
Service Cloud Snap-Ins for iOS
Developer Guide
Version 214.0

 @salesforcedocs
Last updated: August 30, 2018

https://twitter.com/salesforcedocs

© Copyright 2000–2018 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Snap-Ins for iOS Developer Guide . 1

Release Notes . 2
Service Cloud Setup . 2
SDK Setup . 32
iOS Tutorials & Examples . 43
Knowledge . 61
Live Agent Chat . 80
Case Management . 106
SOS . 128
SDK Customizations . 157
Troubleshooting . 181
Data Protection . 186
Reference Documentation . 187
Additional Resources . 192

Index . 193

SNAP-INS FOR IOS DEVELOPER GUIDE

Service Cloud Snap-ins SDK for Mobile Apps makes it easy to give customers access to powerful features right from within your native
app. You can make these Service Cloud features feel organic to your app and have things up and running quickly using this SDK.

August 2018 Release (214.0.3)

This documentation describes the following component versions, which are packaged together in this version of the Snap-ins SDK:

Version NumberComponent

3.2.1Knowledge

2.0.4Case Management

1.6.1Live Agent Chat

3.7.3SOS

3.1.3ServiceCore (common component used by all features)

Release Notes

Check out the new features and known issues for the iOS Snap-ins SDK.

Service Cloud Setup for the Snap-Ins SDK

Set up Service Cloud in your org before using the Snap-ins SDK.

Snap-Ins SDK Setup

Set up the SDK to start using Service Cloud features in your mobile app.

iOS Tutorials & Examples

Get going quickly with these short introductory tutorials.

Using Knowledge with the Snap-Ins SDK

Adding the Knowledge experience to your mobile app.

Using Live Agent Chat with the Snap-Ins SDK

Adding the Live Agent Chat experience to your mobile app.

Using Case Management with the Snap-Ins SDK

Adding the Case Management experience to your mobile app.

Using SOS with the Snap-Ins SDK

Adding the SOS experience to your mobile app.

SDK Customizations with the Snap-Ins SDK for iOS

Once you’ve played around with some of the SDK features, use this section to learn how to customize the Snap-ins SDK user interface
so that it fits the look and feel of your app. This section also contains instructions for localizing strings in all supported languages.

Troubleshooting the Snap-Ins SDK

Get some guidance when you run into issues.

Data Protection in the Snap-Ins SDK for iOS

The Snap-ins SDK does not collect or store personal data from its users.

1

Reference Documentation

Reference documentation for Service Cloud Snap-ins for iOS.

Additional Resources

If you’re looking for other resources, check out this list of links to related documentation.

Release Notes

Check out the new features and known issues for the iOS Snap-ins SDK.

To review the latest releases for the Snap-ins SDK for iOS, visit github.com/forcedotcom/ServiceSDK-iOS/releases.

Service Cloud Setup for the Snap-Ins SDK

Set up Service Cloud in your org before using the Snap-ins SDK.

Cloud Setup for Knowledge

To use Knowledge in your mobile app, enable it in your org, create knowledge articles, and set up a community.

Console Setup for Live Agent Chat

To use Live Agent Chat in your mobile app, set up Live Agent for your console.

Cloud Setup for Case Management

To use Case Management in your mobile app, set up a community and create a quick action.

Console Setup for SOS

To use SOS in your mobile app, set up Omni-Channel and SOS for your console.

Cloud Setup for Knowledge
To use Knowledge in your mobile app, enable it in your org, create knowledge articles, and set up a community.

1. Enable Salesforce Knowledge and verify that you have Knowledge licenses. To learn more, see Enable Salesforce Knowledge in
Salesforce Help.

2. In the user settings for those users you choose to administer the knowledge base, select Knowledge User.

2

Release NotesSnap-Ins for iOS Developer Guide

https://github.com/forcedotcom/ServiceSDK-iOS/releases
https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_settings.htm&language=en_US

3. Create Knowledge articles. When building out your knowledge base, make sure that you define the article types and associate articles
with data categories within a category group.

To learn more about setting up your Knowledge articles, check out: Salesforce Knowledge Documentation (HTML, PDF).

When creating articles, ensure that they are accessible to the Public Knowledge Base channel.

4. Create a community. Your Salesforce org must have an available Community or Salesforce site. Your app developer needs the
Community URL for the site to use the Knowledge or Case Management feature in the SDK.

If you've never set up a Community, see Salesforce Communities Overview.

5. To show Knowledge articles from your app, enable guest user access for the Article Types, Categories, and Fields associated with
your knowledge articles. Also ensure that Guest Access to the Support API is turned on.

Note: If the Guest user profile isn’t set up properly, your Knowledge categories and articles do not appear.

For step-by-step instructions, see Guest User Access for Your Community.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Knowledge Settings from Your
Org.

Guest User Access for Your Community

Ensure that guest user access is set up correctly for your community. To show Knowledge articles from your app, enable guest user
access for the Article Types, Categories, and Fields associated with your knowledge articles. To show Case Publisher, ensure that
your Quick Actions are accessible.

Get Knowledge Settings from Your Org

After you’ve set up your knowledge base and your community, supply your app developer with the values for the community URL,
data category group, and root data category. You can get this information from your org’s setup.

Guest User Access for Your Community
Ensure that guest user access is set up correctly for your community. To show Knowledge articles from your app, enable guest user
access for the Article Types, Categories, and Fields associated with your knowledge articles. To show Case Publisher, ensure that your
Quick Actions are accessible.

3

Cloud Setup for KnowledgeSnap-Ins for iOS Developer Guide

https://help.salesforce.com/articleView?id=knowledge_map.htm&type=0&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_map.htm&language=en_US
http://resources.docs.salesforce.com/sfdc/pdf/salesforce_knowledge_implementation_guide.pdf
https://help.salesforce.com/articleView?id=networks_overview.htm&language=en_US

These instructions describe how to enable guest user access for either a Community or a Salesforce site.

1. (Community sites only) If you are editing the settings for a Community:

a. From Setup, select Customize > Communities > All Communities.

b. For your chosen Community, make sure that the Status is “Active”.

c. Select the Workspaces action.

d. From the Community Workspaces page, select Administration.

e. Select Pages > Go to Force.com to get to the Site Detail page.

2. (Salesforce sites only) If you are editing the settings for a Salesforce site:

a. From Setup, select Develop > Sites.

b. Click the Site Label for your site to get to the Site Detail page.

3. From the Site Detail section, click Edit.

a. Ensure that Guest Access to the Support API is checked.

b. (For Case Management feature only) Ensure that the desired Quick Actions are selected. The global quick action determines
which fields display when creating a case.

c. Click Save.

4. (For Knowledge feature only) From the Site Detail section, click Public Access Settings. This action displays the settings for the
Guest user profile in your org.

a. Verify that the user has read access to the Article Type from the Article Type Permissions section.

b. Verify that the user has read access to the fields in the Article Type from the Field-Level Security section.

c. Verify that the user has visibility to the categories from the Category Group Visibility Settings section.

Get Knowledge Settings from Your Org
After you’ve set up your knowledge base and your community, supply your app developer with the values for the community URL, data
category group, and root data category. You can get this information from your org’s setup.

4

Cloud Setup for KnowledgeSnap-Ins for iOS Developer Guide

Community URL

From Setup, search for All Communities, and copy the URL for the desired community.

Data Category Group

From Setup, search for Data Category Assignments inside the Knowledge section, and copy the name of the desired data category
group.

Data Category

From Setup, search for Data Category Assignments inside the Knowledge section, select the data category group, and copy the
name for the desired root data category.

5

Cloud Setup for KnowledgeSnap-Ins for iOS Developer Guide

Console Setup for Live Agent Chat
To use Live Agent Chat in your mobile app, set up Live Agent for your console.

1. Create a Live Agent Chat implementation in Service Cloud, as described in Live Agent for Administrators (PDF). Your implementation
needs a deployment and a chat button.

Note: By default, a mobile chat session times out around two minutes after you leave the app or lose connectivity. To change
this value, update the Idle Connection Timeout Duration field when setting up your Live Agent deployment. Keep in mind
that the actual timeout on the app can be up to 40 seconds longer than the specified value in this field. See Live Agent
Deployment Settings.

2. (Optional) If you want to use Omni-Channel for routing, configure it as described in Omni-Channel for Administrators (PDF).

Omni-Channel enables your agents to use the same widget for all real-time routing (for example, Live Agent Chat, SOS, email, case
management). However, you can use Live Agent Chat without setting up Omni-Channel.

3. (Optional) To complement your chat experience with Einstein Bots:

a. Build an Einstein Bot in Lightning Experience.

When creating your bot, don't forget to enable the Live Agent channel and the options menu.

b. After you've built your bot, you'll need to drop back into Salesforce Classic for the last configuration step.

6

Console Setup for Live Agent ChatSnap-Ins for iOS Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=live_agent_administrators_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/live_agent_administrator.pdf
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=service_presence_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/service_presence_administrators.pdf
https://help.salesforce.com/articleView?id=bots_service_intro.htm&language=en_US

c. Go back to your Chat Button & Invitations settings and add your new bot to the Einstein Bots Configuration field.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Live Agent Chat Settings from
Your Org.

Get Live Agent Chat Settings from Your Org

After you’ve set up Live Agent in the console, supply your app developer with four values: the Live Agent pod endpoint, the
organization ID, the deployment ID, and the button ID. You can get this information from your org’s setup.

Get Live Agent Chat Settings from Your Org
After you’ve set up Live Agent in the console, supply your app developer with four values: the Live Agent pod endpoint, the organization
ID, the deployment ID, and the button ID. You can get this information from your org’s setup.

Note: If the endpoint for your Live Agent server changes (due to an org migration, for example), the SDK automatically reroutes
you to the correct server. However, to avoid unnecessary rerouting, you should still update the server endpoint when you notice
it has changed inside your org’s settings.

7

Console Setup for Live Agent ChatSnap-Ins for iOS Developer Guide

pod
The hostname for the Live Agent endpoint that your organization has been assigned. To get this value, from Setup, search for Live
Agent Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the path —
just use the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization ID.

deploymentId
The unique ID of your Live Agent deployment. To get this value, from Setup, select Live Agent > Deployments. The script at the
bottom of the page contains a call to the liveagent.init function with the pod, the deploymentId, and orgId as arguments.
Copy the deploymentId value.

8

Console Setup for Live Agent ChatSnap-Ins for iOS Developer Guide

buttonId
The unique button ID for your chat configuration. You can get the button ID by creating a Live Agent chat button (see Create Chat
Buttons in the Live Agent help documentation), and instead of using the supplied JavaScript, copy the id attribute. To get this
value after creating a button, from Setup, search for Chat Buttons and select Chat Buttons & Invitations. Copy the id for the
button from the JavaScript snippet.

Cloud Setup for Case Management
To use Case Management in your mobile app, set up a community and create a quick action.

1. Create a community. Your Salesforce org must have an available Community or Salesforce site. Your app developer needs the
Community URL for the site to use the Knowledge or Case Management feature in the SDK.

If you've never set up a Community, see Salesforce Communities Overview.

2. When setting up the site, add the Quick Actions that you'd like to use in your app for the Case Management functionality. You must
specify a quick action to use Case Management. The global quick action determines which fields display when creating a case. To

9

Cloud Setup for Case ManagementSnap-Ins for iOS Developer Guide

https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US
https://help.salesforce.com/articleView?id=networks_overview.htm&language=en_US

learn more about quick actions, see Create Global Quick Actions in Salesforce Help. Also ensure that Guest Access to the Support
API is turned on.

For step-by-step instructions, see Guest User Access for Your Community.

Note: Be sure that your global action is accessible to the Guest user profile. Also note that the case publisher screen does not
respect field-level security for guest users. If you want to specify different security levels for different users, use different quick
actions.

3. If you'd like to let authenticated users manage a list of their existing cases, you need to perform a few additional setup steps.

a. Make sure that the User Profile for the authenticated users has API Enabled checked. For an overview on user profiles, see
Profiles in Salesforce Help.

b. You’ll need a list view for your cases in Service Cloud. To learn more about creating views, see Create a List View in Salesforce
Help. Supply the Case List Unique Name for this view to your app developer.

Note: If you use the built-in My Cases list view, keep in mind that it is filtered by the Contact field for community
users and it is filtered by the Created By field for other user profiles. If you want a different behavior, create a new list
view.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Case Management Settings from
Your Org.

Get Case Management Settings from Your Org

After you’ve configured your org, supply your app developer with the values for the community URL, the global action, and the case
list. You can get this information from your org’s setup.

Get Case Management Settings from Your Org
After you’ve configured your org, supply your app developer with the values for the community URL, the global action, and the case list.
You can get this information from your org’s setup.

Community URL

From Setup, search for All Communities, and copy the URL for the desired community.

10

Cloud Setup for Case ManagementSnap-Ins for iOS Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=creating_global_actions.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=admin_userprofiles.htm&language=en_US
https://help.salesforce.com/articleView?id=listviews_parent.htm&type=0&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=customviews_parent.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=customviews_parent.htm&language=en_US

Global Action

From Setup, search for Global Actions, and copy the name of the desired quick action.

Case List Unique Name (for Authenticated Users Only)
To get this case list value, access the Cases tab in your org, pick the desired View, select Go! to see that view, and then select Edit
to edit the view. From the edit window, you can see the View Unique Name. Use this value when you specify the caseListName
in the SDK.

11

Cloud Setup for Case ManagementSnap-Ins for iOS Developer Guide

Console Setup for SOS
To use SOS in your mobile app, set up Omni-Channel and SOS for your console.

Note: If you intend to provide real-time support using both Live Agent Chat and SOS, make sure that your agents know to go
Offline before switching from the Online state of one feature to the Online state of the other.

You can either use the quick setup or configure your org manually. The quick setup (Quick Setup: SOS Console) is best to get started the
first time; manual setup (Manual Setup: SOS Console) is appropriate if you want to customize your org for production. Once you've set
up the console, see Get SOS Settings from Your Org if you have trouble finding the settings that a developer requires to use this feature
in the SDK.

After setting up the SOS console, check out these other topics to fine-tune your SOS configuration.

Quick Setup: SOS Console

Quick setup is great when you want to try SOS for the first time and you haven’t already enabled Omni-Channel or SOS in your org.

Manual Setup: SOS Console

Perform a manual setup when you want to fine-tune your Service Cloud for a production environment.

Get SOS Settings from Your Org

After you’ve set up SOS in the console, supply your app developer with three values: the Live Agent endpoint, the organization ID,
and the deployment ID. You can get this information from your org’s setup.

Assign SOS Permissions

To allow an agent to use SOS, verify that the license and permissions settings are correct in Salesforce.

Automatic SOS Case Pop

With auto case pop, Service Cloud automatically creates a case when a new SOS session starts. Creating a case at the start of a session
requires a trigger, a Visualforce page, and changes to the SOS session page layout.

Listen for SOS Console Events

Listen for SOS events from the Salesforce console to log activity, debug issues, and perform quality-of-service (QoS) analysis.

Record SOS Sessions

Enable SOS session recording to assure quality and let agents refer to session recordings.

SOS Reference ID

Provide an ID to give to support when there are issues with a session.

Multiple SOS Queues

Implement multiple SOS queues to route requests to specific agents or give specific requests a higher priority.

Quick Setup: SOS Console
Quick setup is great when you want to try SOS for the first time and you haven’t already enabled Omni-Channel or SOS in your org.

Before running through this quick start, be sure that the SOS Quick Start Package is installed into your Service Cloud instance.

• Install Quick Start Package in your sandbox org

• Install Quick Start Package in your production org

To simplify the configuration for SOS Service Cloud, we have included an easy-to-use SOS quick setup wizard.

1. Log in to your org and select the SOS Quick Setup app.

12

Console Setup for SOSSnap-Ins for iOS Developer Guide

https://test.salesforce.com/?ec=302&startURL=%2Fpackaging%2FinstallPackage.apexp%3Fp0%3D04tB00000002rSm
https://login.salesforce.com/?ec=302&startURL=%2Fpackaging%2FinstallPackage.apexp%3Fp0%3D04tB00000002rSm

2. Select Check Org Requirements.

This step performs basic checks to ensure that your org is set up correctly. Ensure that every line item is marked with PASS. You can
edit any settings that have not passed.

3. Select Create Your SOS Objects.

This step allows you to provide custom names for the new SOS objects. You can leave the default values.

Service Presence
Determines what appears in the Omni-Channel widget. You can edit this object and add more Service Channels to the Presence
status.

Routing Configuration
Allows you to set agent work capacity and priority.

13

Console Setup for SOSSnap-Ins for iOS Developer Guide

Queue
Connects the users to a Routing Configuration. Also allows you to state which objects (in this case, the SOS session) can be
owned by this queue.

Permission Set
Contains the app permissions to enable the SOS license and to provide access to the Service Presence status. This object must
be used to enable the license on a user. All members of the permission set must be assigned an SOS license. It can also be used
to enable the Service Presence status.

SOS Deployment
Links your customer-facing application to the SOS Queue. Once created, you can configure the deployment to enable session
recording by providing Amazon AWS credentials.

4. Click Create.

Ensure that every line item is marked with PASS. You can edit any settings that have not passed.

5. Add agents to the Set Up Users section.

This section allows you to assign the SOS license to an agent and add the agent to the permission set and queue.

6. Select Add the Omni-Channel Widget to Your Console App.

Choose the Service Cloud Console and click Update App.

14

Console Setup for SOSSnap-Ins for iOS Developer Guide

This step adds the following to your Console App:

• Omni-Channel Widget

• SOS Console component

• Whitelisted domains necessary for SOS

• Report dashboard to the Navigation tab

7. (Optional) Select Custom Your Console Settings.

You can set your org to automatically create a case for each SOS session and open it in a subtab.

The case is created by a trigger included with the package. Before the new SOS session is inserted, the trigger creates a case and
adds a reference to it to the SOS session object. If you wish to modify the trigger, it can be found in Setup, by searching SOS Sessions
and going to Triggers. The name of the trigger is SOSCreateCase.

The case is popped in a subtab by a page that is hidden in the SOS session page layout. This hidden page and an altered SOS session
page layout are also included with the package.

8. Select Info for Your SOS App.

This step provides you with the three pieces of information required to start an SOS session from the SDK: Organization ID, SOS
Deployment ID, and Live Agent API Endpoint. Save this information for later.

15

Console Setup for SOSSnap-Ins for iOS Developer Guide

Once you’ve completed these steps, you are ready to start using the SOS feature in the Snap-ins SDK.

Manual Setup: SOS Console
Perform a manual setup when you want to fine-tune your Service Cloud for a production environment.

1. Configure Omni-Channel, as described in Omni-Channel for Administrators (PDF).

2. Set up SOS in Service Cloud, as described in Set Up SOS Video Chat and Screen-Sharing.

3. Be sure that you’ve assigned agent permissions to users, as described in Assign SOS Permissions.

4. Perform any additional customizations specified in Console Setup for SOS.

Get SOS Settings from Your Org
After you’ve set up SOS in the console, supply your app developer with three values: the Live Agent endpoint, the organization ID, and
the deployment ID. You can get this information from your org’s setup.

pod
The hostname for the Live Agent endpoint that your organization has been assigned. To get this value, from Setup, search for Live
Agent Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the path —
just use the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization ID.

16

Console Setup for SOSSnap-Ins for iOS Developer Guide

https://help.salesforce.com/HTViewHelpDoc?id=service_presence_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/service_presence_administrators.pdf
https://help.salesforce.com/HTViewHelpDoc?id=sos_intro.htm&language=en_US

deploymentId
The unique ID of your SOS deployment. To get this value, from Setup, search for SOS Deployments, click the correct deployment
and copy the Deployment ID.

Assign SOS Permissions
To allow an agent to use SOS, verify that the license and permissions settings are correct in Salesforce.

1. Assign an SOS user license.

Assigning a license must be done for every user that requires access to SOS.

a. From Setup, select Manage Users > Users.

b. Click the name of the user. (Do not click Edit.)

c. Select Permission Set License Assignments and then click Edit Assignments.

d. Enable SOS User. If this option is not available, your org has not been assigned any SOS licenses.

17

Console Setup for SOSSnap-Ins for iOS Developer Guide

e. Click Save.

2. Enable the SOS license.

Once licenses are assigned to users, enable them using a permission set. We recommend that you have a permission set specifically
for SOS, because all users assigned to this permission set must have an SOS license. If you attempt to enable SOS for a permission
set which contains users that do not have an SOS license, you’ll receive an error.

a. From Setup, select Manage Users > Permission Sets.

b. If you do not have a permission set for SOS, click the New button. Give it a Label and click Save.

c. If you already have a permission set, click the SOS permission set.

d. Click App Permissions and then click the Edit button.

e. Check Enable for the Enable SOS Licenses checkbox. You’ll receive an error if any assigned users do not have the SOS license.

f. Click Save.

3. Enable the service presence status.

You can enable the service presence status using either permission sets or profiles. If the presence status is only being used for SOS,
it is easier to enable the presence status through the same permission set that enables the license. Using the same permission set
guarantees that all agents who require the presence status have access to it. If the presence status is being used for multiple service
channels, it is likely that the same permission set cannot be used, since all members of the permission set would require a SOS
license. In this case, you may want to have multiple permissions sets, assign it to a profile, and use some combination of profiles and
permission sets.

Service Permission via Permission Sets

a. From Setup, select Manage Users > Permission Sets.

b. Click an existing permission set associated with SOS, or create a new one.

c. Click Service Presence Statuses Access and then click the Edit button.

d. Add the service presence related to SOS to the Enabled Service Presence Statuses.

e. Click Save.

f. If necessary, click Manage Assignments to add agents to the permission set.

Service Permission via Profile

a. From Setup, select Manage Users > Profiles.

b. Click the name of the profile associated with SOS. (Do not click Edit.)

c. Click the Edit button for Enabled Service Presence Status Access.

d. Add the service presence related to SOS to the Enabled Service Presence Statuses.

e. Click Save.

4. Add agents to the queue.

All agents must be a member of at least 1 queue. You can determine which queues are used by SOS by looking at the SOS deployments.
Agents can be added to a queue individually or in groups. These groups differ depending on the org — groups can be broken into:
roles, public groups, partner users, and so on.

a. From Setup, select Manage Users > Queues.

b. Click Edit for the desired queue.

c. Scroll to the bottom of the page and find the Queue Members section. Add the required members.

18

Console Setup for SOSSnap-Ins for iOS Developer Guide

d. Click Save.

Automatic SOS Case Pop
With auto case pop, Service Cloud automatically creates a case when a new SOS session starts. Creating a case at the start of a session
requires a trigger, a Visualforce page, and changes to the SOS session page layout.

1. Create a trigger.

This trigger fires before a new SOS session object saves. The trigger creates a case and adds a reference to the case to the SOS session
object. When the case is created, the owner is initially set to "Automated Process". This value changes to the owner of the SOS session
object with the Visualforce page specified in the next step.

a. From Setup, search for SOS Sessions.

b. Select Triggers from the SOS Sessions section.

c. Click the New button.

d. Replace the Apex Trigger code with the code below. This code assumes that the email address is sent through the SOS Custom
Data feature using the Email__c API Name. To learn more about custom data in SOS, see Using SOS with the Snap-Ins SDK.
Any data that can be used to identify a contact can be sent instead of the email, as long as the trigger is updated to reflect this
information.

trigger SOSCreateCaseCustom on SOSSession (before insert) {
List<SOSSession> sosSess = Trigger.new;
for (SOSSession s : sosSess) {
try {
Case caseToAdd = new Case();
caseToAdd.Subject = 'SOS Video Chat';
if (s.ContactId != null) {
caseToAdd.ContactId = s.ContactId;

} else {
List<Contact> contactInfo =

[SELECT Id from Contact WHERE Email = :s.Email__c];
if (!contactInfo.isEmpty()) {
caseToAdd.ContactId = contactInfo[0].Id;
s.ContactId = contactInfo[0].Id;

}
}
insert caseToAdd; s.CaseId = caseToAdd.Id;

}
catch(Exception e){}

}
}

e. Click Save.

2. Add a Visualforce page.

This Visualforce page changes the owner of the case and opens the case in a subtab. The page is added to the SOS session page
layout in the final step.

a. From Setup, search for Visualforce Pages.

b. Click the New button.

c. Give the Visualforce page a name. For example, "SOS_Open_Case_Custom".

19

Console Setup for SOSSnap-Ins for iOS Developer Guide

d. Replace the Visualforce Markup code with this code:

<apex:page sidebar="false" standardStylesheets="false">
<apex:includeScript value="/soap/ajax/34.0/connection.js"/>
<apex:includeScript value="/support/console/34.0/integration.js"/>

<script type='text/javascript'>
sforce.connection.sessionId = '{!$Api.Session_ID}';

function escapeSoql (str) {
return str.replace(/\\/g, '\\\\').replace(/'/g, "\\'");

}

document.addEventListener('DOMContentLoaded', function () {
sforce.console.getEnclosingPrimaryTabObjectId(function(result) {
if (!result || !result.success) {
return;

}

var sosSessionId = result.id;
var query =

"SELECT CaseId, OwnerId FROM SOSSession WHERE Id = '" +
escapeSoql(sosSessionId) + "'"

var queryResult = sforce.connection.query(query);
var record = queryResult.getArray('records');

if (!record || !record[0]) {
console.log('Can not determine session Id');
return;

}

var caseId = record[0].CaseId;
var ownerId = record[0].OwnerId;

if (!ownerId) {
console.log('No owner Id');
return;

}

var caseUpdate = new sforce.SObject("Case");
caseUpdate.Id = caseId;
caseUpdate.OwnerId = ownerId;
result = sforce.connection.update([caseUpdate]);

if (!result[0].getBoolean("success")) {
console.log('Unable to set owner', result, caseUpdate);

}

sforce.console.getEnclosingPrimaryTabId(function(result) {
if (!result || !result.success) {
return;

}

var query = "SELECT CaseNumber FROM Case WHERE Id = '" +
escapeSoql(caseId) + "'"

20

Console Setup for SOSSnap-Ins for iOS Developer Guide

var queryResult = sforce.connection.query(query);
var record = queryResult.getArray('records');
var caseNumber = record && record[0] &&

record[0].CaseNumber || 'Case';

sforce.console.openSubtab(result.id, '/'+caseId,
true, caseNumber);

});
});

});
</script>

</apex:page>

e. Click Save.

3. Update the SOS session page layout.

Now that the Visualforce page has been created, you can change the page layout of the SOS session. This change hides the Visualforce
page in the layout.

a. From Setup, search for SOS Sessions.

b. Select Page Layouts from the SOS Sessions section.

c. Click Edit for your active layout (probably SOS Session Layout).

d. From the top of the page, select the Custom Console Components link.

e. Under the Primary Tab Components section, add the following to one of the sidebars:

• Set Style to Stack.

• Set Width px to 1.

• Set Height px to 1. (Change Height % to Height px if necessary.)

• Set Type to Visualforce Page

• Set Component to the page created previously (for example, SOS_Open_Case_Custom).

f. Click Save.

Whenever an agent accepts an incoming call, a case automatically gets created.

Listen for SOS Console Events
Listen for SOS events from the Salesforce console to log activity, debug issues, and perform quality-of-service (QoS) analysis.

21

Console Setup for SOSSnap-Ins for iOS Developer Guide

To detect events from the Salesforce console, use JavaScript in your Visualforce page. Call the addEventListener method, which
is documented in the Salesforce Console Developer Guide. The method syntax is:

sforce.console.addEventListener(eventType: String, eventListener: Function);

DescriptionTypeParameter

The event type. For SOS session state events,
this value is

StringeventType

SFORCE_SOS:STATE_CHANGED. For
audio QoS, this value is
SFORCE_SOS:QOS_AUDIO. For video
QoS, this value is
SFORCE_SOS:QOS_VIDEO.

This function is called when the registered
event is emitted. You receive one JSON

FunctioneventListener

message object within the payload
passed to this function.

For more information about SFORCE_SOS:STATE_CHANGED, see SOS State Change Console Events.

For more information about SFORCE_SOS:QOS_AUDIO and SFORCE_SOS:QOS_VIDEO, see SOS Quality-of-Service Console
Events.

SOS State Change Console Events

You can listen for SOS session state changes from the Salesforce console for logging and debugging purposes.

SOS Quality-of-Service Console Events

You can listen for SOS audio and video quality-of-service (QoS) events from the Salesforce console.

SOS State Change Console Events
You can listen for SOS session state changes from the Salesforce console for logging and debugging purposes.

After you add an event listener for state changes to your console (see Listen for SOS Console Events), inspect your function's payload
and handle the event.

sforce.console.addEventListener("SFORCE_SOS:STATE_CHANGED", function(payload) {
// Handle event

});

Event Listener Payload

The JSON payload you receive within the event listener function follows this syntax.

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previousState: <PREVIOUS_STATE>,
reason: <REASON_IF_APPLICABLE>

22

Console Setup for SOSSnap-Ins for iOS Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.214.0.api_console.meta/api_console/sforce_api_console_addeventlistener.htm

}
}

sfdcSosSessionId (String)
The ID associated with the session that emitted the events.

currentState (String)
The current state of the session. See the Event States section.

previousState (String)
The previous state of the session. See the Event States section.

reason (Object or null)
Populated only when the current state is ENDED. Contains information about why the session was ended. See the End Reasons
section.

This code sample illustrates how to handle an event. Subsequent sections describe how to interpret each part of the message object
payload.

sforce.console.addEventListener("SFORCE_SOS:STATE_CHANGED", function(event) {
var stateChange = {};
try {
stateChange = JSON.parse(event.message);

} catch (e) {
// Error Parsing JSON Object
throw new Error(e);

}

/*
Use currentState vs previousState to determine how you reached
the state you're in. Most useful in the case of the ENDED state
where you want to know how it ended and if there were any errors.

*/

var currentState = stateChange.currentState;
var previousState = stateChange.previousState;

// Handle Non ENDED state changes
if (currentState !== 'ENDED') {
logStateChange(currentState, previousState);
return;

}

// Handle ENDED state change
switch (stateChange.reason.name) {

// Handle a session that was intentionally ended by customer or agent
case 'ENDED_BY_CUSTOMER':
case 'ENDED_BY_CONSOLE':
logEndedSession(currentState, previousState, stateChange.reason.name);
break;

// Handle a session that ended in an error
case 'ERROR':
logEndedWithError(currentState, previousState, stateChange.reason.name,

stateChange.reason.error);

23

Console Setup for SOSSnap-Ins for iOS Developer Guide

break;
}

});

Event States

The currentState and previousState fields can be one of the following states.

LOADING_RESOURCES
Widget has loaded. Fetching more resources from the server.

INTERFACE_CHECK
Applies to Internet Explorer browsers only. Attempting to install the Internet Explorer plug-in.

JOINING
Joining the audio/video session.

INITIALIZING
Starting to listen for updates from the audio/video session.

AV_CONNECTION
Connecting to the audio/video session, getting microphone or camera permissions from the browser, and starting to send the stream
to the audio/video session.

WAITING
Waiting to receive the audio/video stream from the SDK.

CONNECTED
Session is fully established with both audio and video.

HOLD
Session has been put on hold by the customer, the agent, or both.

PAUSED
Session paused because the app was put into the background, the customer is typing into a masked field, or the customer accepted
a phone call.

ENDED
The session has completed. See the End Reasons section for more information.

End Reasons

When the currentState is ENDED, you can inspect the reason object to find out why the session ended.

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previousState: <PREVIOUS_STATE>,

reason: {
name: <END_REASON>
error: <ERROR_IF_APPLICABLE>

}
}

}

24

Console Setup for SOSSnap-Ins for iOS Developer Guide

name (String)
The reason why the session ended. Can be ENDED_BY_CUSTOMER, ENDED_BY_CONSOLE, or ERROR.

error (Error object or null)
If there's an error, this field contains the error details. If there isn't an error, the value is null. See Errors section.

The following table describes various ways a session can end, with and without an error. See the Errors section for details about session
failures.

Table 1: End Reason Scenarios

How a Session Can End with an ErrorHow a Session Can End Without an
Error

State

An issue occurred while loading scripts from
the server.

The customer or agent manually ended the
session prematurely.

LOADING_RESOURCES

The agent encountered an issue while
installing the OpenTok plug-in.

The customer or agent manually ended the
session prematurely. Possibly related to a
user issue while installing the plug-in.

INTERFACE_CHECK

The agent encountered an issue while
joining the SOS session.

The customer or agent manually ended the
session prematurely.

JOINING

The agent encountered an issue while
starting to listen for updates from the SOS
session.

The customer or agent manually ended the
session prematurely.

INITIALIZING

The agent encountered an issue while
joining the session. The issue could be due

The customer or agent manually ended the
session prematurely.

AV_CONNECTION

to hardware permissions, misconfigured
firewall rules, network performance, or an
internal server error.

The agent failed to connect to the
customer’s audio/video stream. The issue

The customer disconnected from the
session without ending it, causing the

WAITING

could be due to misconfigured firewall rules,session to end. Typical reasons include the
network performance, an internal servercustomer lost network connectivity, the app

crashed, or the customer closed the app. error, or the customer was dropped from
the audio/video session.

The session ended unexpectedly with a fatal
error. This error could be due to network

The customer or agent manually ended the
session from a normal state.

CONNECTED

performance issues or an internal server
error.

The session ended unexpectedly with a fatal
error. This error could be due to network
performance or an internal server error.

The customer or agent manually ended the
session from a normal state. The agent or
customer could have ended the session
after being in the hold state for too long.

HOLD

The session ended unexpectedly with a fatal
error. This error could be due to network
performance or an internal server error.

The customer or agent manually ended the
session from a normal state. The agent or
customer could have ended the session
after being in the paused state for too long.

PAUSED

25

Console Setup for SOSSnap-Ins for iOS Developer Guide

https://tokbox.com/platform

How a Session Can End with an ErrorHow a Session Can End Without an
Error

State

The session experienced issues while
disconnecting from the audio/video session

The session ended without issue.ENDED

or making a request to the audio/video
server.

The following table shows some scenarios in which a session can end successfully, along with a sample payload.

Table 2: Successful End Reason Examples

Sample PayloadScenario

{
currentState: 'ENDED',

Session ended by customer

previousState: 'CONNECTED',
reason: {
name: 'ENDED_BY_CUSTOMER',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent

previousState: 'CONNECTED',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent while session is on hold

previousState: 'HOLD',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent while customer app is in the background

previousState: 'PAUSED',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

26

Console Setup for SOSSnap-Ins for iOS Developer Guide

Sample PayloadScenario

{
currentState: 'ENDED',

Session ended by agent after app crash

previousState: 'WAITING',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

Errors

When a session ends with an error, inspect the error object for more information. The error syntax is:

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previous: <PREVIOUS_STATE>,
reason: {
name: 'ERROR',

error: {
code: <ERROR_CODE>,
domain: <ERROR_DOMAIN>,
message: <ERROR_MESSAGE>,
name: <ERROR_NAME>,
type: <ERROR_TYPE>,
rawError: {
code: <RAW_ERROR_CODE>,
message: <RAW_ERROR_MESSAGE>,
name: <RAW_ERROR_MESSAGE>

}
}

}
}

}

code (Number)
Error code used for grouping related errors. Some common error codes include: 1000 (SOS session timed out waiting to access
camera or microphone); 1001 (audio/video request timed out), 1003 (failed to set agent name); 1006 (SOS session timed out waiting
to access the camera or microphone); 1500 (permission to audio/video hardware denied). See OpenTok's Handling Exceptions
documentation for more error conditions.

domain (String or null)
Describes the category of error when it's related to an OpenTok audio/video issue. Can be one of the following: session,
publisher, or subscriber domains. A session error relates to an existing audio/video session. A publisher error
describes an issue that the agent had when creating an audio/video stream. A subscriber error describes an issue that the
agent had when receiving a customer’s audio/video stream.

message (String)
A description of what caused the error.

