'd like to let authenticated users manage a list of their existing cases, you need to perform a few additional setup steps.

a. Make sure that the User Profile for the authenticated users has API Enabled checked. For an overview on user profiles, see
Profiles in Salesforce Help.

b. You’ll need a list view for your cases in Service Cloud. To learn more about creating views, see Create a List View in Salesforce
Help. Supply the Case List Unique Name for this view to your app developer.

Note:  If you use the built-in My Cases  list view, keep in mind that it is filtered by the Contact  field for community
users and it is filtered by the Created By  field for other user profiles. If you want a different behavior, create a new list
view.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Case Management Settings from
Your Org.

Get Case Management Settings from Your Org

After you’ve configured your org, supply your app developer with the values for the Experience Cloud site URL, the global action,
and the case list. You can get this information from your org’s setup.

Get Case Management Settings from Your Org
After you’ve configured your org, supply your app developer with the values for the Experience Cloud site URL, the global action, and
the case list. You can get this information from your org’s setup.

Experience Cloud site URL

From Setup, search for All Sites, and copy the URL for the desired site.

Global Action

From Setup, search for Global Actions, and copy the name of the desired quick action.

16

Cloud Setup for Case ManagementEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=admin_userprofiles.htm&language=en_US
https://help.salesforce.com/articleView?id=listviews_parent.htm&type=0&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=customviews_parent.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=customviews_parent.htm&language=en_US


Case List Unique Name (for Authenticated Users Only)
To get this case list value, access the Cases tab in your org, pick the desired View, select Go! to see that view, and then select Edit
to edit the view. From the edit window, you can see the View Unique Name. Use this value when you specify the caseListName
in the SDK.

Console Setup for SOS
To use SOS in your mobile app, set up Omni-Channel and SOS for your console.

Note:  If you intend to provide real-time support using both Chat and SOS, make sure that your agents know to go Offline
before switching from the Online  state of one feature to the Online  state of the other.

To get SOS set up in your console, see Add SOS to Your Console. After setting up the SOS console, check out the other topics in this
section to fine-tune your SOS configuration.

Add SOS to Your Console

Perform these steps to get SOS into your production environment.

17

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



Get SOS Settings from Your Org

After you’ve set up SOS in the console, supply your app developer with three values: the Chat endpoint, the organization ID, and
the deployment ID. You can get this information from your org’s setup.

Assign SOS Permissions

To allow an agent to use SOS, verify that the license and permissions settings are correct in Salesforce.

Automatic SOS Case Pop

With auto case pop, Service Cloud automatically creates a case when a new SOS session starts. Creating a case at the start of a session
requires a trigger, a Visualforce page, and changes to the SOS session page layout.

Listen for SOS Console Events

Listen for SOS events from the Salesforce console to log activity, debug issues, and perform quality-of-service (QoS) analysis.

Record SOS Sessions

Enable SOS session recording to assure quality and let agents refer to session recordings.

SOS Reference ID

Provide an ID to give to support when there are issues with a session.

Multiple SOS Queues

Implement multiple SOS queues to route requests to specific agents or give specific requests a higher priority.

Add SOS to Your Console
Perform these steps to get SOS into your production environment.

1. Configure Omni-Channel, as described in Omni-Channel for Administrators (PDF).

2. Set up SOS in Service Cloud, as described in Set Up SOS Video Chat and Screen-Sharing.

3. Be sure that you’ve assigned agent permissions to users, as described in Assign SOS Permissions.

4. Perform any additional customizations specified in Console Setup for SOS.

Get SOS Settings from Your Org
After you’ve set up SOS in the console, supply your app developer with three values: the Chat endpoint, the organization ID, and the
deployment ID. You can get this information from your org’s setup.

pod
The hostname for the Chat endpoint that your organization has been assigned. To get this value, from Setup, search for Chat Settings
and copy the hostname from the Chat API Endpoint. Be sure not to include the protocol or the path — use only the hostname.

18

Console Setup for SOSEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/HTViewHelpDoc?id=service_presence_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/service_presence_administrators.pdf
https://help.salesforce.com/HTViewHelpDoc?id=sos_intro.htm&language=en_US


For instance, if your Chat API Endpoint is:

https://d.gla5.gus.salesforce.com/chat/rest/

Your pod hostname is:

d.gla5.gus.salesforce.com

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization ID.

deploymentId
The unique ID of your SOS deployment. To get this value, from Setup, search for SOS Deployments, click the correct deployment
and copy the Deployment ID.

Assign SOS Permissions
To allow an agent to use SOS, verify that the license and permissions settings are correct in Salesforce.

19

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



1. Assign an SOS user license.

Assigning a license must be done for every user that requires access to SOS.

a. From Setup, select Manage Users > Users.

b. Click the name of the user. (Do not click Edit.)

c. Select Permission Set License Assignments and then click Edit Assignments.

d. Enable SOS User. If this option is not available, your org has not been assigned any SOS licenses.

e. Click Save.

2. Enable the SOS license.

Once licenses are assigned to users, enable them using a permission set. We recommend that you have a permission set specifically
for SOS, because all users assigned to this permission set must have an SOS license. If you attempt to enable SOS for a permission
set which contains users that do not have an SOS license, you’ll receive an error.

a. From Setup, select Manage Users > Permission Sets.

b. If you do not have a permission set for SOS, click the New button. Give it a Label and click Save.

c. If you already have a permission set, click the SOS permission set.

d. Click App Permissions and then click the Edit button.

e. Check Enable for the Enable SOS Licenses checkbox. You’ll receive an error if any assigned users do not have the SOS license.

f. Click Save.

3. Enable the service presence status.

You can enable the service presence status using either permission sets or profiles. If the presence status is only being used for SOS,
it is easier to enable the presence status through the same permission set that enables the license. Using the same permission set
guarantees that all agents who require the presence status have access to it. If the presence status is being used for multiple service
channels, it is likely that the same permission set cannot be used, since all members of the permission set would require a SOS
license. In this case, you may want to have multiple permissions sets, assign it to a profile, and use some combination of profiles and
permission sets.

Service Permission via Permission Sets

a. From Setup, select Manage Users > Permission Sets.

b. Click an existing permission set associated with SOS, or create a new one.

c. Click Service Presence Statuses Access and then click the Edit button.

d. Add the service presence related to SOS to the Enabled Service Presence Statuses.

e. Click Save.

f. If necessary, click Manage Assignments to add agents to the permission set.

Service Permission via Profile

a. From Setup, select Manage Users > Profiles.

b. Click the name of the profile associated with SOS. (Do not click Edit.)

c. Click the Edit button for Enabled Service Presence Status Access.

d. Add the service presence related to SOS to the Enabled Service Presence Statuses.

e. Click Save.

4. Add agents to the queue.

20

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



All agents must be a member of at least 1 queue. You can determine which queues are used by SOS by looking at the SOS deployments.
Agents can be added to a queue individually or in groups. These groups differ depending on the org — groups can be broken into:
roles, public groups, partner users, and so on.

a. From Setup, select Manage Users > Queues.

b. Click Edit for the desired queue.

c. Scroll to the bottom of the page and find the Queue Members section. Add the required members.

d. Click Save.

Automatic SOS Case Pop
With auto case pop, Service Cloud automatically creates a case when a new SOS session starts. Creating a case at the start of a session
requires a trigger, a Visualforce page, and changes to the SOS session page layout.

1. Create a trigger.

This trigger fires before a new SOS session object saves. The trigger creates a case and adds a reference to the case to the SOS session
object. When the case is created, the owner is initially set to "Automated Process". This value changes to the owner of the SOS session
object with the Visualforce page specified in the next step.

a. From Setup, search for SOS Sessions.

b. Select Triggers from the SOS Sessions section.

c. Click the New button.

d. Replace the Apex Trigger code with the code below. This code assumes that the email address is sent through the SOS Custom
Data feature using the Email__c  API Name. To learn more about custom data in SOS, see Using SOS with the Service SDK.
Any data that can be used to identify a contact can be sent instead of the email, as long as the trigger is updated to reflect this
information.

trigger SOSCreateCaseCustom on SOSSession (before insert) {
List<SOSSession> sosSess = Trigger.new;
for (SOSSession s : sosSess) {
try {
Case caseToAdd = new Case();
caseToAdd.Subject = 'SOS Video Chat';
if (s.ContactId != null) {
caseToAdd.ContactId = s.ContactId;

} else {
List<Contact> contactInfo =

[SELECT Id from Contact WHERE Email = :s.Email__c];
if (!contactInfo.isEmpty()) {
caseToAdd.ContactId = contactInfo[0].Id;
s.ContactId = contactInfo[0].Id;

}
}
insert caseToAdd; s.CaseId = caseToAdd.Id;

}
catch(Exception e){}

}
}

e. Click Save.

21

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



2. Add a Visualforce page.

This Visualforce page changes the owner of the case and opens the case in a subtab. The page is added to the SOS session page
layout in the final step.

a. From Setup, search for Visualforce Pages.

b. Click the New button.

c. Give the Visualforce page a name. For example, "SOS_Open_Case_Custom".

d. Replace the Visualforce Markup code with this code:

<apex:page sidebar="false" standardStylesheets="false">
<apex:includeScript value="/soap/ajax/34.0/connection.js"/>
<apex:includeScript value="/support/console/34.0/integration.js"/>

<script type='text/javascript'>
sforce.connection.sessionId = '{!$Api.Session_ID}';

function escapeSoql (str) {
return str.replace(/\\/g, '\\\\').replace(/'/g, "\\'");

}

document.addEventListener('DOMContentLoaded', function () {
sforce.console.getEnclosingPrimaryTabObjectId(function(result) {
if (!result || !result.success) {
return;

}

var sosSessionId = result.id;
var query =

"SELECT CaseId, OwnerId FROM SOSSession WHERE Id = '" +
escapeSoql(sosSessionId) + "'"

var queryResult = sforce.connection.query(query);
var record = queryResult.getArray('records');

if (!record || !record[0]) {
console.log('Can not determine session Id');
return;

}

var caseId = record[0].CaseId;
var ownerId = record[0].OwnerId;

if (!ownerId) {
console.log('No owner Id');
return;

}

var caseUpdate = new sforce.SObject("Case");
caseUpdate.Id = caseId;
caseUpdate.OwnerId = ownerId;
result = sforce.connection.update([caseUpdate]);

if (!result[0].getBoolean("success")) {
console.log('Unable to set owner', result, caseUpdate);

22

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



}

sforce.console.getEnclosingPrimaryTabId(function(result) {
if (!result || !result.success) {
return;

}

var query = "SELECT CaseNumber FROM Case WHERE Id = '" +
escapeSoql(caseId) + "'"

var queryResult = sforce.connection.query(query);
var record = queryResult.getArray('records');
var caseNumber = record && record[0] &&

record[0].CaseNumber || 'Case';

sforce.console.openSubtab(result.id, '/'+caseId,
true, caseNumber);

});
});

});
</script>

</apex:page>

e. Click Save.

3. Update the SOS session page layout.

Now that the Visualforce page has been created, you can change the page layout of the SOS session. This change hides the Visualforce
page in the layout.

a. From Setup, search for SOS Sessions.

b. Select Page Layouts from the SOS Sessions section.

c. Click Edit for your active layout (probably SOS Session Layout).

d. From the top of the page, select the Custom Console Components link.

e. Under the Primary Tab Components section, add the following to one of the sidebars:

• Set Style to Stack.

• Set Width px to 1.

• Set Height px to 1. (Change Height % to Height px if necessary.)

• Set Type to Visualforce Page

• Set Component to the page created previously (for example, SOS_Open_Case_Custom).

f. Click Save.

23

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



Whenever an agent accepts an incoming call, a case automatically gets created.

Listen for SOS Console Events
Listen for SOS events from the Salesforce console to log activity, debug issues, and perform quality-of-service (QoS) analysis.

To detect events from the Salesforce console, use JavaScript in your Visualforce page. Call the addEventListener  method, which
is documented in the Salesforce Console Developer Guide. The method syntax is:

sforce.console.addEventListener(eventType: String, eventListener: Function);

DescriptionTypeParameter

The event type. For SOS session state events,
this value is

StringeventType

SFORCE_SOS:STATE_CHANGED. For
audio QoS, this value is
SFORCE_SOS:QOS_AUDIO. For video
QoS, this value is
SFORCE_SOS:QOS_VIDEO.

This function is called when the registered
event is emitted. You receive one JSON

FunctioneventListener

message  object within the payload
passed to this function.

For more information about SFORCE_SOS:STATE_CHANGED, see SOS State Change Console Events.

For more information about SFORCE_SOS:QOS_AUDIO  and SFORCE_SOS:QOS_VIDEO, see SOS Quality-of-Service Console
Events.

SOS State Change Console Events

You can listen for SOS session state changes from the Salesforce console for logging and debugging purposes.

SOS Quality-of-Service Console Events

You can listen for SOS audio and video quality-of-service (QoS) events from the Salesforce console.

SOS State Change Console Events
You can listen for SOS session state changes from the Salesforce console for logging and debugging purposes.

After you add an event listener for state changes to your console (see Listen for SOS Console Events), inspect your function's payload
and handle the event.

sforce.console.addEventListener("SFORCE_SOS:STATE_CHANGED", function(payload) {
// Handle event

});

24

Console Setup for SOSEmbedded Service SDK for Android Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.230.0.api_console.meta/api_console/sforce_api_console_addeventlistener.htm


Event Listener Payload

The JSON payload you receive within the event listener function follows this syntax.

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previousState: <PREVIOUS_STATE>,
reason: <REASON_IF_APPLICABLE>

}
}

sfdcSosSessionId  (String)
The ID associated with the session that emitted the events.

currentState  (String)
The current state of the session. See the Event States section.

previousState  (String)
The previous state of the session. See the Event States section.

reason  (Object or null)
Populated only when the current state is ENDED. Contains information about why the session was ended. See the End Reasons
section.

This code sample illustrates how to handle an event. Subsequent sections describe how to interpret each part of the message object
payload.

sforce.console.addEventListener("SFORCE_SOS:STATE_CHANGED", function(event) {
var stateChange = {};
try {
stateChange = JSON.parse(event.message);

} catch (e) {
// Error Parsing JSON Object
throw new Error(e);

}

/*
Use currentState vs previousState to determine how you reached
the state you're in. Most useful in the case of the ENDED state
where you want to know how it ended and if there were any errors.

*/

var currentState = stateChange.currentState;
var previousState = stateChange.previousState;

// Handle Non ENDED state changes
if (currentState !== 'ENDED') {
logStateChange(currentState, previousState);
return;

}

// Handle ENDED state change
switch (stateChange.reason.name) {

// Handle a session that was intentionally ended by customer or agent

25

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



case 'ENDED_BY_CUSTOMER':
case 'ENDED_BY_CONSOLE':
logEndedSession(currentState, previousState, stateChange.reason.name);
break;

// Handle a session that ended in an error
case 'ERROR':
logEndedWithError(currentState, previousState, stateChange.reason.name,

stateChange.reason.error);
break;

}
});

Event States

The currentState  and previousState  fields can be one of the following states.

LOADING_RESOURCES
Widget has loaded. Fetching more resources from the server.

INTERFACE_CHECK
Applies to Internet Explorer browsers only. Attempting to install the Internet Explorer plug-in.

JOINING
Joining the audio/video session.

INITIALIZING
Starting to listen for updates from the audio/video session.

AV_CONNECTION
Connecting to the audio/video session, getting microphone or camera permissions from the browser, and starting to send the stream
to the audio/video session.

WAITING
Waiting to receive the audio/video stream from the SDK.

CONNECTED
Session is fully established with both audio and video.

HOLD
Session has been put on hold by the customer, the agent, or both.

PAUSED
Session paused because the app was put into the background, the customer is typing into a masked field, or the customer accepted
a phone call.

ENDED
The session has completed. See the End Reasons section for more information.

End Reasons

When the currentState  is ENDED, you can inspect the reason  object to find out why the session ended.

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,

26

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



previousState: <PREVIOUS_STATE>,

reason: {
name: <END_REASON>
error: <ERROR_IF_APPLICABLE>

}
}

}

name  (String)
The reason why the session ended. Can be ENDED_BY_CUSTOMER, ENDED_BY_CONSOLE, or ERROR.

error  (Error object or null)
If there's an error, this field contains the error details. If there isn't an error, the value is null. See Errors section.

The following table describes various ways a session can end, with and without an error. See the Errors section for details about session
failures.

Table 1: End Reason Scenarios

How a Session Can End with an ErrorHow a Session Can End Without an
Error

State

An issue occurred while loading scripts from
the server.

The customer or agent manually ended the
session prematurely.

LOADING_RESOURCES

The agent encountered an issue while
installing the OpenTok plug-in.

The customer or agent manually ended the
session prematurely. Possibly related to a
user issue while installing the plug-in.

INTERFACE_CHECK

The agent encountered an issue while
joining the SOS session.

The customer or agent manually ended the
session prematurely.

JOINING

The agent encountered an issue while
starting to listen for updates from the SOS
session.

The customer or agent manually ended the
session prematurely.

INITIALIZING

The agent encountered an issue while
joining the session. The issue could be due

The customer or agent manually ended the
session prematurely.

AV_CONNECTION

to hardware permissions, misconfigured
firewall rules, network performance, or an
internal server error.

The agent failed to connect to the
customer’s audio/video stream. The issue

The customer disconnected from the
session without ending it, causing the

WAITING

could be due to misconfigured firewall rules,session to end. Typical reasons include the
network performance, an internal servercustomer lost network connectivity, the app

crashed, or the customer closed the app. error, or the customer was dropped from
the audio/video session.

The session ended unexpectedly with a fatal
error. This error could be due to network

The customer or agent manually ended the
session from a normal state.

CONNECTED

performance issues or an internal server
error.

27

Console Setup for SOSEmbedded Service SDK for Android Developer Guide

https://tokbox.com/platform


How a Session Can End with an ErrorHow a Session Can End Without an
Error

State

The session ended unexpectedly with a fatal
error. This error could be due to network
performance or an internal server error.

The customer or agent manually ended the
session from a normal state. The agent or
customer could have ended the session
after being in the hold state for too long.

HOLD

The session ended unexpectedly with a fatal
error. This error could be due to network
performance or an internal server error.

The customer or agent manually ended the
session from a normal state. The agent or
customer could have ended the session
after being in the paused state for too long.

PAUSED

The session experienced issues while
disconnecting from the audio/video session

The session ended without issue.ENDED

or making a request to the audio/video
server.

The following table shows some scenarios in which a session can end successfully, along with a sample payload.

Table 2: Successful End Reason Examples

Sample PayloadScenario

{
currentState: 'ENDED',

Session ended by customer

previousState: 'CONNECTED',
reason: {
name: 'ENDED_BY_CUSTOMER',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent

previousState: 'CONNECTED',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent while session is on hold

previousState: 'HOLD',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

28

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



Sample PayloadScenario

{
currentState: 'ENDED',

Session ended by agent while customer app is in the background

previousState: 'PAUSED',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent after app crash

previousState: 'WAITING',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

Errors

When a session ends with an error, inspect the error object for more information. The error syntax is:

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previous: <PREVIOUS_STATE>,
reason: {
name: 'ERROR',

error: {
code: <ERROR_CODE>,
domain: <ERROR_DOMAIN>,
message: <ERROR_MESSAGE>,
name: <ERROR_NAME>,
type: <ERROR_TYPE>,
rawError: {
code: <RAW_ERROR_CODE>,
message: <RAW_ERROR_MESSAGE>,
name: <RAW_ERROR_MESSAGE>

}
}

}
}

}

code  (Number)
Error code used for grouping related errors. Some common error codes include: 1000 (SOS session timed out waiting to access
camera or microphone); 1001 (audio/video request timed out), 1003 (failed to set agent name); 1006 (SOS session timed out waiting

29

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



to access the camera or microphone); 1500 (permission to audio/video hardware denied). See OpenTok's Handling Exceptions
documentation for more error conditions.

domain  (String or null)
Describes the category of error when it's related to an OpenTok audio/video issue. Can be one of the following: session,
publisher, or subscriber  domains. A session  error relates to an existing audio/video session. A publisher  error
describes an issue that the agent had when creating an audio/video stream. A subscriber  error describes an issue that the
agent had when receiving a customer’s audio/video stream.

message  (String)
A description of what caused the error.

name  (String or null)
A unique name associated with the error.

type  (String)
Specifies from where the error originated. Can be one of the following: opentok  (the underlying WebRTC platform); scrt
(Salesforce's real-time server); or widget  (the Salesforce console widget).

rawError  (Object)
The raw error returned by the server without parsing, grouping, or renaming.

The following table shows some scenarios in which a session can end in an error, along with a sample payload.

Table 3: End in Error Examples

Sample PayloadError Scenario

{
currentState: 'ENDED',

Agent declines permissions prompt

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1500,
domain: 'publisher',
message: 'Permission to audio/video

hardware
denied. You must grant permission

for SOS to
access microphone and camera.',

name: 'OT_USER_MEDIA_ACCESS_DENIED',
type: 'opentok',
rawError: {
code: 1500,
message: 'ORIGINAL ERROR MESSAGE',
name: 'OT_USER_MEDIA_ACCESS_DENIED'

}
}

}
}

{
currentState: 'ENDED',

Agent lets session time out without granting permissions

30

Console Setup for SOSEmbedded Service SDK for Android Developer Guide

https://tokbox.com/developer/guides/exception-handling/js/


Sample PayloadError Scenario

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1000,
domain: null,
message: 'SOS session timed out

waiting to
access camera/microphone.',

name: null,
type: 'widget',
rawError: {
code: 1000,
message: 'SOS session timed out

waiting to
access camera/microphone.'

}
}

}
}

{
currentState: 'ENDED',

Session dies after OpenTok drops connection because of a timeout

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1006,
domain:session,
message: 'SOS session timed out

waiting to
access camera/microphone.',

name: 'OT_SOCKET_CLOSE_ABNORMAL',
type: 'opentok',
rawError: {
code: 1006,
message: 'Unable to connect to the

session.
Please ensure you have network

connectivity.',
name: 'OT_SOCKET_CLOSE_ABNORMAL'

}
}

}
}

SOS Quality-of-Service Console Events
You can listen for SOS audio and video quality-of-service (QoS) events from the Salesforce console.

31

Console Setup for SOSEmbedded Service SDK for Android Developer Guide

https://tokbox.com/platform


Note:  The console allows you to track streaming issues on the other side of the conversation (from the client to the OpenTok
media router). To track QoS issues on this side (from the agent to the media router), refer to the SOS SDK documentation on
quality-of-service events: Using SOS with the Service SDK.

After you add an event listener for QoS to your console (see Listen for SOS Console Events), inspect your function's payload and handle
the event.

sforce.console.addEventListener("SFORCE_SOS:QOS_AUDIO", function(payload) {
// Handle audio QoS event

});
sforce.console.addEventListener("SFORCE_SOS:QOS_VIDEO", function(payload) {
// Handle video QoS event

});

Audio QoS Event Listener Payload

This sample JSON payload is for the SFORCE_SOS:QOS_AUDIO event type.

{
"message":"{
"bytesReceived":131131,
"packetsLost":3,
"packetsReceived":1499,
"timestamp":1502214189391,
"sfdcSosSessionId":"0NXR000000000MS"

}"
}

This payload specifies how many bytes were received, the number of packets lost, and the number of packets received for a 30-second
span. If the session ends before 30 seconds, QoS data isn't logged.

Video QoS Event Listener Payload

This sample JSON payload is for the SFORCE_SOS:QOS_VIDEO event type.

{
"message":"{
"bytesReceived":82253,
"packetsLost":0,
"packetsReceived":337,
"timestamp":1502214189391,
"size":"480x640",
"timePerShareType":{
"ss":"55.29",
"ffc":"44.71",
"bfc":"0.00"

},
"sfdcSosSessionId":"0NXR000000000MS"

}"
}

This payload specifies how many bytes were received, the number of packets lost, and the number of packets received for a 30-second
span. If the session ends before 30 seconds, QoS data isn't logged. This payload also describes the resolution size of the video and the
percentage of time in each share type. The share types are ss  for screen sharing, ffc  for the front-facing camera, and bfc  for the
back-facing camera.

32

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



Record SOS Sessions
Enable SOS session recording to assure quality and let agents refer to session recordings.

1. From Setup, search for SOS Deployments.

2. Select your deployment.

3. Check the Session Recording Enabled checkbox. Specify your API key, secret, and bucket.

You can retrieve recorded sessions in the mp4 format from your Amazon S3 bucket.

Note:  To configure your AWS environment, see Managing Access Permissions to Your Amazon S3 Resources.

SOS Reference ID
Provide an ID to give to support when there are issues with a session.

The SOS Reference ID (also referred to as the SOS Session ID) is a unique ID used to identify a session. It is 15 characters and starts with
"0NX". If there is an issue with a session, this ID can be provided to Support to locate logs related to the session.

There are two ways to find the SOS Reference ID:

1. Add it to the SOS Session object

2. Add it to the fields displayed in the SOS Session list view.

Add to Session Object
If the SOS Reference ID is added to the SOS Session Object and SOS Session page layouts, the ID can be seen when viewing any SOS
Session. To add the SOS Reference ID to the SOS Session object:

1. From Setup, search for SOS Sessions.

2. From SOS Sessions, select Fields. (Do not go to Fields under SOS Session Activities.)

3. Click New under SOS Session Custom Fields & Relationships.

4. Select Formula. Click Next.

5. Enter SOS Reference Id as the Field Label. Field Name auto populates.

33

Console Setup for SOSEmbedded Service SDK for Android Developer Guide

https://en.wikipedia.org/wiki/MPEG-4_Part_14
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html


6. Select Text as the Formula Return Type. Click Next.

7. In the Simple Formula text area, enter Id. Click Next.

8. Click Next again. (Permission to view the field can be removed on this page before clicking next.)

9. Click Save.

We recommend that you add this field to all page layouts.

Add to Session List View
The SOS Session list view can be added as a navigation tab item to any console app. Using the SOS Session list view allows you to view
the SOS Reference ID for multiple sessions on a single screen. To add the SOS Session list view to a console app:

1. From Setup, search for Apps.

2. Select Edit for the desired console app.

3. Under Choose Navigation Tab Items, move SOS Sessions to Selected Items.

4. Click Save.

The SOS Session list view may not display the SOS Reference ID by default. If so, a view can be edited or a new view can be created. To
add the SOS Reference Id to the view:

1. Go to the SOS Session list view

2. Click either Edit or Create New View.

3. Now you can determine which fields are visible.

• If the new field was added (as shown earlier) move SOS Reference Id to Selected Fields.

• If the new field was not created, move both instances of SOS Session Id to Selected Fields. (The two SOS Session Id fields are
different fields. One is the unique ID that starts with the characters "0NX"; the other is a number that increments for each session.)

4. Click Save.

Multiple SOS Queues
Implement multiple SOS queues to route requests to specific agents or give specific requests a higher priority.

Multiple queues can help out in the following situations:

• Giving paying customers a higher priority

• Having separate queues for different products

• Routing to agents with specific skill sets

• Giving agents a personal queue (great for training)

• Creating a training queue that has a lower priority or only gets requests from simple pages

• Grouping separate pages into different queues

You need two objects to make multiple queues work: a Queue  and an SOS Deployment  object. A third object, Routing
Configuration, lets you use different priorities.

1. If a Routing Configuration  is being used to achieve different priorities, create this object first. If you want all queues to
have the same priority, the same routing configuration can be used.

2. Next, create the Queue. The queue references the routing config. An agent can be a member of multiple queues.

34

Console Setup for SOSEmbedded Service SDK for Android Developer Guide



3. Create the SOS Deployment  last. The deployment references the queue. An app may have access to several SOS deployment
IDs, and then the app decides which queue the user should be sent to using the SOS deployment ID.

Embedded Service SDK for Mobile Apps Setup

Set up the SDK to start using Service Cloud features in your mobile app.

Requirements for the Service SDK for Android

Before you set up the SDK, let's take care of a few pre-reqs.

Accessibility with the Service SDK for Android

The Service SDK is accessible to customers that use a screen reader. Depending on your needs, you can also change some settings
to expand accessibility.

Install the Service SDK for Android

Install the Service SDK for Android using Gradle.

Authentication with the Service SDK for Android

The Service SDK provides an authentication mechanism that allows your users to access user-specific information in Service Cloud.
To authenticate, implement two interfaces and provide an access token to the SDK.

Push Notifications with the Service SDK for Android

To take advantage of push notifications from your org to your app, set up an Apex trigger and configure your app for notifications.
Pass relevant notification information, such as case feed activity, to the Service SDK using your PushNotificationListener
implementation.

Analytics with the Service SDK for Android

You can listen to user-driven events from the Service SDK using the ServiceAnalytics  system.

Decrease the Size of Your App

Although the SDK doesn't have a large footprint, you can decrease the size of your app by splitting your APK or by using ProGuard.

Requirements for the Service SDK for Android
Before you set up the SDK, let's take care of a few pre-reqs.

Salesforce Org Requirements
The Service SDK can be used with both Lightning Experience and Salesforce Classic. However, the SOS agent widget currently only works
in Salesforce Classic.

SDK Requirements
This SDK requires Android API level 21 (5.0, Lollipop) or newer. You can access the SDK using either Java or Kotlin.

App Permission Requirements
Depending on which features you use, the SDK inserts permission requirements into the manifest of your compiled application package.
The following table describes which requirements are added for which features.

35

Embedded Service SDK for Mobile Apps SetupEmbedded Service SDK for Android Developer Guide

https://www.android.com/


SOSChatCase ManagementKnowledgePermission

General Purpose Permissions

YesYesYesYesandroid.permission.ACCESS_NETWORK_STATE

YesYesYesYesandroid.permission.INTERNET

YesYesYesYesandroid.permission.READ_EXTERNAL_STORAGE

YesYesYesYesandroid.permission.WRITE_EXTERNAL_STORAGE

Authentication-Related Permissions

Yes (auth only)Yes (auth only)android.permission.AUTHENTICATE_ACCOUNTS

Yes (auth only)Yes (auth only)android.permission.GET_ACCOUNTS

Yes (auth only)Yes (auth only)android.permission.MANAGE_ACCOUNTS

Yes (auth only)Yes (auth only)android.permission.USE_CREDENTIALS

Yes (auth & API 23+)Yes (auth & API 23+)android.permission.USE_FINGERPRINT

Yes (auth only)Yes (auth only)android.permission.WAKE_LOCK

Yes (auth only)Yes (auth only)com.google.android.c2dm.permission.RECEIVE

Real-Time Chat and Video Permissions

Yesandroid.permission.BLUETOOTH

Yesandroid.permission.BROADCAST_STICKY

YesYesandroid.permission.CAMERA

Yesandroid.permission.MODIFY_AUDIO_SETTINGS

Yes (API 22 & earlier)android.permission.READ_PHONE_STATE

Yesandroid.permission.RECORD_AUDIO

The permissions that specify "auth only" are required if you're using authenticated user accounts. If you're not using authenticated
accounts, you can manually remove these permissions from the manifest with the tools:node  attribute. For example:

<uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS"
tools:node="remove"/>

SOS Agent Requirements
The agents responding to SOS calls must have modern browsers and reasonably high-speed internet connectivity to handle the demands
of real-time audio and video.

Hardware requirements:

• Webcam

• Microphone

36

Requirements for the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide



Bandwidth requirements:

• 500 Kbps upstream

• 500 Kbps downstream

Important:  Due to bandwidth limitations, 2G networks, such as GPRS and EDGE, are not supported.

Browser requirements:

• Chrome version 35 or newer

• Firefox version 30 or newer

• Internet Explorer version 10 or newer (plug-in required)

Note:  Your browser must support Transport Layer Security (TLS) protocol version 1.1 or newer. If you are running Internet Explorer
version 10, see this help topic on how to update the TLS version.

Operating System:

• OSX 10.5 or newer

• Windows 7 or newer

Accessibility with the Service SDK for Android
The Service SDK is accessible to customers that use a screen reader. Depending on your needs, you can also change some settings to
expand accessibility.

Disable the Minimized View in Chat
By default, a chat session starts out as a minimized, thumbnail view that you tap to open. This minimized view is not optimal for accessibility
because a visually impaired person could have trouble locating the thumbnail. To improve accessibility, we suggest starting the session
in the full-screen view. When building the ChatUIConfiguration object, set defaultToMinimized  to false.

ChatUIConfiguration uiConfig = new ChatUIConfiguration.Builder()
.chatConfiguration(chatConfiguration)
.defaultToMinimized(false)
.build();

See Quick Setup: Chat in the Service SDK.

Contrast Ratio Considerations
By default, we brand the SDK using a 4.2 contrast ratio. You can customize the colors to increase this contrast ratio.

