
Service Cloud Snap-Ins for iOS
Version 210.2

 @salesforcedocs
Last updated: January 29, 2018

https://twitter.com/salesforcedocs


© Copyright 2000–2018 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Service Cloud Snap-Ins for iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Service Cloud Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
SDK Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
iOS Tutorials & Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Using Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Using Case Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Using Live Agent Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Using SOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
SDK Customizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Reference Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190





SERVICE CLOUD SNAP-INS FOR IOS

Service Cloud Snap-ins SDK for Mobile Apps makes it easy to give customers access to powerful features right from within your native
app. You can make these Service Cloud features feel organic to your app and have things up and running quickly using this SDK.

December 2017 Release (210.2.0)

This documentation describes the following component versions, which are packaged together in this version of the Snap-ins SDK:

Version NumberComponent

2.3.2Knowledge

1.5.2Case Management

1.4.2Live Agent Chat

3.6.2SOS

2.0.2ServiceCore (common component used by all features)

Release Notes

Check out the new features and known issues for the iOS Snap-ins SDK.

Service Cloud Setup

Set up Service Cloud in your org before using the SDK.

SDK Setup

Set up the SDK to start using Service Cloud features in your mobile app.

iOS Tutorials & Examples

Get going quickly with these short introductory tutorials.

Using Knowledge

Adding the Knowledge experience to your app.

Using Case Management

Adding the Case Management experience to your app.

Using Live Agent Chat

Adding the Live Agent Chat experience to your app.

Using SOS

Adding the SOS experience to your app.

SDK Customizations

Once you’ve played around with some of the SDK features, use this section to learn how to customize the Snap-ins SDK user interface
so that it fits the look and feel of your app. This section also contains guidance on remote notifications and instructions for localizing
strings in all supported languages.

Troubleshooting

Get some guidance when you run into issues.

1



Reference Documentation

Reference documentation for Service Cloud Snap-ins for iOS.

Additional Resources

If you’re looking for other resources, check out this list of links to related documentation.

Release Notes

Check out the new features and known issues for the iOS Snap-ins SDK.

To review the latest releases for the Snap-ins SDK for iOS, visit github.com/forcedotcom/ServiceSDK-iOS/releases.

Service Cloud Setup

Set up Service Cloud in your org before using the SDK.

Cloud Setup for Knowledge

To use Knowledge in your mobile app, enable it in your org, create knowledge articles, and set up a community.

Cloud Setup for Case Management

To use Case Management in your app, set up a community and create a quick action.

Console Setup for Live Agent Chat

To use Live Agent Chat in your app, set up Live Agent for your console.

Console Setup for SOS

To use SOS in your app, set up Omni-Channel and SOS for your console.

Cloud Setup for Knowledge
To use Knowledge in your mobile app, enable it in your org, create knowledge articles, and set up a community.

1. Enable Salesforce Knowledge and verify that you have Knowledge licenses. To learn more, see Enable Salesforce Knowledge in
Salesforce Help.

2. In the user settings for those users you choose to administer the knowledge base, select Knowledge User.

2

Release NotesService Cloud Snap-Ins for iOS

https://github.com/forcedotcom/ServiceSDK-iOS/releases
https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_settings.htm&language=en_US


3. Create Knowledge articles. When building out your knowledge base, make sure that you define the article types and associate articles
with data categories within a category group.

To learn more about setting up your Knowledge articles, check out: Salesforce Knowledge Documentation (HTML, PDF).

When creating articles, ensure that they are accessible to the Public Knowledge Base channel.

4. Create a community. Your Salesforce org must have an available Community or Salesforce site. Your app developer needs the
Community URL for the site to use the Knowledge or Case Management feature in the SDK.

If you've never set up a Community, see Salesforce Communities Overview.

5. To show Knowledge articles from your app, enable guest user access for the Article Types, Categories, and Fields associated with
your knowledge articles. Also ensure that Guest Access to the Support API is turned on.

Note:  If the Guest user profile isn’t set up properly, your Knowledge categories and articles do not appear.

For step-by-step instructions, see Guest User Access for Your Community.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Knowledge Settings from Your
Org.

Guest User Access for Your Community

Ensure that guest user access is set up correctly for your community. To show Knowledge articles from your app, enable guest user
access for the Article Types, Categories, and Fields associated with your knowledge articles. To show Case Publisher, ensure that
your Quick Actions are accessible.

Get Knowledge Settings from Your Org

After you’ve set up your knowledge base and your community, supply your app developer with the values for the community URL,
data category group, and root data category. You can get this information from your org’s setup.

Guest User Access for Your Community
Ensure that guest user access is set up correctly for your community. To show Knowledge articles from your app, enable guest user
access for the Article Types, Categories, and Fields associated with your knowledge articles. To show Case Publisher, ensure that your
Quick Actions are accessible.

3

Cloud Setup for KnowledgeService Cloud Snap-Ins for iOS

https://help.salesforce.com/articleView?id=knowledge_map.htm&type=0&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_map.htm&language=en_US
http://resources.docs.salesforce.com/sfdc/pdf/salesforce_knowledge_implementation_guide.pdf
https://help.salesforce.com/articleView?id=networks_overview.htm&language=en_US


These instructions describe how to enable guest user access for either a Community or a Force.com site.

1. (Community sites only) If you are editing the settings for a Community:

a. From Setup, select Customize > Communities > All Communities.

b. For your chosen Community, make sure that the Status is “Active”.

c. Select the Workspaces action.

d. From the Community Workspaces page, select Administration.

e. Select Pages > Go to Force.com to get to the Site Detail page.

2. (Force.com sites only) If you are editing the settings for a Force.com site:

a. From Setup, select Develop > Sites.

b. Click the Site Label for your site to get to the Site Detail page.

3. From the Site Detail section, click Edit.

a. Ensure that Guest Access to the Support API is checked.

b. (For Case Management feature only) Ensure that the desired Quick Actions are selected. The global quick action determines
which fields display when creating a case.

c. Click Save.

4. (For Knowledge feature only) From the Site Detail section, click Public Access Settings. This action displays the settings for the
Guest user profile in your org.

a. Verify that the user has read access to the Article Type from the Article Type Permissions section.

b. Verify that the user has read access to the fields in the Article Type from the Field-Level Security section.

c. Verify that the user has visibility to the categories from the Category Group Visibility Settings section.

Get Knowledge Settings from Your Org
After you’ve set up your knowledge base and your community, supply your app developer with the values for the community URL, data
category group, and root data category. You can get this information from your org’s setup.

4

Cloud Setup for KnowledgeService Cloud Snap-Ins for iOS



Community URL

From Setup, search for All Communities, and copy the URL for the desired community.

Data Category Group

From Setup, search for Data Category Assignments inside the Knowledge section, and copy the name of the desired data category
group.

Data Category

From Setup, search for Data Category Assignments inside the Knowledge section, select the data category group, and copy the
name for the desired root data category.

5

Cloud Setup for KnowledgeService Cloud Snap-Ins for iOS



Cloud Setup for Case Management
To use Case Management in your app, set up a community and create a quick action.

1. Create a community. Your Salesforce org must have an available Community or Salesforce site. Your app developer needs the
Community URL for the site to use the Knowledge or Case Management feature in the SDK.

If you've never set up a Community, see Salesforce Communities Overview.

2. When setting up the site, add the Quick Actions that you'd like to use in your app for the Case Management functionality. You must
specify a quick action to use Case Management. The global quick action determines which fields display when creating a case. To
learn more about quick actions, see Create Global Quick Actions in Salesforce Help. Also ensure that Guest Access to the Support
API is turned on.

For step-by-step instructions, see Guest User Access for Your Community.

Note:  Be sure that your global action is accessible to the Guest user profile. Also note that the case publisher screen does not
respect field-level security for guest users. If you want to specify different security levels for different users, use different quick
actions.

3. If you'd like to let authenticated users manage a list of their existing cases, you need to perform a few additional setup steps.

a. Make sure that the User Profile for the authenticated users has API Enabled checked. For an overview on user profiles, see
Profiles in Salesforce Help.

b. You’ll need a list view for your cases in Service Cloud. To learn more about creating views, see Create a List View in Salesforce
Help. Supply the Case List Unique Name for this view to your app developer.

6

Cloud Setup for Case ManagementService Cloud Snap-Ins for iOS

https://help.salesforce.com/articleView?id=networks_overview.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=creating_global_actions.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=admin_userprofiles.htm&language=en_US
https://help.salesforce.com/articleView?id=listviews_parent.htm&type=0&language=en_US


Note:  If you use the built-in My Cases  list view, keep in mind that it is filtered by the Contact  field for community
users and it is filtered by the Created By  field for other user profiles. If you want a different behavior, create a new list
view.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Case Management Settings from
Your Org.

Get Case Management Settings from Your Org

After you’ve configured your org, supply your app developer with the values for the community URL, the global action, and the case
list. You can get this information from your org’s setup.

Get Case Management Settings from Your Org
After you’ve configured your org, supply your app developer with the values for the community URL, the global action, and the case list.
You can get this information from your org’s setup.

Community URL

From Setup, search for All Communities, and copy the URL for the desired community.

Global Action

From Setup, search for Global Actions, and copy the name of the desired quick action.

7

Cloud Setup for Case ManagementService Cloud Snap-Ins for iOS

https://help.salesforce.com/apex/HTViewHelpDoc?id=customviews_parent.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=customviews_parent.htm&language=en_US


Case List Unique Name (for Authenticated Users Only)
To get this value, access the Cases tab in your org, pick the desired View, select Go! to see that view, and then select Edit to edit
the view. From the edit window, you can see the View Unique Name. Use this value when you specify the caseListName  in
the SDK.

Console Setup for Live Agent Chat
To use Live Agent Chat in your app, set up Live Agent for your console.

Note:  If you intend to provide real-time support using both Live Agent Chat and SOS, make sure that your agents know to go
Offline  before switching from the Online  state of one feature to the Online  state of the other.

1. Create a Live Agent Chat implementation in Service Cloud, as described in Live Agent for Administrators (PDF). Your implementation
needs a deployment and a chat button.

Note:  By default, a mobile chat session times out around two minutes after you leave the app or lose connectivity. To change
this value, update the Idle Connection Timeout Duration field when setting up your Live Agent deployment. Keep in mind
that the actual timeout on the app can be up to 40 seconds longer than the specified value in this field. See Live Agent
Deployment Settings.

2. (Optional) If you want to use Omni-Channel for routing, configure it as described in Omni-Channel for Administrators (PDF).

Omni-Channel allows your agents to handle all real-time routing (for example, Live Agent Chat, SOS, email, case management) using
the same widget. You can still use Live Agent Chat without setting up Omni-Channel if you don’t care for this feature.

If you have trouble finding the settings that a developer requires to use this feature in the SDK, see Get Live Agent Chat Settings from
Your Org.

Get Live Agent Chat Settings from Your Org

After you’ve set up Live Agent in the console, supply your app developer with four values: the Live Agent pod endpoint, the
organization ID, the deployment ID, and the button ID. You can get this information from your org’s setup.

Get Live Agent Chat Settings from Your Org
After you’ve set up Live Agent in the console, supply your app developer with four values: the Live Agent pod endpoint, the organization
ID, the deployment ID, and the button ID. You can get this information from your org’s setup.

8

Console Setup for Live Agent ChatService Cloud Snap-Ins for iOS

https://help.salesforce.com/apex/HTViewHelpDoc?id=live_agent_administrators_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/live_agent_administrator.pdf
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=service_presence_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/service_presence_administrators.pdf


pod
The hostname for the Live Agent pod that your organization has been assigned. To get this value, from Setup, search for Live Agent
Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the path — just use
the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization ID.

deploymentId
The unique ID of your Live Agent deployment. To get this value, from Setup, select Live Agent > Deployments. The script at the
bottom of the page contains a call to the liveagent.init  function with the pod, the deploymentId, and orgId as arguments.
Copy the deploymentId value.

9

Console Setup for Live Agent ChatService Cloud Snap-Ins for iOS



buttonId
The unique button ID for your chat configuration. You can get the button ID by creating a Live Agent chat button (see Create Chat
Buttons in the Live Agent help documentation), and instead of using the supplied JavaScript, copy the id attribute. To get this
value after creating a button, from Setup, search for Chat Buttons and select Chat Buttons & Invitations. Copy the id  for the
button from the JavaScript snippet.

Console Setup for SOS
To use SOS in your app, set up Omni-Channel and SOS for your console.

Note:  If you intend to provide real-time support using both Live Agent Chat and SOS, make sure that your agents know to go
Offline  before switching from the Online  state of one feature to the Online  state of the other.

You can either use the quick setup or configure your org manually. The quick setup (Quick Setup: SOS Console) is best to get started the
first time; manual setup (Manual Setup: SOS Console) is appropriate if you want to customize your org for production. Once you've set
up the console, see Get SOS Settings from Your Org if you have trouble finding the settings that a developer requires to use this feature
in the SDK.

10

Console Setup for SOSService Cloud Snap-Ins for iOS

https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US


After setting up the SOS console, check out these other topics to fine-tune your SOS configuration.

Quick Setup: SOS Console

Quick setup is great when you want to try SOS for the first time and you haven’t already enabled Omni-Channel or SOS in your org.

Manual Setup: SOS Console

Perform a manual setup when you want to fine-tune your Service Cloud for a production environment.

Get SOS Settings from Your Org

After you’ve set up SOS in the console, supply your app developer with three values: the Live Agent pod endpoint, the organization
ID, and the deployment ID. You can get this information from your org’s setup.

Assign SOS Permissions

To allow an agent to use SOS, verify that the license and permissions settings are correct in Salesforce.

Automatic SOS Case Pop

With auto case pop, Service Cloud automatically creates a case when a new SOS session starts. Creating a case at the start of a session
requires a trigger, a Visualforce page, and changes to the SOS session page layout.

Listen for SOS Console Events

Listen for SOS events from the Salesforce console to log activity, debug issues, and perform quality-of-service (QoS) analysis.

Record SOS Sessions

Enable SOS session recording to assure quality and let agents refer to session recordings.

SOS Reference ID

Provide an ID to give to support when there are issues with a session.

Multiple SOS Queues

Implement multiple SOS queues to route requests to specific agents or give specific requests a higher priority.

Quick Setup: SOS Console
Quick setup is great when you want to try SOS for the first time and you haven’t already enabled Omni-Channel or SOS in your org.

Before running through this quick start, be sure that the SOS Quick Start Package is installed into your Service Cloud instance.

• Install Quick Start Package in your sandbox org

• Install Quick Start Package in your production org

To simplify the configuration for SOS Service Cloud, we have included an easy-to-use SOS quick setup wizard.

1. Log in to your org and select the SOS Quick Setup app.

2. Select Check Org Requirements.

11

Console Setup for SOSService Cloud Snap-Ins for iOS

https://test.salesforce.com/?ec=302&startURL=%2Fpackaging%2FinstallPackage.apexp%3Fp0%3D04tB00000002rSm
https://login.salesforce.com/?ec=302&startURL=%2Fpackaging%2FinstallPackage.apexp%3Fp0%3D04tB00000002rSm


This step performs basic checks to ensure that your org is set up correctly. Ensure that every line item is marked with PASS. You can
edit any settings that have not passed.

3. Select Create Your SOS Objects.

This step allows you to provide custom names for the new SOS objects. You can leave the default values.

Service Presence
Determines what appears in the Omni-Channel widget. You can edit this object and add more Service Channels to the Presence
status.

Routing Configuration
Allows you to set agent work capacity and priority.

Queue
Connects the users to a Routing Configuration. Also allows you to state which objects (in this case, the SOS session) can be
owned by this queue.

Permission Set
Contains the app permissions to enable the SOS license and to provide access to the Service Presence status. This object must
be used to enable the license on a user. All members of the permission set must be assigned an SOS license. It can also be used
to enable the Service Presence status.

SOS Deployment
Links your customer-facing application to the SOS Queue. Once created, you can configure the deployment to enable session
recording by providing Amazon AWS credentials.

12

Console Setup for SOSService Cloud Snap-Ins for iOS



4. Click Create.

Ensure that every line item is marked with PASS. You can edit any settings that have not passed.

5. Add agents to the Set Up Users section.

This section allows you to assign the SOS license to an agent and add the agent to the permission set and queue.

6. Select Add the Omni-Channel Widget to Your Console App.

Choose the Service Cloud Console and click Update App.

This step adds the following to your Console App:

• Omni-Channel Widget

• SOS Console component

• Whitelisted domains necessary for SOS

• Report dashboard to the Navigation tab

7. (Optional) Select Custom Your Console Settings.

You can set your org to automatically create a case for each SOS session and open it in a subtab.

13

Console Setup for SOSService Cloud Snap-Ins for iOS



The case is created by a trigger included with the package. Before the new SOS session is inserted, the trigger creates a case and
adds a reference to it to the SOS session object. If you wish to modify the trigger, it can be found in Setup, by searching SOS Sessions
and going to Triggers. The name of the trigger is SOSCreateCase.

The case is popped in a subtab by a page that is hidden in the SOS session page layout. This hidden page and an altered SOS session
page layout are also included with the package.

8. Select Info for Your SOS App.

This step provides you with the three pieces of information required to start an SOS session from the SDK: Organization ID, SOS
Deployment ID, and Live Agent API Endpoint. Save this information for later.

Once you’ve completed these steps, you are ready to start using the SOS feature in the Snap-ins SDK.

Manual Setup: SOS Console
Perform a manual setup when you want to fine-tune your Service Cloud for a production environment.

1. Configure Omni-Channel, as described in Omni-Channel for Administrators (PDF).

2. Set up SOS in Service Cloud, as described in Set Up SOS Video Chat and Screen-Sharing.

3. Be sure that you’ve assigned agent permissions to users, as described in Assign SOS Permissions.

4. Perform any additional customizations specified in Console Setup for SOS.

14

Console Setup for SOSService Cloud Snap-Ins for iOS

https://help.salesforce.com/HTViewHelpDoc?id=service_presence_intro.htm&language=en_US
https://resources.docs.salesforce.com/sfdc/pdf/service_presence_administrators.pdf
https://help.salesforce.com/HTViewHelpDoc?id=sos_intro.htm&language=en_US


Get SOS Settings from Your Org
After you’ve set up SOS in the console, supply your app developer with three values: the Live Agent pod endpoint, the organization ID,
and the deployment ID. You can get this information from your org’s setup.

pod
The hostname for the Live Agent pod that your organization has been assigned. To get this value, from Setup, search for Live Agent
Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the path — just use
the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization ID.

deploymentId
The unique ID of your SOS deployment. To get this value, from Setup, search for SOS Deployments, click the correct deployment
and copy the Deployment ID.

15

Console Setup for SOSService Cloud Snap-Ins for iOS



Assign SOS Permissions
To allow an agent to use SOS, verify that the license and permissions settings are correct in Salesforce.

1. Assign an SOS user license.

Assigning a license must be done for every user that requires access to SOS.

a. From Setup, select Manage Users > Users.

b. Click the name of the user. (Do not click Edit.)

c. Select Permission Set License Assignments and then click Edit Assignments.

d. Enable SOS User. If this option is not available, your org has not been assigned any SOS licenses.

e. Click Save.

2. Enable the SOS license.

Once licenses are assigned to users, enable them using a permission set. We recommend that you have a permission set specifically
for SOS, because all users assigned to this permission set must have an SOS license. If you attempt to enable SOS for a permission
set which contains users that do not have an SOS license, you’ll receive an error.

a. From Setup, select Manage Users > Permission Sets.

b. If you do not have a permission set for SOS, click the New button. Give it a Label and click Save.

c. If you already have a permission set, click the SOS permission set.

d. Click App Permissions and then click the Edit button.

e. Check Enable for the Enable SOS Licenses checkbox. You’ll receive an error if any assigned users do not have the SOS license.

f. Click Save.

3. Enable the service presence status.

You can enable the service presence status using either permission sets or profiles. If the presence status is only being used for SOS,
it is easier to enable the presence status through the same permission set that enables the license. Using the same permission set
guarantees that all agents who require the presence status have access to it. If the presence status is being used for multiple service

16

Console Setup for SOSService Cloud Snap-Ins for iOS



channels, it is likely that the same permission set cannot be used, since all members of the permission set would require a SOS
license. In this case, you may want to have multiple permissions sets, assign it to a profile, and use some combination of profiles and
permission sets.

Service Permission via Permission Sets

a. From Setup, select Manage Users > Permission Sets.

b. Click an existing permission set associated with SOS, or create a new one.

c. Click Service Presence Statuses Access and then click the Edit button.

d. Add the service presence related to SOS to the Enabled Service Presence Statuses.

e. Click Save.

f. If necessary, click Manage Assignments to add agents to the permission set.

Service Permission via Profile

a. From Setup, select Manage Users > Profiles.

b. Click the name of the profile associated with SOS. (Do not click Edit.)

c. Click the Edit button for Enabled Service Presence Status Access.

d. Add the service presence related to SOS to the Enabled Service Presence Statuses.

e. Click Save.

4. Add agents to the queue.

All agents must be a member of at least 1 queue. You can determine which queues are used by SOS by looking at the SOS deployments.
Agents can be added to a queue individually or in groups. These groups differ depending on the org — groups can be broken into:
roles, public groups, partner users, and so on.

a. From Setup, select Manage Users > Queues.

b. Click Edit for the desired queue.

c. Scroll to the bottom of the page and find the Queue Members section. Add the required members.

d. Click Save.

Automatic SOS Case Pop
With auto case pop, Service Cloud automatically creates a case when a new SOS session starts. Creating a case at the start of a session
requires a trigger, a Visualforce page, and changes to the SOS session page layout.

1. Create a trigger.

This trigger fires before a new SOS session object saves. The trigger creates a case and adds a reference to the case to the SOS session
object. When the case is created, the owner is initially set to "Automated Process". This value changes to the owner of the SOS session
object with the Visualforce page specified in the next step.

a. From Setup, search for SOS Sessions.

b. Select Triggers from the SOS Sessions section.

c. Click the New button.

17

Console Setup for SOSService Cloud Snap-Ins for iOS



d. Replace the Apex Trigger code with the code below. This code assumes that the email address is sent through the SOS Custom
Data feature using the Email__c  API Name. To learn more about custom data in SOS, see Using SOS. Any data that can be
used to identify a contact can be sent instead of the email, as long as the trigger is updated to reflect this information.

trigger SOSCreateCaseCustom on SOSSession (before insert) {
List<SOSSession> sosSess = Trigger.new;
for (SOSSession s : sosSess) {
try {
Case caseToAdd = new Case();
caseToAdd.Subject = 'SOS Video Chat';
if (s.ContactId != null) {
caseToAdd.ContactId = s.ContactId;

} else {
List<Contact> contactInfo =

[SELECT Id from Contact WHERE Email = :s.Email__c];
if (!contactInfo.isEmpty()) {
caseToAdd.ContactId = contactInfo[0].Id;
s.ContactId = contactInfo[0].Id;

}
}
insert caseToAdd; s.CaseId = caseToAdd.Id;

}
catch(Exception e){}

}
}

e. Click Save.

2. Add a Visualforce page.

This Visualforce page changes the owner of the case and opens the case in a subtab. The page is added to the SOS session page
layout in the final step.

a. From Setup, search for Visualforce Pages.

b. Click the New button.

c. Give the Visualforce page a name. For example, "SOS_Open_Case_Custom".

d. Replace the Visualforce Markup code with this code:

<apex:page sidebar="false" standardStylesheets="false">
<apex:includeScript value="/soap/ajax/34.0/connection.js"/>
<apex:includeScript value="/support/console/34.0/integration.js"/>

<script type='text/javascript'>
sforce.connection.sessionId = '{!$Api.Session_ID}';

function escapeSoql (str) {
return str.replace(/\\/g, '\\\\').replace(/'/g, "\\'");

}

document.addEventListener('DOMContentLoaded', function () {
sforce.console.getEnclosingPrimaryTabObjectId(function(result) {
if (!result || !result.success) {
return;

}

18

Console Setup for SOSService Cloud Snap-Ins for iOS



var sosSessionId = result.id;
var query =

"SELECT CaseId, OwnerId FROM SOSSession WHERE Id = '" +
escapeSoql(sosSessionId) + "'"

var queryResult = sforce.connection.query(query);
var record = queryResult.getArray('records');

if (!record || !record[0]) {
console.log('Can not determine session Id');
return;

}

var caseId = record[0].CaseId;
var ownerId = record[0].OwnerId;

if (!ownerId) {
console.log('No owner Id');
return;

}

var caseUpdate = new sforce.SObject("Case");
caseUpdate.Id = caseId;
caseUpdate.OwnerId = ownerId;
result = sforce.connection.update([caseUpdate]);

if (!result[0].getBoolean("success")) {
console.log('Unable to set owner', result, caseUpdate);

}

sforce.console.getEnclosingPrimaryTabId(function(result) {
if (!result || !result.success) {
return;

}

var query = "SELECT CaseNumber FROM Case WHERE Id = '" +
escapeSoql(caseId) + "'"

var queryResult = sforce.connection.query(query);
var record = queryResult.getArray('records');
var caseNumber = record && record[0] &&

record[0].CaseNumber || 'Case';

sforce.console.openSubtab(result.id, '/'+caseId,
true, caseNumber);

});
});

});
</script>

</apex:page>

e. Click Save.

3. Update the SOS session page layout.

19

Console Setup for SOSService Cloud Snap-Ins for iOS



Now that the Visualforce page has been created, you can change the page layout of the SOS session. This change hides the Visualforce
page in the layout.

a. From Setup, search for SOS Sessions.

b. Select Page Layouts from the SOS Sessions section.

c. Click Edit for your active layout (probably SOS Session Layout).

d. From the top of the page, select the Custom Console Components link.

e. Under the Primary Tab Components section, add the following to one of the sidebars:

• Set Style to Stack.

• Set Width px to 1.

• Set Height px to 1. (Change Height % to Height px if necessary.)

• Set Type to Visualforce Page

• Set Component to the page created previously (for example, SOS_Open_Case_Custom).

f. Click Save.

Whenever an agent accepts an incoming call, a case automatically gets created.

Listen for SOS Console Events
Listen for SOS events from the Salesforce console to log activity, debug issues, and perform quality-of-service (QoS) analysis.

To detect events from the Salesforce console, use JavaScript in your Visualforce page. Call the addEventListener  method, which
is documented in the Salesforce Console Developer Guide. The method syntax is:

sforce.console.addEventListener(eventType: String, eventListener: Function);

DescriptionTypeParameter

The event type. For SOS session state events,
this value is

StringeventType

SFORCE_SOS:STATE_CHANGED. For
audio QoS, this value is
SFORCE_SOS:QOS_AUDIO. For video
QoS, this value is
SFORCE_SOS:QOS_VIDEO.

This function is called when the registered
event is emitted. You receive one JSON

FunctioneventListener

20

Console Setup for SOSService Cloud Snap-Ins for iOS

https://developer.salesforce.com/docs/atlas.en-us.212.0.api_console.meta/api_console/sforce_api_console_addeventlistener.htm


DescriptionTypeParameter

message  object within the payload
passed to this function.

For more information about SFORCE_SOS:STATE_CHANGED, see SOS State Change Console Events.

For more information about SFORCE_SOS:QOS_AUDIO  and SFORCE_SOS:QOS_VIDEO, see SOS Quality-of-Service Console
Events.

SOS State Change Console Events

You can listen for SOS session state changes from the Salesforce console for logging and debugging purposes.

SOS Quality-of-Service Console Events

You can listen for SOS audio and video quality-of-service (QoS) events from the Salesforce console.

SOS State Change Console Events
You can listen for SOS session state changes from the Salesforce console for logging and debugging purposes.

After you add an event listener for state changes to your console (see Listen for SOS Console Events), inspect your function's payload
and handle the event.

sforce.console.addEventListener("SFORCE_SOS:STATE_CHANGED", function(payload) {
// Handle event

});

Event Listener Payload

The JSON payload you receive within the event listener function follows this syntax.

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previousState: <PREVIOUS_STATE>,
reason: <REASON_IF_APPLICABLE>

}
}

sfdcSosSessionId  (String)
The ID associated with the session that emitted the events.

currentState  (String)
The current state of the session. See the Event States section.

previousState  (String)
The previous state of the session. See the Event States section.

reason  (Object or null)
Populated only when the current state is ENDED. Contains information about why the session was ended. See the End Reasons
section.

21

Console Setup for SOSService Cloud Snap-Ins for iOS



This code sample illustrates how to handle an event. Subsequent sections describe how to interpret each part of the message object
payload.

sforce.console.addEventListener("SFORCE_SOS:STATE_CHANGED", function(event) {
var stateChange = {};
try {
stateChange = JSON.parse(event.message);

} catch (e) {
// Error Parsing JSON Object
throw new Error(e);

}

/*
Use currentState vs previousState to determine how you reached
the state you're in. Most useful in the case of the ENDED state
where you want to know how it ended and if there were any errors.

*/

var currentState = stateChange.currentState;
var previousState = stateChange.previousState;

// Handle Non ENDED state changes
if (currentState !== 'ENDED') {
logStateChange(currentState, previousState);
return;

}

// Handle ENDED state change
switch (stateChange.reason.name) {

// Handle a session that was intentionally ended by customer or agent
case 'ENDED_BY_CUSTOMER':
case 'ENDED_BY_CONSOLE':
logEndedSession(currentState, previousState, stateChange.reason.name);
break;

// Handle a session that ended in an error
case 'ERROR':
logEndedWithError(currentState, previousState, stateChange.reason.name,

stateChange.reason.error);
break;

}
});

Event States

The currentState  and previousState  fields can be one of the following states.

LOADING_RESOURCES
Widget has loaded. Fetching more resources from the server.

INTERFACE_CHECK
Applies to Internet Explorer browsers only. Attempting to install the Internet Explorer plug-in.

JOINING
Joining the audio/video session.

22

Console Setup for SOSService Cloud Snap-Ins for iOS



INITIALIZING
Starting to listen for updates from the audio/video session.

AV_CONNECTION
Connecting to the audio/video session, getting microphone or camera permissions from the browser, and starting to send the stream
to the audio/video session.

WAITING
Waiting to receive the audio/video stream from the SDK.

CONNECTED
Session is fully established with both audio and video.

HOLD
Session has been put on hold by the customer, the agent, or both.

PAUSED
Session paused because the app was put into the background, the customer is typing into a masked field, or the customer accepted
a phone call.

ENDED
The session has completed. See the End Reasons section for more information.

End Reasons

When the currentState  is ENDED, you can inspect the reason  object to find out why the session ended.

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previousState: <PREVIOUS_STATE>,

reason: {
name: <END_REASON>
error: <ERROR_IF_APPLICABLE>

}
}

}

name  (String)
The reason why the session ended. Can be ENDED_BY_CUSTOMER, ENDED_BY_CONSOLE, or ERROR.

error  (Error object or null)
If there's an error, this field contains the error details. If there isn't an error, the value is null. See Errors section.

The following table describes various ways a session can end, with and without an error. See the Errors section for details about session
failures.

Table 1: End Reason Scenarios

How a Session Can End with an ErrorHow a Session Can End Without an
Error

State

An issue occurred while loading scripts from
the server.

The customer or agent manually ended the
session prematurely.

LOADING_RESOURCES

23

Console Setup for SOSService Cloud Snap-Ins for iOS



How a Session Can End with an ErrorHow a Session Can End Without an
Error

State

The agent encountered an issue while
installing the OpenTok plug-in.

The customer or agent manually ended the
session prematurely. Possibly related to a
user issue while installing the plug-in.

INTERFACE_CHECK

The agent encountered an issue while
joining the SOS session.

The customer or agent manually ended the
session prematurely.

JOINING

The agent encountered an issue while
starting to listen for updates from the SOS
session.

The customer or agent manually ended the
session prematurely.

INITIALIZING

The agent encountered an issue while
joining the session. The issue could be due

The customer or agent manually ended the
session prematurely.

AV_CONNECTION

to hardware permissions, misconfigured
firewall rules, network performance, or an
internal server error.

The agent failed to connect to the
customer’s audio/video stream. The issue

The customer disconnected from the
session without ending it, causing the

WAITING

could be due to misconfigured firewall rules,session to end. Typical reasons include the
network performance, an internal servercustomer lost network connectivity, the app

crashed, or the customer closed the app. error, or the customer was dropped from
the audio/video session.

The session ended unexpectedly with a fatal
error. This error could be due to network

The customer or agent manually ended the
session from a normal state.

CONNECTED

performance issues or an internal server
error.

The session ended unexpectedly with a fatal
error. This error could be due to network
performance or an internal server error.

The customer or agent manually ended the
session from a normal state. The agent or
customer could have ended the session
after being in the hold state for too long.

HOLD

The session ended unexpectedly with a fatal
error. This error could be due to network
performance or an internal server error.

The customer or agent manually ended the
session from a normal state. The agent or
customer could have ended the session
after being in the paused state for too long.

PAUSED

The session experienced issues while
disconnecting from the audio/video session

The session ended without issue.ENDED

or making a request to the audio/video
server.

The following table shows some scenarios in which a session can end successfully, along with a sample payload.

24

Console Setup for SOSService Cloud Snap-Ins for iOS

https://tokbox.com/platform


Table 2: Successful End Reason Examples

Sample PayloadScenario

{
currentState: 'ENDED',

Session ended by customer

previousState: 'CONNECTED',
reason: {
name: 'ENDED_BY_CUSTOMER',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent

previousState: 'CONNECTED',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent while session is on hold

previousState: 'HOLD',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent while customer app is in the background

previousState: 'PAUSED',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

{
currentState: 'ENDED',

Session ended by agent after app crash

previousState: 'WAITING',
reason: {
name: 'ENDED_BY_CONSOLE',
error: null

}
}

25

Console Setup for SOSService Cloud Snap-Ins for iOS



Errors

When a session ends with an error, inspect the error object for more information. The error syntax is:

{
message: {
sfdcSosSessionId: <SESSION_ID>,
currentState: <CURRENT_STATE>,
previous: <PREVIOUS_STATE>,
reason: {
name: 'ERROR',

error: {
code: <ERROR_CODE>,
domain: <ERROR_DOMAIN>,
message: <ERROR_MESSAGE>,
name: <ERROR_NAME>,
type: <ERROR_TYPE>,
rawError: {
code: <RAW_ERROR_CODE>,
message: <RAW_ERROR_MESSAGE>,
name: <RAW_ERROR_MESSAGE>

}
}

}
}

}

code  (Number)
Error code used for grouping related errors. Some common error codes include: 1000 (SOS session timed out waiting to access
camera or microphone); 1001 (audio/video request timed out), 1003 (failed to set agent name); 1006 (SOS session timed out waiting
to access the camera or microphone); 1500 (permission to audio/video hardware denied). See OpenTok's Handling Exceptions
documentation for more error conditions.

domain  (String or null)
Describes the category of error when it's related to an OpenTok audio/video issue. Can be one of the following: session,
publisher, or subscriber  domains. A session  error relates to an existing audio/video session. A publisher  error
describes an issue that the agent had when creating an audio/video stream. A subscriber  error describes an issue that the
agent had when receiving a customer’s audio/video stream.

message  (String)
A description of what caused the error.

name  (String or null)
A unique name associated with the error.

type  (String)
Specifies from where the error originated. Can be one of the following: opentok  (the underlying WebRTC platform); scrt
(Salesforce's real-time server); or widget  (the Salesforce console widget).

rawError  (Object)
The raw error returned by the server without parsing, grouping, or renaming.

The following table shows some scenarios in which a session can end in an error, along with a sample payload.

26

Console Setup for SOSService Cloud Snap-Ins for iOS

https://tokbox.com/developer/guides/exception-handling/js/


Table 3: End in Error Examples

Sample PayloadError Scenario

{
currentState: 'ENDED',

Agent declines permissions prompt

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1500,
domain: 'publisher',
message: 'Permission to audio/video

hardware
denied. You must grant permission

for SOS to
access microphone and camera.',

name: 'OT_USER_MEDIA_ACCESS_DENIED',
type: 'opentok',
rawError: {
code: 1500,
message: 'ORIGINAL ERROR MESSAGE',
name: 'OT_USER_MEDIA_ACCESS_DENIED'

}
}

}
}

{
currentState: 'ENDED',

Agent lets session time out without granting permissions

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1000,
domain: null,
message: 'SOS session timed out

waiting to
access camera/microphone.',

name: null,
type: 'widget',
rawError: {
code: 1000,
message: 'SOS session timed out

waiting to
access camera/microphone.'