27

Console Setup for SOSSnap-Ins for iOS Developer Guide

https://tokbox.com/developer/guides/exception-handling/js/

name (String or null)
A unique name associated with the error.

type (String)
Specifies from where the error originated. Can be one of the following: opentok (the underlying WebRTC platform); scrt
(Salesforce's real-time server); or widget (the Salesforce console widget).

rawError (Object)
The raw error returned by the server without parsing, grouping, or renaming.

The following table shows some scenarios in which a session can end in an error, along with a sample payload.

Table 3: End in Error Examples

Sample PayloadError Scenario

{
currentState: 'ENDED',

Agent declines permissions prompt

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1500,
domain: 'publisher',
message: 'Permission to audio/video

hardware
denied. You must grant permission

for SOS to
access microphone and camera.',

name: 'OT_USER_MEDIA_ACCESS_DENIED',
type: 'opentok',
rawError: {
code: 1500,
message: 'ORIGINAL ERROR MESSAGE',
name: 'OT_USER_MEDIA_ACCESS_DENIED'

}
}

}
}

{
currentState: 'ENDED',

Agent lets session time out without granting permissions

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1000,
domain: null,
message: 'SOS session timed out

waiting to
access camera/microphone.',

name: null,
type: 'widget',

28

Console Setup for SOSSnap-Ins for iOS Developer Guide

Sample PayloadError Scenario

rawError: {
code: 1000,
message: 'SOS session timed out

waiting to
access camera/microphone.'

}
}

}
}

{
currentState: 'ENDED',

Session dies after OpenTok drops connection because of a timeout

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1006,
domain:session,
message: 'SOS session timed out

waiting to
access camera/microphone.',

name: 'OT_SOCKET_CLOSE_ABNORMAL',
type: 'opentok',
rawError: {
code: 1006,
message: 'Unable to connect to the

session.
Please ensure you have network

connectivity.',
name: 'OT_SOCKET_CLOSE_ABNORMAL'

}
}

}
}

SOS Quality-of-Service Console Events
You can listen for SOS audio and video quality-of-service (QoS) events from the Salesforce console.

Note: The console allows you to track streaming issues on the other side of the conversation (from the client to the OpenTok
media router). To track QoS issues on this side (from the agent to the media router), refer to the SOS SDK documentation on
quality-of-service events: Using SOS with the Snap-Ins SDK.

After you add an event listener for QoS to your console (see Listen for SOS Console Events), inspect your function's payload and handle
the event.

sforce.console.addEventListener("SFORCE_SOS:QOS_AUDIO", function(payload) {
// Handle audio QoS event

});

29

Console Setup for SOSSnap-Ins for iOS Developer Guide

https://tokbox.com/platform

sforce.console.addEventListener("SFORCE_SOS:QOS_VIDEO", function(payload) {
// Handle video QoS event

});

Audio QoS Event Listener Payload

This sample JSON payload is for the SFORCE_SOS:QOS_AUDIO event type.

{
"message":"{
"bytesReceived":131131,
"packetsLost":3,
"packetsReceived":1499,
"timestamp":1502214189391,
"sfdcSosSessionId":"0NXR000000000MS"

}"
}

This payload specifies how many bytes were received, the number of packets lost, and the number of packets received for a 30-second
span. If the session ends before 30 seconds, QoS data isn't logged.

Video QoS Event Listener Payload

This sample JSON payload is for the SFORCE_SOS:QOS_VIDEO event type.

{
"message":"{
"bytesReceived":82253,
"packetsLost":0,
"packetsReceived":337,
"timestamp":1502214189391,
"size":"480x640",
"timePerShareType":{
"ss":"55.29",
"ffc":"44.71",
"bfc":"0.00"

},
"sfdcSosSessionId":"0NXR000000000MS"

}"
}

This payload specifies how many bytes were received, the number of packets lost, and the number of packets received for a 30-second
span. If the session ends before 30 seconds, QoS data isn't logged. This payload also describes the resolution size of the video and the
percentage of time in each share type. The share types are ss for screen sharing, ffc for the front-facing camera, and bfc for the
back-facing camera.

Record SOS Sessions
Enable SOS session recording to assure quality and let agents refer to session recordings.

1. From Setup, search for SOS Deployments.

2. Select your deployment.

3. Check the Session Recording Enabled checkbox. Specify your API key, secret, and bucket.

30

Console Setup for SOSSnap-Ins for iOS Developer Guide

You can retrieve recorded sessions in the mp4 format from your Amazon S3 bucket.

Note: To configure your AWS environment, see Managing Access Permissions to Your Amazon S3 Resources.

SOS Reference ID
Provide an ID to give to support when there are issues with a session.

The SOS Reference ID (also referred to as the SOS Session ID) is a unique ID used to identify a session. It is 15 characters and starts with
"0NX". If there is an issue with a session, this ID can be provided to Support to locate logs related to the session.

There are two ways to find the SOS Reference ID:

1. Add it to the SOS Session object

2. Add it to the fields displayed in the SOS Session list view.

Add to Session Object
If the SOS Reference ID is added to the SOS Session Object and SOS Session page layouts, the ID can be seen when viewing any SOS
Session. To add the SOS Reference ID to the SOS Session object:

1. From Setup, search for SOS Sessions.

2. From SOS Sessions, select Fields. (Do not go to Fields under SOS Session Activities.)

3. Click New under SOS Session Custom Fields & Relationships.

4. Select Formula. Click Next.

5. Enter SOS Reference Id as the Field Label. Field Name auto populates.

6. Select Text as the Formula Return Type. Click Next.

7. In the Simple Formula text area, enter Id. Click Next.

8. Click Next again. (Permission to view the field can be removed on this page before clicking next.)

9. Click Save.

We recommend that you add this field to all page layouts.

31

Console Setup for SOSSnap-Ins for iOS Developer Guide

https://en.wikipedia.org/wiki/MPEG-4_Part_14
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Add to Session List View
The SOS Session list view can be added as a navigation tab item to any console app. Using the SOS Session list view allows you to view
the SOS Reference ID for multiple sessions on a single screen. To add the SOS Session list view to a console app:

1. From Setup, search for Apps.

2. Select Edit for the desired console app.

3. Under Choose Navigation Tab Items, move SOS Sessions to Selected Items.

4. Click Save.

The SOS Session list view may not display the SOS Reference ID by default. If so, a view can be edited or a new view can be created. To
add the SOS Reference Id to the view:

1. Go to the SOS Session list view

2. Click either Edit or Create New View.

3. Now you can determine which fields are visible.

• If the new field was added (as shown earlier) move SOS Reference Id to Selected Fields.

• If the new field was not created, move both instances of SOS Session Id to Selected Fields. (The two SOS Session Id fields are
different fields. One is the unique ID that starts with the characters "0NX"; the other is a number that increments for each session.)

4. Click Save.

Multiple SOS Queues
Implement multiple SOS queues to route requests to specific agents or give specific requests a higher priority.

Multiple queues can help out in the following situations:

• Giving paying customers a higher priority

• Having separate queues for different products

• Routing to agents with specific skill sets

• Giving agents a personal queue (great for training)

• Creating a training queue that has a lower priority or only gets requests from simple pages

• Grouping separate pages into different queues

You need two objects to make multiple queues work: a Queue and an SOS Deployment object. A third object, Routing
Configuration, lets you use different priorities.

1. If a Routing Configuration is being used to achieve different priorities, create this object first. If you want all queues to
have the same priority, the same routing configuration can be used.

2. Next, create the Queue. The queue references the routing config. An agent can be a member of multiple queues.

3. Create the SOS Deployment last. The deployment references the queue. An app may have access to several SOS deployment
IDs, and then the app decides which queue the user should be sent to using the SOS deployment ID.

Snap-Ins SDK Setup

Set up the SDK to start using Service Cloud features in your mobile app.

32

Snap-Ins SDK SetupSnap-Ins for iOS Developer Guide

Requirements for the Snap-Ins SDK for iOS

Before you set up the SDK, let's take care of a few pre-reqs.

Install the Snap-Ins SDK for iOS

Before you can use the iOS SDK, install the SDK and configure your project.

Authentication with the Snap-Ins SDK for iOS

The Snap-ins SDK provides an authentication mechanism that allows your users to access user-specific information in Service Cloud.
To authenticate, create an SCSAuthenticationSettings object and pass it to the SDK.

Notifications with the Snap-Ins SDK for iOS

The Snap-ins SDK can display notifications for activity related to Live Agent Chat and Case Management.

Prepare Your App for Submission

Before you can submit your app to the App Store, you need to strip development resources (such as unneeded architectures and
header resources) from the dynamic libraries used by the Snap-ins SDK.

Requirements for the Snap-Ins SDK for iOS
Before you set up the SDK, let's take care of a few pre-reqs.

Salesforce Org Requirements
The Snap-ins SDK can be used with both Lightning Experience and Salesforce Classic. However, the SOS agent widget currently only
works in Salesforce Classic.

SDK Development Requirements
To develop using this SDK, you must have:

• iOS SDK version 9 or newer

• Xcode version 8 or newer

Mobile App Requirements
Any app that uses this SDK requires:

• iOS version 9 or newer

SOS Agent Requirements
The agents responding to SOS calls must have modern browsers and reasonably high-speed internet connectivity to handle the demands
of real-time audio and video.

Hardware requirements:

• Webcam

• Microphone

Bandwidth requirements:

• 500 Kbps upstream

• 500 Kbps downstream

33

Requirements for the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

https://developer.apple.com/ios/
https://developer.apple.com/xcode/
https://developer.apple.com/ios/

Important: Due to bandwidth limitations, 2G networks, such as GPRS and EDGE, are not supported.

Browser requirements:

• Chrome version 35 or newer

• Firefox version 30 or newer

• Internet Explorer version 10 or newer (plug-in required)

Note: Your browser must support Transport Layer Security (TLS) protocol version 1.1 or newer. If you are running Internet Explorer
version 10, see this help topic on how to update the TLS version.

Operating System:

• OSX 10.5 or newer

• Windows 7 or newer

Install the Snap-Ins SDK for iOS
Before you can use the iOS SDK, install the SDK and configure your project.

1. Add the SDK frameworks.

You can add the frameworks manually or add them using CocoaPods. CocoaPods is a popular dependency manager for Swift and
Objective-C projects.

• Add the Frameworks with CocoaPods

• Add the Frameworks Manually

2. (Knowledge only) Add an App Transport Security (ATS) exception to localhost for serving cached knowledge base articles.

a. Open the Info.plist file for your project.

Note: If you right-click the plist file from the project navigator, you can select Open As > Source Code from the
context menu. The source code view is a quick way to add domains to your plist file.

b. Add NSAppTransportSecurity to your Info.plist to allow insecure HTTP loads from localhost .

<key>NSAppTransportSecurity</key>
<dict>
<key>NSExceptionDomains</key>
<dict>
<key>localhost</key>
<dict>
<key>NSExceptionAllowsInsecureHTTPLoads</key>
<true/>

</dict>
</dict>
</dict>

3. (SOS only) If you're using SOS, iOS 10 requires descriptions for why the app needs to access the device's microphone and camera.

Add string values for "Privacy - Microphone Usage Description" and "Privacy - Camera Usage Description" in your Info.plist
file. To learn more about these properties, see Cocoa Keys in Apple's reference documentation.

34

Install the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

https://help.salesforce.com/articleView?id=Enabling-TLS-1-1-and-TLS-1-2-in-Internet-Explorer&type=1&language=en_US
https://cocoapods.org/
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/prerelease/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html

Sample values for these keys:

<key>NSMicrophoneUsageDescription</key>
<string>Used for an SOS chat with an agent.</string>
<key>NSCameraUsageDescription</key>
<string>Used for an SOS video chat with an agent.</string>

4. (Live Agent Chat only) If you're using Live Agent Chat, iOS 10 requires descriptions for why the app needs to access the device's
camera and photo library.

Add string values for "Privacy - Camera Usage Description" and "Privacy - Photo Library Usage Description" in your Info.plist
file. To learn more about these properties, see Cocoa Keys in Apple's reference documentation.

Sample values for these keys:

<key>NSCameraUsageDescription</key>
<string>Used when sending an image to an agent.</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>Used when sending an image to an agent.</string>

5. (SOS only) If you're using SOS, turn on Background Modes for your project.

To ensure that an SOS and Live Agent Chat session remains active while the app is in the background, verify that your background
settings are correct.

a. Open your Project Target Settings.

b. Select the Capabilities tab.

c. Set the Background Modes to ON.

d. From the Background Modes subcategories, check the Audio, AirPlay, and Picture in Picture item.

You're now ready to get started using the SDK!

Add the Frameworks with CocoaPods

Add the SDK frameworks using CocoaPods, a developer tool that automatically manages dependencies.

Add the Frameworks Manually

Add the SDK frameworks by manually embedding the appropriate frameworks.

Add the Frameworks with CocoaPods
Add the SDK frameworks using CocoaPods, a developer tool that automatically manages dependencies.

1. If you haven't already done so, install the CocoaPods gem and initialize the CocoaPods master repository.

sudo gem install cocoapods
pod setup

Note: The minimum supported version of CocoaPods is 1.0.1. If you're not sure what version you have, use pod --version
to check the version number.

2. If you already have CocoaPods installed, update your pods to the latest version.

pod update

3. Change to the root directory of your application project.

35

Install the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

https://developer.apple.com/library/prerelease/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://cocoapods.org/
https://cocoapods.org/

4. Create or edit a file named Podfile that contains the Snap-ins SDK dependency.

a. If you want to install the complete Snap-ins SDK, update your Podfile to include ServiceSDK.

source 'https://github.com/CocoaPods/Specs.git'
source 'https://github.com/goinstant/pods-specs-public'

To use the Snap-ins SDK (with all components)
target '<your app target>' do

pod 'ServiceSDK'
end

b. If you want to install a single Snap-ins SDK component, create a similar Podfile to the one specified above, but only include
the desired pod.

Pod nameFeature

ServiceSDK/KnowledgeKnowledge

ServiceSDK/CasesCase Management

ServiceSDK/ChatLive Agent Chat

ServiceSDK/SOSSOS

For example, the following Podfile installs SOS.

source 'https://github.com/CocoaPods/Specs.git'
source 'https://github.com/goinstant/pods-specs-public'

To use SOS
target '<your app target>' do

pod 'ServiceSDK/SOS'
end

If you don't specify a version number, you automatically get the latest version of that component. If you want to add a specific
version to your component, be sure to add the version number of the Snap-ins SDK and not the version number of the individual
component.

For instance, if you want version 3.7.3 of SOS, specify 214.0.3 because version 214.0.3 of the Snap-ins SDK has version 3.7.3 of
SOS.

source 'https://github.com/CocoaPods/Specs.git'
source 'https://github.com/goinstant/pods-specs-public'

To use SOS (with version info)
target '<your app target>' do

pod 'ServiceSDK/SOS', '214.0.3'
end

5. Run the CocoaPods installer.

pod install

This command generates a .xcworkspace file for you with all the dependencies included.

36

Install the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

6. Open the .xcworkspace file that CocoaPods generated and continue with the installation process.

Note: Be sure to open the .xcworkspace file (which includes all the dependencies) and not the .xcodeproj file.

Once you've added the SDK frameworks, proceed with the installation instructions on page 34.

Add the Frameworks Manually
Add the SDK frameworks by manually embedding the appropriate frameworks.

1. Download the SDK frameworks from the Snap-ins SDK product page.

2. Embed the relevant Snap-ins SDK frameworks into your project.

You can find the framework files within the Frameworks folder. Specifically, the following frameworks are available for you to
use:

Required?DescriptionFramework

YesContains all the common components
used by the Service SDK.

ServiceCore

Only if using KnowledgeContains access to the Knowledge features
of the SDK.

ServiceKnowledge

Only if using Case ManagementContains access to the Case Management
features of the SDK.

ServiceCases

Only if using Live Agent ChatContains access to the Live Agent Chat
features of the SDK.

ServiceChat

Only if using SOSContains access to the SOS features of the
SDK.

ServiceSOS

Add the relevant frameworks to the Embedded Binaries section of the General tab for your target app. Be sure to select Copy
items if needed when embedding.

Once you’ve embedded the frameworks, you’ll automatically see them appear in the Linked Frameworks and Libraries section
as well. If you see two line items for each framework (which happens if you drag the frameworks into the project before embedding),
delete the duplicates.

Once you've added the SDK frameworks, proceed with the installation instructions on page 34.

Authentication with the Snap-Ins SDK for iOS
The Snap-ins SDK provides an authentication mechanism that allows your users to access user-specific information in Service Cloud. To
authenticate, create an SCSAuthenticationSettings object and pass it to the SDK.

Authentication Settings
Authentication with the Snap-ins SDK uses an SCSAuthenticationSettings object. Create this object with a client ID and a
dictionary containing authentication settings. This authentication settings dictionary must contain a URL for your org

37

Authentication with the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

https://developer.salesforce.com/page/SnapinsMobile
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html

(SCSOAuth2JSONKeyInstanceUrl) and an access token (SCSOAuth2JSONKeyAccessToken). If your OAuth2 flow
supports refresh tokens, include a refresh token (SCSOAuth2JSONKeyRefreshToken) to the authentication settings.

In Swift:

// Specify auth info
let myClientId: String = "CLIENT_ID_VALUE"
let authDictionary: [SCSOAuth2JSONKey: String] =
[.instanceUrl : "https://URL_FOR_YOUR_ORG.com",
.accessToken : "ACCESS_TOKEN_VALUE"]

// Create auth settings object
let authSettings = SCSAuthenticationSettings(oauth2: authDictionary,

clientId: myClientId)

In Objective-C:

// Specify auth info
NSString *myClientId = @"CLIENT_ID_VALUE";
NSDictionary<SCSOAuth2JSONKey, NSString*> *authDictionary =
@{ SCSOAuth2JSONKeyInstanceUrl : @"https://URL_FOR_YOUR_ORG.com",

SCSOAuth2JSONKeyAccessToken : @"ACCESS_TOKEN_VALUE" };

// Create auth settings object
SCSAuthenticationSettings *authSettings =
[[SCSAuthenticationSettings alloc] initWithOAuth2Dictionary: authDictionary

clientId: myClientId];

If you're using the Salesforce Mobile SDK, we provide a helper method that allows you to construct an
SCSAuthenticationSettings object directly from the Mobile SDK user account. You can use this sample code after you've
successfully logged in a user.

In Swift:

// Get user account info from the Salesforce Mobile SDK
let identity: SFUserAccountIdentity =
SFUserAccountIdentity(userId: myUserId, orgId: myOrgId)

let account: SFUserAccount =
SFUserAccountManager.sharedInstance().userAccount(forUserIdentity: identity)!

// Create auth settings object from SFUserAccount
let authSettings = SCSAuthenticationSettings(mobileSDK: account)

In Objective-C:

// Get user account info from the Salesforce Mobile SDK
SFUserAccountIdentity *identity =
[SFUserAccountIdentityClass identityWithUserId:myUserId orgId:myOrgId];

SFUserAccount *account =
[[SFUserAccountManagerClass sharedInstance] userAccountForUserIdentity:identity];

// Create auth settings object from SFUserAccount
SCSAuthenticationSettings *authSettings =
[[SCSAuthenticationSettings alloc] initWithMobileSDKAccount:account];

Note: For developers who plan to use the Salesforce Mobile SDK for authentication, the Mobile SDK Developer’s Guide contains
authentication instructions. If you're using a Salesforce community, be sure to configure the login endpoint as described in the

38

Authentication with the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

https://developer.salesforce.com/page/Mobile_SDK
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html
https://developer.salesforce.com/page/Mobile_SDK
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm?search_text=SFUserAccount
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro_oauth.htm

Salesforce Mobile SDK documentation (Configure the Login Endpoint). This documentation describes how to use the
SFDCOAuthLoginHost property in your info.plist file to create a custom login URI.

If you plan to use remote push notification to alert the user when an event occurs in your org, call
registerForPushNotifications on the SCSAuthenticationSettings object. To learn more, see Notifications with
the Snap-Ins SDK for iOS.

However you create an SCSAuthenticationSettings object, pass it to the Snap-ins SDK during the authentication flow.

Authentication Flow
You can either authenticate on-demand when the SDK calls
serviceCloud(shouldAuthenticateServiceType:completion:) in your SCServiceCloudDelegate
implementation, or you can authenticate explicitly (that is, before the app attempts to show the relevant UI) using the
setAuthenticationSettings(settings:forServiceType:completion:) method in the ServiceCloud
shared instance.

With on-demand authentication, you perform the authentication asynchronously, after the SDK calls your
serviceCloud(shouldAuthenticateServiceType:completion:) delegate method. Once authenticated, pass the
SCSAuthenticationSettings object to the completion block that you're given in the
serviceCloud(shouldAuthenticateServiceType:completion:) method.

The following sequence diagram illustrates the basic authentication flow for on-demand authentication.

39

Authentication with the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/communities_login_endpoint.htm
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAuthenticationSettings:forServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateServiceType:completion:

On-Demand Authentication

Alternatively, you can explicitly authenticate before any UI appears that requires authentication. Call the
setAuthenticationSettings(settings:forServiceType:completion:) method in the ServiceCloud
shared instance using the SCSAuthenticationSettings object.

The following sequence diagram illustrates the authentication flow for explicit authentication.

40

Authentication with the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAuthenticationSettings:forServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html

Explicit Authentication

To programmatically log out a user, call setAuthenticationSettings(settings:forServiceType:completion:)
using nil for the SCSAuthenticationSettings argument.

Error Conditions
Implement serviceCloud(authenticationFailed:forServiceType:) in your SCServiceCloudDelegate
object to handle error conditions. The SDK calls this method if the access token expires, and for any other scenario that results in an
authentication failure. If you return true or YES, the SDK assumes that you want to proceed, and it subsequently calls
serviceCloud(shouldAuthenticateServiceType:completion:) to give you a chance to send updated authentication
information. If you return false or NO, the SDK goes back to the guest user state.

Sample Code
The following sample code illustrates how to implement an SCServiceCloudDelegate object to handle authentication.

class MyAuthHandler: NSObject, SCServiceCloudDelegate {

override init() {
super.init()

// Subscribe to ServiceCloud events
ServiceCloud.shared().delegate = self

}

41

Authentication with the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAuthenticationSettings:forServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:authenticationFailed:forServiceType:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html

/**
Implementation of a `ServiceCloudDelegate` method that allows you to
authenticate for a given service.
*/
func serviceCloud(_ serviceCloud: ServiceCloud,

shouldAuthenticateServiceType service: SCServiceType,
completion: @escaping (SCSAuthenticationSettings?) -> Void) -> Bool {

// Rather than scrutinize the service to see if we want to authenticate,
// let's just assume that we always want to authenticate...

// TO DO: Authenticate asynchronously
let urlRequest = URLRequest.init(url: URL(string: "https://example.com/auth")!)
URLSession.shared.dataTask(with: urlRequest) { (data, response, error) in

// TO DO: Populate the `SCSAuthenticationSettings` object from the result.
var authSettings: SCSAuthenticationSettings?

// Call the completion block with the authentication settings (asynchronously)
completion(authSettings)

}.resume()

// Tell the SDK that we do plan to authenticate
return true

}

/**
Implementation of a `ServiceCloudDelegate` method to handle authentication
failure events.
*/
func serviceCloud(_ serviceCloud: ServiceCloud,

authenticationFailed error: Error,
forServiceType service: SCServiceType) -> Bool {

// For this example, let's not bother handling the error,
// and just fall back to the guest user state...
// TO DO: In your code, you should inspect this error.
// If you want to handle the error, you could
// return `true` and then you'd be called back in the
// `shouldAuthenticateServiceType` method above.

return false
}

}

Notifications with the Snap-Ins SDK for iOS
The Snap-ins SDK can display notifications for activity related to Live Agent Chat and Case Management.

To learn more, see Notifications for Live Agent Activity and Push Notifications for Case Activity.

42

Notifications with the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

Prepare Your App for Submission
Before you can submit your app to the App Store, you need to strip development resources (such as unneeded architectures and header
resources) from the dynamic libraries used by the Snap-ins SDK.

Xcode doesn't automatically strip unneeded architectures from dynamic libraries, nor remove some header and utility resources. Apps
that don't do this clean up are rejected from the App Store. For example, you might receive the following error from iTunes Connect:

ERROR ITMS-90085:
No architectures in the binary. Lipo failed to detect any architectures in the bundle
executable.

You can resolve this problem by using the script provided in the ServiceCore framework that automatically strips unneeded
architectures from the dynamic libraries and then re-signs them. To use this script:

1. Select Build Phases for your project target.

2. Create a Run Script phase to run the script.

Access the prepare-framework script from within the ServiceCore framework in your project directory.

For example, if the framework is in your main project directory, use:

"$SRCROOT/ServiceCore.framework/prepare-framework"

And if you've installed the SDK with CocoaPods, use:

"$PODS_ROOT/ServiceSDK/Frameworks/ServiceCore.framework/prepare-framework"

Note: This build phase must occur after the link phase and all embed phases. If you're using CocoaPods, make sure to put this
script after the "[CP] Embed Pods Frameworks" phase.

iOS Tutorials & Examples

Get going quickly with these short introductory tutorials.

In addition to these tutorials, check out our GitHub repository (github.com/forcedotcom/ServiceSDK-iOS) for sample apps.

Get Started with Knowledge

It’s easy to wire up your iOS app to your knowledge base articles.

Get Started with Live Agent Chat

Get rolling quickly with live chat sessions between your customers and your agents.

Get Started with Case Publisher

Quickly build an app that lets you create a new case.

Get Started with SOS

See for yourself how easy and effective live video chat and screen sharing can be.

Get Started with Knowledge
It’s easy to wire up your iOS app to your knowledge base articles.

Before doing this tutorial, be sure that you’ve set up Service Cloud for Knowledge. See Cloud Setup for Knowledge for more information.

This tutorial shows you how to put a knowledge base into your iOS app.

43

Prepare Your App for SubmissionSnap-Ins for iOS Developer Guide

https://github.com/forcedotcom/ServiceSDK-iOS/tree/master/Examples
https://github.com/forcedotcom/ServiceSDK-iOS/tree/master/Examples

1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloKnowledge.

2. Install the SDK as described in Install the Snap-Ins SDK for iOS.

3. From your app delegate implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceKnowledge

In Objective-C:

@import ServiceCore;
@import ServiceKnowledge;

4. Point the SDK to your org from the applicationDidFinishLaunchingWithOptions method of your app delegate
implementation.

To connect your app to your organization, create an SCSServiceConfiguration object containing the community URL,
the data category group, and the root data category. Pass this object to the ServiceCloud shared instance using
SCSServiceConfiguration(community:dataCategoryGroup:rootDataCategory:)

In Swift:

// Create configuration object with init params
let config = SCSServiceConfiguration(

44

Get Started with KnowledgeSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:

community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Perform any additional configuration here

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with init params
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]

initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]
dataCategoryGroup:@"Regions"
rootDataCategory:@"All"];

// Perform any additional configuration here

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

Note: You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t set up
Knowledge in Service Cloud or you need more guidance, see Cloud Setup for Knowledge.

5. Go to your storyboard and place a button somewhere on the view. Name it Help.

6. Add a Touch Up Inside action to your UIViewController implementation. Name it showHelp.

45

Get Started with KnowledgeSnap-Ins for iOS Developer Guide

7. From your view controller implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceKnowledge

In Objective-C:

@import ServiceCore;
@import ServiceKnowledge;

8. From within the button action handler, activate the Knowledge interface using the setInterfaceVisible method.

In Swift:

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].knowledge setInterfaceVisible:YES
animated:YES

completion:nil];

And that’s it! You can now build and run your app to see how it looks. Click the Help button to activate the interface.

46

Get Started with KnowledgeSnap-Ins for iOS Developer Guide

You can customize the interface so it looks and feels just like your app. Check out SDK Customizations with the Snap-Ins SDK for iOS for
guidance in this area.

Get Started with Live Agent Chat
Get rolling quickly with live chat sessions between your customers and your agents.

Before doing this tutorial, be sure that you’ve set up Service Cloud for Live Agent. See Console Setup for Live Agent Chat for more
information.

This tutorial shows you how to get Live Agent into your iOS app.

1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloLiveAgentChat.

47

Get Started with Live Agent ChatSnap-Ins for iOS Developer Guide

2. Install the SDK as described in Install the Snap-Ins SDK for iOS.

3. Go to your storyboard and place a button somewhere on the view. Name it Chat.

4. Add a Touch Up Inside action to your UIViewController implementation. Name it launchChat.

48

Get Started with Live Agent ChatSnap-Ins for iOS Developer Guide

5. Import the SDK. Wherever you intend to use the Live Agent Chat SDK, be sure to import the Service Common framework and the
Live Agent Chat framework.

In Swift:

import ServiceCore
import ServiceChat

In Objective-C:

@import ServiceCore;
@import ServiceChat;

6. Launch a Live Agent Chat session from within the launchChat method.

From the button action implementation, launch Live Agent Chat using the startSession(with:) method.

In Swift:

@IBAction func launchChat(sender: AnyObject) {

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Start the session
ServiceCloud.shared().chat.startSession(with: config)

}

49

Get Started with Live Agent ChatSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:

In Objective-C:

- (IBAction)launchChat:(id)sender {

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-ORG-ID"

buttonId:@"YOUR-BUTTON-ID"];

// Start the session
[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

}

Fill in the placeholder text for the Live Agent pod, the org ID, the deployment ID, and the button ID.

pod
The hostname for the Live Agent endpoint that your organization has been assigned. To get this value, from Setup, search for
Live Agent Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the
path — just use the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization
ID.

50

Get Started with Live Agent ChatSnap-Ins for iOS Developer Guide

deploymentId
The unique ID of your Live Agent deployment. To get this value, from Setup, select Live Agent > Deployments. The script at
the bottom of the page contains a call to the liveagent.init function with the pod, the deploymentId, and orgId as
arguments. Copy the deploymentId value.

buttonId
The unique button ID for your chat configuration. You can get the button ID by creating a Live Agent chat button (see Create
Chat Buttons in the Live Agent help documentation), and instead of using the supplied JavaScript, copy the id attribute. To
get this value after creating a button, from Setup, search for Chat Buttons and select Chat Buttons & Invitations. Copy the
id for the button from the JavaScript snippet.

7. Launch Service Cloud Console. From the Omni-Channel widget, ensure that a Live Agent agent is online.

51

Get Started with Live Agent ChatSnap-Ins for iOS Developer Guide

https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US

Now you can build and run the app. When you tap the Chat button, the app requests a Live Agent chat session, which an agent can
accept from the Service Cloud Console. From the console, an agent can real-time chat with a customer.

52

Get Started with Live Agent ChatSnap-Ins for iOS Developer Guide

Get Started with Case Publisher
Quickly build an app that lets you create a new case.

Before doing this tutorial, be sure that you’ve set up Service Cloud for Case Management. See Cloud Setup for Case Management for
more information.

This tutorial shows you how to connect your iOS app to the case management interface as a guest user. A guest user is able to publish
new cases. However, if you’d like to manage existing cases, you’ll need to authenticate a user from within your app. Authentication is
discussed in Case Management as an Authenticated User.

1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloCases.

2. Install the SDK as described in Install the Snap-Ins SDK for iOS.

3. From your app delegate implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceCases

In Objective-C:

@import ServiceCore;
@import ServiceCases;

4. Point the SDK to your org using an SCSServiceConfiguration object.

53

Get Started with Case PublisherSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html

To connect your application to your organization, create an SCSServiceConfiguration object containing the community
URL. Pass this object to the ServiceCloud shared instance using SCSServiceConfiguration(community:).

In Swift:

// Create configuration object with your community URL
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!)

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with your community URL
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]
initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]];

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

You can get the community URL from your Salesforce org. From Setup, search for All Communities, and copy the URL for the desired
community. For more help, see Cloud Setup for Case Management.

Note: If you plan to access Knowledge in addition to Case Management, use
SCSServiceConfiguration(community:dataCategoryGroup:rootDataCategory:) instead. This
constructor sets up data categories in addition to setting the community URL. See Quick Setup: Knowledge in the Snap-Ins
SDK in the Knowledge section for more info.

5. Assign a global action to the Case Management interface. The global action determines the fields shown when a user creates a case.

To configure the fields shown when creating a case, specify the global action name in the caseCreateActionName property.
This code snippet illustrates how to associate the case publisher feature with the New Case global action layout, which is one of
the default actions provided in most orgs.

In Swift:

ServiceCloud.shared().cases.caseCreateActionName = "NewCase"

In Objective-C:

[SCServiceCloud sharedInstance].cases.caseCreateActionName = @"NewCase";

You can get the global action name from your Salesforce org. From Setup, search for Global Actions, and copy the name of the
desired quick action. For more help, see Cloud Setup for Case Management.

Note: Be sure that your global action is accessible to the Guest user profile. Also note that the case publisher screen does not
respect field-level security for guest users. If you want to specify different security levels for different users, use different quick
actions.

6. Go to your storyboard and place a button somewhere on the view. Name it Help.

54

Get Started with Case PublisherSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName

7. Add a Touch Up Inside action to your UIViewController implementation. Name it showHelp.

8. From your view controller implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceCases

In Objective-C:

@import ServiceCore;
@import ServiceCases;

9. From within the button action handler, activate the Case Management interface using the setInterfaceVisible method.

55

Get Started with Case PublisherSnap-Ins for iOS Developer Guide

In Swift:

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].cases setInterfaceVisible:YES
animated:YES

completion:nil];

And that’s it! You can now build and run your app to see how it looks. Click the Help button to activate the interface.

If you would like to give your users access to their existing case list, you’ll need to authenticate the user first. To learn more about
authentication, see Case Management as an Authenticated User. You can also customize the look and feel of the interface, as described
in SDK Customizations with the Snap-Ins SDK for iOS.

Get Started with SOS
See for yourself how easy and effective live video chat and screen sharing can be.

Before doing this tutorial, be sure that you’ve set up Service Cloud for SOS. See Console Setup for SOS for more information.

56

Get Started with SOSSnap-Ins for iOS Developer Guide

This tutorial shows you how to get SOS into your iOS app.

1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloSOS.

2. Install the SDK as described in Install the Snap-Ins SDK for iOS.

3. Go to your storyboard and place a button somewhere on the view. Name it SOS.

4. Add a Touch Up Inside action to your UIViewController implementation. Name it launchSOS.

57

Get Started with SOSSnap-Ins for iOS Developer Guide

5. Import the SDK. Wherever you intend to use the SOS SDK, be sure to import the Service Common framework and the SOS framework.

In Swift:

import ServiceCore
import ServiceSOS

In Objective-C:

@import ServiceCore;
@import ServiceSOS;

6. Launch an SOS session from within the launchSOS method.

From the button action implementation, launch SOS using the startSession method on the SOSSessionManager shared
instance.