See Customize Colors with the Service SDK.

Known Issues
• Chat: A screen reader doesn’t read the event text when an agent invites another agent to the chat session.

Install the Service SDK for Android
Install the Service SDK for Android using Gradle.

Before running through these steps, be sure you’ve checked the Requirements for the Service SDK for Android.

37

Accessibility with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/articleView?id=Enabling-TLS-1-1-and-TLS-1-2-in-Internet-Explorer&type=1&language=en_US
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.html


To get started with the Service SDK for Android:

1. Install the SDK using Gradle.

The Service SDK is hosted in a maven repository.

Maven Repository URLDependency NameFeature

https://s3.amazonaws.com/salesforcesos.com/android/maven/releasecom.salesforce.service:servicesdk:224.1.0All Features

https://s3.amazonaws.com/salesforcesos.com/android/maven/releasecom.salesforce.service:knowledge-ui:4.3.4Knowledge

(if you're only using Knowledge Core, then
use
com.salesforce.service:knowledge-core:4.3.4)

https://s3.amazonaws.com/salesforcesos.com/android/maven/releasecom.salesforce.service:case-ui:4.2.5Case Management

(if you're only using Case Management
Core, then use
com.salesforce.service:case-core:4.2.5)

https://s3.amazonaws.com/salesforcesos.com/android/maven/releasecom.salesforce.service:chat-ui:4.2.0Chat

(if you're only using Chat Core, then use
com.salesforce.service:chat-core:4.2.0)

https://s3.amazonaws.com/salesforcesos.com/android/maven/release,
http://tokbox.bintray.com/maven/

com.salesforce.service:sos:4.0.9SOS

To install all the Service SDK features, add the following maven repositories to your project's build.gradle  file.

allprojects {
repositories {
google()
jcenter()
maven {
url 'https://s3.amazonaws.com/salesforcesos.com/android/maven/release'

}
maven {
url 'http://tokbox.bintray.com/maven/'

}
}

}

Note:  Be sure to put the repositories  list in the allprojects  section.

And add the following dependency to your module's build.gradle  file.

dependencies {
implementation 'com.salesforce.service:servicesdk:224.1.0'

}

38

Install the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://gradle.org/


If you want to use a subset of the SDK features, exclude the undesired dependencies (by using exclude group  with
knowledge-ui, case-ui, chat-ui, or sos), or just pick the dependency you want to install. For example, to install
Knowledge functionality, add the following dependency to your module's build.gradle  file.

dependencies {
implementation 'com.salesforce.service:knowledge-ui:4.3.4'

}

2. Declare permissions.

To install Knowledge, Case Management, or Chat, you must declare the following permissions in your AndroidManifest.xml.

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

To install SOS functionality, you must declare the following permissions in your AndroidManifest.xml.

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS"/>
<uses-permission android:name="android.permission.RECORD_AUDIO"/>
<uses-permission android:name="android.permission.READ_PHONE_STATE"
android:maxSdkVersion="22"/>

Note:  If you only support Android Marshmallow (Version 6.0, API level 23) and later, you can remove the
READ_PHONE_STATE  line entirely.

And if you wish to use two-way video with SOS, you must also declare the camera permission.

<uses-permission android:name="android.permission.CAMERA"/>

You can now start using the Service SDK for Android.

Authentication with the Service SDK for Android
The Service SDK provides an authentication mechanism that allows your users to access user-specific information in Service Cloud. To
authenticate, implement two interfaces and provide an access token to the SDK.

AuthenticatedUser
AuthenticatedUser contains information about the user who wants to be authenticated.

public interface AuthenticatedUser {
@NonNull String getUserId ();

}

AuthTokenProvider
AuthTokenProvider is an interface to the system that obtains the access token. If the access token expires, the Service SDK
asks your implementation to refresh the token.

public interface AuthTokenProvider {
@Nullable String getToken ();
@Nullable String getTokenType ();
boolean canRefresh ();
void refreshToken (@NonNull ResponseSummary responseSummary);

}

The following sequence diagram describes the basic authentication flow.

39

Authentication with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://docs.gradle.org/current/userguide/dependency_management.html#sub:exclude_transitive_dependencies
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthenticatedUser.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthTokenProvider.html


Note:  In step 2, the configuration class that you call is either KnowledgeConfiguration for Knowledge, or
CaseConfiguration for Case Management. The builder of these two configuration classes contains a withAuthConfig
method. This method takes your implementation of AuthTokenProvider and AuthenticatedUser.

If you're using the Salesforce Mobile SDK, you can implement these classes as wrappers to existing authentication features. See
Authenticating Using the Salesforce Mobile SDK for more information.

If you're not using the Salesforce Mobile SDK, make sure that your implementation can access whatever authorization server you're using
to obtain the access token.

Authenticating Using the Salesforce Mobile SDK

These instructions describe how to authenticate the Service SDK using the provided authentication mechanism within the Salesforce
Mobile SDK.

Authenticating Using the Salesforce Mobile SDK
These instructions describe how to authenticate the Service SDK using the provided authentication mechanism within the Salesforce
Mobile SDK.

Before starting, make sure that you’ve already:

• Installed the Service SDK. See Install the Service SDK for Android.

40

Authentication with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthTokenProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthenticatedUser.html


• Installed the Salesforce Mobile SDK. If you want to install this SDK using maven, add a dependency on
com.salesforce.mobilesdk:SalesforceSDK:<VERSION_NUMBER>  to your module's build.gradle  file.

• Created a connected app that allows the SDK to authenticate with your Salesforce Experience Cloud site. See Connected Apps. For
an overview of Salesforce authentication from a mobile device, see Understand Security and Authentication.

Note:  When creating a connected app, be sure that it has access to the chatter_api  scope. See Scope Parameter Values.

1. If you're using a Salesforce Experience Cloud site, be sure to configure the login endpoint as described in the Salesforce Mobile SDK
documentation (Configure the Login Endpoint).

The documentation describes how to use the first server listed in your servers.xml  file as the default login location. For example:

<servers>
<server name="Site Login" url="https://MY_SITE_URL.com"/>

</servers>

2. Add an account_type  property to strings.xml. The property must be unique to your app to prevent conflicts with other
apps that use the Service SDK or the Salesforce Mobile SDK.

<string name="account_type">com.mycompany.myapp</string>

3. Implement AuthenticatedUser as a wrapper to your Mobile SDK user.

In Java:

import com.salesforce.androidsdk.accounts.UserAccount;
import com.salesforce.android.service.common.http.AuthenticatedUser;

public class MobileSdkUser implements AuthenticatedUser {
private final String mUserId;

public MobileSdkUser (UserAccount userAccount) {
mUserId = userAccount.getUserId();

}

@Override public String getUserId () {
return mUserId;

}
}

In Kotlin:

class MobileSdkUser(userAccount: UserAccount) : AuthenticatedUser {
private val mUserId: String

init {
mUserId = userAccount.getUserId()

}

override fun getUserId(): String {
return mUserId

}
}

Note: AuthenticatedUser.getUserId  must return the Salesforce user ID (UserAccount.getUserId) for
the Case Management message feed to display correctly.

41

Authentication with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://trailhead.salesforce.com/en/modules/mobile_sdk_introduction/units/mobilesdk_intro_security
https://help.salesforce.com/articleView?id=remoteaccess_oauth_scopes.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/communities_login_endpoint.htm
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthenticatedUser.html


4. Implement AuthTokenProvider as a wrapper to your Mobile SDK authentication system.

In Java:

import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import com.salesforce.android.service.common.http.AuthTokenProvider;
import com.salesforce.android.service.common.http.ResponseSummary;
import com.salesforce.androidsdk.rest.ClientManager;

public class MobileSdkAuthTokenProvider implements AuthTokenProvider {

private final ClientManager.AccMgrAuthTokenProvider mTokenProvider;
private String mAuthToken;

public MobileSdkAuthTokenProvider (ClientManager.AccMgrAuthTokenProvider tokenProvider,

String initialToken) {
mTokenProvider = tokenProvider;
mAuthToken = initialToken;

}

@Nullable @Override public String getToken () {
return mAuthToken;

}

@Nullable @Override public String getTokenType () {
return "Bearer";

}

@Override public boolean canRefresh () {
return true;

}

@Override public void refreshToken (@NonNull ResponseSummary responseSummary) {
mAuthToken = mTokenProvider.getNewAuthToken();

}
}

In Kotlin:

class MobileSdkAuthTokenProvider(
private val mTokenProvider: ClientManager.AccMgrAuthTokenProvider,
private var mAuthToken: String?) : AuthTokenProvider {

override fun getToken(): String? {
return mAuthToken

}

override fun getTokenType(): String? {
return "Bearer"

}

override fun canRefresh(): Boolean {
return true

}

42

Authentication with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthTokenProvider.html


override fun refreshToken(responseSummary: ResponseSummary) {
mAuthToken = mTokenProvider.getNewAuthToken()

}
}

5. When your app launches, initialize the Salesforce Mobile SDK.

// Initialize the Salesforce Mobile SDK
SalesforceSDKManager.initNative(context, null, MainActivity.class);

For more information, see the SalesforceSDKManager documentation in the Mobile SDK Developer’s Guide.

6. Write code that allows a user to log in and log out of their org using the Salesforce Mobile SDK. Make sure the user logs in before
showing the Service SDK UI.

For example:

public void login (final Activity activity) {
SalesforceSDKManager.getInstance()

.getClientManager()

.getRestClient(activity,
new ClientManager.RestClientCallback() {

@Override public void authenticatedRestClient (RestClient client) {
// Handle authenticated state activity here

}
});

}

public void logout (final Activity activity) {
SalesforceSDKManager.getInstance().logout(activity, true);

}

7. When configuring Knowledge (using KnowledgeConfiguration) or Case Management (using CaseConfiguration),
use the withAuthConfig  method in the builder and pass in your implementation for AuthenticatedUser and
AuthTokenProvider.

This code sample illustrates how it works with Knowledge:

// Create Knowledge configuration builder
KnowledgeConfiguration.Builder builder =
KnowledgeConfiguration.builder(siteUrl).offlineResourceConfig(offlineConfig);

// Grab a user account from the Salesforce Mobile SDK
UserAccount userAccount =
SalesforceSDKManager.getInstance().getUserAccountManager().getCurrentUser();

if (userAccount != null) {

// Create an authorization token provider from the Salesforce Mobile SDK
ClientManager.AccMgrAuthTokenProvider authTokenProvider =
new ClientManager.AccMgrAuthTokenProvider(
SalesforceSDKManager.getInstance().getClientManager(),
userAccount.getInstanceServer(),
userAccount.getAuthToken(),

43

Authentication with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/android_native_classes_salesforcesdkmanager.htm
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthenticatedUser.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthTokenProvider.html


userAccount.getRefreshToken());

// Create a wrapper with the Salesforce Mobile SDK token provider
AuthTokenProvider provider =
new MobileSdkAuthTokenProvider(authTokenProvider,
userAccount.getAuthToken());

// Build a config using the token provider and the authenticated user
builder.withAuthConfig(provider, new MobileSdkUser(userAccount));

}

// And now build a configuration object!
KnowledgeConfiguration config = builder.build();

This code sample illustrates how it works with Case Management:

// Create Case Management configuration builder
CaseConfiguration.Builder builder =
new CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)

// Grab a user account from the Salesforce Mobile SDK
UserAccount userAccount =
SalesforceSDKManager.getInstance().getUserAccountManager().getCurrentUser();

if (userAccount != null) {

// Create an authorization token provider from the Salesforce Mobile SDK
ClientManager.AccMgrAuthTokenProvider authTokenProvider =
new ClientManager.AccMgrAuthTokenProvider(
SalesforceSDKManager.getInstance().getClientManager(),
userAccount.getInstanceServer(),
userAccount.getAuthToken(),
userAccount.getRefreshToken());

// Create a wrapper with the Salesforce Mobile SDK token provider
AuthTokenProvider provider =
new MobileSdkAuthTokenProvider(authTokenProvider,
userAccount.getAuthToken());

// Build a config using the token provider and the authenticated user
builder.withAuthConfiguration(provider, new MobileSdkUser(userAccount))

.caseListName(CASE_LIST_NAME);
}

// Create a core configuration instance
CaseConfiguration coreConfiguration = builder.build();

At this point, you can use the features of the Service SDK as an authenticated user.

Push Notifications with the Service SDK for Android
To take advantage of push notifications from your org to your app, set up an Apex trigger and configure your app for notifications. Pass
relevant notification information, such as case feed activity, to the Service SDK using your PushNotificationListener
implementation.

44

Push Notifications with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide



1. Set up authentication in your app. To learn more, see Authentication with the Service SDK for Android.

2. Add FCM (Firebase Cloud Messaging) to your app. To learn more, see Google's documentation, Add Firebase to Your Android Project.

Note:  Avoid any references to GCM (Google Cloud Messaging) in your build dependencies and your
AndroidManifest.xml  files. If you experience a NoClassDefError  which claims that GcmReceiver  is missing,
it may be included in your final merged manifest by one of your dependencies, such as the Salesforce Mobile SDK. To resolve
the error, add the following remove instruction to your AndroidManifest.xml: <receiver
android:name="com.google.android.gms.gcm.GcmReceiver" tools:node="remove"/>.

3. Add a Service SDK connected-app  dependency in your module's build.gradle  file.

dependencies {

// Add the connected-app dependency
implementation "com.salesforce.service:connected-app:8.0.2"

// ... your other dependencies go here too ...
}

Note:  The version of the connected-app is the same as the version of the Common module used by the Service SDK.

4. Create a connected app and an Apex trigger to send a notification from your org.

Follow the instructions in the Salesforce Mobile Push Notifications Implementation Guide for Creating a Connected App.

For a sample Apex trigger for case feed activity, see Push Notifications for Case Activity.

5. Implement PushNotificationListener and handle the push notification event in the
onPushNotificationReceived method.

For example, the following code extracts the case ID from the payload and passes it to CaseUIClient:

In Java:

public class MyPushNotificationListener implements PushNotificationListener {

@Override public void onPushNotificationReceived (RemoteMessage message) {

// Extract the Case ID from the data. The name of the key depends
// on how you bundled the freeform data in your Apex trigger...
String caseId = message.getData().get("caseid");

// TO DO: Extract any other info from the data

CaseUIClient uiClient = // TO DO: Get the UI client from configuration

if (uiClient != null) {
// Pass case update information to the UI client.
uiClient.notifyCaseUpdated(caseId);

}
}

}

In Kotlin:

class MyPushNotificationListener : PushNotificationListener {

45

Push Notifications with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://firebase.google.com/docs/android/setup
https://developer.salesforce.com/docs/atlas.en-us.230.0.pushImplGuide.meta/pushImplGuide/pns_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.230.0.pushImplGuide.meta/pushImplGuide/pns_create_connected_app_overview.htm
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/PushNotificationListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/PushNotificationListener.html#onPushNotificationReceived(android.os.Bundle)
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html


override fun onPushNotificationReceived (message: RemoteMessage?) {

// Extract the Case ID from the data. The name of the key depends
// on how you bundled the freeform data in your Apex trigger...
val caseId = message.getData().get("caseid")

// TO DO: Extract any other info from the data

var uiClient: CaseUIClient? = null

// TO DO: Get the UI client from configuration

if (uiClient != null) {
// Pass case update information to the UI client.
uiClient.notifyCaseUpdated(caseId)

}
}

}

6. Configure SalesforceConnectedApp using the Sender ID, AuthTokenProvider, and the site URL.

Pass this object your push notification listener and then register your device for push notifications.

In Java:

// Create a connected app object
SalesforceConnectedApp connectedApp =
SalesforceConnectedApp.create(this, new ConnectedAppConfiguration.Builder()
.gcmSenderId(uniqueProjectId)
.salesforceInstanceURL(siteUrl)
.authTokenProvider(authProvider)
.build());

// Add the push notification listener
connectedApp.addPushNotificationListener(myPushNotificationListener);

// Register for push notifications
connectedApp.registerDeviceForPushNotifications().onError(new Async.ErrorHandler() {
@Override public void handleError (Async<?> operation, @NonNull Throwable throwable)
{

// TO DO: Handle error
}

});

In Kotlin:

// Create a connected app object
val connectedApp = SalesforceConnectedApp.create(this, ConnectedAppConfiguration.Builder()

.gcmSenderId(uniqueProjectId)

.salesforceInstanceURL(siteUrl)

.authTokenProvider(authProvider)

.build())

// Add the push notification listener
connectedApp.addPushNotificationListener(myPushNotificationListener)

46

Push Notifications with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/SalesforceConnectedApp.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthTokenProvider.html


// Register for push notifications
connectedApp.registerDeviceForPushNotifications().onError(object: Async.ErrorHandler {
override fun handleError(operation: Async<*>?, throwable: Throwable) {
// TO DO: Handle error

}
})

Analytics with the Service SDK for Android
You can listen to user-driven events from the Service SDK using the ServiceAnalytics  system.

Implement ServiceAnalyticsListener and add your listener to ServiceAnalytics to start receiving events.

In Java:

ServiceAnalytics.addListener(new ServiceAnalyticsListener() {
@Override public void onServiceAnalyticsEvent(String behaviorId,

Map<String, Object> eventData) {
// TO DO: Do something with analytics data

}
});

In Kotlin:

ServiceAnalytics.addListener { behaviorId, eventData ->
// TO DO: Do something with analytics data

}

When you receive an event, inspect the behaviorId  to see the behavior that caused the event (for example,
KNOWLEDGE_UI_USER_LAUNCH). Inspect the eventData map for contextual data related to the event (for example,
KnowledgeUIAnalytics.DATA_CATEGORY_GROUP_NAME).

For a list of behaviors and the key constants for parsing the eventData  map, see the analytics class for the desired feature.

Knowledge Analytics
KnowledgeUIAnalytics

Case Management Analytics
CasesUIAnalytics

Chat Analytics
ChatAnalytics

Decrease the Size of Your App
Although the SDK doesn't have a large footprint, you can decrease the size of your app by splitting your APK or by using ProGuard.

The SOS SDK contains native libraries for a variety of architectures, so it can benefit from APK splitting. See the Android documentation
on splitting your APK.

You can also use ProGuard to shrink and optimize your app. Use the following ProGuard rules as a starting point.

47

Analytics with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/analytics/ServiceAnalyticsListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/analytics/ServiceAnalytics.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIAnalytics.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CasesUIAnalytics.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatAnalytics.html
https://developer.android.com/studio/build/configure-apk-splits.html
https://developer.android.com/studio/build/configure-apk-splits.html
https://sourceforge.net/projects/proguard/


Warning:  When stripping code with ProGuard, be sure to use these rules so that you don’t unintentionally remove code that is
critical to the functioning of the SOS SDK.

################# ALL #################

# ------------------ OkHttp --------------------------
-dontwarn okio.**
-dontwarn okhttp3.**
-dontwarn javax.annotation.**
-dontwarn org.conscrypt.**
-keepnames class okhttp3.internal.publicsuffix.PublicSuffixDatabase

# ------------------ SQLCipher ------------------------
# If you're only using Chat, you can remove the sqlcipher rules
-keep class net.sqlcipher.** { *; }
-dontwarn net.sqlcipher.**

# ------------------ Gson ----------------------------
-keepclassmembers,allowobfuscation class * {

@com.google.gson.annotations.SerializedName <fields>;
}

############### SOS ONLY ###############
# You can delete this section if you are not using SOS

-dontwarn lombok.**

# Our components are initialized using reflection and can appear to be unused
-keepclassmembers class * implements com.salesforce.android.sos.component.Component

# ------------------ Eventbus SOS ------------------------
# The onEvent methods are called from the EventBus library and can appear unused.
-keepclassmembers class com.salesforce.android.sos.** {

public void onEvent(...);
}

# ------------------ Opentok SOS -------------------------
# OpenTok cannot handle any code stripping for optimization.
-keep class com.opentok.** { *; }
-keep class org.webrtc.** { *; }
-keep class com.salesforce.android.sos.** { *; }

# ------------------ Gson SOS ----------------------------
# Preserve the special static methods that are required in all enumeration classes.
# We use these predominantly for serializing enums with Gson.
-keepclassmembers enum com.salesforce.android.sos.** {

**[] $VALUES;
public *;

}

Android Examples

Use these examples to learn more about the Service SDK.

48

Android ExamplesEmbedded Service SDK for Android Developer Guide



Check out our sample apps on GitHub (github.com/forcedotcom/ServiceSDK-Android).

Using Chat with the Service SDK

Add the Chat experience to your mobile app.

Chat in the Service SDK for Android

Using Chat within the Service SDK, you can provide real-time chat sessions from within your native app.

Quick Setup: Chat in the Service SDK

To add Chat to your Android app, create a configuration object that points to your org and then create a Chat UI client.

Use Einstein Bots with Chat

With Einstein Bots, you can complement your chat support experience with a smart, automated system that saves your agents time
and keeps your customers happy. Once you've set up Einstein Bots in your org, the SDK automatically begins the chat experience
using your bot. You can design your bot to transfer to an agent at any point.

Display Knowledge Article Previews in Chat

By implementing ChatKnowledgeArticlePreviewDataProvider  and
ChatKnowledgeArticlePreviewClickListener, you can display Knowledge article previews in a chat session and
then show the article details when the user taps on the preview.

Listen for State Changes and Events

You can add listeners for state changes and events during a chat session and respond accordingly. For instance, when the client
ends a session, you can display a dialog to the user.

Show Pre-Chat Fields to User

Before a chat session begins, you can request that the user enter pre-chat fields that are sent to the agent at the start of the session.

Create or Update Salesforce Records from a Chat Session

When a chat session begins, you can create or find records within your org and pass this information to the agent. Using this technique,
your agent can immediately have all the context they need for an effective chat session.

Check Agent Availability

Before starting a session, you can check the availability of your chat agents and then provide your users with more accurate
expectations. For instance, when no agents are available, you can hide or disable the button to contact an agent

Transfer File to Agent

Give users the ability to transfer files during a chat so they can share information about their issues.

Block Sensitive Data in a Chat Session

To block sending sensitive data to agents, specify a regular expression in your org's setup. When the regular expression matches
text in the user's message, the matched text is replaced with customizable text before it leaves the device.

Build Your Own UI with the Chat Core API

With the Chat Core API, you can access the functionality of Chat without a UI. This API is useful if you want to build your own UI and
not use the default.

Chat in the Service SDK for Android
Using Chat within the Service SDK, you can provide real-time chat sessions from within your native app.

Once you’ve set up chat for Service Cloud, it takes just a few calls to the SDK to have your app ready to handle agent chat sessions.

49

Using Chat with the Service SDKEmbedded Service SDK for Android Developer Guide

https://github.com/forcedotcom/ServiceSDK-Android/tree/master/Examples
https://github.com/forcedotcom/ServiceSDK-Android/tree/master/Examples


When a chat session initiates, it is minimized by default so the user can keep using the app.

When the user taps the chat thumbnail, the app goes full screen.

50

Chat in the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide



If you've implemented Einstein Bots, the user first speaks with a chat bot on page 55 before optionally getting transferred to an agent.

If the user isn't using the app during a chat session, they receive a new message notification when an agent sends a message.

When an agent sends links to your users, they see link previews right from within the chat session. The SDK tries to use Open Graph
meta tags (og:title, og:description, og:image) to extract relevant information for the preview.

You can also customize the look and feel of the interface so that it fits naturally within your app.

Quick Setup: Chat in the Service SDK
To add Chat to your Android app, create a configuration object that points to your org and then create a Chat UI client.

Before starting, make sure that you’ve already:

• Set up your console to work with Chat. See Org Setup for Chat in Lightning Experience with a Guided Flow.

• Installed the SDK. See Install the Service SDK for Android.

To set up Chat with the default UI, create a configuration object that points to your org and then start a chat session. If you prefer to
build your own user interface, see Build Your Own UI with the Chat Core API.

1. Specify your Chat org settings.

In Java:

public static final String ORG_ID = "YOUR_ORG_ID";
public static final String DEPLOYMENT_ID = "YOUR_DEPLOYMENT_ID";
public static final String BUTTON_ID = "YOUR_BUTTON_ID";
public static final String LIVE_AGENT_POD = "YOUR_LAC_ORG_URL";

// e.g. "d.la.salesforce.com"

51

Quick Setup: Chat in the Service SDKEmbedded Service SDK for Android Developer Guide



In Kotlin:

val ORG_ID = "YOUR_ORG_ID"
val DEPLOYMENT_ID = "YOUR_DEPLOYMENT_ID"
val BUTTON_ID = "YOUR_BUTTON_ID"
val LIVE_AGENT_POD = "YOUR_LAC_ORG_URL"

// e.g. "d.la.salesforce.com"

Note:  You can get the required parameters from your Salesforce org. If your Salesforce admin hasn’t set up Chat in Service
Cloud or you need more guidance, see Org Setup for Chat in Lightning Experience with a Guided Flow.

2. Create a ChatConfiguration object using your org settings.

In Java:

// Create a core configuration instance
ChatConfiguration chatConfiguration =
new ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD)
.build();

In Kotlin:

// Create a core configuration instance
val chatConfiguration =
ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD)
.build()

Tip:  You can use the ChatConfiguration.Builder class to configure other behaviors, such as how to handle the
pre-chat view (see Show Pre-Chat Fields to User) and how to specify the name of the visitor speaking with the agent (use the
visitorName  method).

3. Configure and launch a chat session using ChatUI, ChatUIConfiguration, and ChatUIClient.

In Java:

// Create a UI configuration instance from a core config object
// and start session!
ChatUI.configure(ChatUIConfiguration.create(chatConfiguration))
.createClient(getApplicationContext())
.onResult(new Async.ResultHandler<ChatUIClient>() {

@Override public void handleResult (Async<?> operation,
ChatUIClient chatUIClient) {

chatUIClient.startChatSession(MainActivity.this);
}

});

In Kotlin:

// Create a UI configuration instance from a core config object
// and start session!
ChatUI.configure(ChatUIConfiguration.create(chatConfiguration))
.createClient(applicationContext)
.onResult { _,
chatUIClient -> chatUIClient.startChatSession(this@MainActivity)

}

52

Quick Setup: Chat in the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUI.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIClient.html


Warning:  Don't create more than 1 instance of ChatUIClient. The system returns an Async error if there is already
an active instance. The SDK only supports 1 session at a time per device. Wait until the chat session ends before attempting
to start a new session.

When calling startChatSession, pass the context for the Activity  that you want to show the chat UI on top of. The chat
session starts minimized and the user can tap the thumbnail to go full screen. If you want the session to start in full-screen mode,
call defaultToMinimized(false)  on the builder.

Note:  When the minimized view is visible, it displays the number of unread messages. This value represents the total number
of bot, agent, and system messages that are unread.

By default, the user's queue position is shown while the user waits for an agent. You can change this information from a position
number to an estimated wait time using the queueStyle build method and specifying QueueStyle.EstimatedWaitTime.
When using the estimated wait time, you can set the minimum (minimumWaitTime) and maximum (maximumWaitTime)
wait time values. If the wait time exceeds the maximum value, a generic message appears, which you can customize on page 161
(using the customizable chat strings). To understand the algorithm used for the estimated wait time, see the estimated wait time
documentation in the Chat REST API Developer Guide. To hide queue information entirely, use a queue style of None.

Sample alternate configuration in Java:

ChatUIConfiguration uiConfig = new ChatUIConfiguration.Builder()
.chatConfiguration(chatConfiguration)
.queueStyle(QueueStyle.EstimatedWaitTime) // Use estimated wait time
.defaultToMinimized(false) // Start in full-screen mode
.build();

Sample alternate configuration in Kotlin:

val uiConfig = ChatUIConfiguration.Builder()
.chatConfiguration(chatConfiguration)
.queueStyle(QueueStyle.EstimatedWaitTime) // Use estimated wait time
.defaultToMinimized(false) // Start in full-screen mode
.build()

4. (Optional) Customize the interface.

You can customize the colors, strings, and other aspects of the interface. You can also localize the strings into other languages.

5. (Optional) Add listeners for state changes or events.

You can add listeners for state changes and events during a chat session and respond accordingly. For instance, when the client
ends a session, you can display a dialog to the user. See Listen for State Changes and Events.

Warning:  If you use an incorrect button ID in your ChatConfiguration, the chat fails and your
SessionStateListener reports a ChatEndReason of NetworkError.

When a session launches, it appears minimized.

53

Quick Setup: Chat in the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#queueStyle(com.salesforce.android.chat.ui.model.QueueStyle)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#minimumWaitTime(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#maximumWaitTime(int)
https://developer.salesforce.com/docs/atlas.en-us.230.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_estimated_wait_time.htm
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionStateListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEndReason.html


The user can tap the session to make it full screen and begin a conversation with an agent.

54

Quick Setup: Chat in the Service SDKEmbedded Service SDK for Android Developer Guide



Note:  When the app is in the background, the SDK ensures that the session remains open. A timeout should only occur when
there is a connection issue, the agent closes the session, or the app is removed from memory.

Use Einstein Bots with Chat
With Einstein Bots, you can complement your chat support experience with a smart, automated system that saves your agents time and
keeps your customers happy. Once you've set up Einstein Bots in your org, the SDK automatically begins the chat experience using your
bot. You can design your bot to transfer to an agent at any point.

Before you can use Einstein Bots in your mobile app, enable and build a bot in your org. To learn more, see Einstein Bots in Salesforce
Help. In broad strokes, you must enable Einstein Bots, deploy the bot to your channel, and activate the bot. If you want to learn about
building a more robust bot, see the Einstein Bots Developer Cookbook.

Once you've set up your bot and assigned it to your chat button, a chat session automatically starts out as a bot. The menu options,
choice buttons, and persistent footer menu that you designed for your bot all appear from within the mobile chat session. These features
give your customers direct ways to get what they need—fast.

55

Use Einstein Bots with ChatEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/articleView?id=bots_service_intro.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_enable.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_deploy_to_channels.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_activate_bot.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.230.0.bot_cookbook.meta/bot_cookbook/bot_cookbook_overview.htm


You do have a few ways you can fine-tune the bot from the SDK.

DetailsFeature Area

Configure the bot avatar that displays during a session with a bot.
To do this, add your Drawable  to the

Einstein Bot Avatar

ChatUIConfiguration builder using the
chatBotAvatar method.

final ChatUIConfiguration.Builder
uiConfigBuilder =
new ChatUIConfiguration.Builder();

uiConfigBuilder.chatBotAvatar(R.drawable.my_chatbot_avatar);
uiConfigBuilder.build();

Configure the banner that displays during a session with a bot. To
do this, add your Layout to the ChatUIConfiguration
builder using the enableChatBotBanner method.

final ChatUIConfiguration.Builder
uiConfigBuilder =

Einstein Bot Banner

new ChatUIConfiguration.Builder();
uiConfigBuilder.enableChatBotBanner(R.layout.my_chatbot_banner);
uiConfigBuilder.build();

Display Knowledge Article Previews in Chat
By implementing ChatKnowledgeArticlePreviewDataProvider  and
ChatKnowledgeArticlePreviewClickListener, you can display Knowledge article previews in a chat session and then
show the article details when the user taps on the preview.

56

Display Knowledge Article Previews in ChatEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#chatBotAvatar(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#enableChatBotBanner(int)


Before implementing this feature, you should be familiar with creating a KnowledgeClient instance and fetching articles. To learn
more, see Article Fetching with the Knowledge Core API.