}
}

}
}

27

Console Setup for SOSService Cloud Snap-Ins for iOS



Sample PayloadError Scenario

{
currentState: 'ENDED',

Session dies after OpenTok drops connection because of a timeout

previousState: 'AV_CONNECTION',
reason: {
name: 'ERROR',
error: {
code: 1006,
domain:session,
message: 'SOS session timed out

waiting to
access camera/microphone.',

name: 'OT_SOCKET_CLOSE_ABNORMAL',
type: 'opentok',
rawError: {
code: 1006,
message: 'Unable to connect to the

session.
Please ensure you have network

connectivity.',
name: 'OT_SOCKET_CLOSE_ABNORMAL'

}
}

}
}

SOS Quality-of-Service Console Events
You can listen for SOS audio and video quality-of-service (QoS) events from the Salesforce console.

Note:  The console allows you to track streaming issues on the other side of the conversation (from the client to the OpenTok
media router). To track QoS issues on this side (from the agent to the media router), refer to the SOS SDK documentation on
quality-of-service events: Using SOS.

After you add an event listener for QoS to your console (see Listen for SOS Console Events), inspect your function's payload and handle
the event.

sforce.console.addEventListener("SFORCE_SOS:QOS_AUDIO", function(payload) {
// Handle audio QoS event

});
sforce.console.addEventListener("SFORCE_SOS:QOS_VIDEO", function(payload) {
// Handle video QoS event

});

Audio QoS Event Listener Payload

This sample JSON payload is for the SFORCE_SOS:QOS_AUDIO event type.

{
"message":"{
"bytesReceived":131131,

28

Console Setup for SOSService Cloud Snap-Ins for iOS

https://tokbox.com/platform


"packetsLost":3,
"packetsReceived":1499,
"timestamp":1502214189391,
"sfdcSosSessionId":"0NXR000000000MS"

}"
}

This payload specifies how many bytes were received, the number of packets lost, and the number of packets received for a 30-second
span. If the session ends before 30 seconds, QoS data isn't logged.

Video QoS Event Listener Payload

This sample JSON payload is for the SFORCE_SOS:QOS_VIDEO event type.

{
"message":"{
"bytesReceived":82253,
"packetsLost":0,
"packetsReceived":337,
"timestamp":1502214189391,
"size":"480x640",
"timePerShareType":{
"ss":"55.29",
"ffc":"44.71",
"bfc":"0.00"

},
"sfdcSosSessionId":"0NXR000000000MS"

}"
}

This payload specifies how many bytes were received, the number of packets lost, and the number of packets received for a 30-second
span. If the session ends before 30 seconds, QoS data isn't logged. This payload also describes the resolution size of the video and the
percentage of time in each share type. The share types are ss  for screen sharing, ffc  for the front-facing camera, and bfc  for the
back-facing camera.

Record SOS Sessions
Enable SOS session recording to assure quality and let agents refer to session recordings.

1. From Setup, search for SOS Deployments.

2. Select your deployment.

3. Check the Session Recording Enabled checkbox. Specify your API key, secret, and bucket.

29

Console Setup for SOSService Cloud Snap-Ins for iOS



You can retrieve recorded sessions in the mp4 format from your Amazon S3 bucket.

Note:  To configure your AWS environment, see Managing Access Permissions to Your Amazon S3 Resources.

SOS Reference ID
Provide an ID to give to support when there are issues with a session.

The SOS Reference ID (also referred to as the SOS Session ID) is a unique ID used to identify a session. It is 15 characters and starts with
"0NX". If there is an issue with a session, this ID can be provided to Support to locate logs related to the session.

There are two ways to find the SOS Reference ID:

1. Add it to the SOS Session object

2. Add it to the fields displayed in the SOS Session list view.

Add to Session Object
If the SOS Reference ID is added to the SOS Session Object and SOS Session page layouts, the ID can be seen when viewing any SOS
Session. To add the SOS Reference ID to the SOS Session object:

1. From Setup, search for SOS Sessions.

2. From SOS Sessions, select Fields. (Do not go to Fields under SOS Session Activities.)

3. Click New under SOS Session Custom Fields & Relationships.

4. Select Formula. Click Next.

5. Enter SOS Reference Id as the Field Label. Field Name auto populates.

6. Select Text as the Formula Return Type. Click Next.

7. In the Simple Formula text area, enter Id. Click Next.

8. Click Next again. (Permission to view the field can be removed on this page before clicking next.)

9. Click Save.

We recommend that you add this field to all page layouts.

30

Console Setup for SOSService Cloud Snap-Ins for iOS

https://en.wikipedia.org/wiki/MPEG-4_Part_14
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html


Add to Session List View
The SOS Session list view can be added as a navigation tab item to any console app. Using the SOS Session list view allows you to view
the SOS Reference ID for multiple sessions on a single screen. To add the SOS Session list view to a console app:

1. From Setup, search for Apps.

2. Select Edit for the desired console app.

3. Under Choose Navigation Tab Items, move SOS Sessions to Selected Items.

4. Click Save.

The SOS Session list view may not display the SOS Reference ID by default. If so, a view can be edited or a new view can be created. To
add the SOS Reference Id to the view:

1. Go to the SOS Session list view

2. Click either Edit or Create New View.

3. Now you can determine which fields are visible.

• If the new field was added (as shown earlier) move SOS Reference Id to Selected Fields.

• If the new field was not created, move both instances of SOS Session Id to Selected Fields. (The two SOS Session Id fields are
different fields. One is the unique ID that starts with the characters "0NX"; the other is a number that increments for each session.)

4. Click Save.

Multiple SOS Queues
Implement multiple SOS queues to route requests to specific agents or give specific requests a higher priority.

Multiple queues can help out in the following situations:

• Giving paying customers a higher priority

• Having separate queues for different products

• Routing to agents with specific skill sets

• Giving agents a personal queue (great for training)

• Creating a training queue that has a lower priority or only gets requests from simple pages

• Grouping separate pages into different queues

You need two objects to make multiple queues work: a Queue  and an SOS Deployment  object. A third object, Routing
Configuration, lets you use different priorities.

1. If a Routing Configuration  is being used to achieve different priorities, create this object first. If you want all queues to
have the same priority, the same routing configuration can be used.

2. Next, create the Queue. The queue references the routing config. An agent can be a member of multiple queues.

3. Create the SOS Deployment  last. The deployment references the queue. An app may have access to several SOS deployment
IDs, and then the app decides which queue the user should be sent to using the SOS deployment ID.

SDK Setup

Set up the SDK to start using Service Cloud features in your mobile app.

31

SDK SetupService Cloud Snap-Ins for iOS



Requirements

Before you set up the SDK, let's take care of a few pre-reqs.

Install the iOS SDK

Before you can use the iOS SDK, install the SDK and configure your project.

Prepare Your App for Submission

Before you can submit your app to the App Store, you need to strip development resources (such as unneeded architectures and
header resources) from the dynamic libraries used by the Snap-ins SDK.

Requirements
Before you set up the SDK, let's take care of a few pre-reqs.

Salesforce Org Requirements
The Snap-ins SDK can be used with both Lightning Experience and Salesforce Classic. However, the SOS agent widget currently only
works in Salesforce Classic.

SDK Development Requirements
To develop using this SDK, you must have:

• iOS SDK version 9 or newer

• Xcode version 8 or newer

Mobile App Requirements
Any app that uses this SDK requires:

• iOS version 9 or newer

Salesforce Mobile SDK Requirements
The Snap-ins SDK has a dependency on the Salesforce Mobile SDK. If you're developing an app that uses the Mobile SDK directly and
you intend to manually include this dependency, use version 5.3.0 of the Mobile SDK.

SOS Agent Requirements
The agents responding to SOS calls must have modern browsers and reasonably high-speed internet connectivity to handle the demands
of real-time audio and video.

Hardware requirements:

• Webcam

• Microphone

Bandwidth requirements:

• 500 Kbps upstream

• 500 Kbps downstream

Browser requirements:

32

RequirementsService Cloud Snap-Ins for iOS

https://developer.apple.com/ios/
https://developer.apple.com/xcode/
https://developer.apple.com/ios/
https://developer.salesforce.com/page/Mobile_SDK


• Chrome version 35 or newer

• Firefox version 30 or newer

• Internet Explorer version 10 or newer (plug-in required)

Note:  Your browser must support Transport Layer Security (TLS) protocol version 1.1 or newer. If you are running Internet Explorer
version 10, see this help topic on how to update the TLS version.

Operating System:

• OSX 10.5 or newer

• Windows 7 or newer

Install the iOS SDK
Before you can use the iOS SDK, install the SDK and configure your project.

1. Add the SDK frameworks.

You can add the frameworks manually or add them using CocoaPods. CocoaPods is a popular dependency manager for Swift and
Objective-C projects.

• Add the Frameworks with CocoaPods

• Add the Frameworks Manually

2. (Knowledge only) Add an App Transport Security (ATS) exception to localhost  for serving cached knowledge base articles.

a. Open the Info.plist  file for your project.

Note:  If you right-click the plist file from the project navigator, you can select Open As > Source Code from the
context menu. The source code view is a quick way to add domains to your plist  file.

b. Add NSAppTransportSecurity  to your Info.plist  to allow insecure HTTP loads from localhost  .

<key>NSAppTransportSecurity</key>
<dict>
<key>NSExceptionDomains</key>
<dict>
<key>localhost</key>
<dict>
<key>NSExceptionAllowsInsecureHTTPLoads</key>
<true/>

</dict>
</dict>
</dict>

3. (SOS only) If you're using SOS, iOS 10 requires descriptions for why the app needs to access the device's microphone and camera.

Add string values for "Privacy - Microphone Usage Description" and "Privacy - Camera Usage Description" in your Info.plist
file. To learn more about these properties, see Cocoa Keys in Apple's reference documentation.

Sample values for these keys:

<key>NSMicrophoneUsageDescription</key>
<string>Used for an SOS chat with an agent.</string>
<key>NSCameraUsageDescription</key>
<string>Used for an SOS video chat with an agent.</string>

33

Install the iOS SDKService Cloud Snap-Ins for iOS

https://help.salesforce.com/articleView?id=Enabling-TLS-1-1-and-TLS-1-2-in-Internet-Explorer&type=1&language=en_US
https://cocoapods.org/
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/prerelease/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html


4. (Live Agent Chat only) If you're using Live Agent Chat, iOS 10 requires descriptions for why the app needs to access the device's
camera and photo library.

Add string values for "Privacy - Camera Usage Description" and "Privacy - Photo Library Usage Description" in your Info.plist
file. To learn more about these properties, see Cocoa Keys in Apple's reference documentation.

Sample values for these keys:

<key>NSCameraUsageDescription</key>
<string>Used when sending an image to an agent.</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>Used when sending an image to an agent.</string>

5. (SOS only) If you're using SOS, turn on Background Modes for your project.

To ensure that an SOS and Live Agent Chat session remains active while the app is in the background, verify that your background
settings are correct.

a. Open your Project Target Settings.

b. Select the Capabilities tab.

c. Set the Background Modes to ON.

d. From the Background Modes subcategories, check the Audio, AirPlay, and Picture in Picture item.

You're now ready to get started using the SDK!

Add the Frameworks with CocoaPods

Add the SDK frameworks using CocoaPods, a developer tool that automatically manages dependencies.

Add the Frameworks Manually

Add the SDK frameworks by manually embedding the appropriate frameworks.

Add the Frameworks with CocoaPods
Add the SDK frameworks using CocoaPods, a developer tool that automatically manages dependencies.

1. If you haven't already done so, install the CocoaPods gem and initialize the CocoaPods master repository.

sudo gem install cocoapods
pod setup

Note:  The minimum supported version of CocoaPods is 1.0.1. If you're not sure what version you have, use pod --version
to check the version number.

2. If you already have CocoaPods installed, update your pods to the latest version.

pod update

3. Change to the root directory of your application project.

4. Create or edit a file named Podfile  that contains the Snap-ins SDK dependency.

a. If you want to install the complete Snap-ins SDK, update your Podfile  to include ServiceSDK.

source 'https://github.com/CocoaPods/Specs.git'
source 'https://github.com/goinstant/pods-specs-public'

34

Install the iOS SDKService Cloud Snap-Ins for iOS

https://developer.apple.com/library/prerelease/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://cocoapods.org/
https://cocoapods.org/


# To use the Snap-ins SDK (with all components)
target '<your app target>' do

pod 'ServiceSDK'
end

b. If you want to install a single Snap-ins SDK component, create a similar Podfile  to the one specified above, but only include
the desired pod.

Pod nameFeature

ServiceSDK/KnowledgeKnowledge

ServiceSDK/CasesCase Management

ServiceSDK/ChatLive Agent Chat

ServiceSDK/SOSSOS

For example, the following Podfile installs SOS.

source 'https://github.com/CocoaPods/Specs.git'
source 'https://github.com/goinstant/pods-specs-public'

# To use SOS
target '<your app target>' do

pod 'ServiceSDK/SOS'
end

If you don't specify a version number, you automatically get the latest version of that component. If you want to add a specific
version to your component, be sure to add the version number of the Snap-ins SDK and not the version number of the individual
component.

For instance, if you want version 3.6.2 of SOS, specify 210.2.0 because version 210.2.0 of the Snap-ins SDK has version 3.6.2 of
SOS.

source 'https://github.com/CocoaPods/Specs.git'
source 'https://github.com/goinstant/pods-specs-public'

# To use SOS (with version info)
target '<your app target>' do

pod 'ServiceSDK/SOS', '210.2.0'
end

5. Run the CocoaPods installer.

pod install

This command generates a .xcworkspace  file for you with all the dependencies included.

6. Open the .xcworkspace  file that CocoaPods generated and continue with the installation process.

Note:  Be sure to open the .xcworkspace file (which includes all the dependencies) and not the .xcodeproj  file.

Once you've added the SDK frameworks, proceed with the installation instructions on page 33.

35

Install the iOS SDKService Cloud Snap-Ins for iOS



Add the Frameworks Manually
Add the SDK frameworks by manually embedding the appropriate frameworks.

1. Download the SDK frameworks from the Snap-ins SDK product page.

2. Embed the relevant Snap-ins SDK frameworks into your project.

You can find the framework files within the Frameworks  folder. The framework files within the SalesforceMobileSDK
subfolder are dependencies that you need to include as well. Specifically, the following frameworks are available for you to use:

Required?DescriptionFramework

YesContains all the common components
used by the Service SDK.

ServiceCore

Only if using KnowledgeContains access to the Knowledge features
of the SDK.

ServiceKnowledge

Only if using Case ManagementContains access to the Case Management
features of the SDK.

ServiceCases

Only if using Live Agent ChatContains access to the Live Agent Chat
features of the SDK.

ServiceChat

Only if using SOSContains access to the SOS features of the
SDK.

ServiceSOS

YesThis framework gives you access to the
core Salesforce Mobile SDK features. See

SalesforceSDKCore (in the
SalesforceMobileSDK  subfolder)

the Mobile SDK Developer’s Guide for
more info.

YesThis framework gives you access to the
analytics features of the Salesforce Mobile

SalesforceAnalytics (in the
SalesforceMobileSDK  subfolder)

SDK. See the Mobile SDK Developer’s
Guide for more info.

YesThis framework gives you access to the
offline secure storage features of the

SmartStore  (in the
SalesforceMobileSDK  subfolder)

Salesforce Mobile SDK. See the Mobile SDK
Developer’s Guide for more info.

YesA logging framework. To learn more, see
their Github repository.

CocoaLumberjack  (in the
SalesforceMobileSDK  subfolder)

Add the relevant frameworks to the Embedded Binaries section of the General tab for your target app. Be sure to select Copy
items if needed when embedding.

Once you’ve embedded the frameworks, you’ll automatically see them appear in the Linked Frameworks and Libraries section
as well. If you see two line items for each framework (which happens if you drag the frameworks into the project before embedding),
delete the duplicates.

Once you've added the SDK frameworks, proceed with the installation instructions on page 33.

36

Install the iOS SDKService Cloud Snap-Ins for iOS

https://developer.salesforce.com/page/SnapinsMobile
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/
https://github.com/CocoaLumberjack/CocoaLumberjack


Prepare Your App for Submission
Before you can submit your app to the App Store, you need to strip development resources (such as unneeded architectures and header
resources) from the dynamic libraries used by the Snap-ins SDK.

Xcode doesn't automatically strip unneeded architectures from dynamic libraries, nor remove some header and utility resources. Apps
that don't do this clean up are rejected from the App Store. For example, you might receive the following error from iTunes Connect:

ERROR ITMS-90085:
No architectures in the binary. Lipo failed to detect any architectures in the bundle
executable.

You can resolve this problem by using the script provided in the ServiceCore  framework that automatically strips unneeded
architectures from the dynamic libraries and then re-signs them. To use this script:

1. Select Build Phases  for your project target.

2. Create a Run Script  phase to run the script.

Access the prepare-framework  script from within the ServiceCore  framework in your project directory.

For example, if the framework is in your main project directory, use:

"$SRCROOT/ServiceCore.framework/prepare-framework"

And if you've installed the SDK with CocoaPods, use:

"$PODS_ROOT/ServiceSDK/Frameworks/ServiceCore.framework/prepare-framework"

Note:  This build phase must occur after the link phase and all embed phases. If you're using CocoaPods, make sure to put this
script after the "[CP] Embed Pods Frameworks" phase.

iOS Tutorials & Examples

Get going quickly with these short introductory tutorials.

In addition to these tutorials, check out our GitHub repository (github.com/forcedotcom/ServiceSDK-iOS) for sample apps.

Get Started with Knowledge

It’s easy to wire up your iOS app to your knowledge base articles.

Get Started with Case Publisher

Quickly build an app that lets you create a new case.

Get Started with Live Agent Chat

Get rolling quickly with live chat sessions between your customers and your agents.

Get Started with SOS

See for yourself how easy and effective live video chat and screen sharing can be.

Get Started with Knowledge
It’s easy to wire up your iOS app to your knowledge base articles.

Before doing this tutorial, be sure that you’ve set up Service Cloud for Knowledge. See Cloud Setup for Knowledge for more information.

This tutorial shows you how to put a knowledge base into your iOS app.

37

Prepare Your App for SubmissionService Cloud Snap-Ins for iOS

https://github.com/forcedotcom/ServiceSDK-iOS/tree/master/Examples
https://github.com/forcedotcom/ServiceSDK-iOS/tree/master/Examples


1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloKnowledge.

2. Install the SDK as described in Install the iOS SDK.

3. From your app delegate implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceKnowledge

In Objective-C:

@import ServiceCore;
@import ServiceKnowledge;

4. Point the SDK to your org from the applicationDidFinishLaunchingWithOptions  method of your app delegate
implementation.

To connect your app to your organization, create an SCSServiceConfiguration object containing the community URL,
the data category group, and the root data category. Pass this object to the ServiceCloud shared instance using
SCSServiceConfiguration(community: URL, dataCategoryGroup: String, rootDataCategory:
String)

38

Get Started with KnowledgeService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:


In Swift:

// Create configuration object with init params
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Perform any additional configuration here

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with init params
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]

initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]
dataCategoryGroup:@"Regions"
rootDataCategory:@"All"];

// Perform any additional configuration here

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

Note:  You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t set up
Knowledge in Service Cloud or you need more guidance, see Cloud Setup for Knowledge.

5. Go to your storyboard and place a button somewhere on the view. Name it Help.

6. Add a Touch Up Inside  action to your UIViewController  implementation. Name it showHelp.

39

Get Started with KnowledgeService Cloud Snap-Ins for iOS



7. From your view controller implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceKnowledge

In Objective-C:

@import ServiceCore;
@import ServiceKnowledge;

8. From within the button action handler, activate the Knowledge interface using the setInterfaceVisible  method.

In Swift:

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].knowledge setInterfaceVisible:YES
animated:YES

completion:nil];

And that’s it! You can now build and run your app to see how it looks. Click the Help  button to activate the interface.

40

Get Started with KnowledgeService Cloud Snap-Ins for iOS



You can customize the interface so it looks and feels just like your app. Check out SDK Customizations for guidance in this area.

Get Started with Case Publisher
Quickly build an app that lets you create a new case.

Before doing this tutorial, be sure that you’ve set up Service Cloud for Case Management. See Cloud Setup for Case Management for
more information.

This tutorial shows you how to connect your iOS app to the case management interface as a guest user. A guest user is able to publish
new cases. However, if you’d like to manage existing cases, you’ll need to authenticate a user from within your app. Authentication is
discussed in Case Management as an Authenticated User.

1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloCases.

41

Get Started with Case PublisherService Cloud Snap-Ins for iOS



2. Install the SDK as described in Install the iOS SDK.

3. From your app delegate implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceCases

In Objective-C:

@import ServiceCore;
@import ServiceCases;

4. Point the SDK to your org using an SCSServiceConfiguration object.

To connect your application to your organization, create an SCSServiceConfiguration object containing the community
URL. Pass this object to the ServiceCloud shared instance using SCSServiceConfiguration(community: URL).

In Swift:

// Create configuration object with your community URL
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!)

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

42

Get Started with Case PublisherService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:


In Objective-C:

// Create configuration object with your community URL
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]
initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]];

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

You can get the community URL from your Salesforce org. From Setup, search for All Communities, and copy the URL for the desired
community. For more help, see Cloud Setup for Case Management.

Note:  If you plan to access Knowledge in addition to Case Management, use
SCSServiceConfiguration(community: URL, dataCategoryGroup: String,
rootDataCategory: String) instead. This constructor sets up data categories in addition to setting the community
URL. See Quick Setup: Knowledge in the Knowledge section for more info.

5. Assign a global action to the Case Management interface. The global action determines the fields shown when a user creates a case.

To configure the fields shown when creating a case, specify the global action name in the caseCreateActionName property.
This code snippet illustrates how to associate the case publisher feature with the New Case global action layout, which is one of
the default actions provided in most orgs.

In Swift:

ServiceCloud.shared().cases.caseCreateActionName = "NewCase"

In Objective-C:

[SCServiceCloud sharedInstance].cases.caseCreateActionName = @"NewCase";

You can get the global action name from your Salesforce org. From Setup, search for Global Actions, and copy the name of the
desired quick action. For more help, see Cloud Setup for Case Management.

Note:  Be sure that your global action is accessible to the Guest user profile. Also note that the case publisher screen does not
respect field-level security for guest users. If you want to specify different security levels for different users, use different quick
actions.

6. Go to your storyboard and place a button somewhere on the view. Name it Help.

7. Add a Touch Up Inside  action to your UIViewController  implementation. Name it showHelp.

43

Get Started with Case PublisherService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName


8. From your view controller implementation, import the SDK.

In Swift:

import ServiceCore
import ServiceCases

In Objective-C:

@import ServiceCore;
@import ServiceCases;

9. From within the button action handler, activate the Case Management interface using the setInterfaceVisible method.

In Swift:

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].cases setInterfaceVisible:YES
animated:YES

completion:nil];

And that’s it! You can now build and run your app to see how it looks. Click the Help  button to activate the interface.

44

Get Started with Case PublisherService Cloud Snap-Ins for iOS



If you would like to give your users access to their existing case list, you’ll need to authenticate the user first. To learn more about
authentication, see Case Management as an Authenticated User. You can also customize the look and feel of the interface, as described
in SDK Customizations.

Get Started with Live Agent Chat
Get rolling quickly with live chat sessions between your customers and your agents.

Before doing this tutorial, be sure that you’ve set up Service Cloud for Live Agent. See Console Setup for Live Agent Chat for more
information.

This tutorial shows you how to get Live Agent into your iOS app.

1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloLiveAgentChat.

45

Get Started with Live Agent ChatService Cloud Snap-Ins for iOS



2. Install the SDK as described in Install the iOS SDK.

3. Go to your storyboard and place a button somewhere on the view. Name it Chat.

4. Add a Touch Up Inside  action to your UIViewController  implementation. Name it launchChat.

46

Get Started with Live Agent ChatService Cloud Snap-Ins for iOS



5. Import the SDK. Wherever you intend to use the Live Agent Chat SDK, be sure to import the Service Common framework and the
Live Agent Chat framework.

In Swift:

import ServiceCore
import ServiceChat

In Objective-C:

@import ServiceCore;
@import ServiceChat;

6. Launch a Live Agent Chat session from within the launchChat method.

From the button action implementation, launch Live Agent Chat using the startSession(with:
SCSChatConfiguration!) method.

In Swift:

@IBAction func launchChat(sender: AnyObject) {

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Start the session
ServiceCloud.shared().chat.startSession(with: config)

}

47

Get Started with Live Agent ChatService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:


In Objective-C:

- (IBAction)launchChat:(id)sender {

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-ORG-ID"

buttonId:@"YOUR-BUTTON-ID"];

// Start the session
[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

}

Fill in the placeholder text for the Live Agent pod, the org ID, the deployment ID, and the button ID.

pod
The hostname for the Live Agent pod that your organization has been assigned. To get this value, from Setup, search for Live
Agent Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the path
— just use the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization
ID.

48

Get Started with Live Agent ChatService Cloud Snap-Ins for iOS



deploymentId
The unique ID of your Live Agent deployment. To get this value, from Setup, select Live Agent > Deployments. The script at
the bottom of the page contains a call to the liveagent.init  function with the pod, the deploymentId, and orgId as
arguments. Copy the deploymentId value.

buttonId
The unique button ID for your chat configuration. You can get the button ID by creating a Live Agent chat button (see Create
Chat Buttons in the Live Agent help documentation), and instead of using the supplied JavaScript, copy the id attribute. To
get this value after creating a button, from Setup, search for Chat Buttons and select Chat Buttons & Invitations. Copy the
id  for the button from the JavaScript snippet.

7. Launch Service Cloud Console. From the Omni-Channel widget, ensure that a Live Agent agent is online.

49

Get Started with Live Agent ChatService Cloud Snap-Ins for iOS

https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=live_agent_create_buttons.htm&language=en_US


Now you can build and run the app. When you tap the Chat button, the app requests a Live Agent chat session, which an agent can
accept from the Service Cloud Console. From the console, an agent can real-time chat with a customer.

50

Get Started with Live Agent ChatService Cloud Snap-Ins for iOS



Get Started with SOS
See for yourself how easy and effective live video chat and screen sharing can be.

Before doing this tutorial, be sure that you’ve set up Service Cloud for SOS. See Console Setup for SOS for more information.

This tutorial shows you how to get SOS into your iOS app.

1. Create an Xcode project. For this example, let’s make a Single View Application. Name it HelloSOS.

2. Install the SDK as described in Install the iOS SDK.

3. Go to your storyboard and place a button somewhere on the view. Name it SOS.

51

Get Started with SOSService Cloud Snap-Ins for iOS



4. Add a Touch Up Inside  action to your UIViewController  implementation. Name it launchSOS.

5. Import the SDK. Wherever you intend to use the SOS SDK, be sure to import the Service Common framework and the SOS framework.

In Swift:

import ServiceCore
import ServiceSOS

In Objective-C:

@import ServiceCore;
@import ServiceSOS;

6. Launch an SOS session from within the launchSOS method.

From the button action implementation, launch SOS using the startSession method on the SOSSessionManager shared
instance.

In Swift:

@IBAction func launchSOS(sender: AnyObject) {

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

ServiceCloud.shared().sos.startSession(with: options)
}

52

Get Started with SOSService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)startSessionWithOptions:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html


In Objective-C:

- (IBAction)launchSOS:(id)sender {

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];
}

Fill in the placeholder text for the Live Agent pod, the org ID, and the deployment ID.

pod
The hostname for the Live Agent pod that your organization has been assigned. To get this value, from Setup, search for Live
Agent Settings and copy the hostname from the Live Agent API Endpoint. Be sure not to include the protocol or the path
— just use the hostname. For example: "d.la12345.salesforceliveagent.com".

orgId
The Salesforce org ID. To get this value, from Setup, search for Company Information and copy the Salesforce Organization
ID.

deploymentId
The unique ID of your SOS deployment. To get this value, from Setup, search for SOS Deployments, click the correct deployment
and copy the Deployment ID.

53

Get Started with SOSService Cloud Snap-Ins for iOS



7. Launch Service Cloud Console. From the Omni-Channel widget, ensure that an SOS agent is online.

Now you can build and run the app. When you tap the SOS button, the app requests an SOS session, which an agent can accept from
the Service Cloud Console. From the console, you can chat with the customer, annotate things on their screen, and perform a two-way
video session (if enabled).

54

Get Started with SOSService Cloud Snap-Ins for iOS



Using Knowledge

Adding the Knowledge experience to your app.

Knowledge Overview

Learn about the Knowledge experience using the SDK.

Quick Setup: Knowledge

To set up Knowledge, point the shared instance to your community, customize the look and feel, and show the interface.

Knowledge as an Authenticated User

In some scenarios, you may want only logged-in users to see your knowledge base. You might even have different knowledge bases
for different user profiles. For these scenarios, you can use the authenticated Knowledge feature.

Customize the Presentation and View Controllers for Knowledge

The simplest way to show and hide the Knowledge interface is by calling the setInterfaceVisible  method. Alternatively,
you can present the interface using a custom presentation. You can even manually control the Knowledge view controllers yourself.

Article Fetching and Caching

By default, the SDK fetches knowledge articles as they are needed. These articles are then cached locally for faster access. However,
using methods in SCSKnowledgeManager, you can pre-fetch articles to support offline access and other use cases.

55

Using KnowledgeService Cloud Snap-Ins for iOS



Customize Knowledge Articles with JavaScript or CSS

Create a richer experience for your users by injecting custom JavaScript or CSS into your knowledge articles. For example, change
the style sheet for all your articles, or add introductory content to a subset of articles.

Disable Case Management from Knowledge Interface

By default, Case Management is enabled when a user accesses your Knowledge interface. A user can create a case with an action
button at the bottom of the view. However, you can remove this action button by implementing a protocol method on
SCServiceCloudDelegate.

Knowledge Overview
Learn about the Knowledge experience using the SDK.

The Knowledge feature in the SDK gives you access to your org’s knowledge base directly from within your app. Once you point your
app to your community URL with the right category group and root data category, you can display your knowledge base to your users.

By default, knowledge appears as a floating dialog on top of your app’s existing content, though you can customize the presentation if
you’d like. From the knowledge home, a user can navigate through articles that are organized by category. Articles are also searchable
from within the app. By default, a user can create or manage cases using an action button from within the Knowledge interface.

56

Knowledge OverviewService Cloud Snap-Ins for iOS



When a user views an article, they can minimize it using the minimize button at the top right of the article (1) so that they can continue
to navigate your app. The user can drag this thumbnail (2) to any part of the screen to improve visibility of the currently showing view.
Tapping the X closes the article. Tap on any other part of the thumbnail to make it full screen again.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Let’s get started.

Quick Setup: Knowledge
To set up Knowledge, point the shared instance to your community, customize the look and feel, and show the interface.

Before running through these steps, be sure you’ve already:

57

Quick Setup: KnowledgeService Cloud Snap-Ins for iOS



• Set up Service Cloud to work with Knowledge. To learn more, see Cloud Setup for Knowledge.

• Installed the SDK. To learn more, see Install the iOS SDK.

Once you’ve reviewed these prerequisites, you’re ready to begin.

1. Import the SDK. Wherever you intend to use the Knowledge SDK, be sure to import the Service Common framework and the
Knowledge framework.

In Swift:

import ServiceCore
import ServiceKnowledge

In Objective-C:

@import ServiceCore;
@import ServiceKnowledge;

2. Point the SDK to your org using an SCSServiceConfiguration object.

To connect your app to your organization, create an SCSServiceConfiguration object containing the community URL,
the data category group, and the root data category. Pass this object to the ServiceCloud shared instance using
SCSServiceConfiguration(community: URL, dataCategoryGroup: String, rootDataCategory:
String).

In Swift:

// Create configuration object with init params
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Perform any additional configuration here

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with init params
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]

initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]
dataCategoryGroup:@"Regions"
rootDataCategory:@"All"];

// Perform any additional configuration here

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

Note:  You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t set up
Knowledge in Service Cloud or you need more guidance, see Cloud Setup for Knowledge.

3. (Optional) Customize the appearance and behavior of the interface.

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage.

58

Quick Setup: KnowledgeService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:


You can customize the action buttons used throughout the UI. You can override the look and the behavior of existing buttons, and
you can create buttons associated with new actions.

There are many different ways to customize the interface. See SDK Customizations.

4. (Optional) Implement any of the Snap-ins SDK delegates.

SCServiceCloudDelegate
Access to general Snap-ins SDK events (for example, willDisplayViewController, didDisplayViewController,
shouldShowActionWithName).

SCKnowledgeInterfaceDelegate
Access to Knowledge interface events (for example, imageForArticle, imageForDataCategory). See Customize
Images for an example of using this delegate.

SCAppearanceConfigurationDelegate
Access to appearance-related events (for example, appearanceConfigurationWillApplyUpdates,
appearanceConfigurationDidApplyUpdates).

5. Show the interface from your view controller using setInterfaceVisible.

You can show the interface as soon as the view controller loads, or start it from a UI action.

In Swift:

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].knowledge setInterfaceVisible:YES
animated:YES

completion:nil];

By default, the interface appears as a floating dialog. Alternatively, you can present the interface using a custom presentation. See
Customize the Presentation and View Controllers for Knowledge for more info.

For instructions on launching the interface from a web view, see Launch SDK from a Web View.

If you run into issues accessing your community, check out Can’t Access My Knowledge Base.

Example: Swift Example

To use this example code, create a Single View Application and Install the iOS SDK.

Set up the Knowledge interface within the AppDelegate  implementation.

import UIKit
import ServiceCore
import ServiceKnowledge

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

59

Quick Setup: KnowledgeService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCKnowledgeInterfaceDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCAppearanceConfigurationDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:


// Create configuration object with init params
let config = SCSServiceConfiguration(
community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

return true
}

}

Using the storyboard, add a button to the view. Then add a Touch Up Inside  action in your UIViewController
implementation with the name showHelp. When the button is clicked, make the Knowledge interface visible.

import UIKit
import ServiceCore
import ServiceKnowledge

class ViewController: UIViewController {

@IBAction func showHelp(_ sender: AnyObject) {

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

}
}

Knowledge as an Authenticated User
In some scenarios, you may want only logged-in users to see your knowledge base. You might even have different knowledge bases
for different user profiles. For these scenarios, you can use the authenticated Knowledge feature.

These instructions set up your knowledge base as an authenticated user. When you activate the Knowledge interface for authenticated
users, they see knowledge content assigned to their user profile. If you do not want to authenticate users and prefer to let them see
knowledge content accessible to guest users, see Quick Setup: Knowledge for instructions on accessing a public knowledge base.

Note:  When using Knowledge with authenticated users, be sure that your knowledge article types are visible (set to "Read") for
the desired user profile and that the knowledge articles belong to a channel that is accessible to that user. For more information,
see Knowledge Article Access and Create and Edit Articles in Salesforce Help.

1. Review the steps in Quick Setup: Knowledge.

The basic steps for setting up and displaying the interface still apply for authenticated users.

2. If you're using a Salesforce community and authenticating with the Salesforce Mobile SDK, configure the login endpoint as described
in the Salesforce Mobile SDK documentation: Configure the Login Endpoint.

The documentation describes how to use the SFDCOAuthLoginHost  property in your info.plist  file to create a custom
login URI.

3. Write the code to authenticate a user with your org.

60

Knowledge as an Authenticated UserService Cloud Snap-Ins for iOS

https://help.salesforce.com/apex/HTViewHelpDoc?id=knowledge_setup_users.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=knowledge_article_create.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/communities_login_endpoint.htm


You can authenticate in several ways.