In Swift:

@IBAction func launchSOS(sender: AnyObject) {

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

ServiceCloud.shared().sos.startSession(with: options)
}

In Objective-C:

- (IBAction)launchSOS:(id)sender {

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"

58

Get Started with SOSSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)startSessionWithOptions:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"];

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];
}

Fill in the placeholder text for the Live Agent pod, the org ID, and the deployment ID.

pod
The hostname for the Live Agent endpoint that your organization has been assigned. To get this value, from Setup, search for
Live Agent Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the
path — just use the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization
ID.

deploymentId
The unique ID of your SOS deployment. To get this value, from Setup, search for SOS Deployments, click the correct deployment
and copy the Deployment ID.

59

Get Started with SOSSnap-Ins for iOS Developer Guide

7. Launch Service Cloud Console. From the Omni-Channel widget, ensure that an SOS agent is online.

Now you can build and run the app. When you tap the SOS button, the app requests an SOS session, which an agent can accept from
the Service Cloud Console. From the console, you can chat with the customer, annotate things on their screen, and perform a two-way
video session (if enabled).

60

Get Started with SOSSnap-Ins for iOS Developer Guide

Using Knowledge with the Snap-Ins SDK

Adding the Knowledge experience to your mobile app.

Knowledge in the Snap-Ins SDK for iOS

Learn about the Knowledge experience using the SDK.

Quick Setup: Knowledge in the Snap-Ins SDK

To set up Knowledge in your iOS app, point the shared instance to your community, customize the look and feel, and show the
interface.

Knowledge as an Authenticated User

In some scenarios, you may want knowledge base access for logged-in users only. You might even have different knowledge bases
for different user profiles. For these scenarios, you can use the authenticated Knowledge feature.

Customize the Presentation and View Controllers for Knowledge

The simplest way to show and hide the Knowledge interface is by calling the setInterfaceVisible method. Alternatively,
you can present the interface using a custom presentation. You can even manually control and configure the Knowledge view
controllers yourself.

61

Using Knowledge with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

Article Fetching and Caching

By default, the SDK fetches knowledge articles as they are needed. These articles are then cached locally for faster access. However,
using methods in SCSKnowledgeManager, you can pre-fetch articles to support offline access and other use cases.

Customize Knowledge Articles with JavaScript or CSS

Create a richer experience for your users by injecting custom JavaScript or CSS into your knowledge articles. For example, change
the style sheet for all your articles, or add introductory content to a subset of articles.

Disable Case Management from Knowledge Interface

By default, Case Management is enabled when a user accesses your Knowledge interface. A user can create a case with an action
button at the bottom of the view. However, you can remove this action button by implementing a protocol method on
SCServiceCloudDelegate.

Knowledge in the Snap-Ins SDK for iOS
Learn about the Knowledge experience using the SDK.

The Knowledge feature in the SDK gives you access to your org’s knowledge base directly from within your app. Once you point your
app to your community URL with the right category group and root data category, you can display your knowledge base to your users.

62

Knowledge in the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

By default, knowledge appears as a floating dialog on top of your app’s existing content, though you can customize the presentation if
you’d like. From the knowledge home, a user can navigate through articles that are organized by category. Articles are also searchable
from within the app. By default, a user can create or manage cases using an action button from within the Knowledge interface.

When a user views an article, they can minimize it using the minimize button at the top right of the article (1) so that they can continue
to navigate your app. The user can drag this thumbnail (2) to any part of the screen to improve visibility of the currently showing view.
Tapping the X closes the article. Tap on any other part of the thumbnail to make it full screen again.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Let’s get started.

63

Knowledge in the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

Quick Setup: Knowledge in the Snap-Ins SDK
To set up Knowledge in your iOS app, point the shared instance to your community, customize the look and feel, and show the interface.

Before starting, make sure that you’ve already:

• Set up Service Cloud to work with Knowledge. To learn more, see Cloud Setup for Knowledge.

• Installed the SDK. To learn more, see Install the Snap-Ins SDK for iOS.

1. Import the SDK. Wherever you intend to use the Knowledge SDK, be sure to import the Service Common framework and the
Knowledge framework.

In Swift:

import ServiceCore
import ServiceKnowledge

In Objective-C:

@import ServiceCore;
@import ServiceKnowledge;

2. Point the SDK to your org using an SCSServiceConfiguration object.

To connect your app to your organization, create an SCSServiceConfiguration object containing the community URL,
the data category group, and the root data category. Pass this object to the ServiceCloud shared instance using
SCSServiceConfiguration(community:dataCategoryGroup:rootDataCategory:).

In Swift:

// Create configuration object with init params
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Perform any additional configuration here

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with init params
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]

initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]
dataCategoryGroup:@"Regions"
rootDataCategory:@"All"];

// Perform any additional configuration here

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

Note: You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t set up
Knowledge in Service Cloud or you need more guidance, see Cloud Setup for Knowledge.

3. (Optional) Customize the appearance and behavior of the interface.

64

Quick Setup: Knowledge in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage.

You can customize the action buttons used throughout the UI. You can override the look and the behavior of existing buttons, and
you can create buttons associated with new actions.

There are many different ways to customize the interface. See SDK Customizations with the Snap-Ins SDK for iOS.

4. (Optional) Implement any of the Snap-ins SDK delegates.

SCServiceCloudDelegate
Access to general Snap-ins SDK events (for example, willDisplayViewController, didDisplayViewController,
shouldShowActionWithName).

SCKnowledgeInterfaceDelegate
Access to Knowledge interface events (for example, imageForArticle, imageForDataCategory). See Customize
Images with the Snap-Ins SDK for an example of using this delegate.

SCAppearanceConfigurationDelegate
Access to appearance-related events (for example, appearanceConfigurationWillApplyUpdates,
appearanceConfigurationDidApplyUpdates).

5. Show the interface from your view controller using setInterfaceVisible.

You can show the interface as soon as the view controller loads, or start it from a UI action.

In Swift:

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].knowledge setInterfaceVisible:YES
animated:YES

completion:nil];

By default, the interface appears as a floating dialog. Alternatively, you can present the interface using a custom presentation. You
can even manually control and configure the Knowledge view controllers yourself.See Customize the Presentation and View Controllers
for Knowledge for more info.

For instructions on launching the interface from a web view, see Launch the Snap-Ins SDK from a Web View in iOS.

If you run into issues accessing your community, check out Can’t Access My Knowledge Base.

Example: Swift Example

To use this example code, create a Single View Application and Install the Snap-Ins SDK for iOS.

Set up the Knowledge interface within the AppDelegate implementation.

import UIKit
import ServiceCore
import ServiceKnowledge

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

65

Quick Setup: Knowledge in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCKnowledgeInterfaceDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCAppearanceConfigurationDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// Create configuration object with init params
let config = SCSServiceConfiguration(
community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

return true
}

}

Using the storyboard, add a button to the view. Then add a Touch Up Inside action in your UIViewController
implementation with the name showHelp. When the button is clicked, make the Knowledge interface visible.

import UIKit
import ServiceCore
import ServiceKnowledge

class ViewController: UIViewController {

@IBAction func showHelp(_ sender: AnyObject) {

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

}
}

Knowledge as an Authenticated User
In some scenarios, you may want knowledge base access for logged-in users only. You might even have different knowledge bases for
different user profiles. For these scenarios, you can use the authenticated Knowledge feature.

Before starting, make sure that you’ve already:

• Set up Service Cloud to work with Knowledge. To learn more, see Cloud Setup for Knowledge.

• Installed the SDK. To learn more, see Install the Snap-Ins SDK for iOS.

When you activate the Knowledge interface for authenticated users, they see Knowledge content assigned to their user profile. If you
do not want to authenticate users and prefer to let them see Knowledge content accessible to guest users, see Quick Setup: Knowledge
in the Snap-Ins SDK for instructions on accessing a public knowledge base.

Note: When using Knowledge with authenticated users, be sure that your knowledge article types are visible (set to "Read") for
the desired user profile and that the knowledge articles belong to a channel that is accessible to that user. For more information,
see Knowledge Article Access and Create and Edit Articles in Salesforce Help.

1. Follow authentication instructions for this SDK: Authentication with the Snap-Ins SDK for iOS.

66

Knowledge as an Authenticated UserSnap-Ins for iOS Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_setup_users.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=knowledge_article_create.htm&language=en_US

2. Review the steps in Quick Setup: Knowledge in the Snap-Ins SDK. The basic steps for setting up and displaying the interface still
apply for authenticated users.

After you authenticate users, they see only Knowledge content that is accessible to their user profile.

Customize the Presentation and View Controllers for Knowledge
The simplest way to show and hide the Knowledge interface is by calling the setInterfaceVisible method. Alternatively, you
can present the interface using a custom presentation. You can even manually control and configure the Knowledge view controllers
yourself.

Activating Interface Using the Default Presentation
Use the setInterfaceVisible method to show the Knowledge interface using the default presentation. This method shows the
interface as a floating dialog on top of your app’s existing content. When the user drills into a detail screen, the interface automatically
transitions to a full screen mode.

In Swift:

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].knowledge setInterfaceVisible:YES
animated:YES

completion:nil];

Activating Interface Using a Custom Transitioning Delegate
You can also present the interface using a custom transitioning animation and custom presentation. Implement a
UIViewControllerTransitioningDelegate.

1. Supply the ServiceCloud shared instance with your SCServiceCloudDelegate implementation.

In Swift:

ServiceCloud.shared().delegate = mySCServiceCloudDelegate

In Objective-C:

[SCServiceCloud sharedInstance].delegate = mySCServiceCloudDelegate;

2. Implement the serviceCloud(transitioningDelegateForPresentedController:presenting:) method
in your delegate and return a custom UIViewControllerTransitioningDelegate from this method.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
transitioningDelegateForPresentedController
presentedController: UIViewController,

presenting presentingController: UIViewController)
-> UIViewControllerTransitioningDelegate? {

// TO DO: Put your logic here and then return your transitioning delegate...

67

Customize the Presentation and View Controllers for
Knowledge

Snap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:

return myTransitioningDelegate
}

In Objective-C:

- (NSObject<UIViewControllerTransitioningDelegate> *)
serviceCloud:(SCServiceCloud *)serviceCloud

transitioningDelegateForViewController:(UIViewController *)controller {

// TO DO: Put your logic here and then return your transitioning delegate...

return myTransitioningDelegate;
}

Showing or Customizing the View Controllers
Instead of having the SDK manage the flow from one view to the next, you can instantiate any of the view controllers and display it
manually. When instantiating a view controller, be sure to implement the associated delegate and pass that delegate to the view controller
(using the delegate property). The delegates allow you to override the default behavior for the views. For instance, you can filter
the categories shown to the user based on your own run-time logic.

If you don't want to manually instantiate a view controller but you still want the ability to control its behavior, implement the
serviceCloud(willDisplay controller:animated:) and serviceCloud(didDisplay
controller:animated:)methods of SCServiceCloudDelegate. You can access the view controllers from those methods.

DelegateView ControllerView Controller Description

SCSKnowledgeHomeViewControllerDelegateSCSKnowledgeHomeViewControllerKnowledge Home Screen — to show a list
of categories

SCSCategoryViewControllerDelegateSCSCategoryViewControllerCategory List View — to show a list of
articles for a category

SCSArticleQueryListViewControllerDelegateSCSArticleQueryListViewControllerArticle Query List — to show a list of articles
based on a query (used for case deflection
when creating a case)

SCSArticleViewControllerDelegateSCSArticleViewControllerArticle View — to show an individual article

By default, SCSKnowledgeHomeViewController and SCSCategoryViewController show three articles per category,
sorted by the view score. (You can see more than three articles by tapping the more button in the UI.) However, you can change what
gets shown in these views. For instance, you can change the number of articles that are shown, and you can sort articles by date. To
configure a view, set the articleQueryTemplate property using an SCSArticleQuery object. To learn about building
queries, see Article Fetching and Caching. To change the view back to the default query, set the property to nil.

You can manually display a specific article by instantiating an SCSArticleViewController instance, specifying the article using
the article property, and then presenting the view yourself. This technique is useful if you want to display specific articles within
your app and you want the view within your own view hierarchy. To learn more about this technique, see Article Fetching and Caching.

68

Customize the Presentation and View Controllers for
Knowledge

Snap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:didDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:didDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSKnowledgeHomeViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeHomeViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCategoryViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCategoryViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleQueryListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleQueryListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeHomeViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCategoryViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html#/c:objc(cs)SCSArticleViewController(py)article

Article Fetching and Caching
By default, the SDK fetches knowledge articles as they are needed. These articles are then cached locally for faster access. However, using
methods in SCSKnowledgeManager, you can pre-fetch articles to support offline access and other use cases.

When the SDK displays an article, it first requests the latest article data from the server. If the content is stored in the cache, it's shown
immediately — even before the network request completes. If the information stored on the server is newer than what is located in the
cache, the database updates with the latest article content and the article view controller updates accordingly. In this way, article content
is quickly available even when the device is offline or has a spotty network connection, but the SDK also ensures that content is up to
date.

This default behavior may be all you need out of a knowledge base. However, you can explicitly fetch articles for one of several common
use cases:

• Faster access to the most commonly viewed articles.

• Custom presentation of specific content.

• Offline access to some or all of your knowledge base.

There are several different ways to fetch knowledge articles. You can fetch all articles in a category. You can fetch articles based on a
query. You can sort or limit the search results. And of course, you can also fetch specific articles by article ID.

The following classes are associated with article caching:

KnowledgeManager
Manager class for interacting with Knowledge at the data level, including article caching functionality.

CategoryGroup
Class that represents a category group.

Category
Class that represents a category or subcategory.

MutableArticleQuery
Class used to build your article query. The immutable parent class is SCSArticleQuery.

Article
Class that contains information about an article.

Fetching Categories
Since data categories are at the heart of knowledge articles, the categories for your org need to be downloaded before any interactions
with Knowledge can be made. To see if categories have been cached, check the value for hasFetchedCategories. If it returns
NO, call fetchAllCategories. When downloading individual articles, you don't need to make this call, but you won’t be able to
access content that requires information about data categories without performing this fetch.

In Swift:

let knowledgeManager = KnowledgeManager.default()
if (!knowledgeManager.hasFetchedCategories()) {

knowledgeManager.fetchAllCategories(completionHandler: {
(categoryGroups: [CategoryGroup]?, error: Error?) in

// TO DO: Get articles from each category using queryArticlesInCategory

})
}

69

Article Fetching and CachingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCategoryGroup.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCategory.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSMutableArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)hasFetchedCategories
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchAllCategoriesWithCompletionHandler:

In Objective-C:

SCSKnowledgeManager *knowledgeManager = [SCSKnowledgeManager defaultManager];
if (!knowledgeManager.hasFetchedCategories) {

[knowledgeManager fetchAllCategoriesWithCompletionHandler:^
(NSArray<SCSCategoryGroup *> * _Nullable categoryGroups,
NSError * _Nullable error) {

// TO DO: Get articles from each category using queryArticlesInCategory

}];
}

Note: If your interface supports authenticated users, keep in mind that the user account information does not change for a
pre-existing instance of SCSKnowledgeManager. After you authenticate a user, call the static default method on
KnowledgeManager to get a new instance containing new user account information.

Querying for Articles (from Server, or Locally)
To fetch articles from the server for a given query, call fetchArticles(with:). To fetch local (already cached) articles for a given
query, call articles(matching:). These methods take a MutableArticleQuery instance, which is an essential part of
your fetch request. If you already fetched categories, you can drive this query based on a category; you can also directly query for an
article based on its ID, or using another type of query.

When you create a MutableArticleQuery instance, you can determine the type of query using the following properties:

Table 4: Query Types

NotesProperty Name / TypeQuery Type

The 18-character article ID. This property
cannot be used with searchTerm,

articleId: StringArticles matching article ID

queryMethod, sortOrder, or
sortByField.

This property cannot be used with
articleId, sortOrder, or
sortByField.

searchTerm: StringArticles matching search term

You must use the queryMethod filter
described in the Query Filters table if you
use this query type.

categories: array of Category
objects

Articles within a set of categories

You can sort the query results with the following properties:

Table 5: Query Sort Properties

DescriptionProperty Name / Type / DefaultQuery Sort Property

Whether to sort by ascending order or
descending order.

sortOrder: SCArticleSortOrder
= .descending

Sort using a specific sort order

70

Article Fetching and CachingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(cm)defaultManager
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchArticlesWithQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)articlesMatchingQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSMutableArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSMutableArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCArticleSortOrder.html

DescriptionProperty Name / Type / DefaultQuery Sort Property

Which field you want to sort by: .title,
.lastPublishedDate, or
.viewScore.

sortByField:
SCArticleSortByField =
.lastPublishedDate

Sort using a specific field type

You can filter the query results with the following properties:

Table 6: Query Filters

DescriptionProperty Name / Type / DefaultQuery Filter

The number of articles to retrieve. The server
does not provide more than 100 articles at
a time.

pageSize: UInt = 20Number of articles to fetch

Whether you want the query to operate on
just the specified categories (.at), the

queryMethod: SCQueryMethod =
.below

Filter selector for category (used with the
categories property)

categories and all their parent categories
(.above), the categories and all their
subcategories (.below). Typically, you'll
want to use .below to capture the
specified category and its children.

Be sure to have something specified in the
categories property when using this
filter.

Before performing a query, you can check whether the query is valid using the valid property. A query is invalid when conflicting
property values are specified. The following situations cause an invalid query: when searchTerm and articleId are both
populated, when searchTerm and sortByField are both populated, when searchTerm and sortOrder are both
populated, when articleId and categories are both populated, when articleId and sortByField are both populated,
when articleId and sortOrder are both populated, and whenarticleId and queryMethod are both populated.

This code shows an example that queries using a search term with a limit of five articles per page.

In Swift:

let query = MutableArticleQuery()
query.searchTerm = "login issues"
query.pageSize = 5

knowledgeManager.fetchArticles(with: query, completion: {
(articles: [Article], error: Error?) in

// TO DO: Download articles using downloadContentWithOptions

})

In Objective-C:

SCSMutableArticleQuery *query = [SCSMutableArticleQuery new];
query.searchTerm = @"login issues";

71

Article Fetching and CachingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCArticleSortByField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCQueryMethod.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleQuery.html#/c:objc(cs)SCSArticleQuery(py)valid

query.pageSize = 5;

[knowledgeManager fetchArticlesWithQuery:query completion:^
(NSArray<SCSArticle *> * _Nonnull articles,
NSError * _Nullable error) {

// TO DO: Download articles using downloadContentWithOptions

}];

Downloading Content
Once you’ve fetched the articles, you’ll need to download them before displaying. Use the downloadContent(withOptions:)
method in the Article class to perform this function. This method caches the HTML content. It also fetches the article images, if you
specify it to do so with the Options parameter.

In Swift:

let article = // once you have an article

let options: Int = SCSArticleDownloadOption.refetchArticleContent.rawValue |
SCSArticleDownloadOption.images.rawValue

article.downloadContent(withOptions: SCSArticleDownloadOption(rawValue:options)!,
completion: { (error: Error?) in

// TO DO: Handle completion

})

In Objective-C:

SCSArticle *article = // once you have an article

[article downloadContentWithOptions:
(SCSArticleDownloadOptionRefetchArticleContent|SCSArticleDownloadOptionImages)
completion:^(NSError * _Nullable error) {

// TO DO: Handle completion

}]

At this point, the article is downloaded and available for offline access.

If you're not sure if an article has already been downloaded, use the isArticleContentDownloaded and
isAssociatedContentDownloaded methods to check before downloading.

Displaying Content
You've got several ways to present knowledge content:

1. Use the default presentation. If you use the setInterfaceVisible method, the SDK automatically displays the content, and
it uses cached content before trying to get content online.

2. You can display an article using the showArticle method and specifying the article you want to show. As with the default
presentation, this technique presents the article in a floating window that can be minimized.

72

Article Fetching and CachingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)downloadContentWithOptions:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isArticleContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isAssociatedContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)showArticle:animated:completion:

3. You can manually display a specific article by instantiating an SCSArticleViewController instance, specifying the article
using the article property, and then presenting the view yourself. This technique is useful if you want to display specific articles
within your app and you want the view within your own view hierarchy. When using this technique, you can use the
SCSArticleViewControllerDelegate class to listen for events.

In Swift:

// Get Knowledge Manager instance
let knowledgeManager = KnowledgeManager.default()

// Create query for a specific article
let query = MutableArticleQuery()
query.articleId = "TO_DO:QUERY_ID"

// Fetch article
knowledgeManager.fetchArticles(with: query, completion: {

(articles: [Article], error: Error?) in

if (error != nil) {
// TO DO: Handle error

}
else if (articles.count == 0) {
// TO DO: Handle no results

}
else {
let article: Article = articles[0]

// Download article
let options: Int = SCSArticleDownloadOption.refetchArticleContent.rawValue |

SCSArticleDownloadOption.images.rawValue
article.downloadContent(withOptions: SCSArticleDownloadOption(rawValue:options)!,

completion: { (error: Error?) in

if (error != nil) {
// TO DO: Handle error

} else {

// Display view with article
let articleVC = SCSArticleViewController()
articleVC.article = article
self.present(articleVC, animated:true, completion: nil)

}
})

}
})

In Objective-C:

// Get Knowledge Manager instance
SCSKnowledgeManager *knowledgeManager = [SCSKnowledgeManager defaultManager];

// Create query for a specific article
SCSMutableArticleQuery *query = [SCSMutableArticleQuery new];
query.articleId = @"TO_DO:QUERY_ID";

73

Article Fetching and CachingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html#/c:objc(cs)SCSArticleViewController(py)article
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html

// Fetch article
[knowledgeManager fetchArticlesWithQuery:query completion:^

(NSArray<SCSArticle *> * _Nonnull articles,
NSError * _Nullable error) {

if (error != nil) {
// TO DO: Handle error

}
else if ([articles count] == 0) {
// TO DO: Handle no results

}
else {
SCSArticle *article = articles[0];

// Download article
[article downloadContentWithOptions:

(SCSArticleDownloadOptionRefetchArticleContent|SCSArticleDownloadOptionImages)
completion:^ (NSError* error) {

if (error != nil) {
// TO DO: Handle error

} else {

// Display view with article
SCSArticleViewController *articleVC = [[SCSArticleViewController alloc] init];
articleVC.article = article;
[self presentViewController:articleVC animated:YES completion:nil];

}
}];

}
}];

Example: This code shows an example of how to download the top three articles in each category.

In Swift:

let knowledgeManager = KnowledgeManager.default()

// Create an article download block
let articleDownloadBlock = {

// Get category group
let categoryGroup = knowledgeManager.categoryGroup(withName: "MY-CATEGORY-GROUP")

// Get root category from category group
let rootCategory = categoryGroup?.category(withName: "MY-CATEGORY")

if (rootCategory != nil) {

// Iterate through all categories in root category
for category in (rootCategory!.childCategories) {

// Build a query...
let query = MutableArticleQuery()

74

Article Fetching and CachingSnap-Ins for iOS Developer Guide

// ... for the current category
query.categories = [category]

// ... containing the top 3 articles
query.pageSize = 3

// And then fetch articles with that query
knowledgeManager.fetchArticles(with: query, completion:
{ (articles: [Article], error: Error?) in

// TO DO: Check for error

// For each article object fetched
for article in articles {

// Fetch the contents
let options: Int =
SCSArticleDownloadOption.refetchArticleContent.rawValue |
SCSArticleDownloadOption.images.rawValue

article.downloadContent(
withOptions: SCSArticleDownloadOption(rawValue: options)!,
completion: nil)

}
})

}
}

}

// If we haven't fetched the categories
if (!knowledgeManager.hasFetchedCategories()) {

// Then first fetch the categories
knowledgeManager.fetchAllCategories(completionHandler:
{ (categoryGroups: [CategoryGroup]?, error: Error?) in

// TO DO: Check for error

// And then download the articles
articleDownloadBlock();

})
}
else {
// Download the articles
articleDownloadBlock();

}

In Objective-C:

SCSKnowledgeManager *knowledgeManager = [SCSKnowledgeManager defaultManager];

// Create an article download block
dispatch_block_t articleDownloadBlock = ^{

// Get category group
SCSCategoryGroup *categoryGroup =

75

Article Fetching and CachingSnap-Ins for iOS Developer Guide

[knowledgeManager categoryGroupWithName:@"MY-CATEGORY-GROUP"];

// Get root category from category group
SCSCategory *rootCategory =
[categoryGroup categoryWithName:@"MY-CATEGORY"];

if (rootCategory != nil) {

// Iterate through all categories in root category
for (SCSCategory *category in rootCategory.childCategories) {

// Build a query...
SCSMutableArticleQuery *query = [SCSMutableArticleQuery new];

// ... for the current category
query.categories = [NSArray arrayWithObjects: category, nil];

// ... containing the top 3 articles
query.pageSize = 3;

// And then fetch articles with that query
[knowledgeManager fetchArticlesWithQuery:query completion:^

(NSArray<SCSArticle *> * _Nonnull articles,
NSError * _Nullable error) {

// TO DO: Check for error

// For each article object fetched
for (SCSArticle *article in articles) {

// Fetch the contents
[article downloadContentWithOptions:
(SCSArticleDownloadOptionRefetchArticleContent|
SCSArticleDownloadOptionImages)
completion:nil];

}
}];

}
}

};

// If we haven't fetched the categories
if (!knowledgeManager.hasFetchedCategories) {

// Then first fetch the categories
[knowledgeManager fetchAllCategoriesWithCompletionHandler:^

(NSArray<SCSCategoryGroup *> * _Nullable categoryGroups,
NSError * _Nullable error) {

// TO DO: Check for error

// And then download the articles
articleDownloadBlock();

76

Article Fetching and CachingSnap-Ins for iOS Developer Guide

}];
} else {

// Download the articles
articleDownloadBlock();

}

Customize Knowledge Articles with JavaScript or CSS
Create a richer experience for your users by injecting custom JavaScript or CSS into your knowledge articles. For example, change the
style sheet for all your articles, or add introductory content to a subset of articles.

You can perform JavaScript and CSS injection globally or on a per-article basis.

To update the global CSS or JavaScript, use the globalArticleCSS property and the globalArticleJavascript property
on the SCAppearanceConfiguration object. To learn more about using this appearance object, see SDK Customizations with
the Snap-Ins SDK for iOS.

To update the CSS or JavaScript for a particular article, use the additionalCSSForArticle method and the
additionalJavascriptForArticle method on SCSArticleViewControllerDelegate. To learn about view
controllers and their delegates, see Customize the Presentation and View Controllers for Knowledge.

To learn about the HTML structure for a knowledge article, see the reference documentation for SCSArticleViewController.

Example: This example injects custom CSS to all articles and injects custom JavaScript only to articles whose title contains "San
Francisco." You can apply these concepts to your own use cases.

Let's run this example on the following articles.

We want to make 2 changes to the articles.

• A global CSS change to give all articles a vivid green background and thick blue border.

• A JavaScript change to insert a bright pink paragraph at the top of all articles whose title includes "San Francisco."

After the example runs, you see the following changes.

77

Customize Knowledge Articles with JavaScript or CSSSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleCSS
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleJavascript
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalCSSForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalJavascriptForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html

To implement the green background color and thick blue border to all articles, add the following CSS to the globalArticleCSS
property on the SCAppearanceConfiguration object.

// Create appearance configuration instance
let appearance = SCAppearanceConfiguration()

// Customize the CSS with an ugly green background and a blue border...
appearance.globalArticleCSS = "body { background: #00ff00; border: thick solid #0000ff;
}"

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = appearance

To add an introductory paragraph to specific articles, we need access to the right view controller and implement the right delegate
method.

1. To check when an SCSArticleViewController will show, implement the willDisplay method of
SCServiceCloudDelegate.

2. To inspect the new article and add JavaScript, implement the additionalJavascriptForArticle method of
SCSArticleViewControllerDelegate.

3. If the article title contains "San Francisco," add JavaScript.

This code performs all these tasks.

class MySnapinsDelegate: NSObject, SCServiceCloudDelegate,
SCSArticleViewControllerDelegate {

// The custom JavaScript that we'll add to selected articles
let customJavaScript = """
window.onload = function() {
var testNode = document.createElement('p');
testNode.innerText = 'San Francisco Article, added by JavaScript';
testNode.style.color = '#000000';
testNode.style.background = '#f76b95';

78

Customize Knowledge Articles with JavaScript or CSSSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleCSS
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalJavascriptForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html

testNode.style.padding = '5pt';
testNode.style.textAlign = 'center';
document.body.insertBefore(testNode, document.body.firstChild);

}
"""

override init() {
// Assign us as the ServiceCloud delegate
ServiceCloud.shared().delegate = self

}

// Called when a new view controller will display
func serviceCloud(_ serviceCloud: ServiceCloud,

willDisplay controller: UIViewController,
animated: Bool) {

// Are we about to show the article view controller?
if let articleController = controller as? SCSArticleViewController {

// If so, then assign us as the delegate
articleController.delegate = self

}
}

// Called before an article shows
func articleController(_ controller: SCSArticleViewController,

additionalJavascriptFor article: Article) -> String? {

var additionalJS: String? = nil

// TO DO: Inspect article to see if we really want to add custom JavaScript...
// For example, let's only add JS to articles
// that have 'San Francisco' in the title:
if article.title.contains("San Francisco") {
additionalJS = customJavaScript

}

return additionalJS
}

}

And that's it! This app now injects custom CSS and JavaScript into knowledge articles.

Disable Case Management from Knowledge Interface
By default, Case Management is enabled when a user accesses your Knowledge interface. A user can create a case with an action button
at the bottom of the view. However, you can remove this action button by implementing a protocol method on
SCServiceCloudDelegate.

To disable the Case Management button, follow the instructions in Customize Action Buttons with the Snap-Ins SDK. Use the
casePublisher enumerated type when determining which button to disable.

79

Disable Case Management from Knowledge InterfaceSnap-Ins for iOS Developer Guide

Using Live Agent Chat with the Snap-Ins SDK

Adding the Live Agent Chat experience to your mobile app.

Live Agent Chat in the Snap-Ins SDK for iOS

Learn about the Live Agent Chat experience using the SDK.

Quick Setup: Live Agent Chat in the Snap-Ins SDK

To add Live Agent Chat to your iOS app, create an SCSChatConfiguration object and pass it to the
startSessionWithConfiguration: method.

Use Einstein Bots with Live Agent Chat

With Einstein Bots, you can complement your chat support experience with a smart, automated system that saves your agents time
and keeps your customers happy. Once you've set up Einstein Bots in your org, the SDK automatically begins the chat experience
using your bot. You can design your bot to transfer to an agent at any point.

Notifications for Live Agent Activity

If there's Live Agent Chat activity when the user is not viewing the chat session, you can present that information to them using the
iOS notification system.

Configure a Live Agent Chat Session

Before starting a Live Agent Chat session, you have several ways to configure the session using the SCSChatConfiguration
object. These configuration settings allow you to specify pre-chat fields, determine whether a session starts minimized or full screen,
and get updates about the user's queue position.

Live Agent Chat Events and Errors

Implement SCSChatDelegate to be notified about state changes made before, during, and after a Live Agent Chat session.
This delegate also allows you to listen for error conditions so you can present alerts to the user when applicable.

Show Pre-Chat Fields to User

Before a Live Agent Chat session begins, you can request that the user fill in pre-chat fields that are sent to the agent at the start of
the session. You can map these fields to records in your org.

Find or Create Salesforce Records from a Chat Session

When a Live Agent Chat session begins, you can create or find records within your org and pass this information to the agent. Using
this technique, your agent can immediately have all the context they need for an effective chat session.

Check Live Agent Availability

Before starting a session, you can check the availability of your Live Agent Chat agents and then provide your users with more
accurate expectations.

Transfer File to Agent

With Live Agent Chat, a user can transfer a file to an agent after the agent requests a file transfer.

Block Sensitive Data in a Chat Session

To block sending sensitive data to agents, specify a regular expression in your org's setup. When the regular expression matches
text in the user's message, the matched text is replaced with customizable text before it leaves the device.

Live Agent Chat in the Snap-Ins SDK for iOS
Learn about the Live Agent Chat experience using the SDK.

With Live Agent Chat, you can provide real-time chat sessions from within your native app. Once you’ve set up Live Agent Chat for
Service Cloud, it takes just a few calls to the SDK to have your app ready to handle agent chat sessions.

80

Using Live Agent Chat with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

This chat session can be minimized so that the user can continue to navigate from within the app while speaking with an agent.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Quick Setup: Live Agent Chat in the Snap-Ins SDK
To add Live Agent Chat to your iOS app, create an SCSChatConfiguration object and pass it to the
startSessionWithConfiguration: method.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with Live Agent Chat. To learn more, see Console Setup for Live Agent Chat.

• Installed the SDK. To learn more, see Install the Snap-Ins SDK for iOS.

Once you’ve reviewed these prerequisites, you’re ready to begin.

1. Import the SDK. Wherever you intend to use the Live Agent Chat SDK, be sure to import the Service Common framework and the
Live Agent Chat framework.

In Swift:

import ServiceCore
import ServiceChat

81

Quick Setup: Live Agent Chat in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

In Objective-C:

@import ServiceCore;
@import ServiceChat;

2. Create an SCSChatConfiguration instance with information about your LiveAgent pod, your Salesforce org ID, the deployment
ID, and the button ID.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

Note: You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already
set up Live Agent in Service Cloud or you need more guidance, see Console Setup for Live Agent Chat.

3. (Optional) Configure the visitor name, whether the user can minimize the chat session, and various other configuration settings.

See Configure a Live Agent Chat Session for more information.

4. (Optional) Specify any pre-chat fields.

You can specify both optional and required fields shown to the user before a chat session starts. You can also directly pass data to
an agent without requiring any user input. These fields can be mapped directly to fields in a record in your org.

See Show Pre-Chat Fields to User and Find or Create Salesforce Records from a Chat Session for more information.

5. (Optional) Customize the appearance with the configuration object.

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage. You can also configure the strings used throughout the
interface. See SDK Customizations with the Snap-Ins SDK for iOS.

6. To start a Live Agent Chat session, call the startSession(with:) method on SCSChat.

In Swift:

ServiceCloud.shared().chat.startSession(with: config)

In Objective-C:

[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

You can provide an optional completion block to execute code when the session has been fully connected to all services. During a
successful session initialization, the SDK calls the completion block at the point that the session is active and the user is waiting for
an agent to join. If there is a failure, the SDK calls the completion block with the associated error.

For instructions on launching the interface from a web view, see Launch the Snap-Ins SDK from a Web View in iOS.

7. Listen for events and handle error conditions.

82

Quick Setup: Live Agent Chat in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html

You can detect when a session ends by implementing the chat(didEndWith:error:) method on the SCSChatDelegate
delegate. Register this delegate using the add(delegate:) method on your SCSChat instance. In particular, we suggest that
you handle the SCSChatEndReasonAgent reason (for when an agent ends a session) and the
SCSChatNoAgentsAvailableError error code (for when there are no agents available). See Live Agent Chat Events and
Errors.

Note: The SDK doesn't show an alert when a session fails to start, or when a session ends. It's your responsibility to listen to
events and display an error when appropriate.

These steps embed the Live Agent Chat experience into your app.

Note: By default, a mobile chat session times out around two minutes after you leave the app or lose connectivity. To change
this value, update the Idle Connection Timeout Duration field when setting up your Live Agent deployment. Keep in mind that
the actual timeout on the app can be up to 40 seconds longer than the specified value in this field. See Live Agent Deployment
Settings.

Example: To use this example code, create a Single View Application and Install the Snap-Ins SDK for iOS.

Use the storyboard to add a button to the view. Add a Touch Up Inside action in your UIViewController
implementation with the name startChat. In the view controller code:

• Implement the SCSChatDelegate protocol so that you can be notified when there are errors or state changes.