1. Create a ChatKnowledgeArticlePreviewDataProvider implementation to get data about knowledge articles. Within
the onPreviewDataRequested  method, call the ChatKnowledgeArticlePreviewDataHelper object with the
article title and summary.

public class ArticlePreviewDataProvider implements ChatKnowledgeArticlePreviewDataProvider
{
private KnowledgeClient mKnowledgeClient;

ArticlePreviewDataProvider (@NonNull KnowledgeClient knowledgeClient) {
mKnowledgeClient = knowledgeClient;

}

@Override
public boolean onPreviewDataRequested(final String articleIdOrTitle,
final ChatKnowledgeArticlePreviewDataHelper helper) {

// Request info about the Knowledge article
ArticleDetailRequest articleDetailRequest =
ArticleDetailRequest.builder(articleIdOrTitle).build();

mKnowledgeClient.submit(articleDetailRequest)
.onResult(new Async.ResultHandler<ArticleDetails>() {

@Override
public void handleResult(Async<?> operation, @NonNull ArticleDetails result) {

// Pass resulting information about article to the data helper object

57

Display Knowledge Article Previews in ChatEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatKnowledgeArticlePreviewDataProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatKnowledgeArticlePreviewDataHelper.html


helper.onPreviewDataReceived(result.getTitle(), result.getSummary());
}

}).onComplete(new Async.CompletionHandler() {
@Override
public void handleComplete(Async<?> operation) {
// Handle completion

}
}).onError(new Async.ErrorHandler() {
@Override
public void handleError(Async<?> operation, @NonNull Throwable throwable) {
// Pass null info to the data helper object when there is an error
helper.onPreviewDataReceived(null, null);

}
});
return true;

}
}

2. Create a ChatKnowledgeArticlePreviewClickListener implementation to handle when the user taps the link.
Within the onClick  method, show the article detail view.

public class ArticlePreviewClickListener
implements ChatKnowledgeArticlePreviewClickListener {

private KnowledgeUIClient mKnowledgeUIClient;

ArticlePreviewClickListener (@NonNull KnowledgeUIClient knowledgeUIClient) {
mKnowledgeUIClient = knowledgeUIClient;

}

@Override
public boolean onClick (final Context context, final String articleIdOrTitle) {

// Request info about the Knowledge article
ArticleDetailRequest articleDetailRequest =
ArticleDetailRequest.builder(articleIdOrTitle).build();

mKnowledgeUIClient.getKnowledgeCoreClient().submit(articleDetailRequest)
.onResult(new Async.ResultHandler<ArticleDetails>() {

@Override
public void handleResult(Async<?> operation, @NonNull ArticleDetails result) {

// Launch the article once we’ve got the result
mKnowledgeUIClient.launchArticle((Activity) context, result);

}
}).onComplete(new Async.CompletionHandler() {
@Override
public void handleComplete(Async<?> operation) {
// Handle completion

}
}).onError(new Async.ErrorHandler() {
@Override
public void handleError(Async<?> operation, @NonNull Throwable throwable) {
// TO DO: Handle error

58

Display Knowledge Article Previews in ChatEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatKnowledgeArticlePreviewClickListener.html


}
});
return true;

}
}

3. When you create the ChatUIConfiguration, pass along enough information to support knowledge article previews.

Use the knowledgeCommunityUrl  method to pass info about the Experience Cloud site URL; use the
knowledgeArticlePreviewDataProvider  method to pass the data provider implementation; use the
knowledgeArticlePreviewClickListener  method to pass the click listener implementation.

ChatUIConfiguration.Builder uiConfigurationBuilder = chatUIConfigurationBuilder
.chatConfiguration(chatConfigurationBuilder.build())
.enableHyperlinkPreview(true)
.knowledgeCommunityUrl(communityUrl)
.knowledgeArticlePreviewDataProvider(

new ArticlePreviewDataProvider(mKnowledgeClient))
.knowledgeArticlePreviewClickListener(

new ArticlePreviewClickListener(mKnowledgeUIClient));

Listen for State Changes and Events
You can add listeners for state changes and events during a chat session and respond accordingly. For instance, when the client ends a
session, you can display a dialog to the user.

1. Create a SessionStateListener implementation to handle session state changes.

In Java:

public class MySessionStateListener implements SessionStateListener {

@Override public void onSessionStateChange (ChatSessionState state) {
if (state == ChatSessionState.Disconnected) {
// TODO: Handle the disconnected state change

}
}

@Override public void onSessionEnded (ChatEndReason endReason) {
if (endReason == ChatEndReason.EndedByAgent) {
// TODO: Show a UI telling the user that the agent ended the session

}
}

}

In Kotlin:

class MySessionStateListener: SessionStateListener {

override fun onSessionStateChange(state: ChatSessionState?) {
if (state == ChatSessionState.Disconnected) {
// TODO: Handle the disconnected state change

}
}

59

Listen for State Changes and EventsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionStateListener.html


override fun onSessionEnded(endReason: ChatEndReason?) {
if (endReason == ChatEndReason.EndedByAgent) {
// TODO: Show a UI telling the user that the agent ended the session

}
}

}

This implementation handles state changes (onSessionStateChange) and why the session ended (onSessionEnded).
For information on other session states and reasons for ending, see ChatSessionState and ChatEndReason.

2. Create a ChatEventListener implementation if you want to listen for additional events.

This listener isn’t required, but it can be used to listen for events such as: when an agent joins (agentJoined), when a message
is sent (processedOutgoingMessage), when a message is received (didReceiveMessage).

In Java:

public class MyEventListener implements ChatEventListener {
public void agentJoined (AgentInformation agentInformation) {

// Handle agent joined
}

public void processedOutgoingMessage (String message) {
// Handle outgoing message processed

}

public void didSelectMenuItem (ChatWindowMenu.MenuItem menuItem) {
// Handle chatbot menu selected

}

public void didSelectButtonItem (ChatWindowButtonMenu.Button buttonItem) {
// Handle chatbot button selected

}

public void didSelectFooterMenuItem (ChatFooterMenu.MenuItem footerMenuItem) {
// Handle chatboot footer menu selected

}

public void didReceiveMessage (ChatMessage chatMessage) {
// Handle received message

}

public void transferToButtonInitiated () {
// Handle transfer to agent

}

public void agentIsTyping (boolean isUserTyping) {
// Handle typing update

}
}

In Kotlin:

class MyEventListener : ChatEventListener {
override fun agentJoined(agentInformation: AgentInformation) {

// Handle agent joined

60

Listen for State Changes and EventsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatSessionState.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEndReason.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatEventListener.html


}

override fun processedOutgoingMessage(message: String) {
// Handle outgoing message processed

}

override fun didSelectMenuItem(menuItem: ChatWindowMenu.MenuItem) {
// Handle chatbot menu selected

}

override fun didSelectButtonItem(buttonItem: ChatWindowButtonMenu.Button) {
// Handle chatbot button selected

}

override fun didSelectFooterMenuItem(footerMenuItem: ChatFooterMenu.MenuItem) {
// Handle chatboot footer menu selected

}

override fun didReceiveMessage(chatMessage: ChatMessage) {
// Handle received message

}

override fun transferToButtonInitiated() {
// Handle transfer to agent

}

override fun agentIsTyping(isUserTyping: Boolean) {
// Handle typing update

}
}

3. Create a SessionInfoListener implementation if you want to get session information.

In Java:

public class MySessionInfoListener implements SessionInfoListener {

public void onSessionInfoReceived (ChatSessionInfo chatSessionInfo) {
// TO DO: Do something with the session ID
String sessionId = chatSessionInfo.getSessionId();

}

In Kotlin:

class MySessionInfoListener : SessionInfoListener {

override fun onSessionInfoReceived(chatSessionInfo: ChatSessionInfo) {
// TO DO: Do something with the session ID
val sessionId = chatSessionInfo.getSessionId()

}
}

4. Instantiate your listener instances from your Application  class.

61

Listen for State Changes and EventsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionInfoListener.html


In Java:

private MySessionStateListener mSessionStateListener;
private MyEventListener mEventListener;
private MySessionInfoListener mSessionInfoListener;

@Override public void onCreate () {
super.onCreate();
mSessionStateListener = new MySessionStateListener();
mEventListener = new MyEventListener();
mSessionInfoListener = new MySessionInfoListener();

}

public SessionStateListener getSessionStateListener () {
return mSessionStateListener;

}

public ChatEventListener getEventListener () {
return mEventListener;

}

public SessionInfoListener getSessionInfoListener () {
return mSessionInfoListener;

}

In Kotlin:

val mSessionStateListener = MySessionStateListener()
val mEventListener = MyEventListener()
val mSessionInfoListener = MySessionInfoListener()

Note:  It’s important to have the listener at the Application  scope to ensure that the session is trackable throughout
the lifetime of the application rather than just within an Activity.

5. When you configure and start a session, add the listeners that you implemented. Add the event listener (ChatEventListener)
to the chat UI configuration object. Add the session info listener (SessionInfoListener) and the session state listener
(SessionStateListener) to the chat UI client.

In Java:

// Create a UI configuration instance from a core instance
// and add our event listener
ChatUIConfiguration.Builder uiConfig = new ChatUIConfiguration.Builder()
.chatConfiguration(chatConfiguration)
.chatEventListener((MyApplication)getApplication()).getEventListener());

// Create a chat session and add our session listener
ChatUI.configure(uiConfig.build())
.createClient(getApplicationContext())
.onResult(new Async.ResultHandler<ChatUIClient>() {

@Override public void handleResult (Async<?> operation,
ChatUIClient chatUIClient) {

SessionStateListener sessionStateListener =
((MyApplication)getApplication()).getSessionStateListener();

chatUIClient.addSessionStateListener(sessionStateListener);

62

Listen for State Changes and EventsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatEventListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionInfoListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionStateListener.html


SessionInfoListener sessionInfoListener =
((MyApplication)getApplication()).getSessionInfoListener();

chatUIClient.addSessionInfoListener(sessionInfoListener);

chatUIClient.startChatSession(MainActivity.this);
}

});

In Kotlin:

// Create a UI configuration instance from a core instance
// and add our event listener
val uiConfig = ChatUIConfiguration.Builder()

.chatConfiguration(chatConfiguration)

.chatEventListener(mEventListener)

// Create a chat session and add our session listener
ChatUI.configure(uiConfig.build())

.createClient(applicationContext)

.onResult { operation, chatUIClient ->
chatUIClient.addSessionStateListener(mSessionStateListener)
chatUIClient.addSessionInfoListener(mSessionInfoListener)
chatUIClient.startChatSession(this@MainActivity)

}

Show Pre-Chat Fields to User
Before a chat session begins, you can request that the user enter pre-chat fields that are sent to the agent at the start of the session.

To create pre-chat fields in your app, instantiate ChatUserData objects during session configuration and then pass the pre-chat info
to your ChatConfiguration builder.

1. Create a ChatUserData-derived object for each pre-chat field. Use the subclass PreChatTextInputField for string fields,
the subclass PreChatPickListField for picklists, and you can directly use ChatUserData for fields that don't require
any user input at all. For fields that require user interaction, specify the display label and the label that the agent sees. You can also
specify other characteristics, such as whether the field is required and what type of text field it is. When building the input field
object, the first string is what the user sees on the device and the second string is what the agent sees in the transcript.

In Java:

// Some simple string fields
PreChatTextInputField firstName = new PreChatTextInputField.Builder()
.required(true)
.build("Please enter your first name", "First Name");
// First string in build() is what the user sees on the device,
// the second string is what the agent sees in the transcript...

PreChatTextInputField lastName = new PreChatTextInputField.Builder()
.required(true)
.build("Please enter your last name", "Last Name");

// An email field
PreChatTextInputField email = new PreChatTextInputField.Builder()
.required(true)
.inputType(EditorInfo.TYPE_TEXT_VARIATION_EMAIL_ADDRESS)

63

Show Pre-Chat Fields to UserEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatUserData.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatUserData.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/model/PreChatTextInputField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/model/PreChatPickListField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatUserData.html


.mapToChatTranscriptFieldName("Email__c")

.build("Please enter your email", "Email Address");

// A phone number field (that isn't displayed to agent)
PreChatTextInputField phoneNumber = new PreChatTextInputField.Builder()
.displayedToAgent(false)
.inputType(InputType.TYPE_CLASS_PHONE)
.build("Phone number (Agent can't see this)", "Phone");

// A read-only field
PreChatTextInputField subject = new PreChatTextInputField.Builder()
.readOnly(true)
.initialValue("Read-only case subject")
.build("Case Subject", "Subject");

// A long message field
PreChatTextInputField description = new PreChatTextInputField.Builder()
.inputType(EditorInfo.TYPE_TEXT_VARIATION_LONG_MESSAGE)
.maxValueLength(200)
.build("Please describe your problem", "Description");

// A picklist field
PreChatPickListField priority = new PreChatPickListField.Builder()
.required(true)
.addOption(new PreChatPickListField.Option("Low Priority", "Low"))
.addOption(new PreChatPickListField.Option("Medium Priority", "Medium"))
.addOption(new PreChatPickListField.Option("High Priority", "High"))
.addOption(new PreChatPickListField.Option("AHHHHHHHH!!!", "Critical"))
.build("Issue Priority", "Priority");

// You can also create hidden fields that the user doesn't see, but
// still gets passed along to the agent using ChatUserData...
ChatUserData hiddenField = new ChatUserData(
"Hidden Custom Data",
"The user doesn't see this information",
true);

In Kotlin:

// Some simple string fields
val firstName = PreChatTextInputField.Builder()

.required(true)

.build("Please enter your first name", "First Name")
// First string in build() is what the user sees on the device,
// the second string is what the agent sees in the transcript...

val lastName = PreChatTextInputField.Builder()
.required(true)
.build("Please enter your last name", "Last Name")

// An email field
val email = PreChatTextInputField.Builder()

.required(true)

.inputType(EditorInfo.TYPE_TEXT_VARIATION_EMAIL_ADDRESS)

.mapToChatTranscriptFieldName("Email__c")

.build("Please enter your email", "Email Address")

64

Show Pre-Chat Fields to UserEmbedded Service SDK for Android Developer Guide



// A phone number field (that isn't displayed to agent)
val phoneNumber = PreChatTextInputField.Builder()

.displayedToAgent(false)

.inputType(InputType.TYPE_CLASS_PHONE)

.build("Phone number (Agent can't see this)", "Phone")

// A read-only field
val subject = PreChatTextInputField.Builder()

.readOnly(true)

.initialValue("Read-only case subject")

.build("Case Subject", "Subject")

// A long message field
val description = PreChatTextInputField.Builder()

.inputType(EditorInfo.TYPE_TEXT_VARIATION_LONG_MESSAGE)

.maxValueLength(200)

.build("Please describe your problem", "Description")

// A picklist field
val priority = PreChatPickListField.Builder()

.required(true)

.addOption(PreChatPickListField.Option("Low Priority", "Low"))

.addOption(PreChatPickListField.Option("Medium Priority", "Medium"))

.addOption(PreChatPickListField.Option("High Priority", "High"))

.addOption(PreChatPickListField.Option("AHHHHHHHH!!!", "Critical"))

.build("Issue Priority", "Priority")

// You can also create hidden fields that the user doesn't see, but
// still gets passed along to the agent using ChatUserData...
val hiddenField = ChatUserData(

"Hidden Custom Data",
"The user doesn't see this information",
true)

2. (Optional) Create a list of ChatEntity objects to associate pre-chat fields with fields from a record in your org.

Pre-chat fields are always sent to the agent at the start of the session. But if you want to fill in fields of a particular record, instantiate
a ChatEntity for each Salesforce object (for example, Case  or Contact) and add a ChatEntityField for each field
association within that Salesforce object (for example, Subject  or LastName). After you've built your ChatEntity objects,
pass them to your ChatConfiguration builder using the chatEntities method.

To learn more, see Create or Update Salesforce Records from a Chat Session.

3. Pass the pre-chat info to your ChatConfiguration builder using the chatUserData method.

In Java:

// Create the chat configuration builder
final ChatConfiguration.Builder chatConfigurationBuilder =
new ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD);

// Add user data and entities
chatConfigurationBuilder
.chatUserData(firstName, lastName, email, priority,

65

Show Pre-Chat Fields to UserEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html#chatEntities(java.util.List%3Ccom.salesforce.android.chat.core.model.ChatEntity%3E)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html#chatUserData(com.salesforce.android.chat.core.model.ChatUserData...)


subject, description, phoneNumber, hiddenField);

// Build the chat configuration object
ChatConfiguration chatConfiguration = chatConfigurationBuilder.build();

In Kotlin:

// Create the chat configuration builder
val chatConfigurationBuilder =

ChatConfiguration.Builder(ORG_ID, BUTTON_ID,
DEPLOYMENT_ID, LIVE_AGENT_POD)

// Add user data and entities
chatConfigurationBuilder

.chatUserData(firstName, lastName, email, priority,
subject, description, phoneNumber, hiddenField)

// Build the chat configuration object
val chatConfiguration = chatConfigurationBuilder.build()

From here, you can start the chat session normally.

In Java:

// Create a UI configuration instance from a core config object
// and start session!
ChatUI.configure(ChatUIConfiguration.create(chatConfiguration))
.createClient(getApplicationContext())
.onResult(new Async.ResultHandler<ChatUIClient>() {

@Override public void handleResult (Async<?> operation,
ChatUIClient chatUIClient) {

chatUIClient.startChatSession(MainActivity.this);
}

});

In Kotlin:

// Create a UI configuration instance from a core config object
// and start session!
ChatUI.configure(ChatUIConfiguration.create(chatConfiguration))
.createClient(applicationContext)
.onResult { _,
chatUIClient -> chatUIClient.startChatSession(this@MainActivity)

}

With this code, the user sees the following pre-chat UI in their mobile app.

66

Show Pre-Chat Fields to UserEmbedded Service SDK for Android Developer Guide



And the agent sees the following UI from the console.

67

Show Pre-Chat Fields to UserEmbedded Service SDK for Android Developer Guide



Create or Update Salesforce Records from a Chat Session
When a chat session begins, you can create or find records within your org and pass this information to the agent. Using this technique,
your agent can immediately have all the context they need for an effective chat session.

Overview
Before reading these instructions, review Show Pre-Chat Fields to User to understand how to create pre-chat fields.

Pre-chat fields are always sent to the agent at the start of the session. But if you want to fill in fields of a particular record, instantiate a
ChatEntity for each Salesforce object (for example, Case  or Contact) and add a ChatEntityField for each field association
within that Salesforce object (for example, Subject  or LastName). After you've built your ChatEntity objects, pass them to
your ChatConfiguration builder using the chatEntities method.

Note:  Case creation does not currently work for Omni-Channel routing without a setup change to your org. To resolve this
problem, raise a ticket with Salesforce to ensure that Omni-Channel is enabled to create a Case in your org.

Basic Flow
This sample shows how to create the first and last name to a contact record in your org. This example doesn't involve user input, but
you can use PreChatTextInputField instead of ChatUserData to allow user input.

In Java:

// Create chat user data that doesn't require user interaction
ChatUserData firstNameData = new ChatUserData("FirstName", "Jane", true);
ChatUserData lastNameData = new ChatUserData("LastName", "Doe", true);

In Kotlin:

// Create chat user data that doesn't require user interacti
val firstNameData = ChatUserData("FirstName", "Jane", true)
val lastNameData = ChatUserData("LastName", "Doe", true)

The first argument is the field label that is displayed to the agent in the transcript. The second argument is the value. The third argument
is whether this value is displayed to the agent.

After you create your ChatUserData objects, create a ChatEntity for each Salesforce object that you want to associate these
values with. The ChatEntity object contains a ChatEntityField for each field association. When you build this
ChatEntityField object, pass in a reference to the associated ChatUserData object.

In this example, we create two ChatEntityField objects and one ChatEntity using those two objects.

In Java:

// Build chat entity fields
ChatEntityField firstNameField =
new ChatEntityField.Builder().doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("FirstName", firstNameData);
ChatEntityField lastNameField =
new ChatEntityField.Builder().doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("LastName", lastNameData);

68

Create or Update Salesforce Records from a Chat SessionEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html#chatEntities(java.util.List%3Ccom.salesforce.android.chat.core.model.ChatEntity%3E)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/model/PreChatTextInputField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatUserData.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatUserData.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatUserData.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html


// Build a chat entity object from those fields
// (to map user data to fields in a Salesforce record)
ChatEntity contactEntity = new ChatEntity.Builder()
.showOnCreate(true)
.addChatEntityField(firstNameField)
.addChatEntityField(lastNameField)
.build("Contact");

In Kotlin:

// Build chat entity fields
val firstNameField = ChatEntityField.Builder().doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("FirstName", firstNameData)
val lastNameField = ChatEntityField.Builder().doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("LastName", lastNameData)

// Build a chat entity object from those fields
// (to map user data to fields in a Salesforce record)
val contactEntity = ChatEntity.Builder()

.showOnCreate(true)

.addChatEntityField(firstNameField)

.addChatEntityField(lastNameField)

.build("Contact")

When creating the ChatEntityField object, you can specify whether to search for that field (doFind), whether the match must
be exact (isExactMatch), and whether to create a new record if not found (doCreate). When creating the ChatEntity object,
along with the name of the Salesforce object and the list of fields, you can specify whether the contact should pop up for the agent
upon creation (showOnCreate). See the reference documentation for ChatEntity and ChatEntityField. Also refer to Chat
REST API Data Types for the Entity  and EntityFieldsMaps  data types, which define the underlying functionality of these SDK
objects.

After you've built your ChatEntity objects, pass them to your ChatConfiguration builder using the chatEntities
method.

In Java:

// Create the chat configuration builder
final ChatConfiguration.Builder chatConfigurationBuilder =
new ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD);

// Add user data and entities
chatConfigurationBuilder
.chatUserData(firstNameData, lastNameData)
.chatEntities(contactEntity);

// Build the chat configuration object
ChatConfiguration chatConfiguration = chatConfigurationBuilder.build();

69

Create or Update Salesforce Records from a Chat SessionEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://developer.salesforce.com/docs/atlas.en-us.230.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm
https://developer.salesforce.com/docs/atlas.en-us.230.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html#chatEntities(java.util.List%3Ccom.salesforce.android.chat.core.model.ChatEntity%3E)


In Kotlin:

// Create the chat configuration builder
val chatConfigurationBuilder = ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD)

// Add user data and entities
chatConfigurationBuilder

.chatUserData(firstNameData, lastNameData)

.chatEntities(contactEntity)

// Build the chat configuration object
val chatConfiguration = chatConfigurationBuilder.build()

Example: This code sample adds FirstName, LastName, Email  to a Contact record and a Subject  field to a Case
record.

In Java:

// Create some hidden fields with specific values
ChatUserData firstNameData = new ChatUserData(
"FirstName", "Jane", true);

ChatUserData lastNameData = new ChatUserData(
"LastName", "Doe", true);

ChatUserData emailData = new ChatUserData(
"Email", "jane.doe@salesforce.com", true);

ChatUserData subjectData = new ChatUserData(
"Subject", "Chat Session", true);

// Map Subject to a field in a Case record
ChatEntity caseEntity = new ChatEntity.Builder()
.showOnCreate(true)
.linkToTranscriptField("Case")
.addChatEntityField(
new ChatEntityField.Builder()

.doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("Subject", subjectData))
.build("Case");

// Map FirstName, LastName, and Email to fields in a Contact record
ChatEntity contactEntity = new ChatEntity.Builder()
.showOnCreate(true)
.linkToTranscriptField("Contact")
.linkToAnotherSalesforceObject(caseEntity, "ContactId")
.addChatEntityField(
new ChatEntityField.Builder()

.doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("FirstName", firstNameData))
.addChatEntityField(
new ChatEntityField.Builder()

.doFind(true)

70

Create or Update Salesforce Records from a Chat SessionEmbedded Service SDK for Android Developer Guide



.isExactMatch(true)

.doCreate(true)

.build("LastName", lastNameData))
.addChatEntityField(
new ChatEntityField.Builder()

.doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("Email", emailData))
.build("Contact");

// Create the chat configuration builder
final ChatConfiguration.Builder chatConfigurationBuilder =
new ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD);

// Add user data and entities
chatConfigurationBuilder
.chatUserData(firstNameData, lastNameData, emailData, subjectData)
.chatEntities(caseEntity, contactEntity);

// Build the chat configuration object
ChatConfiguration chatConfiguration = chatConfigurationBuilder.build();

In Kotlin:

// Create chat user data that doesn't require user interaction
val firstNameData = ChatUserData(

"FirstName", "Jane", true)
val lastNameData = ChatUserData(

"LastName", "Doe", true)
val emailData = ChatUserData(

"Email", "jane.doe@salesforce.com", true)
val subjectData = ChatUserData(

"Subject", "Chat Session", true)

// Map Subject to a field in a Case record
val caseEntity = ChatEntity.Builder()

.showOnCreate(true)

.linkToTranscriptField("Case")

.addChatEntityField(
ChatEntityField.Builder()
.doFind(true)
.isExactMatch(true)
.doCreate(true)
.build("Subject", subjectData))

.build("Case")

// Map FirstName, LastName, and Email to fields in a Contact record
val contactEntity = ChatEntity.Builder()

.showOnCreate(true)

.linkToTranscriptField("Contact")

.linkToAnotherSalesforceObject(caseEntity, "ContactId")

.addChatEntityField(
ChatEntityField.Builder()

71

Create or Update Salesforce Records from a Chat SessionEmbedded Service SDK for Android Developer Guide



.doFind(true)

.isExactMatch(true)

.doCreate(true)

.build("FirstName", firstNameData))
.addChatEntityField(

ChatEntityField.Builder()
.doFind(true)
.isExactMatch(true)
.doCreate(true)
.build("LastName", lastNameData))

.addChatEntityField(
ChatEntityField.Builder()
.doFind(true)
.isExactMatch(true)
.doCreate(true)
.build("Email", emailData))

.build("Contact")

// Create the chat configuration builder
val chatConfigurationBuilder = ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD)

// Add user data and entities
chatConfigurationBuilder

.chatUserData(firstNameData, lastNameData, emailData, subjectData)

.chatEntities(caseEntity, contactEntity)

// Build the chat configuration object
val chatConfiguration = chatConfigurationBuilder.build()

Check Agent Availability
Before starting a session, you can check the availability of your chat agents and then provide your users with more accurate expectations.
For instance, when no agents are available, you can hide or disable the button to contact an agent

To check whether agents are available, create an AgentAvailabilityClient object and asynchronously check the
AvailabilityState status.

In Java:

// Build a configuration object
ChatConfiguration chatConfiguration =
new ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD)
.build();

// Create an agent availability client
Boolean requestEstimatedWaitTime = false; // Don’t request if we don’t plan to use it
AgentAvailabilityClient client = ChatCore.configureAgentAvailability(chatConfiguration,
requestEstimatedWaitTime);

// Check agent availability
client.check().onResult(new Async.ResultHandler<AvailabilityState>() {
@Override

72

Check Agent AvailabilityEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/AgentAvailabilityClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/AvailabilityState.html


public void handleResult (Async<?> async, @NonNull AvailabilityState state) {

switch (state.getStatus()) {
case AgentsAvailable: {
// TO DO: Handle the case where agents are available

// Optionally, use the estimatedWaitTime to
// show an estimated wait time until an agent
// is available. This value is only valid
// if you request it from the
// configureAgentAvailability call above.
// Estimate is returned in seconds.
Integer ewt = state.getEstimatedWaitTime();

break;
}
case NoAgentsAvailable: {
// TO DO: Handle the case where no agents are available
break;

}
case Unknown: {
break;

}
}

});

In Kotlin:

// Build a configuration object
val chatConfiguration = ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD).build()

// Create an agent availability client
val requestEstimatedWaitTime = false // Don’t request if we don’t plan to use it
val client = ChatCore.configureAgentAvailability(chatConfiguration, requestEstimatedWaitTime)

// Check agent availability
client.check().onResult(object: Async.ResultHandler<AvailabilityState> {
override fun handleResult(operation: Async<*>?, result: AvailabilityState) {
when (result.getStatus()) {
AvailabilityState.Status.AgentsAvailable -> {
// TO DO: Handle the case where agents are available

// Optionally, use the estimatedWaitTime to
// show an estimated wait time until an agent
// is available. This value is only valid
// if you request it from the
// configureAgentAvailability call above.
// Estimate is returned in seconds.
val ewt = result.getEstimatedWaitTime()

}
AvailabilityState.Status.NoAgentsAvailable -> {
// TO DO: Handle the case where no agents are available

}
}

73

Check Agent AvailabilityEmbedded Service SDK for Android Developer Guide



}
})

To understand the algorithm used for the estimated wait time, see the estimated wait time documentation in the Chat REST API Developer
Guide.

You can also use this API to get an updated Chat server before starting a session to determine whether a server has changed for your
pod. Call the getLiveAgentPod  method from the AvailabilityState object you get back from the
AgentAvailabilityClient. If the server has changed, update this configuration value in the future to prevent an unnecessary
round-trip request.

Transfer File to Agent
Give users the ability to transfer files during a chat so they can share information about their issues.

The agent can request that the user transfer a file by clicking the Attach File button from the Service Cloud Console.

See Transfer Files During a Chat in Salesforce Help for details about setting up this functionality in the Service Cloud Console.

With the default UI, the user sees a FILE TRANSFER REQUESTED message in the app and can then send a file using the camera button.

If you're using the default UI, no coding is necessary in your app to get this behavior.

However, if you're using the Core API on page 76, you must present your own file transfer UI based on file transfer events. Create a
FileTransferRequestListener and pass it to the ChatClient using the addFileTransferRequestListener
method. This listener gives you access to two events.

onFileTransferRequest
The SDK calls this method when an agent requests a file transfer. You're given a FileTransferAssistant object, which lets
you upload a file with the uploadFile  method.

onFileTransferStatusChanged
The SDK calls this method when the status of a file transfer has changed. You're given a FileTransferStatus enumerated
type that describes the status of the file transfer.

You can use the following code sample as a starting point for your listener implementation.

74

Transfer File to AgentEmbedded Service SDK for Android Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.230.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_estimated_wait_time.htm
https://developer.salesforce.com/docs/atlas.en-us.230.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_estimated_wait_time.htm
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/AvailabilityState.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/AgentAvailabilityClient.html
https://help.salesforce.com/apex/HTViewHelpDoc?id=live_agent_transfer_files.htm&language=en_US
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/FileTransferRequestListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatClient.html#addFileTransferRequestListener(com.salesforce.android.chat.core.FileTransferRequestListener)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/FileTransferAssistant.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/FileTransferStatus.html


In Java:

class MyFileTransferRequestListener implements FileTransferRequestListener {

private byte[] uploadFile = new byte[]; // TO DO: File to upload
private String fileType = "image/png"; // TO DO: File type

@Override
public void onFileTransferRequest (FileTransferAssistant fileTransferAssistant) {

// TO DO: Prompt user and read the file from storage

fileTransferAssistant.uploadFile(uploadFile, fileType);
}

@Override
public void onFileTransferStatusChanged (FileTransferStatus status) {

switch (status) {
case Completed:
// TO DO: File transfer completed
break;

case Canceled:
// TO DO: File transfer canceled
break;

case Failed:
// TO DO: File transfer failed
break;

case LocalError:
// TO DO: Local error with transfer
break;

case Requested:
// TO DO: File transfer requested
// NOTE: You'll also get a call to
// onFileTransferRequest during this state,
// where you can handle the request and
// then upload a file...
break;

}
}

}

In Kotlin:

class MyFileTransferRequestListener : FileTransferRequestListener {

var uploadFile = ByteArray(32768) // TO DO: File to upload
var fileType: String = "image/png" // TO DO: File type

override fun onFileTransferRequest(fileTransferAssistant: FileTransferAssistant?) {

// TO DO: Prompt user and read the file from storage

fileTransferAssistant?.uploadFile(uploadFile, fileType)
}

75

Transfer File to AgentEmbedded Service SDK for Android Developer Guide



override fun onFileTransferStatusChanged(status: FileTransferStatus?) {

when (status) {
FileTransferStatus.Completed -> {
// TO DO: File transfer completed

}
FileTransferStatus.Canceled -> {
// TO DO: File transfer canceled

}
FileTransferStatus.Failed -> {
// TO DO: File transfer failed

}
FileTransferStatus.LocalError -> {
// TO DO: Local error with transfer

}
FileTransferStatus.Requested -> {
// TO DO: File transfer requested
// NOTE: You'll also get a call to
// onFileTransferRequest during this state,
// where you can handle the request and
// then upload a file...

}
}

}
}

Block Sensitive Data in a Chat Session
To block sending sensitive data to agents, specify a regular expression in your org's setup. When the regular expression matches text in
the user's message, the matched text is replaced with customizable text before it leaves the device.

To learn more, see Block Sensitive Data in Chats.

Build Your Own UI with the Chat Core API
With the Chat Core API, you can access the functionality of Chat without a UI. This API is useful if you want to build your own UI and not
use the default.

Before starting, make sure that you’ve already:

• Set up Service Cloud to work with Chat. See Org Setup for Chat in Lightning Experience with a Guided Flow.

• Installed the SDK. See Install the Service SDK for Android.

These steps describe how to use the Chat Core API. To use the default UI, see Quick Setup: Chat in the Service SDK.

1. To listen for agent activity, create an AgentListener implementation.

From the agent listener, you can:

• Detect when an agent has joined using onAgentJoined(AgentInformation agentInformation).

• Detect when an agent is typing a message using onAgentIsTyping(boolean isAgentTyping).

• Receive an incoming message from an agent using onChatMessageReceived(ChatMessage chatMessage).

2. To listen for session state changes, create a SessionStateListener.

76

Block Sensitive Data in a Chat SessionEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/articleView?id=live_agent_block_sensitive_data.htm&language=en_US
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/AgentListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionStateListener.html


From a session state listener, you can:

• Detect when the session state changes using onSessionStateChange(ChatSessionState state). For example,
this method is useful for when the session disconnects (ChatSessionState.Disconnected).

