

Experience Delivery (Beta)
Boost Site Performance and Scalability

Salesforce, Spring ’25, Version 63.0

@salesforcedocs

Last updated: Feb 24, 2025

Important: For sites created with the Build Your Own (LWR) template, Experience Delivery
is a pilot or beta service that is subject to the Beta Services Terms at Agreements -
Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and
applicable terms in the Product Terms Directory. Use of this pilot or beta service is at the
Customer’s sole discretion.

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of
Salesforce, Inc., as are other names and marks. Other marks appearing herein may be trademarks of
their respective owners.

2

https://www.salesforce.com/company/legal/agreements/
https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/?_ga=2.247987783.1372150065.1709219475-629000709.1639001992

CONTENTS

Overview 4
Before You Begin 5

Limitations and Behavior Differences 5
Changes Since Winter ’25 5

Enable Experience Delivery 6
Make Your Components Server-Side Ready 7

What Is Server-Side Rendering? 7
Islands Architecture and Component Hydration 7
Verify Component Trees for SSR by Using lwr audit 8
Configure a Component for SSR 9

Identify Non-Portable Code with the ESLint Plugin 10
Use Light DOM or Native Shadow with SSR 10
Protect Your Code from Accessing General Browser APIs 12
Customize Slotting Behavior 13
Work with Scoped Modules Limitations 13
Import Non-Portable Modules Dynamically 14
Remove Host Element Mutations 15
Use Supported Base Components 16
Update Base Lightning Components Styling 16
Fetch Data by Using Data Providers 18

Use Islands Architecture When Implementing SSR 21
Configure a Page for Islands Architecture 21
Determine Island Boundaries and Capabilities 21
Configure a Portable Component for SSR 22
Islands Architecture Considerations 22

Test and Publish Your Site 23
Test Your Components 23

Debug with the SSR Playground 23
Use the SSR Test Runner 24
Manually Verify SSR on a Component 27

Publish Your Site 27
Use Debug Mode for Client-Side Debugging 28
Validate the Network Response of the Published Site 28

Appendix A: Server Renderable Base Components 30
Appendix B: Scoped Modules 31
Appendix C: Provide Your Source Code to Salesforce 32

3

Overview
Boost the performance and scalability of your LWR sites by using Experience Delivery, our powerful
new infrastructure for hosting LWR sites. Along with subsecond page load times, this new
infrastructure provides improved security and search engine optimization (SEO) to ensure that your
site meets your customers’ demands.

Existing LWR sites use client-side rendering (CSR), meaning that all the HTML, JavaScript, CSS, and
assets that make up the page are downloaded to the client before being rendered in the browser.

By contrast, Experience Delivery uses server-side rendering (SSR) and a dedicated content delivery
network (CDN) to render the page on the server and then cache it in the CDN. This approach
provides optimal site performance with page load times up to 60% faster, which leads to increased
conversions and lower bounce rates.

Experience Delivery also:

● Enhances SEO by rapidly serving fresh data to web crawlers and bots

● Scales to ensure consumer-grade performance for high-traffic LWR sites

● Provides distributed denial-of-service (DDoS) protection, managed firewall rules, and
managed rate-limiting rules for added security

4

Before You Begin
In D2C Commerce, Experience Delivery is generally available in Spring ’25, and automatically
enabled for new stores created by using the D2C Store template.

In Experience Cloud, Experience Delivery is available as a beta feature that you must enable. To use
Experience Delivery in Experience Cloud, you need:

● A production org in Enterprise, Performance, or Unlimited Editions with Digital Experiences
enabled. Experience Delivery is unsupported in Developer Edition and scratch orgs.

● A new or existing LWR site based on the Build Your Own (LWR) template. LWR and enhanced
LWR sites are supported.

● Experience in:

○ Building LWR or enhanced LWR sites with Experience Builder

○ Developing custom Lightning web components that are server-side ready

○ Working with Salesforce DX

Beta Limitations and Behavior Differences
Before you begin, keep the current beta limitations and behavior differences for the Build Your Own
(LWR) template in mind.

Unsupported features:

● Custom sitemaps, canonical URLs, and SEO-friendly URL slugs

● Authentication for enhanced domains

● Identity providers for custom domains

● Component variations

● Branding and themes

● Mobile Publisher

● Site archiving

● Login IP range restrictions

● Down for maintenance

Behavior differences:

● Sites hosted on Experience Delivery that use enhanced domains require the Salesforce
content delivery network by default. If you choose to turn the CDN off for your org, you must
use a custom domain and custom URL to launch your Experience Delivery site.

● Static assets that are available on authenticated pages are cached publicly and therefore
potentially available to unauthenticated guest users.

● Unlike sites that aren’t hosted on Experience Delivery, when you set up URL redirects, you
must publish the site before they take effect.

● Only 20 languages are supported currently.

● Because SEO-friendly URL slugs are unsupported, when you enable Experience Delivery for a
site that uses them, the system replaces the friendly URLs of record pages with the record ID.
For example, the system replaces a URL such as https://mysite.com/account/portal-acc,

5

which uses the format /account/:urlName, with
https://mysite.com/account/001SG000006px5pYAA/portal-account, which uses the format
/account/:recordId/:recordName.
And any bookmarked or hardcoded URLs that use the friendly format are redirected to the
record ID format.

● To use a custom domain in your sandbox, you must enable the domain in your production
org.

Changes Since Winter ’25
For previous pilot participants, the Spring ’25 release provides:

● Improved load-time performance for authenticated pages to more closely match
unauthenticated pages.