• Specify self as a chat delegate.

• Start a chat session in the button action.

• Implement the chat(didEndWith:error:) method and show a dialog when appropriate.

In Swift:

import UIKit
import ServiceCore
import ServiceChat

class ViewController : UIViewController, SCSChatDelegate {

override func viewDidLoad() {
super.viewDidLoad()

// Add our chat delegate
ServiceCloud.shared().chat.add(self)

}

@IBAction func startChat(_ sender: AnyObject) {

// Create config object
let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",

orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Start a session
ServiceCloud.shared().chat.startSession(with: config)

}

83

Quick Setup: Live Agent Chat in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:

func chat(_ chat: SCSChat!, didEndWith reason: SCSChatEndReason,
error: Error!) {

var description = ""

// Here we'll handle the situation where the agent ends the session
// and when there are no agents available...
if (reason == .agent) {

description = "The agent has ended the session."
} else if (reason == .sessionError &&
(error as NSError).code == SCSChatErrorCode.noAgentsAvailableError.rawValue) {
description = "It looks like there are no agents available. Try again later."

}

if (description != "") {
let alert = UIAlertController(title: "Session Ended",

message: description,
preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK",
style: .default,
handler: nil)

alert.addAction(okAction)
self.present(alert, animated: true, completion: nil)

}
}

}

In Objective-C:

#import "ViewController.h"
@import ServiceCore;
@import ServiceChat;

@interface ViewController : UIViewController <SCSChatDelegate>

@end

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];

// Add our chat delegate
[[SCServiceCloud sharedInstance].chat addDelegate:self];

}

- (IBAction)startChat:(id)sender {

// Create config object
SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

84

Quick Setup: Live Agent Chat in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

buttonId:@"YOUR-BUTTON-ID"];
// Start the session
[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

}

- (void)chat:(SCSChat *)chat didEndWithReason:(SCSChatEndReason)reason
error:(NSError *)error {

NSString *description = nil;

// Here we'll handle the situation where the agent ends the session
// and when there are no agents available...
if (reason == SCSChatEndReasonAgent) {
description = @"The agent has ended the session.";

} else if (reason == SCSChatEndReasonSessionError &&
error.code == SCSChatNoAgentsAvailableError) {

description = @"It looks like there are no agents available. Try again later.";
}

if (description != nil) {
UIAlertController *alert = [UIAlertController
alertControllerWithTitle:@"Session Ended"

message:description
preferredStyle:UIAlertControllerStyleAlert];

UIAlertAction* okAction = [UIAlertAction
actionWithTitle:@"OK"

style:UIAlertActionStyleDefault
handler:^(UIAlertAction * action)
{
NSLog(@"OK action");

}];

[alert addAction:okAction];
[self presentViewController:alert animated:YES completion:nil];

}
}
@end

Use Einstein Bots with Live Agent Chat
With Einstein Bots, you can complement your chat support experience with a smart, automated system that saves your agents time and
keeps your customers happy. Once you've set up Einstein Bots in your org, the SDK automatically begins the chat experience using your
bot. You can design your bot to transfer to an agent at any point.

Before you can use Einstein Bots in your app, build a bot, as described in Console Setup for Live Agent Chat. Once you've set up your
bot and assigned it to your chat button, a Live Agent Chat session automatically starts out as a bot. The menu options, choice buttons,
and persistent footer menu that you designed for your bot all appear from within the mobile chat session. These features give your
customers direct ways to get what they need—fast.

85

Use Einstein Bots with Live Agent ChatSnap-Ins for iOS Developer Guide

You do have a few ways you can fine-tune the bot from the SDK.

DetailsFeature Area

Configure the bot avatar that displays during a session with a bot.
To do this, use the setImage method with the

Einstein Bot Avatar

chatBotAvatar enum value. To learn more, see Customize
Images with the Snap-Ins SDK.

Configure the "hamburger" icon in the text entry area that launches
the persistent footer menu, which is always accessible to the user.

Einstein Bot Footer Icon

To do this, use the setImage method with the
chatBotFooterMenu enum value. To learn more, see
Customize Images with the Snap-Ins SDK.

86

Use Einstein Bots with Live Agent ChatSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:

Notifications for Live Agent Activity
If there's Live Agent Chat activity when the user is not viewing the chat session, you can present that information to them using the iOS
notification system.

Notifications can be sent to the user when the user isn't viewing the chat session. A notification can appear when the app is in the
background, or when the app is in the foreground but the chat session is minimized. The following activities can cause notifications:

• Agent has connected

• Agent sent a message

• Agent requested a file transfer

• Agent canceled a file transfer

• Agent ended a session

• Session will timeout soon

To ensure that the app can send these notifications while in the background, chat must be configured to allow background execution
(allowBackgroundExecution) and to allow for background notifications (allowBackgroundNotifications). Both
these settings are turned on by default. See Configure a Live Agent Chat Session for details.

1. Import the UserNotifications framework in your AppDelegate class.

In Swift:

import UserNotifications

In Objective-C:

@import UserNotifications;

2. Register for local notifications in your AppDelegate's didFinishLaunchingWithOptions method.

In Swift:

// Get the notification center object
let center = UNUserNotificationCenter.current()

// Register a delegate (see next step for delegate implementation)
center.delegate = self

// Request authorization
center.requestAuthorization(options: [.alert,.sound],

completionHandler: { granted, error in
// Enable or disable features based on authorization

})

// Create general category
let generalCategory = UNNotificationCategory(identifier: "General", actions: [],
intentIdentifiers: [], options: .customDismissAction)
let categorySet: Set<UNNotificationCategory> = [generalCategory]

// Set category
center.setNotificationCategories(categorySet)

In Objective-C:

// Get the notification center object
UNUserNotificationCenter* center = [UNUserNotificationCenter currentNotificationCenter];

87

Notifications for Live Agent ActivitySnap-Ins for iOS Developer Guide

// Register a delegate (see next step for delegate implementation)
[center setDelegate:self];

// Request authorization
[center requestAuthorizationWithOptions:(UNAuthorizationOptionAlert +
UNAuthorizationOptionSound)

completionHandler:^(BOOL granted, NSError * _Nullable error) {
// Enable or disable features based on authorization

}];

// Create general category
UNNotificationCategory* generalCategory =
[UNNotificationCategory
categoryWithIdentifier:@"GENERAL"

actions:@[]
intentIdentifiers:@[]

options:UNNotificationCategoryOptionCustomDismissAction];

// Set category
[center setNotificationCategories:[NSSet setWithObjects:generalCategory, nil]];

3. Implement UNUserNotificationCenterDelegate. Handle the didReceiveNotificationResponse and
willPresentNotification methods.

iOS calls the didReceiveNotificationResponse method when your app is in the background. In this method, you can
tell your app to enter the foreground and for chat to maximize. To perform this behavior, use the handle(notification:)
method on the SCSChatInterface object, which is accessible from the chatUI property of the ServiceCloud shared
instance.

iOS calls the willPresentNotification method when your app is in the foreground. To determine whether to display the
notification, use the shouldDisplayNotificationInForeground method (accessible from the chatUI property of
the ServiceCloud shared instance). If the Chat UI is already showing the relevant information related to this event, the method
returns false.

In Swift:

/**
This delegate method is executed when the application launches as a result
of the user interacting with a notification when it is in the background.
The result of passing the notification to Chat is that we will
maximize if the notification was scheduled as a result of a chat event.
*/
func userNotificationCenter(_ center: UNUserNotificationCenter,

didReceive response: UNNotificationResponse,
withCompletionHandler completionHandler:
@escaping () -> Void) {

let chat = ServiceCloud.shared().chatUI!
chat.handle(response.notification)

}

/**
This delegate method is executed when a notification is received while
the app is in the foreground. Check with Chat to see whether it's

88

Notifications for Live Agent ActivitySnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatInterface.html#/c:objc(cs)SCSChatInterface(im)handleNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatInterface.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatInterface.html#/c:objc(cs)SCSChatInterface(im)shouldDisplayNotificationInForeground
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html

appropriate to display the notification (or if the notification
relates to information already being shown to the user).
*/
func userNotificationCenter(_ center: UNUserNotificationCenter,

willPresent notification: UNNotification,
withCompletionHandler completionHandler:
@escaping (UNNotificationPresentationOptions) -> Void) {

let chat = ServiceCloud.shared().chatUI!

// Show we display this notification?
if (chat.shouldDisplayNotificationInForeground()) {

// Display notification as an alert
completionHandler(.alert)

}
}

In Objective-C:

/**
This delegate method is executed when the application launches as a result
of the user interacting with a notification when it is in the background.
The result of passing the notification to Chat is that we will
maximize if the notification was scheduled as a result of a chat event.
*/
- (void)userNotificationCenter:(UNUserNotificationCenter *)center
didReceiveNotificationResponse:(UNNotificationResponse *)response

withCompletionHandler:(void(^)(void))completionHandler {

SCSChatInterface *chat = [SCServiceCloud sharedInstance].chatUI;
[chat handleNotification:response.notification];

}

/**
This delegate method is executed when a notification is received while
the app is in the foreground. Check with Chat to see whether it's
appropriate to display the notification (or if the notification
relates to information already being shown to the user).
*/
- (void)userNotificationCenter:(UNUserNotificationCenter *)center

willPresentNotification:(UNNotification *)notification
withCompletionHandler:
(void (^)(UNNotificationPresentationOptions options))completionHandler {

SCSChatInterface *chat = [SCServiceCloud sharedInstance].chatUI;

// Show we display this notification?
if ([chat shouldDisplayNotificationInForeground]) {

// Display notification as an alert
completionHandler(UNNotificationPresentationOptionAlert);

}
}

89

Notifications for Live Agent ActivitySnap-Ins for iOS Developer Guide

Configure a Live Agent Chat Session
Before starting a Live Agent Chat session, you have several ways to configure the session using the SCSChatConfiguration
object. These configuration settings allow you to specify pre-chat fields, determine whether a session starts minimized or full screen,
and get updates about the user's queue position.

When you start a Live Agent Chat session, you specify an SCSChatConfiguration object as one of the arguments. This object
contains all the configuration settings necessary for Live Agent Chat to start a session. To create an SCSChatConfiguration
object, you specify information about your org and deployment.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

Note: You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already set
up Live Agent in Service Cloud or you need more guidance, see Console Setup for Live Agent Chat.

However, there are other options you can set using SCSChatConfiguration at configuration time.

The following features are available for configuration:

Type & Default ValueDescriptionProperty Name

Bool: true/YESWhether the chat session starts out as a minimized thumbnail view.defaultToMinimized

Bool: true/YESWhether the user is allowed to minimize the chat session view.allowMinimization

Bool: false/NOWhether the pre-chat screen is shown as a full screen view or as a
modal view.

fullscreenPrechat

Bool: true/YESWhether to allow extended background execution to support active
chat sessions. When true, active chat sessions can remain in the

allowBackgroundExecution

background for more than three minutes. See
allowBackgroundNotifications for related functionality.

Bool: true/YESWhether the session posts local notifications based on chat activity.
Requires that allowBackgroundExecution is also set to
true. To learn more, see Notifications for Live Agent Activity.

allowBackgroundNotifications

String: "Visitor"Name of the chat visitor. This value is used by the Service Cloud
console and displayed to the agent.

visitorName

Bool: true/YESDetermines whether session logs are sent for collection. (Logs sent
remotely don't collect personal information. Unique IDs are created

remoteLoggingEnabled

90

Configure a Live Agent Chat SessionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html

Type & Default ValueDescriptionProperty Name

for tying logs to sessions and those IDs can't be correlated back to
specific users.)

SCSPrechatObject array: nilYou can specify both optional and required fields shown to the user
before a chat session starts. You can also directly pass data to an
agent without requiring any user input.

prechatFields

To create pre-chat fields, add SCSPrechatObject instances to
the prechatFields property on the
SCSChatConfiguration object.

To learn more, see Show Pre-Chat Fields to User.

SCSPrechatEntity array: nilPre-chat fields are always sent to the agent at the start of the session.
But if you want to fill in fields of a particular record, instantiate an

prechatEntities

SCSPrechatEntity for each Salesforce object (for example,
Case or Contact) and instantiate an
SCSPrechatEntityField for each field association within
that Salesforce object (for example, Subject or LastName).

To learn more, see Show Pre-Chat Fields to User.

BOOL: true/YESDetermines whether the framework receives and displays updates
about the session queue position. If true, the queue position is

queueUpdatesEnabled

shown in the UI during the Queued state. You can also subscribe
to queue position events using
chat(didUpdateQueuePosition:) on
SCSChatDelegate. Use the add(delegate:) method on
SCSChat to register your delegate.

The queue position is 0 if the agent capacity is greater than or equal
to the number of customer requests. Otherwise, the position value
represents how far the customer is from getting served by an agent.

q = max(n - c, 0)

Where:

• q is the queue position

• n is the position of the customer compared to all waiting
customers

• c is the total capacity of all agents

For example, if the total capacity is 10, the first 10 waiting visitors
have a position of 0, the 11th has a position of 1, the 12th has a
position of 2, and so on.

Once you've fully configured the SCSChatConfiguration object, you can start the session using the startSession method.

91

Configure a Live Agent Chat SessionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatEntities
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)queueUpdatesEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didUpdateQueuePosition:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html

Example: The following example starts a session with one pre-chat field.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Set the visitor name
config?.visitorName = "Jane Doe"

// Add a required email field (with an email keyboard and no auto-correction)
let emailField = SCSPrechatTextInputObject(label: "Email")
emailField?.isRequired = true
emailField?.keyboardType = .emailAddress
emailField?.autocorrectionType = .no
config?.prechatFields.add(emailField)

// Start session!
ServiceCloud.shared().chat.startSession(with: config)

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-ORG-ID"

buttonId:@"YOUR-BUTTON-ID"];

// Set the visitor name
config.visitorName = @"Jane Doe";

// Add a required email field (with an email keyboard and no auto-correction)
SCSPrechatTextInputObject* emailField = [[SCSPrechatTextInputObject alloc]

initWithLabel:@"Email"];
emailField.required = YES;
emailField.keyboardType = UIKeyboardTypeEmailAddress;
emailField.autocorrectionType = UITextAutocorrectionTypeNo;
[config.prechatFields addObject:emailField];

// Start session!
[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

Live Agent Chat Events and Errors
Implement SCSChatDelegate to be notified about state changes made before, during, and after a Live Agent Chat session. This
delegate also allows you to listen for error conditions so you can present alerts to the user when applicable.

Listening to State Changes
A Live Agent Chat session can be in one of the following states:

92

Live Agent Chat Events and ErrorsSnap-Ins for iOS Developer Guide

Inactive
No active session; no incoming or outgoing traffic.

Loading
Session is loading.

Prechat
The user is currently entering pre-chat details.

Connecting
A connection with Live Agent servers is being established.

Queued
A connection has been established, and is now in the queue for next available agent.

Connected
Connected with an agent .

Ending
Session is cleaning up the connection at the end of a session.

Ended
Session has ended and will proceed to the inactive state.

These states are defined in SCSChatSessionState.

Throughout a session, your application might want to know the current state. You can monitor state changes by implementing
SCSChatDelegate. Use the add(delegate:) method on SCSChat to register your delegate. Use the
chat(stateDidChange:current:previous:) method to listen for state changes.

Handling Session Termination and Error Conditions
The SDK doesn't present UI alerts for session termination or error conditions so you'll need to listen for these events and decide what to
show your users. There are two SCSChatDelegate methods for this purpose:

1. To track session termination, use the chat(didEndWith:error:) method. Inspect the reason (SCSChatEndReason) to
determine why the session stopped. Typically, the session stops due to a normal event (for example, SCSChatEndReasonUser).
If the reason is SCSChatEndReasonSessionError, check the error parameter for more detail and compare the error
code to SCSChatErrorCode values. For instance, when there are no agents available to take a call, the error is
SCSChatNoAgentsAvailableError.

2. You can track all Live Agent Chat errors (including the session errors that are passed to chat(didEndWith:error:)) with
the chat(didError:) method. Compare the error code to SCSChatErrorCode to determine what kind of error occurred.

Example: Basic SCSChatDelegate Example

This sample code does the following:

• Implements the SCSChatDelegate protocol.

• Implements the chat(stateDidChange:current:previous:) method to listen for state changes.

• Implements the chat(didEndWith:error:) method and includes some error handling logic.

• Implements the chat(didError:) method to listen for errors.

import UIKit
import ServiceCore
import ServiceChat

class MyChatDelegateImplementation: NSObject, SCSChatDelegate {

93

Live Agent Chat Events and ErrorsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSChatSessionState.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSChatEndReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSChatErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSChatErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didError:

// TO DO: Register this delegate using SCServiceCloud.sharedInstance().chat.add(self)

// Delegate method for state change.
func chat(_ chat: SCSChat!, stateDidChange current: SCSChatSessionState,

previous: SCSChatSessionState) {

NSLog("Chat state changed...")

if (current == .connecting) {
NSLog("Chat now connecting...")

}
}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
func chat(_ chat: SCSChat!, didEndWith reason: SCSChatEndReason,

error: Error!) {

var title = ""
var description = ""

// If there's an error...
if (error != nil) {

switch (error as NSError).code {

// No agents available
case SCSChatErrorCode.noAgentsAvailableError.rawValue:
title = "Session Failed"
description = "It looks like there are no agents available. Try again later."

// Communication error
case SCSChatErrorCode.communicationError.rawValue:
title = "Session Failed"
description = "Communication error. Check network and try again."

// TO DO: Use SCSChatErrorCode to check for other error conditions
// in order to give a more clear explanation of the error.
default:
title = "Session Error"
description = "Unknown session error."

}

// Else if session stopped without an error condition...
} else {

switch reason {

// Handle the agent disconnect scenario
case .agent:
title = "Session Ended"

94

Live Agent Chat Events and ErrorsSnap-Ins for iOS Developer Guide

description = "The agent has ended the session."

// TO DO: Use SCSChatEndReason to check for
// other reasons for session ending...
default:
break

}
}

// Do we have an error to report?
if (title != "") {
// TO DO: Display an alert using title & description
NSLog("\nChat End Session. Title: %@\nDescription: %@",title, description)

}
}

// Delegate method for error conditions.
func chat(_ chat: SCSChat!, didError error: Error!) {
NSLog("Chat error (%d): '%@'", (error as NSError).code, error.localizedDescription)

}
}

Show Pre-Chat Fields to User
Before a Live Agent Chat session begins, you can request that the user fill in pre-chat fields that are sent to the agent at the start of the
session. You can map these fields to records in your org.

To create pre-chat fields, add SCSPrechatObject instances to the prechatFields property on the SCSChatConfiguration
object. To associate pre-chat fields with fields in a record in your org, add SCSPrechatEntity objects to the prechatEntities
property.

1. Create an SCSChatConfiguration object.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

See Configure a Live Agent Chat Session on how to configure a chat session.

2. Create SCSPrechatObject objects for the pre-chat fields you want to specify in your app. Add these objects to your configuration
object.

There are several types of pre-chat fields:

95

Show Pre-Chat Fields to UserSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatEntities
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html

• SCSPrechatObject does not require user input and can be used to send custom data directly to the agent.

• SCSPrechatTextInputObject (a subclass of SCSPrechatObject) takes user input from a text field.

• SCSPrechatPickerObject (a subclass of SCSPrechatObject) provides the user with a dropdown list of options.

Initialize a pre-chat object with a string used for the pre-chat label and then add it to the configuration object.

In Swift:

// Create the field
let myPrechatField = SCSPrechatTextInputObject(label: "PRECHAT_LABEL")

// Add field to SCSChatConfiguration object
config.prechatFields.add(myPrechatField)

In Objective-C:

// Create the field
SCSPrechatTextInputObject* myPrechatField = [[SCSPrechatTextInputObject alloc]
initWithLabel:@"PRECHAT_LABEL"];

// Add field to SCSChatConfiguration object
[config.prechatFields addObject:myPrechatField];

When using a SCSPrechatTextInputObject, you can control several other properties:

• required— to specify whether the field is required.

• keyboardType— to use other standard keyboards (such as UIKeyboardTypeEmailAddress).

• autocapitalizationType— to control how text capitalization works.

• autocorrectionType— to control auto-correction.

• maxLength— to specify the maximum length of the field.

When using a SCSPrechatPickerObject, you can access these properties:

• required— to specify whether the field is required.

• options — to specify items in the dropdown list. This property is an array of SCSPrechatPickerOption objects.

When using SCSPrechatObject to send data without user input, specify both the label and the value.

In Swift:

let customData = SCSPrechatObject(label: "CustomDataEmailField",
value: "lauren@example.com")

In Objective-C:

SCSPrechatObject* customData = [[SCSPrechatObject alloc]
initWithLabel:@"CustomDataEmailField"

value:@"lauren@example.com"];

Note: To specify the name of the visitor speaking with the agent, create an SCSPrechatObject using the string constant
kPrechatVisitorNameLabel as the label. For example: SCSPrechatObject(label:
kPrechatVisitorNameLabel, value: "John Doe").

3. (Optional) Create SCSPrechatEntity objects to associate pre-chat fields with fields from a record in your org. Add these objects
to your configuration object.

96

Show Pre-Chat Fields to UserSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatTextInputObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatPickerObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatTextInputObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatPickerObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatPickerOption.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html

Pre-chat fields are always sent to the agent at the start of the session. But if you want to fill in fields of a particular record, instantiate
an SCSPrechatEntity for each Salesforce object (for example, Case or Contact) and instantiate an
SCSPrechatEntityField for each field association within that Salesforce object (for example, Subject or LastName).

In Swift:

// Create a field
let entityField =
SCSPrechatEntityField(fieldName: "ORG_FIELD_NAME", label: "PRECHAT_LABEL")

// Create an entity
let entity =
SCSPrechatEntity(entityName: "ENTITY_NAME")

// Add fields to entity
entity.entityFieldsMaps.add(entityField)

// Add entity to SCSChatConfiguration object
config.prechatEntities.add(entity)

In Objective-C:

// Create a field
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"ORG_FIELD_NAME" label:@"PRECHAT_LABEL"];

// Create an entity
SCSPrechatEntity* entity = [[SCSPrechatEntity alloc]
initWithEntityName:@"ENTITY_NAME"];

// Add fields to entity
[entity.entityFieldsMaps addObject:entityField];

// Add entity to SCSChatConfiguration object
[config.prechatEntities addObject:entity];

Note: When you build the SCSPrechatEntityField object, the first argument (fieldName) is the name of the
field from the object in your org. The second argument (label) is the name of the label from your local SCSPrechatObject
object.

The SCSPrechatEntity and SCSPrechatEntityField classes give you additional controls for mapping fields. For
example, if a field doesn't exist, you can have the SDK create that field. The following code sample illustrates some basic building
blocks when creating a SCSPrechatEntity object.

In Swift:

// Create an entity
let entity = SCSPrechatEntity(entityName: "Contact")
entity.saveToTranscript = "ContactId" // Save this entity to Transcript.ContactId
entity.linkToEntityName = "Case"
entity.linkToEntityField = "ContactId" // Link this entity to Case.ContactId

// Add an entity field map to our entity
let entityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First Name")
entityField.doFind = true // Attempt to search for that field
entityField.isExactMatch = true // Must be an exact match

97

Show Pre-Chat Fields to UserSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html

entityField.doCreate = true // Create if not found
entity.entityFieldsMaps.add(entityField) // Add field to entity map

In Objective-C:

// Create an entity
SCSPrechatEntity* entity = [[SCSPrechatEntity alloc] initWithEntityName:@"Contact"];
entity.saveToTranscript = @"ContactId"; // Save this entity to Transcript.ContactId
entity.linkToEntityName = @"Case";
entity.linkToEntityField = @"ContactId"; // Link this entity to Case.ContactId

// Add an entity field map to our entity
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"FirstName" label:@"First Name"];

entityField.doFind = YES; // Attempt to search for that field
entityField.isExactMatch = YES; // Must be an exact match
entityField.doCreate = YES; // Create if not found
[entity.entityFieldsMaps
addObject:entityField]; // Add field to entity map

See the reference documentation for SCSPrechatEntity and SCSPrechatEntityField. Also refer to Live Agent REST
API Data Types for the Entity and EntityFieldsMaps data types, which define the underlying functionality of these SDK
objects.

Example: This code sample builds a set of pre-chat fields that are shown to the user. Using the entity mapping feature, the code
creates a new Case record using the Subject, Description, Status, and Origin fields. It also updates (or creates)
a Contact with the FirstName, LastName, Email, and Phone fields.

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Add some required fields
let firstNameField = SCSPrechatTextInputObject(label: "First Name")
firstNameField!.isRequired = true
config?.prechatFields.add(firstNameField!)
let lastNameField = SCSPrechatTextInputObject(label: "Last Name")
lastNameField!.isRequired = true
config?.prechatFields.add(lastNameField!)
let emailField = SCSPrechatTextInputObject(label: "Email")
emailField!.isRequired = true
emailField!.keyboardType = .emailAddress
emailField!.autocorrectionType = .no
config?.prechatFields.add(emailField!)

// Add some optional fields
let originField = SCSPrechatTextInputObject(label: "Where are you from?")
originField!.isRequired = false
config?.prechatFields.add(originField!)
let phoneField = SCSPrechatTextInputObject(label: "Phone Number")
phoneField!.isRequired = false
phoneField!.keyboardType = .phonePad
config?.prechatFields.add(phoneField!)
let descriptionField = SCSPrechatTextInputObject(label: "Please describe your problem:")

98

Show Pre-Chat Fields to UserSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
https://developer.salesforce.com/docs/atlas.en-us.214.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm
https://developer.salesforce.com/docs/atlas.en-us.214.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm

descriptionField!.isRequired = false
config?.prechatFields.add(descriptionField!)

// Add a picklist field
let statusOptions = NSMutableArray()
statusOptions.add(SCSPrechatPickerOption(label:"New Issue", value:"New"))
statusOptions.add(SCSPrechatPickerOption(label:"Fixed Issue", value:"Fixed"))
let statusPickerField = SCSPrechatPickerObject(label: "Status",
options: statusOptions as NSArray as! [SCSPrechatPickerOption])
statusPickerField!.isRequired = false
config?.prechatFields.add(statusPickerField!)

// Add hidden field containing the subject
let subjectField = SCSPrechatObject(label: "Subject", value: "Live Agent Chat Session")
config?.prechatFields.add(subjectField)

// Create an entity mapping for a Contact record type
let contactEntity = SCSPrechatEntity(entityName: "Contact")
contactEntity.saveToTranscript = "ContactId"
contactEntity.linkToEntityName = "Case"
contactEntity.linkToEntityField = "ContactId"

// Add some field mappings to our Contact entity
let firstNameEntityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First
Name")
firstNameEntityField.doFind = true
firstNameEntityField.isExactMatch = true
firstNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(firstNameEntityField)
let lastNameEntityField = SCSPrechatEntityField(fieldName: "LastName", label: "Last
Name")
lastNameEntityField.doFind = true
lastNameEntityField.isExactMatch = true
lastNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(lastNameEntityField)
let emailEntityField = SCSPrechatEntityField(fieldName: "Email", label: "Email")
emailEntityField.doFind = true
emailEntityField.isExactMatch = true
emailEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(emailEntityField)
let phoneEntityField = SCSPrechatEntityField(fieldName: "Phone", label: "Phone Number")
phoneEntityField.doFind = true
phoneEntityField.isExactMatch = true
phoneEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(phoneEntityField)

// Add the Contact entity to our config
config?.prechatEntities.add(contactEntity)

// Create an entity mapping for a Case record type
let caseEntity = SCSPrechatEntity(entityName: "Case")
caseEntity.saveToTranscript = "CaseId"
caseEntity.showOnCreate = true

99

Show Pre-Chat Fields to UserSnap-Ins for iOS Developer Guide

// Add some field mappings to our Case entity
let subjectEntityField = SCSPrechatEntityField(fieldName: "Subject", label: "Subject")
subjectEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(subjectEntityField)
let descriptionEntityField = SCSPrechatEntityField(fieldName: "Description",
label: "Please describe your problem:")

descriptionEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(descriptionEntityField)
let statusEntityField = SCSPrechatEntityField(fieldName: "Status", label: "Status")
statusEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(statusEntityField)
let originEntityField = SCSPrechatEntityField(fieldName: "Origin",

label: "Where are you from?")
originEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(originEntityField)

// Add the Case entity to our config
config?.prechatEntities.add(caseEntity)

// Start the session!
ServiceCloud.shared().chat.startSession(with: config)

Find or Create Salesforce Records from a Chat Session
When a Live Agent Chat session begins, you can create or find records within your org and pass this information to the agent. Using this
technique, your agent can immediately have all the context they need for an effective chat session.

If you already have enough information in your app to find or create a record in your Salesforce org, you don't have to display a pre-chat
UI. For example, you can use a customer email address you've already stored within your app to find customer contact information in
the Salesforce org and then pass that Contact record to the agent. Or you can add information about the customer and their issue
to a new case and display that Case record to the agent. You can even link a new case to the contact so that agents can easily find all
previous interactions with this customer. If you need more information from the user, you can display a pre-chat UI and have the user
enter additional information.

This topic shows you how to send data to your org without a pre-chat UI. If you require user input, see Show Pre-Chat Fields to User. The
basic process is similar, but be sure to perform the optional step that involves creating an SCSPrechatEntity object. This object
is necessary to find or create the Salesforce record.

1. Create an SCSChatConfiguration object.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

100

Find or Create Salesforce Records from a Chat SessionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html

See Configure a Live Agent Chat Session on how to configure a chat session.

2. Create SCSPrechatObject objects for each field you want to update in your org. Add these objects to your configuration
object.

The label string in this object must be identical to the label used later in your SCSPrechatEntityField object.

In Swift:

// Create a hidden field
let customData = SCSPrechatObject(label: "PRECHAT_LABEL",

value: "VALUE_OF_THIS_FIELD")

// Add field to SCSChatConfiguration object
config.prechatFields.add(customData)

In Objective-C:

// Create a hidden field
SCSPrechatObject* customData = [[SCSPrechatObject alloc]

initWithLabel:@"PRECHAT_LABEL"
value:@"VALUE_OF_THIS_FIELD"];

// Add field to SCSChatConfiguration object
[config.prechatFields addObject:customData];

Note: This example creates a field that doesn't require any user input. To learn how to create a field with user input, see Show
Pre-Chat Fields to User.

3. Create SCSPrechatEntity objects to associate these values with fields from a record in your org. Add these objects to your
configuration object.

Instantiate an SCSPrechatEntity for each Salesforce object (for example, Case or Contact) and instantiate an
SCSPrechatEntityField for each field association within that Salesforce object (for example, Subject or LastName).

In Swift:

// Create a field
let entityField =
SCSPrechatEntityField(fieldName: "ORG_FIELD_NAME", label: "PRECHAT_LABEL")

// Create an entity
let entity =
SCSPrechatEntity(entityName: "ENTITY_NAME")

// Add fields to entity
entity.entityFieldsMaps.add(entityField)

// Add entity to SCSChatConfiguration object
config.prechatEntities.add(entity)

In Objective-C:

// Create a field
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"ORG_FIELD_NAME" label:@"PRECHAT_LABEL"];

// Create an entity

101

Find or Create Salesforce Records from a Chat SessionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html

SCSPrechatEntity* entity = [[SCSPrechatEntity alloc]
initWithEntityName:@"ENTITY_NAME"];

// Add fields to entity
[entity.entityFieldsMaps addObject:entityField];

// Add entity to SCSChatConfiguration object
[config.prechatEntities addObject:entity];

Note: When you build the SCSPrechatEntityField object, the first argument (fieldName) is the name of the
field from the object in your org. The second argument (label) is the name of the label from your local SCSPrechatObject
object.

The SCSPrechatEntity and SCSPrechatEntityField classes give you additional controls for mapping fields. For
example, if a field doesn't exist, you can have the SDK create that field. The following code sample illustrates some basic building
blocks when creating a SCSPrechatEntity object.

In Swift:

// Create an entity
let entity = SCSPrechatEntity(entityName: "Contact")
entity.saveToTranscript = "ContactId" // Save this entity to Transcript.ContactId
entity.linkToEntityName = "Case"
entity.linkToEntityField = "ContactId" // Link this entity to Case.ContactId

// Add an entity field map to our entity
let entityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First Name")
entityField.doFind = true // Attempt to search for that field
entityField.isExactMatch = true // Must be an exact match
entityField.doCreate = true // Create if not found
entity.entityFieldsMaps.add(entityField) // Add field to entity map

In Objective-C:

// Create an entity
SCSPrechatEntity* entity = [[SCSPrechatEntity alloc] initWithEntityName:@"Contact"];
entity.saveToTranscript = @"ContactId"; // Save this entity to Transcript.ContactId
entity.linkToEntityName = @"Case";
entity.linkToEntityField = @"ContactId"; // Link this entity to Case.ContactId

// Add an entity field map to our entity
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"FirstName" label:@"First Name"];

entityField.doFind = YES; // Attempt to search for that field
entityField.isExactMatch = YES; // Must be an exact match
entityField.doCreate = YES; // Create if not found
[entity.entityFieldsMaps
addObject:entityField]; // Add field to entity map

See the reference documentation for SCSPrechatEntity and SCSPrechatEntityField. Also refer to Live Agent REST
API Data Types for the Entity and EntityFieldsMaps data types, which define the underlying functionality of these SDK
objects.

102

Find or Create Salesforce Records from a Chat SessionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
https://developer.salesforce.com/docs/atlas.en-us.214.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm
https://developer.salesforce.com/docs/atlas.en-us.214.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm

Example: This code sample adds FirstName, LastName, Email to a Contact record and a Subject field to a Case
record.

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Create some fields with specific values
let firstNameField = SCSPrechatObject(label: "First Name", value: "Jane")
config?.prechatFields.add(firstNameField)
let lastNameField = SCSPrechatObject(label: "Last Name", value: "Doe")
config?.prechatFields.add(lastNameField)
let emailField = SCSPrechatObject(label: "Email", value: "jane.doe@salesforce.com")
config?.prechatFields.add(emailField)
let subjectField = SCSPrechatObject(label: "Subject", value: "Live Agent Chat Session")
config?.prechatFields.add(subjectField)

// Create an entity mapping for a Contact record type
let contactEntity = SCSPrechatEntity(entityName: "Contact")
contactEntity.saveToTranscript = "Contact"
contactEntity.linkToEntityName = "Case"
contactEntity.linkToEntityField = "ContactId"

// Add some field mappings to our Contact entity
let firstNameEntityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First
Name")
firstNameEntityField.doFind = true
firstNameEntityField.isExactMatch = true
firstNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(firstNameEntityField)
let lastNameEntityField = SCSPrechatEntityField(fieldName: "LastName", label: "Last
Name")
lastNameEntityField.doFind = true
lastNameEntityField.isExactMatch = true
lastNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(lastNameEntityField)
let emailEntityField = SCSPrechatEntityField(fieldName: "Email", label: "Email")
emailEntityField.doFind = true
emailEntityField.isExactMatch = true
emailEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(emailEntityField)

// Add the Contact entity to our config
config?.prechatEntities.add(contactEntity)

// Create an entity mapping for a Case record type
let caseEntity = SCSPrechatEntity(entityName: "Case")
caseEntity.saveToTranscript = "Case"
caseEntity.showOnCreate = true

// Add one field mappings to our Case entity
let subjectEntityField = SCSPrechatEntityField(fieldName: "Subject", label: "Subject")
subjectEntityField.doCreate = true

103

Find or Create Salesforce Records from a Chat SessionSnap-Ins for iOS Developer Guide

caseEntity.entityFieldsMaps.add(subjectEntityField)

// Add the Case entity to our config
config?.prechatEntities.add(caseEntity)

// Start the session!
ServiceCloud.shared().chat.startSession(with: config)

Check Live Agent Availability
Before starting a session, you can check the availability of your Live Agent Chat agents and then provide your users with more accurate
expectations.