• Detect when the session ends using onSessionEnded(ChatEndReason endReason). This method is useful to
know why a session ends and report the information to the user. For example, ChatEndReason.EndedByAgent  is passed
when the agent ends the session.

To learn more about using this listener, see Listen for State Changes and Events.

3. To listen for changes related to a user's position or estimated wait time in the agent queue, create a QueueListener.

When a user is trying to connect to an agent, you can monitor where the user is in the queue. The estimated wait time is returned
in minutes and the queue position is an integer value related to the overall agent capacity.

When using the queue position number, the queue position is 0 if the agent capacity is greater than or equal to the number of
customer requests. Otherwise, the position value represents how far the customer is from getting served by an agent.

q = max(n - c, 0)

Where:

• q is the queue position

• n is the position of the customer compared to all waiting customers

• c is the total capacity of all agents

For example, if the total capacity is 10, the first 10 waiting visitors have a position of 0, the 11th has a position of 1, the 12th has a
position of 2, and so on.

4. To listen for Einstein bot activity, create a ChatBotListener.

From a bot listener, you can:

• Detect when you receive a persistent footer menu from the Einstein bot with onChatFooterMenuReceived. A footer
menu is always accessible to the user and typically handles options that are not context-specific, such as "Transfer to agent."

• Detect when you receive menu options from the Einstein bot with onChatMenuReceived.

• Detect when you receive choice button options from the Einstein bot with onChatButtonMenuReceived.

5. Build a ChatConfiguration object as described in Quick Setup: Chat in the Service SDK.

In Java:

// Create a core configuration instance
ChatConfiguration chatConfiguration =
new ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD)
.build();

In Kotlin:

// Create a core configuration instance
val chatConfiguration =
ChatConfiguration.Builder(ORG_ID, BUTTON_ID,

DEPLOYMENT_ID, LIVE_AGENT_POD)
.build()

6. Create a ChatCore object with your chat configuration object.

77

Build Your Own UI with the Chat Core APIEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/QueueListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatCore.html


In Java:

ChatCore core = ChatCore.configure(chatConfiguration);

In Kotlin:

val core = ChatCore.configure(chatConfiguration)

7. Create a ChatClient, adding your listener objects.

Define ChatClient at the Application  scope to ensure that the session is trackable throughout the application's lifetime
rather than just within an Activity, for example.

In Java:

private @Nullable ChatClient mChatClient;

// ...

core.createClient(this)
.onResult(new Async.ResultHandler<ChatClient>() {
@Override public void handleResult (Async<?> operation,

@NonNull ChatClient chatClient) {
mChatClient = chatClient
.addSessionStateListener(myStateListener)
.addAgentListener(myAgentListener)
.addQueueListener(myQueueListener)
.addChatBotListener(myEinsteinBotListener);

}
});

In Kotlin:

var mChatClient: ChatClient? = null

// ...

core.createClient(this)
.onResult { operation, chatClient ->
mChatClient = chatClient
.addSessionStateListener(myStateListener)
.addAgentListener(myAgentListener)
.addQueueListener(myQueueListener)
.addChatBotListener(myEinsteinBotListener)

}

When you receive a chat client instance, a session has successfully started.

8. Perform session actions with the ChatClient object.

From the chat client object, you can perform the following functions:

• Tell the agent when the user is typing a message using setIsUserTyping(boolean isUserTyping).

• Send a message to the agent using sendChatMessage(String message).

• Handle file transfer activity using addFileTransferRequestListener(FileTransferRequestListener
fileTransferRequestListener). See Transfer File to Agent.

78

Build Your Own UI with the Chat Core APIEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatClient.html


• Handle Einstein bot responses with sendFooterMenuSelection, sendMenuSelection, and
sendButtonSelection.

• End the chat session using endChatSession().

Using Knowledge with the Service SDK

Add the Knowledge experience to your mobile app.

Knowledge in the Service SDK for Android

The Knowledge feature in the SDK gives you access to your org’s knowledge base directly from within your app.

Quick Setup: Knowledge in the Service SDK

To set up Knowledge in your Android app, create a configuration object that points to your knowledge base and then create a
Knowledge UI client.

Knowledge as an Authenticated User

In some scenarios, you may want knowledge base access for logged-in users only. You might even have different knowledge bases
for different user profiles. For these scenarios, you can use the authenticated Knowledge feature.

Add Knowledge View Additions

You can add more views, such as floating action buttons, that appear in your Knowledge activities by implementing
KnowledgeViewAddition. Adding views is handy if you want to give your users access to other features from your support
home screen. Use this technique to add action buttons to Case Management, Chat, SOS, or any other features.

Customize Knowledge Articles with JavaScript or CSS

Create a richer experience for your users by injecting custom JavaScript or CSS into your knowledge articles. For example, change
the style sheet for all your articles, or add introductory content to a subset of articles.

Cache and Encryption Behavior for Knowledge

Knowledge articles are cached when they're fetched. The cached data is encrypted using AES-256 encryption.

Cache Images for Offline Access

By default, articles are cached for offline access, but the associated images are not. However, you can use the
OfflineResourceConfig  class to cache image content.

Provide Images for Categories and Articles

By implementing the KnowledgeImageProvider, you can provide images for use with your Knowledge categories and
articles. Category images appear behind the category name when viewing a category list and they appear on the category description
view. Article images appear in article lists and at the top of the article detail view.

Article Fetching with the Knowledge Core API

If you want more control over the interface, you can work with the Knowledge Core API. This API lets you query your Experience
Cloud site for categories and articles and handle them as objects. You can then display the contents of these objects in your own
custom UI.

Show Knowledge Articles in a Web View

You can show an article using the ArticleWebView  class. Use this technique to show users specific content without requiring
them to browse for it.

Knowledge in the Service SDK for Android
The Knowledge feature in the SDK gives you access to your org’s knowledge base directly from within your app.

79

Using Knowledge with the Service SDKEmbedded Service SDK for Android Developer Guide



Once you point your app to your Experience Cloud site URL with the right category group and root data category, you can display your
knowledge base to your users.

From the knowledge home, a user can navigate through articles that are organized by category. Articles are also searchable from within
the app. When a user views an article, they can minimize it using the minimize button at the top right of the article so that they can
continue to navigate your app.

80

Knowledge in the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide



Once minimized, the user can drag the article thumbnail to any part of the screen to improve visibility of the currently showing view.

81

Knowledge in the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide



Tapping the X closes the article. Tap on any other part of the thumbnail to make it full screen again.

Once you've configured Knowledge to work within your app, customize the color branding and the strings of the interface by using our
UI Customization guidelines.

There are other ways to customize the Knowledge experience in your app. If you want to design your own UI, see our Knowledge Core
API to access knowledge content directly. You also have finer-grained control over how images are cached and displayed, using Cache
Images for Offline Access and Provide Images for Categories and Articles.

Quick Setup: Knowledge in the Service SDK
To set up Knowledge in your Android app, create a configuration object that points to your knowledge base and then create a Knowledge
UI client.

Before starting, make sure that you’ve already:

• Set up Service Cloud to work with Knowledge. To learn more, see Cloud Setup for Knowledge.

• Installed the SDK. To learn more, see Install the Service SDK for Android.

1. Specify the site URL, the data category group, and the root data category that you want to use as the starting point for the Knowledge
user experience.

In Java:

// Specify the Experience Cloud site url, category group, and root category
public static final String SITE_URL = "https://your-site-url";

82

Quick Setup: Knowledge in the Service SDKEmbedded Service SDK for Android Developer Guide



public static final String CATEGORY_GROUP = "your-category-group";
public static final String ROOT_CATEGORY = "your-root-category";

In Kotlin:

// Specify the site url, category group, and root category
val SITE_URL = "https://your-site-url"
val CATEGORY_GROUP = "your-category-group"
val ROOT_CATEGORY = "your-root-category"

Note:  You can get the required parameters from your Salesforce org. If your Salesforce admin hasn’t set up Knowledge in
Service Cloud or you need more guidance, see Cloud Setup for Knowledge.

2. Create a KnowledgeConfiguration object using the site URL.

In Java:

// Create a core configuration instance
KnowledgeConfiguration coreConfiguration =
KnowledgeConfiguration.create(SITE_URL);

In Kotlin:

// Create a core configuration instance
val coreConfiguration = KnowledgeConfiguration.create(SITE_URL)

Note:  By default, knowledge articles are cached locally but images are not cached. For guidance on setting up a configuration
that caches images, see Cache Images for Offline Access.

3. Create a KnowledgeUIConfiguration instance using the configuration object and the root category to use as the starting
place for the knowledge base.

In Java:

// Create a UI configuration instance from a core instance
KnowledgeUIConfiguration uiConfiguration =
KnowledgeUIConfiguration.create(coreConfiguration, CATEGORY_GROUP, ROOT_CATEGORY);

In Kotlin:

// Create a UI configuration instance from core instance
val uiConfiguration =
KnowledgeUIConfiguration.create(coreConfiguration, CATEGORY_GROUP, ROOT_CATEGORY)

4. (Optional) Provide images for categories and articles.

If you'd like to provide images for Knowledge categories and Knowledge articles, implement the KnowledgeImageProvider
interface and pass it to the KnowledgeUIConfiguration object.

In Java:

// Specify image provider
uiConfiguration.setImageProvider(new MyImageProvider());

In Kotlin:

// Specify image provider
uiConfiguration.setImageProvider(MyImageProvider())

83

Quick Setup: Knowledge in the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIConfiguration.html


Category images appear behind the category name when viewing a category list and they appear on the category description view.
Article images appear in article lists and at the top of the article detail view.

To learn more about KnowledgeImageProvider, see Provide Images for Categories and Articles.

5. (Optional) Customize the interface.

You can customize colors, strings, floating action buttons, and other aspects of the interface. You can also localize the strings into
other languages. To learn more about customizations, see SDK Customizations with the Service SDK for Android.

6. Create a KnowledgeUIClient instance, show the UI, and maintain a reference to this instance.

To start the Knowledge UI, call the static configure method, which creates a KnowledgeUI instance. From this instance,
create a client (asynchronously) with the createClient method. This asynchronous call gives you a KnowledgeUIClient
instance. You can start the UI using the launchHome method.

Note:  If you'd like to design your own UI and access Knowledge objects directly, see Article Fetching with the Knowledge
Core API. Alternatively, if you want to use the default UI but show a specific article, call the launchArticle  method on
the KnowledgeUIClient instance. This method requires an ArticleSummary instance, which you can get from the
Knowledge Core API on page 101.

Be sure to maintain a reference to the KnowledgeUIClient instance for as long as you want to use the Knowledge UI. You can
remove your reference to this instance using KnowledgeUIClient.OnCloseListener as shown in the code snippet.

In Java:

// Create a Knowledge UI instance
KnowledgeUI knowledgeUI = KnowledgeUI.configure(uiConfiguration);

// Create a client asynchronously
knowledgeUI.createClient(MainActivity.this)
.onResult(new Async.ResultHandler<KnowledgeUIClient>() {

@Override public void handleResult (Async<?> operation,
KnowledgeUIClient uiClient) {

// Maintain a reference to the UI client within your Application lifecycle
mKnowledgeUIClient = uiClient;

// Handle the close action
uiClient.addOnCloseListener(new KnowledgeUIClient.OnCloseListener() {

@Override public void onClose () {

// Clear reference to the Knowledge UI client
mKnowledgeUIClient = null;

}

});

// Launch the UI
uiClient.launchHome(MainActivity.this);

}
});

84

Quick Setup: Knowledge in the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUI.html#configure(com.salesforce.android.knowledge.ui.KnowledgeUIConfiguration)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUI.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUI.html#createClient(android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html#launchHome(android.app.Activity)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.OnCloseListener.html


In Kotlin:

// Create a Knowledge UI instance
val knowledgeUI = KnowledgeUI.configure(uiConfiguration)

// Create a client asynchronously
knowledgeUI.createClient(this@MainActivity)

.onResult { _, uiClient ->

// Maintain a reference to the UI client within your Application lifecycle
mKnowledgeUIClient = uiClient

// Handle the close action
uiClient.addOnCloseListener {

// Clear reference to the Knowledge UI client
mKnowledgeUIClient = null

}

// Launch the UI
uiClient.launchHome(this@MainActivity)

}

Make sure that you only call the launchHome method one time. If you call it multiple times, multiple UIs will appear.

85

Quick Setup: Knowledge in the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html#launchHome(android.app.Activity)


Example: In this example, call initKnowledge  to initialize the Knowledge experience, and call startKnowledge  to
launch the Knowledge experience.

In Java:

public class MainActivity extends Activity {

// You should normally maintain a reference to these instances
// within the Application lifecycle (rather than Activity lifecycle)...
// They are placed here just for this example...
KnowledgeUI mKnowledgeUI = null;
KnowledgeUIClient mKnowledgeUIClient = null;

// Specify the site url, category group, and root category
public static final String SITE_URL = "https://your-site-url";
public static final String CATEGORY_GROUP = "your-category-group";
public static final String ROOT_CATEGORY = "your-root-category";

// Call this method at init time...
private void initKnowledge() {
// Only initialize once
if (mKnowledgeUI == null) {

86

Quick Setup: Knowledge in the Service SDKEmbedded Service SDK for Android Developer Guide



// Create a core configuration instance
KnowledgeConfiguration coreConfiguration =

KnowledgeConfiguration.create(SITE_URL);

// Create a UI configuration instance from core instance
KnowledgeUIConfiguration uiConfiguration =

KnowledgeUIConfiguration.create(coreConfiguration,
CATEGORY_GROUP, ROOT_CATEGORY);

// Create a UI instance
mKnowledgeUI = KnowledgeUI.configure(uiConfiguration);

// Add the (optional) view addition
KnowledgeHomeViewAddition viewAddition = new KnowledgeHomeViewAddition();
mKnowledgeUI.viewAddition(viewAddition);

}
}

// Call this method when you want to show the Knowledge UI
private void startKnowledge() {
// Verify that we don't already have a UI running and that we've initialized
if (mKnowledgeUIClient == null && mKnowledgeUI != null) {

// Create a client asynchronously
KnowledgeUI.configure(uiConfiguration).createClient(MainActivity.this)
.onResult(new Async.ResultHandler<KnowledgeUIClient>() {

@Override public void handleResult (Async<?> operation,
KnowledgeUIClient uiClient) {

// Store reference to the Knowledge UI client
mKnowledgeUIClient = uiClient;

// Handle the close action
uiClient.addOnCloseListener(new KnowledgeUIClient.OnCloseListener() {

@Override public void onClose () {

// Clear reference to the Knowledge UI client
mKnowledgeUIClient = null;

}
});

// Launch the UI
uiClient.launchHome(MainActivity.this);

}
});

}
}

// The rest of the Activity code goes here...
}

87

Quick Setup: Knowledge in the Service SDKEmbedded Service SDK for Android Developer Guide



In Kotlin:

class MainActivity : Activity() {

// Specify the site url, category group, and root category
val SITE_URL = "https://your-site-url"
val CATEGORY_GROUP = "your-category-group"
val ROOT_CATEGORY = "your-root-category"

var mKnowledgeUI: KnowledgeUI? = null
var mKnowledgeUIClient:KnowledgeUIClient? = null

private fun initKnowledge() {
// Only initialize once
if (mKnowledgeUI == null) {

// Create a core configuration instance
val coreConfiguration = KnowledgeConfiguration.create(SITE_URL)

// Create a UI configuration instance from core instance
val uiConfiguration = KnowledgeUIConfiguration.create(coreConfiguration,

CATEGORY_GROUP,
ROOT_CATEGORY)

// Create a Knowledge UI instance
mKnowledgeUI = KnowledgeUI.configure(uiConfiguration)

}
}

private fun startKnowledge() {
// Verify that we don't already have a UI running and that we've initialized
if (mKnowledgeUIClient == null && mKnowledgeUI != null) {

// Create a client asynchronously
mKnowledgeUI!!.createClient(this@MainActivity)

.onResult { _, uiClient ->

// Maintain a reference to the UI client within your Application lifecycle

mKnowledgeUIClient = uiClient

// Handle the close action
uiClient.addOnCloseListener {

// Clear reference to the Knowledge UI client
mKnowledgeUIClient = null

}

// Launch the UI
uiClient.launchHome(this@MainActivity)

}
}

}

88

Quick Setup: Knowledge in the Service SDKEmbedded Service SDK for Android Developer Guide



// The rest of the Activity code goes here...
}

Knowledge as an Authenticated User
In some scenarios, you may want knowledge base access for logged-in users only. You might even have different knowledge bases for
different user profiles. For these scenarios, you can use the authenticated Knowledge feature.

Before starting, make sure that you’ve already:

• Set up Service Cloud to work with Knowledge. To learn more, see Cloud Setup for Knowledge.

• Installed the SDK. To learn more, see Install the Service SDK for Android.

When you activate the Knowledge interface for authenticated users, they see Knowledge content assigned to their user profile. If you
do not want to authenticate users and prefer to let them see Knowledge content accessible to guest users, see Quick Setup: Knowledge
in the Service SDK for instructions on accessing a public knowledge base.

Note:  When using Knowledge with authenticated users, be sure that your knowledge article types are visible (set to "Read") for
the desired user profile and that the knowledge articles belong to a channel that is accessible to that user. For more information,
see Knowledge Article Access and Create and Edit Articles in Salesforce Help.

1. Follow authentication instructions from Authentication with the Service SDK for Android.

2. Set up Knowledge as described in Quick Setup: Knowledge in the Service SDK.

Note:  If you don’t have an Experience Cloud site URL, you can use the instance URL you get back during the authentication
process in place of the site URL during configuration.

In addition to the normal setup process, be sure to build KnowledgeConfiguration using the withAuthConfig  method.

In Java:

KnowledgeConfiguration.Builder builder =
KnowledgeConfiguration.builder(siteUrl).withAuthConfig(myAuthProvider, myAuthUser);

In Kotlin:

val builder = KnowledgeConfiguration.builder(siteUrl)
.withAuthConfig(myAuthProvider, myAuthUser)

After you launch the UI as an authenticated user, the Knowledge home screen appears, showing articles available to users for the
applicable user profile.

Add Knowledge View Additions
You can add more views, such as floating action buttons, that appear in your Knowledge activities by implementing
KnowledgeViewAddition. Adding views is handy if you want to give your users access to other features from your support home
screen. Use this technique to add action buttons to Case Management, Chat, SOS, or any other features.

Before starting, make sure that you understand how to set up and use Knowledge in your app. See Quick Setup: Knowledge in the Service
SDK.

1. Implement the KnowledgeViewAddition interface to define the behavior of the view addition.

a. Implement the visibleFor method to specify in which scenes your view appears.

To make the view visible for a particular scene, return true. Otherwise, return false. The following scenes are available.

89

Knowledge as an Authenticated UserEmbedded Service SDK for Android Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_setup_users.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=knowledge_article_create.htm&language=en_US
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#visibleFor(com.salesforce.android.knowledge.ui.KnowledgeScene)


DescriptionScene

Shows the main category list. Visible when the Knowledge UI
first launches.

SCENE_HOME

Shows an expanded list of articles within a category.SCENE_ARTICLE_LIST

Shows the category’s top articles and a list of subcategoriesSCENE_CATEGORY_DETAIL

Shows the contents of a specific article.SCENE_ARTICLE_DETAIL

Allows a user to search for articles.SCENE_SEARCH

Transition scene used when starting or leaving the Knowledge
UI.

SCENE_NONE

For example, the following code shows your view on the home screen and the category detail page.

In Java:

@Override public boolean visibleFor (KnowledgeScene scene) {
return (scene == SCENE_HOME || scene == SCENE_CATEGORY_DETAIL);

}

In Kotlin:

override fun visibleFor(scene: KnowledgeScene): Boolean {
return (scene == KnowledgeScene.SCENE_HOME || scene ==

KnowledgeScene.SCENE_CATEGORY_DETAIL)
}

b. Implement createView to create the view to overlay the Knowledge UI.

The returned view is added as a new content view on the Knowledge Activity.

In Java:

@NonNull @Override public View createView (ViewGroup viewGroup, Context context) {
return LayoutInflater.from(context).inflate(R.layout.my_addition, viewGroup, false);

}

In Kotlin:

override fun createView(viewGroup: ViewGroup, context: Context): View {
return LayoutInflater.from(context).inflate(R.layout.my_addition, viewGroup, false)

}

Note:  If you're using LayoutInflator  for your KnowledgeViewAddition implementation, be sure to specify
the third argument (boolean attachToRoot).

c. Implement initView to initialize the view returned from createView.

The visible  argument specifies whether the view is visible or hidden.

In Java:

@Override public void initView (View view, boolean visible) {
view.setOnClickListener(new View.OnClickListener() {

90

Add Knowledge View AdditionsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#createView(android.view.ViewGroup%2C%20android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#initView(android.view.View%2C%20boolean)


@Override public void onClick (View view) {
Toast.makeText(view.getContext(),

"You tapped the view addition",
Toast.LENGTH_SHORT).show();

}
});

if (!visible) {
view.setScaleX(0);
view.setScaleY(0);

}
}

In Kotlin:

override fun initView(view: View, visible: Boolean) {
view.setOnClickListener(object: View.OnClickListener {

override fun onClick(p0: View?) {
Toast.makeText(view.context,

"You tapped the view addition",
Toast.LENGTH_SHORT).show()

}
})

if (!visible) {
view.scaleX = 0f
view.scaleY = 0f

}
}

d. Implement getEnterAnimator and getExitAnimator to create the animators to use when entering and exiting the
view.

In Java:

@NonNull @Override public Animator getEnterAnimator (View view) {
AnimatorSet set = new AnimatorSet();
set.playTogether(

ObjectAnimator.ofFloat(view, View.SCALE_X, 1),
ObjectAnimator.ofFloat(view, View.SCALE_Y, 1)

);
return set;

}

@NonNull @Override public Animator getExitAnimator (View view) {
AnimatorSet set = new AnimatorSet();
set.playTogether(

ObjectAnimator.ofFloat(view, View.SCALE_X, 0),
ObjectAnimator.ofFloat(view, View.SCALE_Y, 0)

);
return set;

}

91

Add Knowledge View AdditionsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#getEnterAnimator(android.view.View)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#getExitAnimator(android.view.View)


In Kotlin:

override fun getEnterAnimator(view: View): Animator {
val set = AnimatorSet()
set.playTogether(
ObjectAnimator.ofFloat(view, View.SCALE_X, 1f),
ObjectAnimator.ofFloat(view, View.SCALE_Y, 1f)

)
return set

}

override fun getExitAnimator(view: View): Animator {
val set = AnimatorSet()
set.playTogether(
ObjectAnimator.ofFloat(view, View.SCALE_X, 0f),
ObjectAnimator.ofFloat(view, View.SCALE_Y, 0f)

)
return set

}

Note:  Do not start the animator from within these methods.

2. Add your view addition to the KnowledgeUI instance.

In Java:

mKnowledgeUI.viewAddition(new MyViewAddition());

In Kotlin:

mKnowledgeUI?.viewAddition(MyViewAddition())

92

Add Knowledge View AdditionsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUI.html


Example: To see an example that shows you how to set up a fully featured knowledge support home experience, check out our
Hello World sample app.

Customize Knowledge Articles with JavaScript or CSS
Create a richer experience for your users by injecting custom JavaScript or CSS into your knowledge articles. For example, change the
style sheet for all your articles, or add introductory content to a subset of articles.

JavaScript and CSS injection can be done during the Knowledge setup process. Before starting, make sure that you understand how to
set up and use Knowledge in your app. See Quick Setup: Knowledge in the Service SDK.

1. Implement the KnowledgeJsProvider interface if you want to inject JavaScript in your articles.

The getJsForArticle  method provides you with an ArticleSummary object. Use this article summary to determine
whether to inject JavaScript into an article.

2. Implement the KnowledgeCssProvider interface if you want to inject CSS in your articles.

The getCssForArticle  method provides you with an ArticleSummary object. Use this article summary to determine
whether to inject CSS into an article. Refer to the KnowledgeCssProvider Javadoc for tips on which selectors are relevant to
knowledge articles.

3. When creating your KnowledgeUIConfiguration instance, call setJsProvider  or setCssProvider  with an
instance to your provider implementation.

93

Customize Knowledge Articles with JavaScript or CSSEmbedded Service SDK for Android Developer Guide

https://github.com/forcedotcom/ServiceSDK-Android/tree/master/Examples/SnapinsSDKExample
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeJsProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeCssProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeCssProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIConfiguration.html


In Java:

// Create a UI configuration instance from a core instance
KnowledgeUIConfiguration uiConfiguration =
KnowledgeUIConfiguration.create(coreConfiguration, CATEGORY_GROUP, ROOT_CATEGORY);

// Add your JS provider
uiConfiguration.setJsProvider(myJsProvider);

// Add your CSS provider
uiConfiguration.setCssProvider(myCssProvider);

In Kotlin:

// Create a UI configuration instance from core instance
val uiConfiguration =
KnowledgeUIConfiguration.create(coreConfiguration, CATEGORY_GROUP, ROOT_CATEGORY)

// Add your JS provider
uiConfiguration.setJsProvider(myJsProvider)

// Add your CSS provider
uiConfiguration.setCssProvider(myCssProvider)

Example: This example injects custom CSS to all articles and injects custom JavaScript only to articles whose title contains "San
Francisco." You can apply these concepts to your own use cases.

Let's run this example on the following articles.

94

Customize Knowledge Articles with JavaScript or CSSEmbedded Service SDK for Android Developer Guide



We want to make 2 changes to the articles.

• A global CSS change to give all articles a vivid green background and thick blue border.

• A JavaScript change to insert a bright pink paragraph at the top of all articles whose title includes "San Francisco."

After the example runs, you see the following changes.

95

Customize Knowledge Articles with JavaScript or CSSEmbedded Service SDK for Android Developer Guide



To implement the green background color and thick blue border, we use the following CSS in a file named
custom_global_style.css.

body {
background: #00ff00;
border: thick solid #0000ff;

}

Let's create a KnowledgeCssProvider implementation to inject our custom CSS into every article.

public class CssProvider implements KnowledgeCssProvider {

private final Context mContext;

public CssProvider (Context context) {
mContext = context;

}

@Override public String getCssForArticle (ArticleSummary articleSummary) {

// Grab our custom CSS that applies to all articles...

96

Customize Knowledge Articles with JavaScript or CSSEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeCssProvider.html


String globalCss = AssetUtil.readAssetFile(mContext, "custom_global_style.css");

return globalCss;
}

}

To add the introductory paragraph to articles, we use the following JavaScript in a file named
custom_sanfran_javascript.js.

var testNode = document.createElement("p");
testNode.innerText = "San Francisco Article, added by JavaScript";
testNode.style.color = "#000000"
testNode.style.background = "#f76b95"
testNode.style.padding = "5pt"
testNode.style.textAlign = "center"
document.body.insertBefore(testNode, document.body.firstChild);

This time, let's inspect what we receive in the article summary so that our KnowledgeJsProvider implementation only
injects JavaScript to articles whose title contains "San Francisco." (You can use the same technique to inspect the article summary
in your KnowledgeCssProvider implementation.)

public class JsProvider implements KnowledgeJsProvider {

private final Context mContext;

public JsProvider (Context context) {
mContext = context;

}

@Override public String getJsForArticle (ArticleSummary articleSummary) {
String articleJs = "";

// Does the article title contain "San Francisco"?
if (articleSummary.getTitle().contains("San Francisco")) {

// If so, then grab our custom JavaScript...
articleJs = AssetUtil.readAssetFile(mContext, "custom_sanfran_javascript.js");

}
return articleJs;

}
}

Now we're ready to add our providers when we set up Knowledge.

// Create a core configuration instance
KnowledgeConfiguration coreConfiguration =
KnowledgeConfiguration.create(SITE_URL);

// Create a UI configuration instance from a core instance
KnowledgeUIConfiguration uiConfiguration =
KnowledgeUIConfiguration.create(coreConfiguration, CATEGORY_GROUP, ROOT_CATEGORY);

// Add your JS provider
uiConfiguration.setJsProvider(new JsProvider(this));

97

Customize Knowledge Articles with JavaScript or CSSEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeJsProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeCssProvider.html


// Add your CSS provider
uiConfiguration.setCssProvider(new CssProvider(this));

And that's it! This app now injects custom CSS and JavaScript into knowledge articles.

Cache and Encryption Behavior for Knowledge
Knowledge articles are cached when they're fetched. The cached data is encrypted using AES-256 encryption.

To delete locally cached content, call deleteCache on the KnowledgeCore object.

In Java:

KnowledgeCore.deleteCache(myContext);

In Kotlin:

KnowledgeCore.deleteCache(myContext)

Note:  Article images are not cached by default. To cache images, see Cache Images for Offline Access. Cached images are
encrypted.

Cache Images for Offline Access
By default, articles are cached for offline access, but the associated images are not. However, you can use the
OfflineResourceConfig  class to cache image content.

You can store and retrieve cached images by creating an OfflineResourceConfig instance and passing it to the
KnowledgeConfiguration instance during the setup process. See Quick Setup: Knowledge in the Service SDK for setup instructions
using the default UI and Article Fetching with the Knowledge Core API for direct access to knowledge objects.

The OfflineResourceConfig class allows you to specify the maximum cache size and the number of concurrent requests using
the builder design pattern.

In Java:

OfflineResourceConfig offlineConfig = OfflineResourceConfig.Builder()
.maxSize(60 * 1024 * 1024) // 60 MB cache
.concurrentRequests(8) // 8 concurrent requests
.build();

In Kotlin:

var offlineConfig = OfflineResourceConfig.Builder()
.maxSize(60 * 1024 * 1024) // 60 MB cache
.concurrentRequests(8) // 8 concurrent requests
.build()

Once you've instantiated an OfflineResourceConfig, you can pass that instance to KnowledgeConfiguration using
the offlineResourceConfig method during construction.

In Java:

KnowledgeConfiguration.builder(SITE_URL).offlineResourceConfig(offlineConfig).build();

98

Cache and Encryption Behavior for KnowledgeEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeCore.html#deleteCache(android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeCore.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/offline/OfflineResourceConfig.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/offline/OfflineResourceConfig.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/offline/OfflineResourceConfig.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.Builder.html#offlineResourceConfig(com.salesforce.android.knowledge.core.offline.OfflineResourceConfig)


In Kotlin:

KnowledgeConfiguration.builder(SITE_URL).offlineResourceConfig(offlineConfig).build()

From here, you can proceed with the instructions for setting up the default Knowledge UI (Quick Setup: Knowledge in the Service SDK)
or for direct access to the Knowledge objects (Article Fetching with the Knowledge Core API).

When using OfflineResourceConfig, images are automatically cached locally. When the cache reaches its max size, oldest
content is removed.

To delete existing cached images, use KnowledgeClient.getResourceCacher().getCache().clear().

Provide Images for Categories and Articles
By implementing the KnowledgeImageProvider, you can provide images for use with your Knowledge categories and articles.
Category images appear behind the category name when viewing a category list and they appear on the category description view.
Article images appear in article lists and at the top of the article detail view.

The KnowledgeImageProvider interface has one method for article images and one method for category images:

public interface KnowledgeImageProvider {
Drawable getImageForArticle (Context context, ArticleSummary article);
Drawable getImageForDataCategory (Context context, DataCategorySummary dataCategory);

}

The SDK calls these methods whenever it attempts to load an image for a given data category or article. getImageForArticle
passes you an ArticleSummary object and getImageForDataCategory passes you a DataCategorySummary object.

You'll need a way to correlate articles and categories with images. Data categories can be uniquely identified with a
DataCategorySummary object by using getName to get the category name (for example, "Asia"). Articles can be uniquely
identified with an ArticleSummary object by using getArticleId to get the article ID (for example, "000005256").

Once you've implemented the KnowledgeImageProvider interface, pass an instance of your image provider class to the Knowledge
UI configuration object.

In Java:

KnowledgeUIConfiguration uiConfiguration =
KnowledgeUIConfiguration.create(coreConfiguration, categoryGroup, rootCategory)
.setImageProvider(new MyImageProvider());

In Kotlin:

val uiConfiguration = KnowledgeUIConfiguration
.create(coreConfiguration, categoryGroup, rootCategory)
.setImageProvider(MyImageProvider())

Refer to Quick Setup: Knowledge in the Service SDK for more information about starting the Knowledge interface.

Example: Since the KnowledgeImageProvider interface does not specify how the images are sourced, this example
illustrates how to load them from disk as project assets. For performance reasons, this example uses Android's LruCache  API
for efficient loading of assets for future requests. This method helps avoid high UI latency and excess memory consumption.