• Create normal user accounts on your Salesforce org. If you have (or want to create) Salesforce user accounts for each user
of your app, see Digging Deeper into OAuth 2.0 in Salesforce, which describes how to set up a connected app on Salesforce. For
developers already using the Salesforce Mobile SDK, the Mobile SDK Developer’s Guide contains instructions for authenticating
with that SDK.

• Use your own user credentials to create community portal users on Salesforce. You can authenticate using existing
credentials on your server. One approach is to create an API endpoint on your server that is accessible to your app. For each user,
your server can formulate unique information representing that user. Use this information in a JSON Web Token (JWT) payload.
Sign and submit this information to the OAuth endpoint on your Salesforce org. Using Apex code configured within Salesforce,
you can use the JWT information to identify a previously created community user or implicitly create a new user. That user's
OAuth keys can be created and supplied back to your server.

– An overview of authentication from a mobile device: Understand Security and Authentication.

– Documentation about building a Salesforce connected app for authentication: Connected Apps.

Note:  When creating a connected app, be sure that it has access to the chatter_api  scope. See Scope Parameter
Values.

– Documentation about using JWT for Salesforce authorization: OAuth 2.0 JWT Bearer Token Flow.

– Documentation about creating a community portal user with an Apex trigger: Apex Developer Guide: Site Class.

Keep in mind that you must manage the token refresh process.

4. Once authenticated, give the Snap-ins SDK an SFUserAccount  object with your credentials.

Whichever method you use to authenticate, you need an SFUserAccount object (with a valid credentials  property) to
pass to the Snap-ins SDK. This class comes from the Salesforce Mobile SDK. If you’re already using the Mobile SDK to authenticate,
one way to get this object is with the loginWithCompletion:failure:credentials:  method from the
SFAuthenticationManager  class. If you're not using the Mobile SDK to authenticate, create an SFUserAccount manually
and populate it with a credentials  property that contains the following valid fields:

• accessToken

• redirectUri

• instanceUrl

• identityUrl

• clientId

• refreshToken  (only required if using a Mobile SDK connected app, which performs the refresh process for you)

5. Implement SCServiceCloudDelegate and pass account information from within the
serviceCloud(shouldAuthenticateService: SCServiceType) method. The SDK calls this method whenever
it plans to display a view that can support authenticated users.

The ServiceCloud shared instance has a delegate you can implement.

In Swift:

ServiceCloud.shared().delegate = self

In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

61

Knowledge as an Authenticated UserService Cloud Snap-Ins for iOS

https://help.salesforce.com/articleView?id=remoteaccess_authenticate_overview.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm?search_text=SFUserAccount
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro_oauth.htm
https://trailhead.salesforce.com/en/modules/mobile_sdk_introduction/units/mobilesdk_intro_security
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_oauth_scopes.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_oauth_scopes.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_oauth_jwt_flow.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.212.0.apexcode.meta/apexcode/apex_classes_sites.htm
http://forcedotcom.github.io/SalesforceMobileSDK-iOS/Documentation/SalesforceSDKCore/html/Classes/SFUserAccount.html
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm
http://forcedotcom.github.io/SalesforceMobileSDK-iOS/Documentation/SalesforceSDKCore/html/Classes/SFUserAccount.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateService:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html


If you want an authenticated connection, implement the serviceCloud(shouldAuthenticateService:
SCServiceType) method from this delegate and return true. This method is a good place to pass in the user account with
the supplied completion block, which runs asynchronously.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
shouldAuthenticateService service: SCServiceType,
completion: @escaping (SFUserAccount?) -> Void) -> Bool {

let user: SFUserAccount = // TO DO: Get user account

// After acquiring user information, call
// this completion block to set the new user:
completion(user)

return true
}

In Objective-C:

- (BOOL)serviceCloud:(SCServiceCloud *)serviceCloud
shouldAuthenticateService:(NSString *)service

completion:(void (^)(SFUserAccount * _Nullable))completion {

SFUserAccount* user = // TO DO: Get user account

// After acquiring user information, call
// this completion block to set the new user:
completion(user);

return YES;
}

6. For error handling, implement serviceCloud(serviceAuthenticationFailedWithError: Error) from
SCServiceCloudDelegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
serviceAuthenticationFailedWithError error: Error) {

// TO DO: Inspect error and handle appropriately.
}

In Objective-C:

- (void)serviceCloud:(SCServiceCloud*)serviceCloud
serviceAuthenticationFailedWithError:(NSError*)error {

// TO DO: Inspect error and handle appropriately.
}

The Error  object contains information about the error. The code  property on this object contains the error code. The following
errors are the most common error codes you can encounter:

62

Knowledge as an Authenticated UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateService:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateService:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:serviceAuthenticationFailedWithError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html


DescriptionError Code

Occurs when the session has expired or the ID is invalid. Use the
refresh token to acquire another access token and then update
the account  property, as shown in the next step.

SCServiceUserSessionExpiredOrInvalidError
(401)

Occurs when the user does not have sufficient access for the
request. Verify that the logged in user has sufficient credentials.

SCServiceUserRequestRefusedError (403)

Occurs when the requested resource was not found. Check the
URI and other parameters for errors.

SCServiceUserResourceNotFoundError (404)

See Status Codes and Error Responses for a full set of possible error codes.

7. When account information changes, update the account  property.

Account information can change if the access token expires, the user logs out, another user logs in, and for various other reasons.
You can update the account property on the ServiceCloud shared instance. The Snap-ins SDK updates the interface to
correspond with the updated account information. Preferably, instead of setting the property, use the setAccount method,
which allows you to specify a completion block for error handling.

In Swift:

let user = // Get user account

ServiceCloud.shared().setAccount(user, completion: { (error: Error?) in

// TO DO: Handle error
})

In Objective-C:

SFUserAccount *user = // Get user account
[[SCServiceCloud sharedInstance]

setAccount:user completion:^(NSError *error) {

// TO DO: Handle error
}];

Note:  When you log out a user, the SDK deletes all local data associated with that user.

After you authenticate users, they see only Knowledge content that is accessible to their user profile.

Customize the Presentation and View Controllers for Knowledge
The simplest way to show and hide the Knowledge interface is by calling the setInterfaceVisible  method. Alternatively, you
can present the interface using a custom presentation. You can even manually control the Knowledge view controllers yourself.

Activating Interface Using the Default Presentation
Use the setInterfaceVisible method to show the Knowledge interface using the default presentation. This method shows the
interface as a floating dialog on top of your app’s existing content. When the user drills into a detail screen, the interface automatically
transitions to a full screen mode.

63

Customize the Presentation and View Controllers for
Knowledge

Service Cloud Snap-Ins for iOS

https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/errorcodes.htm
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)account
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAccount:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:


In Swift:

ServiceCloud.shared().knowledge.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].knowledge setInterfaceVisible:YES
animated:YES

completion:nil];

Activating Interface Using a Custom Transitioning Delegate
You can also present the interface using a custom transitioning animation and custom presentation. Implement a
UIViewControllerTransitioningDelegate.

1. Supply the ServiceCloud shared instance with your SCServiceCloudDelegate implementation.

In Swift:

ServiceCloud.shared().delegate = mySCServiceCloudDelegate

In Objective-C:

[SCServiceCloud sharedInstance].delegate = mySCServiceCloudDelegate;

2. Implement the serviceCloud(transitioningDelegateForPresentedController: UIViewController,
presenting: UIViewController) method in your delegate and return a custom
UIViewControllerTransitioningDelegate  from this method.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
transitioningDelegateForPresentedController
presentedController: UIViewController,

presenting presentingController: UIViewController)
-> UIViewControllerTransitioningDelegate? {

// TO DO: Put your logic here and then return your transitioning delegate...

return myTransitioningDelegate
}

In Objective-C:

- (NSObject<UIViewControllerTransitioningDelegate> *)
serviceCloud:(SCServiceCloud *)serviceCloud

transitioningDelegateForViewController:(UIViewController *)controller {

// TO DO: Put your logic here and then return your transitioning delegate...

return myTransitioningDelegate;
}

64

Customize the Presentation and View Controllers for
Knowledge

Service Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:


Showing or Customizing the View Controllers
Instead of having the SDK manage the flow from one view to the next, you can instantiate any of the view controllers and display it
manually. When instantiating a view controller, be sure to implement the associated delegate and pass that delegate to the view controller
(using the delegate  property). The delegates allow you to override the default behavior for the views. For instance, you can filter
the categories shown to the user based on your own run-time logic.

If you don't want to manually instantiate a view controller but you still want the ability to control its behavior, implement the methods
of SCServiceCloudDelegate that give you access to the view controllers.

DelegateView ControllerFeature

SCSKnowledgeHomeViewControllerDelegateSCSKnowledgeHomeViewControllerKnowledge Home Screen — to show a list
of categories

SCSCategoryViewControllerDelegateSCSCategoryViewControllerCategory List View — to show a list of
articles for a category

SCSArticleQueryListViewControllerDelegateSCSArticleQueryListViewControllerArticle Query List — to show a list of articles
based on a query (used for case deflection
when creating a case)

SCSArticleViewControllerDelegateSCSArticleViewControllerArticle View — to show an individual article

See the linked reference documentation for details on each of these classes and delegates.

You can manually display an article by instantiating an SCSArticleViewController instance, specifying the article using the
article property, and then presenting the view yourself. This technique is useful if you want to display specific articles within your
app and you want the view within your own view hierarchy. To learn more about this technique, see Article Fetching and Caching.

Article Fetching and Caching
By default, the SDK fetches knowledge articles as they are needed. These articles are then cached locally for faster access. However, using
methods in SCSKnowledgeManager, you can pre-fetch articles to support offline access and other use cases.

When the SDK displays an article, it first requests the latest article data from the server. If the content is stored in the cache, it's shown
immediately — even before the network request completes. If the information stored on the server is newer than what is located in the
cache, the database updates with the latest article content and the article view controller updates accordingly. In this way, article content
is quickly available even when the device is offline or has a spotty network connection, but the SDK also ensures that content is up to
date.

This default behavior may be all you need out of a knowledge base. However, you can explicitly fetch articles for one of several common
use cases:

• Faster access to the most commonly viewed articles.

• Custom presentation of specific content.

• Offline access to some or all of your knowledge base.

There are several different ways to fetch knowledge articles. You can fetch all articles in a category. You can fetch articles based on a
query. You can sort or limit the search results. And of course, you can also fetch specific articles by article ID.

The following classes are associated with article caching:

KnowledgeManager
Manager class for interacting with Knowledge at the data level, including article caching functionality.

65

Article Fetching and CachingService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSKnowledgeHomeViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeHomeViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCategoryViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCategoryViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleQueryListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleQueryListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html#/c:objc(cs)SCSArticleViewController(py)article
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html


CategoryGroup
Class that represents a category group.

Category
Class that represents a category or subcategory.

MutableArticleQuery
Class used to build your article query. The immutable parent class is SCSArticleQuery.

Article
Class that contains information about an article.

Fetching Categories
Since data categories are at the heart of knowledge articles, the categories for your org need to be downloaded before any interactions
with Knowledge can be made. To see if categories have been cached, check the value for hasFetchedCategories. If it returns
NO, call fetchAllCategories. When downloading individual articles, you don't need to make this call, but you won’t be able to
access content that requires information about data categories without performing this fetch.

In Swift:

let knowledgeManager = KnowledgeManager.default()
if (!knowledgeManager.hasFetchedCategories()) {

knowledgeManager.fetchAllCategories(completionHandler: {
(categoryGroups: [CategoryGroup]?, error: Error?) in

// TO DO: Get articles from each category using queryArticlesInCategory

})
}

In Objective-C:

SCSKnowledgeManager *knowledgeManager = [SCSKnowledgeManager defaultManager];
if (!knowledgeManager.hasFetchedCategories) {

[knowledgeManager fetchAllCategoriesWithCompletionHandler:^
(NSArray<SCSCategoryGroup *> * _Nullable categoryGroups,
NSError * _Nullable error) {

// TO DO: Get articles from each category using queryArticlesInCategory

}];
}

Note:  If your interface supports authenticated users, keep in mind that the user account information does not change for a
pre-existing instance of SCSKnowledgeManager. After you authenticate a user, call the static default method on
KnowledgeManager to get a new instance containing new user account information.

Querying for Articles (from Server, or Locally)
To fetch articles from the server for a given query, call fetchArticles(with: ArticleQuery). To fetch local (already cached)
articles for a given query, call articles(matching: ArticleQuery). These methods take a MutableArticleQuery

66

Article Fetching and CachingService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCategoryGroup.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCategory.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSMutableArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)hasFetchedCategories
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchAllCategoriesWithCompletionHandler:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(cm)defaultManager
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchArticlesWithQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)articlesMatchingQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSMutableArticleQuery.html


instance, which is an essential part of your fetch request. If you already fetched categories, you can drive this query based on a category;
you can also directly query for an article based on its ID, or using another type of query.

When you create a MutableArticleQuery instance, you can determine the type of query using the following properties:

Table 4: Query Types

NotesProperty Name / TypeQuery Type

The 18-character article ID. This property
cannot be used with searchTerm,

articleId: StringArticles matching article ID

queryMethod, sortOrder, or
sortByField.

This property cannot be used with
articleId, sortOrder, or
sortByField.

searchTerm: StringArticles matching search term

You must use the queryMethod  filter
described in the Query Filters table if you
use this query type.

categories: array of Category
objects

Articles within a set of categories

You can sort the query results with the following properties:

Table 5: Query Sort Properties

DescriptionProperty Name / Type / DefaultQuery Sort Property

Whether to sort by ascending order or
descending order.

sortOrder: SCArticleSortOrder
= .descending

Sort using a specific sort order

Which field you want to sort by. For
example: .title,
.lastPublishedDate.

sortByField:
SCArticleSortByField =
.lastPublishedDate

Sort using a specific field type

You can filter the query results with the following properties:

Table 6: Query Filters

DescriptionProperty Name / Type / DefaultQuery Filter

The number of articles to retrieve. The server
does not provide more than 100 articles at
a time.

pageSize: UInt  = 20Number of articles to fetch

Whether you want the query to operate on
just the specified categories (.at), the

queryMethod: SCQueryMethod =
.below

Filter selector for category (used with the
categories  property)

categories and all their parent categories
(.above), the categories and all their
subcategories (.below). Typically, you'll
want to use .below  to capture the
specified category and its children.

67

Article Fetching and CachingService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSMutableArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCArticleSortOrder.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCArticleSortByField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCQueryMethod.html


DescriptionProperty Name / Type / DefaultQuery Filter

Be sure to have something specified in the
categories  property when using this
filter.

Before performing a query, you can check whether the query is valid using the valid property. A query is invalid when conflicting
property values are specified. The following situations cause an invalid query: when searchTerm  and articleId  are both
populated, when searchTerm  and sortByField are both populated, when searchTerm  and sortOrder  are both
populated, when articleId  and categories  are both populated, when articleId  and sortByField  are both populated,
when articleId  and sortOrder  are both populated, and whenarticleId  and queryMethod  are both populated.

This code shows an example that queries using a search term with a limit of five articles per page.

In Swift:

let query = MutableArticleQuery()
query.searchTerm = "login issues"
query.pageSize = 5

knowledgeManager.fetchArticles(with: query, completion: {
(articles: [Article], error: Error?) in

// TO DO: Download articles using downloadContentWithOptions

})

In Objective-C:

SCSMutableArticleQuery *query = [SCSMutableArticleQuery new];
query.searchTerm = @"login issues";
query.pageSize = 5;

[knowledgeManager fetchArticlesWithQuery:query completion:^
(NSArray<SCSArticle *> * _Nonnull articles,
NSError * _Nullable error) {

// TO DO: Download articles using downloadContentWithOptions

}];

Downloading Content
Once you’ve fetched the articles, you’ll need to download them before displaying. Use the downloadContent(withOptions:
SCSArticleDownloadOption) method in the Article class to perform this function. This method caches the HTML content.
It also fetches the article images, if you specify it to do so with the Options parameter.

In Swift:

let article = // once you have an article

let options: Int = SCSArticleDownloadOption.refetchArticleContent.rawValue |
SCSArticleDownloadOption.images.rawValue

68

Article Fetching and CachingService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleQuery.html#/c:objc(cs)SCSArticleQuery(py)valid
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)downloadContentWithOptions:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)downloadContentWithOptions:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html


article.downloadContent(withOptions: SCSArticleDownloadOption(rawValue:options)!,
completion: { (error: Error?) in

// TO DO: Handle completion

})

In Objective-C:

SCSArticle *article = // once you have an article

[article downloadContentWithOptions:
(SCSArticleDownloadOptionRefetchArticleContent|SCSArticleDownloadOptionImages)
completion:^(NSError * _Nullable error) {

// TO DO: Handle completion

}]

At this point, the article is downloaded and available for offline access.

If you're not sure if an article has already been downloaded, use the isArticleContentDownloaded and
isAssociatedContentDownloaded methods to check before downloading.

Displaying Content
You've got several ways to present knowledge content:

1. Use the default presentation. If you use the setInterfaceVisible method, the SDK automatically displays the content, and
it uses cached content before trying to get content online.

2. You can display an article using the showArticle method and specifying the article you want to show. As with the default
presentation, this technique presents the article in a floating window that can be minimized.

3. You can manually display an article by instantiating an SCSArticleViewController instance, specifying the article using
the article property, and then presenting the view yourself. This technique is useful if you want to display specific articles within
your app and you want the view within your own view hierarchy. When using this technique, you can use the
SCSArticleViewControllerDelegate class to listen for events.

In Swift:

// Get Knowledge Manager instance
let knowledgeManager = KnowledgeManager.default()

// Create query for a specific article
let query = MutableArticleQuery()
query.articleId = "TO_DO:QUERY_ID"

// Fetch article
knowledgeManager.fetchArticles(with: query, completion: {

(articles: [Article], error: Error?) in

if (error != nil) {
// TO DO: Handle error

}
else if (articles.count == 0) {
// TO DO: Handle no results

69

Article Fetching and CachingService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isArticleContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isAssociatedContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)showArticle:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html#/c:objc(cs)SCSArticleViewController(py)article
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html


}
else {
let article: Article = articles[0]

// Download article
let options: Int = SCSArticleDownloadOption.refetchArticleContent.rawValue |

SCSArticleDownloadOption.images.rawValue
article.downloadContent(withOptions: SCSArticleDownloadOption(rawValue:options)!,

completion: { (error: Error?) in

if (error != nil) {
// TO DO: Handle error

} else {

// Display view with article
let articleVC = SCSArticleViewController()
articleVC.article = article
self.present(articleVC, animated:true, completion: nil)

}
})

}
})

In Objective-C:

// Get Knowledge Manager instance
SCSKnowledgeManager *knowledgeManager = [SCSKnowledgeManager defaultManager];

// Create query for a specific article
SCSMutableArticleQuery *query = [SCSMutableArticleQuery new];
query.articleId = @"TO_DO:QUERY_ID";

// Fetch article
[knowledgeManager fetchArticlesWithQuery:query completion:^

(NSArray<SCSArticle *> * _Nonnull articles,
NSError * _Nullable error) {

if (error != nil) {
// TO DO: Handle error

}
else if ([articles count] == 0) {
// TO DO: Handle no results

}
else {
SCSArticle *article = articles[0];

// Download article
[article downloadContentWithOptions:

(SCSArticleDownloadOptionRefetchArticleContent|SCSArticleDownloadOptionImages)
completion:^ (NSError* error) {

if (error != nil) {
// TO DO: Handle error

} else {

70

Article Fetching and CachingService Cloud Snap-Ins for iOS



// Display view with article
SCSArticleViewController *articleVC = [[SCSArticleViewController alloc] init];
articleVC.article = article;
[self presentViewController:articleVC animated:YES completion:nil];

}
}];

}
}];

Example: This code shows an example of how to download the top three articles in each category.

In Swift:

let knowledgeManager = KnowledgeManager.default()

// Create an article download block
let articleDownloadBlock = {

// Get category group
let categoryGroup = knowledgeManager.categoryGroup(withName: "MY-CATEGORY-GROUP")

// Get root category from category group
let rootCategory = categoryGroup?.category(withName: "MY-CATEGORY")

if (rootCategory != nil) {

// Iterate through all categories in root category
for category in (rootCategory!.childCategories) {

// Build a query...
let query = MutableArticleQuery()

// ... for the current category
query.categories = [category]

// ... containing the top 3 articles
query.pageSize = 3

// And then fetch articles with that query
knowledgeManager.fetchArticles(with: query, completion:
{ (articles: [Article], error: Error?) in

// TO DO: Check for error

// For each article object fetched
for article in articles {

// Fetch the contents
let options: Int =
SCSArticleDownloadOption.refetchArticleContent.rawValue |
SCSArticleDownloadOption.images.rawValue

article.downloadContent(
withOptions: SCSArticleDownloadOption(rawValue: options)!,
completion: nil)

}

71

Article Fetching and CachingService Cloud Snap-Ins for iOS



})
}

}
}

// If we haven't fetched the categories
if (!knowledgeManager.hasFetchedCategories()) {

// Then first fetch the categories
knowledgeManager.fetchAllCategories(completionHandler:
{ (categoryGroups: [CategoryGroup]?, error: Error?) in

// TO DO: Check for error

// And then download the articles
articleDownloadBlock();

})
}
else {
// Download the articles
articleDownloadBlock();

}

In Objective-C:

SCSKnowledgeManager *knowledgeManager = [SCSKnowledgeManager defaultManager];

// Create an article download block
dispatch_block_t articleDownloadBlock = ^{

// Get category group
SCSCategoryGroup *categoryGroup =
[knowledgeManager categoryGroupWithName:@"MY-CATEGORY-GROUP"];

// Get root category from category group
SCSCategory *rootCategory =
[categoryGroup categoryWithName:@"MY-CATEGORY"];

if (rootCategory != nil) {

// Iterate through all categories in root category
for (SCSCategory *category in rootCategory.childCategories) {

// Build a query...
SCSMutableArticleQuery *query = [SCSMutableArticleQuery new];

// ... for the current category
query.categories = [NSArray arrayWithObjects: category, nil];

// ... containing the top 3 articles
query.pageSize = 3;

// And then fetch articles with that query
[knowledgeManager fetchArticlesWithQuery:query completion:^

(NSArray<SCSArticle *> * _Nonnull articles,

72

Article Fetching and CachingService Cloud Snap-Ins for iOS



NSError * _Nullable error) {

// TO DO: Check for error

// For each article object fetched
for (SCSArticle *article in articles) {

// Fetch the contents
[article downloadContentWithOptions:
(SCSArticleDownloadOptionRefetchArticleContent|
SCSArticleDownloadOptionImages)
completion:nil];

}
}];

}
}

};

// If we haven't fetched the categories
if (!knowledgeManager.hasFetchedCategories) {

// Then first fetch the categories
[knowledgeManager fetchAllCategoriesWithCompletionHandler:^

(NSArray<SCSCategoryGroup *> * _Nullable categoryGroups,
NSError * _Nullable error) {

// TO DO: Check for error

// And then download the articles
articleDownloadBlock();

}];
} else {

// Download the articles
articleDownloadBlock();

}

Customize Knowledge Articles with JavaScript or CSS
Create a richer experience for your users by injecting custom JavaScript or CSS into your knowledge articles. For example, change the
style sheet for all your articles, or add introductory content to a subset of articles.

You can perform JavaScript and CSS injection globally or on a per-article basis.

To update the global CSS or JavaScript, use the globalArticleCSS property and the globalArticleJavascript property
on the SCAppearanceConfiguration object. To learn more about using this appearance object, see SDK Customizations.

To update the CSS or JavaScript for a particular article, use the additionalCSSForArticle method and the
additionalJavascriptForArticle method on SCSArticleViewControllerDelegate. To learn about view
controllers and their delegates, see Customize the Presentation and View Controllers for Knowledge.

To learn about the HTML structure for a knowledge article, see the reference documentation for SCSArticleViewController.

73

Customize Knowledge Articles with JavaScript or CSSService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleCSS
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleJavascript
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalCSSForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalJavascriptForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html


Example: This example injects custom CSS to all articles and injects custom JavaScript only to articles whose title contains "San
Francisco." You can apply these concepts to your own use cases.

Let's run this example on the following articles.

We want to make 2 changes to the articles.

• A global CSS change to give all articles a vivid green background and thick blue border.

• A JavaScript change to insert a bright pink paragraph at the top of all articles whose title includes "San Francisco."

After the example runs, you see the following changes.

74

Customize Knowledge Articles with JavaScript or CSSService Cloud Snap-Ins for iOS



To implement the green background color and thick blue border to all articles, add the following CSS to the globalArticleCSS
property on the SCAppearanceConfiguration object.

// Create appearance configuration instance
let appearance = SCAppearanceConfiguration()

// Customize the CSS with an ugly green background and a blue border...
appearance.globalArticleCSS = "body { background: #00ff00; border: thick solid #0000ff;
}"

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = appearance

To add an introductory paragraph to specific articles, we need access to the right view controller and implement the right delegate
method.

1. To check when an SCSArticleViewController will show, implement the willDisplay  method of
SCServiceCloudDelegate.

2. To inspect the new article and add JavaScript, implement the additionalJavascriptForArticle method of
SCSArticleViewControllerDelegate.

3. If the article title contains "San Francisco," add JavaScript.

This code performs all these tasks.

class MySnapinsDelegate: NSObject, SCServiceCloudDelegate,
SCSArticleViewControllerDelegate {

// The custom JavaScript that we'll add to selected articles
let customJavaScript = """
window.onload = function() {
var testNode = document.createElement('p');
testNode.innerText = 'San Francisco Article, added by JavaScript';
testNode.style.color = '#000000';
testNode.style.background = '#f76b95';
testNode.style.padding = '5pt';
testNode.style.textAlign = 'center';
document.body.insertBefore(testNode, document.body.firstChild);

}
"""

override init() {
// Assign us as the ServiceCloud delegate
ServiceCloud.shared().delegate = self

}

// Called when a new view controller will display
func serviceCloud(_ serviceCloud: ServiceCloud,

willDisplay controller: UIViewController,
animated: Bool) {

// Are we about to show the article view controller?
if let articleController = controller as? SCSArticleViewController {

// If so, then assign us as the delegate
articleController.delegate = self

75

Customize Knowledge Articles with JavaScript or CSSService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleCSS
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalJavascriptForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html


}
}

// Called before an article shows
func articleController(_ controller: SCSArticleViewController,

additionalJavascriptFor article: Article) -> String? {

var additionalJS: String? = nil

// TO DO: Inspect article to see if we really want to add custom JavaScript...
// For example, let's only add JS to articles
// that have 'San Francisco' in the title:
if article.title.contains("San Francisco") {
additionalJS = customJavaScript

}

return additionalJS
}

}

And that's it! This app now injects custom CSS and JavaScript into knowledge articles.

Disable Case Management from Knowledge Interface
By default, Case Management is enabled when a user accesses your Knowledge interface. A user can create a case with an action button
at the bottom of the view. However, you can remove this action button by implementing a protocol method on
SCServiceCloudDelegate.

To disable the Case Management button, follow the instructions in Customize Action Buttons. Use the casePublisher  enumerated
type when determining which button to disable.

Using Case Management

Adding the Case Management experience to your app.

Case Management Overview

Learn about the Case Publisher and Case Management experience using the SDK.

Quick Setup: Case Publisher as a Guest User

To set up case publisher, point the shared instance to your community, specify a global action, customize the look and feel, and
show the interface.

Case Management as an Authenticated User

To manage existing cases, a user must authenticate with your org. Once authenticated, the user can both create and manage cases
from your app.

Customize the Presentation and View Controllers for Case Management

The simplest way to show and hide the Case Management interface is by calling the setInterfaceVisible  method.
Alternatively, you can present the interface using a custom presentation. You can even manually control the Case Management
view controllers yourself.

76

Disable Case Management from Knowledge InterfaceService Cloud Snap-Ins for iOS



Send Custom Data Using Hidden Fields

You can hide specific Case-related fields in your Case Management views. This behavior is useful if you want to pass information to
Service Cloud that does not require user input and that the user shouldn't see. To make this happen, implement the view controller
delegates and specify the hidden fields.

Configure Case Deflection

When a user enters information about a new case – if you have a knowledge base available to that user – the SDK automatically
searches that knowledge base for relevant articles and offers them to the user. You have the ability to turn this feature on and off,
as well as control which case publisher fields are used to search content.

Customize the Case Publisher Result View

By default, when a user submits a new case from the Case Publisher screen, a standard success view appears. If you want to provide
your users with more specific guidance after a case is created, one solution is to customize the view’s message text and default
image. If you'd like more control over what is displayed, you can present your own view by implementing the viewForResult
method in the SCSCasePublisherViewControllerDelegate  class.

Push Notifications for Case Activity

Using Salesforce’s push notification implementation guide, you can send notifications from your org when activity associated with
a user’s case occurs. After you’ve set up notifications in your org, handle the notification from your app.

Automated Email Responses

Create automated email responses when a case is submitted from your app.

Case Management Overview
Learn about the Case Publisher and Case Management experience using the SDK.

The Case Management feature in the SDK allows your users to create and manage cases. Once you point your app to your community
URL, you can display the case management interface to your users. If you don’t authenticate the user, they can still create new cases
using the guest user profile. A user creates a new case with the Case Publisher screen:

77

Case Management OverviewService Cloud Snap-Ins for iOS



If you authenticate the user, they can also view and manage their list of cases. In the default ‘guest user’ flow, launching the interface
causes the Case Publisher screen to appear. From this screen, a user can create a case as an anonymous guest user. In the default
‘authenticated user’ flow, launching the interface causes the Case List screen to appear. From this screen, a user can inspect an existing
case (which launches the Case Details screen), or create a new case (which launches the Case Publisher screen).

78

Case Management OverviewService Cloud Snap-Ins for iOS



If you’d prefer, you can manually control the Case Management view controllers.

For authenticated users, you can set up notifications so they are notified when there’s a new post associated with one of their existing
cases. You can even set it up so that the Case Details screen automatically appears with the latest case activity.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Let’s get started.

Quick Setup: Case Publisher as a Guest User
To set up case publisher, point the shared instance to your community, specify a global action, customize the look and feel, and show
the interface.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with Case Management. To learn more, see Cloud Setup for Case Management.

• Installed the SDK. To learn more, see Install the iOS SDK.

Once you’ve reviewed these prerequisites, you’re ready to begin.

These instructions allow you to set up case publisher as a guest user. This functionality allows a user to publish a new case. However, a
guest user cannot manage existing cases. To manage cases, you’ll need to authenticate the user, which requires a few more steps. To
learn more about the authenticated user setup, see Case Management as an Authenticated User.

79

Quick Setup: Case Publisher as a Guest UserService Cloud Snap-Ins for iOS



1. Import the SDK. Wherever you intend to use the Case Management SDK, be sure to import the Service Common framework and the
Case Management framework.

In Swift:

import ServiceCore
import ServiceCases

In Objective-C:

@import ServiceCore;
@import ServiceCases;

2. Point the SDK to your org using an SCSServiceConfiguration object.

To connect your application to your organization, create an SCSServiceConfiguration object containing the community
URL. Pass this object to the ServiceCloud shared instance using SCSServiceConfiguration(community: URL).

In Swift:

// Create configuration object with your community URL
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!)

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with your community URL
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]
initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]];

// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

You can get the community URL from your Salesforce org. From Setup, search for All Communities, and copy the URL for the desired
community. For more help, see Cloud Setup for Case Management.

Note:  If you plan to access Knowledge in addition to Case Management, use
SCSServiceConfiguration(community: URL, dataCategoryGroup: String,
rootDataCategory: String) instead. This constructor sets up data categories in addition to setting the community
URL. See Quick Setup: Knowledge in the Knowledge section for more info.

3. Assign a global action to the Case Management interface. The global action determines the fields shown when a user creates a case.

To configure the fields shown when creating a case, specify the global action name in the caseCreateActionName property.
This code snippet illustrates how to associate the case publisher feature with the New Case global action layout, which is one of
the default actions provided in most orgs.

In Swift:

ServiceCloud.shared().cases.caseCreateActionName = "NewCase"

In Objective-C:

[SCServiceCloud sharedInstance].cases.caseCreateActionName = @"NewCase";

80

Quick Setup: Case Publisher as a Guest UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName


You can get the global action name from your Salesforce org. From Setup, search for Global Actions, and copy the name of the
desired quick action. For more help, see Cloud Setup for Case Management.

Note:  Be sure that your global action is accessible to the Guest user profile. Also note that the case publisher screen does not
respect field-level security for guest users. If you want to specify different security levels for different users, use different quick
actions.

4. (Optional) Customize the appearance with the configuration object.

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage. You can also configure the strings used throughout the
interface. See SDK Customizations.

5. (Optional) Implement any of the Snap-ins SDK delegates.

SCServiceCloudDelegate
Access to general Snap-ins SDK events (for example, willDisplayViewController, didDisplayViewController,
shouldShowActionWithName).

SCAppearanceConfigurationDelegate
Access to appearance-related events (for example, appearanceConfigurationWillApplyUpdates,
appearanceConfigurationDidApplyUpdates).

6. Show the interface from your view controller using setInterfaceVisible.

You can show the interface as soon as the view controller loads, or start it from a UI action.

Note:  If you show the interface as a guest user, the case publisher screen appears. If you choose to authenticate first (see
Case Management as an Authenticated User), then the case list screen is the first thing to appear.

In Swift:

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].cases setInterfaceVisible:YES
animated:YES

completion:nil];

By default, the interface appears as a floating dialog. Alternatively, you can present the interface using a custom presentation. You
can even manually control the Case Management view controllers yourself. See Customize the Presentation and View Controllers
for Case Management for more info.

For instructions on launching the interface from a web view, see Launch SDK from a Web View.

Example: Swift Example

To use this example code, create a Single View Application and Install the iOS SDK.

Set up the Case Management interface within the AppDelegate  implementation.

import UIKit
import ServiceCore
import ServiceCases

@UIApplicationMain

81

Quick Setup: Case Publisher as a Guest UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCAppearanceConfigurationDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(im)setInterfaceVisible:animated:completion:


class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// Point the SDK to your community
let config =
SCSServiceConfiguration(community:
URL(string: "https://mycommunity.example.com")!)

ServiceCloud.shared().serviceConfiguration = config

// Assign global action to use for case layout
ServiceCloud.shared().cases.caseCreateActionName = "NewCase"

return true
}

}

Using the storyboard, add a button to the view. Then add a Touch Up Inside  action in your UIViewController
implementation with the name showHelp. When the button is clicked, make the Case Management interface visible.

import UIKit
import ServiceCore
import ServiceKnowledge

class ViewController: UIViewController {

@IBAction func showHelp(_ sender: AnyObject) {

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

}
}

Case Management as an Authenticated User
To manage existing cases, a user must authenticate with your org. Once authenticated, the user can both create and manage cases from
your app.

These instructions allow you to set up case management as an authenticated user. When you activate the Case Management interface
for an authenticated user, a list of their existing cases appears initially. From there, they can inspect an existing case, or they can create
a new case. If you do not want to authenticate users, and you prefer to let them create cases as a guest user, see Quick Setup: Case
Publisher as a Guest User.

1. Review the steps in Quick Setup: Case Publisher as a Guest User.

The basic steps for setting up and displaying the interface still apply for authenticated users.

2. If you're using a Salesforce community and authenticating with the Salesforce Mobile SDK, configure the login endpoint as described
in the Salesforce Mobile SDK documentation: Configure the Login Endpoint.

82

Case Management as an Authenticated UserService Cloud Snap-Ins for iOS

https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/communities_login_endpoint.htm


The documentation describes how to use the SFDCOAuthLoginHost  property in your info.plist  file to create a custom
login URI.

3. Write the code to authenticate a user with your org.

You can authenticate in several ways.

• Create normal user accounts on your Salesforce org. If you have (or want to create) Salesforce user accounts for each user
of your app, see Digging Deeper into OAuth 2.0 in Salesforce, which describes how to set up a connected app on Salesforce. For
developers already using the Salesforce Mobile SDK, the Mobile SDK Developer’s Guide contains instructions for authenticating
with that SDK.