To check whether agents are available, call the determineAvailabilityWithConfiguration method on the chat
property, similar to how you start a Live Agent session.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

ServiceCloud.shared().chat.determineAvailability(with: config,
completion: { (error: Error?, available: Bool) in

if (error != nil) {
// Handle error

}
else if (available) {
// Enable chat button

}
else {
// Disable button or warn user that no agents are available

}

})

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

[[SCServiceCloud sharedInstance].chat
determineAvailabilityWithConfiguration:config

completion:^(NSError *error, BOOL available)
{

if (error != nil) {
// Handle error

}

104

Check Live Agent AvailabilitySnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)determineAvailabilityWithConfiguration:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)chat

else if (available) {
// Enable chat button

}
else {
// Disable button or warn user that no agents are available

}

});

Transfer File to Agent
With Live Agent Chat, a user can transfer a file to an agent after the agent requests a file transfer.

The agent can request that the user transfer a file by clicking the Attach File button from the Service Cloud Console.

The user sees a FILE TRANSFER REQUESTED message in the app and can then send a file using the paperclip button.

No coding is necessary in your app to make this behavior work.

See Transfer Files During a Chat in Salesforce Help for details about setting up this functionality in the Service Cloud Console.

Note: If your app crashes when a user attempts to perform a file transfer, check that you've enabled the device privacy permissions
for the camera and the photo library. An app will crash if these permissions are not set in Xcode. See Install the Snap-Ins SDK for
iOS.

Block Sensitive Data in a Chat Session
To block sending sensitive data to agents, specify a regular expression in your org's setup. When the regular expression matches text in
the user's message, the matched text is replaced with customizable text before it leaves the device.

To learn more, see Block Sensitive Data in Chats.

105

Transfer File to AgentSnap-Ins for iOS Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=live_agent_transfer_files.htm&language=en_US
https://help.salesforce.com/articleView?id=live_agent_block_sensitive_data.htm&language=en_US

Using Case Management with the Snap-Ins SDK

Adding the Case Management experience to your mobile app.

Case Management in the Snap-Ins SDK for iOS

Learn about the Case Publisher and Case Management experience using the SDK.

Quick Setup: Case Publisher as a Guest User

To set up Case Publisher in your iOS app, point the shared instance to your community, specify a global action, customize the look
and feel, and show the interface.

Case Management as an Authenticated User

To manage existing cases, a user must authenticate with your org. Once authenticated, the user can create and manage cases from
your app.

Customize the Presentation and View Controllers for Case Management

The simplest way to show and hide the Case Management interface is by calling the setInterfaceVisible method.
Alternatively, you can present the interface using a custom presentation. You can even manually control the Case Management
view controllers yourself.

Send Custom Data Using Hidden Fields

You can hide specific Case-related fields in your Case Management views. This behavior is useful if you want to pass information to
Service Cloud that does not require user input and that the user shouldn't see. To make this happen, implement the view controller
delegates and specify the hidden fields.

Configure Case Deflection

When a user enters information about a new case – if you have a knowledge base available to that user – the SDK automatically
searches that knowledge base for relevant articles and offers them to the user. You have the ability to turn this feature on and off,
as well as control which case publisher fields are used to search content.

Customize the Case Publisher Result View

By default, when a user submits a new case from the Case Publisher screen, a standard success view appears. If you want to provide
your users with more specific guidance after a case is created, one solution is to customize the view’s message text and default
image. If you'd like more control over what is displayed, you can present your own view by implementing the viewForResult
method in the SCSCasePublisherViewControllerDelegate class.

Push Notifications for Case Activity

You can send push notifications from your org when activity associated with a user’s case occurs. After you’ve set up notifications
in your org, handle the notification from your app.

Automated Email Responses

Create automated email responses when a case is submitted from your app.

Case Management in the Snap-Ins SDK for iOS
Learn about the Case Publisher and Case Management experience using the SDK.

The Case Management feature in the SDK allows your users to create and manage cases. Once you point your app to your community
URL, you can display the case management interface to your users. If you don’t authenticate the user, they can still create new cases
using the guest user profile. A user creates a new case with the Case Publisher screen:

106

Using Case Management with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

If you authenticate the user, they can also view and manage their list of cases. In the default ‘guest user’ flow, launching the interface
causes the Case Publisher screen to appear. From this screen, a user can create a case as an anonymous guest user. In the default
‘authenticated user’ flow, launching the interface causes the Case List screen to appear. From this screen, a user can inspect an existing
case (which launches the Case Details screen), or create a new case (which launches the Case Publisher screen).

107

Case Management in the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

If you’d prefer, you can manually control the Case Management view controllers.

For authenticated users, you can set up notifications so they are notified when there’s a new post associated with one of their existing
cases. You can even set it up so that the Case Details screen automatically appears with the latest case activity.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Let’s get started.

Quick Setup: Case Publisher as a Guest User
To set up Case Publisher in your iOS app, point the shared instance to your community, specify a global action, customize the look and
feel, and show the interface.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with Case Management. To learn more, see Cloud Setup for Case Management.

• Installed the SDK. To learn more, see Install the Snap-Ins SDK for iOS.

These instructions allow you to set up Case Publisher as a guest user. This functionality allows a user to publish a new case. However, a
guest user cannot manage existing cases. To manage cases, you’ll need to authenticate the user, which requires a few more steps. To
learn more about the authenticated user setup, see Case Management as an Authenticated User.

108

Quick Setup: Case Publisher as a Guest UserSnap-Ins for iOS Developer Guide

1. Import the SDK. Wherever you intend to use the Case Management SDK, be sure to import the Service Common framework and the
Case Management framework.

In Swift:

import ServiceCore
import ServiceCases

In Objective-C:

@import ServiceCore;
@import ServiceCases;

2. Point the SDK to your org using an SCSServiceConfiguration object.

To connect your application to your organization, create an SCSServiceConfiguration object containing the community
URL. Pass this object to the ServiceCloud shared instance using SCSServiceConfiguration(community:).

In Swift:

// Create configuration object with your community URL
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!)

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with your community URL
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]
initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]];

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

You can get the community URL from your Salesforce org. From Setup, search for All Communities, and copy the URL for the desired
community. For more help, see Cloud Setup for Case Management.

Note: If you plan to access Knowledge in addition to Case Management, use
SCSServiceConfiguration(community:dataCategoryGroup:rootDataCategory:) instead. This
constructor sets up data categories in addition to setting the community URL. See Quick Setup: Knowledge in the Snap-Ins
SDK in the Knowledge section for more info.

3. Assign a global action to the Case Management interface. The global action determines the fields shown when a user creates a case.

To configure the fields shown when creating a case, specify the global action name in the caseCreateActionName property.
This code snippet illustrates how to associate the case publisher feature with the New Case global action layout, which is one of
the default actions provided in most orgs.

In Swift:

ServiceCloud.shared().cases.caseCreateActionName = "NewCase"

In Objective-C:

[SCServiceCloud sharedInstance].cases.caseCreateActionName = @"NewCase";

109

Quick Setup: Case Publisher as a Guest UserSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName

You can get the global action name from your Salesforce org. From Setup, search for Global Actions, and copy the name of the
desired quick action. For more help, see Cloud Setup for Case Management.

Note: Be sure that your global action is accessible to the Guest user profile. Also note that the case publisher screen does not
respect field-level security for guest users. If you want to specify different security levels for different users, use different quick
actions.

4. (Optional) Customize the appearance with the configuration object.

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage. You can also configure the strings used throughout the
interface. See SDK Customizations with the Snap-Ins SDK for iOS.

5. (Optional) Implement any of the Snap-ins SDK delegates.

SCServiceCloudDelegate
Access to general Snap-ins SDK events (for example, willDisplayViewController, didDisplayViewController,
shouldShowActionWithName).

SCAppearanceConfigurationDelegate
Access to appearance-related events (for example, appearanceConfigurationWillApplyUpdates,
appearanceConfigurationDidApplyUpdates).

6. Show the interface from your view controller using setInterfaceVisible.

You can show the interface as soon as the view controller loads, or start it from a UI action.

Note: If you show the interface as a guest user, the case publisher screen appears. If you choose to authenticate first (see
Case Management as an Authenticated User), then the case list screen is the first thing to appear.

In Swift:

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].cases setInterfaceVisible:YES
animated:YES

completion:nil];

By default, the interface appears as a floating dialog. Alternatively, you can present the interface using a custom presentation. You
can even manually control the Case Management view controllers yourself. See Customize the Presentation and View Controllers
for Case Management for more info.

For instructions on launching the interface from a web view, see Launch the Snap-Ins SDK from a Web View in iOS.

Example: Swift Example

To use this example code, create a Single View Application and Install the Snap-Ins SDK for iOS.

Set up the Case Management interface within the AppDelegate implementation.

import UIKit
import ServiceCore
import ServiceCases

@UIApplicationMain

110

Quick Setup: Case Publisher as a Guest UserSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCAppearanceConfigurationDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(im)setInterfaceVisible:animated:completion:

class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// Point the SDK to your community
let config =
SCSServiceConfiguration(community:
URL(string: "https://mycommunity.example.com")!)

ServiceCloud.shared().serviceConfiguration = config

// Assign global action to use for case layout
ServiceCloud.shared().cases.caseCreateActionName = "NewCase"

return true
}

}

Using the storyboard, add a button to the view. Then add a Touch Up Inside action in your UIViewController
implementation with the name showHelp. When the button is clicked, make the Case Management interface visible.

import UIKit
import ServiceCore
import ServiceKnowledge

class ViewController: UIViewController {

@IBAction func showHelp(_ sender: AnyObject) {

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

}
}

Case Management as an Authenticated User
To manage existing cases, a user must authenticate with your org. Once authenticated, the user can create and manage cases from your
app.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with Case Management. To learn more, see Cloud Setup for Case Management.

• Installed the SDK. To learn more, see Install the Snap-Ins SDK for iOS.

These instructions allow you to set up case management as an authenticated user. When you activate the Case Management interface
for an authenticated user, a list of their existing cases appears initially. From there, they can inspect an existing case, or they can create
a new case. If you do not want to authenticate users, and you prefer to let them create cases as a guest user, see Quick Setup: Case
Publisher as a Guest User.

1. Follow authentication instructions for this SDK: Authentication with the Snap-Ins SDK for iOS.

111

Case Management as an Authenticated UserSnap-Ins for iOS Developer Guide

2. Review the steps in Quick Setup: Case Publisher as a Guest User. The basic steps for setting up and displaying the interface still apply
for authenticated users.

3. Assign a Cases view name to allow authenticated users to see a list of all their existing cases.

To show a list of cases, specify the unique name for your preferred Cases view from your Salesforce org. To get this case list value,
access the Cases tab in your org, pick the desired View, select Go! to see that view, and then select Edit to edit the view. From the
edit window, you can see the View Unique Name. Use this value when you specify the caseListName in the SDK. For more
help, see Cloud Setup for Case Management.

In Swift:

ServiceCloud.shared().cases.caseListName = "AllOpenCases"

In Objective-C:

[SCServiceCloud sharedInstance].cases.caseListName = @"AllOpenCases";

4. (Optional) Incorporate notifications whenever there is a new text post on an existing case and check the caseUnreadCount
property to determine the number of unread cases.

You can send push notifications from your org when activity associated with a user’s case occurs. After you’ve set up notifications
in your org, handle the notification from your app. To learn more, see Push Notifications for Case Activity.

The number of unread cases is automatically listed as a numerical badge on the Case List action button within the UI. If you want
to know the number of cases with unread messages, call the caseUnreadCount property on the cases instance. This value
is only accurate after the user views the Case List screen. Before that, the value is 0.

After you authenticate users, they have access to the full Case Management functionality, with easy access to information about their
existing cases.

Customize the Presentation and View Controllers for Case Management
The simplest way to show and hide the Case Management interface is by calling the setInterfaceVisible method. Alternatively,
you can present the interface using a custom presentation. You can even manually control the Case Management view controllers
yourself.

In the default ‘guest user’ flow, launching the interface causes the Case Publisher screen to appear. From this screen, a user can create
a case as an anonymous guest user. In the default ‘authenticated user’ flow, launching the interface causes the Case List screen to
appear. From this screen, a user can inspect an existing case (which launches the Case Details screen), or create a new case (which
launches the Case Publisher screen). If you don’t want to use a default user flow, you can manually show the Case Management view
controllers.

Note: The fields in the Case Publisher screen are determined by the global action specified in your org. These fields are also shown
at the top of the Case Details screen. See the global action step in Quick Setup: Case Publisher as a Guest User for more info.

Activating Interface Using the Default Presentation
Use the setInterfaceVisible method to show the Case Management interface using the default presentation.

In Swift:

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

112

Customize the Presentation and View Controllers for Case
Management

Snap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:

In Objective-C:

[[SCServiceCloud sharedInstance].cases setInterfaceVisible:YES
animated:YES

completion:nil];

If you just want to display the default Case Management experience, that's all you need to do. But if you'd like to access the associated
view controllers, or their delegates, implement SCServiceCloudDelegate and supply that implementation to ServiceCloud.

In Swift:

ServiceCloud.shared().delegate = self

In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

In your SCServiceCloudDelegate implementation, use the serviceCloud(willDisplay controller:animated:)
method to find out if it's a view controller you're interested in, and if so, assign the view controller delegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
willDisplay controller: UIViewController,
animated: Bool) {

// Case Publisher View
if (controller is SCSCasePublisherViewController) {
let publisherController = controller as! SCSCasePublisherViewController

// TO DO: Implement SCSCasePublisherViewControllerDelegate
publisherController.delegate = self

// Case Detail View
} else if (controller is SCSCaseDetailViewController) {
let detailController = controller as! SCSCaseDetailViewController

// TO DO: Implement SCSCaseDetailViewControllerDelegate
detailController.delegate = self

// Case List View
} else if (controller is SCSCaseListViewController) {
let listController = controller as! SCSCaseListViewController

// TO DO: Implement SCSCaseListViewControllerDelegate
listController.delegate = self

}

}

In Objective-C:

-(void)serviceCloud:(SCServiceCloud *)serviceCloud
willDisplayViewController:(UIViewController *)controller

animated:(BOOL)animated {

// Case Publisher View
if ([controller isKindOfClass:[SCSCasePublisherViewController class]]) {

113

Customize the Presentation and View Controllers for Case
Management

Snap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:

SCSCasePublisherViewController *casePublisherController =
(SCSCasePublisherViewController *)controller;

// TO DO: Implement SCSCasePublisherViewControllerDelegate
casePublisherController.delegate = self;

// Case Detail View
} else if ([controller isKindOfClass:[SCSCaseDetailViewController class]]) {
SCSCaseDetailViewController *caseDetailController =
(SCSCaseDetailViewController *)controller;

// TO DO: Implement SCSCaseDetailViewControllerDelegate
caseDetailController.delegate = self;

// Case List View
} else if ([controller isKindOfClass:[SCSCaseListViewController class]]) {
SCSCaseListViewController *caseListController =
(SCSCaseDetailViewController *)controller;

// TO DO: Implement SCSCaseListViewControllerDelegate
caseListController.delegate = self;

}
}

You now have access to the view controllers and their delegates.

Activating Interface Using a Custom Transitioning Delegate
You can also present the interface using a custom transitioning animation and custom presentation. Implement a
UIViewControllerTransitioningDelegate.

1. Supply the ServiceCloud shared instance with your SCServiceCloudDelegate implementation.

In Swift:

ServiceCloud.shared().delegate = mySCServiceCloudDelegate

In Objective-C:

[SCServiceCloud sharedInstance].delegate = mySCServiceCloudDelegate;

2. Implement the serviceCloud(transitioningDelegateForPresentedController:presenting:) method
in your delegate and return a custom UIViewControllerTransitioningDelegate from this method.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
transitioningDelegateForPresentedController
presentedController: UIViewController,

presenting presentingController: UIViewController)
-> UIViewControllerTransitioningDelegate? {

// TO DO: Put your logic here and then return your transitioning delegate...

return myTransitioningDelegate
}

114

Customize the Presentation and View Controllers for Case
Management

Snap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:

In Objective-C:

- (NSObject<UIViewControllerTransitioningDelegate> *)
serviceCloud:(SCServiceCloud *)serviceCloud

transitioningDelegateForViewController:(UIViewController *)controller {

// TO DO: Put your logic here and then return your transitioning delegate...

return myTransitioningDelegate;
}

Showing or Customizing the View Controllers
Instead of having the SDK manage the flow from one view to the next, you can instantiate any of the view controllers and display it
manually. When instantiating a view controller, be sure to implement the associated delegate and pass that delegate to the view controller
(using the delegate property). The delegates allow you to override the default behavior for the views.

If you don't want to manually instantiate a view controller but you still want the ability to control its behavior, implement the
serviceCloud(willDisplay controller:animated:) and serviceCloud(didDisplay
controller:animated:)methods of SCServiceCloudDelegate. You can access the view controllers from those methods.

DelegateView ControllerFeature

SCSCasePublisherViewControllerDelegateSCSCasePublisherViewControllerCase Publisher — for creating new cases

SCSCaseListViewControllerDelegateSCSCaseListViewControllerCase List — for viewing a list of a user’s
cases

SCSCaseDetailViewControllerDelegateSCSCaseDetailViewControllerCase Details — for inspecting the details of
one case

Note: If you manually display the Case List view controller (SCSCaseListViewController), you'll also need to manually
display the Case Detail view controller (SCSCaseDetailViewController). When a user selects a case from the case list,
present your Case Detail view controller from the caseList(selectedCaseWithId:) method in your
SCSCaseListViewControllerDelegate implementation. If you don't do this, nothing will happen when a user selects
a specific case in the case list!

If you choose to manually launch the Case Management view controllers, you can't take advantage of the notification-handling mechanism
provided by the SDK (using showInterface(for:)). See Notifications with the Snap-Ins SDK for iOS.

For a use case that involves custom view controllers, see Send Custom Data Using Hidden Fields.

Send Custom Data Using Hidden Fields
You can hide specific Case-related fields in your Case Management views. This behavior is useful if you want to pass information to
Service Cloud that does not require user input and that the user shouldn't see. To make this happen, implement the view controller
delegates and specify the hidden fields.

Before getting started, you'll need to be sure that your global action layout (that you specified with the caseCreateActionName
property as described in Quick Setup: Case Publisher as a Guest User) contains the fields you want to hide. This layout is used for both
the Case Publisher screen (where users can fill in values for the fields) and the Case Details screen (where users can view the field values).
To learn more about quick actions, see Create Global Quick Actions in Salesforce Help.

115

Send Custom Data Using Hidden FieldsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:didDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:didDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName
https://help.salesforce.com/apex/HTViewHelpDoc?id=creating_global_actions.htm&language=en_US

Once you have the correct fields in your layout, there are two approaches to hiding specific fields:

1. Use the default Case Management view controllers, but implement the view controller delegates.

2. Instantiate (and display) the view controllers yourself, and also implement the view controller delegates.

The first method is useful if you don't want to manually display the views yourself —you simply want to hide specific fields. The second
method is useful if you want more control over how and when to display the views. Details about each of the two methods are described
later in this section.

Regardless of which method you choose, you'll need to implement the Case Management view controller delegates.

Implementing the Delegates
To affect which fields are shown in your Case Publisher view, implement the SCSCasePublisherViewControllerDelegate.
Use casePublisher(fieldsToHideFromCaseFields:) to specify which fields to hide. This method passes you an array
of available fields to hide. This array contains the unique API name for each field (which is not necessarily the label text for the field).
From this array, return a set of fields to hide.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
fieldsToHideFromCaseFields availableFields: [String])
-> Set<String> {

let hideFieldSet: Set = ["MyHiddenField", "MyOtherHiddenField"]
return hideFieldSet

}

In Objective-C:

- (NSSet *)casePublisher:(SCSCasePublisherViewController *)publisher
fieldsToHideFromCaseFields:(NSArray *)availableFields {

NSSet *hideFieldsSet = [NSSet setWithObjects: @"MyHiddenField",
@"MyOtherHiddenField", nil];

return hideFieldsSet;
}

You'll also need to implement the casePublisher(valuesForHiddenFields:) method, where you specify what values
to use for each hidden field. This method passes you the set of hidden fields (that you specified earlier), and you'll need to provide a
dictionary associating each hidden field with a value.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
valuesForHiddenFields hiddenFields: Set<String>)
-> [String : Any] {

let hideValues: [String: String] = [
"MyHiddenField" : "The value for my hidden field.",
"MyHiddenField" : "Another value for hidden field."

]

return hideValues
}

116

Send Custom Data Using Hidden FieldsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:valuesForHiddenFields:

In Objective-C:

- (NSDictionary *)casePublisher:(SCSCasePublisherViewController *)publisher
valuesForHiddenFields:(NSSet *)hiddenFields {

NSDictionary *hideValues = @{
@"MyHiddenField": @"The value for my hidden field.",
@"MyHiddenField": @"Another value for hidden field."

};

return hideValues;
}

Note: Be sure that you specify valid values for hidden fields! If you specify an invalid value, case submission will fail and it will be
unclear to the user why it happened.

If you support authenticated users and you hide fields from Case Publisher, you should also hide those fields from the Case Details view.
To do this, use a similar approach and implement SCSCaseDetailViewControllerDelegate. Use
caseDetail(fieldsToHideFromCaseFields:) to specify which fields to hide.

In Swift:

func caseDetail(_ caseDetailController: SCSCaseDetailViewController,
fieldsToHideFromCaseFields availableFields: [String])
-> Set<String> {

let hideFieldSet: Set = ["MyHiddenField", "MyOtherHiddenField"]
return hideFieldSet

}

In Objective-C:

- (NSSet *)caseDetail:(SCSCaseDetailViewController *)caseDetailController
fieldsToHideFromCaseFields:(NSArray *)availableFields {

NSSet *hideFieldsSet = [NSSet setWithObjects:@"MyHiddenField",
@"MyOtherHiddenField", nil];

return hideFieldsSet;
}

There is no method in this delegate to specify values for hidden fields (as there is in the Case Publisher view controller delegate), because
the Case Details view only shows a read-only version of these fields.

Once you've implemented your delegates, you can wire them up with one of two methods.

Method 1: Using the Default View Controllers
If you want to use the default view controllers, you'll need to find out when the view controllers are going to be shown so that you can
associate your delegate implementation with the right view controller. To do this, implement SCServiceCloudDelegate and
supply that implementation to ServiceCloud.

In Swift:

ServiceCloud.shared().delegate = self

In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

117

Send Custom Data Using Hidden FieldsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseDetailViewControllerDelegate.html#/c:objc(pl)SCSCaseDetailViewControllerDelegate(im)caseDetail:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html

In your SCServiceCloudDelegate implementation, use the serviceCloud(willDisplay controller:animated:)
method to find out if it's a view controller you're interested in, and if so, assign the view controller delegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
willDisplay controller: UIViewController,
animated: Bool) {

if (controller is SCSCasePublisherViewController) {
let publisherController = controller as! SCSCasePublisherViewController
publisherController.delegate = self

} else if (controller is SCSCaseDetailViewController) {
let detailController = controller as! SCSCaseDetailViewController
detailController.delegate = self

}
}

In Objective-C:

-(void)serviceCloud:(SCServiceCloud *)serviceCloud
willDisplayViewController:(UIViewController *)controller

animated:(BOOL)animated {

if ([controller isKindOfClass:[SCSCasePublisherViewController class]]) {
SCSCasePublisherViewController *casePublisherController =
(SCSCasePublisherViewController *)controller;

casePublisherController.delegate = self;

} else if ([controller isKindOfClass:[SCSCaseDetailViewController class]]) {
SCSCaseDetailViewController *caseDetailController =
(SCSCaseDetailViewController *)controller;

caseDetailController.delegate = self;
}

}

Once you've assigned your delegates, you'll no longer see the hidden fields.

Method 2: Instantiating the View Controllers
You can also instantiate all the view controllers yourself and display them manually. You'll still need to implement the delegates using
this method.

DelegateView ControllerFeature

SCSCasePublisherViewControllerDelegateSCSCasePublisherViewControllerCase Publisher — for creating new cases

SCSCaseListViewControllerDelegateSCSCaseListViewControllerCase List — for viewing a list of a user’s
cases

SCSCaseDetailViewControllerDelegateSCSCaseDetailViewControllerCase Details — for inspecting the details of
one case

118

Send Custom Data Using Hidden FieldsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseDetailViewController.html

Note: If you manually display the Case List view controller (SCSCaseListViewController), you'll also need to manually
display the Case Detail view controller (SCSCaseDetailViewController). When a user selects a case from the case list,
present your Case Detail view controller from the caseList(selectedCaseWithId:) method in your
SCSCaseListViewControllerDelegate implementation. If you don't do this, nothing will happen when a user selects
a specific case in the case list!

Once you've instantiated a view controller, assign your delegate using the delegate property on that controller. Keep in mind that
you'll need to display the Case Detail view controller from the caseList(selectedCaseWithId:) method in your
SCSCaseListViewControllerDelegate implementation.

In Swift:

func caseList(_ caseList: SCSCaseListViewController,
selectedCaseWithId caseId: String) {

let controller = SCSCaseDetailViewController(caseId: caseId)
controller.delegate = self
caseList.navigationController!.pushViewController(controller, animated: true)

}

In Objective-C:

- (void)caseList:(SCSCaseListViewController*)caseList
selectedCaseWithId:(NSString*)caseId {

SCSCaseDetailViewController *controller =
[[SCSCaseDetailViewController alloc] initWithCaseId:caseId];

controller.delegate = self;
[caseList.navigationController pushViewController:controller animated:YES];

}

Configure Case Deflection
When a user enters information about a new case – if you have a knowledge base available to that user – the SDK automatically searches
that knowledge base for relevant articles and offers them to the user. You have the ability to turn this feature on and off, as well as control
which case publisher fields are used to search content.

119

Configure Case DeflectionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html

By default, this feature is enabled and it searches the Subject and Description fields for relevant articles using those search terms. You
can change this behavior using methods in the SCSCasePublisherViewControllerDelegate class. This is the delegate
class for SCSCasePublisherViewController. You can point the SCSCasePublisherViewController instance to
your delegate implementation in one of two ways:

1. If you are displaying the Case Publisher using the default presentation (that is, using the setInterfaceVisible method),
refer to the Activating Interface Using the Default Presentation section of Customize the Presentation and View Controllers for
Case Management.

2. If you are displaying the Case Publisher by manually presenting the view controller, refer to the Showing or Customizing the View
Controllers section of Customize the Presentation and View Controllers for Case Management.

You can turn case deflection on and off with the shouldEnableCaseDeflection(forPublisher:) method. You can
control which fields are used for searching knowledge base articles using the casePublisher(fieldsForCaseDeflection:)
method.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
fieldsForCaseDeflection availableFields: [String])
-> Set<String> {

// Create the complete set of fields we want to use to search knowledge base
let deflectionSearch: Set<String> = ["CustomSubject__c","CustomDescription__c"]

// Now build the list of fields that are confirmed to be within
// the existing case publisher layout
var deflectionSearchFieldsInLayout = [String]()
for field: String in deflectionSearch {
if (availableFields.contains(field)) {
deflectionSearchFieldsInLayout.append(field)

}
}

120

Configure Case DeflectionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)shouldEnableCaseDeflectionForPublisher:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsForCaseDeflection:

// Return the list of fields
return Set(deflectionSearchFieldsInLayout)

}

In Objective-C:

- (NSSet<NSString *> *)casePublisher:(SCSCasePublisherViewController *)publisher
fieldsForCaseDeflection:(NSArray<NSString *> *)availableFields {

// Create the complete set of fields we want to use to search knowledge base
NSSet *deflectionSearch =

[NSSet setWithObjects:@"CustomSubject__c",@"CustomDescription__c", nil];

// Now build the list of fields that are confirmed to be within
// the existing case publisher layout
NSMutableSet *deflectionSearchFieldsInLayout = [NSMutableSet new];
for (NSString *field in deflectionSearch) {

if ([availableFields containsObject:field]) {
[deflectionSearchFieldsInLayout addObject:field];

}
}

// Return the list of fields
return deflectionSearchFieldsInLayout;

}

Note: Before you can use case deflection, be sure to configure your environment with a category group and root data category
(using the SCSServiceConfiguration object). For more information, see Quick Setup: Knowledge in the Snap-Ins SDK.

Customize the Case Publisher Result View
By default, when a user submits a new case from the Case Publisher screen, a standard success view appears. If you want to provide your
users with more specific guidance after a case is created, one solution is to customize the view’s message text and default image. If you'd
like more control over what is displayed, you can present your own view by implementing the viewForResult method in the
SCSCasePublisherViewControllerDelegate class.

The default Case Publisher success view contains this content:

121

Customize the Case Publisher Result ViewSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html

To customize the standard message text (ServiceCloud.CasePublisher.SuccessMessage) and the image
(CaseSubmitSuccess), see Customize and Localize Strings with the Snap-Ins SDK and Customize Images with the Snap-Ins SDK
for instructions.

To create your own view:

1. Implement the SCSCasePublisherViewControllerDelegate class.

Implement the casePublisher(viewFor:withCaseId:error:) method where you create your custom view and
return it to the SDK. If you don’t implement this method (or if you return nil), the SDK presents the default view.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
viewFor result: SCSCasePublisherResult,
withCaseId caseId: String?,
error: Error?)
-> UIView? {

let myResultView = // TO DO: Create my custom view
return myResultView

}

In Objective-C:

- (UIView *)casePublisher:(SCSCasePublisherViewController *)publisher
viewForResult:(SCSCasePublisherResult)result

withCaseId:(nullable NSString *)caseId
error:(nullable NSError *)error {

UIView* myResultView = // TO DO: Create my custom view
return myResultView;

}

Note: The SDK only calls the casePublisher(viewFor:withCaseId:error:) method when a case submission
is successful.

2. Register your delegate class with the SCSCasePublisherViewController.

The process for registering your delegate class is different depending on whether you're manually instantiating a Case Publisher
view controller or whether you're using the default view controller.

a. If you're manually instantiating a Case Publisher view controller, register your delegate with the delegate property of this
class. For more information, see Customize the Presentation and View Controllers for Case Management.

b. If you're not manually instantiating the Case Publisher view controller, you can get the default view controller using the Service
Cloud delegate.

Implement SCServiceCloudDelegate and supply that implementation to ServiceCloud.

In Swift:

ServiceCloud.shared().delegate = self

In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

122

Customize the Case Publisher Result ViewSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html

In your SCServiceCloudDelegate implementation, use the serviceCloud(willDisplay
controller:animated:) method to find the SCSCasePublisherViewController class and register your view
controller delegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
willDisplay controller: UIViewController,
animated: Bool) {

if controller is SCSCasePublisherViewController {

let publisherController = controller as! SCSCasePublisherViewController

publisherController.delegate = // TO DO: Specify your case publisher delegate
}

}

In Objective-C:

- (void)serviceCloud:(SCServiceCloud *)serviceCloud
willDisplayViewController:(UIViewController *)controller

animated:(BOOL)animated {

if ([controller isKindOfClass:[SCSCasePublisherViewController class]]) {

SCSCasePublisherViewController *casePublisherController =
(SCSCasePublisherViewController *)controller;

casePublisherController.delegate = // TO DO: Specify your case publisher delegate

}
}

After you supply your view to the Snap-ins SDK, the SDK presents it when a case is submitted.

Push Notifications for Case Activity
You can send push notifications from your org when activity associated with a user’s case occurs. After you’ve set up notifications in
your org, handle the notification from your app.

Before you begin, set up your app for authenticated Case Management, as described in Case Management as an Authenticated User.

When building your app, you may have remote notifications arrive from your Salesforce org. You can ask the SDK whether it can handle
a notification, and if it can, you can tell the SDK to show the appropriate view.

The following sequence diagram illustrates a scenario where an Apex trigger sends a notification to your app and your app displays the
associated view.

123

Push Notifications for Case ActivitySnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCasePublisherViewController.html

1. Set up the push notification mechanism for your iOS app. To learn more, see Notifications in the Apple documentation. Make sure
that you register for push notifications and that the user is prompted to allow notifications. When iOS calls you back with
UIApplicationDelegate.didRegisterForRemoteNotificationsWithDeviceToken, hold onto the
deviceToken object.

2. After authentication, call the registerForPushNotifications method on your SCSAuthenticationSettings
instance using the deviceToken object from the previous step. To learn more about authentication, see Authentication with
the Snap-Ins SDK for iOS.

3. Create an Apex trigger in your org to detect activity.

For general information about Apex triggers, see Using Apex Triggers to Send Push Notifications in the Salesforce Mobile Push
Notifications Implementation Guide.

You can use the following sample Apex code as a starting point. This Chatter Feed Item trigger sends a notification when an agent
creates a text post on a case.

// THIS APEX TRIGGER IS PROVIDED AS AN EXAMPLE. BE SURE TO REVIEW
// YOUR CODE BEFORE PUTTING ANYTHING INTO PRODUCTION.

trigger newCaseFeedItemNotification on FeedItem (after insert) {

for(FeedItem feedItem : Trigger.new) {

124

Push Notifications for Case ActivitySnap-Ins for iOS Developer Guide

https://developer.apple.com/notifications/
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html
https://developer.salesforce.com/docs/atlas.en-us.214.0.pushImplGuide.meta/pushImplGuide/pns_apex_trigger.htm
https://developer.salesforce.com/docs/atlas.en-us.214.0.pushImplGuide.meta/pushImplGuide/pns_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.214.0.pushImplGuide.meta/pushImplGuide/pns_overview.htm

try {

Schema.SObjectType objectType = feedItem.parentId.getSObjectType();

if(feedItem.body == null) {
// Don't push if we have no body.
break;

}

// Ensure Case type
if (objectType == Case.sObjectType) {

Case cs = [SELECT contactId, ownerId, caseNumber, subject
FROM Case
WHERE id = :feedItem.parentId];

Set<String> users = new Set<String>();

// Determine who created or inserted this feed item
String commentedById = feedItem.CreatedById;
if (commentedById == null) {
commentedById = feedItem.InsertedById;
if (commentedById == null) {
commentedById = feedItem.LastEditById;

}
}

// If the FeedItem was not created by the owner, send to the owner
if (cs.ownerId != null && !cs.ownerId.equals(commentedById)) {

// Ensure the user has access to the feed item before pushing
List<UserRecordAccess> accessList = [SELECT HasReadAccess, RecordId
FROM UserRecordAccess
WHERE UserId = :cs.ownerId
AND RecordId = :feedItem.Id LIMIT 1];

if (accessList != null && !accessList.isEmpty()
&& accessList[0].HasReadAccess) {

users.add(cs.ownerId);
}

}

// If the FeedItem was not created by the contact on the case send to the contact

if (cs.contactId != null && !cs.contactId.equals(commentedById)) {

// Ensure the user has access to the feed item before pushing
List<UserRecordAccess> accessList = [SELECT HasReadAccess, RecordId
FROM UserRecordAccess
WHERE UserId = :cs.contactId
AND RecordId = :feedItem.Id LIMIT 1];

if (accessList != null && !accessList.isEmpty()
&& accessList[0].HasReadAccess) {

users.add(cs.contactId);
}

}

125

Push Notifications for Case ActivitySnap-Ins for iOS Developer Guide

// Assemble the necessary payload parameters for the mobile app.
// Params are:
// (<alert text>,<alert sound>,<badge count>,<free-form data>)
// This example doesn't use badge count but does make use of free-form
// data to pass the caseId in the notification.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.