/**
* KnowledgeImageProvider implementation that loads images used by Knowledge UI.
* This implementation assumes that images are stored as PNG files in the assets
* directory of the project. Data Category images are stored in the "categories"
* subfolder with the category name as the file name. Article images are stored

99

Provide Images for Categories and ArticlesEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/offline/OfflineResourceConfig.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html#getImageForArticle(android.content.Context,%20com.salesforce.android.knowledge.core.model.ArticleSummary)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html#getImageForDataCategory(android.content.Context,%20com.salesforce.android.knowledge.core.model.DataCategorySummary)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/DataCategorySummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/DataCategorySummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/DataCategorySummary.html#getName()
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html#getArticleId()
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html


* in the "articles" subfolder with the article number as the file name.
*/
public class ImageProvider implements KnowledgeImageProvider {

private final LruCache<String, BitmapDrawable> mCategoryImageCache;
private final LruCache<String, BitmapDrawable> mArticleImageCache;

ImageProvider () {
// The maximum amount of memory available to the application in kilobytes.
final int maxMemory = ((int) Runtime.getRuntime().maxMemory() / 1024);

// Use 1/8th the maximum available memory to cache category images. Article
// images can use less because we don't display as many of them at once.
final int categoryCacheSize = maxMemory / 8;
final int articleCacheSize = maxMemory / 16;

// Create an LruCache that is bounded by the maximum available amount of memory.
mCategoryImageCache = makeCache(categoryCacheSize);
mArticleImageCache = makeCache(articleCacheSize);

}

//-----------------------------------------------------------------------------
// KnowledgeImageProvider API
//-----------------------------------------------------------------------------

@Override public Drawable getImageForArticle (Context context,
ArticleSummary article) {

String name = "articles/" + article.getArticleNumber() + ".png";
return getDrawable(context, name, mArticleImageCache);

}

@Override
public Drawable getImageForDataCategory (Context context,

DataCategorySummary dataCategory) {
String name = "categories/" + dataCategory.getName().toLowerCase() + ".png";
return getDrawable(context, name, mCategoryImageCache);

}

//--------------------------------------------------------------------------------
// Helpers
//--------------------------------------------------------------------------------

private static LruCache<String, BitmapDrawable> makeCache (int size) {
return new LruCache<String, BitmapDrawable>(size) {
@Override protected int sizeOf (String key, BitmapDrawable drawable) {
return drawable.getBitmap().getByteCount() / 1024;

}
};

}

private static BitmapDrawable getDrawable (Context context, String name,
LruCache<String, BitmapDrawable> cache)

{
// Try to fetch from the in-memory cache.

100

Provide Images for Categories and ArticlesEmbedded Service SDK for Android Developer Guide



BitmapDrawable drawable = cache.get(name);

// If it's not there then load it from disk.
if (drawable == null) {
drawable = loadBitmapFromDisk(context, name);
if (drawable != null) {
cache.put(name, drawable);

}
}

return drawable;
}

private static BitmapDrawable loadBitmapFromDisk (Context context, String name) {
AssetManager assets = context.getAssets();

InputStream stream = null;
try {
stream = assets.open(name);

// Lower the sample size so the images take less memory.
BitmapFactory.Options options = new BitmapFactory.Options();
options.inSampleSize = 2;

Bitmap bitmap = BitmapFactory.decodeStream(stream, null, options);
return new BitmapDrawable(context.getResources(), bitmap);

} catch (IOException e) {
return null;

} finally {
if (stream != null) {
try {
stream.close();

} catch (IOException e) {
// Log the stream closing error.

}
}

}
}

}

Article Fetching with the Knowledge Core API
If you want more control over the interface, you can work with the Knowledge Core API. This API lets you query your Experience Cloud
site for categories and articles and handle them as objects. You can then display the contents of these objects in your own custom UI.

To access Knowledge Core objects, instantiate a KnowledgeCore client by calling the createClient  method.

In Java:

// Create a core configuration instance
String SITE_URL = "https://ExperienceCloudSitesSubdomainName.force.com";
KnowledgeConfiguration config = KnowledgeConfiguration.create(SITE_URL);

// Create a Knowledge Core object

101

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeCore.html


KnowledgeCore.configure(config).createClient(getContext())
.onResult(new Async.ResultHandler<KnowledgeClient>() {

@Override public void handleResult (Async<?> operation, @NonNull KnowledgeClient client)
{

// TO DO: Use the client instance
}

}
);

Note:  If you’re using enhanced domains, your org’s Experience Cloud sites URL is different. For details, see My Domain URL Formats
in Salesforce Help.

In Kotlin:

// Create a core configuration instance
val SITE_URL = "https://ExperienceCloudSitesSubdomainName.force.com"
val config = KnowledgeConfiguration.create(SITE_URL)

// Create a Knowledge Core object
KnowledgeCore.configure(config)

.createClient(this.applicationContext)

.onResult(object: Async.ResultHandler<KnowledgeClient> {

override fun handleResult(operation: Async<*>?, result: KnowledgeClient) {
// TO DO: Use the client instance

}
})

Note:  You can get the site URL for the create  method from your Salesforce org. If your Salesforce admin hasn’t set up Knowledge
in Service Cloud or you need more guidance, see Cloud Setup for Knowledge.

Once you've launched the Knowledge Core client, you can query for categories and articles.

Submitting Queries
You can query for data by calling the overloaded submit method on KnowledgeClient with a request object that contains the
criteria for your specific request. The submit method asynchronously returns an object representing the data your requested.

Table 4: Submitting a Request

DescriptionResponse TypeRequest Object

Represents a list of data category groups,
which are groups that contain a hierarchy
of data categories within them.

DataCategoryGroupListDataCategoryGroupListRequest

A hierarchical list of data categories.DataCategoryListDataCategoriesRequest

A list of articles with their summaries.ArticleListArticleListRequest

Complete contents of an article.ArticleDetailsArticleDetailRequest

You create a request by using the builder method on a particular request object.

102

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeClient.html


To request a list of the high-level data category groups within your site:

// Request a list of category groups in Java
DataCategoryGroupListRequest request = DataCategoryGroupListRequest.builder().build();

// Request a list of category groups in Kotlin
var request = DataCategoryGroupListRequest.builder().build()

To request a single data category group by name ("Travel" in this case):

// Request a data category group in Java
DataCategoryGroupRequest request = DataCategoryGroupRequest.builder("Travel").build();

// Request a data category group in Kotlin
var request = DataCategoryGroupRequest.builder("Travel").build()

To request a list of data categories within a data category group or within a parent data category, build a DataCategoriesRequest
object with the name of the data category group and the name of a data category:

// Request data categories from a group in Java
String categoryGroup = "Travel";
String rootCategory = "Canada";
DataCategoriesRequest request =
DataCategoriesRequest.builder(categoryGroup, rootCategory).build();

// Request data categories from a group in Kotlin
val categoryGroup = "Travel"
val rootCategory = "Canada"
var request =
DataCategoriesRequest.builder(categoryGroup, rootCategory).build()

You can also use the term "All" to grab all subcategories:

// Request all subcategories in Java
DataCategoriesRequest request = DataCategoriesRequest.builder(categoryGroup, "All").build();

// Request all subcategories in Kotlin
var request = DataCategoriesRequest.builder(categoryGroup, "All").build()

When querying for articles, you have a few ways to optionally refine your query using ArticleListRequest:

// Query for articles in Java
DataCategorySummary
canadaDataCategorySummary = // Obtained from DataCategoryList.getDataCategories()

ArticleListRequest request = ArticleListRequest.builder()
.dataCategory(categoryGroup, canadaDataCategorySummary.getName())
.pageNumber(1)
.pageSize(10)
.searchTerm("Hockey")
.build();

// Query for articles in Kotlin
var canadaDataCategorySummary: DataCategorySummary =

// Obtained from DataCategoryList.dataCategories
var request = ArticleListRequest.builder()

.dataCategory(categoryGroup, canadaDataCategorySummary.name)

.pageNumber(1)

103

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide



.pageSize(10)

.searchTerm("Hockey")

.build()

Specifically, you can use the following query parameters:

pageNumber
The page number of the results. This value is 1-based. Default value is 1.

pageSize
The number of articles per page. Default value is 3.

searchTerm
The search term used to refine the search. By default, no search term is used.

sortBy
What field you want to use for sorting. Possible values are: SORT_BY_LAST_PUBLISHED_DATE, SORT_BY_TITLE, and
SORT_BY_VIEW_SCORE. Default value is SORT_BY_LAST_PUBLISHED_DATE.

sortOrder
Whether you want to sort results in descending (SORT_DESC) or ascending (SORT_ASC) order. Default is SORT_DESC.

The results are sorted by last modified date, in descending order.

Once you have an ArticleList, you can use the ArticleSummary  from this list to request the contents of an article.

// Request article content in Java
ArticleSummary
hockeyInCanada = // Obtained from ArticleList.getArticles()

ArticleDetailRequest request = ArticleDetailRequest.builder(hockeyInCanada).build();

// Request article content in Kotlin
var hockeyInCanada: ArticleSummary = // Obtained from ArticleList.getArticles()
var request = ArticleDetailRequest.builder(hockeyInCanada).build()

Alternatively, you can fetch an article directly using the article ID. This method is useful if you want to retrieve a specific article and there's
no need to query for an article list.

// Request article by ID in Java
String articleID = "18_DIGIT_ID_GOES_HERE";
ArticleDetailRequest request = ArticleDetailRequest.builder(articleID).build();

// Request article by ID in Kotlin
val articleID = "18_DIGIT_ID_GOES_HERE"
var request = ArticleDetailRequest.builder(articleID).build()

To submit a request, call the overloaded submit  method on KnowledgeClient and asynchronously handle the query response.
The following example illustrates how to submit a request once you've built a request object:

// Submit a request in Java
knowledgeClient.submit(request).onResult(new Async.ResultHandler<RESPONSE_TYPE_GOES_HERE>()
{

@Override
public void handleResult (Async<?> operation, @NonNull RESPONSE_TYPE_GOES_HERE result)

{
// TO DO: Inspect the response object

}

104

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeClient.html


}).onComplete(new Async.CompletionHandler() {
// TO DO: Handle completion

});

// Submit a request in Kotlin
knowledgeClient.submit(request).onResult(object: Async.ResultHandler<RESPONSE_TYPE_GOES_HERE>
{

override fun handleResult(operation: Async<*>?, result: RESPONSE_TYPE_GOES_HERE) {
// TO DO: Inspect the response object

}
})

Caching Query Results
Every request object has a cacheResults  builder method, which you can use to cache the results of the query. By default, this
value is set to true. Although the article text is cached, images are not automatically cached. To cache the images for offline access,
you'll need to use OfflineResourceConfig. To learn more, see Cache Images for Offline Access.

Handling Queries
Handle the result of a request using the Async interface and its associated handler interfaces: ResultHandler,
CompletionHandler, and ErrorHandler. Alternatively you can implement the broad Handler  interface which itself inherits
from all three interfaces. For convenience, the Async<T>  methods that accept handlers as parameters return the Async<T> instance
so you can chain the syntax.

Keep in mind that a ResultHandler  instance can be called multiple times before the Async<T>  operation is complete, and
some of the results can be duplicates. All Knowledge objects have unique IDs so you can check for duplicates.

In Java:

public interface Async<T> {
Async<T> onResult(ResultHandler<? super T> handler);
Async<T> onComplete(CompletionHandler handler);
Async<T> onError(ErrorHandler handler);
Async<T> removeResultHandler (ResultHandler<? super T> handler);
Async<T> removeCompletionHandler (CompletionHandler handler);
Async<T> removeErrorHandler (ErrorHandler handler);
void cancel();
boolean inProgress();
boolean isComplete();
boolean isCancelled();
boolean hasFailed();

interface ResultHandler<T> {
void handleResult (Async<?> operation, @NonNull T result);

}

interface CompletionHandler {
void handleComplete (Async<?> operation);

}

105

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/offline/OfflineResourceConfig.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/control/Async.html


interface ErrorHandler {
void handleError (Async<?> operation, @NonNull Throwable throwable);

}

interface Handler<T> extends ResultHandler<T>, CompletionHandler, ErrorHandler {

}
}

In Kotlin:

interface Async<T> {
fun onResult(handler: ResultHandler<in T>): Async<T>
fun onComplete(handler: CompletionHandler): Async<T>
fun onError(handler: ErrorHandler): Async<T>
fun removeResultHandler(handler: ResultHandler<in T>): Async<T>
fun removeCompletionHandler(handler: CompletionHandler): Async<T>
fun removeErrorHandler(handler: ErrorHandler): Async<T>
fun cancel()
fun inProgress(): Boolean
val isComplete: Boolean
val isCancelled: Boolean
fun hasFailed(): Boolean

interface ResultHandler<T> {
fun handleResult(operation: Async<*>, result: T)

}

interface CompletionHandler {
fun handleComplete(operation: Async<*>)

}

interface ErrorHandler {
fun handleError(operation: Async<*>, throwable: Throwable)

}

interface Handler<T> : ResultHandler<T>, CompletionHandler, ErrorHandler {
}

}

Displaying Articles
To display Knowledge articles in a web view, see Show Knowledge Articles in a Web View.

To display an article in the default UI, call the launchArticle  method on the KnowledgeUIClient instance. This method
requires the ArticleSummary object that you obtained from an ArticleListRequest. To learn more about showing the
default UI, see Quick Setup: Knowledge in the Service SDK.

Examples
Fetching data category groups:

DataCategoryGroupListRequest dataCategoryGroupRequest =
DataCategoryGroupListRequest.builder().build();

106

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html


knowledgeClient.
submit(dataCategoryGroupRequest).onResult(new Async.ResultHandler<DataCategoryGroupList>()
{

@Override
public void handleResult (Async<?> operation, @NonNull DataCategoryGroupList result) {
// The result is a DataCategoryGroupList objects, which contains DataCategoryGroup

objects
}

}).onComplete(new Async.CompletionHandler() {

@Override public void handleComplete (Async<?> operation) {
// Called when the operation is complete

}
}).onError(new Async.ErrorHandler() {

@Override public void handleError (Async<?> operation, @NonNull Throwable throwable) {
// Called if an error has been encountered

}
});

Fetching data categories within the "Canada" category of "Travel":

String categoryGroup = "Travel";
String rootCategory = "Canada";
DataCategoriesRequest dataCategoriesRequest =
DataCategoriesRequest.builder(categoryGroup, rootCategory).build();

knowledgeClient.
submit(dataCategoriesRequest).onResult(new Async.ResultHandler<DataCategoryList>() {

@Override public void handleResult (Async<?> operation, @NonNull DataCategoryList result)
{

// The result is a DataCategoryList object, which contains a list of DataCategorySummary
objects
}

}).onComplete(new Async.CompletionHandler() {

@Override public void handleComplete (Async<?> operation) {
// Called when the operation is complete

}
}).onError(new Async.ErrorHandler() {

@Override public void handleError (Async<?> operation, @NonNull Throwable throwable) {
// Called if an error has been encountered

}
});

Fetching articles within a data category:

String categoryGroup = "Travel";
String categoryName = "Canada";
ArticleListRequest articleListRequest = ArticleListRequest.builder()

.dataCategory(categoryGroup, categoryName)

.pageNumber(1)

.pageSize(10)

107

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide



.queryMethod(ArticleListRequest.QUERY_BELOW)

.searchTerm("Hockey")

.build();
knowledgeClient.submit(articleListRequest).onResult(new Async.ResultHandler<ArticleList>()
{

@Override public void handleResult (Async<?> operation, @NonNull ArticleList result) {
// The result is an ArticleList object which contains a list of ArticleSummary objects

}
}).onComplete(new Async.CompletionHandler() {

@Override public void handleComplete (Async<?> operation) {
// Called when the operation is complete

}
}).onError(new Async.ErrorHandler() {

@Override public void handleError (Async<?> operation, @NonNull Throwable throwable) {
// Called if an error has been encountered

}
});

Fetching the contents of an article:

ArticleSummary articleSummary = // Obtained from ArticleList.getArticles()
ArticleDetailRequest articleDetailRequest =
ArticleDetailRequest.builder(articleSummary).build();
knowledgeClient.submit(articleDetailRequest).onResult(new
Async.ResultHandler<ArticleDetails>() {

@Override public void handleResult (Async<?> operation, @NonNull ArticleDetails result)
{

// The result is an ArticleDetails object that contains the contents of the article
}

}).onComplete(new Async.CompletionHandler() {

@Override public void handleComplete (Async<?> operation) {
// Called when the operation is complete

}
}).onError(new Async.ErrorHandler() {

@Override public void handleError (Async<?> operation, @NonNull Throwable throwable) {
// Called if an error has been encountered

}
});

Fetching an article using the article ID:

String articleID = "kA0P000000004SzKAI";
ArticleDetailRequest request = ArticleDetailRequest.builder(articleID).build();

knowledgeClient.submit(request).onResult(new Async.ResultHandler<ArticleDetails>() {

@Override public void handleResult (Async<?> operation, @NonNull ArticleDetails result)
{

108

Article Fetching with the Knowledge Core APIEmbedded Service SDK for Android Developer Guide



// The result is an ArticleDetails object that contains the contents of the article
}

}).onComplete(new Async.CompletionHandler() {

@Override public void handleComplete (Async<?> operation) {
// Called when the operation is complete

}
}).onError(new Async.ErrorHandler() {

@Override public void handleError (Async<?> operation, @NonNull Throwable throwable) {
// Called if an error has been encountered

}
});";

Show Knowledge Articles in a Web View
You can show an article using the ArticleWebView  class. Use this technique to show users specific content without requiring them
to browse for it.

These instructions allow you to put a web view containing an article into your existing Activity. If you want to use the default user interface
provided by the SDK, see Quick Setup: Knowledge in the Service SDK. If you want to build the entire user interface from scratch, see
Article Fetching with the Knowledge Core API.

1. Create an ArticleWebView  in your layout.

<com.salesforce.android.knowledge.ui.ArticleWebView
android:id="@+id/article_webview"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

2. To show a Knowledge article, instantiate a KnowledgeCore client by calling the createClient  method.

In Java:

// Create a core configuration instance
String SITE_URL = "https://ExperienceCloudSitesSubdomainName.force.com";
KnowledgeConfiguration config = KnowledgeConfiguration.create(SITE_URL);

// Create a Knowledge Core object
KnowledgeCore.configure(config).createClient(getContext())
.onResult(new Async.ResultHandler<KnowledgeClient>() {

@Override public void handleResult (Async<?> operation, @NonNull KnowledgeClient
client) {

// TO DO: Use the client instance
}

}
);

Note:  If you’re using enhanced domains, your org’s Experience Cloud sites URL is different. For details, see My Domain URL
Formats in Salesforce Help.

109

Show Knowledge Articles in a Web ViewEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeCore.html


In Kotlin:

// Create a core configuration instance
val SITE_URL = "https://ExperienceCloudSitesSubdomainName.force.com"
val config = KnowledgeConfiguration.create(SITE_URL)

// Create a Knowledge Core object
KnowledgeCore.configure(config)

.createClient(this.applicationContext)

.onResult(object: Async.ResultHandler<KnowledgeClient> {

override fun handleResult(operation: Async<*>?, result: KnowledgeClient) {
// TO DO: Use the client instance

}
})

Note:  You can get the site URL for the create  method from your Salesforce org. If your Salesforce admin hasn’t set up
Knowledge in Service Cloud or you need more guidance, see Cloud Setup for Knowledge.

3. Fetch the article details as an ArticleDetails object from your knowledge base using the instructions in Article Fetching with
the Knowledge Core API.

You can fetch an article in several ways. The following example fetches an article using the unique article ID.

In Java:

final String articleId = // Assign to the article ID

ArticleDetailRequest.builder(articleId)
.cacheImages(true)
.cacheResults(true)
.submit(client)
.onError(this)
.onResult(new Async.ResultHandler<ArticleDetails>() {

@Override
public void handleResult (Async<?> async, @NonNull ArticleDetails articleDetails)

{
// TO DO IN NEXT STEP: Show the article here

}
});

In Kotlin:

val articleId: String = // Assign to the article ID

ArticleDetailRequest.builder(articleId)
.cacheImages(true)
.cacheResults(true)
.submit(client)
.onError(this)
.onResult(object : Async.ResultHandler<ArticleDetails> {

override fun handleResult(async: Async<*>?, articleDetails: ArticleDetails) {
// TO DO IN NEXT STEP: Show the article here

110

Show Knowledge Articles in a Web ViewEmbedded Service SDK for Android Developer Guide



}
})

4. Display a web view containing the article using the ArticleWebView  class.

In Java:

// Configure the article web view
ArticleWebViewConfiguration articleConfig =
new ArticleWebViewConfiguration.Builder(client)
.setWebResourceErrorListener(new ArticleWebView.WebResourceErrorListener() {

// Handle an error launching the article web view
@Override public void onWebResourcesError (Uri uri, int errorCode, String

description) {
// TO DO: Handle error

}
}).build();

// Show the article
mArticleWebView.showArticle(articleDetails, articleConfig)
.onComplete(new Async.CompletionHandler() {

// Handle completion when showing article
@Override public void handleComplete (Async<?> async) {
// Make article web view visible
mArticleWebView.setVisibility(View.VISIBLE);

}
});

In Kotlin:

// Configure the article web view
val articleConfig: ArticleWebViewConfiguration =

ArticleWebViewConfiguration.Builder(client!!)
.setWebResourceErrorListener(object: ArticleWebView.WebResourceErrorListener {

// Handle an error launching the article web view
override fun onWebResourcesError (uri: Uri, errorCode: Int, description:

String) {
// TO DO: Handle error

}
}).build()

// Show the article
mArticleWebView.showArticle(articleDetails, articleConfig)

.onComplete(object: Async.CompletionHandler {

// Handle completion when showing article
override fun handleComplete(async: Async<*>?) {
// Make article web view visible
mArticleWebView.setVisibility(View.VISIBLE)

}
})

111

Show Knowledge Articles in a Web ViewEmbedded Service SDK for Android Developer Guide



Example: This example creates an Activity class that displays a Knowledge article using a specific article ID.

public class WebviewActivity extends AppCompatActivity implements Async.ErrorHandler
{

// TO DO: Replace with a real site URL
String siteUrl = "https://ExperienceCloudSitesSubdomainName.force.com";

// TO DO: Replace with a real article ID
String articleID = "kA0P00FAKE004SzKAI";

// Article web view instance
ArticleWebView mArticleWebView = null;

/**
* onCreate override.
*/
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// TO DO: Update resource ID as necessary...
setContentView(R.layout.activity_webview);
mArticleWebView = findViewById(R.id.article_webview);

// Initiate the process of showing the article
launchAndShowKnowledge();

}

/**
* Configures and launches the Knowledge interface.
*/
void launchAndShowKnowledge() {

// Create knowledge config object
KnowledgeConfiguration config = KnowledgeConfiguration.create(siteUrl);

// Create knowledge client object
KnowledgeCore.configure(config).createClient(this)

.onResult(new Async.ResultHandler<KnowledgeClient>() {
@Override public void handleResult (Async<?> operation,
@NonNull KnowledgeClient client) {

// Fetch the article based on the article ID
fetchArticle(articleID, client);

}
});

}

/**
* Fetches the Knowledge article.
*/
void fetchArticle (final String articleId, final KnowledgeClient client) {

112

Show Knowledge Articles in a Web ViewEmbedded Service SDK for Android Developer Guide



// Request the article details
ArticleDetailRequest.builder(articleId)

.cacheImages(true)

.cacheResults(true)

.submit(client)

.onError(this)

.onResult(new Async.ResultHandler<ArticleDetails>() {
@Override
public void handleResult (Async<?> async,
@NonNull ArticleDetails articleDetails) {

// Use the article details to display the article
displayArticleWebView(client, articleDetails);

}
});

}

/**
* Displays the Knowledge article.
*/

void displayArticleWebView (KnowledgeClient client, ArticleDetails articleDetails)
{

// Create an article webview config object
ArticleWebViewConfiguration configuration =
new ArticleWebViewConfiguration.Builder(client)
.setWebResourceErrorListener(new ArticleWebView.WebResourceErrorListener() {
@Override public void onWebResourcesError (Uri uri, int errorCode, String

description) {
// TO DO: Handle error event

}
}).build();

// Show the article!
mArticleWebView.showArticle(articleDetails, configuration)
.onComplete(new Async.CompletionHandler() {
@Override public void handleComplete (Async<?> async) {
// TO DO: Handle complete event

}
});

}

/**
* onDestroy override.
*/
@Override protected void onDestroy () {
super.onDestroy();
if (mArticleWebView != null) {
mArticleWebView.cleanup();

}
}

/**
* Async.ErrorHandler handleError override.

113

Show Knowledge Articles in a Web ViewEmbedded Service SDK for Android Developer Guide



*/
@Override public void handleError (Async<?> async, @NonNull Throwable throwable) {
// TO DO: Handle error

}
}

Using Case Management with the Service SDK

Add the Case Management experience to your mobile app.

Case Management in the Service SDK for Android

The Case Management feature in the SDK allows your users to create and manage cases.

Quick Setup: Case Publisher as a Guest User

To set up Case Publisher in your Android app, create a configuration object that points to your Experience Cloud site and then create
a Case UI client.

Case Management as an Authenticated User

To manage existing cases, a user must authenticate with your org. Once authenticated, the user can create and manage cases from
your app.

Cache and Encryption Behavior for Case Management

Case Management content is cached when it's fetched for an authenticated user. The cached data is encrypted using AES-256
encryption. You can explicitly clear cached content. No data is cached for unauthenticated users.

Send Custom Data Using Hidden Fields

By default, all fields specified in your global action layout are shown to users so that they can fill them in. In some circumstances,
you might want to fill in a field without showing it to users.

Push Notifications for Case Activity

You can send push notifications from your org when activity associated with a user’s case occurs. When your app receives information
from your org, pass the case ID to the SDK so the SDK can update the UI.

Case Management in the Service SDK for Android
The Case Management feature in the SDK allows your users to create and manage cases.

Once you point your app to your Experience Cloud site URL, you can display the case publisher interface to your users.

114

Using Case Management with the Service SDKEmbedded Service SDK for Android Developer Guide



If you authenticate the user, you can display the user's list of cases and allow them to comment on any of their cases.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Quick Setup: Case Publisher as a Guest User
To set up Case Publisher in your Android app, create a configuration object that points to your Experience Cloud site and then create a
Case UI client.

Before starting, make sure that you’ve already:

• Set up Service Cloud to work with Case Management. See Cloud Setup for Case Management.

• Installed the SDK. See Install the Service SDK for Android.

These instructions set up Case Publisher as a guest user. When you activate the interface for a guest user, a generic Case Publisher screen
appears.

1. Specify your Experience Cloud site URL and the global action to use to determine the fields shown when a user creates a case.

The global action is used as the layout when creating a case.

In Java:

// Specify the site url and global action
public static final String SITE_URL = "https://your-site-url";
public static final String CREATE_CASE_ACTION_NAME = "NewCase";

115

Quick Setup: Case Publisher as a Guest UserEmbedded Service SDK for Android Developer Guide



In Kotlin:

// Specify the site url and global action
val SITE_URL = "https://your-site-url"
val CREATE_CASE_ACTION_NAME = "NewCase"

Note:  You can get the required parameters from your Salesforce org.

2. (Optional) To send hidden fields, implement the CaseClientCallbacks interface and handle the getHiddenFieldsmethod.

By default, all fields specified in your global action layout are shown to users so that they can fill them in. In some circumstances,
you might want to fill in a field without showing it to users.

3. Create a CaseConfiguration object using the Experience Cloud site URL and the global action.

In Java:

// Create a core configuration instance
CaseConfiguration coreConfiguration =
new CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)

.build();

In Kotlin:

// Create a core configuration instance
val coreConfiguration =
CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)

.build()

If you've created a callback to pass along hidden fields, build the configuration object with your callback function.

In Java:

// Create configuration callback function
CaseClientCallbacks myCallback = new CaseClientCallbacks() {
@Override public Map<String, String> getHiddenFields() {
HashMap<String, String> hiddenFields = new HashMap<>();
hiddenFields.put("CustomDescription__c", "This is a hidden field!");
return hiddenFields;

}
};

// Create a core configuration instance with callback
CaseConfiguration coreConfiguration =
new CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)

.callbacks(myCallback) // Optional callback function

.build();

In Kotlin:

// Create configuration callback function
val myCallback = CaseClientCallbacks {
val hiddenFields = HashMap<String,String>()
hiddenFields.put("CustomDescription__c", "This is a hidden field!")
hiddenFields

}

// Create a core configuration instance with callback

116

Quick Setup: Case Publisher as a Guest UserEmbedded Service SDK for Android Developer Guide

http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/core/CaseClientCallbacks.html
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/core/CaseClientCallbacks.html#getHiddenFields()
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/core/CaseConfiguration.html


val coreConfiguration =
CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)

.callbacks(myCallback) // Optional callback function

.build()

4. Configure CaseUI using CaseUIConfiguration.

In Java:

// Create a UI configuration instance from a core instance
CaseUI.with(MainActivity.this).configure(CaseUIConfiguration.create(coreConfiguration));

In Kotlin:

// Create a UI configuration instance from a core instance
CaseUI.with(this@MainActivity).configure(CaseUIConfiguration.create(coreConfiguration))

5. (Optional) Customize the interface.

You can customize the colors, strings, and other aspects of the interface. You can also localize the strings into other languages.

6. To display the Case Publisher interface to your user, launch the Case Publisher UI by calling the launch method.

In Java:

// Create a client UI asynchronously
CaseUI.with(MainActivity.this).uiClient()

.onResult(new Async.ResultHandler<CaseUIClient>() {
@Override public void handleResult(Async<?> async,

@NonNull CaseUIClient caseUIClient) {
caseUIClient.launch(MainActivity.this);

}
});

In Kotlin:

// Create a client UI asynchronously
CaseUI.with(this@MainActivity).uiClient()
.onResult { async, caseUIClient -> caseUIClient.launch(this@MainActivity) }

Note:  If a user isn’t logged in, the launch method launches the Case Publisher activity. If a user is logged in, the Case List
activity appears. To explicitly launch the Case Publisher activity regardless of whether a user is logged in, use
launchCasePublisher.

After you launch the UI, the Case Publisher screen appears.

117

Quick Setup: Case Publisher as a Guest UserEmbedded Service SDK for Android Developer Guide

http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/ui/CaseUI.html
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/ui/CaseUIConfiguration.html
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#launch(android.content.Context)
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#launch(android.content.Context)
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#launchCasePublisher(android.content.Context)


Case Management as an Authenticated User
To manage existing cases, a user must authenticate with your org. Once authenticated, the user can create and manage cases from your
app.

Before starting, make sure that you’ve already:

• Set up Service Cloud to work with Case Management. See Cloud Setup for Case Management.

• Installed the SDK. See Install the Service SDK for Android.

These instructions allow you to set up case management as an authenticated user. When you activate the Case Management interface
for an authenticated user, a list of their existing cases appears initially. From there, they can inspect an existing case, or they can create
a new case. If you do not want to authenticate users, and you prefer to let them create cases as a guest user, see Quick Setup: Case
Publisher as a Guest User.

1. Follow authentication instructions from Authentication with the Service SDK for Android.

2. Set up Case Management as described in Quick Setup: Case Publisher as a Guest User.

Note:  If you don’t have an Experience Cloud site URL, you can use the instance URL you get back during the authentication
process in place of the site URL during configuration.

There are additional aspects to the setup process when dealing with authenticated users.

a. In addition to the Experience Cloud site URL and the global action, specify a case list name.

In Java:

// Specify the Experience Cloud site url, global action, and case list name
public static final String SITE_URL = "https://your-site-url";

118

Case Management as an Authenticated UserEmbedded Service SDK for Android Developer Guide



public static final String CREATE_CASE_ACTION_NAME = "NewCase";
public static final String CASE_LIST_NAME = "MyCases";

In Kotlin:

// Specify the site url, global action, and case list name
val SITE_URL = "https://your-site-url"
val CREATE_CASE_ACTION_NAME = "NewCase"
val CASE_LIST_NAME = "MyCases"

To get this case list value, access the Cases tab in your org, pick the desired View, select Go! to see that view, and then select
Edit to edit the view. From the edit window, you can see the View Unique Name.

Note:  You can get the required parameters from your Salesforce org.

b. (Optional) To set up push notifications, see Push Notifications for Case Activity.

c. Build CaseConfiguration using the caseListName method and the withAuthConfig  method.