● Support for testing in sandbox before moving to production. Now you can create a custom
domain in production that points to your sandbox.

● Access to customizable availability pages, such as the Too Many Requests and the Down for
Maintenance pages.

● SSR support for additional components and various bug fixes.

6

Enable Experience Delivery
In Experience Cloud, you can enable Experience Delivery for new or existing LWR and enhanced LWR
sites that are based on the Build Your Own (LWR) template. You enable Experience Delivery at the
site level.

Note: In D2C Commerce, Experience Delivery is generally available and automatically enabled
for new stores created by using the D2C Store template.

To enable Experience Delivery for an LWR site in Experience Cloud:

1. In the Digital Experiences app, or in Setup under Digital Experiences | All Sites, click
Workspaces next to the site that you want to configure.

2. On the Settings page of the Administration workspace, click Enable.

In the All Sites list, a badge is shown next to sites that are enabled for Experience Delivery.

7

Make Your Components Server-Side Ready
Experience Delivery can greatly improve your site load times. Various factors contribute to the
improvement, but one of the most important ones is server-side rendering (SSR).

Tip: For the latest information on configuring components for SSR, check out Server-Side
Rendering in the Lightning Web Runtime on Node.js Guide.

What Is Server-Side Rendering?
With client-side rendering (CSR), all the HTML, JavaScript, CSS, images, and other assets that make
up the page are downloaded to the client, and then the computation required to produce the
rendered page is done within the browser.

With SSR, the browser doesn’t need to wait for all the JavaScript to download and execute before
displaying component markup. Instead, computation is moved to the server, and the resulting page
is cached in the CDN for subsequent visitors. This approach results in faster time-to-content, and it
makes the content accessible to search engine crawlers, which improves SEO.

Islands Architecture and Component Hydration
With server-side rendering, HTML is rendered on the server and then sent to the client along with any
JavaScript needed to hydrate it. Hydration refers to the process of adding interactivity to the
component on the client side.

However, there’s a performance cost associated with loading and executing excess JavaScript. To
counteract this issue, with islands architecture, you can create islands of interactivity on a
server-rendered page. So rather than an all-or-nothing approach where SSR or CSR is controlled at

8

https://developer.salesforce.com/docs/platform/lwr/guide/lwr-ssr.html
https://developer.salesforce.com/docs/platform/lwr/guide/lwr-ssr.html

Unset

the page level, you have granular control over which custom components require hydration, with the
remainder of the page being static HTML.

Note: If your component contains a base component and you’re unsure if it’s server-side
renderable, we recommend using the lightning__ServerRenderableWithHydration
capability tag. See Use Supported Base Components.

For a more detailed description of islands architecture, go to
https://www.patterns.dev/vanilla/islands-architecture.

For this beta release, you can create custom components that use:

● SSR with hydration—Components render on the server side and get hydrated on the client
side. Suitable for interactive page elements, such as a carousel.

● SSR only—Components render on the server side. Suitable for static page elements that don’t
require hydration, such as images.

● CSR only—Components render on the client side. Suitable for components that rely on
client-side APIs and data that can’t be rendered on the server side.

A component must be hydrated if it contains dynamic content or is interactive, including:

● Overriding the render method of LightningElement

● Implementing the renderedCallback lifecycle hook. (This function isn’t called during SSR.)

● Using dynamically bound text or attributes that can change on the client, for example,
<h2>{dynamicText}</h2>

● Attaching events

● Subscribing to wires that trigger component changes after the initial client-side render

● Composing other components that must be hydrated, for example,
<template><c-form></c-form></template>

See Also:

● Use Islands Architecture When Implementing SSR

Verify Component Trees for SSR by Using lwr audit
Experience Delivery sites create islands for a page by processing the SSR capabilities of the page’s
components. For island creation to succeed, your nested components must follow these rules.

● CSR-only components can contain any type of component.

● Hydrated compounds contain SSR-only components or other hydrated components.

● SSR-only components contain other SSR-only components.

To quickly check if your components follow these rules, use the lwr audit command on the LWR
command line interface (CLI). You can specify which components to audit on the command line.

audit all components in an SFDX project
ls force-app/main/default/lwc | xargs lwr audit --components

9

https://www.patterns.dev/vanilla/islands-architecture

audit all components for a given namespace in a LWC or LWR project
ls src/modules/<namespace> | xargs lwr audit --namespace <namespace>
--components
see the list of supported options for the audit command
lwr audit --help

For each specified component and all the components in its component tree, lwr audit prints the
capability assigned to each component and whether or not it’s valid for the tree.

If a component fails the SSR audit, review the failure message printed on the command line and
assign a valid capability to it.

Configure a Component for SSR
To successfully render a component on the server side:

● The functions that execute during SSR must be portable.

● The functions that execute during SSR must be synchronous.

● The component must use light DOM (recommended) or native shadow DOM.

A component is portable if it can run without browser APIs. When SSR runs, the LWC framework
executes these functions for a given component and its imported dependencies.

● constructor

● connectedCallback

● getters

● setters

● any other functions called by these functions

10

https://developer.salesforce.com/docs/platform/lwc/guide/create-lifecycle-hooks-created.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/reference_lifecycle_hooks
https://developer.salesforce.com/docs/platform/lwc/guide/js-props-getters-setters.html
https://developer.salesforce.com/docs/platform/lwc/guide/js-props-getters-setters.html

Your components can’t have any dependencies on browser APIs because the server isn’t a browser. If
your component uses browser APIs, you must modify the component to ensure it doesn’t assume
that those APIs are always available.

Here are a few examples of non-portable code and objects.