// If subject is not set, use '(No Subject)'
String subject = cs.subject;
if (subject == null) {
subject = '(No Subject)';

}

String alertText = 'New comment added to case: ' + subject;

// Add the caseId so we can handle the push notification within the app
Map<String, Object> freeFormData = new Map<String, Object>();
freeFormData.put('caseid', cs.id);

// Add any other free form data here...

// Create the payload
Messaging.PushNotification msg = new Messaging.PushNotification();

// Format for apple devices
Map<String, Object> payload =
Messaging.PushNotificationPayload.apple(alertText, '', null, freeFormData);

// Add payload to the notification
msg.setPayload(payload);

// Needs to match your connected app name
msg.send('YourConnectedAppName', users);

}
}
catch (Exception e) {
// Catch everything to ensure push failures do not prevent posts from succeeding.

// TO DO: Add logging here to record errors or display an error message.
}

} // end of for loop
}

When this notification is sent to your app, you can have the SDK handle this notification for you. The SDK can display the Case Details
or Case List screen for an authenticated user with the relevant case information showing.

Note: If you want the SDK to handle the notification for you, your free-form data must contain the case ID, as shown in the
code snippet. Without this information, the SDK cannot interpret the contents of the notification.

126

Push Notifications for Case ActivitySnap-Ins for iOS Developer Guide

4. When you receive a remote notification (from your app delegate's didReceiveRemoteNotification method), pass
notification information to notification(fromRemoteNotificationDictionary:) to determine whether the SDK
can handle the notification.

In Swift:

func application(_ application: UIApplication,
didReceiveRemoteNotification userInfo: [AnyHashable : Any],
fetchCompletionHandler completionHandler: @escaping (UIBackgroundFetchResult)
-> Void) {

let notification =
ServiceCloud.shared().notification(fromRemoteNotificationDictionary: userInfo)

// TO DO: Handle notification here
}

In Objective-C:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo
fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))completionHandler {

SCSNotification *notification =
[[SCServiceCloud sharedInstance]
notificationFromRemoteNotificationDictionary:userInfo];

// TO DO: Handle notification here
}

This method returns nil if the SDK can't handle the notification; it returns an SCSNotification object if it can handle the
notification.

5. (Optional) If you want to handle the notification by yourself (like to display your own view), you can inspect the notification type to
determine what feature area the notification is associated with. This property returns a SCSNotificationType enum.

notification.notificationType

When dealing with case activity notifications, this value is SCSNotificationTypeCase.

6. If you want the SDK to handle the notification for you, call showInterface(for:) and pass in the SCSNotification
object.

In Swift:

ServiceCloud.shared().showInterface(for: notification!)

In Objective-C:

[[SCServiceCloud sharedInstance] showInterfaceForNotification:notification];

Note: If you choose to manually launch the Case Management view controllers, you can't take advantage of the
notification-handling mechanism provided by the SDK (using showInterface(for:)). See Customize the Presentation
and View Controllers for Case Management.

7. The SDK displays or updates the relevant view for the notification.

127

Push Notifications for Case ActivitySnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)notificationFromRemoteNotificationDictionary:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSNotification.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSNotificationType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSNotification.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:

When dealing with case activity notifications, this command displays the Case List or Case Details screen (depending on the
notification), showing the relevant case information. If the appropriate screen is already showing, it refreshes.

Automated Email Responses
Create automated email responses when a case is submitted from your app.

If you'd like to create an automated response when a user of your app submits a case, you can set up a Case Auto-Response Rule. To
learn more, see the documentation on Salesforce Help: Set Up Auto-Response Rules.

Note: When creating an auto-response rule for guest users, be sure to add the Web Email field to the action layout that you've
specified with the caseCreateActionName property. This field is used for the email response.

Once you've created the rule, a user who submits a case from your app receives an automated response.

Using SOS with the Snap-Ins SDK

Adding the SOS experience to your mobile app.

SOS in the Snap-Ins SDK for iOS

Learn about the SOS experience using the SDK.

Quick Setup: SOS in the Snap-Ins SDK

To start an SOS session from your iOS app, use SOSSessionManager.

Configure an SOS Session

Before starting an SOS session, you can optionally configure the session using the SOSOptions object. These configuration
settings allow you to enable or disable cameras, determine what screen a session starts on, specify whether network tests are
performed, and control other features.

Two-Way Video

In addition to screen sharing, the SOS SDK lets your customer share their device's live camera feed with an agent. The customer's
front-facing camera allows for a video conversation with an agent. The back-facing camera provides a great way for a customer to
show something to an agent, rather than have to explain it.

SOS Events and Errors

Implement SOSDelegate to be notified about state changes made before, during, and after an SOS call. This delegate also allows
you to listen for error conditions so you can present alerts to the user when applicable.

Quality-of-Service Events

Check your audio and video quality-of-service (QoS) to detect packet loss and other streaming issues between the OpenTok media
router and your org.

Check SOS Agent Availability

Before starting a session, you can check the availability of your SOS agents and then provide your users with more accurate expectations.

Enable and Disable Screen Sharing

There are some scenarios where you may want to programmatically turn off screen sharing in mid-session. You can enable and
disable screen sharing using the screenSharing property.

Field Masking

If an application contains sensitive information that an agent shouldn't see during an SOS session, you can hide this information
from the agent.

128

Automated Email ResponsesSnap-Ins for iOS Developer Guide

https://help.salesforce.com/htviewhelpdoc?id=creating_auto-response_rules.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName

Custom Data

Use custom data to identify customers, send error messages, issue descriptions, or identify the page the SOS session was initiated
from.

Replace the SOS UI

If you'd like to customize the SOS UI, you can create your own UI by subclassing the UIViewController class associated with
that phase of the SOS session.

SOS in the Snap-Ins SDK for iOS
Learn about the SOS experience using the SDK.

SOS lets you easily add real-time video and screen sharing support to your native iOS app. Once you’ve set up Service Cloud for SOS, it
takes just a few calls to the SDK to have your app ready to handle agent calls and to support screen sharing. With screen sharing, agents
can even make annotations directly on the customer’s screen.

And with just a few more configuration changes, you can provide two-way video support from your app. This functionality can include
front-facing camera support, back-facing camera support, or both.

129

SOS in the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

There are several other ways you can set up your SOS environment, including masking sensitive fields and passing custom data back to
your org.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Check out SOS Events and Errors for information about how to handle event changes. In particular, you'll want to listen for error conditions
and present alerts to the user when applicable.

Let's get started.

Quick Setup: SOS in the Snap-Ins SDK
To start an SOS session from your iOS app, use SOSSessionManager.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with SOS. To learn more, see Console Setup for SOS.

• Installed the SDK. To learn more, see Install the Snap-Ins SDK for iOS.

Once you’ve reviewed these prerequisites, you’re ready to begin.

1. Import the SDK. Wherever you intend to use the SOS SDK, be sure to import the Service Common framework and the SOS framework.

In Swift:

import ServiceCore
import ServiceSOS

130

Quick Setup: SOS in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

In Objective-C:

@import ServiceCore;
@import ServiceSOS;

2. Create an SOSOptions object with information about your LiveAgent pod, your Salesforce org ID, and the deployment ID.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

Note: You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already
set up SOS in Service Cloud or you need more guidance, see Console Setup for SOS.

3. (Optional) Specify additional configuration settings before starting a session.

Before starting an SOS session, you can optionally configure the session using the SOSOptions object. These configuration
settings allow you to enable or disable cameras, determine what screen a session starts on, specify whether network tests are
performed, and control other features. To learn more, see Configure an SOS Session.

4. (Optional) Customize the appearance with the configuration object.

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage. You can also configure the strings used throughout the
interface. See SDK Customizations with the Snap-Ins SDK for iOS.

5. To start an SOS session, call startSession on the SOSSessionManager shared instance.

You can start a session when the view controller loads, or from a UI action.

In Swift:

ServiceCloud.shared().sos.startSession(with: options)

In Objective-C:

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

You can provide an optional completion block to execute code when the session has been fully connected to all services. During a
successful session initialization, the SDK calls the completion block at the point that the session is active and the user is waiting for
an agent to join. If there is a failure, the SDK calls the completion block with the associated error.

Note: If your app crashes when it is in the process of connecting to an SOS session, check that you've enabled the device
privacy permissions for the camera and the microphone. An app will crash if these permissions are not set in Xcode. See Install
the Snap-Ins SDK for iOS.

For instructions on launching the interface from a web view, see Launch the Snap-Ins SDK from a Web View in iOS.

6. Listen for events and handle error conditions.

You can listen for state changes that occur during a session life cycle by implementing SOSDelegate methods. Register this
delegate using the add(delegate: SOSDelegate!) method on your SOS instance (from ServiceCloud). In particular,

131

Quick Setup: SOS in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)startSessionWithOptions:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html

we suggest that you implement the sos(didStopWith:error:) method to handle session termination. See SOS Events
and Errors.

Note: The SDK doesn't show an alert when a session fails to start, or when a session ends. It's your responsibility to listen to
events and display an error when appropriate.

7. (Optional) If you want to programmatically stop a session, call the stopSession method on the SOSSessionManager
shared instance.

In Swift:

ServiceCloud.shared().sos.stopSession()

In Objective-C:

[[SCServiceCloud sharedInstance].sos stopSession];

Alternatively, you can call the stopSession(completion:) method with a completion block.

For additional details on customizing the SOS experience in your app, see the other topics covered in Using SOS with the Snap-Ins SDK.
If you run into network issues while connecting with an agent, see SOS Network Troubleshooting Guide.

Example: To use this example code, create a Single View Application and Install the Snap-Ins SDK for iOS.

Use the storyboard to add a button to the view. Add a Touch Up Inside action in your UIViewController
implementation with the name startSOS. In the view controller code:

• Implement the SOSDelegate protocol so that you can be notified when there are errors or state changes.

• Specify self as an SOS delegate.

• Start an SOS session in the button action.

• Implement the sos(didStopWith:error:) method and show a dialog when appropriate.

In Swift:

import UIKit
import ServiceCore
import ServiceSOS

class ViewController: UIViewController, SOSDelegate {

override func viewDidLoad() {
super.viewDidLoad()

// Add our SOS delegate
ServiceCloud.shared().sos.add(self)

}

@IBAction func startSOS(sender: AnyObject) {

// Create options object
let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",

orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

// Start the session
ServiceCloud.shared().sos.startSession(with: options)

}

132

Quick Setup: SOS in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSession
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSessionWithCompletion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
func sos(_ sos: SOSSessionManager!, didStopWith reason: SOSStopReason,

error: Error!) {

var title = ""
var description = ""

// If there's an error...
if (error != nil) {

switch (error as NSError).code {

// No agents available
case SOSErrorCode.SOSNoAgentsAvailableError.rawValue:
title = "Session Failed"
description = "It looks like there are no agents available. Try again later."

// Insufficient network error
case SOSErrorCode.SOSInsufficientNetworkError.rawValue:
title = "Session Failed"
description = "Insufficient network. Check network quality and try again."

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default:
title = "Session Error"
description = "Unknown session error."

}

// Else if session stopped without an error condition...
} else {

switch reason {

// Handle the agent disconnect scenario
case .agentDisconnected:
title = "Session Ended"
description = "The agent has ended the session."

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default:
break

}
}

// Display dialog if we have something to say...
if (title != "") {

let alert = UIAlertController(title: title,
message: description,

133

Quick Setup: SOS in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

preferredStyle: .alert)
let okAction = UIAlertAction(title: "OK",

style: .default,
handler: nil)

alert.addAction(okAction)
self.present(alert, animated: true, completion: nil)

}
}

}

In Objective-C:

#import <UIKit/UIKit.h>
@import ServiceCore;
@import ServiceSOS;

@interface ViewController : UIViewController <SOSDelegate>

@end

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];

// Add our SOS delegate
[[SCServiceCloud sharedInstance].sos addDelegate:self];

}

- (IBAction)startSOS:(id)sender {

// Create options object
SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"];

// Start the session
[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
- (void)sos:(SOSSessionManager *)sos didStopWithReason:(SOSStopReason)reason

error:(NSError *)error {
NSString *title = nil;
NSString *description = nil;

// If there's an error...
if (error != nil) {

switch (error.code) {

// No agents available
case SOSNoAgentsAvailableError: {
title = @"Session Failed";

134

Quick Setup: SOS in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

description = @"It looks like there are no agents available. Try again later.";

break;
}

// Network test failure
case SOSNetworkTestError: {
title = @"Session Failed";
description = @"Insufficient network. Check network quality and try again.";
break;

}

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default: {
title = @"Session Error";
description = @"Unknown session error.";
break;

}
}

// Else if session stopped without an error condition...
} else {

switch (reason) {

// Handle the agent disconnect scenario
case SOSStopReasonAgentDisconnected: {

title = @"Session Ended";
description = @"The agent has ended the session.";
break;

}

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default: {

break;
}

}
}

// Display dialog if we have something to say...
if (title != nil) {

UIAlertController *alert = [UIAlertController
alertControllerWithTitle:title
message:description
preferredStyle:UIAlertControllerStyleAlert];

UIAlertAction* okAction = [UIAlertAction
actionWithTitle:@"OK"
style:UIAlertActionStyleDefault
handler:^(UIAlertAction * action)
{

NSLog(@"OK action");

135

Quick Setup: SOS in the Snap-Ins SDKSnap-Ins for iOS Developer Guide

}];

[alert addAction:okAction];
[self presentViewController:alert animated:YES completion:nil];

}
}

@end

Configure an SOS Session
Before starting an SOS session, you can optionally configure the session using the SOSOptions object. These configuration settings
allow you to enable or disable cameras, determine what screen a session starts on, specify whether network tests are performed, and
control other features.

When you start an SOS session using SOSSessionManager, you pass an SOSOptions object as one of the arguments. This object
contains all the configuration settings necessary for SOS to start a session. To create an SOSOptions object, you specify information
about your org and deployment (as described in Quick Setup: SOS in the Snap-Ins SDK), and that is all that is required. However, there
are many other options you can set using SOSOptions.

Note: Be sure not to start an SOS session until you’ve fully configured the SOSOptions object.

The following features are available for configuration:

Type & Default ValueDescriptionFeature

NSMutableDictionary — Default:
nil

Dictionary that can be used to send custom
data to your Salesforce org. See Custom
Data.

customFieldData

BOOL — Default: YES/trueWhether the agent video stream is enabled
for the session.

featureAgentVideoStreamEnabled

BOOL — Default: NO/falseWhether the back-facing camera is enabled
for the session. See Two-Way Video.

featureClientBackCameraEnabled

BOOL — Default: NO/falseWhether the front-facing (selfie) camera is
enabled for the session. See Two-Way Video.

featureClientFrontCameraEnabled

BOOL — Default: YES/trueWhether screen sharing is enabled for the
session.

featureClientScreenSharingEnabled

BOOL — Default: YES/trueWhether the network test is enabled before
and during a session.

featureNetworkTestEnabled

CGPointThe initial center position of the UI
containing the agent video and SOS control
buttons.

initialAgentStreamPosition

BOOL — Default: YES/trueWhether the agent video stream is active
when starting a session.

initialAgentVideoStreamActive

136

Configure an SOS SessionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureAgentVideoStreamEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientBackCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientFrontCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientScreenSharingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureNetworkTestEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentStreamPosition
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentVideoStreamActive

Type & Default ValueDescriptionFeature

SOSCameraType enumerated type —
Default: screenSharing

The initial view (screen sharing, front-facing
camera, or back-facing camera) when
starting a session.

initialCameraType

BOOL — Default: YES/trueDetermines whether session logs are sent
for collection. Logs sent remotely do not

remoteLoggingEnabled

collect personal information. Unique IDs are
created for tying logs to sessions and those
IDs cannot be correlated back to specific
users.

NSTimeInterval — Default: 30The length of time (in seconds) before SOS
prompts the user to retry or cancel.

sessionRetryTime

SOSUIPhase enumerated type.Lets you override the SOS UI. See Replace
the SOS UI.

setViewControllerClass

As you can see from the table, by default, an SOS session starts in screen sharing mode, with both cameras disable. If you don’t want
default values, manually change the options before starting a session.

Example: The following example starts a session with the back-facing camera showing, the front-facing camera enabled, and
screen sharing disabled.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

options!.featureClientBackCameraEnabled = true
options!.featureClientFrontCameraEnabled = true
options!.featureClientScreenSharingEnabled = false
options!.initialCameraType = .backFacing

ServiceCloud.shared().sos.startSession(with: options)

In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

[options setFeatureClientBackCameraEnabled: YES];
[options setFeatureClientFrontCameraEnabled: YES];
[options setFeatureClientScreenSharingEnabled: NO];
[options setInitialCameraType: SOSCameraTypeBackFacing];

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

137

Configure an SOS SessionSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSCameraType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialCameraType
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)remoteLoggingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)sessionRetryTime
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSUIPhase.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(im)setViewControllerClass:for:

Two-Way Video
In addition to screen sharing, the SOS SDK lets your customer share their device's live camera feed with an agent. The customer's
front-facing camera allows for a video conversation with an agent. The back-facing camera provides a great way for a customer to show
something to an agent, rather than have to explain it.

By default, after a connection is established, the camera shows the agent in the full-screen view and the customer’s camera in the
picture-in-picture view. If a device has both a front-facing and back-facing camera, the customer can swap cameras by double-tapping
the screen during the two-way video session. The customer can also tap the picture-in-picture view to swap the full-screen view with
the picture-in-picture view.

You can programmatically configure which cameras are available and which camera the session starts with.

Configure Two-Way Video

Two-way video for SOS is disabled by default. You can enable it by accessing one or both cameras in the user's device with the
SOSOptions object used when starting the SOS session. You can also configure the initial camera view when the session starts.

138

Two-Way VideoSnap-Ins for iOS Developer Guide

Configure Two-Way Video
Two-way video for SOS is disabled by default. You can enable it by accessing one or both cameras in the user's device with the
SOSOptions object used when starting the SOS session. You can also configure the initial camera view when the session starts.

Note: Always test two-way video on an actual device, rather than using the simulator. The Xcode simulator doesn't have access
to a camera, so it doesn’t provide you with an accurate experience.

1. Create an SOSOptions object using SOSOptions(liveAgentPod:orgId:deploymentId:), as described in Quick
Setup: SOS in the Snap-Ins SDK.

2. Initialize access to one or both of the cameras on the user's device by setting featureClientFrontCameraEnabled and
featureClientBackCameraEnabled.

In Swift:

options?.featureClientFrontCameraEnabled = true
options?.featureClientBackCameraEnabled = true

In Objective-C:

[options setFeatureClientFrontCameraEnabled: YES];
[options setFeatureClientBackCameraEnabled: YES];

To learn more, see Configure an SOS Session.

3. Determine what is displayed when a session starts.

By default, a session starts in screen sharing mode. Alternatively, you can start a session using one of the cameras. For example, the
following command starts a session using the back-facing camera.

In Swift:

options?.initialCameraType = .backFacing

In Objective-C:

[options setInitialCameraType: SOSCameraTypeBackFacing];

If you’d rather start a session with the front-facing camera, use this command instead.

In Swift:

options?.initialCameraType = .frontFacing

In Objective-C:

[options setInitialCameraType: SOSCameraTypeFrontFacing];

To learn more, see Configure an SOS Session.

4. Determine whether you want to allow the screen sharing feature.

Even if you start a session with the camera, the screen sharing function is still enabled by default. This functionality may be appropriate
for your use case. However, you can disable screen sharing altogether with the following call.

In Swift:

options?.featureClientScreenSharingEnabled = false

139

Two-Way VideoSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(cm)optionsWithLiveAgentPod:orgId:deploymentId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientFrontCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientBackCameraEnabled

In Objective-C:

[options setFeatureClientScreenSharingEnabled: NO];

To learn more, see Configure an SOS Session.

5. Start an SOS session.

In Swift:

ServiceCloud.shared().sos.startSession(with: options)

In Objective-C:

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

To learn more, see Quick Setup: SOS in the Snap-Ins SDK.

SOS Events and Errors
Implement SOSDelegate to be notified about state changes made before, during, and after an SOS call. This delegate also allows
you to listen for error conditions so you can present alerts to the user when applicable.

Note: This topic covers how to handle state changes from your mobile app. For information about how to handle state changes
from the Salesforce console, see Listen for SOS Console Events.

The SOSSessionManager singleton (sos) maintains all information related to SOS sessions. One of its properties (state) is an
SOSSessionState object, which maintains the current state of SOS. This state object can be in one of five different states:

Inactive
No active session; no outgoing/incoming SOS traffic.

Configuring
Performing a pre-initialization configuration step, such as network testing.

Initializing
Preparing to connect.

Connecting
Attempting a connection to a live agent.

Active
Connected with agent; session is fully established.

Throughout a session, your application might want information related to the session state. You can monitor state changes by
implementing SOSDelegate. Use the add(delegate: SOSDelegate!) method on SOSSessionManager to register
your delegate.

140

SOS Events and ErrorsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)sos
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)state
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSSessionState.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html

Listening to State Changes
If you want to know every time an SOS session state changes, the sos(stateDidChange:current:previous:) method is
called for every change.

A more specific set of delegate methods are available to track specific state changes:

1. sosDidStart — invoked when a session is possible and the user has agreed to start a session.

2. sosDidConnect — invoked when the SOS session has connected.

3. sosWillReconnect — invoked if network connectivity issues arise, and the session will attempt to reconnect.

4. sos(didStopWith:error:) — invoked when the session has ended.

These state changes are labeled with an associated number in the diagram below.

Handling Session Termination and Error Conditions
The SDK doesn't present UI alerts for session termination or error conditions so you'll need to listen for these events and decide what to
show your users. There are two SOSDelegate methods for this purpose:

1. To track session termination, use the sos(didStopWith:error:) method . Inspect the reason (SOSStopReason) to
determine why the session stopped. Typically, the session stops due to a normal event (for example,
SOSStopReasonUserDisconnected or SOSStopReasonAgentDisconnected). If the reason is
SOSStopReasonSessionError, check the error parameter for more detail and compare the error code to SOSErrorCode
values. For instance, when there are no agents available to take a call, the error is SOSNoAgentsAvailableError.

2. You can track all SOS errors with the sos(didError:) method. Compare the error code to SOSErrorCode to determine
what kind of error occurred.

See the sample code below for a basic implementation of sos(didStopWith:error:) and sos(didError:).

Example: Basic SOSDelegate Example

This sample code does the following:

• Implements the SOSDelegate protocol.

• Implements the sos(stateDidChange:current:previous:) method.

• Implements the sosDidConnect method.

• Implements the sos(didStopWith:error:) method and includes some error handling logic.

• Implements the sos(didError:) method.

In Swift:

import UIKit
import ServiceCore
import ServiceSOS

class MySOSDelegateImplementation: NSObject, SOSDelegate {

141

SOS Events and ErrorsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidStart:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidConnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosWillReconnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSStopReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidConnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:

// TO DO: Register this delegate using
SCServiceCloud.sharedInstance().sos.addDelegate(self)

// Delegate method for state change.
func sos(_ sos: SOSSessionManager!, stateDidChange current: SOSSessionState,

previous: SOSSessionState) {

NSLog("SOS state changed...")

if (current == .connecting) {
NSLog("SOS now connecting...")

}
}

// Delegate method for connect state.
func sosDidConnect(_ sos: SOSSessionManager!) {
NSLog("SOS session connected...")

}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
func sos(_ sos: SOSSessionManager!, didStopWith reason: SOSStopReason,

error: Error!) {

var title = ""
var description = ""

// If there's an error...
if (error != nil) {

switch (error as NSError).code {

// No agents available
case SOSErrorCode.SOSNoAgentsAvailableError.rawValue:
title = "Session Failed"
description = "It looks like there are no agents available. Try again later."

// Insufficient network error
case SOSErrorCode.SOSInsufficientNetworkError.rawValue:
title = "Session Failed"
description = "Insufficient network. Check network quality and try again."

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default:
title = "Session Error"
description = "Unknown session error."

}

// Else if session stopped without an error condition...
} else {

142

SOS Events and ErrorsSnap-Ins for iOS Developer Guide

switch reason {

// Handle the agent disconnect scenario
case .agentDisconnected:
title = "Session Ended"
description = "The agent has ended the session."

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default:
break

}
}

// Do we have an error to report?
if (title != "") {
// TO DO: Display an alert using title & description
NSLog("\nSOS ALERT Title: %@\nDescription: %@",title, description)

}
}

// Delegate method for error conditions.
func sos(_ sos: SOSSessionManager!, didError error: Error!) {
NSLog("SOS error (%d): '%@'", (error as NSError).code, error.localizedDescription)

}
}

In Objective-C:

#import <UIKit/UIKit.h>
@import ServiceCore;
@import ServiceSOS;

@interface MySOSDelegateImplementation : NSObject <SOSDelegate>

@end

@implementation MyDelegateImplementation

// TO DO: Register this delegate using [[SCServiceCloud sharedInstance].sos
addDelegate:self]

// Delegate method for state change.
- (void)sos:(SOSSessionManager *)sos stateDidChange:(SOSSessionState)current

previous:(SOSSessionState)previous {
NSLog(@"SOS state changed...");
if (current == SOSSessionStateConnecting) {
NSLog(@"SOS now connecting...");

}
}

// Delegate method for connect state.
- (void)sosDidConnect:(SOSSessionManager *)sos {
NSLog(@"SOS session connected...");

}

143

SOS Events and ErrorsSnap-Ins for iOS Developer Guide

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
- (void)sos:(SOSSessionManager *)sos didStopWithReason:(SOSStopReason)reason

error:(NSError *)error {

NSString *title = nil;
NSString *description = nil;

// If there's an error...
if (error != nil) {

switch (error.code) {

// No agents available
case SOSNoAgentsAvailableError: {
title = @"Session Failed";
description = @"It looks like there are no agents available. Try again later.";

break;
}

// Network test failure
case SOSNetworkTestError: {
title = @"Session Failed";
description = @"Insufficient network. Check network quality and try again.";
break;

}

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default: {
title = @"Session Error";
description = @"Unknown session error.";
break;

}
}

// Else if session stopped without an error condition...
} else {

switch (reason) {

// Handle the agent disconnect scenario
case SOSStopReasonAgentDisconnected: {

title = @"Session Ended";
description = @"The agent has ended the session.";
break;

}

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default: {

break;

144

SOS Events and ErrorsSnap-Ins for iOS Developer Guide

}
}

}

// Do we have an error to report?
if (title != nil) {
// TO DO: Display an alert using title & description
NSLog(@"\nSOS ALERT Title: %@\nDescription: %@",title, description);

}
}

- (void)sos:(SOSSessionManager *)sos didError:(NSError *)error {
NSLog(@"SOS error (%d): '%@'", error.code, error.localizedDescription);

}

@end

Quality-of-Service Events
Check your audio and video quality-of-service (QoS) to detect packet loss and other streaming issues between the OpenTok media
router and your org.

Note: This SDK allows you to track streaming issues on the other side of the conversation (from the agent to the media router).
To track QoS issues on this side (from the app to the media router), see SOS Quality-of-Service Console Events.

1. Implement SOSNetworkReporterDelegate.

In Swift:

func audioNetworkStatsDidUpdate(withSessionId sessionId: String,
bytesReceived: NSNumber,
packetsReceived: NSNumber,
packetsLost: NSNumber,
timeStamp: NSNumber) {

// Handle audio network stats updates
}

func videoNetworkStatsDidUpdate(withSessionId sessionId: String,
bytesReceived: NSNumber,
packetsReceived: NSNumber,
packetsLost: NSNumber,
videoDimensions: CGSize,
timeStamp: NSNumber) {

// Handle video network stats updates
}

In Objective-C:

- (void)audioNetworkStatsDidUpdateWithSessionId:(NSString *)sessionId
bytesReceived:(NSNumber *)bytesReceived

packetsReceived:(NSNumber *)packetsReceived
packetsLost:(NSNumber *)packetsLost

145

Quality-of-Service EventsSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSNetworkReporterDelegate.html

timeStamp:(NSNumber *)timeStamp {

// Handle audio network stats updates
}

- (void)videoNetworkStatsDidUpdateWithSessionId:(NSString *)sessionId
bytesReceived:(NSNumber *)bytesReceived

packetsReceived:(NSNumber *)packetsReceived
packetsLost:(NSNumber *)packetsLost

videoDimensions:(CGSize *)videoDimensions
timeStamp:(NSNumber *)timeStamp {

// Handle video network stats updates
}

The audioNetworkStatsDidUpdate method specifies how many bytes were received, how many packets were received,
and the number of packets lost for a 30-second span of audio.

The videoNetworkStatsDidUpdate method specifies how many bytes were received, how many packets were received,
the number of packets lost, and the video dimensions for a 30-second span of video.

2. Subscribe to network events from your SOS instance.

In Swift:

ServiceCloud.shared().sos.networkReporter.add(myNetworkDelegate)

In Objective-C:

[SCServiceCloud.sharedInstance.sos.networkReporter addDelegate:myNetworkDelegate];

3. When done, unsubscribe to network events from your SOS instance.

In Swift:

ServiceCloud.shared().sos.networkReporter.remove(myNetworkDelegate)

In Objective-C:

[SCServiceCloud.sharedInstance.sos.networkReporter removeDelegate:myNetworkDelegate];

Check SOS Agent Availability
Before starting a session, you can check the availability of your SOS agents and then provide your users with more accurate expectations.

To use agent availability, implement the SOSAgentAvailabilityDelegate methods and start polling your org.

Note: When subscribing to the agent availability delegate, it can take several seconds before any of your delegate methods are
called. We don’t suggest that you block a user’s ability to start a session during this period.

1. Implement the SOSAgentAvailabilityDelegate methods in your UIViewController.

In Swift:

func agentAvailability(_ agentAvailability: Any!,
didChange availabilityStatus: SOSAgentAvailabilityStatusType) {

// TO DO: Handle event...
}

146

Check SOS Agent AvailabilitySnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSAgentAvailabilityDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSAgentAvailabilityDelegate.html

func agentAvailability(_ agentAvailability: Any!,
didError error: Error!) {

// TO DO: Handle error...
}

In Objective-C:

- (void)agentAvailability:(__weak id)agentAvailability
didChange:(SOSAgentAvailabilityStatusType)availabilityStatus {

// TO DO: Handle event...
}

- (void)agentAvailability:(__weak id)agentAvailability
didError:(NSError *)error {

// TO DO: Handle error...
}

Refer to the SOSAgentAvailabilityStatusType enumerated type for list of potential status messages.

2. Add your UIViewController as a delegate to theSOSAgentAvailability object and call
startPolling(withOrganizationId:deploymentId:liveAgentPod:).

In Swift:

let agentAvailability = ServiceCloud.shared().sos.agentAvailability!
agentAvailability.add(self)
agentAvailability.startPolling(withOrganizationId: "YOUR-ORG-ID",

deploymentId: "YOUR-DEPLOY-ID",
liveAgentPod: "YOUR-LA-POD")

In Objective-C:

SOSAgentAvailability *agentAvailability =
[SCServiceCloud sharedInstance].sos.agentAvailability;

[agentAvailability addDelegate:self];
[agentAvailability startPollingWithOrganizationId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOY-ID"
liveAgentPod:@"YOUR-LA-POD"];

This method takes the same values you specified when starting an SOS session. For more info, see Quick Setup: SOS in the Snap-Ins
SDK.

Example: This example accesses the Agent Availability feature and handles the appropriate events. In the code, _sosBtn is
a UIButton with text that turns green when an agent is available, red when no agents are available, and gray when the status
is unknown.

In Swift:

override func viewDidLoad() {
super.viewDidLoad()

let agentAvailability = ServiceCloud.shared().sos.agentAvailability
agentAvailability?.add(self)
agentAvailability?.startPolling(withOrganizationId: "YOUR-ORG-ID",

147

Check SOS Agent AvailabilitySnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSAgentAvailabilityStatusType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSAgentAvailability.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSAgentAvailability.html#/c:objc(cs)SOSAgentAvailability(im)startPollingWithOrganizationId:deploymentId:liveAgentPod:

deploymentId: "YOUR-DEPLOY-ID",
liveAgentPod: "YOUR-LA-POD")

}

// Delegate methods
func agentAvailability(_ agentAvailability: Any!,
didChange availabilityStatus: SOSAgentAvailabilityStatusType) {

var color: UIColor?

switch availabilityStatus {
case .available:
color = UIColor.green
sosBtn.isEnabled = true

case .unavailable:
color = UIColor.red
sosBtn.isEnabled = false

case .unknown:
color = UIColor.gray
sosBtn.isEnabled = false

}

sosBtn.setTitleColor(color!, for: .normal)
}

func agentAvailability(_ agentAvailability: Any!, didError error: Error!) {

// TO DO: Handle error
}

In Objective-C:

- (void)viewDidLoad {
[super viewDidLoad];
SOSAgentAvailability *agentAvailability =

[SCServiceCloud sharedInstance].sos.agentAvailability;
[agentAvailability addDelegate:self];
[agentAvailability startPollingWithOrganizationId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOY-ID"
liveAgentPod:@"YOUR-LA-POD"];

}

// Delegate methods

- (void)agentAvailability:(__weak id)agentAvailability
didChange:(SOSAgentAvailabilityStatusType)availabilityStatus {

UIColor *color;

switch (availabilityStatus) {
case SOSAgentAvailabilityStatusAvailable: {

color = [UIColor greenColor];
[_sosBtn setEnabled:YES];
break;

}

148

Check SOS Agent AvailabilitySnap-Ins for iOS Developer Guide

case SOSAgentAvailabilityStatusUnavailable: {
color = [UIColor redColor];
[_sosBtn setEnabled:NO];
break;

}
case SOSAgentAvailabilityStatusUnknown:
default: {

color = [UIColor grayColor];
[_sosBtn setEnabled:NO];
break;

}
}
[_sosBtn setTitleColor:color forState:UIControlStateNormal];

}

- (void)agentAvailability:(__weak id)agentAvailability
didError:(NSError *)error {

// TO DO: Handle error
}

Enable and Disable Screen Sharing
There are some scenarios where you may want to programmatically turn off screen sharing in mid-session. You can enable and disable
screen sharing using the screenSharing property.

You can control screen sharing using the screenSharing object on the SOSSessionManager shared instance. The
screenSharing.enabled property enables or disables the screen sharing functionality.

The following code disables screen sharing.

In Swift:

ServiceCloud.shared().sos.screenSharing.enabled = false

In Objective-C:

[SCServiceCloud sharedInstance].sos.screenSharing.enabled = NO;

Field Masking
If an application contains sensitive information that an agent shouldn't see during an SOS session, you can hide this information from
the agent.

When a customer enters information into a masked field, screen sharing is disabled and the agent is notified that sharing is unavailable
until the user has finished. Field masking is an integral feature to help bring your application to PII, PCI, and HIPAA compliance.

Agent's view when a field is masked:

149

Enable and Disable Screen SharingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)screenSharing
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html

To use field masking, replace the UITextField containing sensitive information with a SOSMaskedTextField.

When there isn’t an SOS session running, a masked text field appears the same as a standard UITextField. However, when an SOS
session is running, an SOSMaskedTextField appears different from a standard UITextField field. When the user interacts
with the SOSMaskedTextField, screen sharing stops while the contents of that field is visible to the user. When the user finishes
editing the masked field, screen-sharing resumes.