• Use your own user credentials to create community portal users on Salesforce. You can authenticate using existing
credentials on your server. One approach is to create an API endpoint on your server that is accessible to your app. For each user,
your server can formulate unique information representing that user. Use this information in a JSON Web Token (JWT) payload.
Sign and submit this information to the OAuth endpoint on your Salesforce org. Using Apex code configured within Salesforce,
you can use the JWT information to identify a previously created community user or implicitly create a new user. That user's
OAuth keys can be created and supplied back to your server.

– An overview of authentication from a mobile device: Understand Security and Authentication.

– Documentation about building a Salesforce connected app for authentication: Connected Apps.

Note:  When creating a connected app, be sure that it has access to the chatter_api  scope. See Scope Parameter
Values.

– Documentation about using JWT for Salesforce authorization: OAuth 2.0 JWT Bearer Token Flow.

– Documentation about creating a community portal user with an Apex trigger: Apex Developer Guide: Site Class.

Keep in mind that you must manage the token refresh process.

4. Once authenticated, give the Snap-ins SDK an SFUserAccount  object with your credentials.

Whichever method you use to authenticate, you need an SFUserAccount object (with a valid credentials  property) to
pass to the Snap-ins SDK. This class comes from the Salesforce Mobile SDK. If you’re already using the Mobile SDK to authenticate,
one way to get this object is with the loginWithCompletion:failure:credentials:  method from the
SFAuthenticationManager  class. If you're not using the Mobile SDK to authenticate, create an SFUserAccount manually
and populate it with a credentials  property that contains the following valid fields:

• accessToken

• redirectUri

• instanceUrl

• identityUrl

• clientId

• refreshToken  (only required if using a Mobile SDK connected app, which performs the refresh process for you)

5. Implement SCServiceCloudDelegate and pass account information from within the
serviceCloud(shouldAuthenticateService: SCServiceType) method. The SDK calls this method whenever
it plans to display a view that can support authenticated users.

The ServiceCloud shared instance has a delegate you can implement.

In Swift:

ServiceCloud.shared().delegate = self

83

Case Management as an Authenticated UserService Cloud Snap-Ins for iOS

https://help.salesforce.com/articleView?id=remoteaccess_authenticate_overview.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm?search_text=SFUserAccount
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro_oauth.htm
https://trailhead.salesforce.com/en/modules/mobile_sdk_introduction/units/mobilesdk_intro_security
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_oauth_scopes.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_oauth_scopes.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_oauth_jwt_flow.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.212.0.apexcode.meta/apexcode/apex_classes_sites.htm
http://forcedotcom.github.io/SalesforceMobileSDK-iOS/Documentation/SalesforceSDKCore/html/Classes/SFUserAccount.html
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm
http://forcedotcom.github.io/SalesforceMobileSDK-iOS/Documentation/SalesforceSDKCore/html/Classes/SFUserAccount.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateService:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html


In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

If you want an authenticated connection, implement the serviceCloud(shouldAuthenticateService:
SCServiceType) method from this delegate and return true. This method is a good place to pass in the user account with
the supplied completion block, which runs asynchronously.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
shouldAuthenticateService service: SCServiceType,
completion: @escaping (SFUserAccount?) -> Void) -> Bool {

let user: SFUserAccount = // TO DO: Get user account

// After acquiring user information, call
// this completion block to set the new user:
completion(user)

return true
}

In Objective-C:

- (BOOL)serviceCloud:(SCServiceCloud *)serviceCloud
shouldAuthenticateService:(NSString *)service

completion:(void (^)(SFUserAccount * _Nullable))completion {

SFUserAccount* user = // TO DO: Get user account

// After acquiring user information, call
// this completion block to set the new user:
completion(user);

return YES;
}

6. For error handling, implement serviceCloud(serviceAuthenticationFailedWithError: Error) from
SCServiceCloudDelegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
serviceAuthenticationFailedWithError error: Error) {

// TO DO: Inspect error and handle appropriately.
}

In Objective-C:

- (void)serviceCloud:(SCServiceCloud*)serviceCloud
serviceAuthenticationFailedWithError:(NSError*)error {

// TO DO: Inspect error and handle appropriately.
}

84

Case Management as an Authenticated UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateService:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateService:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:serviceAuthenticationFailedWithError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html


The Error  object contains information about the error. The code  property on this object contains the error code. The following
errors are the most common error codes you can encounter:

DescriptionError Code

Occurs when the session has expired or the ID is invalid. Use the
refresh token to acquire another access token and then update
the account  property, as shown in the next step.

SCServiceUserSessionExpiredOrInvalidError
(401)

Occurs when the user does not have sufficient access for the
request. Verify that the logged in user has sufficient credentials.

SCServiceUserRequestRefusedError (403)

Occurs when the requested resource was not found. Check the
URI and other parameters for errors.

SCServiceUserResourceNotFoundError (404)

See Status Codes and Error Responses for a full set of possible error codes.

7. Assign a Cases view name to allow authenticated users to see a list of all their existing cases.

To show a list of cases, specify the unique name for your preferred Cases view from your Salesforce org. To get this value, access the
Cases tab in your org, pick the desired View, select Go! to see that view, and then select Edit to edit the view. From the edit window,
you can see the View Unique Name. Use this value when you specify the caseListName  in the SDK. For more help, see Cloud
Setup for Case Management.

In Swift:

ServiceCloud.shared().cases.caseListName = ”AllOpenCases”

In Objective-C:

[SCServiceCloud sharedInstance].cases.caseListName = @”AllOpenCases”;

8. (Optional) Incorporate notifications whenever there is a new text post on an existing case and check the caseUnreadCount
property to determine the number of unread cases.

Using Salesforce’s push notification implementation guide, you can send notifications from your org when activity associated with
a user’s case occurs. After you’ve set up notifications in your org, handle the notification from your app. To learn more, see Push
Notifications for Case Activity.

The number of unread cases is automatically listed as a numerical badge on the Case List action button within the UI. If you want
to know the number of cases with unread messages, call the caseUnreadCount  property on the cases  instance. This value
is only accurate after the user views the Case List screen. Before that, the value is 0.

9. When account information changes, update the account  property.

Account information can change if the access token expires, the user logs out, another user logs in, and for various other reasons.
You can update the account property on the ServiceCloud shared instance. The Snap-ins SDK updates the interface to
correspond with the updated account information. Preferably, instead of setting the property, use the setAccount method,
which allows you to specify a completion block for error handling.

In Swift:

let user = // Get user account

ServiceCloud.shared().setAccount(user, completion: { (error: Error?) in

85

Case Management as an Authenticated UserService Cloud Snap-Ins for iOS

https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/errorcodes.htm
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)account
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAccount:completion:


// TO DO: Handle error
})

In Objective-C:

SFUserAccount *user = // Get user account
[[SCServiceCloud sharedInstance]

setAccount:user completion:^(NSError *error) {

// TO DO: Handle error
}];

Note:  When you log out a user, the SDK deletes all local data associated with that user.

After you authenticate users, they have access to the full Case Management functionality, with easy access to information about their
existing cases.

Customize the Presentation and View Controllers for Case Management
The simplest way to show and hide the Case Management interface is by calling the setInterfaceVisible  method. Alternatively,
you can present the interface using a custom presentation. You can even manually control the Case Management view controllers
yourself.

In the default ‘guest user’ flow, launching the interface causes the Case Publisher screen to appear. From this screen, a user can create
a case as an anonymous guest user. In the default ‘authenticated user’ flow, launching the interface causes the Case List screen to
appear. From this screen, a user can inspect an existing case (which launches the Case Details screen), or create a new case (which
launches the Case Publisher screen). If you don’t want to use a default user flow, you can manually show the Case Management view
controllers.

Note:  The fields in the Case Publisher screen are determined by the global action specified in your org. These fields are also shown
at the top of the Case Details screen. See the global action step in Quick Setup: Case Publisher as a Guest User for more info.

Activating Interface Using the Default Presentation
Use the setInterfaceVisible method to show the Case Management interface using the default presentation.

In Swift:

ServiceCloud.shared().cases.setInterfaceVisible(true,
animated: true,
completion: nil)

In Objective-C:

[[SCServiceCloud sharedInstance].cases setInterfaceVisible:YES
animated:YES

completion:nil];

If you just want to display the default Case Management experience, that's all you need to do. But if you'd like to access the associated
view controllers, or their delegates, implement SCServiceCloudDelegate and supply that implementation to ServiceCloud.

In Swift:

ServiceCloud.shared().delegate = self

86

Customize the Presentation and View Controllers for Case
Management

Service Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html


In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

In your SCServiceCloudDelegate implementation, use the serviceCloud(willDisplay: UIViewController,
animated: Bool) method to find out if it's a view controller you're interested in, and if so, assign the view controller delegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
willDisplay controller: UIViewController,
animated: Bool) {

// Case Publisher View
if (controller is SCSCasePublisherViewController) {
let publisherController = controller as! SCSCasePublisherViewController

// TO DO: Implement SCSCasePublisherViewControllerDelegate
publisherController.delegate = self

// Case Detail View
} else if (controller is SCSCaseDetailViewController) {
let detailController = controller as! SCSCaseDetailViewController

// TO DO: Implement SCSCaseDetailViewControllerDelegate
detailController.delegate = self

// Case List View
} else if (controller is SCSCaseListViewController) {
let listController = controller as! SCSCaseListViewController

// TO DO: Implement SCSCaseListViewControllerDelegate
listController.delegate = self

}

}

In Objective-C:

-(void)serviceCloud:(SCServiceCloud *)serviceCloud
willDisplayViewController:(UIViewController *)controller

animated:(BOOL)animated {

// Case Publisher View
if ([controller isKindOfClass:[SCSCasePublisherViewController class]]) {
SCSCasePublisherViewController *casePublisherController =
(SCSCasePublisherViewController *)controller;

// TO DO: Implement SCSCasePublisherViewControllerDelegate
casePublisherController.delegate = self;

// Case Detail View
} else if ([controller isKindOfClass:[SCSCaseDetailViewController class]]) {
SCSCaseDetailViewController *caseDetailController =
(SCSCaseDetailViewController *)controller;

87

Customize the Presentation and View Controllers for Case
Management

Service Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:


// TO DO: Implement SCSCaseDetailViewControllerDelegate
caseDetailController.delegate = self;

// Case List View
} else if ([controller isKindOfClass:[SCSCaseListViewController class]]) {
SCSCaseListViewController *caseListController =
(SCSCaseDetailViewController *)controller;

// TO DO: Implement SCSCaseListViewControllerDelegate
caseListController.delegate = self;

}
}

You now have access to the view controllers and their delegates.

Activating Interface Using a Custom Transitioning Delegate
You can also present the interface using a custom transitioning animation and custom presentation. Implement a
UIViewControllerTransitioningDelegate.

1. Supply the ServiceCloud shared instance with your SCServiceCloudDelegate implementation.

In Swift:

ServiceCloud.shared().delegate = mySCServiceCloudDelegate

In Objective-C:

[SCServiceCloud sharedInstance].delegate = mySCServiceCloudDelegate;

2. Implement the serviceCloud(transitioningDelegateForPresentedController: UIViewController,
presenting: UIViewController) method in your delegate and return a custom
UIViewControllerTransitioningDelegate  from this method.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
transitioningDelegateForPresentedController
presentedController: UIViewController,

presenting presentingController: UIViewController)
-> UIViewControllerTransitioningDelegate? {

// TO DO: Put your logic here and then return your transitioning delegate...

return myTransitioningDelegate
}

In Objective-C:

- (NSObject<UIViewControllerTransitioningDelegate> *)
serviceCloud:(SCServiceCloud *)serviceCloud

transitioningDelegateForViewController:(UIViewController *)controller {

// TO DO: Put your logic here and then return your transitioning delegate...

return myTransitioningDelegate;
}

88

Customize the Presentation and View Controllers for Case
Management

Service Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:


Showing or Customizing the View Controllers
Instead of having the SDK manage the flow from one view to the next, you can instantiate any of the view controllers and display it
manually. When instantiating a view controller, be sure to implement the associated delegate and pass that delegate to the view controller
(using the delegate  property). The delegates allow you to override the default behavior for the views.

If you don't want to manually instantiate a view controller but you still want the ability to control its behavior, implement the methods
of SCServiceCloudDelegate that give you access to the view controllers.

DelegateView ControllerFeature

SCSCasePublisherViewControllerDelegateSCSCasePublisherViewControllerCase Publisher — for creating new cases

SCSCaseListViewControllerDelegateSCSCaseListViewControllerCase List — for viewing a list of a user’s
cases

SCSCaseDetailViewControllerDelegateSCSCaseDetailViewControllerCase Details — for inspecting the details of
one case

Note:  If you manually display the Case List view controller (SCSCaseListViewController), you'll also need to manually
display the Case Detail view controller (SCSCaseDetailViewController). When a user selects a case from the case list,
present your Case Detail view controller from the caseList(SCSCaseListViewController,
selectedCaseWithId: String) method in your SCSCaseListViewControllerDelegate implementation.
If you don't do this, nothing will happen when a user selects a specific case in the case list!

If you choose to manually launch the Case Management view controllers, you can't take advantage of the notification-handling mechanism
provided by the SDK (using showInterface(for: SCSNotification)). See Handle Remote Notifications.

For a use case that involves custom view controllers, see Send Custom Data Using Hidden Fields.

Send Custom Data Using Hidden Fields
You can hide specific Case-related fields in your Case Management views. This behavior is useful if you want to pass information to
Service Cloud that does not require user input and that the user shouldn't see. To make this happen, implement the view controller
delegates and specify the hidden fields.

Before getting started, you'll need to be sure that your global action layout (that you specified with the caseCreateActionName
property as described in Quick Setup: Case Publisher as a Guest User) contains the fields you want to hide. This layout is used for both
the Case Publisher screen (where users can fill in values for the fields) and the Case Details screen (where users can view the field values).
To learn more about quick actions, see Create Global Quick Actions in Salesforce Help.

Once you have the correct fields in your layout, there are two approaches to hiding specific fields:

1. Use the default Case Management view controllers, but implement the view controller delegates.

2. Instantiate (and display) the view controllers yourself, and also implement the view controller delegates.

The first method is useful if you don't want to manually display the views yourself —you simply want to hide specific fields. The second
method is useful if you want more control over how and when to display the views. Details about each of the two methods are described
later in this section.

Regardless of which method you choose, you'll need to implement the Case Management view controller delegates.

89

Send Custom Data Using Hidden FieldsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName
https://help.salesforce.com/apex/HTViewHelpDoc?id=creating_global_actions.htm&language=en_US


Implementing the Delegates
To affect which fields are shown in your Case Publisher view, implement the SCSCasePublisherViewControllerDelegate.
Use casePublisher(fieldsToHideFromCaseFields: [String]) to specify which fields to hide. This method passes
you an array of available fields to hide. This array contains the unique API name for each field (which is not necessarily the label text for
the field). From this array, return a set of fields to hide.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
fieldsToHideFromCaseFields availableFields: [String])
-> Set<String> {

let hideFieldSet: Set = ["MyHiddenField", "MyOtherHiddenField"]
return hideFieldSet

}

In Objective-C:

- (NSSet *)casePublisher:(SCSCasePublisherViewController *)publisher
fieldsToHideFromCaseFields:(NSArray *)availableFields {

NSSet *hideFieldsSet = [NSSet setWithObjects: @"MyHiddenField",
@"MyOtherHiddenField", nil];

return hideFieldsSet;
}

You'll also need to implement the casePublisher(valuesForHiddenFields: Set<String>) method, where you
specify what values to use for each hidden field. This method passes you the set of hidden fields (that you specified earlier), and you'll
need to provide a dictionary associating each hidden field with a value.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
valuesForHiddenFields hiddenFields: Set<String>)
-> [String : Any] {

let hideValues: [String: String] = [
"MyHiddenField" : "The value for my hidden field.",
"MyHiddenField" : "Another value for hidden field."

]

return hideValues
}

In Objective-C:

- (NSDictionary *)casePublisher:(SCSCasePublisherViewController *)publisher
valuesForHiddenFields:(NSSet *)hiddenFields {

NSDictionary *hideValues = @{
@"MyHiddenField": @"The value for my hidden field.",
@"MyHiddenField": @"Another value for hidden field."

};

return hideValues;
}

90

Send Custom Data Using Hidden FieldsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:valuesForHiddenFields:


Note:  Be sure that you specify valid values for hidden fields! If you specify an invalid value, case submission will fail and it will be
unclear to the user why it happened.

If you support authenticated users and you hide fields from Case Publisher, you should also hide those fields from the Case Details view.
To do this, use a similar approach and implement SCSCaseDetailViewControllerDelegate. Use
caseDetail(fieldsToHideFromCaseFields: [String]) to specify which fields to hide.

In Swift:

func caseDetail(_ caseDetailController: SCSCaseDetailViewController,
fieldsToHideFromCaseFields availableFields: [String])
-> Set<String> {

let hideFieldSet: Set = ["MyHiddenField", "MyOtherHiddenField"]
return hideFieldSet

}

In Objective-C:

- (NSSet *)caseDetail:(SCSCaseDetailViewController *)caseDetailController
fieldsToHideFromCaseFields:(NSArray *)availableFields {

NSSet *hideFieldsSet = [NSSet setWithObjects:@"MyHiddenField",
@"MyOtherHiddenField", nil];

return hideFieldsSet;
}

There is no method in this delegate to specify values for hidden fields (as there is in the Case Publisher view controller delegate), because
the Case Details view only shows a read-only version of these fields.

Once you've implemented your delegates, you can wire them up with one of two methods.

Method 1: Using the Default View Controllers
If you want to use the default view controllers, you'll need to find out when the view controllers are going to be shown so that you can
associate your delegate implementation with the right view controller. To do this, implement SCServiceCloudDelegate and
supply that implementation to ServiceCloud.

In Swift:

ServiceCloud.shared().delegate = self

In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

In your SCServiceCloudDelegate implementation, use the serviceCloud(willDisplay: UIViewController,
animated: Bool) method to find out if it's a view controller you're interested in, and if so, assign the view controller delegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
willDisplay controller: UIViewController,
animated: Bool) {

if (controller is SCSCasePublisherViewController) {
let publisherController = controller as! SCSCasePublisherViewController
publisherController.delegate = self

91

Send Custom Data Using Hidden FieldsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseDetailViewControllerDelegate.html#/c:objc(pl)SCSCaseDetailViewControllerDelegate(im)caseDetail:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:


} else if (controller is SCSCaseDetailViewController) {
let detailController = controller as! SCSCaseDetailViewController
detailController.delegate = self

}
}

In Objective-C:

-(void)serviceCloud:(SCServiceCloud *)serviceCloud
willDisplayViewController:(UIViewController *)controller

animated:(BOOL)animated {

if ([controller isKindOfClass:[SCSCasePublisherViewController class]]) {
SCSCasePublisherViewController *casePublisherController =
(SCSCasePublisherViewController *)controller;

casePublisherController.delegate = self;

} else if ([controller isKindOfClass:[SCSCaseDetailViewController class]]) {
SCSCaseDetailViewController *caseDetailController =
(SCSCaseDetailViewController *)controller;

caseDetailController.delegate = self;
}

}

Once you've assigned your delegates, you'll no longer see the hidden fields.

Method 2: Instantiating the View Controllers
You can also instantiate all the view controllers yourself and display them manually. You'll still need to implement the delegates using
this method.

DelegateView ControllerFeature

SCSCasePublisherViewControllerDelegateSCSCasePublisherViewControllerCase Publisher — for creating new cases

SCSCaseListViewControllerDelegateSCSCaseListViewControllerCase List — for viewing a list of a user’s
cases

SCSCaseDetailViewControllerDelegateSCSCaseDetailViewControllerCase Details — for inspecting the details of
one case

Note:  If you manually display the Case List view controller (SCSCaseListViewController), you'll also need to manually
display the Case Detail view controller (SCSCaseDetailViewController). When a user selects a case from the case list,
present your Case Detail view controller from the caseList(SCSCaseListViewController,
selectedCaseWithId: String) method in your SCSCaseListViewControllerDelegate implementation.
If you don't do this, nothing will happen when a user selects a specific case in the case list!

Once you've instantiated a view controller, assign your delegate using the delegate  property on that controller. Keep in mind that
you'll need to display the Case Detail view controller from the caseList(SCSCaseListViewController,
selectedCaseWithId: String) method in your SCSCaseListViewControllerDelegate implementation.

92

Send Custom Data Using Hidden FieldsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html


In Swift:

func caseList(_ caseList: SCSCaseListViewController,
selectedCaseWithId caseId: String) {

let controller = SCSCaseDetailViewController(caseId: caseId)
controller.delegate = self
caseList.navigationController!.pushViewController(controller, animated: true)

}

In Objective-C:

- (void)caseList:(SCSCaseListViewController*)caseList
selectedCaseWithId:(NSString*)caseId {

SCSCaseDetailViewController *controller =
[[SCSCaseDetailViewController alloc] initWithCaseId:caseId];

controller.delegate = self;
[caseList.navigationController pushViewController:controller animated:YES];

}

Configure Case Deflection
When a user enters information about a new case – if you have a knowledge base available to that user – the SDK automatically searches
that knowledge base for relevant articles and offers them to the user. You have the ability to turn this feature on and off, as well as control
which case publisher fields are used to search content.

By default, this feature is enabled and it searches the Subject and Description fields for relevant articles using those search terms. You
can change this behavior using methods in the SCSCasePublisherViewControllerDelegate class. This is the delegate
class for SCSCasePublisherViewController. You can point the SCSCasePublisherViewController instance to
your delegate implementation in one of two ways:

93

Configure Case DeflectionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCasePublisherViewController.html


1. If you are displaying the Case Publisher using the default presentation (that is, using the setInterfaceVisible method),
refer to the Activating Interface Using the Default Presentation section of Customize the Presentation and View Controllers for
Case Management.

2. If you are displaying the Case Publisher by manually presenting the view controller, refer to the Showing or Customizing the View
Controllers section of Customize the Presentation and View Controllers for Case Management.

You can turn case deflection on and off with the shouldEnableCaseDeflection(forPublisher:
SCSCasePublisherViewController) method. You can control which fields are used for searching knowledge base articles
using the casePublisher(fieldsForCaseDeflection: [String]) method.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
fieldsForCaseDeflection availableFields: [String])
-> Set<String> {

// Create the complete set of fields we want to use to search knowledge base
let deflectionSearch: Set<String> = ["CustomSubject__c","CustomDescription__c"]

// Now build the list of fields that are confirmed to be within
// the existing case publisher layout
var deflectionSearchFieldsInLayout = [String]()
for field: String in deflectionSearch {
if (availableFields.contains(field)) {
deflectionSearchFieldsInLayout.append(field)

}
}

// Return the list of fields
return Set(deflectionSearchFieldsInLayout)

}

In Objective-C:

- (NSSet<NSString *> *)casePublisher:(SCSCasePublisherViewController *)publisher
fieldsForCaseDeflection:(NSArray<NSString *> *)availableFields {

// Create the complete set of fields we want to use to search knowledge base
NSSet *deflectionSearch =

[NSSet setWithObjects:@"CustomSubject__c",@"CustomDescription__c", nil];

// Now build the list of fields that are confirmed to be within
// the existing case publisher layout
NSMutableSet *deflectionSearchFieldsInLayout = [NSMutableSet new];
for (NSString *field in deflectionSearch) {

if ([availableFields containsObject:field]) {
[deflectionSearchFieldsInLayout addObject:field];

}
}

// Return the list of fields
return deflectionSearchFieldsInLayout;

}

94

Configure Case DeflectionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)shouldEnableCaseDeflectionForPublisher:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)shouldEnableCaseDeflectionForPublisher:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsForCaseDeflection:


Note:  Before you can use case deflection, be sure to configure your environment with a category group and root data category
(using the SCSServiceConfiguration object). For more information, see Quick Setup: Knowledge.

Customize the Case Publisher Result View
By default, when a user submits a new case from the Case Publisher screen, a standard success view appears. If you want to provide your
users with more specific guidance after a case is created, one solution is to customize the view’s message text and default image. If you'd
like more control over what is displayed, you can present your own view by implementing the viewForResult  method in the
SCSCasePublisherViewControllerDelegate  class.

The default Case Publisher success view contains this content:

To customize the standard message text (ServiceCloud.CasePublisher.SuccessMessage) and the image
(CaseSubmitSuccess), see Customize and Localize Strings and Customize Images for instructions.

To create your own view:

1. Implement the SCSCasePublisherViewControllerDelegate class.

Implement the casePublisher(viewFor: SCSCasePublisherResult, withCaseId: String?, error:
Error?) method where you create your custom view and return it to the SDK. If you don’t implement this method (or if you return
nil), the SDK presents the default view.

In Swift:

func casePublisher(_ publisher: SCSCasePublisherViewController,
viewFor result: SCSCasePublisherResult,
withCaseId caseId: String?,
error: Error?)
-> UIView? {

let myResultView = // TO DO: Create my custom view
return myResultView

}

95

Customize the Case Publisher Result ViewService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:


In Objective-C:

- (UIView *)casePublisher:(SCSCasePublisherViewController *)publisher
viewForResult:(SCSCasePublisherResult)result

withCaseId:(nullable NSString *)caseId
error:(nullable NSError *)error {

UIView* myResultView = // TO DO: Create my custom view
return myResultView;

}

Note:  The SDK only calls the casePublisher(viewFor: SCSCasePublisherResult, withCaseId:
String?, error: Error?) method when a case submission is successful.

2. Register your delegate class with the SCSCasePublisherViewController.

The process for registering your delegate class is different depending on whether you're manually instantiating a Case Publisher
view controller or whether you're using the default view controller.

a. If you're manually instantiating a Case Publisher view controller, register your delegate with the delegate  property of this
class. For more information, see Customize the Presentation and View Controllers for Case Management.

b. If you're not manually instantiating the Case Publisher view controller, you can get the default view controller using the Service
Cloud delegate.

Implement SCServiceCloudDelegate and supply that implementation to ServiceCloud.

In Swift:

ServiceCloud.shared().delegate = self

In Objective-C:

[SCServiceCloud sharedInstance].delegate = self;

In your SCServiceCloudDelegate implementation, use the serviceCloud(willDisplay:
UIViewController, animated: Bool) method to find the SCSCasePublisherViewController class
and register your view controller delegate.

In Swift:

func serviceCloud(_ serviceCloud: ServiceCloud,
willDisplay controller: UIViewController,
animated: Bool) {

if controller is SCSCasePublisherViewController {

let publisherController = controller as! SCSCasePublisherViewController

publisherController.delegate = // TO DO: Specify your case publisher delegate
}

}

In Objective-C:

- (void)serviceCloud:(SCServiceCloud *)serviceCloud
willDisplayViewController:(UIViewController *)controller

animated:(BOOL)animated {

96

Customize the Case Publisher Result ViewService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCasePublisherViewController.html


if ([controller isKindOfClass:[SCSCasePublisherViewController class]]) {

SCSCasePublisherViewController *casePublisherController =
(SCSCasePublisherViewController *)controller;

casePublisherController.delegate = // TO DO: Specify your case publisher delegate

}
}

After you supply your view to the Snap-ins SDK, the SDK presents it when a case is submitted.

Push Notifications for Case Activity
Using Salesforce’s push notification implementation guide, you can send notifications from your org when activity associated with a
user’s case occurs. After you’ve set up notifications in your org, handle the notification from your app.

The Salesforce Mobile Push Notifications Implementation Guide has instructions on how to set up push notifications in your app. Basically,
you create a connected app in your org, create an Apex trigger, and then package and install the components in your org.

To set up a trigger, you can use the following sample Apex code as a starting point. This code triggers a notification when an agent
creates a text post.

// THIS APEX TRIGGER IS PROVIDED AS AN EXAMPLE. BE SURE TO REVIEW
// YOUR CODE BEFORE PUTTING ANYTHING INTO PRODUCTION.

trigger newCaseFeedItemNotification on FeedItem (after insert) {

for(FeedItem feedItem : Trigger.new) {

try {

Schema.SObjectType objectType = feedItem.parentId.getSObjectType();

if(feedItem.body == null ) {
// Don't push if we have no body.
break;

}

// Ensure Case type
if (objectType == Case.sObjectType) {

Case cs = [SELECT contactId, ownerId, caseNumber, subject
FROM Case
WHERE id = :feedItem.parentId];

Set<String> users = new Set<String>();

// Determine who created or inserted this feed item
String commentedById = feedItem.CreatedById;
if (commentedById == null) {
commentedById = feedItem.InsertedById;
if (commentedById == null) {
commentedById = feedItem.LastEditById;

}

97

Push Notifications for Case ActivityService Cloud Snap-Ins for iOS

https://developer.salesforce.com/docs/atlas.en-us.212.0.pushImplGuide.meta/pushImplGuide/pns_overview.htm


}

// If the FeedItem was not created by the owner, send to the owner
if (cs.ownerId != null && !cs.ownerId.equals(commentedById)) {

// Ensure the user has access to the feed item before pushing
List<UserRecordAccess> accessList = [SELECT HasReadAccess, RecordId
FROM UserRecordAccess
WHERE UserId = :cs.ownerId
AND RecordId = :feedItem.Id LIMIT 1];

if (accessList != null && !accessList.isEmpty()
&& accessList[0].HasReadAccess) {

users.add(cs.ownerId);
}

}

// If the FeedItem was not created by the contact on the case send to the contact

if (cs.contactId != null && !cs.contactId.equals(commentedById)) {

// Ensure the user has access to the feed item before pushing
List<UserRecordAccess> accessList = [SELECT HasReadAccess, RecordId
FROM UserRecordAccess
WHERE UserId = :cs.contactId
AND RecordId = :feedItem.Id LIMIT 1];

if (accessList != null && !accessList.isEmpty()
&& accessList[0].HasReadAccess) {

users.add(cs.contactId);
}

}

// Assemble the necessary payload parameters for the mobile app.
// Params are:
// (<alert text>,<alert sound>,<badge count>,<free-form data>)
// This example doesn't use badge count but does make use of free-form
// data to pass the caseId in the notification.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.

// If subject is not set, use '(No Subject)'
String subject = cs.subject;
if (subject == null) {
subject = '(No Subject)';

}

String alertText = 'New comment added to case: ' + subject;

// Add the caseId so we can handle the push notification within the app
Map<String, Object> freeFormData = new Map<String, Object>();
freeFormData.put('caseid', cs.id);

// Create the payload and add it to the notification

98

Push Notifications for Case ActivityService Cloud Snap-Ins for iOS



Messaging.PushNotification msg = new Messaging.PushNotification();
Map<String, Object> payload =
Messaging.PushNotificationPayload.apple(alertText, '', null, freeFormData);

msg.setPayload(payload);

// Needs to match your connected app name
msg.send('YourConnectedAppName', users);

}
}
catch (Exception e) {
// Catch everything to ensure push failures do not prevent posts from succeeding.
// TO DO: Add logging here to record errors or display an error message.

}

} // end of for loop
}

When this notification is sent to your app, you can have the SDK to handle this notification for you. The SDK can display the Case Details
or Case List screen for an authenticated user with the relevant case information showing. To make this happen, see Handle Remote
Notifications.

If you want to know the number of cases with unread messages, call the caseUnreadCount  property on the cases  instance.

Note:  If you want the SDK to handle the notification for you, your free-form data must contain the case ID, as shown in the code
snippet. Without this information, the SDK cannot interpret the contents of the notification.

Automated Email Responses
Create automated email responses when a case is submitted from your app.

If you'd like to create an automated response when a user of your app submits a case, you can set up a Case Auto-Response Rule. To
learn more, see the documentation on Salesforce Help: Set Up Auto-Response Rules.

Note:  When creating an auto-response rule for guest users, be sure to add the Web Email field to the action layout that you've
specified with the caseCreateActionName property. This field is used for the email response.

Once you've created the rule, a user who submits a case from your app receives an automated response.

Using Live Agent Chat

Adding the Live Agent Chat experience to your app.

Live Agent Chat Overview

Learn about the Live Agent Chat experience using the SDK.

Quick Setup: Live Agent Chat

To add Live Agent Chat to your app, create an SCSChatConfiguration  object and pass it to the
startSessionWithConfiguration:  method.

99

Automated Email ResponsesService Cloud Snap-Ins for iOS

https://help.salesforce.com/htviewhelpdoc?id=creating_auto-response_rules.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName


Configure a Live Agent Chat Session

Before starting a Live Agent Chat session, you have several ways to configure the session using the SCSChatConfiguration
object. These configuration settings allow you to specify pre-chat fields, determine whether a session starts minimized or full screen,
and get updates about the user's queue position.

Live Agent Chat Events and Errors

Implement SCSChatDelegate  to be notified about state changes made before, during, and after a Live Agent Chat session.
This delegate also allows you to listen for error conditions so you can present alerts to the user when applicable.

Show Pre-Chat Fields to User

Before a Live Agent Chat session begins, you can request that the user fill in pre-chat fields that are sent to the agent at the start of
the session. You can map these fields to records in your org.

Find or Create Salesforce Records from a Chat Session

When a Live Agent Chat session begins, you can create or find records within your org and pass this information to the agent. Using
this technique, your agent can immediately have all the context they need for an effective chat session.

Check Live Agent Availability

Before starting a session, you can check the availability of your Live Agent Chat agents and then provide your users with more
accurate expectations.

Transfer File to Agent

With Live Agent Chat, a user can transfer a file to an agent after the agent requests a file transfer.

Block Sensitive Data in a Chat Session

To block sending sensitive data to agents, specify a regular expression in your org's setup. When the regular expression matches
text in the user's message, the matched text is replaced with customizable text before it leaves the device.

Live Agent Chat Overview
Learn about the Live Agent Chat experience using the SDK.

With Live Agent Chat, you can provide real-time chat sessions from within your native app. Once you’ve set up Live Agent Chat for
Service Cloud, it takes just a few calls to the SDK to have your app ready to handle agent chat sessions.

100

Live Agent Chat OverviewService Cloud Snap-Ins for iOS



This chat session can be minimized so that the user can continue to navigate from within the app while speaking with an agent.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Quick Setup: Live Agent Chat
To add Live Agent Chat to your app, create an SCSChatConfiguration  object and pass it to the
startSessionWithConfiguration:  method.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with Live Agent Chat. To learn more, see Console Setup for Live Agent Chat.

• Installed the SDK. To learn more, see Install the iOS SDK.

Once you’ve reviewed these prerequisites, you’re ready to begin.

1. Import the SDK. Wherever you intend to use the Live Agent Chat SDK, be sure to import the Service Common framework and the
Live Agent Chat framework.

In Swift:

import ServiceCore
import ServiceChat

101

Quick Setup: Live Agent ChatService Cloud Snap-Ins for iOS



In Objective-C:

@import ServiceCore;
@import ServiceChat;

2. Create an SCSChatConfiguration instance with information about your LiveAgent pod, your Salesforce org ID, the deployment
ID, and the button ID.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

Note:  You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already
set up Live Agent in Service Cloud or you need more guidance, see Console Setup for Live Agent Chat.

3. (Optional) Configure the visitor name, whether the user can minimize the chat session, and various other configuration settings.

See Configure a Live Agent Chat Session for more information.

4. (Optional) Specify any pre-chat fields.

You can specify both optional and required fields shown to the user before a chat session starts. You can also directly pass data to
an agent without requiring any user input. These fields can be mapped directly to fields in a record in your org.

See Show Pre-Chat Fields to User and Find or Create Salesforce Records from a Chat Session for more information.

5. (Optional) Customize the appearance with the configuration object.

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage. You can also configure the strings used throughout the
interface. See SDK Customizations.

6. To start a Live Agent Chat session, call the startSession(with: SCSChatConfiguration!) method on SCSChat.

In Swift:

ServiceCloud.shared().chat.startSession(with: config)

In Objective-C:

[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

You can provide an optional completion block to execute code when the session has been fully connected to all services. During a
successful session initialization, the SDK calls the completion block at the point that the session is active and the user is waiting for
an agent to join. If there is a failure, the SDK calls the completion block with the associated error.