● window

● document

● selector functions (template.querySelector, template.querySelectorAll, ...)

● classList

● JavaScript eventing

Any asynchronous code doesn’t complete during SSR because SSR runs in a single synchronous pass.
Asynchronous code includes:

● Promises

● async/await

● Dynamic imports

The fastest way to get your components ready for SSR is to use a combination of:

● SSR playground—Identifies SSR-related issues in your Lightning web components

● Local Dev (Beta)—Enables you to run and debug at the site-level in a local production-like
environment

● SSR test runner—Guarantees the correctness of your SSR behavior

The next sections describe how to make your components portable and synchronous for SSR.

Identify Non-Portable Code with the ESLint Plugin

The ESLint Plugin for LWC helps to determine whether your components follow best practices on
APIs or methods usage. Specifically, use the SSR preset to help make your components server-side
renderable.

For example, here are several rules to identify non-portable components.

● Disallow access to global browser APIs during SSR

● Disallow access of properties on this during SSR

These rules prevent usage of browser APIs like DOMParser and DocumentFragment in
connectedCallback, and in methods called from connectedCallback or anywhere when SSR is
performed.

Additionally, the plugin can help you identify non-portable utilities and libraries. If a library isn’t
portable, your page doesn’t load correctly during SSR.

Use Light DOM or Native Shadow with SSR

When working with SSR, we recommend that your components use light DOM (recommended) or
native shadow. Synthetic shadow DOM isn’t supported due to the limitations on browser API usage.
SSR islands are rendered in native shadow by default.

11

https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window/document
https://developer.salesforce.com/docs/platform/lwc/guide/create-components-dom-work.html
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://developer.salesforce.com/docs/platform/lwc/guide/events.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import
https://developer.salesforce.com/docs/platform/lwc/guide/get-started-test-components.html
https://github.com/salesforce/eslint-plugin-lwc/tree/master
https://github.com/salesforce/eslint-config-lwc?tab=readme-ov-file#salesforceeslint-config-lwcssr-configuration
https://github.com/salesforce/eslint-plugin-lwc/blob/master/docs/rules/no-restricted-browser-globals-during-ssr.md
https://github.com/salesforce/eslint-plugin-lwc/blob/master/docs/rules/no-unsupported-ssr-properties.md
https://web.dev/articles/shadowdom-v1#terminology_light_dom_vs_shadow_dom
https://web.dev/articles/shadowdom-v1#terminology_light_dom_vs_shadow_dom

JavaScript

Unset

Note: To convert components from native shadow to light DOM, we recommend that you use
the lwc-codemod script. We recommend native shadow only when you need encapsulation
and you don’t have a versioning strategy for making breaking changes to your components’
DOM structure. For example, use native shadow if you’re deploying your components in a
managed package.

While shadow DOM encapsulates a component’s internals and its styling, light DOM eases third-party
integrations, such as with Google Analytics, and enables global styling. For accessibility, light DOM
also enables referencing of element IDs across components because components in light DOM
aren’t encapsulated.

Light DOM ensures that LWC renders regular HTML markup instead of creating a native web
component. The markup is also referred to as light DOM because it isn’t contained within a shadow
root.

To enable light DOM on your Lightning web component, use the renderMode static property.

import { LightningElement } from 'lwc';
export default class Heading extends LightningElement {
 static renderMode = 'light';
 @api text;
}

In your template, use the lwc:render-mode directive.

<template lwc:render-mode='light'>
 <h2 class='global-style'>{text}</h2>
</template>

With light DOM, the component content is attached to the host element instead of its shadow tree.
You can access the component markup just like any other content in the document host, providing
similar behavior to content that’s not bound by shadow DOM. Specifically, light DOM supports
third-party integrations and global styling. For more information, see the Light DOM documentation.

Slotted content is content that you pass into a slot by using the <slot> element. <slot> isn’t
rendered in light DOM. If other parts of your code depend on attributes or event listeners of a
<slot> element, a compiler error is returned. For example, the slotchange event and ::slotted
CSS pseudo-selector aren’t supported because <slot> doesn’t render in the DOM.

Note: Light DOM slots can’t use the slot attribute to forward slot content into another named
slot. Currently, light DOM <slot> elements only support forwarding slotted content into the
default slot. See the known issue article.

12

https://github.com/salesforce/lwc-codemod?tab=readme-ov-file#synthetic-shadow-dom-to-native-shadow-dom
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.create_light_dom
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/slot#name
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/slot#name
https://issues.salesforce.com/issue/a028c00000yDbhP/forwarded-light-dom-slots-do-not-render-in-the-correct-slot-assignment

JavaScript

JavaScript

Use native shadow DOM with SSR for encapsulated development, such as when you make changes
to a subset of components without impacting other parts of your app or your customer
environments. With native shadow, you can improve custom styling by enabling custom themes on
your page. You also can use the ::slotted and ::part pseudo functions.

To enable native shadow on a component, use the shadowSupportMode static property.

import { LightningElement } from 'lwc';
export default class Heading extends LightningElement {
 static shadowSupportMode = 'native';
}

In browsers that support native shadow, this component renders in native shadow. Alternatively, use
the lwc-codemod script to convert synthetic shadow components to use native shadow.

See Also:

● Dreamforce 2023 Session: Experience Delivery - Improve LWCs Load Time with Server Side
Rendering

● Salesforce Developers Blog: Get Your LWC Components Ready for Native Shadow DOM in
Spring ’24

Protect Your Code from Accessing General Browser APIs

Rendering components on the server means that as a component author, you don’t have access to
certain general browser APIs, such as window, document, or querySelectors.