Create Masked Field Using Storyboard

To create a masked field using the storyboard, specify the SOSMaskedTextField custom class and set the user-defined runtime
attributes.

Create Masked Field Programmatically

To create a masked field manually, instantiate and style a SOSMaskedTextField instance.

Create Masked Field Using Storyboard
To create a masked field using the storyboard, specify the SOSMaskedTextField custom class and set the user-defined runtime
attributes.

1. Create a standard UITextField with the storyboard.

2. From the Identity Inspector, specify SOSMaskedTextField for the Custom Class.

150

Field MaskingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSMaskedTextField.html

3. From the Identity Inspector, specify the text field style settings in the User Defined Runtime Attributes section.

The follow key path attributes are available:

maskPattern (String)
Name of the image file used to fill the background of the masked field when an SOS session is active

borderColor (Color)
UIColor of the border around the masked field

maskText (String)
Text to appear in the masked field

maskPattern (Color)
UIColor of the text in the masked field

Create Masked Field Programmatically
To create a masked field manually, instantiate and style a SOSMaskedTextField instance.

1. Define an SOSMaskedTextField instead of a UITextField.

In Swift:

var maskCodeExample: SOSMaskedTextField!

In Objective-C:

@property (strong, nonatomic) IBOutlet SOSMaskedTextField *maskCodeExample;

2. Instantiate and style the SOSMaskedTextField.

In Swift:

// Set the size of the masked field and the look when masking is active
maskCodeExample = SOSMaskedTextField(
frame: CGRect.init(x: 20, y: 300, width: 200, height: 300),

151

Field MaskingSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSMaskedTextField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSMaskedTextField.html

maskPattern: "mask-stripBY.png",
borderColor: UIColor.yellow,
text: "Password",
textColor: UIColor.blue)

// Make the field look like a UITextField created by the interface builder
maskCodeExample.borderStyle = .roundedRect
maskCodeExample.autocorrectionType = .no
maskCodeExample.keyboardType = .default
maskCodeExample.returnKeyType = .done
maskCodeExample.clearButtonMode = .whileEditing
maskCodeExample.contentVerticalAlignment = .center

maskCodeExample.delegate = self

self.view.addSubview(maskCodeExample)

In Objective-C:

// Set the size of the masked field and the look when masking is active
maskCodeExample = [[SOSMaskedTextField alloc]

initWithFrame:CGRectMake(20, 300, 200, 30)
maskPattern:@"mask-stripeBY.png"
borderColor:[UIColor yellowColor]

text:@"Password"
textColor:[UIColor blueColor]];

// Make the field look like a UITextField created by the interface builder
maskCodeExample.borderStyle = UITextBorderStyleRoundedRect;
maskCodeExample.font = [UIFont systemFontOfSize:15];
maskCodeExample.autocorrectionType = UITextAutocorrectionTypeNo;
maskCodeExample.keyboardType = UIKeyboardTypeDefault;
maskCodeExample.returnKeyType = UIReturnKeyDone;
maskCodeExample.clearButtonMode = UITextFieldViewModeWhileEditing;
maskCodeExample.contentVerticalAlignment =

UIControlContentVerticalAlignmentCenter;

[maskCodeExample setDelegate:self];

[self.view addSubview:maskCodeExample];

Custom Data
Use custom data to identify customers, send error messages, issue descriptions, or identify the page the SOS session was initiated from.

When an agent receives an SOS call, it can be helpful to have information about the caller before starting the session. Use the custom
data feature to identify customers, send error messages, identify the currently viewed page, or send other information. Custom data
populates custom fields on the SOS Session object that is created within your Salesforce org for each SOS session initiated by a user.

Before using custom data, create the corresponding fields within the SOS Session object of your Salesforce org. To learn more, see Create
Custom Fields.

To use this feature, set the customFieldData property on the SOSOptions object that you use to start an SOS session. The keys
in this NSMutableDictionary should reference the API Name for fields defined in your SOS Session object and the values should
reflect the desired values for those fields.

152

Custom DataSnap-Ins for iOS Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html

Note: If the field associated with the custom data that you specify in customFieldData is not set up correctly in your
Salesforce org, the SOS session will fail with an error.

Example: This example shows how to pass email information from your app to Service Cloud.

Before trying this example, be sure to define an "Email" custom field on the SOS Session object in your Salesforce org:

Note: By default, your org contains no custom field data. To learn about custom fields, see Create Custom Fields.

Once you have created a custom field, you can build a dictionary object and add it to the SOSOptions object that you create
when starting a session.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

// Here we are passing the customer's email address as a String. Note the use
// of the field's API Name as the key in the map. We are only populating a single
// field here, but we may put an arbitrary number of entries into the map to
// populate multiple different fields.
options!.customFieldData = ["Email__c": "laurenboyle@example.com"]

In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

// Here we are passing the customer's email address as a String. Note the use
// of the field's API Name as the key in the map. We are only populating a single
// field here, but we may put an arbitrary number of entries into the map to
// populate multiple different fields.
NSMutableDictionary *myCustomData =

[NSMutableDictionary dictionaryWithObjectsAndKeys:
@"laurenboyle@example.com", @"Email__c", nil];

[options setCustomFieldData:myCustomData];

When the user creates an SOS session, the Email field is prepopulated with the value specified in your custom data field.

Replace the SOS UI
If you'd like to customize the SOS UI, you can create your own UI by subclassing the UIViewController class associated with that
phase of the SOS session.

153

Replace the SOS UISnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html

To replace the SOS UI, you'll need to register your view controllers for whichever phases you want to replace. The following phases are
supported:

Onboarding (SOSUIPhaseOnboarding)
The onboarding process before a session starts.

Connecting (SOSUIPhaseConnecting)
The connecting process before a session starts.

Screen Sharing (SOSUIPhaseScreenSharing)
An active screen sharing session.

To register a view controller, use the SOSOptions object and call the setViewControllerClass method before attempting
to start a session. This method takes the class type for your view controller, and an SOSUIPhase enumerated type. When creating
your view controller, make sure it subclasses the view controller for that phase of the session. Each view controller must also implement
a protocol associated with that session phase.

Table 7: SOS Phases

Protocol to ImplementView Controller to SubclassPhase Name

SOSOnboardingViewControllerSOSOnboardingBaseViewControlleronboarding

SOSConnectingViewControllerSOSConnectingBaseViewControllerconnecting

SOSSessionViewController,
SOSUIAgentStreamReceivable,
SOSUILineDrawingReceivable

SOSScreenSharingBaseViewController
(which subclasses
SOSSessionBaseViewController)

screenSharing

For example, the following code overrides the onboarding UI.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")!

// Register a custom onboarding view controller
options.setViewControllerClass(SOSOnboardingViewController.self, for: .onboarding)

// Perform other SOS configuration here
// ...

ServiceCloud.shared().sos.startSession(with: options)

In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

// Register a custom onboarding view controller
[options setViewControllerClass:[SOSMyOnboardingViewController class]
for:SOSUIPhaseOnboarding];

// Perform other SOS configuration here
// ...

154

Replace the SOS UISnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(im)setViewControllerClass:for:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSUIPhase.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSOnboardingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOnboardingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSConnectingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSConnectingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSSessionViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSUIAgentStreamReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSUILineDrawingReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSScreenSharingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionBaseViewController.html

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

To learn more about configuring an SOS session, see Configure an SOS Session.

You can use the following code samples to get started.

SOS Onboarding Sample Code
Below you'll find some boilerplate sample code for the onboarding experience. This class must subclass
SOSOnboardingBaseViewController.

In Swift:

override func willHandleConnectionPrompt() -> Bool {
return true

}

override func connectionPromptRequested() {
// TO DO: Show the onboarding view

}

// Call `handleStartSession` to start a session
// Call `handleCancel` to cancel a session

// See `SOSOnboardingBaseViewController`, `SOSOnboardingViewController`
// for additional functionality

In Objective-C:

- (BOOL)willHandleConnectionPrompt {
return YES;

}

- (void)connectionPromptRequested {
// TO DO: Show the onboarding view

}

SOS Connecting Sample Code
Below you'll find some boilerplate sample code for the connecting experience. This class must subclass
SOSConnectingBaseViewController.

In Swift:

override func initializingNotification() {
// TO DO: Show initializing view

}

override func waitingForAgentNotification() {
// TO DO: Show waiting for agent view

}

override func agentJoinedNotification() {
// TO DO: Show agent joined notification

155

Replace the SOS UISnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOnboardingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSConnectingBaseViewController.html

}

// Call `handleEndSession` to cancel a session

// See `SOSConnectingBaseViewController`, `SOSConnectingViewController`
// for additional functionality

In Objective-C:

- (void)initializingNotification {
// TO DO: Show initializing view

}

- (void)waitingForAgentNotification {
// TO DO: Show waiting for agent view

}

- (void)agentJoinedNotification:(NSString *)name {
// TO DO: Show agent joined notification

}

Screen Sharing Sample Code
Below you'll find some boilerplate sample code for the screen sharing experience. This class must subclass
SOSScreenSharingBaseViewController.

In Swift:

override func willHandleAgentStream() -> Bool {
// This determines whether you wish to display an agent stream in your view.
// If you return NO you will not receive a view containing the agent video feed.
return true

}

override func willHandleAudioLevel() -> Bool {
// When this returns YES, you will receive updates about the audio level you can use
// to implement an audio meter.
return false

}

override func willHandleLineDrawing() -> Bool {
// This determines whether you want to handle line drawing during the session.
return true

}

override func willHandleRemoteMovement() -> Bool {
// When this returns YES, you will receive screen space coordinates which represent
// the center of where the agent has moved the view. You can use this to update
// the position of your containing view.
return false

}

override func didReceiveLineDraw(_ drawView: UIView) {
// TO DO: Handle line draw

}

156

Replace the SOS UISnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSScreenSharingBaseViewController.html

override func didReceiveAgentStreamView(_ agentStreamView: UIView) {
// TO DO: Handle stream view

}

// See `SOSSessionBaseViewController` for how to handle pause, mute, end session events

// See `SOSScreenSharingBaseViewController`, `SOSUIAgentStreamReceivable`,
// `SOSUILineDrawingReceivable` for additional functionality

In Objective-C:

- (BOOL)willHandleAgentStream {
// This determines whether you wish to display an agent stream in your view.
// If you return NO you will not receive a view containing the agent video feed.
return YES;

}

- (BOOL)willHandleAudioLevel {
// When this returns YES, you will receive updates about the audio level you can use
// to implement an audio meter.
return NO;

}

- (BOOL)willHandleLineDrawing {
// This determines whether you want to handle line drawing during the session.
return YES;

}

- (BOOL)willHandleRemoteMovement {
// When this returns YES, you will receive screen space coordinates which represent
// the center of where the agent has moved the view. You can use this to update
// the position of your containing view.
return NO;

}

- (void)didReceiveLineDrawView:(UIView * _Nonnull __weak)drawView {
// TO DO: Handle line draw

}

- (void)didReceiveAgentStreamView:(UIView * _Nonnull __weak)agentStreamView {
// TO DO: Handle stream view

}

SDK Customizations with the Snap-Ins SDK for iOS

Once you’ve played around with some of the SDK features, use this section to learn how to customize the Snap-ins SDK user interface
so that it fits the look and feel of your app. This section also contains instructions for localizing strings in all supported languages.

Many UI customizations are handled with the SCAppearanceConfiguration object. You can configure the colors, fonts, and
images to your interface with an SCAppearanceConfiguration instance. It contains the methods setColor,
setFontDescriptor, and setImage. To use this object, create an SCAppearanceConfiguration instance, specify

157

SDK Customizations with the Snap-Ins SDK for iOSSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:

values for each token you want to change, and store the instance in the appearanceConfiguration property of the
ServiceCloud sharedInstance.

There are other ways to customize the interface. When using Service Cloud features, various action buttons are available to the user. You
can control the visibility of these buttons and even create new action buttons. You can also customize the strings used in the UI for any
of the supported languages. String customization is performed using a standard localization mechanism provided to Apple developers.

Customize Colors with the Snap-Ins SDK

Customize the colors by defining the branding token colors used throughout the interface.

Customize Fonts with the Snap-Ins SDK

There are three customizable font settings used throughout the UI: SCFontWeightLight, SCFontWeightRegular,
SCFontWeightBold.

Customize Images with the Snap-Ins SDK

You can specify custom images used throughout the UI, along with the images used by Knowledge categories and within Knowledge
articles.

Customize Action Buttons with the Snap-Ins SDK

You can customize the action buttons used throughout the UI. You can override the look and the behavior of existing buttons, and
you can create buttons associated with new actions. Use the actions property on ServiceCloud to get access to the action
button API.

Customize and Localize Strings with the Snap-Ins SDK

You can change the text used throughout the user interface. To customize text, create string resource values in a
Localizable.strings file in the Localization bundle for the languages you want to update. Create string tokens that match
the tokens you intend to override.

Launch the Snap-Ins SDK from a Web View in iOS

Although this documentation mostly focuses on launching the UI from within your view controller code, you can just as easily launch
the UI from a web view.

Customize Colors with the Snap-Ins SDK
Customize the colors by defining the branding token colors used throughout the interface.

To customize colors, create an SCAppearanceConfiguration instance, specify values for each token you want to change, and
store the instance in the appearanceConfiguration property of the ServiceCloud sharedInstance.

In Swift:

// Create appearance configuration instance
let appearance = SCAppearanceConfiguration()

// Customize color tokens
appearance.setColor(COLOR_VALUE, forName: TOKEN_NAME)

// Add other customizations here...

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = appearance

158

Customize Colors with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(cm)sharedInstance
https://developer.apple.com/internationalization/
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(cm)sharedInstance

In Objective-C:

// Create appearance configuration instance
SCAppearanceConfiguration *appearance = [SCAppearanceConfiguration new];

// Customize color tokens
[appearance setColor:COLOR_VALUE forName:TOKEN_NAME];

// Add other customizations here...

// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = appearance;

The following branding tokens are available for customization:

Description / Sample UsesDefault ValueToken Name / Swift Value /
Objective-C Value

Background color for the navigation bar.#FAFAFANavigation Bar Background

navbarBackground

SCSAppearanceColorTokenNavbarBackground

Navigation bar text and icon color.#010101Navigation Bar Inverted

navbarInverted

SCSAppearanceColorTokenNavbarInverted

Knowledge: First data category, the Show
More button, the footer stripe, the selected
article.

#007F7FBrand Primary

brandPrimary

SCSAppearanceColorTokenBrandPrimary
SOS: Used for various icons.

Used throughout the UI for button colors.#2872CCBrand Secondary

brandSecondary

SCSAppearanceColorTokenBrandSecondary
Live Agent Chat: Agent text bubbles.

SOS: Background color for action items.

Knowledge: Text on data category headers
and the chevron on the Knowledge home
page.

#FBFBFBPrimary Brand Inverted

brandPrimaryInverted

SCSAppearanceColorTokenBrandPrimaryInverted

Text on areas where a brand color is used
for the background.

#FCFCFCSecondary Brand Inverted

brandSecondaryInverted

SCSAppearanceColorTokenBrandSecondaryInverted

159

Customize Colors with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

Description / Sample UsesDefault ValueToken Name / Swift Value /
Objective-C Value

Primary body text color.#000000Contrast Primary

contrastPrimary

SCSAppearanceColorTokenContrastPrimary
SOS: Background color for buttons on the
UI.

Knowledge: Subcategory headers.#767676Contrast Secondary

contrastSecondary

SCSAppearanceColorTokenContrastSecondary

Knowledge: Search background color.#BABABAContrast Tertiary

contrastTertiary

SCSAppearanceColorTokenContrastTertiary
SOS: Dots in UI.

Knowledge: Icon image background color.#F1F1F1Contrast Quaternary

contrastQuaternary

SCSAppearanceColorTokenContrastQuaternary
Case Management: Link color.

Live Agent Chat: Background color.

Page background, navigation bar, table cell
background.

#FFFFFFContrast Inverted

contrastInverted

SCSAppearanceColorTokenContrastInverted SOS: Color of the icons.

Text color for error messages.#E74C3CFeedback Primary

feedbackPrimary

SCSAppearanceColorTokenFeedbackPrimary
SOS: Mute indicator. Disconnect icon.

SOS: Connection quality indicators.
Background color for the Resume button
when the two-way camera is active.

#2ECC71Feedback Secondary

feedbackSecondary

SCSAppearanceColorTokenFeedbackSecondary

SOS: Connection quality indicators.#F5A623Feedback Tertiary

feedbackTertiary

SCSAppearanceColorTokenFeedbackTertiary

Knowledge: Background for the Knowledge
home screen.

Contrast Primary

(at 40% alpha)

Overlay

overlay

SCSAppearanceColorTokenOverlay

The screenshots below illustrate how the branding tokens affect the UI.

160

Customize Colors with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

Knowledge UI Branding:

Live Agent Chat UI Branding:

Case Management UI Branding:

161

Customize Colors with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

SOS UI Branding:

Example: The following code sample changes three of the branding tokens.

In Swift:

// Create appearance configuration instance
let appearance = SCAppearanceConfiguration()

162

Customize Colors with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

// Customize color tokens
appearance.setColor(

UIColor(red: 80/255, green: 227/255, blue: 194/255, alpha: 1.0),
forName: .brandPrimary)

appearance.setColor(
UIColor(red: 74/255, green: 144/255, blue: 226/255, alpha: 1.0),
forName: .brandSecondary)

appearance.setColor(
UIColor(red: 252/255, green: 252/255, blue: 252/255, alpha: 1.0),
forName: .brandSecondaryInverted)

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = appearance

In Objective-C:

// Create appearance configuration instance
SCAppearanceConfiguration *appearance = [SCAppearanceConfiguration new];

// Customize color tokens
[appearance setColor:[UIColor colorWithRed: 80/255

green: 227/255
blue: 194/255
alpha: 1.0]

forName:SCSAppearanceColorTokenBrandPrimary];
[appearance setColor:[UIColor colorWithRed: 74/255

green: 144/255
blue: 226/255
alpha: 1.0]

forName:SCSAppearanceColorTokenBrandSecondary];
[appearance setColor:[UIColor colorWithRed: 252/255

green: 252/255
blue: 252/255
alpha: 1.0]

forName:SCSAppearanceColorTokenBrandSecondaryInverted];

// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = appearance;

Customize Fonts with the Snap-Ins SDK
There are three customizable font settings used throughout the UI: SCFontWeightLight, SCFontWeightRegular,
SCFontWeightBold.

You can customize three font settings used throughout the Snap-ins SDK interface:

Samples Uses in the SDKDefault ValueFont Setting

Knowledge article cell summary, Case
Management field text, Case Management

Helvetica Neue - LightSCFontWeightLight

submit success view, content of error
messages

163

Customize Fonts with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

Samples Uses in the SDKDefault ValueFont Setting

Navigation bar, Live Agent Chat text,
Knowledge data category cell in detail view,

Helvetica NeueSCFontWeightRegular

Knowledge "show more" article footer,
Knowledge "show more" button cell

Knowledge category headers, Knowledge
article cell title, Case Management field

Helvetica Neue - SemiboldSCFontWeightBold

labels, Case Management submit button,
title of error messages

To configure your app to use different fonts:

1. Add new fonts to your Xcode project.

Any new fonts must be added as a resource to your Xcode project. When adding, be sure to select Copy items if needed.

2. Add new fonts to your project target.

For each new font, add it to your project target under Target Membership.

3. Add the font to your app's Info.plist.

You'll need to add all new fonts into a string array. Each string element of the array must be the name of each font resource file.

If you're viewing your Info.plist as a Property List, add an Array named Fonts provided by application.

164

Customize Fonts with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

If you're viewing your Info.plist as Source Code, add an array named UIAppFonts. For example:

<key>UIAppFonts</key>
<array>
<string>MyCustomFont1.ttf</string>
<string>MyCustomFont2.ttf</string>
<string>MyCustomFont3.ttf</string>

</array>

4. Customize any of the Snap-ins SDK font values using SCAppearanceConfiguration.

To customize the fonts, create an SCAppearanceConfiguration instance, set the font descriptor for each font setting you
want to change, and store the SCAppearanceConfiguration instance in the appearanceConfiguration property
of the ServiceCloud shared instance.

Swift Example:

// Create appearance configuration instance
let config = SCAppearanceConfiguration()

// Customize font
let descriptor = UIFontDescriptor(fontAttributes:

[UIFontDescriptor.AttributeName.family : "Proxima Nova"])
config.setFontDescriptor(descriptor,

fontFileName: "ProximaNova-Light.otf",
forWeight: SCFontWeightLight)

// Add other customizations here...

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = config

Objective-C Example:

// Create appearance configuration instance
SCAppearanceConfiguration *config =

[SCAppearanceConfiguration new];

// Customize font
UIFontDescriptor *descriptor =

[UIFontDescriptor fontDescriptorWithFontAttributes:@{
UIFontDescriptorFamilyAttribute: @"Proxima Nova",
UIFontDescriptorFaceAttribute: @"Light" }];

[config setFontDescriptor:descriptor
fontFileName:@"ProximaNova-Light.otf"

forWeight:SCFontWeightLight];

// Add other customizations here...

// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = config;

Be sure to use the exact font descriptor attribute name and font file name for your custom font.

165

Customize Fonts with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html

Customize Images with the Snap-Ins SDK
You can specify custom images used throughout the UI, along with the images used by Knowledge categories and within Knowledge
articles.

The method to customize an image is different depending on the type of image you want to customize. This table describes what
customization techniques are supported for each image type.

Table 8: Custom Image Types

How to CustomizeImage Type

Use the setImage method on the
SCAppearanceConfiguration object to replace a stock

Stock images

image with your image. Use the enumeration value for the image
you intend to replace.

See Replacing Stock Images for more guidance.

Data category images and article images can be customized in
either one of two different ways:

Data category image (Knowledge)

Article image (Knowledge)
1. Put the images in a specific image folder. This technique uses

the imageFolderPath property on
theSCSServiceConfiguration. For data category
images, the image name must match the unique name for
that category. For article images, the image name must match
the article number. See Supplying Knowledge Images using
an Image Folder for more guidance.

2. Supply images by implementing a delegate method. This
technique uses the SCKnowledgeInterfaceDelegate
protocol. See Supplying Knowledge Images with a Delegate
for more guidance.

Supported image file formats include: tiff, tif, jpg, jpeg, gif, png, bmp, BMPF, ico, cur.

Replacing Stock Images
For specific images, use the SCSAppearanceImageToken enumeration specified by the SDK and add it to the
SCAppearanceConfiguration object with the setImage method.

Table 9: Stock Image Enum Values

Enum ValueImage Description

Images used throughout the SDKCommon Images

closeClose button

doneDone button

errorSmall warning icon used when an error occurs

166

Customize Images with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(py)imageFolderPath
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCKnowledgeInterfaceDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:

Enum ValueImage Description

genericErrorError image used in a view for timeouts, when no agents are
available, or for an unknown error

minimizeButtonMinimize button (Knowledge and Live Agent Chat)

noConnectionNo connection

sendSend button (Case Publisher and Live Agent Chat)

submitButtonNextArrowNext field button (Case Publisher and Live Agent Chat)

submitButtonPreviousArrowPrevious field button (Case Publisher and Live Agent Chat)

Images used by KnowledgeKnowledge Images

actionSearchSearch action button

categoryHeaderArrowCategory header arrow

emptyArticleArticle is empty

emptySectionCategory section has no articles

noSearchResultNo search results

searchPlaceholderPlaceholder image before search completes

subCategoryIconIcon used when showing the list of subcategories

Images used by Case ManagementCase Management Images

actionCasePublisherCase publisher action button

caseSubmitSuccessCase publisher success message

composeCompose icon on Case List screen for creating a case

emptyIconEmpty icon for the Case List screen if no cases are present

picklistDropdownPick case list button

Images used by Live Agent ChatLive Agent Chat Images

attachmentClipIconAttachment button when the user can attach a file

chatAgentAvatarAvatar used for the agent

chatBotAvatarAvatar used for Einstein bot

chatBotFooterMenuIcon used for Einstein bot persistent footer menu

preChatIconIcon used in the pre-chat screen

Images used by SOSSOS Images

sosAgentMutedIconAgent muted icon

sosAgentPlaceHolderIconAgent placeholder icon (must be 61x55 pixels @1x, 122x110 @2x,
183x165 @3x)

167

Customize Images with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

Enum ValueImage Description

sosCameraIconCamera icon

sosCancelCancel icon

sosConfirmIconConfirm icon

sosEndIconEnd icon

sosExpandIconExpand icon

sosFlashlightIconFlashlight icon

sosInfoIconInfo icon

sosMaskingMask stripe

sosMicrophoneIconMicrophone icon

sosMicrophoneMutedIconUser muted icon

sosPauseIconPause icon

sosResumeIconResume icon

In Swift:

// Create appearance configuration instance
let config = SCAppearanceConfiguration()

// Specify images
config.setImage(MY_CUSTOM_IMAGE,

compatibleWithTraitCollection: MY_TRAITS,
forName: ENUM_VALUE)

// Add other customizations here...

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = config

In Objective-C:

// Create appearance configuration instance
SCAppearanceConfiguration *config = [SCAppearanceConfiguration new];

// Specify images
[config setImage:MY_CUSTOM_IMAGE compatibleWithTraitCollection: MY_TRAITS

forName: ENUM_VALUE];

// Add other customizations here...

// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = config;

168

Customize Images with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

Supplying Knowledge Images using an Image Folder
For knowledge articles images and data category images, specify the location of the image using the imageFolderPath property
on theSCSServiceConfiguration object. We suggest you do this at the time that you configure the object to connect to your
org. To learn more about connecting to your org, see Quick Setup: Knowledge in the Snap-Ins SDK.

For data category images, the image name must match the unique name for that category. For article images, the image name must
match the article number.

Here is some sample code to get you started.

In Swift:

// Create configuration object with init params
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Specify image folder
config.imageFolderPath = "my/path/"

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with init params
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]
initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]
dataCategoryGroup:@"Regions"
rootDataCategory:@"All"];

// Specify image folder
config.imageFolderPath = @"my/path/";

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

Supplying Knowledge Images with a Delegate
For knowledge articles images and data category images, you can instead supply images using a delegate.

1. Provide the ServiceCloud instance with an implementation of SCKnowledgeInterfaceDelegate.

In Swift:

ServiceCloud.shared().knowledge.delegate =
mySCKnowledgeInterfaceDelegateImplementation

In Objective-C:

[SCServiceCloud sharedInstance].knowledge.delegate =
mySCKnowledgeInterfaceDelegateImplementation;

2. Implement the two delegate methods.

169

Customize Images with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(py)imageFolderPath
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCKnowledgeInterfaceDelegate.html

In Swift:

func knowledgeInterface(_ interface: SCKnowledgeInterface,
imageForArticle articleId: String,
compatibleWith traitCollection: UITraitCollection?)
-> UIImage? {

// Your code that returns an image given an article id

return myImage
}

func knowledgeInterface(_ interface: SCKnowledgeInterface,
imageForDataCategory categoryName: String,
compatibleWith traitCollection: UITraitCollection?)
-> UIImage? {

// Your code that returns an image given a data category

return myImage
}

In Objective-C:

- (UIImage*)knowledgeInterface:(SCKnowledgeInterface *)interface
imageForArticle:(NSString *)articleId

compatibleWithTraitCollection:(UITraitCollection *)traitCollection {

// Your code that returns an image given an article id

return myImage;
}

- (UIImage*)knowledgeInterface:(SCKnowledgeInterface *)interface
imageForDataCategory:(NSString *)categoryName

compatibleWithTraitCollection:(UITraitCollection *)traitCollection {

// Your code that returns an image given a data category

return myImage;
}

Customize Action Buttons with the Snap-Ins SDK
You can customize the action buttons used throughout the UI. You can override the look and the behavior of existing buttons, and you
can create buttons associated with new actions. Use the actions property on ServiceCloud to get access to the action button
API.

The SDK provides action buttons that automatically appear when they apply to the context of what you’re viewing. For instance, a Search
button and a Case Publisher button appear when browsing Knowledge articles. You can further customize the behavior of these built-in
action buttons, and you can create your own action buttons.

Several classes are associated with the action button API.

170

Customize Action Buttons with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html

SCSActionManager
This class is your entry point into the action button API. Access this object using the actions property on the ServiceCloud
singleton.

SCSActionManagerDelegate
This delegate contains optional methods that you can implement to customize the behavior of action buttons.

SCSActionItem
If you want to create your own button, create a View-derived class that implements SCSActionItem.

SCSActionItemContainer
This class represents the container that holds all the SCSActionItem buttons. To access this container object, use the
actionItemContainer property from SCSActionManager.

The Action Manager (SCSActionManager)
This class is your entry point into the action button API. Access this object using the actions property on the ServiceCloud
singleton.

In Swift:

ServiceCloud.shared().actions

In Objective-C:

[SCServiceCloud sharedInstance].actions

Some methods of this class give you access to the container (SCSActionItemContainer) that holds all the action buttons.

Table 10: Action Manager: Container Methods and Properties

DescriptionMethod

Makes the action button container appear or disappear.setContainerVisible

Tells you whether the action button container is visible.isContainerVisible

Gives you access to the action button container object. See The
Action Container section.

actionItemContainer

Other methods give you access to the buttons (SCSActionItem) and their actions.

Table 11: Action Manager: Item Methods and Properties

DescriptionMethod

Makes a particular action item appear or disappear. See the list of
actions after this table.

setActionItemVisible

Tells you whether a particular action item is visible. See the list of
actions after this table.

isActionItemWithNameVisible

Performs the specified action. See the list of actions after this table.performAction

Tells the SDK that the action items should update.setNeedsUpdateActionItems

171

Customize Action Buttons with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItemContainer.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItemContainer.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html

When working with built-in actions, use the following values to represent these actions.

casePublisher
Launches the Case Publisher interface from where a user can create a case.

caseList
Launches the Case List interface from where a user can see a list of their cases.

caseInterface
Performs the default Case Management action. If the user is authenticated, this action performs the SCSActionCaseList
action. If the user is a guest user, this action performs SCSActionCasePublisher.

articleSearch
Launches the Knowledge article search interface.

chatInterface
Launches the Live Agent Chat interface.

sosInterface
Launches the SOS interface.

In addition to these functions, the SCSActionManager gives you access to the action delegate, which allows you to create new
actions and customize the behavior of existing actions.

The Action Delegate (SCSActionManagerDelegate)
This delegate contains optional methods that you can implement to customize the behavior of action buttons. To override the behavior
of the action button mechanism, implement SCSActionManagerDelegate and pass this delegate to SCSActionManager.

Table 12: Delegate Methods That Affect the Buttons

DescriptionMethod

Asks the delegate for the named actions to show when the
specified controller is presented. The default actions are passed to

actionManager(SCSActionManager,
actionsToShowFor controller:

this method. You can add your custom actions to this default SetUIViewController?, withDefaultActions
or return the default Set as is. If this method is not implemented,
the default actions are shown.

defaultActions: Set<SCSAction>) ->
Set<SCSAction>?

Asks the delegate to supply a custom view (that is, a button) for
the action of the specified name. If the return value is nil, the

actionManager(SCSActionManager,
viewForActionItemWithName name: SCSAction)
-> UIView? system-provided view is used, if any. The view is expected to trigger

the action using the
performActionWithName:actionItem: method.

Asks the delegate to indicate the relative sort positioning of the
specified action item. By default, the sort order for built-in actions

actionManager(SCSActionManager,
sortIndexForActionItemWithName name:
SCSAction) -> Int is: SCSActionItemDefaultSortArticleSearch = 10,

SCSActionItemDefaultSortCaseInterface = 20,
SCSActionItemDefaultSortChatInterface = 30,
SCSActionItemDefaultSortSOSInterface = 40.

Asks the delegate whether to show the action container when the
specified controller becomes visible. This method provides the

actionManager(SCSActionManager,
shouldShowContainerFor controller:
UIViewController?) -> Bool delegate with the opportunity to conditionally show or hide action

items when the state changes.

172

Customize Action Buttons with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionManager.html

DescriptionMethod

Asks the delegate whether the specified action button should be
present.

actionManager(SCSActionManager,
shouldShowActionWithName name: SCSAction)
-> Bool

Table 13: Delegate Methods That Affect the Actions

DescriptionMethod

Asks the delegate to perform a specified action. This method is
called either in response to a button tap or from a call to
SCSActionManager.performAction.

actionManager(SCSActionManager,
performActionWithName actionName:
SCSAction, actionItem: UIView?) -> Bool

Table 14: Delegate Methods for Notification

DescriptionMethod

Tells the delegate when the action container will change its
visibility.

actionManager(SCSActionManager,
containerWillChangeVisibility visible:
Bool, animated: Bool)

Tells the delegate after the action container has changed its
visibility.

actionManager(SCSActionManager,
containerDidChangeVisibility visible: Bool,
animated: Bool)

Action Items (SCSActionItem)
If you want to create your own button, create a View-derived class that implements SCSActionItem. To create a button that looks
and feels like the default buttons, instantiate an SCSActionButton object, which is a UIButton that also implements
SCSActionItem. Use the standard button methods, like setTitle and setImage, to control what is on the button.

If you are creating buttons for new actions, ensure that these actions are visible with the actionsToShowFor controller:
UIViewController?, withDefaultActions defaultActions: Set<SCSAction>) delegate handler.

To show your button, pass the button to the SDK from the viewForActionItemWithName name: SCSAction) delegate
handler.

When your custom button is tapped, perform the appropriate action.

The Action Container (SCSActionItemContainer)
This class represents the container that holds all the SCSActionItem buttons. To access this container object, use the
actionItemContainer property from SCSActionManager. Do not instantiate your own container. This class gives you a
few advanced controls related to how the action buttons are displayed.

Table 15: Action Container Methods

DescriptionMethod

Adds an action view for the specified action name. This method
inserts the view into the view hierarchy.

addActionView

173

Customize Action Buttons with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionButton.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItemContainer.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionManager.html

DescriptionMethod

Removes the action view with the specified action name.removeActionView

Returns the action view with the specified action name.actionView(forName: SCSAction)

Returns the names for the visible action views.visibleActionNames

Indicates whether the item container should hide when the content
on the screen scrolls. If not implemented, the default is false.

shouldAdjustVisibilityWhenContentScrolls

Example: Swift Example

This simple example adds a custom button whenever the action button container is visible.

/**
Enum extension to include our new action button.
*/
extension SCSAction {
// TO DO: Update this custom action name as desired...
static var myCustomAction: SCSAction {
return SCSAction(rawValue: "MyCustomActionName")

}
}

/**
TO DO: Add this code to a class that implements SCSActionManagerDelegate
*/
extension MyClassThatImplementsActionManagerDelegate : SCSActionManagerDelegate {

/**
Determines which actions to show for a given controller.
*/
func actionManager(_ actionManager: SCSActionManager,

actionsToShowFor controller: UIViewController?,
withDefaultActions defaultActions: Set<SCSAction>) ->

Set<SCSAction>?
{

var mySet = defaultActions

// Add our custom action button.
// (In this case, we're always adding the action button, but
// you can inspect `controller` to determine whether you want
// to add a custom button for a given view controller...)
mySet.insert(.myCustomAction)

return mySet
}

/**
Shows the button for a given action.
*/
func actionManager(_ actionManager: SCSActionManager,

viewForActionItemWithName name: SCSAction) -> UIView?