For instructions on launching the interface from a web view, see Launch SDK from a Web View.

7. Listen for events and handle error conditions.

102

Quick Setup: Live Agent ChatService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html


You can detect when a session ends by implementing the chat(SCSChat, didEndWith: SCSChatEndReason,
error: Error!) method on the SCSChatDelegate delegate. Register this delegate using the add(delegate:
SCSChatDelegate!) method on your SCSChat instance. In particular, we suggest that you handle the
SCSChatEndReasonAgent  reason (for when an agent ends a session) and the SCSChatNoAgentsAvailableError
error code (for when there are no agents available). See Live Agent Chat Events and Errors.

Note:  The SDK doesn't show an alert when a session fails to start, or when a session ends. It's your responsibility to listen to
events and display an error when appropriate.

These steps embed the Live Agent Chat experience into your app.

Note:  By default, a mobile chat session times out around two minutes after you leave the app or lose connectivity. To change
this value, update the Idle Connection Timeout Duration field when setting up your Live Agent deployment. Keep in mind that
the actual timeout on the app can be up to 40 seconds longer than the specified value in this field. See Live Agent Deployment
Settings.

Example: To use this example code, create a Single View Application and Install the iOS SDK.

Use the storyboard to add a button to the view. Add a Touch Up Inside  action in your UIViewController
implementation with the name startChat. In the view controller code:

• Implement the SCSChatDelegate protocol so that you can be notified when there are errors or state changes.

• Specify self  as a chat delegate.

• Start a chat session in the button action.

• Implement the chat(SCSChat, didEndWith: SCSChatEndReason, error: Error!) method and show
a dialog when appropriate.

In Swift:

import UIKit
import ServiceCore
import ServiceChat

class ViewController : UIViewController, SCSChatDelegate {

override func viewDidLoad() {
super.viewDidLoad()

// Add our chat delegate
ServiceCloud.shared().chat.add(self)

}

@IBAction func startChat(_ sender: AnyObject) {

// Create config object
let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",

orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Start a session
ServiceCloud.shared().chat.startSession(with: config)

103

Quick Setup: Live Agent ChatService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
https://help.salesforce.com/articleView?id=live_agent_deployment_settings.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:


}

func chat(_ chat: SCSChat!, didEndWith reason: SCSChatEndReason,
error: Error!) {

var description = ""

// Here we'll handle the situation where the agent ends the session
// and when there are no agents available...
if (reason == .agent) {

description = "The agent has ended the session."
} else if (reason == .sessionError &&
(error as NSError).code == SCSChatErrorCode.noAgentsAvailableError.rawValue) {
description = "It looks like there are no agents available. Try again later."

}

if (description != "") {
let alert = UIAlertController(title: "Session Ended",

message: description,
preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK",
style: .default,
handler: nil)

alert.addAction(okAction)
self.present(alert, animated: true, completion: nil)

}
}

}

In Objective-C:

#import "ViewController.h"
@import ServiceCore;
@import ServiceChat;

@interface ViewController : UIViewController <SCSChatDelegate>

@end

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];

// Add our chat delegate
[[SCServiceCloud sharedInstance].chat addDelegate:self];

}

- (IBAction)startChat:(id)sender {

// Create config object
SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"

104

Quick Setup: Live Agent ChatService Cloud Snap-Ins for iOS



deploymentId:@"YOUR-DEPLOYMENT-ID"
buttonId:@"YOUR-BUTTON-ID"];

// Start the session
[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

}

- (void)chat:(SCSChat *)chat didEndWithReason:(SCSChatEndReason)reason
error:(NSError *)error {

NSString *description = nil;

// Here we'll handle the situation where the agent ends the session
// and when there are no agents available...
if (reason == SCSChatEndReasonAgent) {
description = @"The agent has ended the session.";

} else if (reason == SCSChatEndReasonSessionError &&
error.code == SCSChatNoAgentsAvailableError) {

description = @"It looks like there are no agents available. Try again later.";
}

if (description != nil) {
UIAlertController *alert = [UIAlertController
alertControllerWithTitle:@"Session Ended"

message:description
preferredStyle:UIAlertControllerStyleAlert];

UIAlertAction* okAction = [UIAlertAction
actionWithTitle:@"OK"

style:UIAlertActionStyleDefault
handler:^(UIAlertAction * action)
{
NSLog(@"OK action");

}];

[alert addAction:okAction];
[self presentViewController:alert animated:YES completion:nil];

}
}
@end

Configure a Live Agent Chat Session
Before starting a Live Agent Chat session, you have several ways to configure the session using the SCSChatConfiguration
object. These configuration settings allow you to specify pre-chat fields, determine whether a session starts minimized or full screen,
and get updates about the user's queue position.

When you start a Live Agent Chat session, you specify an SCSChatConfiguration object as one of the arguments. This object
contains all the configuration settings necessary for Live Agent Chat to start a session. To create an SCSChatConfiguration
object, you specify information about your org and deployment.

105

Configure a Live Agent Chat SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html


In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

Note:  You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already set
up Live Agent in Service Cloud or you need more guidance, see Console Setup for Live Agent Chat.

However, there are other options you can set using SCSChatConfiguration at configuration time.

The following features are available for configuration:

Type & Default ValueDescriptionProperty Name

Bool: trueWhether the chat session starts out as a minimized thumbnail view.defaultToMinimized

Bool: trueWhether the user is allowed to minimize the chat session view.allowMinimization

Bool: falseWhether the pre-chat screen is shown as a full screen view or as a
modal view.

fullscreenPrechat

String: "Visitor"Name of the chat visitor. This value is used by the Service Cloud
console and displayed to the agent.

visitorName

Bool: trueDetermines whether session logs are sent for collection. (Logs sent
remotely don't collect personal information. Unique IDs are created

remoteLoggingEnabled

for tying logs to sessions and those IDs can't be correlated back to
specific users.)

SCSPrechatObject array: nilYou can specify both optional and required fields shown to the user
before a chat session starts. You can also directly pass data to an
agent without requiring any user input.

prechatFields

To create pre-chat fields, add SCSPrechatObject instances to
the prechatFields property on the
SCSChatConfiguration object.

To learn more, see Show Pre-Chat Fields to User.

SCSPrechatEntity array: nilPre-chat fields are always sent to the agent at the start of the session.
But if you want to fill in fields of a particular record, instantiate an

prechatEntities

SCSPrechatEntity for each Salesforce object (for example,
Case  or Contact) and instantiate an
SCSPrechatEntityField for each field association within
that Salesforce object (for example, Subject  or LastName).

106

Configure a Live Agent Chat SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatEntities
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html


Type & Default ValueDescriptionProperty Name

To learn more, see Show Pre-Chat Fields to User.

BOOL: trueDetermines whether the framework receives and displays updates
about the session queue position. If true, the queue position is

queueUpdatesEnabled

shown in the UI during the Queued  state. You can also subscribe
to queue position events using chat(SCSChat,
didUpdateQueuePosition: NSNumber!) on
SCSChatDelegate. Use the add(delegate:
SCSChatDelegate!) method on SCSChat to register your
delegate.

The queue position is 0 if the agent capacity is greater than or equal
to the number of customer requests. Otherwise, the position value
represents how far the customer is from getting served by an agent.

q = max(n - c, 0)

Where:

• q is the queue position

• n is the position of the customer compared to all waiting
customers

• c is the total capacity of all agents

For example, if the total capacity is 10, the first 10 waiting visitors
have a position of 0, the 11th has a position of 1, the 12th has a
position of 2, and so on.

Once you've fully configured the SCSChatConfiguration object, you can start the session using the startSession method.

Example: The following example starts a session with one pre-chat field.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Set the visitor name
config?.visitorName = "Jane Doe"

// Add a required email field (with an email keyboard and no auto-correction)
let emailField = SCSPrechatTextInputObject(label: "Email")
emailField?.isRequired = true
emailField?.keyboardType = .emailAddress
emailField?.autocorrectionType = .no
config?.prechatFields.add(emailField)

// Start session!
ServiceCloud.shared().chat.startSession(with: config)

107

Configure a Live Agent Chat SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)queueUpdatesEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didUpdateQueuePosition:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didUpdateQueuePosition:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html


In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-ORG-ID"

buttonId:@"YOUR-BUTTON-ID"];

// Set the visitor name
config.visitorName = @"Jane Doe";

// Add a required email field (with an email keyboard and no auto-correction)
SCSPrechatTextInputObject* emailField = [[SCSPrechatTextInputObject alloc]

initWithLabel:@"Email"];
emailField.required = YES;
emailField.keyboardType = UIKeyboardTypeEmailAddress;
emailField.autocorrectionType = UITextAutocorrectionTypeNo;
[config.prechatFields addObject:emailField];

// Start session!
[[SCServiceCloud sharedInstance].chat startSessionWithConfiguration:config];

Live Agent Chat Events and Errors
Implement SCSChatDelegate  to be notified about state changes made before, during, and after a Live Agent Chat session. This
delegate also allows you to listen for error conditions so you can present alerts to the user when applicable.

Listening to State Changes
A Live Agent Chat session can be in one of the following states:

Inactive
No active session; no incoming or outgoing traffic.

Loading
Session is loading.

Prechat
The user is currently entering pre-chat details.

Connecting
A connection with Live Agent servers is being established.

Queued
A connection has been established, and is now in the queue for next available agent.

Connected
Connected with an agent .

Ending
Session is cleaning up the connection at the end of a session.

Ended
Session has ended and will proceed to the inactive state.

These states are defined in SCSChatSessionState.

108

Live Agent Chat Events and ErrorsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSChatSessionState.html


Throughout a session, your application might want to know the current state. You can monitor state changes by implementing
SCSChatDelegate. Use the add(delegate: SCSChatDelegate!) method on SCSChat to register your delegate. Use
the chat(SCSChat, stateDidChange current: SCSChatSessionState, previous:
SCSChatSessionState) method to listen for state changes.

Handling Session Termination and Error Conditions
The SDK doesn't present UI alerts for session termination or error conditions so you'll need to listen for these events and decide what to
show your users. There are two SCSChatDelegate methods for this purpose:

1. To track session termination, use the chat(SCSChat, didEndWith: SCSChatEndReason, error: Error!)
method. Inspect the reason (SCSChatEndReason) to determine why the session stopped. Typically, the session stops due to a
normal event (for example, SCSChatEndReasonUser). If the reason is SCSChatEndReasonSessionError, check the
error  parameter for more detail and compare the error code to SCSChatErrorCode values. For instance, when there are no
agents available to take a call, the error is SCSChatNoAgentsAvailableError.

2. You can track all Live Agent Chat errors (including the session errors that are passed to chat(SCSChat, didEndWith:
SCSChatEndReason, error: Error!)) with the chat(SCSChat, didError: Error!) method. Compare
the error code to SCSChatErrorCode to determine what kind of error occurred.

Example: Basic SCSChatDelegate  Example

This sample code does the following:

• Implements the SCSChatDelegate protocol.

• Implements the chat(SCSChat, stateDidChange current: SCSChatSessionState, previous:
SCSChatSessionState) method to listen for state changes.

• Implements the chat(SCSChat, didEndWith: SCSChatEndReason, error: Error!) method and
includes some error handling logic.

• Implements the chat(SCSChat, didError: Error!) method to listen for errors.

import UIKit
import ServiceCore
import ServiceChat

class MyChatDelegateImplementation: NSObject, SCSChatDelegate {

// TO DO: Register this delegate using SCServiceCloud.sharedInstance().chat.add(self)

// Delegate method for state change.
func chat(_ chat: SCSChat!, stateDidChange current: SCSChatSessionState,

previous: SCSChatSessionState) {

NSLog("Chat state changed...")

if (current == .connecting) {
NSLog("Chat now connecting...")

}
}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
func chat(_ chat: SCSChat!, didEndWith reason: SCSChatEndReason,

109

Live Agent Chat Events and ErrorsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSChatEndReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSChatErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSChatErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didError:


error: Error!) {

var title = ""
var description = ""

// If there's an error...
if (error != nil) {

switch (error as NSError).code {

// No agents available
case SCSChatErrorCode.noAgentsAvailableError.rawValue:
title = "Session Failed"
description = "It looks like there are no agents available. Try again later."

// Communication error
case SCSChatErrorCode.communicationError.rawValue:
title = "Session Failed"
description = "Communication error. Check network and try again."

// TO DO: Use SCSChatErrorCode to check for other error conditions
// in order to give a more clear explanation of the error.
default:
title = "Session Error"
description = "Unknown session error."

}

// Else if session stopped without an error condition...
} else {

switch reason {

// Handle the agent disconnect scenario
case .agent:
title = "Session Ended"
description = "The agent has ended the session."

// TO DO: Use SCSChatEndReason to check for
// other reasons for session ending...
default:
break

}
}

// Do we have an error to report?
if (title != "") {
// TO DO: Display an alert using title & description
NSLog("\nChat End Session. Title: %@\nDescription: %@",title, description)

}
}

// Delegate method for error conditions.
func chat(_ chat: SCSChat!, didError error: Error!) {

110

Live Agent Chat Events and ErrorsService Cloud Snap-Ins for iOS



NSLog("Chat error (%d): '%@'", (error as NSError).code, error.localizedDescription)

}
}

Show Pre-Chat Fields to User
Before a Live Agent Chat session begins, you can request that the user fill in pre-chat fields that are sent to the agent at the start of the
session. You can map these fields to records in your org.

To create pre-chat fields, add SCSPrechatObject instances to the prechatFields property on the SCSChatConfiguration
object. To associate pre-chat fields with fields in a record in your org, add SCSPrechatEntity objects to the prechatEntities
property.

1. Create an SCSChatConfiguration object.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

See Configure a Live Agent Chat Session on how to configure a chat session.

2. Create SCSPrechatObject objects for the pre-chat fields you want to specify in your app. Add these objects to your configuration
object.

There are several types of pre-chat fields:

• SCSPrechatObject does not require user input and can be used to send custom data directly to the agent.

• SCSPrechatTextInputObject (a subclass of SCSPrechatObject) takes user input from a text field.

• SCSPrechatPickerObject (a subclass of SCSPrechatObject) provides the user with a dropdown list of options.

Initialize a pre-chat object with a string used for the pre-chat label and then add it to the configuration object.

In Swift:

// Create the field
let myPrechatField = SCSPrechatTextInputObject(label: "PRECHAT_LABEL")

// Add field to SCSChatConfiguration object
config.prechatFields.add(myPrechatField)

In Objective-C:

// Create the field
SCSPrechatTextInputObject* myPrechatField = [[SCSPrechatTextInputObject alloc]
initWithLabel:@"PRECHAT_LABEL"];

111

Show Pre-Chat Fields to UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatEntities
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatTextInputObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatPickerObject.html


// Add field to SCSChatConfiguration object
[config.prechatFields addObject:myPrechatField];

When using a SCSPrechatTextInputObject, you can control several other properties:

• required— to specify whether the field is required.

• keyboardType— to use other standard keyboards (such as UIKeyboardTypeEmailAddress).

• autocapitalizationType— to control how text capitalization works.

• autocorrectionType— to control auto-correction.

• maxLength— to specify the maximum length of the field.

When using a SCSPrechatPickerObject, you can access these properties:

• required— to specify whether the field is required.

• options  — to specify items in the dropdown list. This property is an array of SCSPrechatPickerOption objects.

When using SCSPrechatObject to send data without user input, specify both the label and the value.

In Swift:

let customData = SCSPrechatObject(label: "CustomDataEmailField",
value: "lauren@example.com")

In Objective-C:

SCSPrechatObject* customData = [[SCSPrechatObject alloc]
initWithLabel:@"CustomDataEmailField"

value:@"lauren@example.com"];

Note:  To specify the name of the visitor speaking with the agent, create an SCSPrechatObject using the string constant
kPrechatVisitorNameLabel  as the label. For example: SCSPrechatObject(label:
kPrechatVisitorNameLabel, value: "John Doe").

3. (Optional) Create SCSPrechatEntity objects to associate pre-chat fields with fields from a record in your org. Add these objects
to your configuration object.

Pre-chat fields are always sent to the agent at the start of the session. But if you want to fill in fields of a particular record, instantiate
an SCSPrechatEntity for each Salesforce object (for example, Case  or Contact) and instantiate an
SCSPrechatEntityField for each field association within that Salesforce object (for example, Subject  or LastName).

In Swift:

// Create a field
let entityField =
SCSPrechatEntityField(fieldName: "ORG_FIELD_NAME", label: "PRECHAT_LABEL")

// Create an entity
let entity =
SCSPrechatEntity(entityName: "ENTITY_NAME")

// Add fields to entity
entity.entityFieldsMaps.add(entityField)

// Add entity to SCSChatConfiguration object
config.prechatEntities.add(entity)

112

Show Pre-Chat Fields to UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatTextInputObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatPickerObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatPickerOption.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html


In Objective-C:

// Create a field
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"ORG_FIELD_NAME" label:@"PRECHAT_LABEL"];

// Create an entity
SCSPrechatEntity* entity = [[SCSPrechatEntity alloc]
initWithEntityName:@"ENTITY_NAME"];

// Add fields to entity
[entity.entityFieldsMaps addObject:entityField];

// Add entity to SCSChatConfiguration object
[config.prechatEntities addObject:entity];

Note:  When you build the SCSPrechatEntityField object, the first argument (fieldName) is the name of the
field from the object in your org. The second argument (label) is the name of the label from your local SCSPrechatObject
object.

The SCSPrechatEntity and SCSPrechatEntityField classes give you additional controls for mapping fields. For
example, if a field doesn't exist, you can have the SDK create that field. The following code sample illustrates some basic building
blocks when creating a SCSPrechatEntity object.

In Swift:

// Create an entity
let entity = SCSPrechatEntity(entityName: "Contact")
entity.saveToTranscript = "Contact" // Save this entity to Transcript.Contact
entity.linkToEntityName = "Case"
entity.linkToEntityField = "ContactId" // Link this entity to Case.ContactId

// Add an entity field map to our entity
let entityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First Name")
entityField.doFind = true // Attempt to search for that field
entityField.isExactMatch = true // Must be an exact match
entityField.doCreate = true // Create if not found
entity.entityFieldsMaps.add(entityField) // Add field to entity map

In Objective-C:

// Create an entity
SCSPrechatEntity* entity = [[SCSPrechatEntity alloc] initWithEntityName:@"Contact"];
entity.saveToTranscript = @"Contact"; // Save this entity to Transcript.Contact
entity.linkToEntityName = @"Case";
entity.linkToEntityField = @"ContactId"; // Link this entity to Case.ContactId

// Add an entity field map to our entity
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"FirstName" label:@"First Name"];

entityField.doFind = YES; // Attempt to search for that field
entityField.isExactMatch = YES; // Must be an exact match
entityField.doCreate = YES; // Create if not found
[entity.entityFieldsMaps
addObject:entityField]; // Add field to entity map

113

Show Pre-Chat Fields to UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html


See the reference documentation for SCSPrechatEntity and SCSPrechatEntityField. Also refer to Live Agent REST
API Data Types for the Entity  and EntityFieldsMaps  data types, which define the underlying functionality of these SDK
objects.

Example: This code sample builds a set of pre-chat fields that are shown to the user. Using the entity mapping feature, the code
creates a new Case  record using the Subject, Description, Status, and Origin  fields. It also updates (or creates)
a Contact  with the FirstName, LastName, Email, and Phone  fields.

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Add some required fields
let firstNameField = SCSPrechatTextInputObject(label: "First Name")
firstNameField!.isRequired = true
config?.prechatFields.add(firstNameField!)
let lastNameField = SCSPrechatTextInputObject(label: "Last Name")
lastNameField!.isRequired = true
config?.prechatFields.add(lastNameField!)
let emailField = SCSPrechatTextInputObject(label: "Email")
emailField!.isRequired = true
emailField!.keyboardType = .emailAddress
emailField!.autocorrectionType = .no
config?.prechatFields.add(emailField!)

// Add some optional fields
let originField = SCSPrechatTextInputObject(label: "Where are you from?")
originField!.isRequired = false
config?.prechatFields.add(originField!)
let phoneField = SCSPrechatTextInputObject(label: "Phone Number")
phoneField!.isRequired = false
phoneField!.keyboardType = .phonePad
config?.prechatFields.add(phoneField!)
let descriptionField = SCSPrechatTextInputObject(label: "Please describe your problem:")
descriptionField!.isRequired = false
config?.prechatFields.add(descriptionField!)

// Add a picklist field
let statusOptions = NSMutableArray()
statusOptions.add(SCSPrechatPickerOption(label:"New Issue", value:"New"))
statusOptions.add(SCSPrechatPickerOption(label:"Fixed Issue", value:"Fixed"))
let statusPickerField = SCSPrechatPickerObject(label: "Status",
options: statusOptions as NSArray as! [SCSPrechatPickerOption])
statusPickerField!.isRequired = false
config?.prechatFields.add(statusPickerField!)

// Add hidden field containing the subject
let subjectField = SCSPrechatObject(label: "Subject", value: "Live Agent Chat Session")
config?.prechatFields.add(subjectField)

// Create an entity mapping for a Contact record type
let contactEntity = SCSPrechatEntity(entityName: "Contact")
contactEntity.saveToTranscript = "Contact"

114

Show Pre-Chat Fields to UserService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
https://developer.salesforce.com/docs/atlas.en-us.212.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm
https://developer.salesforce.com/docs/atlas.en-us.212.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm


contactEntity.linkToEntityName = "Case"
contactEntity.linkToEntityField = "ContactId"

// Add some field mappings to our Contact entity
let firstNameEntityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First
Name")
firstNameEntityField.doFind = true
firstNameEntityField.isExactMatch = true
firstNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(firstNameEntityField)
let lastNameEntityField = SCSPrechatEntityField(fieldName: "LastName", label: "Last
Name")
lastNameEntityField.doFind = true
lastNameEntityField.isExactMatch = true
lastNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(lastNameEntityField)
let emailEntityField = SCSPrechatEntityField(fieldName: "Email", label: "Email")
emailEntityField.doFind = true
emailEntityField.isExactMatch = true
emailEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(emailEntityField)
let phoneEntityField = SCSPrechatEntityField(fieldName: "Phone", label: "Phone Number")
phoneEntityField.doFind = true
phoneEntityField.isExactMatch = true
phoneEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(phoneEntityField)

// Add the Contact entity to our config
config?.prechatEntities.add(contactEntity)

// Create an entity mapping for a Case record type
let caseEntity = SCSPrechatEntity(entityName: "Case")
caseEntity.saveToTranscript = "Case"
caseEntity.showOnCreate = true

// Add some field mappings to our Case entity
let subjectEntityField = SCSPrechatEntityField(fieldName: "Subject", label: "Subject")
subjectEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(subjectEntityField)
let descriptionEntityField = SCSPrechatEntityField(fieldName: "Description",
label: "Please describe your problem:")

descriptionEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(descriptionEntityField)
let statusEntityField = SCSPrechatEntityField(fieldName: "Status", label: "Status")
statusEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(statusEntityField)
let originEntityField = SCSPrechatEntityField(fieldName: "Origin",

label: "Where are you from?")
originEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(originEntityField)

// Add the Case entity to our config
config?.prechatEntities.add(caseEntity)

115

Show Pre-Chat Fields to UserService Cloud Snap-Ins for iOS



// Start the session!
ServiceCloud.shared().chat.startSession(with: config)

Find or Create Salesforce Records from a Chat Session
When a Live Agent Chat session begins, you can create or find records within your org and pass this information to the agent. Using this
technique, your agent can immediately have all the context they need for an effective chat session.

If you already have enough information in your app to find or create a record in your Salesforce org, you don't have to display a pre-chat
UI. For example, you can use an email address you've already stored within your app to find their contact information in the Salesforce
org and then pass that Contact  record to the agent. Or you can add information about the customer and their issue to a new case
and display that Case  record to the agent. You can even link a new case to the contact so that agents can easily find all previous
interactions with this customer. If you need additional information from the user, you can display a pre-chat UI and have the user enter
in any additional information.

This topic shows you how to send data to your org without a pre-chat UI. If you require user input, see Show Pre-Chat Fields to User. The
basic process is similar, but be sure to perform the optional step that involves creating an SCSPrechatEntity object. This object
is necessary to find or create the Salesforce record.

1. Create an SCSChatConfiguration object.

In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

See Configure a Live Agent Chat Session on how to configure a chat session.

2. Create SCSPrechatObject objects for each field you want to update in your org. Add these objects to your configuration
object.

The label string in this object must be identical to the label used later in your SCSPrechatEntityField object.

In Swift:

// Create a hidden field
let customData = SCSPrechatObject(label: "PRECHAT_LABEL",

value: "VALUE_OF_THIS_FIELD")

// Add field to SCSChatConfiguration object
config.prechatFields.add(customData)

In Objective-C:

// Create a hidden field
SCSPrechatObject* customData = [[SCSPrechatObject alloc]

initWithLabel:@"PRECHAT_LABEL"

116

Find or Create Salesforce Records from a Chat SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html


value:@"VALUE_OF_THIS_FIELD"];

// Add field to SCSChatConfiguration object
[config.prechatFields addObject:customData];

Note:  This example creates a field that doesn't require any user input. To learn how to create a field with user input, see Show
Pre-Chat Fields to User.

3. Create SCSPrechatEntity objects to associate these values with fields from a record in your org. Add these objects to your
configuration object.

Instantiate an SCSPrechatEntity for each Salesforce object (for example, Case  or Contact) and instantiate an
SCSPrechatEntityField for each field association within that Salesforce object (for example, Subject  or LastName).

In Swift:

// Create a field
let entityField =
SCSPrechatEntityField(fieldName: "ORG_FIELD_NAME", label: "PRECHAT_LABEL")

// Create an entity
let entity =
SCSPrechatEntity(entityName: "ENTITY_NAME")

// Add fields to entity
entity.entityFieldsMaps.add(entityField)

// Add entity to SCSChatConfiguration object
config.prechatEntities.add(entity)

In Objective-C:

// Create a field
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"ORG_FIELD_NAME" label:@"PRECHAT_LABEL"];

// Create an entity
SCSPrechatEntity* entity = [[SCSPrechatEntity alloc]
initWithEntityName:@"ENTITY_NAME"];

// Add fields to entity
[entity.entityFieldsMaps addObject:entityField];

// Add entity to SCSChatConfiguration object
[config.prechatEntities addObject:entity];

Note:  When you build the SCSPrechatEntityField object, the first argument (fieldName) is the name of the
field from the object in your org. The second argument (label) is the name of the label from your local SCSPrechatObject
object.

The SCSPrechatEntity and SCSPrechatEntityField classes give you additional controls for mapping fields. For
example, if a field doesn't exist, you can have the SDK create that field. The following code sample illustrates some basic building
blocks when creating a SCSPrechatEntity object.

117

Find or Create Salesforce Records from a Chat SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html


In Swift:

// Create an entity
let entity = SCSPrechatEntity(entityName: "Contact")
entity.saveToTranscript = "Contact" // Save this entity to Transcript.Contact
entity.linkToEntityName = "Case"
entity.linkToEntityField = "ContactId" // Link this entity to Case.ContactId

// Add an entity field map to our entity
let entityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First Name")
entityField.doFind = true // Attempt to search for that field
entityField.isExactMatch = true // Must be an exact match
entityField.doCreate = true // Create if not found
entity.entityFieldsMaps.add(entityField) // Add field to entity map

In Objective-C:

// Create an entity
SCSPrechatEntity* entity = [[SCSPrechatEntity alloc] initWithEntityName:@"Contact"];
entity.saveToTranscript = @"Contact"; // Save this entity to Transcript.Contact
entity.linkToEntityName = @"Case";
entity.linkToEntityField = @"ContactId"; // Link this entity to Case.ContactId

// Add an entity field map to our entity
SCSPrechatEntityField* entityField = [[SCSPrechatEntityField alloc]
initWithFieldName:@"FirstName" label:@"First Name"];

entityField.doFind = YES; // Attempt to search for that field
entityField.isExactMatch = YES; // Must be an exact match
entityField.doCreate = YES; // Create if not found
[entity.entityFieldsMaps
addObject:entityField]; // Add field to entity map

See the reference documentation for SCSPrechatEntity and SCSPrechatEntityField. Also refer to Live Agent REST
API Data Types for the Entity  and EntityFieldsMaps  data types, which define the underlying functionality of these SDK
objects.

Example: This code sample adds FirstName, LastName, Email  to a Contact record and a Subject  field to a Case
record.

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

// Create some fields with specific values
let firstNameField = SCSPrechatObject(label: "First Name", value: "Jane")
config?.prechatFields.add(firstNameField)
let lastNameField = SCSPrechatObject(label: "Last Name", value: "Doe")
config?.prechatFields.add(lastNameField)
let emailField = SCSPrechatObject(label: "Email", value: "jane.doe@salesforce.com")
config?.prechatFields.add(emailField)
let subjectField = SCSPrechatObject(label: "Subject", value: "Live Agent Chat Session")
config?.prechatFields.add(subjectField)

// Create an entity mapping for a Contact record type

118

Find or Create Salesforce Records from a Chat SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
https://developer.salesforce.com/docs/atlas.en-us.212.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm
https://developer.salesforce.com/docs/atlas.en-us.212.0.live_agent_rest.meta/live_agent_rest/live_agent_rest_data_types.htm


let contactEntity = SCSPrechatEntity(entityName: "Contact")
contactEntity.saveToTranscript = "Contact"
contactEntity.linkToEntityName = "Case"
contactEntity.linkToEntityField = "ContactId"

// Add some field mappings to our Contact entity
let firstNameEntityField = SCSPrechatEntityField(fieldName: "FirstName", label: "First
Name")
firstNameEntityField.doFind = true
firstNameEntityField.isExactMatch = true
firstNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(firstNameEntityField)
let lastNameEntityField = SCSPrechatEntityField(fieldName: "LastName", label: "Last
Name")
lastNameEntityField.doFind = true
lastNameEntityField.isExactMatch = true
lastNameEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(lastNameEntityField)
let emailEntityField = SCSPrechatEntityField(fieldName: "Email", label: "Email")
emailEntityField.doFind = true
emailEntityField.isExactMatch = true
emailEntityField.doCreate = true
contactEntity.entityFieldsMaps.add(emailEntityField)

// Add the Contact entity to our config
config?.prechatEntities.add(contactEntity)

// Create an entity mapping for a Case record type
let caseEntity = SCSPrechatEntity(entityName: "Case")
caseEntity.saveToTranscript = "Case"
caseEntity.showOnCreate = true

// Add one field mappings to our Case entity
let subjectEntityField = SCSPrechatEntityField(fieldName: "Subject", label: "Subject")
subjectEntityField.doCreate = true
caseEntity.entityFieldsMaps.add(subjectEntityField)

// Add the Case entity to our config
config?.prechatEntities.add(caseEntity)

// Start the session!
ServiceCloud.shared().chat.startSession(with: config)

Check Live Agent Availability
Before starting a session, you can check the availability of your Live Agent Chat agents and then provide your users with more accurate
expectations.

To check whether agents are available, call the determineAvailabilityWithConfiguration method on the chat
property, similar to how you start a Live Agent session.

119

Check Live Agent AvailabilityService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)determineAvailabilityWithConfiguration:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)chat


In Swift:

let config = SCSChatConfiguration(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID",
buttonId: "YOUR-BUTTON-ID")

ServiceCloud.shared().chat.determineAvailability(with: config,
completion: { (error: Error?, available: Bool) in

if (error != nil) {
// Handle error

}
else if (available) {
// Enable chat button

}
else {
// Disable button or warn user that no agents are available

}

})

In Objective-C:

SCSChatConfiguration *config =
[[SCSChatConfiguration alloc] initWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"

buttonId:@"YOUR-BUTTON-ID"];

[[SCServiceCloud sharedInstance].chat
determineAvailabilityWithConfiguration:config

completion:^(NSError *error, BOOL available)
{

if (error != nil) {
// Handle error

}
else if (available) {
// Enable chat button

}
else {
// Disable button or warn user that no agents are available

}

});

Transfer File to Agent
With Live Agent Chat, a user can transfer a file to an agent after the agent requests a file transfer.

The agent can request that the user transfer a file by clicking the Attach File button from the Service Cloud Console.

120

Transfer File to AgentService Cloud Snap-Ins for iOS



The user sees a FILE TRANSFER REQUESTED message in the app and can then send a file using the paperclip button.

No coding is necessary in your app to make this behavior work.

See Transfer Files During a Chat in Salesforce Help for details about setting up this functionality in the Service Cloud Console.

Note: If your app crashes when a user attempts to perform a file transfer, check that you've enabled the device privacy permissions
for the camera and the photo library. An app will crash if these permissions are not set in Xcode. See Install the iOS SDK.

Block Sensitive Data in a Chat Session
To block sending sensitive data to agents, specify a regular expression in your org's setup. When the regular expression matches text in
the user's message, the matched text is replaced with customizable text before it leaves the device.

To learn more, see Block Sensitive Data in Chats.

Using SOS

Adding the SOS experience to your app.

SOS Overview

Learn about the SOS experience using the SDK.

Quick Setup: SOS

Use SOSSessionManager  to start an SOS session.

Configure an SOS Session

Before starting an SOS session, you can optionally configure the session using the SOSOptions  object. These configuration
settings allow you to enable or disable cameras, determine what screen a session starts on, specify whether network tests are
performed, and control other features.

121

Block Sensitive Data in a Chat SessionService Cloud Snap-Ins for iOS

https://help.salesforce.com/apex/HTViewHelpDoc?id=live_agent_transfer_files.htm&language=en_US
https://help.salesforce.com/articleView?id=live_agent_block_sensitive_data.htm&language=en_US


Two-Way Video

In addition to screen sharing, the SOS SDK lets your customer share their device's live camera feed with an agent. The customer's
front-facing camera allows for a video conversation with an agent. The back-facing camera provides a great way for a customer to
show something to an agent, rather than have to explain it.

SOS Events and Errors

Implement SOSDelegate  to be notified about state changes made before, during, and after an SOS call. This delegate also allows
you to listen for error conditions so you can present alerts to the user when applicable.

Quality-of-Service Events

Check your audio and video quality-of-service (QoS) to detect packet loss and other streaming issues between the OpenTok media
router and your org.

Check SOS Agent Availability

Before starting a session, you can check the availability of your SOS agents and then provide your users with more accurate expectations.

Enable and Disable Screen Sharing

There are some scenarios where you may want to programmatically turn off screen sharing in mid-session. You can enable and
disable screen sharing using the screenSharing  property.

Field Masking

If an application contains sensitive information that an agent shouldn't see during an SOS session, you can hide this information
from the agent.

Custom Data

Use custom data to identify customers, send error messages, issue descriptions, or identify the page the SOS session was initiated
from.

Replace the SOS UI

If you'd like to customize the SOS UI, you can create your own UI by subclassing the UIViewController  class associated with
that phase of the SOS session.

SOS Overview
Learn about the SOS experience using the SDK.

SOS lets you easily add real-time video and screen sharing support to your native iOS app. Once you’ve set up Service Cloud for SOS, it
takes just a few calls to the SDK to have your app ready to handle agent calls and to support screen sharing. With screen sharing, agents
can even make annotations directly on the customer’s screen.

122

SOS OverviewService Cloud Snap-Ins for iOS



And with just a few more configuration changes, you can provide two-way video support from your app. This functionality can include
front-facing camera support, back-facing camera support, or both.

123

SOS OverviewService Cloud Snap-Ins for iOS



There are several other ways you can set up your SOS environment, including masking sensitive fields and passing custom data back to
your org.

You can also customize the look and feel of the interface so that it fits naturally within your app. These customizations include the ability
to fine-tune the colors, the fonts, the images, and the strings used throughout the interface.

Check out SOS Events and Errors for information about how to handle event changes. In particular, you'll want to listen for error conditions
and present alerts to the user when applicable.

Let's get started.

Quick Setup: SOS
Use SOSSessionManager  to start an SOS session.