If you’re performing these operations during any of the component’s lifecycle events, you must
protect your code so that it becomes portable.

To guard non-portable code, use the import.meta.env.SSR boolean. For example:

export default class App extends LightningElement {
 connectedCallback() {
 // guard usage of the window object so it does not throw during SSR
 if (!import.meta.env.SSR) {
 window.addEventListener('error', (evt) => {
 console.error(`⚠ Uncaught error: ${evt.message}`);
 });
 }
 }
}

13

https://developer.mozilla.org/en-US/docs/Web/CSS/::slotted
https://developer.mozilla.org/en-US/docs/Web/CSS/::part
https://github.com/salesforce/lwc-codemod?tab=readme-ov-file#synthetic-shadow-dom-to-native-shadow-dom
https://www.youtube.com/watch?v=GD3ODj8n7fg
https://www.youtube.com/watch?v=GD3ODj8n7fg
https://developer.salesforce.com/blogs/2024/01/get-your-lwc-components-ready-native-shadow-dom
https://developer.salesforce.com/blogs/2024/01/get-your-lwc-components-ready-native-shadow-dom

Customize Slotting Behavior

Slotted content renders as expected during SSR. However, native browser built-in events like
slotchange can’t fire during SSR because they’re rendered outside of a browser context. In this beta
release, your slotchange components’ behavior can change.

For example, a slotchange event determines the number of elements to display in this carousel
component. The carousel is outlined in blue, and a pagination component is outlined in pink. The
pagination component acts as a control for the number of images being displayed, and in this
example it shows a count of 3.

The pagination component logic runs during the slotchange event. Because the slotchange event
doesn’t happen during an SSR flow, the first initial render only shows a count of 1.

When the component is rendered in the browser, the slotchange event fires and hydration updates
the count to 3.

When these browser-specific events occur, the webpage can sometimes display a small “flash” effect.
You can reduce the visibility of these effects by adding placeholders or loading messages to your
code. This approach is useful when logic takes a long time to run on the client, like a REST or
GraphQL data fetch.

Work with Scoped Modules Limitations

Scoped modules provide functionality specific to users, sites, or orgs. Org and site-specific modules
are frozen, which means that their values are immutable at publishing time. User-specific modules
are evaluated on the client without any server calls. For a list of frozen modules, see Appendix B.

User-specific modules include:

● @salesforce/user

● @salesforce/userPermission

● @salesforce/customPermission

14

https://developer.salesforce.com/docs/platform/lwc/guide/reference-salesforce-modules.html

JavaScript

JavaScript

User-specific modules are considered “live scoped modules” because they’re mutable and can
change independently of publishing. User-specific modules generally can’t be cached. When a user
authenticates, the values are re-fetched on the client.

SSR always runs as a guest regardless of the user requesting the page on a mobile or as an
authenticated user. For example, @salesforce/userisGuest is always true and
@salesforce/client/formFactor is always Large on desktop.

If you import @salesforce/user/isGuest, it resolves to true during SSR regardless of the actual
authentication status. However, when the page is hydrated on the client, it resolves to the correct
value.

Rendering as a guest on the server and rehydrating as an authenticated user on the client can cause
performance and rendering issues. For example, the SSR of content as a guest on the server can
display something completely different than the page displayed for the authenticated user. If you use
modules that require personalized content, we recommend following these guidelines so that your
content renders and hydrates successfully.

● During SSR, render an empty placeholder element. Then, render something more
appropriate during CSR.

● Use a CSR-only island to render only on the client.

Import Non-Portable Modules Dynamically

To ensure that non-portable modules don’t get processed on the server, import them dynamically in
your component.

For example, you’re importing a portable and a non-portable module in your component.

import { portableApi } from 'my/library';
import { nonPortableApi } from 'some/library';
export default class Cmp extends LightningElement {
 connectedCallback() {
 portableApi();
 nonPortableApi();
 }
}

To make the imports compatible with SSR, use the async/await function because we don’t want the
non-portable code to execute on the server. Also, guard non-portable code by using the
import.meta.env.SSR boolean.

import { portableApi } from 'my/library';
export default class Cmp extends LightningElement {
 async connectedCallback() {
 if (import.meta.env.SSR) {

15

JavaScript

Unset

Unset

 portableApi(); // executed during SSR
 } else {
 const { nonPortableApi } = await import('some/library');
 nonPortableApi(); // NOT reachable during SSR
 }
 }
}

Remove Host Element Mutations

Mutating the host element in connectedCallback() isn’t supported in SSR and CSR. As part of SSR
hydration, we validate that the VDOM matches the HTMLElement exactly. The VDOM attributes must
be equivalent to the HTMLElement counterparts for successful validation. If a mutation occurs in a
component’s connectedCallback(), those changes don’t appear in the VDOM.

A classic example is attempting to add certain class names to the host element via classList, which is
an anti-pattern.

// This is an anti-pattern
connectedCallback() {
 // Direct mutation of HTMLElement, such as
 // using this.classList.add or this.setAttribute etc. isn't supported.
 // The 'container' class never appears in VDOM.
 this.classList.add('container');
}

Use a semantic element in your template instead. To apply a class:

<template>
 <form class='container'></form>
</template>

To set a class on a parent so that a child renders correctly, we recommend that you wrap the markup
within your template tag in a <div> tag. Then, implement a corresponding getter in your
component’s JavaScript.

<!-- parent.html -->

16

JavaScript

<template>
 <div class={theClassForChild}>
 <x-child></x-child>
 </div>
</template>

This example passes in a value to <c-parent from-outside="parent-class"> by using the
fromOutside property. The child component renders the my-child-needs-parent-class value
on the class attribute.