174

Customize Action Buttons with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

{
if name == .myCustomAction {

// Create our custom action button
let customActionButton = SCSActionButton()
customActionButton.setTitle("TO DO", for: .normal)
customActionButton.addTarget(self,
action: #selector(myCustomButtonHandler),
for: .touchUpInside)

return customActionButton
}

return nil
}

/**
Handler for the custom action.
*/
func myCustomButtonHandler(sender: UIButton!) {

ServiceCloud.shared().knowledge.setInterfaceVisible(false,
animated: true,
completion: nil)

// TO DO: Perform custom action here!
}

}

Customize and Localize Strings with the Snap-Ins SDK
You can change the text used throughout the user interface. To customize text, create string resource values in a
Localizable.strings file in the Localization bundle for the languages you want to update. Create string tokens that match the
tokens you intend to override.

Snap-ins SDK text is translated into more than 25 different languages. In order for your string customizations to take effect in a given
language, provide a translation for that language. For any language you do not override manually in your app, the SDK uses its default
values for that language.

Refer to Internationalization at developer.apple.com for more info about localization.

The following list of string tokens are available for customization:

• ServiceKnowledge (Knowledge) String Resources

• ServiceCases (Case Management) String Resources

• ServiceChat (Live Agent Chat) String Resources

• ServiceSOS (SOS) String Resources

• ServiceCore (Common) String Resources

The following languages are currently supported:

175

Customize and Localize Strings with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

https://developer.apple.com/internationalization/
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/serviceknowledgestringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicecasesstringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicechatstringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicesosstringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicecorestringconstants.html

Table 16: Supported Languages

LanguageLanguage Code

Czechcs

Danishda

Germande

Greekel

Englishen

Spanishes

Finnishfi

Frenchfr

Hungarianhu

Indonesianid

Italianit

Japaneseja

Koreanko

Norwegian Bokmålnb

Dutchnl

Polishpl

Portuguesept

Romanianro

Russianru

Swedishsv

Thaith

Turkishtr

Ukranianuk

Vietnamesevi

Chinese (Taiwan)zh_TW

Chinese (Simplified)zh-Hans

Chinese (Traditional)zh-Hant

Chinesezh

176

Customize and Localize Strings with the Snap-Ins SDKSnap-Ins for iOS Developer Guide

Launch the Snap-Ins SDK from a Web View in iOS
Although this documentation mostly focuses on launching the UI from within your view controller code, you can just as easily launch
the UI from a web view.

These instructions assume that you are already familiar with how to launch the UI for the feature you are using:

• Quick Setup: Knowledge in the Snap-Ins SDK

• Quick Setup: Case Publisher as a Guest User

• Quick Setup: Live Agent Chat in the Snap-Ins SDK

• Quick Setup: SOS in the Snap-Ins SDK

Once you're familiar with the feature, use these instructions to launch the Snap-ins SDK UI from a web view.

1. Create a view controller with a single UIWebView.

2. Have your view controller implement the UIWebViewDelegate protocol.

In Swift:

class ViewController: UIViewController, UIWebViewDelegate {

In Objective-C:

@interface ViewController : UIViewController <UIWebViewDelegate>

3. Set your view controller as the web view delegate and configure your Snap-ins SDK feature.

In Swift:

override func viewDidLoad() {
super.viewDidLoad()

// Point the web view to your web application.
let url = URL(string: "https://my.web.app")
let request = URLRequest(url: url!)
webView.loadRequest(request)

// Make sure you set your view controller as a delegate to
// your webview so you can trap requests.
webView.delegate = self

// TO DO: Set up and configure your Snap-ins SDK feature...
// Use SCSServiceConfiguration or SCSChatConfiguration or SOSOptions
// to configure your feature and point it to your org.
// See the "Quick Setup" instructions for the appropriate feature.

}

In Objective-C:

- (void)viewDidLoad {
[super viewDidLoad];

// Point the web view to your web application.
NSURL *url = [NSURL URLWithString:@"https://my.web.app"];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
[webView loadRequest:request];

177

Launch the Snap-Ins SDK from a Web View in iOSSnap-Ins for iOS Developer Guide

// Make sure you set your view controller as a delegate to
// your webview so you can trap requests.
[webView setDelegate:self];

// TO DO: Set up and configure your Snap-ins SDK feature...
// Use SCSServiceConfiguration or SCSChatConfiguration or SOSOptions
// to configure your feature and point it to your org.
// See the "Quick Setup" instructions for the appropriate feature.

}

4. Add a delegate handler for parsing requests.

Implement the webView(UIWebView, shouldStartLoadWith: ULRRequest) method to trap requests.

In Swift:

func webView(_ webView: UIWebView,
shouldStartLoadWith request: URLRequest,
navigationType: UIWebViewNavigationType) -> Bool {

let url = request.url

// For this example, we use "servicesdk" as the URL scheme...
if (url?.scheme == "servicesdk") {

// "servicesdk://start", corresponds to the host...
if (url?.host == "start") {

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning false here ensures that the browser doesn't
// try to do anything with this request.
return false

}

return true
}

In Objective-C:

- (BOOL)webView:(UIWebView *)webView
shouldStartLoadWithRequest:(NSURLRequest *)request

navigationType:(UIWebViewNavigationType)navigationType {

NSURL *url = [request URL];

// For this example, we use "servicesdk" as the URL scheme...
if ([[url scheme] isEqualToString:@"servicesdk"]) {

// "servicesdk://start", corresponds to the host...
if ([[url host] isEqualToString:@"start"]) {

178

Launch the Snap-Ins SDK from a Web View in iOSSnap-Ins for iOS Developer Guide

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning NO here ensures that the browser doesn't
// try to do anything with this request.
return NO;

}

return YES;
}

5. (Optional) If you want to send additional context to your session (such as an email address), you can add a query parameter to the
URL (for example, snapins://start?email=new@example.com), and then parse the parameter before launching the
SDK.

In Swift:

func webView(_ webView: UIWebView,
shouldStartLoadWith request: URLRequest,
navigationType: UIWebViewNavigationType) -> Bool {

let url = request.url

if (url?.scheme == "snapins") {

// Here's the new code to parse a basic query containing an email.
if (url?.query != nil) {

// Very simple example that only handles one parameter.
// In this example query would look like 'email=new@example.com'.
let query = url?.query!

// Split on = and get the second component.
var email = query?.components(separatedBy: "=")[1]

// In general, you'll want to make sure that this is decoded properly.
email = email?.removingPercentEncoding

// TO DO: Do something with this information.
}

if (url?.host == "start") {

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning false here ensures that the browser doesn't
// try to do anything with this request.
return false

179

Launch the Snap-Ins SDK from a Web View in iOSSnap-Ins for iOS Developer Guide

}

return true

}

In Objective-C:

- (BOOL)webView:(UIWebView *)webView
shouldStartLoadWithRequest:(NSURLRequest *)request

navigationType:(UIWebViewNavigationType)navigationType {

NSURL *url = [request URL];
if ([[url scheme] isEqualToString:@"snapins"]) {

// Here's the new code to parse a basic query containing an email.
if ([url query]) {

// Very simple example that only handles one parameter.
// In this example query would look like 'email=new@example.com'.
NSString *query = [url query];

// Split on = and get the second component.
NSString *email = [query componentsSeparatedByString:@"="][1];

// In general, you'll want to make sure that this is decoded properly.
email = [email
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

// TO DO: Do something with this information.
}

if ([[url host] isEqualToString:@"start"]) {

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning NO here ensures that the browser doesn't
// try to do anything with this request.
return NO;

}

return YES;
}

6. Add the code to your web page that calls the URL. You can do this using HTML or JavaScript.

a. Call the URL using an HTML anchor tag.

Get help!

180

Launch the Snap-Ins SDK from a Web View in iOSSnap-Ins for iOS Developer Guide

If you want to include additional information, add it to the href.

Get help!

b. Call the URL using a JavaScript function.

function myFunc() {
window.location = "snapins://start"

}

Troubleshooting the Snap-Ins SDK

Get some guidance when you run into issues.

Enable Debug Logging for the iOS SDK

To configure the Snap-ins SDK logs, set the level property on the SCSLoggerLevel shared instance.

Can’t Access My Knowledge Base

What to do when you can't get to your knowledge base from within your app.

Can't Connect to Live Agent

If you can't make a successful connection from your app, even when an agent is standing by, then review how you've set up your
Live Agent implementation.

SOS Network Troubleshooting Guide

If you can't connect with an SOS agent from your app, you have network connectivity issues, possibly related to your firewall or
proxy.

My App Crashes

Some tips if your app crashes.

My App Was Rejected

What to do when your app is rejected from the App Store.

Enable Debug Logging for the iOS SDK
To configure the Snap-ins SDK logs, set the level property on the SCSLoggerLevel shared instance.

In Swift:

ServiceLogger.shared.level = .debug

In Objective-C:

[SCServiceLogger sharedLogger].level = SCSLoggerLevelDebug;

The log level is specified using the SCSLoggerLevel enumerated type. It can be one of these values:

• SCSLoggerLevelDebug

• SCSLoggerLevelInfo

• SCSLoggerLevelError (Default)

• SCSLoggerLevelFault

181

Troubleshooting the Snap-Ins SDKSnap-Ins for iOS Developer Guide

• SCSLoggerLevelOff

By default, logs only go to the Xcode output. You can have logs go to a file using the fileHandle property.

Can’t Access My Knowledge Base
What to do when you can't get to your knowledge base from within your app.

Run through this checklist to help diagnose the root cause.

1. Does your SCSServiceConfiguration object point to a valid, accessible community URL?

2. Have you set up App Transport Security (ATS) exceptions for your community's domain and for localhost? See Install the
Snap-Ins SDK for iOS for more info.

3. Have you set up a Community or Salesforce site? See Cloud Setup for Knowledge for more info.

4. Do you have Guest Access to the Support API enabled for your site? See Cloud Setup for Knowledge for more info.

5. (For Knowledge only) Do you have Knowledge enabled in your org? Do you have Knowledge licenses? See Cloud Setup for
Knowledge for more info.

6. (For Knowledge only) Is the user setting up the knowledge base enabled as a Knowledge User? See Cloud Setup for Knowledge
for more info.

182

Can’t Access My Knowledge BaseSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html

7. (For Knowledge only) Have you made the article types, the data categories, and the article layout fields visible to guest users? See
Guest User Access for Your Community for more info.

8. (For Knowledge only) Have you made your articles accessible to the Public Knowledge Base channel? See Cloud Setup for Knowledge
for more info.

Can't Connect to Live Agent
If you can't make a successful connection from your app, even when an agent is standing by, then review how you've set up your Live
Agent implementation.

Run through this checklist to help diagnose the root cause.

1. Verify that the Live Agent endpoint in your code only specifies the hostname. For instance, if your endpoint is
https://d.la12345.salesforceliveagent.com/chat/rest/, then use the following value in your code:
d.la12345.salesforceliveagent.com.

2. Verify that you're using the correct Live Agent endpoint. See Get Live Agent Chat Settings from Your Org for more info.

183

Can't Connect to Live AgentSnap-Ins for iOS Developer Guide

3. Verify that you're using the correct deployment ID and button ID. See Get Live Agent Chat Settings from Your Org for more info.

4. Verify that you've correctly set up your Live Agent implementation. See Console Setup for Live Agent Chat for more info.

SOS Network Troubleshooting Guide
If you can't connect with an SOS agent from your app, you have network connectivity issues, possibly related to your firewall or proxy.

SOS uses the Tokbox OpenTok platform to provide screen sharing and video communication during an SOS session. These guidelines
can help you diagnose whether the problem is linked to a networking issue and how to send us diagnostic information if necessary.

Step 1: Run Connectivity Doctor
The Tokbox Connectivity Doctor tests for connectivity issues. You can access this tool via the web, an iOS app, or an Android app. This
tool tests network issues in these areas.

1. API server – Session initialization and signaling tests

2. Media router – Whether you can access Tokbox media servers

3. MESH turn server – Relay server fallback mechanism

4. Logging server – Communication of stats and errors to the Tokbox logging server

If all tests pass, go to step 2. If any test fails, you probably need to configure your ports.

184

SOS Network Troubleshooting GuideSnap-Ins for iOS Developer Guide

https://tokbox.com
https://www.tokbox.com/tools/connectivity/
https://www.tokbox.com/tools/connectivity/
https://itunes.apple.com/us/app/opentok%C2%ADconnectivity%C2%ADdoctor/id902048239?mt=8
https://play.google.com/store/apps/details?id=com.tokbox.connectivitydoctor&hl=en

API Server or Logging Server Issues
OpenTok clients use HTTP and WSS connections from the client browser to the OpenTok servers on port TCP/443. If the only way
to access the internet from your network is through a proxy, it must be a transparent proxy. Make sure that TCP/443 is open.

Media Router or Mesh Turn Issues
OpenTok clients can use UDP or TCP connections for media. Salesforce recommends that UDP is enabled to improve the quality of
real-time audio and video communications. This connection is bidirectional but always initiated from the client so an external entity
can't send malicious traffic in the opposite direction.

• Best experience: We recommend that you open UDP ports 1025 - 65535.

• Good experience: Open UDP port 3478.

• Minimum experience: Open TCP port 443. Some firewall or proxy rules only allow for SSL traffic over port 443. Make sure that
non-web traffic can also pass over this port.

Step 2: Test the Tokbox Chat Room
Tokbox has a public-facing chat room site (https://opentokrtc.com/) that you can use for normal chatting. You can also use this site as
a test tool.

1. From the chat room site, create a room called “example”. Join that room or click here. You should then see yourself on video. If the
video isn't present, make sure that you've given access to the camera and microphone. If nothing happens, go to step 3.

2. Open another browser tab and enter the same URL link as in the previous browser tab (for example,
https://opentokrtc.com/room/example). You should see a two-way audio and video-enabled chat. If this process doesn't work, go
to step 3.

If you can have a two-way chat, your ports are configured properly and you're done.

Step 3: Gather JSON Metadata
In this step, we'll gather metadata about the failed chat room session. To get this information, open a browser tab and enter
https://opentokrtc.com/example.json. If you created a room with a different name, replace the word "example" in the URL accordingly.
You'll see JSON content similar to this example.

{"apiKey":"45599822","token":"T1==cGyydG5lcl9pZD00NTU5OTgyMiZzaWc9NTcyOWI4NjJhOT
diN2EwYWRmMjZkZjI5MzkxZjkwMjdlNmM0ODNiMTpzZXNzaW9uX2lkPTFfTVg0ME5UVTVPVGd5TW41LU
1UUTNPVEUyTWpVek1USTVObjQ0WkcxSFp6VnNVMnBMZFRKVFp6SmhaRlZ6WVhvM1dVTi1mZyZjcmVhdG
VfdGltZT0xNDc5MTY0MzA4Jm5vbmNlPTAuMzgzODc1MjEwMzAzODEzMiZyb2xlPXB1Ymxpc2hlciZleH
BpcmVfdGltZT0xNDc5MjUwNzA4JmNvbm5lY3Rpb25fZGF0YT0lN0IlMjJ1c2VyTmFtZSUyMiUzQSUyMk
Fub255bW91cyUyMFVzZXI3MiUyMiU3RA==","username":"Anonymous User72","firebaseURL":
"https://ot-archiving.firebaseio.com/sessions//1_MX40NTU5OTgyMn5-MTQ3OTE2MjUzMTI
5Nn43ZG1HZzVsU2pLdTJTZzJhZFVzYXo3WUN-fg","firebaseToken":"eyJ0eXAiOiJKV1QiLCJhbG
ciOiJIUzI1NiJ9.eyJ2IjowLCJkIjp7InVpZCI6IkFub255bW91cyBVc2VyNzIwLjc3NDEwOTM5OTg3N
zQ4ODYiLCJzZXNzaW9uSWQiOiIxX01YNDBOVFU1T1RneU1uNS1NVFEzT1RFMk1qVXpNVEk1Tm40NFpHM
UhaelZzVTJwTGRUSlRaekpoWkZWellYbzNXVU4tZmciLCJyb2xlIjoidXNlciIsIm5hbWUiOiJBbm9ue
W1vdXMgVXNlcjcyIn0sImlhdCI6MTQ3OTE2NDMwN30.ep6l4x_3VGegXVTfwpaOYMGRGOYI944w5Og1h
TyDPfQ","chromeExtId":"undefined","sid":"1_M440NTU5OTgyMn5-MTQ3OTE2MjUzMTI5Nn44Z
G1HZzVsU2pLdTJTZzJhZFVzYXo3WUN-fg"}

The output has key/value pairs for the API key ("apiKey"), token ("token"), and session ID ("sid"). Save this information. Tokbox monitors
the entire flow for failed and successful sessions (only if you were able to successfully verify the Connectivity Doctor ports requirements
first). We'll use this metadata to debug your issue. Go to step 4.

185

SOS Network Troubleshooting GuideSnap-Ins for iOS Developer Guide

https://opentokrtc.com/
https://opentokrtc.com/room/example
https://opentokrtc.com/room/example
https://opentokrtc.com/example.json

Step 4: Open Support Ticket
Please create a Salesforce support ticket or contact your account team for more help.

Answer the following questions in your support request.

1. TOPOLOGY: What is your network topology? How does data flow through the topology to reach our cloud?

2. ENVIRONMENT: Are you using a virtual environment?

3. PROXY & FIREWALL: What is the type and name of your proxy? What are your firewall restrictions? If you are using a proxy can you
execute step 1 and step 2 just through a firewall?

4. PLATFORM & VERSION: What platform are you using? What is the OS version? Which SDK are you using? Which SDK version?

5. DESCRIPTION: Describe the problem you encountered, and the steps you took to try to resolve the problem.

6. LOGS: Can you provide us with any error logs from your side or any other information you deem fit for the problem? Include any
relevant network traces or screenshots.

7. CONNECTIVITY DOCTOR: What Connectivity Doctor tests failed? Did you open the required ports and still have issues?

8. JSON METADATA: If applicable, send us the Key/Token/Session information captured in step 3.

My App Crashes
Some tips if your app crashes.

• Live Agent Chat: If your app crashes when a user attempts to perform a file transfer, check that you've enabled the device privacy
permissions for the camera and the photo library. An app will crash if these permissions are not set in Xcode. See Install the Snap-Ins
SDK for iOS.

• SOS: If your app crashes when it is in the process of connecting to an SOS session, check that you've enabled the device privacy
permissions for the camera and the microphone. An app will crash if these permissions are not set in Xcode. See Install the Snap-Ins
SDK for iOS.

• For a list of known issues, see the latest Release Notes.

My App Was Rejected
What to do when your app is rejected from the App Store.

• If you receive errors related to unsupported architectures when you upload your app to the App Store, it may be because you didn't
strip unneeded architectures from the dynamic libraries used by the Snap-ins SDK. See Prepare Your App for Submission for more
information.

• If you archive a framework and then export the archive using the Xcode command line tool (xcodebuild), you’ll get “Invalid
Code Signing Entitlements” errors when you try to upload your app to the app store. This is a known issue with Apple’s tools. The
workaround is to archive and export using Xcode’s user interface.

Data Protection in the Snap-Ins SDK for iOS

The Snap-ins SDK does not collect or store personal data from its users.

When users log in with the SDK, we don't store personal data about the user; we only store the tokens necessary for the OAuth 2
authentication process. We manage keys using iOS Keychain Services. Also, user-specific data associated with cases or authenticated

186

My App CrashesSnap-Ins for iOS Developer Guide

https://support.salesforce.com/support
https://github.com/forcedotcom/ServiceSDK-iOS/releases

knowledge articles is encrypted using AES-128 encryption when it is cached locally. When the user logs out, we remove all user-specific
data from the device.

Reference Documentation

Reference documentation for Service Cloud Snap-ins for iOS.

To access the reference documentation for Service Cloud Snap-ins for iOS, visit:

• forcedotcom.github.io/ServiceSDK-iOS

This site contains API documentation for the latest version of the SDK.

Reference Index

A list of all classes, protocols, methods, constants, and enums referenced from this developer's guide.

Reference Index
A list of all classes, protocols, methods, constants, and enums referenced from this developer's guide.

Knowledge Index
• SCArticleSortByField

• SCArticleSortOrder

• SCKnowledgeInterface

– setInterfaceVisible

– showArticle

• SCKnowledgeInterfaceDelegate

• SCQueryMethod

• Article

– downloadContent(withOptions:)

– isArticleContentDownloaded

– isAssociatedContentDownloaded

• SCSArticleQuery

– valid

• SCSArticleQueryListViewController

• SCSArticleQueryListViewControllerDelegate

• SCSArticleViewController

– article

• SCSArticleViewControllerDelegate

– additionalCSSForArticle

– additionalJavascriptForArticle

187

Reference DocumentationSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCArticleSortByField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCArticleSortOrder.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)showArticle:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCKnowledgeInterfaceDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCQueryMethod.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)downloadContentWithOptions:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isArticleContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isAssociatedContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleQuery.html#/c:objc(cs)SCSArticleQuery(py)valid
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleQueryListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleQueryListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSArticleViewController.html#/c:objc(cs)SCSArticleViewController(py)article
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalCSSForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalJavascriptForArticle:

• Category

• CategoryGroup

• SCSCategoryViewController

• SCSCategoryViewControllerDelegate

• SCSKnowledgeHomeViewController

• SCSKnowledgeHomeViewControllerDelegate

• KnowledgeManager

– articles(matching:)

– default

– fetchAllCategories

– fetchArticles(with:)

– hasFetchedCategories

• MutableArticleQuery

Case Management Index
• SCCaseInterface

– caseCreateActionName

– setInterfaceVisible

• SCSCaseDetailViewController

• SCSCaseDetailViewControllerDelegate

– caseDetail(fieldsToHideFromCaseFields:)

• SCSCaseListViewController

• SCSCaseListViewControllerDelegate

– caseList(selectedCaseWithId:)

• SCSCasePublisherViewController

• SCSCasePublisherViewControllerDelegate

– casePublisher(fieldsForCaseDeflection:)

– casePublisher(fieldsToHideFromCaseFields:)

– casePublisher(valuesForHiddenFields:)

– casePublisher(viewFor:withCaseId:error:)

– shouldEnableCaseDeflection(forPublisher:)

Live Agent Chat Index
• SCSChat

– add(delegate:)

– determineAvailabilityWithConfiguration

– startSession(with:)

188

Reference IndexSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCategory.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCategoryGroup.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCategoryViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCategoryViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeHomeViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSKnowledgeHomeViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)articlesMatchingQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(cm)defaultManager
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchAllCategoriesWithCompletionHandler:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchArticlesWithQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)hasFetchedCategories
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSMutableArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseDetailViewControllerDelegate.html#/c:objc(pl)SCSCaseDetailViewControllerDelegate(im)caseDetail:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsForCaseDeflection:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:valuesForHiddenFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)shouldEnableCaseDeflectionForPublisher:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)determineAvailabilityWithConfiguration:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:

– startSession(with:completion:)

• SCSChatInterface

– handle(notification:)

– shouldDisplayNotificationInForeground

• SCSChatConfiguration

– prechatEntities

– prechatFields

– queueUpdatesEnabled

• SCSChatDelegate

– chat(didEndWith:error:)

– chat(didError:)

– chat(didUpdateQueuePosition:)

– chat(stateDidChange:current:previous:)

• SCSChatEndReason

• SCSChatErrorCode

• SCSChatSessionState

• SCSPrechatEntity

• SCSPrechatEntityField

• SCSPrechatObject

• SCSPrechatPickerObject

• SCSPrechatPickerOption

• SCSPrechatTextInputObject

SOS Index
• SOSAgentAvailability

– startPolling(withOrganizationId:deploymentId:liveAgentPod:)

• SOSAgentAvailabilityDelegate

• SOSAgentAvailabilityStatusType

• SOSCameraType

• SOSConnectingBaseViewController

• SOSConnectingViewController

• SOSDelegate

– sosDidStart

– sosDidConnect

– sosWillReconnect

– sos(didCreateSession:)

– sos(didError:)

189

Reference IndexSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatInterface.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatInterface.html#/c:objc(cs)SCSChatInterface(im)handleNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatInterface.html#/c:objc(cs)SCSChatInterface(im)shouldDisplayNotificationInForeground
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatEntities
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)queueUpdatesEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didUpdateQueuePosition:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSChatEndReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSChatErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSChatSessionState.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatPickerObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatPickerOption.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSPrechatTextInputObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSAgentAvailability.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSAgentAvailability.html#/c:objc(cs)SOSAgentAvailability(im)startPollingWithOrganizationId:deploymentId:liveAgentPod:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSAgentAvailabilityDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSAgentAvailabilityStatusType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSCameraType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSConnectingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSConnectingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidStart:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidConnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosWillReconnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didCreateSession:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:

– sos(didStopWith:error:)

– sos(stateDidChange:current:previous:)

• SOSErrorCode

• SOSMaskedTextField

• SOSNetworkReporterDelegate

• SOSOnboardingBaseViewController

• SOSOnboardingViewController

• SOSOptions

– customFieldData

– featureAgentVideoStreamEnabled

– featureClientBackCameraEnabled

– featureClientFrontCameraEnabled

– featureClientScreenSharingEnabled

– featureNetworkTestEnabled

– initialAgentStreamPosition

– initialAgentVideoStreamActive

– initialCameraType

– remoteLoggingEnabled

– sessionRetryTime

– setViewControllerClass

– SOSOptions(liveAgentPod:orgId:deploymentId:)

• SOSSessionBaseViewController

• SOSSessionViewController

• SOSScreenSharingBaseViewController

• SOSSessionManager

– add(delegate: SOSDelegate!)

– screenSharing

– startSession

– state

– stopSession

– stopSession(completion:)

• SOSSessionState

• SOSStopReason

• SOSUIAgentStreamReceivable

• SOSUILineDrawingReceivable

• SOSUIPhase

190

Reference IndexSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSMaskedTextField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSNetworkReporterDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOnboardingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSOnboardingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureAgentVideoStreamEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientBackCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientFrontCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientScreenSharingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureNetworkTestEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentStreamPosition
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentVideoStreamActive
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialCameraType
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)remoteLoggingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)sessionRetryTime
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(im)setViewControllerClass:for:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(cm)optionsWithLiveAgentPod:orgId:deploymentId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSSessionViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSScreenSharingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)screenSharing
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)startSessionWithOptions:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)state
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSession
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSessionWithCompletion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSSessionState.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSStopReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSUIAgentStreamReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SOSUILineDrawingReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SOSUIPhase.html

Service Common Index
• SCAppearanceConfiguration

– globalArticleCSS

– globalArticleJavascript

– setColor

– setFontDescriptor

– setImage

• SCAppearanceConfigurationDelegate

• SCSActionButton

• SCSActionItem

• SCSActionItemContainer

• SCSActionManager

• SCSActionManagerDelegate

• SCSAuthenticationSettings

• ServiceCloud

– account

– actions

– appearanceConfiguration

– cases

– chat

– knowledge

– notification(fromRemoteNotificationDictionary:)

– setAccount

– setAuthenticationSettings(settings:forServiceType:completion:)

– sharedInstance

– showInterface(for:)

– sos

• SCServiceCloudDelegate

– serviceCloud(didDisplay controller:animated:)

– serviceCloud(authenticationFailed:forServiceType:)

– serviceCloud(shouldAuthenticateServiceType:completion:)

– serviceCloud(transitioningDelegateForPresentedController:presenting:)

– serviceCloud(willDisplay controller:animated:)

• SCSServiceConfiguration

– imageFolderPath

– SCSServiceConfiguration(community:)

– SCSServiceConfiguration(community:dataCategoryGroup:rootDataCategory:)

• SCSNotification

191

Reference IndexSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleCSS
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleJavascript
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCAppearanceConfigurationDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionButton.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionItemContainer.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSAuthenticationSettings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)account
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)cases
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)chat
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)knowledge
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)notificationFromRemoteNotificationDictionary:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAccount:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAuthenticationSettings:forServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(cm)sharedInstance
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)sos
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:didDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:authenticationFailed:forServiceType:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateServiceType:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(py)imageFolderPath
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Classes/SCSNotification.html

• SCSNotificationType

Resource Files
• ServiceKnowledge (Knowledge) String Resources

• ServiceCases (Case Management) String Resources

• ServiceChat (Live Agent Chat) String Resources

• ServiceSOS (SOS) String Resources

• ServiceCore (Common) String Resources

Additional Resources

If you’re looking for other resources, check out this list of links to related documentation.

• Service Cloud Snap-ins for Mobile Apps: More info about this SDK.

– Snap-ins Landing Page

– Snap-ins Trailhead Learning Module

– iOS Reference Documentation

– iOS Release Notes

– iOS Example Apps

– Android Reference Documentation

– Android Release Notes

– Android Example Apps

• Salesforce Developer Documentation: Landing page for developer documentation at Salesforce.

• Salesforce Help: Landing page for general documentation at Salesforce.

192

Additional ResourcesSnap-Ins for iOS Developer Guide

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/Enums/SCSNotificationType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/serviceknowledgestringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicecasesstringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicechatstringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicesosstringconstants.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/214.0/servicecorestringconstants.html
https://developer.salesforce.com/page/SnapinsMobile
https://trailhead.salesforce.com/modules/service_snap-ins_mobile_apps
http://forcedotcom.github.io/ServiceSDK-iOS/
https://github.com/forcedotcom/ServiceSDK-iOS/releases
https://github.com/forcedotcom/ServiceSDK-iOS/tree/master/Examples
http://forcedotcom.github.io/ServiceSDK-Android/
https://github.com/forcedotcom/ServiceSDK-Android/releases
https://github.com/forcedotcom/ServiceSDK-Android/tree/master/Examples
https://developer.salesforce.com/docs/
https://help.salesforce.com/apex/Help_Home

INDEX

A
action button customization 170
activate case management interface 112
activate knowledge interface 67
additional resources 192
agent availability

Live Agent 104
SOS 146

app store submission 43
assigning permissions in sos 17
authenticated knowledge 66
authentication 37, 66, 111
auto case pop in sos 19
automated email responses 128

B
branding 157

C
caching 69
case deflection 119
case management 106, 111
case management cloud setup 9
Case Management cloud setup 10
case management interface 112
case publisher 106
case publisher setup 108
check Live Agent availability 104
check SOS agent availability 146
color customization 158
community cloud setup 3
configure live agent chat session 90
configure sos session 136
CSS injection 77
custom case field data 115
custom data 100
custom data in sos 152
customize presentation for case management 112
customize presentation for knowledge 67
customize success view 121

D
data protection 186
disable case management from knowledge 79
disable screen sharing 149

dynamic libraries 43

E
Einstein bots 85
errors in Live Agent Chat 92
errors in sos 140
events in Live Agent Chat 92
events in sos 140

F
field masking in sos 149
file transfer 105
font customization 163
fonts 175

H
hidden case fields 115

I
image customization 166
install sdk 34–35, 37

J
JavaScript injection 77

K
knowledge 61–62
knowledge cloud setup 2–4
knowledge interface 67
knowledge setup 64

L
launch from web view 177
listen to Live Agent Chat events 92
listen to sos events 140
live agent chat 80
live agent chat cloud setup 6
live agent chat setup 81
Live Agent cloud setup 7
Live Agent custom data 100
Live Agent pre-chat fields 95
logging in iOS 181

M
mask field in sos 149

193

mask field programmatically 151
mask field with storyboard 150
multiple queues in sos 32

N
notifications for case activity 123

O
offline access 69

P
pre-chat fields 95
prerequisites 33
push notifications 42
push notifications for case activity 123

Q
QoS events 145
qos events from SOS console 29
quality-of-service events 145
quick setup

case publisher 108
knowledge 64
live agent chat 81
sos 130

quick start 43

R
reference index 187
reference overview 187
release notes 2
remote notifications 42
replace sos ui 153
resources 192

S
screen sharing 149
sdk install 34–35, 37
SDK prerequisites 33
sdk setup 32
sensitive data with Live Agent 105
service cloud setup 2
session recording in sos 30
setup 2, 32

snap-ins sdk developer’s guide 1
sos 128–129
sos cloud manual setup 16
sos cloud quick setup 12
SOS cloud setup 12, 16
sos console quick setup 12
sos reference id 31
sos setup 130
sos video 138
SOSOptions 136
state changes from SOS console 21–22
stock images 166

T
transfer file 105
troubleshooting

app store 186
community 182
network 184
session start 186

tutorial
case publisher 53
knowledge 43
live agent chat 47
sos 56

two-way video 138–139

U
ui customization

action buttons 170
colors 158
fonts 163, 175
images 166

UIWebView 177
using case management 106
using case publisher 106
using knowledge 61–62
using live agent chat 80
using sos 128–129

W
web view 177
web-to-case 128

194

Index

	Snap-Ins for iOS Developer Guide
	Release Notes
	Service Cloud Setup
	Knowledge
	Guest User Access for Your Community
	Get Knowledge Settings from Your Org

	Live Agent Chat
	Get Live Agent Chat Settings from Your Org

	Case Management
	Get Case Management Settings from Your Org

	SOS
	Quick Setup: SOS Console
	Manual Setup: SOS Console
	Get SOS Settings from Your Org
	Assign SOS Permissions
	Automatic SOS Case Pop
	Listen for SOS Console Events
	SOS State Change Console Events
	SOS Quality-of-Service Console Events

	Record SOS Sessions
	SOS Reference ID
	Multiple SOS Queues

	SDK Setup
	Requirements
	Installation
	Add the Frameworks with CocoaPods
	Add the Frameworks Manually

	Authentication
	Notifications
	Prepare Your App for Submission

	iOS Tutorials & Examples
	Get Started with Knowledge
	Get Started with Live Agent Chat
	Get Started with Case Publisher
	Get Started with SOS

	Knowledge
	Overview
	Quick Setup
	Knowledge as an Authenticated User
	Customize the Presentation and View Controllers for Knowledge
	Article Fetching and Caching
	Customize Knowledge Articles with JavaScript or CSS
	Disable Case Management from Knowledge Interface

	Live Agent Chat
	Overview
	Quick Setup
	Use Einstein Bots with Live Agent Chat
	Notifications for Live Agent Activity
	Configure a Live Agent Chat Session
	Live Agent Chat Events and Errors
	Show Pre-Chat Fields to User
	Find or Create Salesforce Records from a Chat Session
	Check Live Agent Availability
	Transfer File to Agent
	Block Sensitive Data in a Chat Session

	Case Management
	Overview
	Quick Setup
	Case Management as an Authenticated User
	Customize the Presentation and View Controllers for Case Management
	Send Custom Data Using Hidden Fields
	Configure Case Deflection
	Customize the Case Publisher Result View
	Push Notifications for Case Activity
	Automated Email Responses

	SOS
	Overview
	Quick Setup
	Configure an SOS Session
	Two-Way Video
	Configure Two-Way Video

	SOS Events and Errors
	Quality-of-Service Events
	Check SOS Agent Availability
	Enable and Disable Screen Sharing
	Field Masking
	Create Masked Field Using Storyboard
	Create Masked Field Programmatically

	Custom Data
	Replace the SOS UI

	SDK Customizations
	Colors
	Fonts
	Images
	Action Buttons
	Strings
	Launch SDK from Web View

	Troubleshooting
	Enable Debug Logging for the iOS SDK
	Can’t Access My Knowledge Base
	Can't Connect to Live Agent
	SOS Network Troubleshooting Guide
	My App Crashes
	My App Was Rejected

	Data Protection
	Reference Documentation
	Reference Index

	Additional Resources

	Index