Before running through these steps, be sure you’ve already:

• Set up Service Cloud to work with SOS. To learn more, see Console Setup for SOS.

• Installed the SDK. To learn more, see Install the iOS SDK.

Once you’ve reviewed these prerequisites, you’re ready to begin.

1. Import the SDK. Wherever you intend to use the SOS SDK, be sure to import the Service Common framework and the SOS framework.

In Swift:

import ServiceCore
import ServiceSOS

124

Quick Setup: SOSService Cloud Snap-Ins for iOS



In Objective-C:

@import ServiceCore;
@import ServiceSOS;

2. Create an SOSOptions object with information about your LiveAgent pod, your Salesforce org ID, and the deployment ID.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

Note:  You can get the required parameters for this method from your Salesforce org. If your Salesforce admin hasn’t already
set up SOS in Service Cloud or you need more guidance, see Console Setup for SOS.

3. (Optional) Specify additional configuration settings before starting a session.

Before starting an SOS session, you can optionally configure the session using the SOSOptions  object. These configuration
settings allow you to enable or disable cameras, determine what screen a session starts on, specify whether network tests are
performed, and control other features. To learn more, see Configure an SOS Session.

4. (Optional) Customize the appearance with the configuration object.

You can configure the colors, fonts, and images to your interface with an SCAppearanceConfiguration instance. It contains
the methods setColor, setFontDescriptor, and setImage. You can also configure the strings used throughout the
interface. See SDK Customizations.

5. To start an SOS session, call startSession on the SOSSessionManager shared instance.

You can start a session when the view controller loads, or from a UI action.

In Swift:

ServiceCloud.shared().sos.startSession(with: options)

In Objective-C:

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

You can provide an optional completion block to execute code when the session has been fully connected to all services. During a
successful session initialization, the SDK calls the completion block at the point that the session is active and the user is waiting for
an agent to join. If there is a failure, the SDK calls the completion block with the associated error.

Note: If your app crashes when it is in the process of connecting to an SOS session, check that you've enabled the device
privacy permissions for the camera and the microphone. An app will crash if these permissions are not set in Xcode. See Install
the iOS SDK.

For instructions on launching the interface from a web view, see Launch SDK from a Web View.

6. Listen for events and handle error conditions.

You can listen for state changes that occur during a session life cycle by implementing SOSDelegate methods. Register this
delegate using the add(delegate: SOSDelegate!) method on your SOS instance (from ServiceCloud). In particular,

125

Quick Setup: SOSService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)startSessionWithOptions:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html


we suggest that you implement the sos(SOSSessionManager, didStopWith: SOSStopReason, error:
Error!) method to handle session termination. See SOS Events and Errors.

Note:  The SDK doesn't show an alert when a session fails to start, or when a session ends. It's your responsibility to listen to
events and display an error when appropriate.

7. (Optional) If you want to programmatically stop a session, call the stopSession method on the SOSSessionManager
shared instance.

In Swift:

ServiceCloud.shared().sos.stopSession()

In Objective-C:

[[SCServiceCloud sharedInstance].sos stopSession];

Alternatively, you can call the stopSession(completion: SOSCompletionHandler!) method with a completion
block.

For additional details on customizing the SOS experience in your app, see the other topics covered in Using SOS. If you run into network
issues while connecting with an agent, see SOS Network Troubleshooting Guide.

Example: To use this example code, create a Single View Application and Install the iOS SDK.

Use the storyboard to add a button to the view. Add a Touch Up Inside  action in your UIViewController
implementation with the name startSOS. In the view controller code:

• Implement the SOSDelegate protocol so that you can be notified when there are errors or state changes.

• Specify self  as an SOS delegate.

• Start an SOS session in the button action.

• Implement the sos(SOSSessionManager, didStopWith: SOSStopReason, error: Error!) method
and show a dialog when appropriate.

In Swift:

import UIKit
import ServiceCore
import ServiceSOS

class ViewController: UIViewController, SOSDelegate {

override func viewDidLoad() {
super.viewDidLoad()

// Add our SOS delegate
ServiceCloud.shared().sos.add(self)

}

@IBAction func startSOS(sender: AnyObject) {

// Create options object
let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",

orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

// Start the session

126

Quick Setup: SOSService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSession
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSessionWithCompletion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:


ServiceCloud.shared().sos.startSession(with: options)
}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
func sos(_ sos: SOSSessionManager!, didStopWith reason: SOSStopReason,

error: Error!) {

var title = ""
var description = ""

// If there's an error...
if (error != nil) {

switch (error as NSError).code {

// No agents available
case SOSErrorCode.SOSNoAgentsAvailableError.rawValue:
title = "Session Failed"
description = "It looks like there are no agents available. Try again later."

// Insufficient network error
case SOSErrorCode.SOSInsufficientNetworkError.rawValue:
title = "Session Failed"
description = "Insufficient network. Check network quality and try again."

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default:
title = "Session Error"
description = "Unknown session error."

}

// Else if session stopped without an error condition...
} else {

switch reason {

// Handle the agent disconnect scenario
case .agentDisconnected:
title = "Session Ended"
description = "The agent has ended the session."

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default:
break

}
}

// Display dialog if we have something to say...
if (title != "") {

127

Quick Setup: SOSService Cloud Snap-Ins for iOS



let alert = UIAlertController(title: title,
message: description,
preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK",
style: .default,
handler: nil)

alert.addAction(okAction)
self.present(alert, animated: true, completion: nil)

}
}

}

In Objective-C:

#import <UIKit/UIKit.h>
@import ServiceCore;
@import ServiceSOS;

@interface ViewController : UIViewController <SOSDelegate>

@end

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];

// Add our SOS delegate
[[SCServiceCloud sharedInstance].sos addDelegate:self];

}

- (IBAction)startSOS:(id)sender {

// Create options object
SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"

orgId:@"YOUR-ORG-ID"
deploymentId:@"YOUR-DEPLOYMENT-ID"];

// Start the session
[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
- (void)sos:(SOSSessionManager *)sos didStopWithReason:(SOSStopReason)reason

error:(NSError *)error {
NSString *title = nil;
NSString *description = nil;

// If there's an error...
if (error != nil) {

switch (error.code) {

// No agents available

128

Quick Setup: SOSService Cloud Snap-Ins for iOS



case SOSNoAgentsAvailableError: {
title = @"Session Failed";
description = @"It looks like there are no agents available. Try again later.";

break;
}

// Network test failure
case SOSNetworkTestError: {
title = @"Session Failed";
description = @"Insufficient network. Check network quality and try again.";
break;

}

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default: {
title = @"Session Error";
description = @"Unknown session error.";
break;

}
}

// Else if session stopped without an error condition...
} else {

switch (reason) {

// Handle the agent disconnect scenario
case SOSStopReasonAgentDisconnected: {

title = @"Session Ended";
description = @"The agent has ended the session.";
break;

}

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default: {

break;
}

}
}

// Display dialog if we have something to say...
if (title != nil) {

UIAlertController *alert = [UIAlertController
alertControllerWithTitle:title
message:description
preferredStyle:UIAlertControllerStyleAlert];

UIAlertAction* okAction = [UIAlertAction
actionWithTitle:@"OK"
style:UIAlertActionStyleDefault
handler:^(UIAlertAction * action)

129

Quick Setup: SOSService Cloud Snap-Ins for iOS



{
NSLog(@"OK action");

}];

[alert addAction:okAction];
[self presentViewController:alert animated:YES completion:nil];

}
}

@end

Configure an SOS Session
Before starting an SOS session, you can optionally configure the session using the SOSOptions  object. These configuration settings
allow you to enable or disable cameras, determine what screen a session starts on, specify whether network tests are performed, and
control other features.

When you start an SOS session using SOSSessionManager, you pass an SOSOptions object as one of the arguments. This object
contains all the configuration settings necessary for SOS to start a session. To create an SOSOptions object, you specify information
about your org and deployment (as described in Quick Setup: SOS), and that is all that is required. However, there are many other options
you can set using SOSOptions.

Note:  Be sure not to start an SOS session until you’ve fully configured the SOSOptions object.

The following features are available for configuration:

Type & Default ValueDescriptionFeature

NSMutableDictionary  — Default:
nil

Dictionary that can be used to send custom
data to your Salesforce org. See Custom
Data.

customFieldData

BOOL  — Default: YES/trueWhether the agent video stream is enabled
for the session.

featureAgentVideoStreamEnabled

BOOL  — Default: NO/falseWhether the back-facing camera is enabled
for the session. See Two-Way Video.

featureClientBackCameraEnabled

BOOL  — Default: NO/falseWhether the front-facing (selfie) camera is
enabled for the session. See Two-Way Video.

featureClientFrontCameraEnabled

BOOL  — Default: YES/trueWhether screen sharing is enabled for the
session.

featureClientScreenSharingEnabled

BOOL  — Default: YES/trueWhether the network test is enabled before
and during a session.

featureNetworkTestEnabled

CGPointThe initial center position of the UI
containing the agent video and SOS control
buttons.

initialAgentStreamPosition

BOOL  — Default: YES/trueWhether the agent video stream is active
when starting a session.

initialAgentVideoStreamActive

130

Configure an SOS SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureAgentVideoStreamEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientBackCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientFrontCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientScreenSharingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureNetworkTestEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentStreamPosition
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentVideoStreamActive


Type & Default ValueDescriptionFeature

SOSCameraType enumerated type —
Default: screenSharing

The initial view (screen sharing, front-facing
camera, or back-facing camera) when
starting a session.

initialCameraType

BOOL  — Default: YES/trueDetermines whether session logs are sent
for collection. Logs sent remotely do not

remoteLoggingEnabled

collect personal information. Unique IDs are
created for tying logs to sessions and those
IDs cannot be correlated back to specific
users.

NSTimeInterval  — Default: 30The length of time (in seconds) before SOS
prompts the user to retry or cancel.

sessionRetryTime

SOSUIPhase enumerated type.Lets you override the SOS UI. See Replace
the SOS UI.

setViewControllerClass

As you can see from the table, by default, an SOS session starts in screen sharing mode, with both cameras disable. If you don’t want
default values, manually change the options before starting a session.

Example: The following example starts a session with the back-facing camera showing, the front-facing camera enabled, and
screen sharing disabled.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

options!.featureClientBackCameraEnabled = true
options!.featureClientFrontCameraEnabled = true
options!.featureClientScreenSharingEnabled = false
options!.initialCameraType = .backFacing

ServiceCloud.shared().sos.startSession(with: options)

In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

[options setFeatureClientBackCameraEnabled: YES];
[options setFeatureClientFrontCameraEnabled: YES];
[options setFeatureClientScreenSharingEnabled: NO];
[options setInitialCameraType: SOSCameraTypeBackFacing];

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

131

Configure an SOS SessionService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSCameraType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialCameraType
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)remoteLoggingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)sessionRetryTime
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSUIPhase.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(im)setViewControllerClass:for:


Two-Way Video
In addition to screen sharing, the SOS SDK lets your customer share their device's live camera feed with an agent. The customer's
front-facing camera allows for a video conversation with an agent. The back-facing camera provides a great way for a customer to show
something to an agent, rather than have to explain it.

By default, after a connection is established, the camera shows the agent in the full-screen view and the customer’s camera in the
picture-in-picture view. If a device has both a front-facing and back-facing camera, the customer can swap cameras by double-tapping
the screen during the two-way video session. The customer can also tap the picture-in-picture view to swap the full-screen view with
the picture-in-picture view.

You can programmatically configure which cameras are available and which camera the session starts with.

Configure Two-Way Video

Two-way video for SOS is disabled by default. You can enable it by accessing one or both cameras in the user's device with the
SOSOptions object used when starting the SOS session. You can also configure the initial camera view when the session starts.

132

Two-Way VideoService Cloud Snap-Ins for iOS



Configure Two-Way Video
Two-way video for SOS is disabled by default. You can enable it by accessing one or both cameras in the user's device with the
SOSOptions object used when starting the SOS session. You can also configure the initial camera view when the session starts.

Note:  Always test two-way video on an actual device, rather than using the simulator. The Xcode simulator doesn't have access
to a camera, so it doesn’t provide you with an accurate experience.

1. Create an SOSOptions object using SOSOptions(liveAgentPod: String!, orgId: String!,
deploymentId: String!), as described in Quick Setup: SOS.

2. Initialize access to one or both of the cameras on the user's device by setting featureClientFrontCameraEnabled and
featureClientBackCameraEnabled.

In Swift:

options?.featureClientFrontCameraEnabled = true
options?.featureClientBackCameraEnabled = true

In Objective-C:

[options setFeatureClientFrontCameraEnabled: YES];
[options setFeatureClientBackCameraEnabled: YES];

To learn more, see Configure an SOS Session.

3. Determine what is displayed when a session starts.

By default, a session starts in screen sharing mode. Alternatively, you can start a session using one of the cameras. For example, the
following command starts a session using the back-facing camera.

In Swift:

options?.initialCameraType = .backFacing

In Objective-C:

[options setInitialCameraType: SOSCameraTypeBackFacing];

If you’d rather start a session with the front-facing camera, use this command instead.

In Swift:

options?.initialCameraType = .frontFacing

In Objective-C:

[options setInitialCameraType: SOSCameraTypeFrontFacing];

To learn more, see Configure an SOS Session.

4. Determine whether you want to allow the screen sharing feature.

Even if you start a session with the camera, the screen sharing function is still enabled by default. This functionality may be appropriate
for your use case. However, you can disable screen sharing altogether with the following call.

In Swift:

options?.featureClientScreenSharingEnabled = false

133

Two-Way VideoService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(cm)optionsWithLiveAgentPod:orgId:deploymentId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(cm)optionsWithLiveAgentPod:orgId:deploymentId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientFrontCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientBackCameraEnabled


In Objective-C:

[options setFeatureClientScreenSharingEnabled: NO];

To learn more, see Configure an SOS Session.

5. Start an SOS session.

In Swift:

ServiceCloud.shared().sos.startSession(with: options)

In Objective-C:

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

To learn more, see Quick Setup: SOS.

SOS Events and Errors
Implement SOSDelegate  to be notified about state changes made before, during, and after an SOS call. This delegate also allows
you to listen for error conditions so you can present alerts to the user when applicable.

Note:  This topic covers how to handle state changes from your mobile app. For information about how to handle state changes
from the Salesforce console, see Listen for SOS Console Events.

The SOSSessionManager singleton (sos) maintains all information related to SOS sessions. One of its properties (state) is an
SOSSessionState object, which maintains the current state of SOS. This state object can be in one of five different states:

Inactive
No active session; no outgoing/incoming SOS traffic.

Configuring
Performing a pre-initialization configuration step, such as network testing.

Initializing
Preparing to connect.

Connecting
Attempting a connection to a live agent.

Active
Connected with agent; session is fully established.

Throughout a session, your application might want information related to the session state. You can monitor state changes by
implementing SOSDelegate. Use the add(delegate: SOSDelegate!) method on SOSSessionManager to register
your delegate.

134

SOS Events and ErrorsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)sos
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)state
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSSessionState.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html


Listening to State Changes
If you want to know every time an SOS session state changes, the sos(SOSSessionManager, stateDidChange current:
SOSSessionState, previous: SOSSessionState) method is called for every change.

A more specific set of delegate methods are available to track specific state changes:

1. sosDidStart — invoked when a session is possible and the user has agreed to start a session.

2. sosDidConnect — invoked when the SOS session has connected.

3. sosWillReconnect — invoked if network connectivity issues arise, and the session will attempt to reconnect.

4. sos(SOSSessionManager, didStopWith: SOSStopReason, error: Error!) — invoked when the session
has ended.

These state changes are labeled with an associated number in the diagram below.

Handling Session Termination and Error Conditions
The SDK doesn't present UI alerts for session termination or error conditions so you'll need to listen for these events and decide what to
show your users. There are two SOSDelegate methods for this purpose:

1. To track session termination, use the sos(SOSSessionManager, didStopWith: SOSStopReason, error:
Error!) method . Inspect the reason (SOSStopReason) to determine why the session stopped. Typically, the session stops
due to a normal event (for example, SOSStopReasonUserDisconnected  or SOSStopReasonAgentDisconnected).
If the reason is SOSStopReasonSessionError, check the error  parameter for more detail and compare the error code
to SOSErrorCode values. For instance, when there are no agents available to take a call, the error is
SOSNoAgentsAvailableError.

2. You can track all SOS errors with the sos(SOSSessionManager, didError: Error!) method. Compare the error
code to SOSErrorCode to determine what kind of error occurred.

See the sample code below for a basic implementation of sos(SOSSessionManager, didStopWith: SOSStopReason,
error: Error!) and sos(SOSSessionManager, didError: Error!).

Example: Basic SOSDelegate  Example

This sample code does the following:

• Implements the SOSDelegate protocol.

• Implements the sos(SOSSessionManager, stateDidChange current: SOSSessionState,
previous: SOSSessionState) method.

• Implements the sosDidConnect method.

• Implements the sos(SOSSessionManager, didStopWith: SOSStopReason, error: Error!) method
and includes some error handling logic.

• Implements the sos(SOSSessionManager, didError: Error!) method.

135

SOS Events and ErrorsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidStart:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidConnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosWillReconnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSStopReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidConnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:


In Swift:

import UIKit
import ServiceCore
import ServiceSOS

class MySOSDelegateImplementation: NSObject, SOSDelegate {

// TO DO: Register this delegate using
SCServiceCloud.sharedInstance().sos.addDelegate(self)

// Delegate method for state change.
func sos(_ sos: SOSSessionManager!, stateDidChange current: SOSSessionState,

previous: SOSSessionState) {

NSLog("SOS state changed...")

if (current == .connecting) {
NSLog("SOS now connecting...")

}
}

// Delegate method for connect state.
func sosDidConnect(_ sos: SOSSessionManager!) {
NSLog("SOS session connected...")

}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
func sos(_ sos: SOSSessionManager!, didStopWith reason: SOSStopReason,

error: Error!) {

var title = ""
var description = ""

// If there's an error...
if (error != nil) {

switch (error as NSError).code {

// No agents available
case SOSErrorCode.SOSNoAgentsAvailableError.rawValue:
title = "Session Failed"
description = "It looks like there are no agents available. Try again later."

// Insufficient network error
case SOSErrorCode.SOSInsufficientNetworkError.rawValue:
title = "Session Failed"
description = "Insufficient network. Check network quality and try again."

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default:
title = "Session Error"

136

SOS Events and ErrorsService Cloud Snap-Ins for iOS



description = "Unknown session error."
}

// Else if session stopped without an error condition...
} else {

switch reason {

// Handle the agent disconnect scenario
case .agentDisconnected:
title = "Session Ended"
description = "The agent has ended the session."

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default:
break

}
}

// Do we have an error to report?
if (title != "") {
// TO DO: Display an alert using title & description
NSLog("\nSOS ALERT Title: %@\nDescription: %@",title, description)

}
}

// Delegate method for error conditions.
func sos(_ sos: SOSSessionManager!, didError error: Error!) {
NSLog("SOS error (%d): '%@'", (error as NSError).code, error.localizedDescription)

}
}

In Objective-C:

#import <UIKit/UIKit.h>
@import ServiceCore;
@import ServiceSOS;

@interface MySOSDelegateImplementation : NSObject <SOSDelegate>

@end

@implementation MyDelegateImplementation

// TO DO: Register this delegate using [[SCServiceCloud sharedInstance].sos
addDelegate:self]

// Delegate method for state change.
- (void)sos:(SOSSessionManager *)sos stateDidChange:(SOSSessionState)current

previous:(SOSSessionState)previous {
NSLog(@"SOS state changed...");
if (current == SOSSessionStateConnecting) {
NSLog(@"SOS now connecting...");

}

137

SOS Events and ErrorsService Cloud Snap-Ins for iOS



}

// Delegate method for connect state.
- (void)sosDidConnect:(SOSSessionManager *)sos {
NSLog(@"SOS session connected...");

}

// Delegate method for session stop event.
// You can also check for fatal errors with this delegate method.
- (void)sos:(SOSSessionManager *)sos didStopWithReason:(SOSStopReason)reason

error:(NSError *)error {

NSString *title = nil;
NSString *description = nil;

// If there's an error...
if (error != nil) {

switch (error.code) {

// No agents available
case SOSNoAgentsAvailableError: {
title = @"Session Failed";
description = @"It looks like there are no agents available. Try again later.";

break;
}

// Network test failure
case SOSNetworkTestError: {
title = @"Session Failed";
description = @"Insufficient network. Check network quality and try again.";
break;

}

// TO DO: Use SOSErrorCode to check for ALL other error conditions
// in order to give a more clear explanation of the error.
default: {
title = @"Session Error";
description = @"Unknown session error.";
break;

}
}

// Else if session stopped without an error condition...
} else {

switch (reason) {

// Handle the agent disconnect scenario
case SOSStopReasonAgentDisconnected: {

title = @"Session Ended";
description = @"The agent has ended the session.";
break;

138

SOS Events and ErrorsService Cloud Snap-Ins for iOS



}

// TO DO: Use SOSStopReason to check for
// other reasons for session ending...
default: {

break;
}

}
}

// Do we have an error to report?
if (title != nil) {
// TO DO: Display an alert using title & description
NSLog(@"\nSOS ALERT Title: %@\nDescription: %@",title, description);

}
}

- (void)sos:(SOSSessionManager *)sos didError:(NSError *)error {
NSLog(@"SOS error (%d): '%@'", error.code, error.localizedDescription);

}

@end

Quality-of-Service Events
Check your audio and video quality-of-service (QoS) to detect packet loss and other streaming issues between the OpenTok media
router and your org.

Note:  This SDK allows you to track streaming issues on the other side of the conversation (from the agent to the media router).
To track QoS issues on this side (from the app to the media router), see SOS Quality-of-Service Console Events.

1. Implement SOSNetworkReporterDelegate.

In Swift:

func audioNetworkStatsDidUpdate(withSessionId sessionId: String,
bytesReceived: NSNumber,
packetsReceived: NSNumber,
packetsLost: NSNumber,
timeStamp: NSNumber) {

// Handle audio network stats updates
}

func videoNetworkStatsDidUpdate(withSessionId sessionId: String,
bytesReceived: NSNumber,
packetsReceived: NSNumber,
packetsLost: NSNumber,
videoDimensions: CGSize,
timeStamp: NSNumber) {

// Handle video network stats updates
}

139

Quality-of-Service EventsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSNetworkReporterDelegate.html


In Objective-C:

- (void)audioNetworkStatsDidUpdateWithSessionId:(NSString *)sessionId
bytesReceived:(NSNumber *)bytesReceived

packetsReceived:(NSNumber *)packetsReceived
packetsLost:(NSNumber *)packetsLost
timeStamp:(NSNumber *)timeStamp {

// Handle audio network stats updates
}

- (void)videoNetworkStatsDidUpdateWithSessionId:(NSString *)sessionId
bytesReceived:(NSNumber *)bytesReceived

packetsReceived:(NSNumber *)packetsReceived
packetsLost:(NSNumber *)packetsLost

videoDimensions:(CGSize *)videoDimensions
timeStamp:(NSNumber *)timeStamp {

// Handle video network stats updates
}

The audioNetworkStatsDidUpdate  method specifies how many bytes were received, how many packets were received,
and the number of packets lost for a 30-second span of audio.

The videoNetworkStatsDidUpdate  method specifies how many bytes were received, how many packets were received,
the number of packets lost, and the video dimensions for a 30-second span of video.

2. Subscribe to network events from your SOS instance.

In Swift:

ServiceCloud.shared().sos.networkReporter.add(myNetworkDelegate)

In Objective-C:

[SCServiceCloud.sharedInstance.sos.networkReporter addDelegate:myNetworkDelegate];

3. When done, unsubscribe to network events from your SOS instance.

In Swift:

ServiceCloud.shared().sos.networkReporter.remove(myNetworkDelegate)

In Objective-C:

[SCServiceCloud.sharedInstance.sos.networkReporter removeDelegate:myNetworkDelegate];

Check SOS Agent Availability
Before starting a session, you can check the availability of your SOS agents and then provide your users with more accurate expectations.

To use agent availability, implement the SOSAgentAvailabilityDelegate methods and start polling your org.

Note:  When subscribing to the agent availability delegate, it can take several seconds before any of your delegate methods are
called. We don’t suggest that you block a user’s ability to start a session during this period.

1. Implement the SOSAgentAvailabilityDelegate methods in your UIViewController.

140

Check SOS Agent AvailabilityService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSAgentAvailabilityDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSAgentAvailabilityDelegate.html


In Swift:

func agentAvailability(_ agentAvailability: Any!,
didChange availabilityStatus: SOSAgentAvailabilityStatusType) {

// TO DO: Handle event...
}

func agentAvailability(_ agentAvailability: Any!,
didError error: Error!) {

// TO DO: Handle error...
}

In Objective-C:

- (void)agentAvailability:(__weak id)agentAvailability
didChange:(SOSAgentAvailabilityStatusType)availabilityStatus {

// TO DO: Handle event...
}

- (void)agentAvailability:(__weak id)agentAvailability
didError:(NSError *)error {

// TO DO: Handle error...
}

Refer to the SOSAgentAvailabilityStatusType enumerated type for list of potential status messages.

2. Add your UIViewController  as a delegate to theSOSAgentAvailability object and call
startPolling(withOrganizationId: String!, deploymentId: String!, liveAgentPod:
String!).

In Swift:

let agentAvailability = ServiceCloud.shared().sos.agentAvailability!
agentAvailability.add(self)
agentAvailability.startPolling(withOrganizationId: "YOUR-ORG-ID",

deploymentId: "YOUR-DEPLOY-ID",
liveAgentPod: "YOUR-LA-POD")

In Objective-C:

SOSAgentAvailability *agentAvailability =
[SCServiceCloud sharedInstance].sos.agentAvailability;

[agentAvailability addDelegate:self];
[agentAvailability startPollingWithOrganizationId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOY-ID"
liveAgentPod:@"YOUR-LA-POD"];

This method takes the same values you specified when starting an SOS session. For more info, see Quick Setup: SOS.

141

Check SOS Agent AvailabilityService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSAgentAvailabilityStatusType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSAgentAvailability.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSAgentAvailability.html#/c:objc(cs)SOSAgentAvailability(im)startPollingWithOrganizationId:deploymentId:liveAgentPod:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSAgentAvailability.html#/c:objc(cs)SOSAgentAvailability(im)startPollingWithOrganizationId:deploymentId:liveAgentPod:


Example: This example accesses the Agent Availability feature and handles the appropriate events. In the code, _sosBtn  is
a UIButton  with text that turns green when an agent is available, red when no agents are available, and gray when the status
is unknown.

In Swift:

override func viewDidLoad() {
super.viewDidLoad()

let agentAvailability = ServiceCloud.shared().sos.agentAvailability
agentAvailability?.add(self)
agentAvailability?.startPolling(withOrganizationId: "YOUR-ORG-ID",

deploymentId: "YOUR-DEPLOY-ID",
liveAgentPod: "YOUR-LA-POD")

}

// Delegate methods
func agentAvailability(_ agentAvailability: Any!,
didChange availabilityStatus: SOSAgentAvailabilityStatusType) {

var color: UIColor?

switch availabilityStatus {
case .available:
color = UIColor.green
sosBtn.isEnabled = true

case .unavailable:
color = UIColor.red
sosBtn.isEnabled = false

case .unknown:
color = UIColor.gray
sosBtn.isEnabled = false

}

sosBtn.setTitleColor(color!, for: .normal)
}

func agentAvailability(_ agentAvailability: Any!, didError error: Error!) {

// TO DO: Handle error
}

In Objective-C:

- (void)viewDidLoad {
[super viewDidLoad];
SOSAgentAvailability *agentAvailability =

[SCServiceCloud sharedInstance].sos.agentAvailability;
[agentAvailability addDelegate:self];
[agentAvailability startPollingWithOrganizationId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOY-ID"
liveAgentPod:@"YOUR-LA-POD"];

}

// Delegate methods

142

Check SOS Agent AvailabilityService Cloud Snap-Ins for iOS



- (void)agentAvailability:(__weak id)agentAvailability
didChange:(SOSAgentAvailabilityStatusType)availabilityStatus {

UIColor *color;

switch (availabilityStatus) {
case SOSAgentAvailabilityStatusAvailable: {

color = [UIColor greenColor];
[_sosBtn setEnabled:YES];
break;

}
case SOSAgentAvailabilityStatusUnavailable: {

color = [UIColor redColor];
[_sosBtn setEnabled:NO];
break;

}
case SOSAgentAvailabilityStatusUnknown:
default: {

color = [UIColor grayColor];
[_sosBtn setEnabled:NO];
break;

}
}
[_sosBtn setTitleColor:color forState:UIControlStateNormal];

}

- (void)agentAvailability:(__weak id)agentAvailability
didError:(NSError *)error {

// TO DO: Handle error
}

Enable and Disable Screen Sharing
There are some scenarios where you may want to programmatically turn off screen sharing in mid-session. You can enable and disable
screen sharing using the screenSharing  property.

You can control screen sharing using the screenSharing object on the SOSSessionManager shared instance. The
screenSharing.enabled  property enables or disables the screen sharing functionality.

The following code disables screen sharing.

In Swift:

ServiceCloud.shared().sos.screenSharing.enabled = false

In Objective-C:

[SCServiceCloud sharedInstance].sos.screenSharing.enabled = NO;

143

Enable and Disable Screen SharingService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)screenSharing
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html


Field Masking
If an application contains sensitive information that an agent shouldn't see during an SOS session, you can hide this information from
the agent.

When a customer enters information into a masked field, screen sharing is disabled and the agent is notified that sharing is unavailable
until the user has finished. Field masking is an integral feature to help bring your application to PII, PCI, and HIPAA compliance.

Agent's view when a field is masked:

To use field masking, replace the UITextField  containing sensitive information with a SOSMaskedTextField.

When there isn’t an SOS session running, a masked text field appears the same as a standard UITextField. However, when an SOS
session is running, an SOSMaskedTextField  appears different from a standard UITextField  field. When the user interacts
with the SOSMaskedTextField, screen sharing stops while the contents of that field is visible to the user. When the user finishes
editing the masked field, screen-sharing resumes.

Create Masked Field Using Storyboard

To create a masked field using the storyboard, specify the SOSMaskedTextField  custom class and set the user-defined runtime
attributes.

Create Masked Field Programmatically

To create a masked field manually, instantiate and style a SOSMaskedTextField  instance.

144

Field MaskingService Cloud Snap-Ins for iOS



Create Masked Field Using Storyboard
To create a masked field using the storyboard, specify the SOSMaskedTextField  custom class and set the user-defined runtime
attributes.

1. Create a standard UITextField  with the storyboard.

2. From the Identity Inspector, specify SOSMaskedTextField for the Custom Class.

3. From the Identity Inspector, specify the text field style settings in the User Defined Runtime Attributes section.

The follow key path attributes are available:

maskPattern (String)
Name of the image file used to fill the background of the masked field when an SOS session is active

borderColor (Color)
UIColor  of the border around the masked field

maskText (String)
Text to appear in the masked field

maskPattern (Color)
UIColor  of the text in the masked field

Create Masked Field Programmatically
To create a masked field manually, instantiate and style a SOSMaskedTextField  instance.

1. Define an SOSMaskedTextField instead of a UITextField.

In Swift:

var maskCodeExample: SOSMaskedTextField!

145

Field MaskingService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSMaskedTextField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSMaskedTextField.html


In Objective-C:

@property (strong, nonatomic) IBOutlet SOSMaskedTextField *maskCodeExample;

2. Instantiate and style the SOSMaskedTextField.

In Swift:

// Set the size of the masked field and the look when masking is active
maskCodeExample = SOSMaskedTextField(
frame: CGRect.init(x: 20, y: 300, width: 200, height: 300),
maskPattern: "mask-stripBY.png",
borderColor: UIColor.yellow,
text: "Password",
textColor: UIColor.blue)

// Make the field look like a UITextField created by the interface builder
maskCodeExample.borderStyle = .roundedRect
maskCodeExample.autocorrectionType = .no
maskCodeExample.keyboardType = .default
maskCodeExample.returnKeyType = .done
maskCodeExample.clearButtonMode = .whileEditing
maskCodeExample.contentVerticalAlignment = .center

maskCodeExample.delegate = self

self.view.addSubview(maskCodeExample)

In Objective-C:

// Set the size of the masked field and the look when masking is active
maskCodeExample = [[SOSMaskedTextField alloc]

initWithFrame:CGRectMake(20, 300, 200, 30)
maskPattern:@"mask-stripeBY.png"
borderColor:[UIColor yellowColor]

text:@"Password"
textColor:[UIColor blueColor]];

// Make the field look like a UITextField created by the interface builder
maskCodeExample.borderStyle = UITextBorderStyleRoundedRect;
maskCodeExample.font = [UIFont systemFontOfSize:15];
maskCodeExample.autocorrectionType = UITextAutocorrectionTypeNo;
maskCodeExample.keyboardType = UIKeyboardTypeDefault;
maskCodeExample.returnKeyType = UIReturnKeyDone;
maskCodeExample.clearButtonMode = UITextFieldViewModeWhileEditing;
maskCodeExample.contentVerticalAlignment =

UIControlContentVerticalAlignmentCenter;

[maskCodeExample setDelegate:self];

[self.view addSubview:maskCodeExample];

Custom Data
Use custom data to identify customers, send error messages, issue descriptions, or identify the page the SOS session was initiated from.

146

Custom DataService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSMaskedTextField.html


When an agent receives an SOS call, it can be helpful to have information about the caller before starting the session. Use the custom
data feature to identify customers, send error messages, identify the currently viewed page, or send other information. Custom data
populates custom fields on the SOS Session object that is created within your Salesforce org for each SOS session initiated by a user.

Before using custom data, create the corresponding fields within the SOS Session object of your Salesforce org. To learn more, see Create
Custom Fields.

To use this feature, set the customFieldData property on the SOSOptions object that you use to start an SOS session. The keys
in this NSMutableDictionary  should reference the API Name for fields defined in your SOS Session object and the values should
reflect the desired values for those fields.

Note:  If the field associated with the custom data that you specify in customFieldData is not set up correctly in your
Salesforce org, the SOS session will fail with an error.

Example: This example shows how to pass email information from your app to Service Cloud.

Before trying this example, be sure to define an "Email" custom field on the SOS Session object in your Salesforce org:

Note:  By default, your org contains no custom field data. To learn about custom fields, see Create Custom Fields.

Once you have created a custom field, you can build a dictionary object and add it to the SOSOptions object that you create
when starting a session.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")

// Here we are passing the customer's email address as a String. Note the use
// of the field's API Name as the key in the map. We are only populating a single
// field here, but we may put an arbitrary number of entries into the map to
// populate multiple different fields.
options!.customFieldData = ["Email__c": "laurenboyle@example.com"]

In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

// Here we are passing the customer's email address as a String. Note the use
// of the field's API Name as the key in the map. We are only populating a single
// field here, but we may put an arbitrary number of entries into the map to
// populate multiple different fields.
NSMutableDictionary *myCustomData =

[NSMutableDictionary dictionaryWithObjectsAndKeys:
@"laurenboyle@example.com", @"Email__c", nil];

[options setCustomFieldData:myCustomData];

147

Custom DataService Cloud Snap-Ins for iOS

https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
https://help.salesforce.com/apex/HTViewHelpDoc?id=adding_fields.htm&language=en_US
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html


When the user creates an SOS session, the Email field is prepopulated with the value specified in your custom data field.

Replace the SOS UI
If you'd like to customize the SOS UI, you can create your own UI by subclassing the UIViewController  class associated with that
phase of the SOS session.

To replace the SOS UI, you'll need to register your view controllers for whichever phases you want to replace. The following phases are
supported:

Onboarding (SOSUIPhaseOnboarding)
The onboarding process before a session starts.

Connecting (SOSUIPhaseConnecting)
The connecting process before a session starts.

Screen Sharing (SOSUIPhaseScreenSharing)
An active screen sharing session.