// parent.js
import { api, LightningElement } from 'lwc';

export default class Cmp extends LightningElement {
 @api fromOutside;
 get theClassForChild() {
 return `my-child-needs-${this.fromOutside}`;
 }
}

Note: If you must mutate the host element, such as when there’s an external dependency on
your internal DOM structure, a workaround is available as a last resort. However, this
workaround will be deprecated when a long-term solution is implemented. For more
information, see the validationOptOut workaround.

Use Supported Base Components

Base components speed up your app development. While most base components support SSR, a
small number can’t be used for SSR. For example, the lightning/platformShowToastEvent
module isn’t supported for SSR. To communicate feedback after a user action, display a toast by
using the lightning/toast module instead.

If you use one of the supported base components, use the
lightning__ServerRenderableWithHydration capability on your component. For a list of
supported base components, see Appendix A.

Update Base Lightning Components Styling

Base Lightning components implement Salesforce Lightning Design System (SLDS) component
blueprints and styling. For SSR environments, base Lightning components render in native shadow.
While most base components support SSR, a small number can’t be used for SSR. See Use
Supported Base Components.

17

https://github.com/salesforce/lwc/pull/3480
https://developer.salesforce.com/docs/component-library/bundle/lightning-toast/documentation

Unset

Unset

Native shadow blocks global styles from being applied to individual components, which means that
your existing styling rules sometimes don’t work as expected anymore.

To achieve your styling goals in native shadow, use SLDS styling hooks that are assigned to specific
parts of the component with the ::part CSS pseudo function.

Here’s an example of how you can modify your existing styling rules. Let’s say that you use SLDS
styling hooks to customize the text colors on your buttons.

 div.privacy lightning-button {
 --slds-c-button-brand-text-color-active: rgb(255, 255, 255);
 --sds-c-button-text-color: rgb(255, 255, 255);
 --slds-c-button-brand-text-color-hover: rgb(211, 211, 211);
 --sds-c-button-text-color-hover: rgb(211, 211, 211);
 }

In this example, the values aren’t applied to lightning-button. The lightning-button component’s
internals become untargetable because of the native shadow boundary.

The previous example renders this result.

In the footer, the got it button text renders in blue instead of white.

To fix this styling issue, apply ::part(button) with the same rules.

div.privacy lightning-button::part(button) {
 --slds-c-button-brand-text-color-active: rgb(255, 255, 255);
 --sds-c-button-text-color: rgb(255, 255, 255);

18

https://developer.mozilla.org/en-US/docs/Web/CSS/::part

 --slds-c-button-brand-text-color-hover: rgb(211, 211, 211);
 --sds-c-button-text-color-hover: rgb(211, 211, 211);
 }

Using ::part(button) results in the correct styles getting applied to the button.

See Also:

● Lightning Design System: Styling Hooks on SLDS Components

● Lightning Design System: Styling Hooks

Fetch Data by Using Data Providers

SSR runs in a single synchronous pass, so fetching data, which is an asynchronous action, isn’t
supported in server-side rendered component code. As a result, you can’t use tools like @wire,
fetch, and XMLHttpRequest.

To fetch data on the server in an Experience Delivery app, use data providers instead. With data
providers, you pull data into a view, and you can reference the data in a view by using a data
expression. Data providers dynamically populate data expressions with property values.

You can create a data provider from scratch, or you can convert a wire adapter or a public Apex
controller into a data provider.

Tip: The Apex Data Providers pilot introduces data providers that act as a gateway to interact
with Apex controllers and help preload data onto your site. For more information, see Apex
Data Providers (Pilot).

19

https://lightningdesignsystem.com/components/buttons/#Styling-Hooks-Overview
https://www.lightningdesignsystem.com/platforms/lightning/styling-hooks/
https://developer.salesforce.com/docs/platform/lwc/guide/data-wire-service-about.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/apex_data_providers_pilot.pdf
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/apex_data_providers_pilot.pdf

Unset

Unset

Unset

Convert an Apex Wire Adapter to an Apex Data Provider

To access @wire data during SSR, convert the Apex wire adapter into an Apex data provider. So if
your custom component retrieves data using a direct @wire call, modify it to use an @api variable
instead.

For example, this c-account component uses @wire to get a value for name from the data dataset.

// c/account using @wire

import { LightningElement, wire } from 'lwc';
import getAccountName from '@salesforce/apex/ApexDataProviderDemo.getAccount';

export default class Account extends LightningElement {
 name;

 @wire(getAccountName)
 processName({ error, data }) {
 if (data) {
 this.name = data;
 }
 }
}

To make c-account fetch data synchronously, revise it to call @api instead of @wire.

// c/account using @api

import { LightningElement, api } from 'lwc';

export default class Account extends LightningElement {
 @api accountName; // matches the attribute key from the metadata below
}

Then, incorporate the data provider into the view’s metadata.

{
 "attributes": {
 "accountName": "{!ApexDataProvider.Name}"
 },
 "definition": "c:account",
 "id": "abc-123",
 "type": "component",

20

JavaScript

Unset

 // Add the dataProviders block if it doesn't already exist
 "dataProviders": [
 {
 "definition": "sfdc_cms__apexDataProvider",
 "sfdcExpressionKey": "ApexDataProvider",
 "attributes": {
 "apexClass": "ApexDataProviderDemo",
 "apexMethod": "getAccount",
 "apexParams": {
 "name": "Example Account"
 }
 }
 }
]
}

Enable an Apex Controller to Use the Apex Data Provider

With Apex data providers, you can access data from existing public Apex controllers. An Apex
controller is an Apex class that stores information and logic for a group of UI components.