In Java:

CaseConfiguration coreConfiguration =
new CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)
.caseListName(CASE_LIST_NAME)
.withAuthConfig(myAuthProvider, myAuthUser)
.callbacks(myCallback) // Optional callback
.build();

In Kotlin:

val coreConfiguration =
CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)
.caseListName(CASE_LIST_NAME)
.withAuthConfig(myAuthProvider, myAuthUser)
.callbacks(myCallback) // Optional callback
.build()

Warning:  If you don't specify a case list value for caseListName, you'll get an IllegalArgumentException
when configuring Case Management.

After you launch the UI as an authenticated user, the Case List screen appears.

Cache and Encryption Behavior for Case Management
Case Management content is cached when it's fetched for an authenticated user. The cached data is encrypted using AES-256 encryption.
You can explicitly clear cached content. No data is cached for unauthenticated users.

To delete locally cached content, call the clearCache method from the CaseClient object. You can get this object using the
getCoreClient method from CaseUIClient.

caseUIClient.getCoreClient().clearCache();

119

Cache and Encryption Behavior for Case ManagementEmbedded Service SDK for Android Developer Guide

http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/core/CaseConfiguration.html
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/core/CaseConfiguration.Builder.html#caseListName(java.lang.String)
http://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.3/api/reference/com/salesforce/android/cases/core/CaseConfiguration.Builder.html#caseListName(java.lang.String)
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClient.html#clearCache()
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#getCoreClient()
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html


Send Custom Data Using Hidden Fields
By default, all fields specified in your global action layout are shown to users so that they can fill them in. In some circumstances, you
might want to fill in a field without showing it to users.

To send hidden field data, create a CaseClientCallbacks object that returns the getHiddenFields method with a map of
the hidden fields and their values.

In Java:

// Create configuration callback function
CaseClientCallbacks myCallback = new CaseClientCallbacks() {

@Override public Map<String, String> getHiddenFields() {
HashMap<String, String> hiddenFields = new HashMap<>();
hiddenFields.put("FIELD_NAME__c", "FIELD_VALUE");
return hiddenFields;

}
};

In Kotlin:

// Create configuration callback function
var myCallback = object: CaseClientCallbacks {

override fun getHiddenFields(): MutableMap<String, String> {
var hiddenFields: HashMap<String, String> = HashMap()
hiddenFields.put("FIELD_NAME__c", "FIELD_NAME")
return hiddenFields

}
}

When you build the configuration object (as described in Quick Setup: Case Publisher as a Guest User), specify your callback function.

In Java:

// Create configuration callback function
CaseClientCallbacks myCallback = new CaseClientCallbacks() {
@Override public Map<String, String> getHiddenFields() {
HashMap<String, String> hiddenFields = new HashMap<>();
hiddenFields.put("CustomDescription__c", "This is a hidden field!");
return hiddenFields;

}
};

// Create a core configuration instance with callback
CaseConfiguration coreConfiguration =
new CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)

.callbacks(myCallback) // Optional callback function

.build();

In Kotlin:

// Create configuration callback function
val myCallback = CaseClientCallbacks {
val hiddenFields = HashMap<String,String>()
hiddenFields.put("CustomDescription__c", "This is a hidden field!")
hiddenFields

120

Send Custom Data Using Hidden FieldsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClientCallbacks.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClientCallbacks.html#getHiddenFields()


}

// Create a core configuration instance with callback
val coreConfiguration =

CaseConfiguration.Builder(SITE_URL, CREATE_CASE_ACTION_NAME)
.callbacks(myCallback) // Optional callback function
.build()

Push Notifications for Case Activity
You can send push notifications from your org when activity associated with a user’s case occurs. When your app receives information
from your org, pass the case ID to the SDK so the SDK can update the UI.

When you notify the SDK about case activity (using the CaseUIClient.notifyCaseUpdated  method), the UI updates based
on this new information.

• If the user is looking at their list of cases, the UI informs them that the list is out of date.

• If the user is looking at a case feed for that case, the UI refreshes and downloads new comments.

If you want to perform other actions based on case activity, such as displaying a notification to the user, use the
onPushNotificationReceived method in your PushNotificationListener implementation.

1. Set up your app for authenticated Case Management, as described in Case Management as an Authenticated User.

2. Set up remote push notifications, as described in Push Notifications with the Service SDK for Android.

3. Create an Apex trigger in your org to detect activity.

For general information about Apex triggers, see Using Apex Triggers to Send Push Notifications in the Salesforce Mobile Push
Notifications Implementation Guide.

You can use the following sample Apex code as a starting point. This Chatter Feed Item trigger sends a notification when an agent
creates a text post on a case.

// THIS APEX TRIGGER IS PROVIDED AS AN EXAMPLE. BE SURE TO REVIEW
// YOUR CODE BEFORE PUTTING ANYTHING INTO PRODUCTION.

trigger newCaseFeedItemNotification on FeedItem (after insert) {

for(FeedItem feedItem : Trigger.new) {

try {

Schema.SObjectType objectType = feedItem.parentId.getSObjectType();

if(feedItem.body == null ) {
// Don't push if we have no body.
break;

}

// Ensure Case type
if (objectType == Case.sObjectType) {

Case cs = [SELECT contactId, ownerId, caseNumber, subject
FROM Case
WHERE id = :feedItem.parentId];

Set<String> users = new Set<String>();

121

Push Notifications for Case ActivityEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/PushNotificationListener.html#onPushNotificationReceived(android.os.Bundle)
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/PushNotificationListener.html
https://developer.salesforce.com/docs/atlas.en-us.230.0.pushImplGuide.meta/pushImplGuide/pns_apex_trigger.htm
https://developer.salesforce.com/docs/atlas.en-us.230.0.pushImplGuide.meta/pushImplGuide/pns_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.230.0.pushImplGuide.meta/pushImplGuide/pns_overview.htm


// Determine who created or inserted this feed item
String commentedById = feedItem.CreatedById;
if (commentedById == null) {
commentedById = feedItem.InsertedById;
if (commentedById == null) {
commentedById = feedItem.LastEditById;

}
}

// If the FeedItem was not created by the owner, send to the owner
if (cs.ownerId != null && !cs.ownerId.equals(commentedById)) {

// Ensure the user has access to the feed item before pushing
List<UserRecordAccess> accessList = [SELECT HasReadAccess, RecordId
FROM UserRecordAccess
WHERE UserId = :cs.ownerId
AND RecordId = :feedItem.Id LIMIT 1];

if (accessList != null && !accessList.isEmpty()
&& accessList[0].HasReadAccess) {

users.add(cs.ownerId);
}

}

// If the FeedItem was not created by the contact on the case send to the contact

if (cs.contactId != null && !cs.contactId.equals(commentedById)) {

// Ensure the user has access to the feed item before pushing
List<UserRecordAccess> accessList = [SELECT HasReadAccess, RecordId
FROM UserRecordAccess
WHERE UserId = :cs.contactId
AND RecordId = :feedItem.Id LIMIT 1];

if (accessList != null && !accessList.isEmpty()
&& accessList[0].HasReadAccess) {

users.add(cs.contactId);
}

}

// Assemble the necessary payload parameters for the mobile app.
// Params are:
// (<alert text>,<alert sound>,<badge count>,<free-form data>)
// This example doesn't use badge count but does make use of free-form
// data to pass the caseId in the notification.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.

// If subject is not set, use '(No Subject)'
String subject = cs.subject;
if (subject == null) {
subject = '(No Subject)';

}

122

Push Notifications for Case ActivityEmbedded Service SDK for Android Developer Guide



String alertText = 'New comment added to case: ' + subject;

// Add the caseId so we can handle the push notification within the app
Map<String, Object> freeFormData = new Map<String, Object>();
freeFormData.put('caseid', cs.id);

// Add any other free form data here...

// Create the payload
Messaging.PushNotification msg = new Messaging.PushNotification();

// Format for apple devices
Map<String, Object> payload =
Messaging.PushNotificationPayload.apple(alertText, '', null, freeFormData);

// Add payload to the notification
msg.setPayload(payload);

// Needs to match your connected app name
msg.send('YourConnectedAppName', users);

}
}
catch (Exception e) {
// Catch everything to ensure push failures do not prevent posts from succeeding.

// TO DO: Add logging here to record errors or display an error message.
}

} // end of for loop
}

Note:  If you want the SDK to handle notifications about case activity, your free-form data must contain the case ID, as shown
in this code sample.

4. In your PushNotificationListener implementation, extract the case ID and pass it to the
CaseUIClient.notifyCaseUpdated  method.

For example, in Java:

public class MyPushNotificationListener implements PushNotificationListener {

@Override public void onPushNotificationReceived (RemoteMessage message) {

// Extract the Case ID from the data. The name of the key depends
// on how you bundled the freeform data in your Apex trigger...
String caseId = message.getData().get("caseid");

// TO DO: Extract any other info from the data

CaseUIClient uiClient = // TO DO: Get the UI client from configuration

if (uiClient != null) {
// Pass case update information to the UI client.

123

Push Notifications for Case ActivityEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/PushNotificationListener.html


uiClient.notifyCaseUpdated(caseId);
}

}
}

In Kotlin:

class MyPushNotificationListener : PushNotificationListener {

override fun onPushNotificationReceived (message: RemoteMessage?) {

// Extract the Case ID from the data. The name of the key depends
// on how you bundled the freeform data in your Apex trigger...
val caseId = message.getData().get("caseid")

// TO DO: Extract any other info from the data

var uiClient: CaseUIClient? = null

// TO DO: Get the UI client from configuration

if (uiClient != null) {
// Pass case update information to the UI client.
uiClient.notifyCaseUpdated(caseId)

}
}

}

Using SOS with the Service SDK

Add the SOS experience to your mobile app.

SOS in the Service SDK for Android

Learn about the SOS experience using the SDK.

Quick Setup: SOS in the Service SDK

To start an SOS session from your Android app, call the SOS  class from an activity. Once the session is started, SOS automatically
handles activity transitions for you.

Configure an SOS Session

Before starting an SOS session, you can optionally configure the session using an SosConfiguration  object. This object allows
you to enable or disable cameras, determine what screen a session starts on, and control other features.

Control an SOS Session

During an SOS session, you can control the session using various static methods on the Sos  class. These methods can pause the
session, disable screen sharing, stop the session, change what is being shown on the screen, and perform other functions.

Two-Way Video

In addition to screen sharing, the SOS SDK lets your customer share their device's live camera feed with an agent. The customer's
front-facing camera allows for a video conversation with an agent. The back-facing camera provides a great way for a customer to
show something to an agent, rather than have to explain it.

124

Using SOS with the Service SDKEmbedded Service SDK for Android Developer Guide



Check SOS Agent Availability

Before starting a session, you can check the availability of your SOS agents and then provide your users with more accurate expectations.

Listen to SOS Events

The SOS SDK provides listeners that allow you to listen and respond to various events emitted during an SOS session. These listeners
can be used to keep your application informed about the state of the SOS session or to implement custom behavior based on the
SOS session progress.

Quality-of-Service Events

Check your audio and video quality-of-service (QoS) to detect packet loss and other streaming issues between the OpenTok media
router and your org.

Detect the Keyboard

Because the Android OS manages the keyboard, its representation on the screen is inaccessible to an application. This situation
presents a challenge when sending an image of the device to an agent during an SOS session. For this reason, you should explicitly
pass along information about the keyboard.

Field Masking

If an application contains sensitive information that an agent shouldn't see during an SOS session, you can hide this information
from the agent.

Custom Data

Use custom data to identify customers, send error messages, issue descriptions, or identify the page the SOS session was initiated
from.

SOS in the Service SDK for Android
Learn about the SOS experience using the SDK.

SOS lets you easily add real-time video and screen sharing support to your native Android app. Once you’ve set up Service Cloud for
SOS, it takes just a few calls to the SDK to have your app ready to handle agent calls and to support screen sharing. With screen sharing,
agents can even make annotations directly on the customer’s screen.

125

SOS in the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide



And with just a few more configuration changes, you can provide two-way video support from your app. This functionality can include
front-facing camera support, back-facing camera support, or both.

126

SOS in the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide



There are several other ways you can set up your SOS environment, including masking sensitive fields and passing custom data back to
your org. And if you want to handle state changes and other events, check out Listen to SOS Events.

Once you've configured SOS to work within your app, customize the look and feel of the interface so that it fits naturally within your app
by using our UI Customization guidelines.

Let’s get started.

Quick Setup: SOS in the Service SDK
To start an SOS session from your Android app, call the SOS  class from an activity. Once the session is started, SOS automatically handles
activity transitions for you.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with SOS. To learn more, see Console Setup for SOS.

• Installed the SDK. To learn more, see Install the Service SDK for Android.

Once you’ve reviewed these prerequisites, you’re ready to begin.

1. Create an Activity  subclass.

Create a class that subclasses the Activity  class.

2. From within a method of the Activity  object, create an SosOptions instance with information about your LiveAgent pod,
your Salesforce org ID, and the deployment ID.

127

Quick Setup: SOS in the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosOptions.html


In Java:

// Specify your org ID, your deployment ID, and your Chat endpoint
public static final String ORG_ID = "YOUR_ORG_ID";
public static final String DEPLOYMENT_ID = "YOUR_DEPLOYMENT_ID";
public static final String SOS_POD = "YOUR_ORG_URL";

// e.g. "d.la.salesforce.com"

// ...

// Create an SosOptions object
SosOptions options = new SosOptions(SOS_POD, ORG_ID, DEPLOYMENT_ID);

In Kotlin:

// Specify your org ID, your deployment ID, and your Chat endpoint
val ORG_ID = "YOUR_ORG_ID"
val DEPLOYMENT_ID = "YOUR_DEPLOYMENT_ID"
val SOS_POD = "YOUR_ORG_URL"

// e.g. "d.la.salesforce.com"

// ...

// Create an SosOptions object
val options = SosOptions(SOS_POD, ORG_ID, DEPLOYMENT_ID)

Note:  You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already
set up SOS in Service Cloud or you need more guidance, see Console Setup for SOS.

3. (Optional) Configure the SOS session before starting.

Before starting an SOS session, you can optionally configure the session using an SosConfiguration  object. This object allows
you to enable or disable cameras, determine what screen a session starts on, and control other features. For more information about
configuring a session, see Configure an SOS Session.

4. (Optional) Customize the interface.

You can customize colors, strings, floating action buttons, and other aspects of the interface. You can also localize the strings into
other languages. To learn more about customizations, see SDK Customizations with the Service SDK for Android.

5. Call start on a new SOS session using the SosOptions object created earlier.

In Java:

// Start an SOS session
Sos.session(options).start(MainActivity.this);

In Kotlin:

// Start an SOS session
Sos.session(options).start(this@MainActivity);

For additional details on customizing the SOS experience in your app, see the other topics covered in Using SOS with the Service SDK.
If you run into network issues while connecting with an agent, see SOS Network Troubleshooting Guide.

128

Quick Setup: SOS in the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.SessionBuilder.html#start(android.app.Activity)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosOptions.html


Configure an SOS Session
Before starting an SOS session, you can optionally configure the session using an SosConfiguration  object. This object allows
you to enable or disable cameras, determine what screen a session starts on, and control other features.

SosConfiguration objects are constructed using SosConfiguration.Builder. For instance, the following code snippet
enables a two-way video session:

// Enable two-way video in Java
SosConfiguration config = new SosConfiguration.Builder()
.twoWayVideo(true)
.build();

// Enable two-way video in Kotlin
val config = SosConfiguration.Builder()
.twoWayVideo(true)
.build()

Once you've built a configuration object, add it to the session that you're starting:

// Start session in Java
Sos.session(options)
.configuration(config)
.start(this);

// Start session in Kotlin
Sos.session(options)
.configuration(config)
.start(this)

You can use this configuration object for many different types of configuration settings.

Session Startup
By default there are several UIs that are presented to the user during the startup flow of an SOS session. This flow includes the device
permissions UI, the onboarding UI, and the network test. Each of the sections of the startup flow can be disabled using the configuration
builder.

Note:  Disabling the permissions UI means that the application itself must acquire the necessary permissions before starting an
SOS session.

To disable the permissions UI:

// Disable permissions UI in Java
SosConfiguration config = new SosConfiguration.Builder()
.permissionUi(false)
.build();

// Disable permissions UI in Kotlin
val config = SosConfiguration.Builder()
.permissionUi(false)
.build()

129

Configure an SOS SessionEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.Builder.html


To disable the onboarding UI:

// Disable onboarding UI in Java
SosConfiguration config = new SosConfiguration.Builder()
.onboardingUi(false)
.build();

// Disable onboarding UI in Kotlin
val config = SosConfiguration.Builder()
.onboardingUi(false)
.build()

To change the layout of the onboarding UI:

// Change onboarding UI layout in Java
SosConfiguration config = new SosConfiguration.Builder()
.onboardingCardLayouts(R.layout.onboardingCardOne, R.layout.onboardingCardTwo)
.build();

// Change onboarding UI layout in Kotlin
val config = SosConfiguration.Builder()
.onboardingCardLayouts(R.layout.onboardingCardOne, R.layout.onboardingCardTwo)
.build()

To disable network tests:

// Disable network tests in Java
SosConfiguration config = new SosConfiguration.Builder()
.networkTestEnabled(false)
.build();

// Disable network tests in Kotlin
val config = SosConfiguration.Builder()
.networkTestEnabled(false)
.build()

Screen Sharing and Camera Configuration
By default, an SOS session begins by sharing the user's device screen with an agent. But you can also share the output from the device's
cameras with an agent by enabling two-way video.

To enable two-way video:

// Enable two-way video in Java
SosConfiguration config = new SosConfiguration.Builder()
.twoWayVideo(true)
.build();

// Enable two-way video in Kotlin
val config = SosConfiguration.Builder()
.twoWayVideo(true)
.build()

130

Configure an SOS SessionEmbedded Service SDK for Android Developer Guide



To enter into "field services" mode, where screen sharing is disabled and SOS exclusively uses two-way video, use the following
configuration:

// Enable field services mode in Java
SosConfiguration config = new SosConfiguration.Builder()
.fieldServices(true)
.build();

// Enable field services mode in Kotlin
val config = SosConfiguration.Builder()
.fieldServices(true)
.build()

There are many other ways you can configure a two-way video session. For more info about two-way video, see Two-Way Video.

Fonts
Although most UI customization is done by overriding XML resources, changing the font that is used to display messages is done by
specifying the font asset with typefaceFromAsset.

// Change the font in Java
SosConfiguration config = new SosConfiguration.Builder()
.typefaceFromAsset("fonts/myTypeface.ttf")
.build();

// Change the font in Kotlin
val config = SosConfiguration.Builder()
.typefaceFromAsset("fonts/myTypeface.ttf")
.build()

Connecting UI
By default, connection messages appear on the SOS interface when a session connects. You can override this behavior and present your
own UI during the connection process. To present your own UI for the connection process, disable the default UI at configuration time
with the connectingUi method.

// Disable default UI in Java
SosConfiguration config = new SosConfiguration.Builder()
.connectingUi(false)
.build();

// Disable default UI in Kotlin
val config = SosConfiguration.Builder()
.connectingUi(false)
.build()

Now you can handle state changes with your own UI. To learn more, see SOS: Customize the Connecting UI.

Sounds
By default, the user's default system notification sound is played when an SOS session is fully connected and the agent appears on the
screen. It is possible to customize the sound by providing a URI, providing a resource ID for an embedded sound file, or by disabling
sounds altogether.

131

Configure an SOS SessionEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.Builder.html#connectingUi(boolean)


To use an embedded sound file:

// Add embedded agent join sound in Java
SosConfiguration config = new SosConfiguration.Builder()
.agentJoinSound(R.raw.custom_agent_join_sound)
.build();

// Add embedded agent join sound in Kotlin
val config = SosConfiguration.Builder()
.agentJoinSound(R.raw.custom_agent_join_sound)
.build()

To use a URI:

// Add URI agent join sound in Java
SosConfiguration config = new SosConfiguration.Builder()
.agentJoinSound(Uri.parse("content://media/external/audio/media/710"))
.build();

// Add URI agent join sound in Kotlin
val config = SosConfiguration.Builder()
.agentJoinSound(Uri.parse("content://media/external/audio/media/710"))
.build()

If you use a URI, we recommend using local or content provider paths only; a network resource may negatively impact the user experience.

To disable sound:

// Disable sound in Java
SosConfiguration config = new SosConfiguration.Builder()
.playSounds(false)
.build();

// Disable sound in Kotlin
val config = SosConfiguration.Builder()
.playSounds(false)
.build()

Debugging
When you are debugging and testing your application, it is often convenient to turn off some features. For instance, developing locally
can cause an audio feedback loop between a device and your computer. If you are not working on audio features, you can use audio
to disable all audio in your test sessions:

// Disable all audio in Java
SosConfiguration config = new SosConfiguration.Builder()
.audio(false) // No audio will ever be available in the session
.build();

// Disable all audio in Kotlin
val config = SosConfiguration.Builder()
.audio(false) // No audio will ever be available in the session
.build()

132

Configure an SOS SessionEmbedded Service SDK for Android Developer Guide



Another level of audio and video disabling is available using agentPublish. When set to false  there is no creation, configuration,
or use of the OpenTok  agent. This is useful when using automated testing suites that do not have audio or video capabilities.

// Disable audio/video in Java
SosConfiguration config = new SosConfiguration.Builder()
.agentPublish(false) // OpenTok agent is never used
.build();

// Disable audio/video in Kotlin
val config = SosConfiguration.Builder()
.agentPublish(false) // OpenTok agent is never used
.build()

Control an SOS Session
During an SOS session, you can control the session using various static methods on the Sos  class. These methods can pause the session,
disable screen sharing, stop the session, change what is being shown on the screen, and perform other functions.

DescriptionMethod Name

Pauses or unpauses the session. When paused, no audio or video
is sent to the agent.

void setSessionPaused (boolean paused)

Ends the current SOS session. The showPrompt argument allows
you to control whether a prompt is displayed to the user before
the session ends.

void endSession (boolean showPrompt)

Returns whether a session is active.boolean isSessionActive ()

Enables or disables the screen sharing functionality. This method
can be used to temporarily stop screen sharing when the user is

void setScreenSharingEnabled (boolean
enabled)

viewing sensitive information. See Field Masking for instructions
on hiding specific fields.

Enables or disables the audio.void setAudioEnabled (boolean enabled)

Enables or disables the two-way video feature without prompting
the user. You can only turn on two-way video if the session has

void setTwoWayVideoEnabled (boolean
enabled)

been configured for two-way video and the device has a camera.
See Two-Way Video to learn more.

Changes the share type to the specified value. Possible values are:
BackFacingCamera, FrontFacingCamera,

void setShareType (SosShareType shareType)

ScreenSharing. You can only turn on a camera if the session
has been configured for two-way video and the device has a
camera. See Two-Way Video to learn more.

Two-Way Video
In addition to screen sharing, the SOS SDK lets your customer share their device's live camera feed with an agent. The customer's
front-facing camera allows for a video conversation with an agent. The back-facing camera provides a great way for a customer to show
something to an agent, rather than have to explain it.

133

Control an SOS SessionEmbedded Service SDK for Android Developer Guide



By default, after a connection is established, the camera shows the agent in the full-screen view and the customer’s camera in the
picture-in-picture view. If a device has both a front-facing and back-facing camera, the customer can swap cameras by double-tapping
the screen during the two-way video session. The customer can also tap the picture-in-picture view to swap the full-screen view with
the picture-in-picture view.

You can enable the camera features by creating an SosConfiguration object with the desired settings and adding this configuration
object to the Sos.SessionBuilder. For details about using this mechanism, see Configure an SOS Session.

The following video-related configuration settings are available:

Table 5: Two-Way Video Configuration Settings

DescriptionDefault ValueSetting

Whether two-way video is enabled. This
setting is required if you want to use either
of the cameras.

falsetwoWayVideo

Whether the front-facing camera is enabled.
When two-way video is enabled, the

truefrontFacingCamera

front-facing camera is enabled by default,
if available.

Whether the back-facing camera is enabled.
When two-way video is enabled, the

truebackFacingCamera

134

Two-Way VideoEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.SessionBuilder.html


DescriptionDefault ValueSetting

back-facing camera is enabled by default, if
available.

Default sharing mode when a session starts.
Can be set to

SosShareType.ScreenSharingdefaultShareType

SosShareType.ScreenSharing,
SosShareType.FrontFacingCamera,
or
SosShareType.BackFacingCamera.
If you don't specify a default share type,
when you open the camera, it will try to use
the front-facing camera first. If you specify
FrontFacingCamera  or
BackFacingCamera, be sure to enable
twoWayVideo  as well.

Whether the session is in field services
mode. In field services mode, screen sharing

falsefieldServices

is disabled and two-way video is enabled.
The app launches in full-screen video mode
and you can't go into screen sharing mode.
By default, the front-facing camera is used
(if available) when the session starts.

When you turn on the camera using SOS, the user sees the Camera UI. The SDK never sends camera frames to the agent without a clear
indication for the user on the device.

The configuration process for some of the more common use cases are shown below.

Example: Basic Two-Way Video

To turn on basic two-way video:

// Turn on two-way video in Java
SosConfiguration config = new SosConfiguration.Builder()
.twoWayVideo(true)
.build();

// Turn on two-way video in Kotlin
val config = SosConfiguration.Builder()
.twoWayVideo(true)
.build()

In this scenario, two-way video is accessible to the user (by tapping the camera icon on the SOS UI), but the session still starts in
screen sharing mode.

Example: Start with Front-Facing Camera

To start an SOS session with the front-facing camera:

// Start with front-facing camera in Java
SosConfiguration config = new SosConfiguration.Builder()

135

Two-Way VideoEmbedded Service SDK for Android Developer Guide



.twoWayVideo(true)

.defaultShareType(SosShareType.FrontFacingCamera)

.build();

// Start with front-facing camera in Kotlin
val config = SosConfiguration.Builder()
.twoWayVideo(true)
.defaultShareType(SosShareType.FrontFacingCamera)
.build()

In this scenario, the session starts with the front-facing camera, but the user can return to screen sharing if desired.

Example: Field Services Mode

To start an SOS session in field services mode:

// Start in field services mode in Java
SosConfiguration config = new SosConfiguration.Builder()
.fieldServices(true)
.build();

// Start in field services mode in Kotlin
val config = SosConfiguration.Builder()
.fieldServices(true)
.build()

In this scenario, the session starts in full-screen video mode (using the front-facing camera first, if available) and screen sharing
mode is disabled.

Example: Disable a Camera

To enable two-way video but disable the back-facing camera:

// Enable two-way, disable back-facing camera in Java
SosConfiguration config = new SosConfiguration.Builder()
.twoWayVideo(true)
.backFacingCamera(false)
.build();

// Enable two-way, disable back-facing camera in Kotlin
val config = SosConfiguration.Builder()
.twoWayVideo(true)
.backFacingCamera(false)
.build()

To enable two-way video but disable the front-facing camera:

// Enable two-way, disable front-facing camera in Java
SosConfiguration config = new SosConfiguration.Builder()
.twoWayVideo(true)
.frontFacingCamera(false)
.build();

// Enable two-way, disable front-facing camera in Kotlin
val config = SosConfiguration.Builder()
.twoWayVideo(true)

136

Two-Way VideoEmbedded Service SDK for Android Developer Guide



.frontFacingCamera(false)

.build()

Check SOS Agent Availability
Before starting a session, you can check the availability of your SOS agents and then provide your users with more accurate expectations.

You can subscribe as a listener to be notified whenever the agent availability state changes.

1. Implement the SosAvailability.Listener interface.

In Java:

public class MyActivity extends Activity implements SosAvailability.Listener {

In Kotlin:

public class MyActivity: Activity(), SosAvailability.Listener {

2. Register your object as a listener.

In Java:

SosAvailability.addListener(this);

In Kotlin:

SosAvailability.addListener(this)

3. Upon registration, check the current status of agent availability to get initial status information.

In Java:

SosAvailability.Status status = SosAvailability.getStatus();

In Kotlin:

val status = SosAvailability.getStatus()

4. Upon registration, start polling for state changes.

In Java:

if (!SosAvailability.isPolling()) {
SosAvailability.startPolling(this, orgId, deploymentId, liveAgentPod);

}

In Kotlin:

if (!SosAvailability.isPolling()) {
SosAvailability.startPolling(this, orgId, deploymentId, liveAgentPod)

}

Note:  You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already
set up SOS in Service Cloud or you need more guidance, see Console Setup for SOS.

5. Implement the onSosAvailabilityChange  method to handle state changes.

137

Check SOS Agent AvailabilityEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosAvailability.Listener.html


In Java:

@Override
public void onSosAvailabilityChange (SosAvailabilty.Status status) {
// React to status updates: UNKNOWN, AVAILABLE, or UNAVAILABLE

}

In Kotlin:

override fun onSosAvailabilityChange(status: SosAvailability.Status?) {
// React to status updates: UNKNOWN, AVAILABLE, or UNAVAILABLE

}

6. When done, unregister listener and stop polling.

In Java:

SosAvailability.removeListener(this);
SosAvailability.stopPolling();

In Kotlin:

SosAvailability.removeListener(this)
SosAvailability.stopPolling()

Refer to the SosAvailability Javadoc for more details.

Example: The following example handles agent availability changes from an Activity  class.

public class MyActivity extends Activity implements SosAvailability.Listener {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

SosAvailability.addListener(this);

// check if there is any known status, react to it if so
updateAvailability(SosAvailability.getStatus());

if (!SosAvailability.isPolling()) {
SosAvailability.startPolling(this, orgId, deploymentId, liveAgentPod);

}
}

@Override
public void onDestroy () {
super.onDestroy();

SosAvailability.removeListener(this);

// Stop polling, if needed. Don't do this if you would like to continue
// polling in the background
SosAvailability.stopPolling();

}

//----------------------------------------------------------------------------

138

Check SOS Agent AvailabilityEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosAvailability.html


// SosAvailability.Listener implementation
//----------------------------------------------------------------------------

@Override
public void onSosAvailabilityChange (SosAvailabilty.Status status) {
// React to status updates, either UNKNOWN, AVAILABLE, or UNAVAILABLE
// This value is an enum

// A primary use-case is to show a button to initiate an SOS session only if
// there is an agent AVAILABLE

}

//----------------------------------------------------------------------------
// private helpers
//----------------------------------------------------------------------------

private void updateAvailablity (SosAvailability.Status status) {
// React to the given status, e.g. show a button if it is AVAILABLE

}
}

Listen to SOS Events
The SOS SDK provides listeners that allow you to listen and respond to various events emitted during an SOS session. These listeners
can be used to keep your application informed about the state of the SOS session or to implement custom behavior based on the SOS
session progress.

Note:  This topic covers how to handle state changes from your mobile app. For information about how to handle state changes
from the Salesforce console, see Listen for SOS Console Events.

The following SOS listeners are available:

SosListener
Covers the high-level status of the session, including session creation, session termination, and the state of the session (with
SosState).

SosHoldListener
Includes events for when the hold status of the session has changed.

SosConnectionListener
Allows you to listen for connection quality changes.

SosAVListener
Includes events for when the status of the audio or video playback changes during a session.

SosMaskingListener
Includes events for when masked fields are hidden or exposed during an SOS session.

SosNetworkTestListener
Can be used to listen to the status of the pre-session network test.

SosShareTypeListener
Allows you to monitor share type changes during a session.

SosAvailability.Listener
Allows you to monitor agent availability state changes. To learn more, see Check SOS Agent Availability.

139

Listen to SOS EventsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosState.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosHoldListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConnectionListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosAVListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosMaskingListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosNetworkTestListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosShareTypeListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosAvailability.Listener.html


SosNetworkStatsListener
Allows you to inspect your audio and video quality-of-service (QoS) to detect packet loss and other streaming issues. To learn more,
see Quality-of-Service Events.

Refer to the linked Javadoc for more details about these listeners.

Checking Initial State
A few event types have static methods in order for you to manually check their states. Depending on your implementation, these methods
can be used to check the state when you initially start listening for an event.

getState
Returns the same state sent to an SosListener.

getHoldState
Returns the same state sent to an SosHoldListener.

Using a Listener
Instances of each of the listener interfaces can be added or removed using the appropriate static APIs in the SOS class. Listeners can be
added and removed at any time before a session starts or during an active session, and they are triggered for all events that occur until
they're removed.

Note:  Be sure to remove any listeners you've added when your application is finished listening to events. The added listeners are
statically referenced, and failure to properly remove them before they go out of scope results in a memory leak in your application.

We recommend that you do not tie an SosListener implementation to the lifecycle of an Activity  if you expect to receive
SOS events during the session. Since Activities are created and destroyed with regularity, it is preferable to create an instance of
SosListener  that exists at the Application level, or by some other means to ensure it persists for the duration of a session.