To register a view controller, use the SOSOptions object and call the setViewControllerClass method before attempting
to start a session. This method takes the class type for your view controller, and an SOSUIPhase enumerated type. When creating
your view controller, make sure it subclasses the view controller for that phase of the session. Each view controller must also implement
a protocol associated with that session phase.

Table 7: SOS Phases

Protocol to ImplementView Controller to SubclassPhase Name

SOSOnboardingViewControllerSOSOnboardingBaseViewControlleronboarding

SOSConnectingViewControllerSOSConnectingBaseViewControllerconnecting

SOSSessionViewController,
SOSUIAgentStreamReceivable,
SOSUILineDrawingReceivable

SOSScreenSharingBaseViewController
(which subclasses
SOSSessionBaseViewController)

screenSharing

For example, the following code overrides the onboarding UI.

In Swift:

let options = SOSOptions(liveAgentPod: "YOUR-POD-NAME",
orgId: "YOUR-ORG-ID",
deploymentId: "YOUR-DEPLOYMENT-ID")!

// Register a custom onboarding view controller
options.setViewControllerClass(SOSOnboardingViewController.self, for: .onboarding)

// Perform other SOS configuration here
// ...

ServiceCloud.shared().sos.startSession(with: options)

148

Replace the SOS UIService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(im)setViewControllerClass:for:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSUIPhase.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSOnboardingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOnboardingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSConnectingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSConnectingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSSessionViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSUIAgentStreamReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSUILineDrawingReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSScreenSharingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionBaseViewController.html


In Objective-C:

SOSOptions *options = [SOSOptions optionsWithLiveAgentPod:@"YOUR-POD-NAME"
orgId:@"YOUR-ORG-ID"

deploymentId:@"YOUR-DEPLOYMENT-ID"];

// Register a custom onboarding view controller
[options setViewControllerClass:[SOSMyOnboardingViewController class]
for:SOSUIPhaseOnboarding];

// Perform other SOS configuration here
// ...

[[SCServiceCloud sharedInstance].sos startSessionWithOptions:options];

To learn more about configuring an SOS session, see Configure an SOS Session.

You can use the following code samples to get started.

SOS Onboarding Sample Code
Below you'll find some boilerplate sample code for the onboarding experience. This class must subclass
SOSOnboardingBaseViewController.

In Swift:

override func willHandleConnectionPrompt() -> Bool {
return true

}

override func connectionPromptRequested() {
// TO DO: Show the onboarding view

}

// Call `handleStartSession` to start a session
// Call `handleCancel` to cancel a session

// See `SOSOnboardingBaseViewController`, `SOSOnboardingViewController`
// for additional functionality

In Objective-C:

- (BOOL)willHandleConnectionPrompt {
return YES;

}

- (void)connectionPromptRequested {
// TO DO: Show the onboarding view

}

SOS Connecting Sample Code
Below you'll find some boilerplate sample code for the connecting experience. This class must subclass
SOSConnectingBaseViewController.

149

Replace the SOS UIService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOnboardingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSConnectingBaseViewController.html


In Swift:

override func initializingNotification() {
// TO DO: Show initializing view

}

override func waitingForAgentNotification() {
// TO DO: Show waiting for agent view

}

override func agentJoinedNotification() {
// TO DO: Show agent joined notification

}

// Call `handleEndSession` to cancel a session

// See `SOSConnectingBaseViewController`, `SOSConnectingViewController`
// for additional functionality

In Objective-C:

- (void)initializingNotification {
// TO DO: Show initializing view

}

- (void)waitingForAgentNotification {
// TO DO: Show waiting for agent view

}

- (void)agentJoinedNotification:(NSString *)name {
// TO DO: Show agent joined notification

}

Screen Sharing Sample Code
Below you'll find some boilerplate sample code for the screen sharing experience. This class must subclass
SOSScreenSharingBaseViewController.

In Swift:

override func willHandleAgentStream() -> Bool {
// This determines whether you wish to display an agent stream in your view.
// If you return NO you will not receive a view containing the agent video feed.
return true

}

override func willHandleAudioLevel() -> Bool {
// When this returns YES, you will receive updates about the audio level you can use
// to implement an audio meter.
return false

}

override func willHandleLineDrawing() -> Bool {
// This determines whether you want to handle line drawing during the session.
return true

150

Replace the SOS UIService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSScreenSharingBaseViewController.html


}

override func willHandleRemoteMovement() -> Bool {
// When this returns YES, you will receive screen space coordinates which represent
// the center of where the agent has moved the view. You can use this to update
// the position of your containing view.
return false

}

override func didReceiveLineDraw(_ drawView: UIView) {
// TO DO: Handle line draw

}

override func didReceiveAgentStreamView(_ agentStreamView: UIView) {
// TO DO: Handle stream view

}

// See `SOSSessionBaseViewController` for how to handle pause, mute, end session events

// See `SOSScreenSharingBaseViewController`, `SOSUIAgentStreamReceivable`,
// `SOSUILineDrawingReceivable` for additional functionality

In Objective-C:

- (BOOL)willHandleAgentStream {
// This determines whether you wish to display an agent stream in your view.
// If you return NO you will not receive a view containing the agent video feed.
return YES;

}

- (BOOL)willHandleAudioLevel {
// When this returns YES, you will receive updates about the audio level you can use
// to implement an audio meter.
return NO;

}

- (BOOL)willHandleLineDrawing {
// This determines whether you want to handle line drawing during the session.
return YES;

}

- (BOOL)willHandleRemoteMovement {
// When this returns YES, you will receive screen space coordinates which represent
// the center of where the agent has moved the view. You can use this to update
// the position of your containing view.
return NO;

}

- (void)didReceiveLineDrawView:(UIView * _Nonnull __weak)drawView {
// TO DO: Handle line draw

}

- (void)didReceiveAgentStreamView:(UIView * _Nonnull __weak)agentStreamView {
// TO DO: Handle stream view

}

151

Replace the SOS UIService Cloud Snap-Ins for iOS



SDK Customizations

Once you’ve played around with some of the SDK features, use this section to learn how to customize the Snap-ins SDK user interface
so that it fits the look and feel of your app. This section also contains guidance on remote notifications and instructions for localizing
strings in all supported languages.

Many UI customizations are handled with the SCAppearanceConfiguration object. You can configure the colors, fonts, and
images to your interface with an SCAppearanceConfiguration instance. It contains the methods setColor,
setFontDescriptor, and setImage. To use this object, create an SCAppearanceConfiguration  instance, specify
values for each token you want to change, and store the instance in the appearanceConfiguration property of the
ServiceCloud sharedInstance.

There are other ways to customize the interface. When using Service Cloud features, various action buttons are available to the user. You
can control the visibility of these buttons and even create new action buttons. You can also customize the strings used in the UI for any
of the supported languages. String customization is performed using a standard localization mechanism provided to Apple developers.

Notifications are another area for potential customization. With a little bit of code, you can have the SDK automatically handle Service
Cloud remote notifications and display the relevant view.

Customize Colors

You can customize the look and feel of the interface by specifying the branding token values in an
SCAppearanceConfiguration  object.

Customize Fonts

There are three customizable font settings used throughout the UI: SCFontWeightLight, SCFontWeightRegular,
SCFontWeightBold.

Customize Images

You can specify custom images used throughout the UI, along with the images used by Knowledge categories and within Knowledge
articles.

Customize Action Buttons

You can customize the action buttons used throughout the UI. You can override the look and the behavior of existing buttons, and
you can create buttons associated with new actions. Use the actions property on ServiceCloud to get access to the action
button API.

Customize and Localize Strings

You can change the text used throughout the user interface. To customize text, create string resource values in a
Localizable.strings  file in the Localization bundle for the languages you want to update. Create string tokens that match
the tokens you intend to override.

Handle Remote Notifications

The SDK can handle remote notifications for events that it understands, such as case feed activity, and display the associated view.

Launch SDK from a Web View

Although this documentation mostly focuses on launching the UI from within your view controller code, you can just as easily launch
the UI from a web view.

Customize Colors
You can customize the look and feel of the interface by specifying the branding token values in an SCAppearanceConfiguration
object.

152

SDK CustomizationsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(cm)sharedInstance
https://developer.apple.com/internationalization/
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html


You customize the colors by defining the branding token colors used throughout the interface. The screenshots below illustrate how
the branding tokens affect the UI.

Knowledge UI Branding:

Case Management UI Branding:

Live Agent Chat UI Branding:

153

Customize ColorsService Cloud Snap-Ins for iOS



SOS UI Branding:

The following branding tokens are available for customization:

154

Customize ColorsService Cloud Snap-Ins for iOS



Description / Sample UsesDefault ValueToken Name / Swift Value /
Objective-C Value

Background color for the navigation bar.#FAFAFANavigation Bar Background

navbarBackground

SCSAppearanceColorTokenNavbarBackground

Navigation bar text and icon color.#010101Navigation Bar Inverted

navbarInverted

SCSAppearanceColorTokenNavbarInverted

Knowledge: First data category, the Show
More button, the footer stripe, the selected
article.

#007F7FBrand Primary

brandPrimary

SCSAppearanceColorTokenBrandPrimary
SOS: Used for various icons.

Used throughout the UI for button colors.#2872CCBrand Secondary

brandSecondary

SCSAppearanceColorTokenBrandSecondary
Live Agent Chat: Agent text bubbles.

SOS: Background color for action items.

Knowledge: Text on data category headers
and the chevron on the Knowledge home
page.

#FBFBFBPrimary Brand Inverted

brandPrimaryInverted

SCSAppearanceColorTokenBrandPrimaryInverted

Text on areas where a brand color is used
for the background.

#FCFCFCSecondary Brand Inverted

brandSecondaryInverted

SCSAppearanceColorTokenBrandSecondaryInverted

Primary body text color.#000000Contrast Primary

contrastPrimary

SCSAppearanceColorTokenContrastPrimary
SOS: Background color for buttons on the
UI.

Knowledge: Subcategory headers.#767676Contrast Secondary

contrastSecondary

SCSAppearanceColorTokenContrastSecondary

Knowledge: Search background color.#BABABAContrast Tertiary

contrastTertiary

SCSAppearanceColorTokenContrastTertiary
SOS: Dots in UI.

155

Customize ColorsService Cloud Snap-Ins for iOS



Description / Sample UsesDefault ValueToken Name / Swift Value /
Objective-C Value

Knowledge: Icon image background color.#F1F1F1Contrast Quaternary

contrastQuaternary

SCSAppearanceColorTokenContrastQuaternary
Case Management: Link color.

Live Agent Chat: Background color.

Page background, navigation bar, table cell
background.

#FFFFFFContrast Inverted

contrastInverted

SCSAppearanceColorTokenContrastInverted SOS: Color of the icons.

Text color for error messages.#E74C3CFeedback Primary

feedbackPrimary

SCSAppearanceColorTokenFeedbackPrimary
SOS: Mute indicator. Disconnect icon.

SOS: Connection quality indicators.
Background color for the Resume button
when the two-way camera is active.

#2ECC71Feedback Secondary

feedbackSecondary

SCSAppearanceColorTokenFeedbackSecondary

SOS: Connection quality indicators.#F5A623Feedback Tertiary

feedbackTertiary

SCSAppearanceColorTokenFeedbackTertiary

Knowledge: Background for the Knowledge
home screen.

Contrast Primary

(at 40% alpha)

Overlay

overlay

SCSAppearanceColorTokenOverlay

To customize colors, create an SCAppearanceConfiguration  instance, specify values for each token you want to change, and
store the instance in the appearanceConfiguration property of the ServiceCloud sharedInstance.

In Swift:

// Create appearance configuration instance
let appearance = SCAppearanceConfiguration()

// Customize color tokens
appearance.setColor(COLOR_VALUE, forName: TOKEN_NAME)

// Add other customizations here...

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = appearance

156

Customize ColorsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(cm)sharedInstance


In Objective-C:

// Create appearance configuration instance
SCAppearanceConfiguration *appearance = [SCAppearanceConfiguration new];

// Customize color tokens
[appearance setColor:COLOR_VALUE forName:TOKEN_NAME];

// Add other customizations here...

// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = appearance;

Example: The following code sample changes three of the branding tokens.

In Swift:

// Create appearance configuration instance
let appearance = SCAppearanceConfiguration()

// Customize color tokens
appearance.setColor(

UIColor(red: 80/255, green: 227/255, blue: 194/255, alpha: 1.0),
forName: .brandPrimary)

appearance.setColor(
UIColor(red: 74/255, green: 144/255, blue: 226/255, alpha: 1.0),
forName: .brandSecondary)

appearance.setColor(
UIColor(red: 252/255, green: 252/255, blue: 252/255, alpha: 1.0),
forName: .brandSecondaryInverted)

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = appearance

In Objective-C:

// Create appearance configuration instance
SCAppearanceConfiguration *appearance = [SCAppearanceConfiguration new];

// Customize color tokens
[appearance setColor:[UIColor colorWithRed: 80/255

green: 227/255
blue: 194/255
alpha: 1.0]

forName:SCSAppearanceColorTokenBrandPrimary];
[appearance setColor:[UIColor colorWithRed: 74/255

green: 144/255
blue: 226/255
alpha: 1.0]

forName:SCSAppearanceColorTokenBrandSecondary];
[appearance setColor:[UIColor colorWithRed: 252/255

green: 252/255
blue: 252/255
alpha: 1.0]

forName:SCSAppearanceColorTokenBrandSecondaryInverted];

157

Customize ColorsService Cloud Snap-Ins for iOS



// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = appearance;

Customize Fonts
There are three customizable font settings used throughout the UI: SCFontWeightLight, SCFontWeightRegular,
SCFontWeightBold.

You can customize three font settings used throughout the Snap-ins SDK interface:

Samples Uses in the SDKDefault ValueFont Setting

Knowledge article cell summary, Case
Management field text, Case Management

Helvetica Neue - LightSCFontWeightLight

submit success view, content of error
messages

Navigation bar, Live Agent Chat text,
Knowledge data category cell in detail view,

Helvetica NeueSCFontWeightRegular

Knowledge "show more" article footer,
Knowledge "show more" button cell

Knowledge category headers, Knowledge
article cell title, Case Management field

Helvetica Neue - SemiboldSCFontWeightBold

labels, Case Management submit button,
title of error messages

To configure your app to use different fonts:

1. Add new fonts to your Xcode project.

Any new fonts must be added as a resource to your Xcode project. When adding, be sure to select Copy items if needed.

2. Add new fonts to your project target.

For each new font, add it to your project target under Target Membership.

158

Customize FontsService Cloud Snap-Ins for iOS



3. Add the font to your app's Info.plist.

You'll need to add all new fonts into a string array. Each string element of the array must be the name of each font resource file.

If you're viewing your Info.plist  as a Property List, add an Array named Fonts provided by application.

If you're viewing your Info.plist  as Source Code, add an array named UIAppFonts. For example:

<key>UIAppFonts</key>
<array>
<string>MyCustomFont1.ttf</string>
<string>MyCustomFont2.ttf</string>
<string>MyCustomFont3.ttf</string>

</array>

4. Customize any of the Snap-ins SDK font values using SCAppearanceConfiguration.

To customize the fonts, create an SCAppearanceConfiguration instance, set the font descriptor for each font setting you
want to change, and store the SCAppearanceConfiguration  instance in the appearanceConfiguration property
of the ServiceCloud shared instance.

Swift Example:

// Create appearance configuration instance
let config = SCAppearanceConfiguration()

// Customize font
let descriptor = UIFontDescriptor(fontAttributes:

[UIFontDescriptor.AttributeName.family : "Proxima Nova"])
config.setFontDescriptor(descriptor,

fontFileName: "ProximaNova-Light.otf",
forWeight: SCFontWeightLight)

159

Customize FontsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html


// Add other customizations here...

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = config

Objective-C Example:

// Create appearance configuration instance
SCAppearanceConfiguration *config =

[SCAppearanceConfiguration new];

// Customize font
UIFontDescriptor *descriptor =

[UIFontDescriptor fontDescriptorWithFontAttributes:@{
UIFontDescriptorFamilyAttribute: @"Proxima Nova",
UIFontDescriptorFaceAttribute: @"Light" }];

[config setFontDescriptor:descriptor
fontFileName:@"ProximaNova-Light.otf"

forWeight:SCFontWeightLight];

// Add other customizations here...

// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = config;

Be sure to use the exact font descriptor attribute name and font file name for your custom font.

Customize Images
You can specify custom images used throughout the UI, along with the images used by Knowledge categories and within Knowledge
articles.

The method to customize an image is different depending on the type of image you want to customize. This table describes what
customization techniques are supported for each image type.

Table 8: Custom Image Types

How to CustomizeImage Type

Use the setImage method on the
SCAppearanceConfiguration object to replace a stock

Stock images

image with your image. Use the enumeration value for the image
you intend to replace.

See Replacing Stock Images for more guidance.

Data category images and article images can be customized in
either one of two different ways:

Data category image (Knowledge)

Article image (Knowledge)
1. Put the images in a specific image folder. This technique uses

the imageFolderPath property on
theSCSServiceConfiguration. For data category
images, the image name must match the unique name for
that category. For article images, the image name must match

160

Customize ImagesService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(py)imageFolderPath
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html


How to CustomizeImage Type

the article number. See Supplying Knowledge Images using
an Image Folder for more guidance.

2. Supply images by implementing a delegate method. This
technique uses the SCKnowledgeInterfaceDelegate
protocol. See Supplying Knowledge Images with a Delegate
for more guidance.

Supported image file formats include: tiff, tif, jpg, jpeg, gif, png, bmp, BMPF, ico, cur.

Replacing Stock Images
For specific images, use the SCSAppearanceImageToken enumeration specified by the SDK and add it to the
SCAppearanceConfiguration object with the setImage method.

Table 9: Stock Image Enum Values

Enum ValueImage Description

Images used throughout the SDKCommon Images

closeClose button

doneDone button

errorError

minimizeButtonMinimize button (Knowledge and Live Agent Chat)

noConnectionNo connection

submitButtonNextArrowNext field button (Case Publisher and Live Agent Chat)

submitButtonPreviousArrowPrevious field button (Case Publisher and Live Agent Chat)

Images used by KnowledgeKnowledge Images

actionSearchSearch action button

emptyArticleArticle is empty

emptySectionCategory section has no articles

categoryHeaderArrowCategory header arrow

noSearchResultNo search results

searchPlaceholderPlaceholder image before search completes

subCategoryIconIcon used when showing the list of subcategories

Images used by Case ManagementCase Management Images

actionCasePublisherCase publisher action button

161

Customize ImagesService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCKnowledgeInterfaceDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:


Enum ValueImage Description

caseSubmitSuccessCase publisher success message

composeCompose icon on Case List screen for creating a case

emptyIconEmpty icon for the Case List screen if no cases are present

picklistDropdownPick case list button

Images used by Live Agent ChatLive Agent Chat Images

attachmentClipIconAttachment button when the user can attach a file

chatAgentAvatarAvatar used for the agent

preChatIconIcon used in the pre-chat screen

Images used by SOSSOS Images

sosAgentMutedIconAgent muted icon

sosAgentPlaceHolderIconAgent placeholder icon (must be 61x55 pixels @1x, 122x110 @2x,
183x165 @3x)

sosCameraIconCamera icon

sosCancelCancel icon

sosConfirmIconConfirm icon

sosEndIconEnd icon

sosExpandIconExpand icon

sosFlashlightIconFlashlight icon

sosInfoIconInfo icon

sosMaskingMask stripe

sosMicrophoneIconMicrophone icon

sosMicrophoneMutedIconUser muted icon

sosPauseIconPause icon

sosResumeIconResume icon

In Swift:

// Create appearance configuration instance
let config = SCAppearanceConfiguration()

// Specify images
config.setImage(MY_CUSTOM_IMAGE,

compatibleWithTraitCollection: MY_TRAITS,
forName: ENUM_VALUE)

162

Customize ImagesService Cloud Snap-Ins for iOS



// Add other customizations here...

// Save configuration instance
ServiceCloud.shared().appearanceConfiguration = config

In Objective-C:

// Create appearance configuration instance
SCAppearanceConfiguration *config = [SCAppearanceConfiguration new];

// Specify images
[config setImage:MY_CUSTOM_IMAGE compatibleWithTraitCollection: MY_TRAITS

forName: ENUM_VALUE];

// Add other customizations here...

// Save configuration instance
[SCServiceCloud sharedInstance].appearanceConfiguration = config;

Supplying Knowledge Images using an Image Folder
For knowledge articles images and data category images, specify the location of the image using the imageFolderPath property
on theSCSServiceConfiguration object. We suggest you do this at the time that you configure the object to connect to your
org. To learn more about connecting to your org, see Quick Setup: Knowledge.

For data category images, the image name must match the unique name for that category. For article images, the image name must
match the article number.

Here is some sample code to get you started.

In Swift:

// Create configuration object with init params
let config = SCSServiceConfiguration(

community: URL(string: "https://mycommunity.example.com")!,
dataCategoryGroup: "Regions",
rootDataCategory: "All")

// Specify image folder
config.imageFolderPath = "my/path/"

// Pass configuration to shared instance
ServiceCloud.shared().serviceConfiguration = config

In Objective-C:

// Create configuration object with init params
SCSServiceConfiguration *config = [[SCSServiceConfiguration alloc]
initWithCommunity:[NSURL URLWithString:@"https://mycommunity.example.com"]
dataCategoryGroup:@"Regions"
rootDataCategory:@"All"];

// Specify image folder
config.imageFolderPath = @"my/path/";

163

Customize ImagesService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(py)imageFolderPath
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html


// Pass configuration to shared instance
[SCServiceCloud sharedInstance].serviceConfiguration = config;

Supplying Knowledge Images with a Delegate
For knowledge articles images and data category images, you can instead supply images using a delegate.

1. Provide the ServiceCloud instance with an implementation of SCKnowledgeInterfaceDelegate.

In Swift:

ServiceCloud.shared().knowledge.delegate =
mySCKnowledgeInterfaceDelegateImplementation

In Objective-C:

[SCServiceCloud sharedInstance].knowledge.delegate =
mySCKnowledgeInterfaceDelegateImplementation;

2. Implement the two delegate methods.

In Swift:

func knowledgeInterface(_ interface: SCKnowledgeInterface,
imageForArticle articleId: String,
compatibleWith traitCollection: UITraitCollection?)
-> UIImage? {

// Your code that returns an image given an article id

return myImage
}

func knowledgeInterface(_ interface: SCKnowledgeInterface,
imageForDataCategory categoryName: String,
compatibleWith traitCollection: UITraitCollection?)
-> UIImage? {

// Your code that returns an image given a data category

return myImage
}

In Objective-C:

- (UIImage*)knowledgeInterface:(SCKnowledgeInterface *)interface
imageForArticle:(NSString *)articleId

compatibleWithTraitCollection:(UITraitCollection *)traitCollection {

// Your code that returns an image given an article id

return myImage;
}

- (UIImage*)knowledgeInterface:(SCKnowledgeInterface *)interface
imageForDataCategory:(NSString *)categoryName

164

Customize ImagesService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCKnowledgeInterfaceDelegate.html


compatibleWithTraitCollection:(UITraitCollection *)traitCollection {

// Your code that returns an image given a data category

return myImage;
}

Customize Action Buttons
You can customize the action buttons used throughout the UI. You can override the look and the behavior of existing buttons, and you
can create buttons associated with new actions. Use the actions property on ServiceCloud to get access to the action button
API.

The SDK provides action buttons that automatically appear when they apply to the context of what you’re viewing. For instance, a Search
button and a Case Publisher button appear when browsing Knowledge articles. You can further customize the behavior of these built-in
action buttons, and you can create your own action buttons.

Several classes are associated with the action button API.

SCSActionManager
This class is your entry point into the action button API. Access this object using the actions property on the ServiceCloud
singleton.

SCSActionManagerDelegate
This delegate contains optional methods that you can implement to customize the behavior of action buttons.

SCSActionItem
If you want to create your own button, create a View-derived class that implements SCSActionItem.

SCSActionItemContainer
This class represents the container that holds all the SCSActionItem buttons. To access this container object, use the
actionItemContainer  property from SCSActionManager.

The Action Manager (SCSActionManager)
This class is your entry point into the action button API. Access this object using the actions property on the ServiceCloud
singleton.

In Swift:

ServiceCloud.shared().actions

In Objective-C:

[SCServiceCloud sharedInstance].actions

Some methods of this class give you access to the container (SCSActionItemContainer) that holds all the action buttons.

Table 10: Action Manager: Container Methods and Properties

DescriptionMethod

Makes the action button container appear or disappear.setContainerVisible

Tells you whether the action button container is visible.isContainerVisible

165

Customize Action ButtonsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItemContainer.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItemContainer.html


DescriptionMethod

Gives you access to the action button container object. See The
Action Container section.

actionItemContainer

Other methods give you access to the buttons (SCSActionItem) and their actions.

Table 11: Action Manager: Item Methods and Properties

DescriptionMethod

Makes a particular action item appear or disappear. See the list of
actions after this table.

setActionItemVisible

Tells you whether a particular action item is visible. See the list of
actions after this table.

isActionItemWithNameVisible

Performs the specified action. See the list of actions after this table.performAction

Tells the SDK that the action items should update.setNeedsUpdateActionItems

When working with built-in actions, use the following values to represent these actions.

casePublisher
Launches the Case Publisher interface from where a user can create a case.

caseList
Launches the Case List interface from where a user can see a list of their cases.

caseInterface
Performs the default Case Management action. If the user is authenticated, this action performs the SCSActionCaseList
action. If the user is a guest user, this action performs SCSActionCasePublisher.

articleSearch
Launches the Knowledge article search interface.

chatInterface
Launches the Live Agent Chat interface.

sosInterface
Launches the SOS interface.

In addition to these functions, the SCSActionManager gives you access to the action delegate, which allows you to create new
actions and customize the behavior of existing actions.

The Action Delegate (SCSActionManagerDelegate)
This delegate contains optional methods that you can implement to customize the behavior of action buttons. To override the behavior
of the action button mechanism, implement SCSActionManagerDelegate and pass this delegate to SCSActionManager.

166

Customize Action ButtonsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionManager.html


Table 12: Delegate Methods That Affect the Buttons

DescriptionMethod

Asks the delegate for the named actions to show when the
specified controller is presented. The default actions are passed to

actionManager(SCSActionManager,
actionsToShowFor controller:

this method. You can add your custom actions to this default SetUIViewController?, withDefaultActions
or return the default Set  as is. If this method is not implemented,
the default actions are shown.

defaultActions: Set<SCSAction>) ->
Set<SCSAction>?

Asks the delegate to supply a custom view (that is, a button) for
the action of the specified name. If the return value is nil, the

actionManager(SCSActionManager,
viewForActionItemWithName name: SCSAction)
-> UIView? system-provided view is used, if any. The view is expected to trigger

the action using the
performActionWithName:actionItem:  method.

Asks the delegate to indicate the relative sort positioning of the
specified action item. By default, the sort order for built-in actions

actionManager(SCSActionManager,
sortIndexForActionItemWithName name:
SCSAction) -> Int is: SCSActionItemDefaultSortArticleSearch = 10,

SCSActionItemDefaultSortCaseInterface = 20,
SCSActionItemDefaultSortChatInterface = 30,
SCSActionItemDefaultSortSOSInterface = 40.

Asks the delegate whether to show the action container when the
specified controller becomes visible. This method provides the

actionManager(SCSActionManager,
shouldShowContainerFor controller:
UIViewController?) -> Bool delegate with the opportunity to conditionally show or hide action

items when the state changes.

Asks the delegate whether the specified action button should be
present.

actionManager(SCSActionManager,
shouldShowActionWithName name: SCSAction)
-> Bool

Table 13: Delegate Methods That Affect the Actions

DescriptionMethod

Asks the delegate to perform a specified action. This method is
called either in response to a button tap or from a call to
SCSActionManager.performAction.

actionManager(SCSActionManager,
performActionWithName actionName:
SCSAction, actionItem: UIView?) -> Bool

Table 14: Delegate Methods for Notification

DescriptionMethod

Tells the delegate when the action container will change its
visibility.

actionManager(SCSActionManager,
containerWillChangeVisibility visible:
Bool, animated: Bool)

Tells the delegate after the action container has changed its
visibility.

actionManager(SCSActionManager,
containerDidChangeVisibility visible: Bool,
animated: Bool)

167

Customize Action ButtonsService Cloud Snap-Ins for iOS



Action Items (SCSActionItem)
If you want to create your own button, create a View-derived class that implements SCSActionItem. To create a button that looks
and feels like the default buttons, instantiate an SCSActionButton object, which is a UIButton  that also implements
SCSActionItem. Use the standard button methods, like setTitle  and setImage, to control what is on the button.

If you are creating buttons for new actions, ensure that these actions are visible with the actionsToShowFor controller:
UIViewController?, withDefaultActions defaultActions: Set<SCSAction>)  delegate handler.

To show your button, pass the button to the SDK from the viewForActionItemWithName name: SCSAction)  delegate
handler.

When your custom button is tapped, perform the appropriate action.

The Action Container (SCSActionItemContainer)
This class represents the container that holds all the SCSActionItem buttons. To access this container object, use the
actionItemContainer  property from SCSActionManager. Do not instantiate your own container. This class gives you a
few advanced controls related to how the action buttons are displayed.

Table 15: Action Container Methods

DescriptionMethod

Adds an action view for the specified action name. This method
inserts the view into the view hierarchy.

addActionView

Removes the action view with the specified action name.removeActionView

Returns the action view with the specified action name.actionView(forName: SCSAction)

Returns the names for the visible action views.visibleActionNames

Indicates whether the item container should hide when the content
on the screen scrolls. If not implemented, the default is false.

shouldAdjustVisibilityWhenContentScrolls

Example: Swift Example

This simple example adds a custom button whenever the action button container is visible.

/**
Enum extension to include our new action button.
*/
extension SCSAction {
// TO DO: Update this custom action name as desired...
static var myCustomAction: SCSAction {
return SCSAction(rawValue: "MyCustomActionName")

}
}

/**
TO DO: Add this code to a class that implements SCSActionManagerDelegate
*/
extension MyClassThatImplementsActionManagerDelegate : SCSActionManagerDelegate {

168

Customize Action ButtonsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionButton.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItemContainer.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionManager.html


/**
Determines which actions to show for a given controller.
*/
func actionManager(_ actionManager: SCSActionManager,

actionsToShowFor controller: UIViewController?,
withDefaultActions defaultActions: Set<SCSAction>) ->

Set<SCSAction>?
{

var mySet = defaultActions

// Add our custom action button.
// (In this case, we're always adding the action button, but
// you can inspect `controller` to determine whether you want
// to add a custom button for a given view controller...)
mySet.insert(.myCustomAction)

return mySet
}

/**
Shows the button for a given action.
*/
func actionManager(_ actionManager: SCSActionManager,

viewForActionItemWithName name: SCSAction) -> UIView?
{

if name == .myCustomAction {

// Create our custom action button
let customActionButton = SCSActionButton()
customActionButton.setTitle("TO DO", for: .normal)
customActionButton.addTarget(self,
action: #selector(myCustomButtonHandler),
for: .touchUpInside)

return customActionButton
}

return nil
}

/**
Handler for the custom action.
*/
func myCustomButtonHandler(sender: UIButton!) {

ServiceCloud.shared().knowledge.setInterfaceVisible(false,
animated: true,
completion: nil)

// TO DO: Perform custom action here!
}

}

169

Customize Action ButtonsService Cloud Snap-Ins for iOS



Customize and Localize Strings
You can change the text used throughout the user interface. To customize text, create string resource values in a
Localizable.strings  file in the Localization bundle for the languages you want to update. Create string tokens that match the
tokens you intend to override.

Snap-ins SDK text is translated into more than 25 different languages. In order for your string customizations to take effect in a given
language, provide a translation for that language. For any language you do not override manually in your app, the SDK uses its default
values for that language.

Refer to Internationalization at developer.apple.com for more info about localization.

The following list of string tokens are available for customization:

• Knowledge String Resources

• Case Management String Resources

• Live Agent Chat String Resources

• SOS String Resources

• ServiceCommon String Resources

The following languages are currently supported:

Table 16: Supported Languages

LanguageLanguage Code

Czechcs

Danishda

Germande

Greekel

Englishen

Spanishes

Finnishfi

Frenchfr

Hungarianhu

Indonesianid

Italianit

Japaneseja

Koreanko

Norwegian Bokmålnb

Dutchnl

Polishpl

Portuguesept

170

Customize and Localize StringsService Cloud Snap-Ins for iOS

https://developer.apple.com/internationalization/
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/knowledge-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/case-management-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/live-agent-chat-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/sos-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/servicecommon-strings.html


LanguageLanguage Code

Romanianro

Russianru

Swedishsv

Thaith

Turkishtr

Ukranianuk

Vietnamesevi

Chinese (Taiwan)zh_TW

Chinese (Simplified)zh-Hans

Chinese (Traditional)zh-Hant

Chinesezh

Handle Remote Notifications
The SDK can handle remote notifications for events that it understands, such as case feed activity, and display the associated view.

When building your app, you may have remote notifications arrive from many different sources. Some of these sources may be associated
with your Salesforce org. You can ask the SDK whether it can handle a notification, and if it can, you can tell the SDK to show the
appropriate view.

The sequence diagram below illustrates a scenario where an Apex trigger from your connected app sends a notification to your mobile
app and you instruct the SDK to display the associated view.

171

Handle Remote NotificationsService Cloud Snap-Ins for iOS



To deal with push notifications from within your app:

1. Send the push notification from your org.

For help sending push notifications for case feed activity, see Push Notifications for Case Activity.

2. When you receive a remote notification (from your app delegate's didReceiveRemoteNotification  method), pass
notification information to notification(fromRemoteNotificationDictionary: [AnyHashable : Any])
to determine whether the SDK can handle the notification.

In Swift:

func application(_ application: UIApplication,
didReceiveRemoteNotification userInfo: [AnyHashable : Any],
fetchCompletionHandler completionHandler: @escaping (UIBackgroundFetchResult)
-> Void) {

let notification =
ServiceCloud.shared().notification(fromRemoteNotificationDictionary: userInfo)

// TO DO: Handle notification here
}

172

Handle Remote NotificationsService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)notificationFromRemoteNotificationDictionary:


In Objective-C:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo
fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))completionHandler {

SCSNotification *notification =
[[SCServiceCloud sharedInstance]
notificationFromRemoteNotificationDictionary:userInfo];

// TO DO: Handle notification here
}

This method returns nil  if the SDK can't handle the notification; it returns an SCSNotification object if it can handle the
notification.

3. (Optional) If you want to handle the notification by yourself (like to display your own view), you can inspect the notification type to
determine what feature area the notification is associated with. This property returns a SCSNotificationType enum.

notification.notificationType

When dealing with case activity notifications, this value is SCSNotificationTypeCase.

4. If you want the SDK to handle the notification for you, call showInterface(for: SCSNotification) and pass in the
SCSNotification object.

In Swift:

ServiceCloud.shared().showInterface(for: notification)

In Objective-C:

[[SCServiceCloud sharedInstance] showInterfaceForNotification:notification];

Note: If you choose to manually launch the Case Management view controllers, you can't take advantage of the
notification-handling mechanism provided by the SDK (using showInterface(for: SCSNotification)). See
Customize the Presentation and View Controllers for Case Management.

5. The SDK displays the relevant view for the notification.

When dealing with case activity notifications, this command displays the Case List or Case Details screen (depending on the
notification), showing the relevant case information. If the appropriate screen is already showing, it refreshes.

Launch SDK from a Web View
Although this documentation mostly focuses on launching the UI from within your view controller code, you can just as easily launch
the UI from a web view.

These instructions assume that you are already familiar with how to launch the UI for the feature you are using:

• Quick Setup: Knowledge

• Quick Setup: Case Publisher as a Guest User

• Quick Setup: Live Agent Chat

• Quick Setup: SOS

Once you're familiar with the feature, use these instructions to launch the Snap-ins SDK UI from a web view.