To set up an Apex data provider, annotate at least one method of the Apex class with
@AuraEnabled(cacheable=true scope='global'. The class can contain only supported input
parameters and return type.

For example, this data provider fetches account name data from the
ApexDataProviderDemo#getAccount Apex controller. It then passes that data to a text block
component.

public class ApexDataProviderDemo {
 @AuraEnabled(cacheable=true scope='global')
 public static Account getAccount(String name){
 Account account = [SELECT FIELDS(STANDARD) FROM Account WHERE Name
=:name];
 return account;
 }
}

You must add this data provider to the textBlock component in the payload.

"definition": "dxp_base:textBlock",
"id": "1ba73c17-b25c-4bda-82bd-c49c5e8c1e9c",
"type": "component",

21

// If dataProviders block is not present need to add it in the payload
"dataProviders": [
{
"definition": "sfdc_cms__apexDataProvider",
"sfdcExpressionKey": "ApexDataProvider",
"attributes": {
"apexClass": "ApexDataProviderDemo",
"apexMethod": "getAccount",
"apexParams": {
"name": "Example Account"
}}}]

Then, to bind textBlock to the data from ApexDataProviderDemo#getAccount, use the expression
{!ApexDataProvider.Name} on the text field of the text block component.

Use Islands Architecture When Implementing SSR
Use islands architecture to create islands of component interactivity on a server-rendered page.

Configure a Page for Islands Architecture
To opt into SSR with islands architecture, the theme layout component of a page must include the
lightning__ServerRenderable capabilities tag. In the default pages of the Build Your Own (LWR)
template, this capability is enabled on all standard pages.

Tip: If you need an entire route to be client-side rendered, we recommend creating a custom
theme layout component that doesn’t include the lightning__ServerRenderable
capabilities tag. See Create Custom Layout Components in the LWR Sites for Experience Cloud
Guide.

Determine Island Boundaries and Capabilities

An island boundary is determined by the first component encountered in the component tree that’s
set to SSR with hydration or to CSR only. If a component is set to SSR only, it simply becomes part of
the page HTML returned by the server, as nothing is required on the client side.

When nesting components, islands capability is determined by the least SSR-capable component
within the island boundary. For example:

● If a parent component is set to SSR with hydration and its child component is set to CSR only,
both components are rendered on the client side.

● If a parent component is set to CSR only, the parent and its child components are rendered
on the client side.

● If a parent component is set to SSR with hydration and its child component is set to SSR only,
both components are hydrated.

For more information, see Nested Components and Precedence in the Lightning Web Runtime on
Node.js Guide.

22

https://docs.google.com/document/d/1UqXMh9pcw2SJRYjmQMCpByBxTPdbJWfIWFD5LboUHcQ/edit?pli=1#heading=h.evrognth9zo
https://developer.salesforce.com/docs/atlas.en-us.exp_cloud_lwr.meta/exp_cloud_lwr/get_started_layout.htm
https://developer.salesforce.com/docs/platform/lwr/guide/lwr-ssr-hydration-experience-cloud.html#nested-components-and-precedence

Unset

Configure a Portable Component for SSR

To enable a portable component for SSR, add one of these capability tags to the component’s
configuration file.

● lightning__ServerRenderable enables a component for SSR without hydration. Use this
capability only if you don’t expect any updates or interactivity from your components after
they’re rendered.

● lightning__ServerRenderableWithHydration enables a component for SSR with
hydration. Use this capability if your component contains any dynamic content or if it’s
interactive.

● CSR is the default capability, so it doesn’t require a tag.

Important: If a template contains any child components that aren’t portable, then the parent
component also isn’t portable. Don’t include these capabilities on a non-portable component
because the entire page fails to render with a 500 error from the server. See Verify Component
Trees for SSR by Using lwr audit.

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">
 <apiVersion>58.0</apiVersion>
 <capabilities>
 <capability>lightning__ServerRenderableWithHydration</capability>
 </capabilities>
</LightningComponentBundle>

Tip: To use a component in Experience Builder, remember to include the targets tag with the
appropriate values, such as lightningCommunity__Page or
lightningCommunity__Default.

Islands Architecture Considerations

● Components that use dynamic component visibility are considered CSR-only regardless of the
capability tag in the component metadata.

● Expressions used for dynamic data aren’t considered when calculating island boundaries or
capabilities.

● During SSR, all data requests are made as if the user hasn’t logged in. As a result, auth-related
scoped modules and data are resolved in a guest user context. Authenticated data is fetched
during hydration, so a component only updates with authenticated data on the client side.

23

https://help.salesforce.com/s/articleView?id=sf.exp_cloud_expression_based_visibility_components.htm&language=en_US&type=5
https://developer.salesforce.com/docs/atlas.en-us.exp_cloud_lwr.meta/exp_cloud_lwr/advanced_expressions.htm

Unset

Unset

Test and Publish Your Site
Before you test components, make sure that you reviewed the Make Your Components Server-Side
Ready section.

Test Your Components
 Test your components for SSR in these ways.

● SSR playground

● SSR test runner

● Manual Testing

Debug with the SSR Playground

The SSR playground enables you to render, debug, and experiment with individual components and
their children in CSR and SSR modes.

Run the playground commands from a directory that contains one of these files.