Example: Listener in Activity Class

A common way to use the listener interfaces is to implement them in an Activity  class. The Activity can add itself as a
listener in one of its pre-visible lifecycle callbacks, and remove itself in a post-visible callback.

public class MyActivity extends Activity implements SosListener {

// ...

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// ... Do your normal activity setup here.

// Add this activity as an SOS event listener. The SosListener methods
// implemented below will now be called for any new or existing SosSession
// while this Activity instance exists.
Sos.addListener(this);

}

@Override
public void onDestroy () {
super.onDestroy();

140

Listen to SOS EventsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#getState()
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#getHoldState()
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosHoldListener.html


// ... Do your normal activity teardown here.

// Remove ourselves as an SOS event listener. This call ensures that you
// will not leak a reference to your Activity.
Sos.removeListener(this);

}

// ...

@Override
public void onSessionCreated () {
// Handle a new session being created here by e.g. changing the UI to
// reflect that you're in an SOS session.

}

@Override
public void onSessionEnded (SosEndReason reason) {
// Handle a session being ended here.

}

@Override
public void onSessionStateChange (SosState state, SosState oldState) {
// Handle state changes during the session here.

}
}

Example: Listener in Anonymous Class

You can also choose to add a listener using an anonymous class for a more short-term use case. Be sure to remove the listener so
there are no leaks.

public class MyActivity extends Activity {

public static final String TAG = MyActivity.class.getSimpleName();

private SosAVListener mListener;

public void addListener () {
mListener = new SosAVListener () {
@Override
public void onAudioToggled (boolean enabled) {
LOG.d(TAG, "SOS audio is " + (enabled ? "enabled" : "disabled"));

}

@Override
public void onVideoToggled (boolean enabled) {
LOG.d(TAG, "SOS video is " + (enabled ? "enabled" : "disabled"));

}
};

}

public void removeListener () {
if (mListener != null) {
Sos.removeAVListener(mListener);

141

Listen to SOS EventsEmbedded Service SDK for Android Developer Guide



mListener = null;
}

}

@Override
public void onDestroy () {
// Make sure the listener is definitely removed.
removeListener();

}
}

Quality-of-Service Events
Check your audio and video quality-of-service (QoS) to detect packet loss and other streaming issues between the OpenTok media
router and your org.

Note:  This SDK allows you to track streaming issues on the other side of the conversation (from the agent to the media router).
To track QoS issues on this side (from the app to the media router), see SOS Quality-of-Service Console Events.

1. Implement the SosNetworkStatsListener interface.

This interface has 2 methods.

void onAudioStatsChanged (AudioStats audioStats) {
// Handle audio network stats updates

}

void onVideoStatsChanged (VideoStats videoStats) {
// Handle video network stats updates

}

Each method provides streaming stats across a 30-second span of time.

The AudioStats object gives you the following information:

Table 6: AudioStats Methods

DescriptionTypeMethod

The timestamp for when the sample was
taken, in milliseconds since the Unix Epoch.

intgetTimestamp

The total number of packets received on
a stream since last update.

intgetPacketsReceived

The total number of packets lost on a
stream since last update.

intgetPacketsLost

The total number of bytes received on a
stream since last update.

intgetBytesReceived

SOS Session ID that correlates to the data
being provided.

StringgetSessionId

The VideoStats object gives you the following information:

142

Quality-of-Service EventsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosNetworkStatsListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/AudioStats.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/VideoStats.html


Table 7: VideoStats Methods

DescriptionTypeMethod

The timestamp for when the sample was
taken, in milliseconds since the Unix Epoch.

intgetTimestamp

The total number of packets received on
a stream since last update.

intgetPacketsReceived

The total number of packets lost on a
stream since last update.

intgetPacketsLost

The total number of bytes received on a
stream since last update.

intgetBytesReceived

SOS Session ID that correlates to the data
being provided.

StringgetSessionId

The size of the agent video steam in pixels.SizegetSize

2. Register your object as a listener.

Sos.addNetworkStatsListener(myListener);

3. When done, unregister the listener.

Sos.removeNetworkStatsListener(myListener);

Detect the Keyboard
Because the Android OS manages the keyboard, its representation on the screen is inaccessible to an application. This situation presents
a challenge when sending an image of the device to an agent during an SOS session. For this reason, you should explicitly pass along
information about the keyboard.

Sending Keyboard Information
When you determine that keyboard information has changed, use the SDK to send this information to the agent:

showKeyboard
Informs the agent that the keyboard covers a given rectangle on the screen.

hideKeyboard
Informs the agent that the keyboard is not visible.

The API describes the size and position of the keyboard and not its appearance. Your application cannot know what the keyboard looks
like, especially because users are free to install third-party keyboards. When you give the SDK a keyboard position and size the agent
sees a shaded rectangle in the specified area. If you wish to show a full screen keyboard, pass in a null Rect  to the
showKeyboard(Rect)  method.

Keyboard view from agent's perspective:

143

Detect the KeyboardEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#showKeyboard(android.graphics.Rect)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#hideKeyboard()


Techniques to Detect the Keyboard
There is no direct way to detect the keyboard on Android. However, it's possible to infer the existence of the keyboard by using the
InputMethodManager  to determine if input views are active on the screen and if they are able to receive input from the user.

It's also not possible to directly determine the position or dimensions of the keyboard, but sometimes you can infer this information by
comparing the Window dimensions of the current Activity  to the device's default Display  area. In some situations, especially
in portrait orientation, the Window  dimensions shrink in height to accommodate the keyboard. If you subtract the shrunken Window
dimensions from the Display dimensions, you can assume the keyboard occupies that area. In landscape orientation, if the Window
size has not changed, you can assume that the keyboard takes up the entire display.

Detecting the Keyboard Using InputMethodManager
The InputMethodManager  is provided by Android to facilitate the transfer of input data into an application. It also provides an
API for determining if Android is currently accepting input. It doesn't provide any information about the size of the keyboard, but it's
possible to infer whether a keyboard is displayed by combining the output from a few of its methods.

Once you have obtained an instance of the InputMethodManager, you can check for the presence of input-ready views with the
following condition:

if (mInputMethodManager != null && mInputMethodManager.isActive() &&
mInputMethodManager.isAcceptingText()) {
// Determine keyboard area and call Sos.showKeyboard(...)

} else {
Sos.hideKeyboard();

}

Invoking InputMethodManager.isActive()  tells you if the current view has any editable views (such as EditText) inflated.
Invoking InputMethodManager.isAcceptingText() tells you if any of those editable views have focus. It's possible for an

144

Detect the KeyboardEmbedded Service SDK for Android Developer Guide



editable view to have focus while the keyboard is not displayed. For this reason, it's not the only indicator you'll need to determine the
on-screen presence of the keyboard.

The InputMethodManager.isFullscreenMode()  method tells you if the keyboard is occupying the entire screen. In
practice, this information isn't correlated with the appearance of a full screen keyboard, but rather that one is about to be displayed, or
that the editable view that prompted the display of a full screen keyboard has retained focus. For this reason it's not a reliable indicator
of when the full screen keyboard is displayed to the user.

Detecting the Keyboard Using Window Size
Another technique for detecting the keyboard is to obtain the current Window  size. When a keyboard appears on the screen and
doesn't require its own Window, as a full screen keyboard does, the current Window  reduces its height to accommodate it. By
subtracting the updated Window  size from the default Display  size, you can assume that the keyboard occupies the area in the
difference. This technique works particularly well on tablets and in portrait orientation on smaller devices. However, this method does
not work when a full screen keyboard is displayed (in landscape orientation on a phone) because the Window  that contains your
View  does not change its dimensions.

There are other situations in which the Window  size might change that are unrelated to the keyboard. For this reason, Window  size
is not the only indicator you'll need to determine the presence of the on-screen keyboard. We have found two methods for obtaining
Window  size changes that can help you detect a keyboard:

1. Intercept View Measurement

2. View Tree Observer Listeners

These two techniques only approximate the existence of the keyboard. Used together, they provide a reasonably accurate estimate.
Taking into account the characteristics of your application, you can further improve the accuracy.

Window Size Method 1: Intercept View Measurement

In situations when a Window  is resized to accommodate a keyboard, Android re-measures the views on screen using the Android
View  system. This process causes each layout's onMeasure(int, int)  method to be called. An effective way to intercept this
event is to find each root layout type you use for your activities and extend them to override the onMeasure(int, int)  method.
You should also change your layout XML files to use your new custom Layout  classes.

package com.salesforce.documentation.layout;

public class CustomLinearLayout extends LinearLayout {

// { Constructors Here }

@Override
protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) {
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
Rect rect = new Rect();
((Activity) getContext()).getWindow().getDecorView().
getWindowVisibleDisplayFrame(rect);

// Continue with Keyboard Detection, SOS API
}

}

<com.salesforce.documentation.layout.CustomLinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/main_layout"
android:layout_width="match_parent"

145

Detect the KeyboardEmbedded Service SDK for Android Developer Guide



android:layout_height="match_parent">

<!-- Views Here -->

</com.salesforce.documentation.layout.CustomLinearLayout>

Window Size Method 2: View Tree Observer Listeners

An alternative method to detect Window  resizing is to use the ViewTreeObserver. Registering a
ViewTreeObserver.OnGlobalLayoutListener  with a ViewTreeObserver  instance allows you to be notified when
a view hierarchy is resized. This event can occur with the presence of an on-screen keyboard.

To obtain a reference to a ViewTreeObserver, you must obtain Activity  instances as they are created. The most flexible way
of getting this information is to register an instance of the ActivityLifecycleCallbacks  with your Application  context.
Keep in mind that listeners you register with ViewTreeObserver  should be explicitly cleaned up when the Activity  it belongs
to is paused or destroyed.

public class ActivityTracker implements Application.ActivityLifecycleCallbacks {

private ViewTreeObserver mViewTreeObserver;
private ViewTreeObserver.OnGlobalLayoutListener mGlobalLayoutListener;

@Override
public void onActivityResumed (final Activity activity) {
View view = ((ViewGroup) activity.getWindow().getDecorView().
findViewById(android.R.id.content)).getChildAt(0);

mViewTreeObserver = view.getViewTreeObserver();
mGlobalLayoutListener = new ViewTreeObserver.OnGlobalLayoutListener() {
@Override
public void onGlobalLayout () {
Rect windowRect = new Rect();
activity.getWindow().getDecorView().getWindowVisibleDisplayFrame(windowRect);
// Continue with Keyboard Detection, SOS API

}
};

mViewTreeObserver.addOnGlobalLayoutListener(mGlobalLayoutListener);
}

@Override
public void onActivityPaused (Activity activity) {
if (mViewTreeObserver == null || !mViewTreeObserver.isAlive() ||

mGlobalLayoutListener == null) {
return;

}

// Make sure the ViewTreeObserver and listener are cleaned up.
if (android.os.Build.VERSION.SDK_INT <= 15) {
mViewTreeObserver.removeGlobalOnLayoutListener(mGlobalLayoutListener);

} else {
mViewTreeObserver.removeOnGlobalLayoutListener(mGlobalLayoutListener);

}
}

146

Detect the KeyboardEmbedded Service SDK for Android Developer Guide



// { Other Overrides }
}

Example: Keyboard Detector Example

/**
* KeyboardDetector
*
* Attempt to detect the presence of the soft keyboard on screen and prompt SOS
* to display the keyboard overlay to the Agent.
*
* Utilizes the InputMethodManager to detect when a keyboard might be visible and
* compares the Display size to the current Window size in order to determine what
* the size of the keyboard could be.
*
* The InputMethodManager is able to tell us if there are any active input views
* and if any of them are accepting input. We can use this to reasonably infer
* that a soft keyboard could be present on the screen. Since we can only
* correlate input readiness with the display of a soft keyboard, this method
* is not 100% accurate.
*
* We are able to make an assumption regarding the soft keyboard's on-screen
* dimensions expecting the Window dimensions to shrink once a keyboard is
* displayed. By comparing the new, smaller Window dimensions with the
* device's Display dimensions we can assume that the gap between the bottom of
* the Window and the bottom of the Display must be the area occupied by a soft
* keyboard. This method may not work if the Activity is configured to maintain
* its dimensions, and it cannot account for the dimensions of the full-screen
* keyboard that is displayed on phones while in landscape orientation.
*/
public class KeyboardDetector {

private InputMethodManager mInputMethodManager;
private WindowManager mWindowManager;
private Activity mActivity;

public KeyboardDetector (Activity activity) {
mActivity = activity;
mInputMethodManager =
(InputMethodManager) activity.getSystemService(Context.INPUT_METHOD_SERVICE);

mWindowManager =
(WindowManager) activity.getSystemService(Context.WINDOW_SERVICE);

}

/**
* Attempt to discover if a soft keyboard is displayed on the screen and what its
* dimensions are. This method will inform SOS of when the keyboard overlay should
* be hidden from the Agent and when it should be shown (and what its dimensions
* are).
*/
public void detectKeyboard () {
if (mInputMethodManager == null ||

!mInputMethodManager.isActive() ||
!mInputMethodManager.isAcceptingText()) {

Sos.hideKeyboard();

147

Detect the KeyboardEmbedded Service SDK for Android Developer Guide



return;
}

Rect windowRect = getWindowRect();

if (mInputMethodManager.isFullscreenMode()) {
Sos.showKeyboard(windowRect);

} else {
Rect displayRect = getDisplayRect();
Rect keyboardRect = getKeyboardRect(displayRect, windowRect);
Sos.showKeyboard(keyboardRect);

}
}

/**
* Get the dimensions of the Default Display as a Rect instance.
*
* @return Rect with the display dimensions
*/
private Rect getDisplayRect () {
Rect displayRect = new Rect();
mWindowManager.getDefaultDisplay().getRectSize(displayRect);
return displayRect;

}

/**
* Get the dimensions of the Activity's Window as a Rect instance.
*
* @return Rect with the Window dimensions
*/
private Rect getWindowRect () {
Rect rect = new Rect();
mActivity.getWindow().getDecorView().getWindowVisibleDisplayFrame(rect);
return rect;

}

/**
* Get the assumed dimensions of the soft keyboard by assuming that it must
* occupy the area between the bottom of the Window Rect and the bottom of
* the Display Rect.
*
* @param display Rect instance representing the Default Display area
* @param window Rect instance representing the Window area
* @return Rect with assumed keyboard dimensions
*/
private Rect getKeyboardRect (final Rect display, final Rect window) {
return new Rect(display.left, window.bottom, display.right, display.bottom);

}
}

Example: Integration ExampleOne of the most reliable ways to invoke the KeyboardDetector  is by extending the
layout class you are using in your app and calling the detectKeyboard()  method during View.onMeasure(int,
int). If you choose to invoke keyboard detection this way, you'll need to do this for each type of layout in your app that contains
input views as they could cause a keyboard to appear.

148

Detect the KeyboardEmbedded Service SDK for Android Developer Guide



If you choose to implement this on an Activity  that will not be destroyed during an orientation change, you may want to
invoke keyboard detection within an onConfigurationChange(Configuration)  override as well.

public class KeyboardDetectingDrawerLayout
extends android.support.v4.widget.DrawerLayout {

private KeyboardDetector mKeyboardDetector;

public KeyboardDetectingDrawerLayout (Context context) {
this(context, null);

}

public KeyboardDetectingDrawerLayout (Context context, AttributeSet attrs) {
this(context, attrs, 0);

}

public KeyboardDetectingDrawerLayout (Context context,
AttributeSet attrs, int defStyle) {

super(context, attrs, defStyle);
mKeyboardDetector = new KeyboardDetector((Activity) context);

}

@Override
protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) {
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
mKeyboardDetector.detectKeyboard();

}
}

Field Masking
If an application contains sensitive information that an agent shouldn't see during an SOS session, you can hide this information from
the agent.

The Android SDK provides five views that mask information sent to an agent during an SOS session. These five views mimic their
corresponding native Android views.

• AutoCompleteTextView

• EditText

• MultiAutoCompleteTextView

• TextView

• View

These views are used in the same way as their native Android counterparts, but they automatically obscure their contents when the
application screen is being shared with an agent during an SOS session.

Implementing Masked Fields
The simplest way to use field masking is to replace a native Android view in your layout file with its masking alternative.

149

Field MaskingEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/AutoCompleteTextView.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/EditText.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/MultiAutoCompleteTextView.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/TextView.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/View.html


In this example application that allows a user to transfer money to another account, the account number and the amount being transferred
are sensitive data and are masked from the agent when in an SOS session. To get this behavior, instead of using a native Android
EditText  view for the account number and transfer amount, use com.salesforce.android.sos.maskview.EditText.

<com.salesforce.android.sos.maskview.EditText
android:id="@+id/transfer_account"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#FF000000"
android:text="@string/transfer_account_value"
android:textSize="24sp"
android:gravity="center_horizontal"/>

<com.salesforce.android.sos.maskview.EditText
android:id="@+id/transfer_amount"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#FF000000"
android:text="@string/transfer_amount_value"
android:textSize="24sp"/>

This change is enough to ensure that an agent doesn't see the values in these two views. When the user edits either of the fields, screen
sharing halts and the agent sees a notification that sensitive data is being edited.

SOS session with masked field (normal view vs. SOS session view):

When a user begins editing a masked field, the view is exposed and a toast is presented to the user. Editing is then done normally as it
would with the corresponding native Android view. The agent on the other end no longer sees the application screen and is presented
with a notification.

Behavior when editing masked field (user view vs. agent view):

150

Field MaskingEmbedded Service SDK for Android Developer Guide



When the user finishes editing the masked fields and the fields no longer have focus, screen sharing resumes with the fields masked
and the agent able to see the application again.

Customizing Masked View Drawable
The default masking behavior is to draw a gray rounded rectangle to cover the masked view. You can customize the appearance of a
masked field by specifying a Drawable  resource to be used to draw the mask over the view. In this example application, we add a
reference to a custom Drawable  to each masked field to match the application's theme. This Drawable  is used in place of the
gray rounded rectangle when drawing.

Define a Drawable  in blue_field_mask.xml:

<?xml version="1.0" encoding="utf-8"?>
<shape

xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">

<!-- Specify a color for the background -->
<solid

android:color="#ff2877ba"/>

<!-- Specify a darker border -->
<stroke

android:width="2dp"
android:color="#ff36485d"/>

<!-- Specify rounded corners -->
<corners

android:topLeftRadius="10dp"
android:topRightRadius="10dp"

151

Field MaskingEmbedded Service SDK for Android Developer Guide



android:bottomLeftRadius="10dp"
android:bottomRightRadius="10dp"/>

</shape>

Add the custom Drawable  to the masked views:

<com.salesforce.android.sos.mask.EditText
app:sos_mask_drawable="@drawable/blue_field_mask"
android:id="@+id/transfer_account"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#FF000000"
android:text="@string/transfer_account_value"
android:textSize="24sp"
android:gravity="center_horizontal"/>

<com.salesforce.android.sos.mask.EditText
app:sos_mask_drawable="@drawable/blue_field_mask"
android:id="@+id/transfer_amount"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#FF000000"
android:text="@string/transfer_amount_value"
android:textSize="24sp"/>

As a result, the masks are now drawn using the custom Drawable. There is no restriction on what makes up the custom Drawable.
The only caveat is that the Drawable  stretches to fill the size of the masked view.

Custom Drawable masked field:

152

Field MaskingEmbedded Service SDK for Android Developer Guide



You can also change the Drawable  used by a masked view programmatically by calling setMask on the masked view.

import com.salesforce.android.sos.mask.EditText;

...

Drawable blueMask = getResources().getDrawable(R.drawable.blue_field_mask);

final EditText transferAccountView = (EditText) rootView.findViewById(R.id.transfer_account);
transferAmountView.setMask(blueMask);

final EditText transferAmountView = (EditText) rootView.findViewById(R.id.transfer_amount);
transferAccountView.setMask(blueMask);

This method has the same effect as specifying a Drawable  in XML, but it allows the mask to be set dynamically during application
execution.

Manually Hiding Masked Fields
The default behavior for hiding and exposing masked fields is based on when a field has focus. If a masked field has focus, it is exposed
(and screen sharing halts), and when it does not have focus, it is hidden. In situations where you want to expose and hide masked views
manually, you can call showMask on the masked view. This method is useful in cases where a masked view does not normally get
focus, such as displaying static text in a TextView, or when using the more generic View.

In this sample application, the account balance is considered sensitive information and is defined as a TextView.

<com.salesforce.android.sos.maskview.TextView
app:sos_mask_drawable="@drawable/blue_field_mask"
android:id="@+id/account_balance"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#FF000000"
android:text="@string/account_balance_value"
android:textSize="24sp"/>

import com.salesforce.android.sos.maskview.TextView;

...

final TextView accountBalance = (TextView) rootView.findViewById(R.id.account_balance);

// expose the account balance (do not mask the view)--screen sharing will be paused
accountBalance.showMask(false);

// hide the account balance (mask the view)
accountBalance.showMask(true);

Manually masked view:

153

Field MaskingEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/SosMaskedField.html#setMask(android.graphics.drawable.Drawable)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/SosMaskedField.html#showMask(boolean)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/TextView.html


In all situations where a masked field is exposed, regardless of whether it is exposed manually or automatically, the agent cannot view
the application screen. Only when all masked fields are hidden is screen sharing enabled.

Turning Off Focus Masking
If you're planning on manually exposing and hiding a masked view, it can be confusing to have the default behavior based on focus
active at the same time. This situation results in a visible masked view regardless of whether it has focus or if it has been manually exposed.

To turn off automatic masking based on focus, add a flag to the masked field definition:

<com.salesforce.android.sos.maskview.EditText
app:sos_use_focus_masking="false"
app:sos_mask_drawable="@drawable/blue_field_mask"
android:id="@+id/transfer_account"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#FF000000"
android:text="@string/transfer_account_value"
android:textSize="24sp"
android:gravity="center_horizontal"/>

<com.salesforce.android.sos.maskview.EditText
app:sos_use_focus_masking="false"
app:sos_mask_drawable="@drawable/blue_field_mask"
android:id="@+id/transfer_amount"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#FF000000"
android:text="@string/transfer_amount_value"
android:textSize="24sp"/>

154

Field MaskingEmbedded Service SDK for Android Developer Guide



Now, when the user edits one of the masked fields, the mask is not removed. Make this change only if you plan to manage masking
manually.

You can also turn off focus masking programmatically by calling useFocusMasking on the masked view.

import com.salesforce.android.sos.maskview.EditText;

...

final EditText transferAccountView = (EditText) rootView.findViewById(R.id.transfer_account);

// turn off focus masking
transferAmountView.useFocusMasking(false);

// turn focus masking back on
transferAmountView.useFocusMasking(true);

Custom Data
Use custom data to identify customers, send error messages, issue descriptions, or identify the page the SOS session was initiated from.

When an agent receives an SOS call, it can be helpful to have information about the caller before starting the session. Use the custom
data feature to identify customers, send error messages, identify the currently viewed page, or send other information. Custom data
populates custom fields on the SOS Session object that is created within your Salesforce org for each SOS session initiated by a user.

Before using custom data, create the corresponding fields within the SOS Session object of your Salesforce org. To learn more, see Create
Custom Fields.

To use this feature, construct a Map  instance and pass it to the SosOptions constructor. The keys in this map should reference the
API Name for fields defined in your SOS Session object and the values should reflect the desired values for those fields. The class of the
value object should reflect the field type in the SOS Session object.

Example: This example shows how to pass email information from your app to Service Cloud. Before trying this example, be
sure to define an "Email" custom field on the SOS Session object in your Salesforce org:

To learn more about custom fields, see Create Custom Fields in Salesforce Help.

Once you have created a custom field, construct a Map  and use the API Name of the field to specify the customer's email address.
In this case, the field is defined as an Email data type, so we specify a valid email address as a String.

In Java:

Map<String, Object> customData = new HashMap<>();

// Here we are passing the customer's email address as a String. Note the use
// of the field's API Name as the key in the map. We are only populating a single
// field here, but we may put an arbitrary number of entries into the map to
// populate multiple different fields.
customData.put("Email__c", "laurenboyle@example.com");

155

Custom DataEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/SosMaskedField.html#useFocusMasking(boolean)
https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosOptions.html
https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US


// Use the custom data map when initializing the SosOptions instance. From here,
// you may simply create the session as normal and the custom data will be used
// to populate fields in the SOS Session object.
SosOptions sosOpts = new SosOptions(

customData
"your.pod.name",
"your-org-id",
"your-deploy-id"

);

In Kotlin:

var customData = HashMap<String, Any>()

// Here we are passing the customer's email address as a String. Note the use
// of the field's API Name as the key in the map. We are only populating a single
// field here, but we may put an arbitrary number of entries into the map to
// populate multiple different fields.
customData.put("Email__c", "laurenboyle@example.com")

// Use the custom data map when initializing the SosOptions instance. From here,
// you may simply create the session as normal and the custom data will be used
// to populate fields in the SOS Session object.
val sosOpts = SosOptions(

customData,
"your.pod.name",
"your-org-id",
"your-deploy-id"

)

When the user creates an SOS session, the Email field is pre-populated with the value specified in the SosOptions custom data
map.

SDK Customizations with the Service SDK for Android

Once you’ve played around with some of the SDK features, use this section to learn how to customize the Service SDK so that it fits the
look and feel of your app. This section also contains instructions for localizing strings in all supported languages.

Customize Colors with the Service SDK

You can customize the look and feel of the interface by specifying the colors used throughout the UI.

Customize and Localize Strings with the Service SDK

You can change the text throughout the user interface. To customize text, create string resource XML files (named strings.xml)
in your project's values-[locale]  resource folder for the language(s) you want to update.

Knowledge: Customize Action Buttons

You can add more views, such as floating action buttons, that appear in your Knowledge activities by implementing
KnowledgeViewAddition. Adding views is handy if you want to give your users access to other features from your support
home screen. Use this technique to add action buttons to Case Management, Chat, SOS, or any other features.

156

SDK Customizations with the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosOptions.html


Knowledge: Customize Fonts

You can customize the fonts used in the Knowledge UI.

SOS: Customize the Connecting UI

By default, connection messages appear on the SOS interface when a session connects. You can override this behavior and present
your own UI during the connection process.

SOS: Agent Annotations

During an SOS session, the agent can annotate a customer's screen to point out something . By default, agent annotations are red
lines that are 5dp wide, but you can customize these values.

SOS: Toast Behavior

The SOS session provides context to the customer through toasts for various events over the lifetime of the session. You can customize
these toasts.

Customize Colors with the Service SDK
You can customize the look and feel of the interface by specifying the colors used throughout the UI.

To customize the colors, create color resource values in your project's colors.xml  file that correspond to the same resource names
specified in this documentation.

For example, the following resource file values customize some of the branding tokens:

<resources>
<color name="salesforce_brand_primary">#50e3c2</color>
<color name="salesforce_brand_secondary">#4a90e2</color>
<color name="salesforce_contrast_inverted">#ffffff</color>
<color name="salesforce_contrast_primary">#333333</color>
<color name="salesforce_contrast_secondary">#767676</color>
<color name="salesforce_feedback_primary">#e74c3c</color>

</resources>

These screenshots illustrate how the branding tokens affect the UI.

Knowledge UI Branding:

157

Customize Colors with the Service SDKEmbedded Service SDK for Android Developer Guide



Case Management UI Branding:

Chat UI Branding:

158

Customize Colors with the Service SDKEmbedded Service SDK for Android Developer Guide



SOS UI Branding:

The following branding tokens are available for customization.

Description / Sample UsesDefault ValueToken Name

The toolbar background color.#FAFAFAToolbar

salesforce_toolbar

159

Customize Colors with the Service SDKEmbedded Service SDK for Android Developer Guide



Description / Sample UsesDefault ValueToken Name

Toolbar text and icon color.#010101Toolbar Inverted

salesforce_toolbar_inverted

The banner background color.#007F7FBrand Primary

salesforce_brand_primary Knowledge: First data category, the Show
More button, the footer stripe, the selected
article.

Chat: Line under the message you’re typing.

SOS: Used by various icons.

Knowledge: UI button colors.#2872CCBrand Secondary

salesforce_brand_secondary Case Management: Action button
background and the line under the currently
selected field.

Chat: User text bubbles.

SOS: Background color for action items.

Title text color.#FCFCFCBrand Contrast

salesforce_brand_contrast Knowledge: Text on data category headers
and the chevron on the Knowledge home
page.

Primary body text color.#000000Contrast Primary

salesforce_contrast_primary SOS: Background color for buttons on the
UI.

Knowledge: Subcategory headers.#6D6D6DContrast Secondary

salesforce_contrast_secondary

SOS: Dots in UI.#BABABAContrast Tertiary

salesforce_contrast_tertiary

Chat: Background color for the chat feed
screen.

#F1F1F1Contrast Quaternary

salesforce_contrast_quaternary

160

Customize Colors with the Service SDKEmbedded Service SDK for Android Developer Guide



Description / Sample UsesDefault ValueToken Name

Page background, navigation bar, table cell
background.

#FFFFFFContrast Inverted

salesforce_contrast_inverted

Chat: Color of the close button on the
minimized view. Client message text.
Background color at the bottom of the input
bar on the chat feed UI.

SOS: Colors of the icons (when they aren't
selected).

Text color for error messages.#E74C3CFeedback Primary

salesforce_feedback_primary SOS: Mute indicator. Disconnect icon.

SOS: Connection quality indicators.
Background color for the Resume button
when the two-way camera is active.

#2ECC71Feedback Secondary

salesforce_feedback_secondary

SOS: Connection quality indicators.#F5A623Feedback Tertiary

salesforce_feedback_tertiary

Text as it appears in titles throughout the
UI. Text on areas where a brand color is used
for the background.

#FBFBFBTitle Color

salesforce_title_color

Chat: Agent text bubbles.

SOS: Colors of the icons (when they are
selected).

Knowledge: Background for the Knowledge
home screen.

#000000

(40% alpha)

Overlay

salesforce_overlay

Customize and Localize Strings with the Service SDK
You can change the text throughout the user interface. To customize text, create string resource XML files (named strings.xml)
in your project's values-[locale]  resource folder for the language(s) you want to update.

To see the complete list of string resource values, refer to the string resources document for the feature you want to customize.

• Chat String Resources

• Knowledge String Resources

• Case Management String Resources

• SOS String Resources

161

Customize and Localize Strings with the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/doc-files/resource_overrides.html#Strings
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/doc-files/resource_overrides.html#Strings
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/doc-files/resource_overrides.html#Strings
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/doc-files/resource_overrides.html#Strings


• Common String Resources

SDK text is translated into more than 25 different languages. In order for your string customizations to take effect in all languages, provide
a translation for each language. To add support for a language, create a resources subdirectory that includes a hyphen and the ISO
language code at the end of the directory name. For example, values-es/  is the directory containing string resources for Spanish.
Android loads the appropriate resources according to the locale settings of the device at run time. The system falls back on the strings
in the default values/  directory if the appropriate locale directory isn't found.

The following languages are currently supported:

Table 8: Supported Languages

LanguageLanguage Code

Arabicvalues-ar

Czechvalues-cs

Danishvalues-da

Germanvalues-de

Greekvalues-el

Englishvalues-en

Spanishvalues-es

Finnishvalues-fi

Frenchvalues-fr

Hungarianvalues-hu

Indonesianvalues-in

Italianvalues-it

Hebrewvalues-iw

Japanesevalues-ja

Koreanvalues-ko

Dutchvalues-nl

Norwegianvalues-no

Polishvalues-pl

Brazilian Portuguesevalues-pt-rBR

Romanianvalues-ro

Russianvalues-ru

Swedishvalues-sv

Thaivalues-th

Turkishvalues-tr

162

Customize and Localize Strings with the Service SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/doc-files/resource_overrides.html#Strings


LanguageLanguage Code

Ukranianvalues-uk

Vietnamesevalues-vi

Chinesevalues-zh

Traditional Chinesevalues-zh-rTW

Check out Supporting Different Languages in the Android Developer documentation for more info about localization.

Example: To learn how you can change string values, let's go through an example. The image below shows the default connection
prompt dialog text in English:

You can change the title and body of this dialog by changing the sos_title  and the sos_connect_prompt  strings in
the strings.xml  file in the values  folders for your locale (values-en/  for English):

<!-- other string resources omitted -->

<string name="sos_title">Live Help</string>
<string name="sos_connect_prompt">
We can connect you with an agent who can troubleshoot your problems</string>

Now, whenever you start a session you see the updated dialog text:

163

Customize and Localize Strings with the Service SDKEmbedded Service SDK for Android Developer Guide

http://developer.android.com/training/basics/supporting-devices/languages.html


Knowledge: Customize Action Buttons
You can add more views, such as floating action buttons, that appear in your Knowledge activities by implementing
KnowledgeViewAddition. Adding views is handy if you want to give your users access to other features from your support home
screen. Use this technique to add action buttons to Case Management, Chat, SOS, or any other features.