173

Launch SDK from a Web ViewService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSNotification.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSNotificationType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSNotification.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:


1. Create a view controller with a single UIWebView.

2. Have your view controller implement the UIWebViewDelegate  protocol.

In Swift:

class ViewController: UIViewController, UIWebViewDelegate {

In Objective-C:

@interface ViewController : UIViewController <UIWebViewDelegate>

3. Set your view controller as the web view delegate and configure your Snap-ins SDK feature.

In Swift:

override func viewDidLoad() {
super.viewDidLoad()

// Point the web view to your web application.
let url = URL(string: "https://my.web.app")
let request = URLRequest(url: url!)
webView.loadRequest(request)

// Make sure you set your view controller as a delegate to
// your webview so you can trap requests.
webView.delegate = self

// TO DO: Set up and configure your Snap-ins SDK feature...
// Use SCSServiceConfiguration or SCSChatConfiguration or SOSOptions
// to configure your feature and point it to your org.
// See the "Quick Setup" instructions for the appropriate feature.

}

In Objective-C:

- (void)viewDidLoad {
[super viewDidLoad];

// Point the web view to your web application.
NSURL *url = [NSURL URLWithString:@"https://my.web.app"];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
[webView loadRequest:request];

// Make sure you set your view controller as a delegate to
// your webview so you can trap requests.
[webView setDelegate:self];

// TO DO: Set up and configure your Snap-ins SDK feature...
// Use SCSServiceConfiguration or SCSChatConfiguration or SOSOptions
// to configure your feature and point it to your org.
// See the "Quick Setup" instructions for the appropriate feature.

}

4. Add a delegate handler for parsing requests.

Implement the webView(UIWebView, shouldStartLoadWith: ULRRequest)  method to trap requests.

174

Launch SDK from a Web ViewService Cloud Snap-Ins for iOS



In Swift:

func webView(_ webView: UIWebView,
shouldStartLoadWith request: URLRequest,
navigationType: UIWebViewNavigationType) -> Bool {

let url = request.url

// For this example, we use "servicesdk" as the URL scheme...
if (url?.scheme == "servicesdk") {

// "servicesdk://start", corresponds to the host...
if (url?.host == "start") {

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning false here ensures that the browser doesn't
// try to do anything with this request.
return false

}

return true
}

In Objective-C:

- (BOOL)webView:(UIWebView *)webView
shouldStartLoadWithRequest:(NSURLRequest *)request

navigationType:(UIWebViewNavigationType)navigationType {

NSURL *url = [request URL];

// For this example, we use "servicesdk" as the URL scheme...
if ([[url scheme] isEqualToString:@"servicesdk"]) {

// "servicesdk://start", corresponds to the host...
if ([[url host] isEqualToString:@"start"]) {

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning NO here ensures that the browser doesn't
// try to do anything with this request.
return NO;

}

return YES;
}

175

Launch SDK from a Web ViewService Cloud Snap-Ins for iOS



5. (Optional) If you want to send additional context to your session (such as an email address), you can add a query parameter to the
URL (for example, snapins://start?email=new@example.com), and then parse the parameter before launching the
SDK.

In Swift:

func webView(_ webView: UIWebView,
shouldStartLoadWith request: URLRequest,
navigationType: UIWebViewNavigationType) -> Bool {

let url = request.url

if (url?.scheme == "snapins") {

// Here's the new code to parse a basic query containing an email.
if (url?.query != nil) {

// Very simple example that only handles one parameter.
// In this example query would look like 'email=new@example.com'.
let query = url?.query!

// Split on = and get the second component.
var email = query?.components(separatedBy: "=")[1]

// In general, you'll want to make sure that this is decoded properly.
email = email?.removingPercentEncoding

// TO DO: Do something with this information.
}

if (url?.host == "start") {

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning false here ensures that the browser doesn't
// try to do anything with this request.
return false

}

return true

}

In Objective-C:

- (BOOL)webView:(UIWebView *)webView
shouldStartLoadWithRequest:(NSURLRequest *)request

navigationType:(UIWebViewNavigationType)navigationType {

NSURL *url = [request URL];
if ([[url scheme] isEqualToString:@"snapins"]) {

176

Launch SDK from a Web ViewService Cloud Snap-Ins for iOS



// Here's the new code to parse a basic query containing an email.
if ([url query]) {

// Very simple example that only handles one parameter.
// In this example query would look like 'email=new@example.com'.
NSString *query = [url query];

// Split on = and get the second component.
NSString *email = [query componentsSeparatedByString:@"="][1];

// In general, you'll want to make sure that this is decoded properly.
email = [email
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

// TO DO: Do something with this information.
}

if ([[url host] isEqualToString:@"start"]) {

// TO DO: Launch the SDK here...
// Use setInterfaceVisible or startSessionWithOptions
// or startSessionWithConfiguration, depending on what you're launching.
// See the "Quick Setup" instructions for the appropriate feature.

}

// Returning NO here ensures that the browser doesn't
// try to do anything with this request.
return NO;

}

return YES;
}

6. Add the code to your web page that calls the URL. You can do this using HTML or JavaScript.

a. Call the URL using an HTML anchor tag.

<a href="snapins://start">Get help!</a>

If you want to include additional information, add it to the href.

<a href="snapins://start?email=new@example.com">Get help!</a>

b. Call the URL using a JavaScript function.

function myFunc() {
window.location = "snapins://start"

}

Troubleshooting

Get some guidance when you run into issues.

177

TroubleshootingService Cloud Snap-Ins for iOS



Enable Debug Logging for the iOS SDK

To configure the Snap-ins SDK logs, use the setLogLevel:forIdentifiersWithPrefix:  method in the SFLogger
shared instance.

Can’t Access My Knowledge Base

What to do when you can't get to your knowledge base from within your app.

SOS Network Troubleshooting Guide

If you can't connect with an SOS agent from your app, you have network connectivity issues, possibly related to your firewall or
proxy.

My App Crashes

Some tips if your app crashes.

My App Was Rejected

What to do when your app is rejected from the App Store.

Enable Debug Logging for the iOS SDK
To configure the Snap-ins SDK logs, use the setLogLevel:forIdentifiersWithPrefix:  method in the SFLogger
shared instance.

In Swift:

import SalesforceSDKCore

...

let logger = SFLogger.shared()
logger.setLogLevel(SFLogLevel.warning,

forIdentifiersWithPrefix:"com.salesforce.ServiceSDK")

In Objective-C:

@import SalesforceSDKCore;

...

SFLogger *logger = [SFLogger sharedLogger];
[[SFLogger sharedLogger] setLogLevel:SFLogLevelWarning

forIdentifiersWithPrefix:@"com.salesforce.ServiceSDK"];

Log Level
The log level is specified in the setLogLevel:forIdentifiersWithPrefix:  method using the SFLogLevel  enumerated
type. It can be one of these values:

• SFLogLevelVerbose

• SFLogLevelDebug

• SFLogLevelInfo

• SFLogLevelWarning

• SFLogLevelError

• SFLogLevelOff

178

Enable Debug Logging for the iOS SDKService Cloud Snap-Ins for iOS



By default, the level is set to SFLogLevelError  so that only serious issues are logged.

Log Output
By default, logs only go to the Xcode output. You can have logs go to ASL (Apple System Logger) using the logToASL  property. You
can use the logToFile  property to log messages to a file in your app's directory on the device. This feature supports log rotation
every 48 hours, with a maximum of three log files on a device. If you turn off logToFile, the files are automatically removed.

In Objective-C:

logger.logToFile = YES;

In Swift:

logger.shouldLogToFile = true

You can programmatically access this file with the logFileContents  property.

Can’t Access My Knowledge Base
What to do when you can't get to your knowledge base from within your app.

Run through this checklist to help diagnose the root cause.

1. Does your SCSServiceConfiguration object point to a valid, accessible community URL?

2. Have you set up App Transport Security (ATS) exceptions for your community's domain and for localhost? See Install the iOS
SDK for more info.

3. Have you set up a Community or Salesforce site? See Cloud Setup for Knowledge for more info.

4. Do you have Guest Access to the Support API enabled for your site? See Cloud Setup for Knowledge for more info.

179

Can’t Access My Knowledge BaseService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html


5. (For Knowledge only) Do you have Knowledge enabled in your org? Do you have Knowledge licenses? See Cloud Setup for
Knowledge for more info.

6. (For Knowledge only) Is the user setting up the knowledge base enabled as a Knowledge User? See Cloud Setup for Knowledge
for more info.

7. (For Knowledge only) Have you made the article types, the data categories, and the article layout fields visible to guest users? See
Guest User Access for Your Community for more info.

8. (For Knowledge only) Have you made your articles accessible to the Public Knowledge Base channel? See Cloud Setup for Knowledge
for more info.

SOS Network Troubleshooting Guide
If you can't connect with an SOS agent from your app, you have network connectivity issues, possibly related to your firewall or proxy.

SOS uses the Tokbox OpenTok platform to provide screen sharing and video communication during an SOS session. These guidelines
can help you diagnose whether the problem is linked to a networking issue and how to send us diagnostic information if necessary.

180

SOS Network Troubleshooting GuideService Cloud Snap-Ins for iOS

https://tokbox.com


Step 1: Run Connectivity Doctor
The Tokbox Connectivity Doctor tests for connectivity issues. You can access this tool via the web, an iOS app, or an Android app. This
tool tests network issues in these areas.

1. API server – Session initialization and signaling tests

2. Media router – Whether you can access Tokbox media servers

3. MESH turn server – Relay server fallback mechanism

4. Logging server – Communication of stats and errors to the Tokbox logging server

If all tests pass, go to step 2. If any test fails, you probably need to configure your ports.

API Server or Logging Server Issues
OpenTok clients use HTTP and WSS connections from the client browser to the OpenTok servers on port TCP/443. If the only way
to access the internet from your network is through a proxy, it must be a transparent proxy. Make sure that TCP/443 is open.

Media Router or Mesh Turn Issues
OpenTok clients can use UDP or TCP connections for media. Salesforce recommends that UDP is enabled to improve the quality of
real-time audio and video communications. This connection is bidirectional but always initiated from the client so an external entity
can't send malicious traffic in the opposite direction.

• Best experience: We recommend that you open UDP ports 1025 - 65535.

• Good experience: Open UDP port 3478.

181

SOS Network Troubleshooting GuideService Cloud Snap-Ins for iOS

https://www.tokbox.com/tools/connectivity/
https://www.tokbox.com/tools/connectivity/
https://itunes.apple.com/us/app/opentok%C2%ADconnectivity%C2%ADdoctor/id902048239?mt=8
https://play.google.com/store/apps/details?id=com.tokbox.connectivitydoctor&hl=en


• Minimum experience: Open TCP port 443. Some firewall or proxy rules only allow for SSL traffic over port 443. Make sure that
non-web traffic can also pass over this port.

Step 2: Test the Tokbox Chat Room
Tokbox has a public-facing chat room site (https://opentokrtc.com/) that you can use for normal chatting. You can also use this site as
a test tool.

1. From the chat room site, create a room called “example”. Join that room or click here. You should then see yourself on video. If the
video isn't present, make sure that you've given access to the camera and microphone. If nothing happens, go to step 3.

2. Open another browser tab and enter the same URL link as in the previous browser tab (for example,
https://opentokrtc.com/room/example). You should see a two-way audio and video-enabled chat. If this process doesn't work, go
to step 3.

If you can have a two-way chat, your ports are configured properly and you're done.

Step 3: Gather JSON Metadata
In this step, we'll gather metadata about the failed chat room session. To get this information, open a browser tab and enter
https://opentokrtc.com/example.json. If you created a room with a different name, replace the word "example" in the URL accordingly.
You'll see JSON content similar to this example.

{"apiKey":"45599822","token":"T1==cGyydG5lcl9pZD00NTU5OTgyMiZzaWc9NTcyOWI4NjJhOT
diN2EwYWRmMjZkZjI5MzkxZjkwMjdlNmM0ODNiMTpzZXNzaW9uX2lkPTFfTVg0ME5UVTVPVGd5TW41LU
1UUTNPVEUyTWpVek1USTVObjQ0WkcxSFp6VnNVMnBMZFRKVFp6SmhaRlZ6WVhvM1dVTi1mZyZjcmVhdG
VfdGltZT0xNDc5MTY0MzA4Jm5vbmNlPTAuMzgzODc1MjEwMzAzODEzMiZyb2xlPXB1Ymxpc2hlciZleH
BpcmVfdGltZT0xNDc5MjUwNzA4JmNvbm5lY3Rpb25fZGF0YT0lN0IlMjJ1c2VyTmFtZSUyMiUzQSUyMk
Fub255bW91cyUyMFVzZXI3MiUyMiU3RA==","username":"Anonymous User72","firebaseURL":
"https://ot-archiving.firebaseio.com/sessions//1_MX40NTU5OTgyMn5-MTQ3OTE2MjUzMTI
5Nn43ZG1HZzVsU2pLdTJTZzJhZFVzYXo3WUN-fg","firebaseToken":"eyJ0eXAiOiJKV1QiLCJhbG
ciOiJIUzI1NiJ9.eyJ2IjowLCJkIjp7InVpZCI6IkFub255bW91cyBVc2VyNzIwLjc3NDEwOTM5OTg3N
zQ4ODYiLCJzZXNzaW9uSWQiOiIxX01YNDBOVFU1T1RneU1uNS1NVFEzT1RFMk1qVXpNVEk1Tm40NFpHM
UhaelZzVTJwTGRUSlRaekpoWkZWellYbzNXVU4tZmciLCJyb2xlIjoidXNlciIsIm5hbWUiOiJBbm9ue
W1vdXMgVXNlcjcyIn0sImlhdCI6MTQ3OTE2NDMwN30.ep6l4x_3VGegXVTfwpaOYMGRGOYI944w5Og1h
TyDPfQ","chromeExtId":"undefined","sid":"1_M440NTU5OTgyMn5-MTQ3OTE2MjUzMTI5Nn44Z
G1HZzVsU2pLdTJTZzJhZFVzYXo3WUN-fg"}

The output has key/value pairs for the API key ("apiKey"), token ("token"), and session ID ("sid"). Save this information. Tokbox monitors
the entire flow for failed and successful sessions (only if you were able to successfully verify the Connectivity Doctor ports requirements
first). We'll use this metadata to debug your issue. Go to step 4.

Step 4: Open Support Ticket
Please create a Salesforce support ticket or contact your account team for more help.

Answer the following questions in your support request.

1. TOPOLOGY: What is your network topology? How does data flow through the topology to reach our cloud?

2. ENVIRONMENT: Are you using a virtual environment?

3. PROXY & FIREWALL: What is the type and name of your proxy? What are your firewall restrictions? If you are using a proxy can you
execute step 1 and step 2 just through a firewall?

4. PLATFORM & VERSION: What platform are you using? What is the OS version? Which SDK are you using? Which SDK version?

182

SOS Network Troubleshooting GuideService Cloud Snap-Ins for iOS

https://opentokrtc.com/
https://opentokrtc.com/room/example
https://opentokrtc.com/room/example
https://opentokrtc.com/example.json
https://support.salesforce.com/support


5. DESCRIPTION: Describe the problem you encountered, and the steps you took to try to resolve the problem.

6. LOGS: Can you provide us with any error logs from your side or any other information you deem fit for the problem? Include any
relevant network traces or screenshots.

7. CONNECTIVITY DOCTOR: What Connectivity Doctor tests failed? Did you open the required ports and still have issues?

8. JSON METADATA: If applicable, send us the Key/Token/Session information captured in step 3.

My App Crashes
Some tips if your app crashes.

• Live Agent Chat: If your app crashes when a user attempts to perform a file transfer, check that you've enabled the device privacy
permissions for the camera and the photo library. An app will crash if these permissions are not set in Xcode. See Install the iOS SDK.

• SOS: If your app crashes when it is in the process of connecting to an SOS session, check that you've enabled the device privacy
permissions for the camera and the microphone. An app will crash if these permissions are not set in Xcode. See Install the iOS SDK.

• For a list of known issues, see the latest Release Notes.

My App Was Rejected
What to do when your app is rejected from the App Store.

• If you receive errors related to unsupported architectures when you upload your app to the App Store, it may be because you didn't
strip unneeded architectures from the dynamic libraries used by the Snap-ins SDK. See Prepare Your App for Submission for more
information.

• If you archive a framework and then export the archive using the Xcode command line tool (xcodebuild), you’ll get “Invalid
Code Signing Entitlements” errors when you try to upload your app to the app store. This is a known issue with Apple’s tools. The
workaround is to archive and export using Xcode’s user interface.

Reference Documentation

Reference documentation for Service Cloud Snap-ins for iOS.

To access the reference documentation for Service Cloud Snap-ins for iOS, visit:

• forcedotcom.github.io/ServiceSDK-iOS

This site contains API documentation for the latest version of the SDK.

Reference Index

A list of all classes, protocols, methods, constants, and enums referenced from this developer's guide.

Reference Index
A list of all classes, protocols, methods, constants, and enums referenced from this developer's guide.

Knowledge Index
• SCArticleSortByField

183

My App CrashesService Cloud Snap-Ins for iOS

https://github.com/forcedotcom/ServiceSDK-iOS/releases
http://forcedotcom.github.io/ServiceSDK-iOS/
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCArticleSortByField.html


• SCArticleSortOrder

• SCKnowledgeInterface

– setInterfaceVisible

– showArticle

• SCKnowledgeInterfaceDelegate

• SCQueryMethod

• Article

– downloadContent(withOptions: SCSArticleDownloadOption)

– isArticleContentDownloaded

– isAssociatedContentDownloaded

• SCSArticleQuery

– valid

• SCSArticleQueryListViewController

• SCSArticleQueryListViewControllerDelegate

• SCSArticleViewController

– article

• SCSArticleViewControllerDelegate

– additionalCSSForArticle

– additionalJavascriptForArticle

• Category

• CategoryGroup

• SCSCategoryViewController

• SCSCategoryViewControllerDelegate

• SCSKnowledgeHomeViewController

• SCSKnowledgeHomeViewControllerDelegate

• KnowledgeManager

– articles(matching: ArticleQuery)

– default

– fetchAllCategories

– fetchArticles(with: ArticleQuery)

– hasFetchedCategories

• MutableArticleQuery

Case Management Index
• SCCaseInterface

– caseCreateActionName

– setInterfaceVisible

184

Reference IndexService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCArticleSortOrder.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)setInterfaceVisible:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCKnowledgeInterface.html#/c:objc(cs)SCKnowledgeInterface(im)showArticle:animated:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCKnowledgeInterfaceDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCQueryMethod.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)downloadContentWithOptions:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isArticleContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticle.html#/c:objc(cs)SCSArticle(im)isAssociatedContentDownloaded
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleQuery.html#/c:objc(cs)SCSArticleQuery(py)valid
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleQueryListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleQueryListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSArticleViewController.html#/c:objc(cs)SCSArticleViewController(py)article
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalCSSForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSArticleViewControllerDelegate.html#/c:objc(pl)SCSArticleViewControllerDelegate(im)articleController:additionalJavascriptForArticle:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCategory.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCategoryGroup.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCategoryViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCategoryViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeHomeViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSKnowledgeHomeViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)articlesMatchingQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(cm)defaultManager
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchAllCategoriesWithCompletionHandler:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)fetchArticlesWithQuery:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSKnowledgeManager.html#/c:objc(cs)SCSKnowledgeManager(im)hasFetchedCategories
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSMutableArticleQuery.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(py)caseCreateActionName
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCCaseInterface.html#/c:objc(cs)SCCaseInterface(im)setInterfaceVisible:animated:completion:


• SCSCaseDetailViewController

• SCSCaseDetailViewControllerDelegate

– caseDetail(fieldsToHideFromCaseFields: [String])

• SCSCaseListViewController

• SCSCaseListViewControllerDelegate

– caseList(SCSCaseListViewController, selectedCaseWithId: String)

• SCSCasePublisherViewController

• SCSCasePublisherViewControllerDelegate

– casePublisher(fieldsForCaseDeflection: [String])

– casePublisher(fieldsToHideFromCaseFields: [String])

– casePublisher(valuesForHiddenFields: Set<String>)

– casePublisher(viewFor: SCSCasePublisherResult, withCaseId: String?, error: Error?)

– shouldEnableCaseDeflection(forPublisher: SCSCasePublisherViewController)

Live Agent Chat Index
• SCSChat

– add(delegate: SCSChatDelegate!)

– determineAvailabilityWithConfiguration

– startSession(with: SCSChatConfiguration!)

– startSession(with: SCSChatConfiguration!, completion: SCSChatCompletionHandler!)

• SCSChatConfiguration

– prechatEntities

– prechatFields

– queueUpdatesEnabled

• SCSChatDelegate

– chat(SCSChat, didEndWith: SCSChatEndReason, error: Error!)

– chat(SCSChat, didError: Error!)

– chat(SCSChat, didUpdateQueuePosition: NSNumber!)

– chat(SCSChat, stateDidChange current: SCSChatSessionState, previous:
SCSChatSessionState)

• SCSChatEndReason

• SCSChatErrorCode

• SCSChatSessionState

• SCSPrechatEntity

• SCSPrechatEntityField

• SCSPrechatObject

• SCSPrechatPickerObject

185

Reference IndexService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseDetailViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseDetailViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseDetailViewControllerDelegate.html#/c:objc(pl)SCSCaseDetailViewControllerDelegate(im)caseDetail:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCaseListViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCaseListViewControllerDelegate.html#/c:objc(pl)SCSCaseListViewControllerDelegate(im)caseList:selectedCaseWithId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSCasePublisherViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsForCaseDeflection:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:fieldsToHideFromCaseFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:valuesForHiddenFields:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)casePublisher:viewForResult:withCaseId:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSCasePublisherViewControllerDelegate.html#/c:objc(pl)SCSCasePublisherViewControllerDelegate(im)shouldEnableCaseDeflectionForPublisher:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)determineAvailabilityWithConfiguration:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChat.html#/c:objc(cs)SCSChat(im)startSessionWithConfiguration:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatEntities
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)prechatFields
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSChatConfiguration.html#/c:objc(cs)SCSChatConfiguration(py)queueUpdatesEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didEndWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:didUpdateQueuePosition:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSChatDelegate.html#/c:objc(pl)SCSChatDelegate(im)chat:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSChatEndReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSChatErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSChatSessionState.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntity.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatEntityField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatPickerObject.html


• SCSPrechatPickerOption

• SCSPrechatTextInputObject

SOS Index
• SOSAgentAvailability

– startPolling(withOrganizationId: String!, deploymentId: String!, liveAgentPod:
String!)

• SOSAgentAvailabilityDelegate

• SOSAgentAvailabilityStatusType

• SOSCameraType

• SOSConnectingBaseViewController

• SOSConnectingViewController

• SOSDelegate

– sosDidStart

– sosDidConnect

– sosWillReconnect

– sos(SOSSessionManager, didCreateSession: String!)

– sos(SOSSessionManager, didError: Error!)

– sos(SOSSessionManager, didStopWith: SOSStopReason, error: Error!)

– sos(SOSSessionManager, stateDidChange current: SOSSessionState, previous:
SOSSessionState)

• SOSErrorCode

• SOSMaskedTextField

• SOSNetworkReporterDelegate

• SOSOnboardingBaseViewController

• SOSOnboardingViewController

• SOSOptions

– customFieldData

– featureAgentVideoStreamEnabled

– featureClientBackCameraEnabled

– featureClientFrontCameraEnabled

– featureClientScreenSharingEnabled

– featureNetworkTestEnabled

– initialAgentStreamPosition

– initialAgentVideoStreamActive

– initialCameraType

– remoteLoggingEnabled

– sessionRetryTime

– setViewControllerClass

186

Reference IndexService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatPickerOption.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSPrechatTextInputObject.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSAgentAvailability.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSAgentAvailability.html#/c:objc(cs)SOSAgentAvailability(im)startPollingWithOrganizationId:deploymentId:liveAgentPod:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSAgentAvailability.html#/c:objc(cs)SOSAgentAvailability(im)startPollingWithOrganizationId:deploymentId:liveAgentPod:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSAgentAvailabilityDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSAgentAvailabilityStatusType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSCameraType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSConnectingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSConnectingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidStart:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosDidConnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sosWillReconnect:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didCreateSession:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:didStopWithReason:error:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSDelegate.html#/c:objc(pl)SOSDelegate(im)sos:stateDidChange:previous:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSErrorCode.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSMaskedTextField.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSNetworkReporterDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOnboardingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSOnboardingViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)customFieldData
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureAgentVideoStreamEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientBackCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientFrontCameraEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureClientScreenSharingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)featureNetworkTestEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentStreamPosition
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialAgentVideoStreamActive
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)initialCameraType
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)remoteLoggingEnabled
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(py)sessionRetryTime
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(im)setViewControllerClass:for:


– SOSOptions(liveAgentPod: String!, orgId: String!, deploymentId: String!)

• SOSSessionBaseViewController

• SOSSessionViewController

• SOSScreenSharingBaseViewController

• SOSSessionManager

– add(delegate: SOSDelegate!)

– screenSharing

– startSession

– state

– stopSession

– stopSession(completion: SOSCompletionHandler!)

• SOSSessionState

• SOSStopReason

• SOSUIAgentStreamReceivable

• SOSUILineDrawingReceivable

• SOSUIPhase

Service Common Index
• SCAppearanceConfiguration

– globalArticleCSS

– globalArticleJavascript

– setColor

– setFontDescriptor

– setImage

• SCAppearanceConfigurationDelegate

• SCSActionButton

• SCSActionItem

• SCSActionItemContainer

• SCSActionManager

• SCSActionManagerDelegate

• ServiceCloud

– account

– actions

– appearanceConfiguration

– cases

– chat

– knowledge

– notification(fromRemoteNotificationDictionary: [AnyHashable : Any])

187

Reference IndexService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSOptions.html#/c:objc(cs)SOSOptions(cm)optionsWithLiveAgentPod:orgId:deploymentId:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSSessionViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSScreenSharingBaseViewController.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)addDelegate:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)screenSharing
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)startSessionWithOptions:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(py)state
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSession
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SOSSessionManager.html#/c:objc(cs)SOSSessionManager(im)stopSessionWithCompletion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSSessionState.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSStopReason.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSUIAgentStreamReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SOSUILineDrawingReceivable.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SOSUIPhase.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleCSS
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(py)globalArticleJavascript
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setColor:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setFontDescriptor:fontFileName:forWeight:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCAppearanceConfiguration.html#/c:objc(cs)SCAppearanceConfiguration(im)setImage:compatibleWithTraitCollection:forName:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCAppearanceConfigurationDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionButton.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItem.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionItemContainer.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSActionManager.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCSActionManagerDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)account
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)actions
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)appearanceConfiguration
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)cases
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)chat
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)knowledge
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)notificationFromRemoteNotificationDictionary:


– setAccount

– sharedInstance

– showInterface(for: SCSNotification)

– sos

• SCServiceCloudDelegate

– serviceCloud(didDisplay: UIViewController, animated: Bool)

– serviceCloud(serviceAuthenticationFailedWithError: Error)

– serviceCloud(shouldAuthenticateService: SCServiceType)

– serviceCloud(transitioningDelegateForPresentedController: UIViewController,
presenting: UIViewController)

– serviceCloud(willDisplay: UIViewController, animated: Bool)

• SCSServiceConfiguration

– imageFolderPath

– SCSServiceConfiguration(community: URL)

– SCSServiceConfiguration(community: URL, dataCategoryGroup: String, rootDataCategory:
String)

• SCSNotification

• SCSNotificationType

Resource Files
• Knowledge String Resources

• Case Management String Resources

• Live Agent Chat String Resources

• SOS String Resources

• ServiceCommon String Resources

Additional Resources

If you’re looking for other resources, check out this list of links to related documentation.

• Service Cloud Snap-ins for Mobile Apps: More info about this SDK.

– Snap-ins Landing Page

– Snap-ins Trailhead Learning Module

– iOS Reference Documentation

– iOS Release Notes

– iOS Example Apps

– Android Reference Documentation

– Android Release Notes

– Android Example Apps

188

Additional ResourcesService Cloud Snap-Ins for iOS

http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)setAccount:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(cm)sharedInstance
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(im)showInterfaceForNotification:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCServiceCloud.html#/c:objc(cs)SCServiceCloud(py)sos
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:didDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:serviceAuthenticationFailedWithError:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:shouldAuthenticateService:completion:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:transitioningDelegateForViewController:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Protocols/SCServiceCloudDelegate.html#/c:objc(pl)SCServiceCloudDelegate(im)serviceCloud:willDisplayViewController:animated:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(py)imageFolderPath
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSServiceConfiguration.html#/c:objc(cs)SCSServiceConfiguration(im)initWithCommunity:dataCategoryGroup:rootDataCategory:
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Classes/SCSNotification.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/Enums/SCSNotificationType.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/knowledge-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/case-management-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/live-agent-chat-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/sos-strings.html
http://forcedotcom.github.io/ServiceSDK-iOS/releases/api/210.0/servicecommon-strings.html
https://developer.salesforce.com/page/SnapinsMobile
https://trailhead.salesforce.com/modules/service_snap-ins_mobile_apps
http://forcedotcom.github.io/ServiceSDK-iOS/
https://github.com/forcedotcom/ServiceSDK-iOS/releases
https://github.com/forcedotcom/ServiceSDK-iOS/tree/master/Examples
http://forcedotcom.github.io/ServiceSDK-Android/
https://github.com/forcedotcom/ServiceSDK-Android/releases
https://github.com/forcedotcom/ServiceSDK-Android/tree/master/Examples


• Salesforce Mobile SDK: The SDK that lets you build Salesforce applications for mobile devices.

– Mobile SDK Landing Page

– Mobile SDK Developer’s Guide

– Mobile SDK Trailhead

• Salesforce Developer Documentation: Landing page for developer documentation at Salesforce.

• Salesforce Help: Landing page for general documentation at Salesforce.

189

Additional ResourcesService Cloud Snap-Ins for iOS

https://developer.salesforce.com/page/Mobile_SDK
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/
https://trailhead.salesforce.com/trail/mobile_sdk_intro
https://developer.salesforce.com/docs/
https://help.salesforce.com/apex/Help_Home


INDEX

A
action button customization 165
activate case management interface 86
activate knowledge interface 63
additional resources 188
agent availability

Live Agent 119
SOS 140

app store submission 37
assigning permissions in sos 16
authenticated knowledge 60
authentication 60, 82
auto case pop in sos 17
automated email responses 99

B
branding 152

C
caching 65
case deflection 93
case management 76–77, 82
case management cloud setup 6
Case Management cloud setup 7
case management interface 86
case publisher 76–77
case publisher setup 79
check Live Agent availability 119
check SOS agent availability 140
color customization 152
community cloud setup 3
configure live agent chat session 105
configure sos session 130
CSS injection 73
custom case field data 89
custom data 116
custom data in sos 146
customize presentation for case management 86
customize presentation for knowledge 63
customize success view 95

D
disable case management from knowledge 76
disable screen sharing 143
dynamic libraries 37

E
errors in Live Agent Chat 108
errors in sos 134
events in Live Agent Chat 108
events in sos 134

F
field masking in sos 144
file transfer 120
font customization 158
fonts 170

H
hidden case fields 89

I
image customization 160
install sdk 33–34, 36

J
JavaScript injection 73

K
knowledge 55–56
knowledge cloud setup 2–4
knowledge interface 63
knowledge setup 57

L
launch from web view 173
listen to Live Agent Chat events 108
listen to sos events 134
live agent chat 99–100
live agent chat cloud setup 8
live agent chat setup 101
Live Agent cloud setup 8
Live Agent custom data 116
Live Agent pre-chat fields 111
logging in iOS 178

M
mask field in sos 144
mask field programmatically 145
mask field with storyboard 145
multiple queues in sos 31

190



N
notifications for case activity 97

O
offline access 65

P
pre-chat fields 111
prerequisites 32
push notifications 171
push notifications for case activity 97

Q
QoS events 139
qos events from SOS console 28
quality-of-service events 139
quick setup

case publisher 79
knowledge 57
live agent chat 101
sos 124

quick start 37

R
reference index 183
reference overview 183
release notes 2
remote notifications 171
replace sos ui 148
resources 188

S
screen sharing 143
sdk install 33–34, 36
SDK prerequisites 32
sdk setup 31
sensitive data with Live Agent 121
service cloud setup 2
session recording in sos 29
setup 2, 31
snap-ins sdk developer’s guide 1

sos 121–122
sos cloud manual setup 14
sos cloud quick setup 11
SOS cloud setup 10, 15
sos console quick setup 11
sos reference id 30
sos setup 124
sos video 132
SOSOptions 130
state changes from SOS console 20–21
stock images 160

T
transfer file 120
troubleshooting

app store 183
community 179
network 180
session start 183

tutorial
case publisher 41
knowledge 37
live agent chat 45
sos 51

two-way video 132–133

U
ui customization

action buttons 165
colors 152
fonts 158, 170
images 160

UIWebView 173
using case management 76–77
using case publisher 76–77
using knowledge 55–56
using live agent chat 99–100
using sos 121–122

W
web view 173
web-to-case 99

191

Index


	Service Cloud Snap-Ins for iOS
	Release Notes
	Service Cloud Setup
	Cloud Setup for Knowledge
	Guest User Access for Your Community
	Get Knowledge Settings from Your Org

	Cloud Setup for Case Management
	Get Case Management Settings from Your Org

	Console Setup for Live Agent Chat
	Get Live Agent Chat Settings from Your Org

	Console Setup for SOS
	Quick Setup: SOS Console
	Manual Setup: SOS Console
	Get SOS Settings from Your Org
	Assign SOS Permissions
	Automatic SOS Case Pop
	Listen for SOS Console Events
	SOS State Change Console Events
	SOS Quality-of-Service Console Events

	Record SOS Sessions
	SOS Reference ID
	Multiple SOS Queues


	SDK Setup
	Requirements
	Install the iOS SDK
	Add the Frameworks with CocoaPods
	Add the Frameworks Manually

	Prepare Your App for Submission

	iOS Tutorials & Examples
	Get Started with Knowledge
	Get Started with Case Publisher
	Get Started with Live Agent Chat
	Get Started with SOS

	Using Knowledge
	Knowledge Overview
	Quick Setup: Knowledge
	Knowledge as an Authenticated User
	Customize the Presentation and View Controllers for Knowledge
	Article Fetching and Caching
	Customize Knowledge Articles with JavaScript or CSS
	Disable Case Management from Knowledge Interface

	Using Case Management
	Case Management Overview
	Quick Setup: Case Publisher as a Guest User
	Case Management as an Authenticated User
	Customize the Presentation and View Controllers for Case Management
	Send Custom Data Using Hidden Fields
	Configure Case Deflection
	Customize the Case Publisher Result View
	Push Notifications for Case Activity
	Automated Email Responses

	Using Live Agent Chat
	Live Agent Chat Overview
	Quick Setup: Live Agent Chat
	Configure a Live Agent Chat Session
	Live Agent Chat Events and Errors
	Show Pre-Chat Fields to User
	Find or Create Salesforce Records from a Chat Session
	Check Live Agent Availability
	Transfer File to Agent
	Block Sensitive Data in a Chat Session

	Using SOS
	SOS Overview
	Quick Setup: SOS
	Configure an SOS Session
	Two-Way Video
	Configure Two-Way Video

	SOS Events and Errors
	Quality-of-Service Events
	Check SOS Agent Availability
	Enable and Disable Screen Sharing
	Field Masking
	Create Masked Field Using Storyboard
	Create Masked Field Programmatically

	Custom Data
	Replace the SOS UI

	SDK Customizations
	Customize Colors
	Customize Fonts
	Customize Images
	Customize Action Buttons
	Customize and Localize Strings
	Handle Remote Notifications
	Launch SDK from a Web View

	Troubleshooting
	Enable Debug Logging for the iOS SDK
	Can’t Access My Knowledge Base
	SOS Network Troubleshooting Guide
	My App Crashes
	My App Was Rejected

	Reference Documentation
	Reference Index

	Additional Resources

	Index