● lwc.config.json file

● package.json file containing an lwc field

● sfdx-project.json file that points to a project directory containing LWCs

To open the playground in Chrome, run this command.

npx -p @lwc/wds-playground playground namespace/component

To open the playground in Chrome with DevTools.

npx -p @lwc/wds-playground playground namespace/component --open --devtools

Start at your component tree’s “leaves,” or components that don’t contain other components.

1. Open the component in the SSR playground.

a. Modify the component props to test important use cases.

b. Address errors that are reported during the three phases of hydration: SSR, DOM
insertion, and rehydration.

c. Look for and address any visual bugs in your component.

2. Enable the CSR toggle to render your component with SSR and CSR side by side.

3. Use the playground’s comparison tool to ensure that the SSR and CSR component instances
are visually identical.

24

4. Enable the layout shift tool in the Misc section in config to observe any layout shifts during
SSR hydration.

By default, the SSR playground takes your component through three stages of its SSR lifecycle.

● Render the component to HTML markup on the server.

● Render the HTML on the client.

● Hydrate the DOM subtree and associate it with an instance of your component class.

We recommend that you write tests by using the SSR test runner to ensure that your components
don’t regress as you make changes.

Use the SSR Test Runner

Just like you can use Jest to write unit tests for your LWCs, you can use the SSR test runner to
make assertions about your LWCs in SSR-related scenarios.

By default, the SSR tests run in headless Chrome. Unlike Jest tests, the SSR tests run in a full-featured
web browser

Use these functions from @lwc/test-runner.

● renderToMarkup is an asynchronous function that takes the path to your component and
the properties that you use for rendering. It returns Promise<String>, where the String is
HTML markup.

● insertMarkupIntoDom is an asynchronous function that takes SSR markup, such as
Promise<String> returned by renderToMarkup, as its single argument. It returns
Promise<HtmlElement>, which is a handle to the root element of your SSR-rendered DOM
subtree.

● hydrateElement is an asynchronous function that takes a root element, such as
Promise<HtmlElement> returned by insertMarkupIntoDom, and component properties.
The properties should be the same as those passed into renderToMarkup. This function

25

Unset

Unset

JavaScript

returns a Promise<Boolean>, where the Boolean indicates whether hydration completed
without validation errors. If hydration fails, review the errors in the console.

● expect is a function that you can use to chain assertions. To make it easier to test your
components, it provides all of the assertions from Chai.expect in addition to these
assertions.

○ SSRCorrectly—Checks that all three stages of the SSR lifecycle are performed
correctly.

○ visuallyIdenticalInCSRandSSR—Performs a pixel match of SSR and CSR
components.

○ noLayoutShifts—Ensures that the component didn’t have any layout shifts when it
was hydrated in the DOM.

○ notMakeDomMutationsDuringSSR—Ensures that the component didn’t make any
DOM mutations.

To invoke the test runner, run this command.

npx -p @lwc/test-runner test-lwcs SPEC_FILE_PATTERN

If you use ZSH, surround SPEC_FILE_PATTERN in single quotes.

To distinguish the SSR tests from Jest tests, use unique file extensions. For example, if your Jest tests
follow the format COMPONENT_NAME.spec.js, follow the format COMPONENT_NAME.spec-ssr.js for
your SSR test files. If you follow this filename format, run your tests like this one.

npx -p @lwc/test-runner test-lwcs './src/**/*.spec-ssr.js'

Tests run in parallel in separate headless Chrome tabs. The tests run fast, and as much as 10,000
tests can complete in under 6 seconds, depending on your hardware.

Here’s an example of an SSR test.

import {
 // Importing `expect` from the toolkit is subject to change
 expect,
 querySelectorDeep,
 // These three functions contribute heavily to your tests
 renderToMarkup,
 insertMarkupIntoDom,
 hydrateElement,
} from '@lwc/test-runner';

// Instead of importing the component directly, use the path of
// the component's JS file. This value is passed to `renderToMarkup`
// and `hydrateElement` where the component is imported automatically.
const componentPath = import.meta.resolve('./parent.js');

26

describe('<x-parent>', () => {
 it('is SSR-able and very snazzy', async () => {
 // Errors thrown during SSR cause the test to fail.
 const markup = await renderToMarkup(componentPath, {});

 // Once you have the raw HTML markup, you can make related assertions.
 expect(markup).to.contain('</x-parent>');

 // Insert that markup into the DOM. It doesn't get attached
 // to an instance of your component class yet.
 const el = await insertMarkupIntoDom(markup);

 // Make assertions about pre-hydrated DOM.
 expect(el).to.haveShadowChild('p.child-content');

 // Finally, hydrate the HTML that was generated on the server and
 // inserted into the DOM in previous steps.
 const hydratedWithSsrDOM = await hydrateElement(el, componentPath);

 // Check that hydration occurred without validation errors.
 expect(hydratedWithSsrDOM).to.be.true;

 // Now that the SSR-generated markup has been inserted and hydrated,
 // the component should behave as though it were originally rendered
 // in the browser with CSR. Check the component to ensure expected
behavior.
 expect(querySelectorDeep('p.child-content', el)).to.have.text('Hmm! hello
 from parent');
 });

 // Unless you want to make assertions on output of each individual stage of
SSR,
 // you can use this one-liner to check that DOM was hydrated without any
errors.
 it('SSR correctly', async () => {
 await expect(componentPath, {}).to.SSRCorrectly();
 });

 // Make sure no error is thrown when connected callback lifecycle in
executed.
 it('doesnt throw in connected callback', async () => {
 await expect(async () => {
 await renderToMarkup(componentPath, {});
 }).to.not.throwErrorInConnectedCallback();
 });

 // Pixel match rendered SSR and CSR components to check for visual
correctness.
 it('checks that SSR and CSR are visually the same ', async () => {
 await expect(componentPath, {}).to.be.visuallyIdenticalInCSRandSSR();
 });

 // No layout shift was observed during hydration stage.
 it('has no layout shifts', async () => {
 await expect(componentPath, {}).to.have.noLayoutShifts();
 });

27

Unset

 // The component doesn't make any DOM mutation.
 it('makes no DOM mutations', async () => {
 await expect(componentPath, {}).to.notMakeDomMutationsDuringSSR();
 });

Manually Verify SSR on a Component

When a component is rendered on a page, you can verify that SSR was successful by looking at the
DOM elements.