To learn more, see Add Knowledge View Additions.

Knowledge: Customize Fonts
You can customize the fonts used in the Knowledge UI.

By default, the Service SDK interface uses the OS default font. If you want to change the font, follow these steps.

1. Add a True Type Font (TTF) file to your project's assets directory.

2. Override the SalesforceFontStyle  style in your project's styles.xml  resource file and set the salesforceFont
item to the relative asset path of your TTF file.

For example:

<style name="SalesforceFontStyle">
<item name="salesforceFont">CustomFont.ttf</item>

</style>

The Knowledge UI uses the selected font when you rebuild your app.

SOS: Customize the Connecting UI
By default, connection messages appear on the SOS interface when a session connects. You can override this behavior and present your
own UI during the connection process.

To present your own UI for the connection process, disable the default UI at configuration time with the connectingUi method.

// Disable default UI in Java
SosConfiguration config = new SosConfiguration.Builder()
.connectingUi(false)
.build();

// Disable default UI in Kotlin
val config = SosConfiguration.Builder()
.connectingUi(false)
.build()

To learn more about using SosConfiguration, see Configure an SOS Session.

After you've disabled the default connecting UI, use the SosListener to listen for state changes and display your own UI. To learn
more about listeners, see Listen to SOS Events.

Example: The following Fragment class listens to SOS state changes and provides a place for you to add your own UI.

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import com.salesforce.android.sos.api.Sos;

164

Knowledge: Customize Action ButtonsEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.Builder.html#connectingUi(boolean)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosListener.html
https://developer.android.com/guide/components/fragments.html


import com.salesforce.android.sos.api.SosListener;
import com.salesforce.android.sos.api.SosState;
import com.salesforce.android.sos.api.SosEndReason;

public class CustomConnectingUI extends Fragment implements SosListener {

public CustomConnectingUI () {
}

public static CustomConnectingUI newInstance () {
CustomConnectingUI fragment = new CustomConnectingUI();
Bundle args = new Bundle();
fragment.setArguments(args);
return fragment;

}

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {
// Inflate the layout for this fragment
View view = inflater.inflate(R.layout.fragment_custom_connecting_ui, container,

false);

// Add an SosListener...
Sos.addListener(this);

// Set the initial state
displayState(Sos.getState());

return view;
}

@Override
public void onDestroyView () {
super.onDestroyView();

// Remove listener
Sos.removeListener(this);

}

@Override
public void onSessionCreated () {
}

@Override
public void onSessionEnded (SosEndReason reason) {
}

@Override
public void onSessionStateChange (SosState state, SosState oldState) {
displayState(state);

}

/**

165

SOS: Customize the Connecting UIEmbedded Service SDK for Android Developer Guide



* Helper function to display SOS state changes.
*/
private void displayState (SosState state) {
if (state == SosState.Initializing) {
// TO DO: Display a message that we're creating a session

}
if (state == SosState.AgentJoining) {
// TO DO: Display a message that agent is joining

}
if (state == SosState.WaitingForAgent) {
// TO DO: Display a message that we're waiting for agent to accept

}
}

}

SOS: Agent Annotations
During an SOS session, the agent can annotate a customer's screen to point out something . By default, agent annotations are red lines
that are 5dp wide, but you can customize these values.

By default, an annotation in SOS looks like this:

The Android SDK offers customization of the line width and color. When you change the line width or color, the value you change it to
syncs with the customer and the agent. To change the width or color of the annotation line, modify two XML resources:
sos_drawing_color  and sos_drawing_width.

Table 9: Agent Annotation Style

Default ValueTypeAnnotation Name

#ffff0000Colorsos_drawing_color

5Integersos_drawing_width

For documentation about overriding resources in Android, see Resource Merging in the Android documentation.

Example: Let's say we want to change the annotation to a thicker blue line. Specify the color value for sos_drawing_color
(alongside your other resources):

<color name="sos_drawing_color">#ff2196f3</color>

And specify the integer value for sos_drawing_width (alongside your other resources):

<integer name="sos_drawing_width">10</integer>

Now the application annotation color looks like this:

166

SOS: Agent AnnotationsEmbedded Service SDK for Android Developer Guide

http://tools.android.com/tech-docs/new-build-system/resource-merging


SOS: Toast Behavior
The SOS session provides context to the customer through toasts for various events over the lifetime of the session. You can customize
these toasts.

There are two ways to customize the toast behavior.

Change the Toast Text
You can change any toast text by overriding the string resource that the toast uses. See Customize and Localize Strings with the Service
SDK for more information about overriding string resources.

Disable Some or All Toasts
If you do not want a particular toast to ever appear during a session, you can disable the toast with disableToasts. This method
takes an EnumSet  of SosToast elements. Some built-in enum  sets are already defined in the SosToast Javadoc.

For example, this code disables all toasts over the course of the session:

SosOptions options = new SosOptions(
'pod', // replaced with your real pod identifier
'orgId', // replaced with your real orgId
'deploymentId' // replaced with your real deploymentId

);

SosConfiguration config = SosConfiguration.builder()
.disableToasts(EnumSet.allOf(SosToast.class))
.build();

Sos.session(opts)
.configuration(config)
.start(this);

Troubleshooting the Service SDK

Get some guidance when you run into issues.

Enable Debug Logging for the Android SDK

SDK logs are disabled by default. To enable logging, you add a sink and then specify a log level.

Can’t Access My Knowledge Base

What to do when you can't get to your knowledge base from within your app.

167

SOS: Toast BehaviorEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.Builder.html#disableToasts(java.util.EnumSet%3Ccom.salesforce.android.sos.api.SosToast%3E)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosToast.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosToast.html


Can't Connect to Chat

If you can't make a successful connection from your app, even when an agent is standing by, review how you've set up your chat
implementation.

Error Using the Salesforce Mobile SDK with the Service SDK

If you're trying to build a Service SDK project that explicitly embeds the Salesforce Mobile SDK, exclude these two maven dependencies
to prevent conflicts.

SOS Network Troubleshooting Guide

If you can't connect with an SOS agent from your app, you have network connectivity issues, possibly related to your firewall or
proxy.

Enable Debug Logging for the Android SDK
SDK logs are disabled by default. To enable logging, you add a sink and then specify a log level.

Call addSink to direct the debug logs to the specified sink. LOG_CAT_SINK  directs all log messages to the Android logcat using
the standard Log.<level>  calls. Set the log level with setLogLevel. For example:

ServiceLogging.addSink(ServiceLogging.LOG_CAT_SINK);
ServiceLogging.setLogLevel(ServiceLogging.LEVEL_TRACE);

To direct the logs somewhere other than logcat, implement your own ServiceLoggingSink.

To learn more about Android logging, see Write and View Logs.

Can’t Access My Knowledge Base
What to do when you can't get to your knowledge base from within your app.

Run through this checklist to help diagnose the root cause.

1. Have you set up a Experience Cloud or Salesforce site? See Cloud Setup for Knowledge for more info.

2. Do you have Guest Access to the Support API enabled for your site? See Cloud Setup for Knowledge for more info.

3. (For Knowledge only) Do you have Knowledge enabled in your org? Do you have Knowledge licenses? See Cloud Setup for
Knowledge for more info.

4. (For Knowledge only) Is the user setting up the knowledge base enabled as a Knowledge User? See Cloud Setup for Knowledge
for more info.

168

Enable Debug Logging for the Android SDKEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/logging/ServiceLogging.html#addSink(com.salesforce.android.service.common.utilities.logging.ServiceLoggingSink)
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/logging/ServiceLogging.html#setLogLevel(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/logging/ServiceLoggingSink.html
https://developer.android.com/studio/debug/am-logcat.html


5. (For Knowledge only) Have you made the article types, the data categories, and the article layout fields visible to guest users? See
Guest User Access for Your Experience Cloud Site for more info.

6. (For Knowledge only) Have you made your articles accessible to the Public Knowledge Base channel? See Cloud Setup for Knowledge
for more info.

Can't Connect to Chat
If you can't make a successful connection from your app, even when an agent is standing by, review how you've set up your chat
implementation.

Run through this checklist to help diagnose the root cause.

1. If you’re using the default UI for chat, verify that you are calling showChat  on the main UI thread.

2. Verify that the chat endpoint in your code only specifies the hostname. For instance, if your endpoint is
https://MyDomainName.my.salesforcescrt.com/chat/rest/, then use the following value in your code:
MyDomainName.my.salesforcescrt.com.

169

Can't Connect to ChatEmbedded Service SDK for Android Developer Guide



Note: If you don’t have a My Domain deployed in your org, your URL formats are different. For details, see My Domain URL
Formats in Salesforce Help.

3. Verify that you're using the correct chat endpoint. See Get Chat Settings from Your Org for more info.

4. Verify that you're using the correct deployment ID and button ID. See Get Chat Settings from Your Org for more info.

5. Verify that you've correctly set up your chat implementation. See Org Setup for Chat in Lightning Experience with a Guided Flow for
more info.

Error Using the Salesforce Mobile SDK with the Service SDK
If you're trying to build a Service SDK project that explicitly embeds the Salesforce Mobile SDK, exclude these two maven dependencies
to prevent conflicts.

When building an app with both SDKs, you may encounter an error such as this error:

Error: more than one library with package name 'com.salesforce.androidsdk.analytics'

Or this error:

Duplicate zip entry
[classes.jar:com/salesforce/androidsdk/smartstore/app/SmartStoreSDKManager.class]

To solve the problem, exclude the problematic dependencies from your build.gradle  file.

compile('com.salesforce.service:servicesdk:224.1.0')
{

exclude group: 'com.salesforce.mobilesdk', module: 'SmartStore'
exclude group: 'com.salesforce.mobilesdk', module: 'SalesforceSDK'

}

SOS Network Troubleshooting Guide
If you can't connect with an SOS agent from your app, you have network connectivity issues, possibly related to your firewall or proxy.

SOS uses the Tokbox OpenTok platform to provide screen sharing and video communication during an SOS session. These guidelines
can help you diagnose whether the problem is linked to a networking issue and how to send us diagnostic information if necessary.

Step 1: Run Connectivity Doctor
The Tokbox Connectivity Doctor tests for connectivity issues. You can access this tool via the web, an iOS app, or an Android app. This
tool tests network issues in these areas.

1. API server – Session initialization and signaling tests

2. Media router – Whether you can access Tokbox media servers

3. MESH turn server – Relay server fallback mechanism

4. Logging server – Communication of stats and errors to the Tokbox logging server

170

Error Using the Salesforce Mobile SDK with the Service SDKEmbedded Service SDK for Android Developer Guide

https://tokbox.com
https://www.tokbox.com/tools/connectivity/
https://www.tokbox.com/tools/connectivity/
https://itunes.apple.com/us/app/opentok%C2%ADconnectivity%C2%ADdoctor/id902048239?mt=8
https://play.google.com/store/apps/details?id=com.tokbox.connectivitydoctor&hl=en


If all tests pass, go to step 2. If any test fails, you probably need to configure your ports.

API Server or Logging Server Issues
OpenTok clients use HTTP and WSS connections from the client browser to the OpenTok servers on port TCP/443. If the only way
to access the internet from your network is through a proxy, it must be a transparent proxy. Make sure that TCP/443 is open.

Media Router or Mesh Turn Issues
OpenTok clients can use UDP or TCP connections for media. Salesforce recommends that UDP is enabled to improve the quality of
real-time audio and video communications. This connection is bidirectional but always initiated from the client so an external entity
can't send malicious traffic in the opposite direction.

• Best experience: We recommend that you open UDP ports 1025 - 65535.

• Good experience: Open UDP port 3478.

• Minimum experience: Open TCP port 443. Some firewall or proxy rules only allow for SSL traffic over port 443. Make sure that
non-web traffic can also pass over this port.

Step 2: Test the Tokbox Chat Room
Tokbox has a public-facing chat room site (https://opentokrtc.com/) that you can use for normal chatting. You can also use this site as
a test tool.

1. From the chat room site, create a room called “example”. Join that room or click here. You should then see yourself on video. If the
video isn't present, make sure that you've given access to the camera and microphone. If nothing happens, go to step 3.

171

SOS Network Troubleshooting GuideEmbedded Service SDK for Android Developer Guide

https://opentokrtc.com/
https://opentokrtc.com/room/example


2. Open another browser tab and enter the same URL link as in the previous browser tab (for example,
https://opentokrtc.com/room/example). You should see a two-way audio and video-enabled chat. If this process doesn't work, go
to step 3.

If you can have a two-way chat, your ports are configured properly and you're done.

Step 3: Gather JSON Metadata
In this step, we'll gather metadata about the failed chat room session. To get this information, open a browser tab and enter
https://opentokrtc.com/example.json. If you created a room with a different name, replace the word "example" in the URL accordingly.
You'll see JSON content similar to this example.

{"apiKey":"45599822","token":"T1==cGyydG5lcl9pZD00NTU5OTgyMiZzaWc9NTcyOWI4NjJhOT
diN2EwYWRmMjZkZjI5MzkxZjkwMjdlNmM0ODNiMTpzZXNzaW9uX2lkPTFfTVg0ME5UVTVPVGd5TW41LU
1UUTNPVEUyTWpVek1USTVObjQ0WkcxSFp6VnNVMnBMZFRKVFp6SmhaRlZ6WVhvM1dVTi1mZyZjcmVhdG
VfdGltZT0xNDc5MTY0MzA4Jm5vbmNlPTAuMzgzODc1MjEwMzAzODEzMiZyb2xlPXB1Ymxpc2hlciZleH
BpcmVfdGltZT0xNDc5MjUwNzA4JmNvbm5lY3Rpb25fZGF0YT0lN0IlMjJ1c2VyTmFtZSUyMiUzQSUyMk
Fub255bW91cyUyMFVzZXI3MiUyMiU3RA==","username":"Anonymous User72","firebaseURL":
"https://ot-archiving.firebaseio.com/sessions//1_MX40NTU5OTgyMn5-MTQ3OTE2MjUzMTI
5Nn43ZG1HZzVsU2pLdTJTZzJhZFVzYXo3WUN-fg","firebaseToken":"eyJ0eXAiOiJKV1QiLCJhbG
ciOiJIUzI1NiJ9.eyJ2IjowLCJkIjp7InVpZCI6IkFub255bW91cyBVc2VyNzIwLjc3NDEwOTM5OTg3N
zQ4ODYiLCJzZXNzaW9uSWQiOiIxX01YNDBOVFU1T1RneU1uNS1NVFEzT1RFMk1qVXpNVEk1Tm40NFpHM
UhaelZzVTJwTGRUSlRaekpoWkZWellYbzNXVU4tZmciLCJyb2xlIjoidXNlciIsIm5hbWUiOiJBbm9ue
W1vdXMgVXNlcjcyIn0sImlhdCI6MTQ3OTE2NDMwN30.ep6l4x_3VGegXVTfwpaOYMGRGOYI944w5Og1h
TyDPfQ","chromeExtId":"undefined","sid":"1_M440NTU5OTgyMn5-MTQ3OTE2MjUzMTI5Nn44Z
G1HZzVsU2pLdTJTZzJhZFVzYXo3WUN-fg"}

The output has key/value pairs for the API key ("apiKey"), token ("token"), and session ID ("sid"). Save this information. Tokbox monitors
the entire flow for failed and successful sessions (only if you were able to successfully verify the Connectivity Doctor ports requirements
first). We'll use this metadata to debug your issue. Go to step 4.

Step 4: Open Support Ticket
Please create a Salesforce support ticket or contact your account team for more help.

Answer the following questions in your support request.

1. TOPOLOGY: What is your network topology? How does data flow through the topology to reach our cloud?

2. ENVIRONMENT: Are you using a virtual environment?

3. PROXY & FIREWALL: What is the type and name of your proxy? What are your firewall restrictions? If you are using a proxy can you
execute step 1 and step 2 just through a firewall?

4. PLATFORM & VERSION: What platform are you using? What is the OS version? Which SDK are you using? Which SDK version?

5. DESCRIPTION: Describe the problem you encountered, and the steps you took to try to resolve the problem.

6. LOGS: Can you provide us with any error logs from your side or any other information you deem fit for the problem? Include any
relevant network traces or screenshots.

7. CONNECTIVITY DOCTOR: What Connectivity Doctor tests failed? Did you open the required ports and still have issues?

8. JSON METADATA: If applicable, send us the Key/Token/Session information captured in step 3.

172

SOS Network Troubleshooting GuideEmbedded Service SDK for Android Developer Guide

https://opentokrtc.com/room/example
https://opentokrtc.com/example.json
https://support.salesforce.com/support


Data Protection and Security in the Service SDK for Android

The Service SDK does not collect or store personal data from its users. We ensure that data is secure both locally and when in transit.

• Secure data at rest. We don't store personal data about the user. We manage keys using the Android Keystore. All content fetched
from Salesforce servers is stored locally using AES-256 encryption. You can explicitly delete knowledge data by following these
instructions: Cache and Encryption Behavior for Knowledge. You can explicitly delete case management data by following these
instructions: Cache and Encryption Behavior for Case Management.

• Secure data in transit. All network communication occurs over SSL using TLS 1.2.

Reference Documentation

Reference documentation for Service SDK for Android.

To access the reference documentation for the Service SDK for Android, visit:

• forcedotcom.github.io/ServiceSDK-Android

This site contains API documentation for the latest version of the SDK.

Reference Index

A list of all classes, interfaces, methods, constants, and enums referenced from this developer's guide.

Reference Index
A list of all classes, interfaces, methods, constants, and enums referenced from this developer's guide.

Chat Index
• AgentAvailabilityClient

• AgentListener

• AvailabilityState

• ChatAnalytics

• ChatClient

– addFileTransferRequestListener

• ChatConfiguration

– ChatConfiguration.Builder

• chatEntities

• chatUserData

• maximumWaitTime

• minimumWaitTime

• queueStyle

• ChatCore

• ChatEndReason

173

Data Protection and Security in the Service SDK for AndroidEmbedded Service SDK for Android Developer Guide

http://forcedotcom.github.io/ServiceSDK-Android/
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/AgentAvailabilityClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/AgentListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/AvailabilityState.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatAnalytics.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatClient.html#addFileTransferRequestListener(com.salesforce.android.chat.core.FileTransferRequestListener)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html#chatEntities(java.util.List%3Ccom.salesforce.android.chat.core.model.ChatEntity%3E)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatConfiguration.Builder.html#chatUserData(com.salesforce.android.chat.core.model.ChatUserData...)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#maximumWaitTime(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#minimumWaitTime(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#queueStyle(com.salesforce.android.chat.ui.model.QueueStyle)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/ChatCore.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEndReason.html


• ChatEntity

• ChatEntityField

• ChatEventListener

• ChatKnowledgeArticlePreviewClickListener

• ChatKnowledgeArticlePreviewDataHelper

• ChatKnowledgeArticlePreviewDataProvider

• ChatSessionState

• ChatUI

• ChatUIClient

• ChatUIConfiguration

– ChatUIConfiguration.Builder

• chatBotAvatar

• enableChatBotBanner

• ChatUserData

• FileTransferAssistant

• FileTransferRequestListener

• FileTransferStatus

• PreChatPickListField

• PreChatTextInputField

• QueueListener

• SessionInfoListener

• SessionStateListener

Knowledge Index
• ArticleSummary

– getArticleId

– getArticleNumber

• DataCategorySummary

– getName

• KnowledgeClient

• KnowledgeConfiguration

– KnowledgeConfiguration.Builder

• offlineResourceConfig

• KnowledgeCore

– deleteCache

• KnowledgeCssProvider

• KnowledgeImageProvider

174

Reference IndexEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntity.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatEntityField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatEventListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatKnowledgeArticlePreviewClickListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatKnowledgeArticlePreviewDataHelper.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatKnowledgeArticlePreviewDataProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatSessionState.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUI.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#chatBotAvatar(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/ChatUIConfiguration.Builder.html#enableChatBotBanner(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/ChatUserData.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/FileTransferAssistant.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/FileTransferRequestListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/model/FileTransferStatus.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/model/PreChatPickListField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/ui/model/PreChatTextInputField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/QueueListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionInfoListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/com/salesforce/android/chat/core/SessionStateListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html#getArticleId()
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/ArticleSummary.html#getArticleNumber()
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/DataCategorySummary.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/model/DataCategorySummary.html#getName()
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.Builder.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeConfiguration.Builder.html#offlineResourceConfig(com.salesforce.android.knowledge.core.offline.OfflineResourceConfig)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeCore.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/KnowledgeCore.html#deleteCache(android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeCssProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html


getImageForArticle–

– getImageForDataCategory

• KnowledgeJsProvider

• KnowledgeUI

– configure

– createClient

• KnowledgeUIClient

– KnowledgeUIClient.OnCloseListener

– launchHome

– setOnCloseListener

• KnowledgeUIAnalytics

• KnowledgeUIConfiguration

• KnowledgeViewAddition

– createView

– getEnterAnimator

– getExitAnimator

– initView

– visibleFor

• OfflineResourceConfig

Case Management Index
• CaseClient

– clearCache

• CaseClientCallbacks

– getHiddenFields

• CaseConfiguration

– CaseConfiguration.Builder

• caseListName

• enablePush

• CasesUIAnalytics

• CaseUI

• CaseUIClient

– getCoreClient

– launch

– launchCaseList

– launchCasePublisher

175

Reference IndexEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html#getImageForArticle(android.content.Context,%20com.salesforce.android.knowledge.core.model.ArticleSummary)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeImageProvider.html#getImageForDataCategory(android.content.Context,%20com.salesforce.android.knowledge.core.model.DataCategorySummary)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeJsProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUI.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUI.html#configure(com.salesforce.android.knowledge.ui.KnowledgeUIConfiguration)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUI.html#createClient(android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.OnCloseListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html#launchHome(android.app.Activity)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIClient.html#setOnCloseListener(com.salesforce.android.knowledge.ui.KnowledgeUIClient.OnCloseListener)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIAnalytics.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#createView(android.view.ViewGroup%2C%20android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#getEnterAnimator(android.view.View)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#getExitAnimator(android.view.View)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#initView(android.view.View%2C%20boolean)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/ui/KnowledgeViewAddition.html#visibleFor(com.salesforce.android.knowledge.ui.KnowledgeScene)
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/com/salesforce/android/knowledge/core/offline/OfflineResourceConfig.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClient.html#clearCache()
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClientCallbacks.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseClientCallbacks.html#getHiddenFields()
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseConfiguration.Builder.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseConfiguration.Builder.html#caseListName(java.lang.String)
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/core/CaseConfiguration.Builder.html#enablePush()
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CasesUIAnalytics.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUI.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#getCoreClient()
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#launch(android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#launchCaseList(android.content.Context)
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIClient.html#launchCasePublisher(android.content.Context)


• CaseUIConfiguration

SOS Index
• AudioStats

• AutoCompleteTextView

• EditText

• SosAvailability

– SosAvailability.Listener

• SosAVListener

• SosMaskedField

– setMask

– showMask

– useFocusMasking

• MultiAutoCompleteTextView

• Sos

– hideKeyboard

– getHoldState

– getState

– Sos.SessionBuilder

• start

– showKeyboard

• SosConfiguration

– SosConfiguration.Builder

• connectingUi

• disableToasts

• SosConnectionListener

• SosHoldListener

• SosListener

• SosMaskingListener

• SosNetworkStatsListener

• SosNetworkTestListener

• SosOptions

• SosShareTypeListener

• SosState

• SosToast

• TextView

• VideoStats

176

Reference IndexEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/com/salesforce/android/cases/ui/CaseUIConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/AudioStats.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/AutoCompleteTextView.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/EditText.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosAvailability.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosAvailability.Listener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosAVListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/SosMaskedField.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/SosMaskedField.html#setMask(android.graphics.drawable.Drawable)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/SosMaskedField.html#showMask(boolean)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/SosMaskedField.html#useFocusMasking(boolean)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/MultiAutoCompleteTextView.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#hideKeyboard()
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#getHoldState()
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#getState()
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.SessionBuilder.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.SessionBuilder.html#start(android.app.Activity)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/Sos.html#showKeyboard(android.graphics.Rect)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.Builder.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.Builder.html#connectingUi(boolean)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConfiguration.Builder.html#disableToasts(java.util.EnumSet%3Ccom.salesforce.android.sos.api.SosToast%3E)
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosConnectionListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosHoldListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosMaskingListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosNetworkStatsListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosNetworkTestListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosOptions.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosShareTypeListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosState.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/SosToast.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/TextView.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/api/VideoStats.html


• View

Common Index
• Async

• AuthenticatedUser

• AuthTokenProvider

• PushNotificationListener

– onPushNotificationReceived

• SalesforceConnectedApp

• ServiceAnalytics

• ServiceAnalyticsListener

• ServiceLogging

– addSink

– setLogLevel

• ServiceLoggingSink

Resource Files
• Chat String Resources

• Knowledge String Resources

• Case Management String Resources

• SOS String Resources

• Common String Resources

Additional Resources

If you’re looking for other resources, check out this list of links to related documentation.

• Embedded Service SDK for Mobile Apps Resources

– Service SDK Developer Center

– Service SDK Trailhead Learning Module

– iOS: Release Notes, Dev Guide, Reference Docs, Examples

– Android: Release Notes, Dev Guide, Reference Docs, Examples

• General Resources

– Service Cloud Developer Center

– Salesforce Developer Documentation

– Salesforce Help

177

Additional ResourcesEmbedded Service SDK for Android Developer Guide

https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/com/salesforce/android/sos/maskview/View.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/control/Async.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthenticatedUser.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/http/AuthTokenProvider.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/PushNotificationListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/PushNotificationListener.html#onPushNotificationReceived(android.os.Bundle)
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/connectedapp/SalesforceConnectedApp.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/analytics/ServiceAnalytics.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/analytics/ServiceAnalyticsListener.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/logging/ServiceLogging.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/logging/ServiceLogging.html#addSink(com.salesforce.android.service.common.utilities.logging.ServiceLoggingSink)
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/logging/ServiceLogging.html#setLogLevel(int)
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/com/salesforce/android/service/common/utilities/logging/ServiceLoggingSink.html
https://forcedotcom.github.io/ServiceSDK-Android/releases/chat/4.1.1/api/reference/doc-files/resource_overrides.html#Strings
https://forcedotcom.github.io/ServiceSDK-Android/releases/knowledge/4.3.4/api/reference/doc-files/resource_overrides.html#Strings
https://forcedotcom.github.io/ServiceSDK-Android/releases/case/4.2.4/api/reference/doc-files/resource_overrides.html#Strings
https://forcedotcom.github.io/ServiceSDK-Android/releases/sos/4.0.9/api/reference/doc-files/resource_overrides.html#Strings
https://forcedotcom.github.io/ServiceSDK-Android/releases/common/8.0.2/api/reference/doc-files/resource_overrides.html#Strings
https://developer.salesforce.com/developer-centers/service-cloud/sdk/
https://trailhead.salesforce.com/modules/service_snap-ins_mobile_apps
https://github.com/forcedotcom/ServiceSDK-iOS/releases
https://developer.salesforce.com/docs/atlas.en-us.service_sdk_ios.meta/service_sdk_ios/servicesdk_ios_dev_guide.htm
http://forcedotcom.github.io/ServiceSDK-iOS/
https://github.com/forcedotcom/ServiceSDK-iOS/tree/master/Examples
https://github.com/forcedotcom/ServiceSDK-Android/releases
https://developer.salesforce.com/docs/atlas.en-us.service_sdk_android.meta/service_sdk_android/servicesdk_android_dev_guide.htm
http://forcedotcom.github.io/ServiceSDK-Android/
https://github.com/forcedotcom/ServiceSDK-Android/tree/master/Examples
https://developer.salesforce.com/developer-centers/service-cloud/
https://developer.salesforce.com/docs/
https://help.salesforce.com/apex/Help_Home


INDEX

A
agent annotations 166
agent availability 137
analytics 47
article images 99
assigning permissions in sos 19
authentication

knowledge 89
authentication using mobile sdk 40
auto case pop in sos 21

B
branding 156

C
cache behavior for case management 119
cache behavior for knowledge 98
cache resources 98
case management 114
case management cloud setup 15
Case Management cloud setup 16
case publisher 114
case publisher hidden fields 120
category images 99
color branding 157
configure sos session 129
control sos session 133
core api

knowledge 101
CSS injection 93
custom connecting UI 164
custom data 155
customize action buttons 164
customize colors 157
customize fonts 164

D
data protection 173
detect keyboard 143

E
Einstein bots 55
encryption behavior for case management 119
encryption behavior for knowledge 98
events 139

experience cloud setup 13

F
field masking 149
file transfer 74
floating action buttons 164
fonts 164

H
hidden fields for case publisher 120

J
JavaScript injection 93

K
keyboard 143
knowledge 79
knowledge article 109
knowledge authentication 89
knowledge cloud setup 12–14
knowledge core api 101
knowledge image provider 99
knowledge setup 82

L
listeners 139
localization 161
logging in Android 168

M
multiple queues in sos 34

N
notifications 44
notifications for case activity 121

O
offline access 98

P
prerequisites 35
push notifications 44
push notifications for case activity 121

178



Q
qos events 142
qos events from SOS console 31
quality-of-service events 142
quick setup

knowledge 82

R
reference index 173
reference overview 173
release notes 2

S
SDK prerequisites 35
sdk setup 35
service cloud setup 2
session recording in sos 33
setup 2, 35
show knowledge article 109
sos 124
SOS 125
sos cloud manual setup 18
SOS cloud setup 17–18
sos reference id 33
sos session manager 127

SosConfiguration 129
start sos session 127
state changes from SOS console 24
strings 161

T
toast behavior 167
transfer file 74
troubleshooting

compile 170
network 170

tutorials 48
two-way video 133

U
ui customization

view addition 89
using case management 114
using case publisher 114
using knowledge 79
using sos 124
using SOS 125

V
view addition 89

179

Index


	Embedded Service SDK for Android Developer Guide
	Release Notes
	Service Cloud Setup
	Chat with Lightning Experience
	Get Chat Settings from Your Org

	Chat with Salesforce Classic
	Knowledge
	Guest User Access for Your Experience Cloud Site
	Get Knowledge Settings from Your Org

	Case Management
	Get Case Management Settings from Your Org

	SOS
	Add SOS to Your Console
	Get SOS Settings from Your Org
	Assign SOS Permissions
	Automatic SOS Case Pop
	Listen for SOS Console Events
	SOS State Change Console Events
	SOS Quality-of-Service Console Events

	Record SOS Sessions
	SOS Reference ID
	Multiple SOS Queues


	SDK Setup
	Requirements
	Accessibility
	Installation
	Authentication
	Authenticating Using the Salesforce Mobile SDK

	Push Notifications
	Analytics
	Decrease the Size of Your App

	Android Examples
	Chat
	Overview
	Quick Setup
	Use Einstein Bots with Chat
	Display Knowledge Article Previews in Chat
	Listen for State Changes and Events
	Show Pre-Chat Fields to User
	Create or Update Salesforce Records from a Chat Session
	Check Agent Availability
	Transfer File to Agent
	Block Sensitive Data in a Chat Session
	Build Your Own UI with the Chat Core API

	Knowledge
	Overview
	Quick Setup
	Knowledge as an Authenticated User
	Add Knowledge View Additions
	Customize Knowledge Articles with JavaScript or CSS
	Cache and Encryption Behavior for Knowledge
	Cache Images for Offline Access
	Provide Images for Categories and Articles
	Article Fetching with the Knowledge Core API
	Show Knowledge Articles in a Web View

	Case Management
	Overview
	Quick Setup
	Case Management as an Authenticated User
	Cache and Encryption Behavior for Case Management
	Send Custom Data Using Hidden Fields
	Push Notifications for Case Activity

	SOS
	Overview
	Quick Setup
	Configure an SOS Session
	Control an SOS Session
	Two-Way Video
	Check SOS Agent Availability
	Listen to SOS Events
	Quality-of-Service Events
	Detect the Keyboard
	Field Masking
	Custom Data

	SDK Customizations
	Colors
	Strings
	Knowledge: Customize Action Buttons
	Knowledge: Customize Fonts
	SOS: Customize the Connecting UI
	SOS: Agent Annotations
	SOS: Toast Behavior

	Troubleshooting
	Enable Debug Logging for the Android SDK
	Can’t Access My Knowledge Base
	Can't Connect to Chat
	Error Using the Salesforce Mobile SDK with the Service SDK
	SOS Network Troubleshooting Guide

	Data Protection and Security
	Reference Documentation
	Reference Index

	Additional Resources

	Index