To determine if an island or component tree implemented SSR successfully:

1. In Chrome, right-click the page and go to View Page Source. If you use Firefox or another
browser, View Page Source can correspond to another option like Inspect or View Selection
Source.

2. Search for some HTML or text from the component. If you find it, then SSR was successful.

In Experience Delivery apps, search for webruntime-island-container, which wraps each CSR’ed
and hydrated island.

● CSR-only—The wrapper has no inner HTML.

● SSR with hydration—The wrapper has inner HTML and adata-lwr-props-id attribute.

● SSR-only (not hydrated)—Doesn’t have a wrapper. Its HTML exists in the page source.

Here are a few examples.

<!-- CSR-only -->
<webruntime-island-container-x1787601173></webruntime-island-container-x1787601
173>

<!-- SSR with hydration -->
<webruntime-island-container-x1783627592
data-lwr-props-id="lwcprops8de0"><c-cmp><style
type="text/css">...</style><textarea></textarea></c-cmp></webruntime-island-con
tainer-x1783627592>

<!-- SSR-only -->
<c-title><style type="text/css">...</style><h1>Page Title</h1></c-title>

See Also:

● LWR Sites for Experience Cloud Guide: Create Components for LWR Sites

Publish Your Site
Before publishing your site to make it live, preview the site in Experience Builder to verify that it looks
as expected. You can publish your LWR site at any time, even when the site is unchanged.

28

https://developer.salesforce.com/docs/atlas.en-us.exp_cloud_lwr.meta/exp_cloud_lwr/get_started_components.htm

Unset

For LWR sites, if you change your organization’s schema or update a component used in an LWR site,
you must publish your site to make the changes live. Otherwise, your site can break at runtime.

To publish your changes, click Publish on the toolbar in Experience Builder.

Alternatively, you can publish your site by using the CLI command.

sf community publish --name 'My Site Name'

An email notification informs you when your changes go live.

See Also:

● Salesforce Help: Preview Your Experience Builder Site

● Salesforce Help: Publish Your Experience Builder Site

● LWR Sites for Experience Cloud Guide: New Publishing Model for LWR Sites

● Salesforce CLI Command Reference: community Commands

Use Debug Mode for Client-Side Debugging
Use debug mode to troubleshoot client-side code in your published site. When you use debug mode,
framework and component JavaScript code isn’t minified and is easier to read and debug. Debug
mode also adds more detailed output for some warnings and errors.

To use debug mode:

1. Open the published site page in your browser and append ?debug to the URL. For example,
https://www.mysite.com/?debug.
Note: For LWR sites hosted on Experience Delivery, the Debug Mode Users setting in Setup isn’t
supported.

2. Open the browser’s developer tools.

3. With the page in debug mode, you can:

○ View unminified JavaScript files to make debugging easier.

○ Locate server-side-rendering error messages by searching for “An error occurred
during server-side rendering” and expanding the message.

Validate the Network Response of the Published Site

Now that you converted your components to be server-side renderable and published your site to
Experience Delivery, you can verify the final output of a given page rather than validating each
individual component.

29

https://help.salesforce.com/s/articleView?id=sf.community_designer_preview.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.community_designer_publish.htm&type=5
https://developer.salesforce.com/docs/atlas.en-us.exp_cloud_lwr.meta/exp_cloud_lwr/template_differences_publish.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_community_commands_unified.htm

The easiest method is to use the Network Response for your root document in the browser’s
Developer Tools.

1. Go to your URL.

2. To open the browser’s Developer Tools, right-click the page and click Inspect, or press the
F12 key.

3. Open the Network tab.

4. Ensure that the network is being recorded, as indicated by the red square with a circle icon in
the top left of the window.

5. Ensure that the All filter is selected, and reload the page via the browser’s refresh button.
The network panel shows all the requests coming in.

6. Click the first item in the list, which is the root document with the name of the current URL
and type of document.

7. In the side window that opens, click the Preview tab.
Any content that was server-side rendered shows in that window. If you click the Response
tab, you can see the static HTML, JavaScript, and CSS that was delivered as a result of SSR.

Alternatively, you can turn off JavaScript in your browser to review your published site. After turning
off JavaScript, refreshing your browser displays only content that’s server-side rendered. Disabling
JavaScript isn’t supported in Preview mode.

30

https://developer.chrome.com/docs/devtools/javascript/disable
https://help.salesforce.com/s/articleView?id=sf.community_designer_preview.htm&type=5

Appendix A: Server Renderable Base
Components
These base components are server-side renderable or can be rendered on a page with an
SSR-enabled component. To use these base components, include the
lightning__ServerRenderableWithHydration tag in your component’s .js-meta.xml file.

● lightning-accordion
● lightning-accordion-section
● lightning-alert
● lightning-avatar
● lightning-badge
● lightning-breadcrumb
● lightning-breadcrumbs
● lightning-button
● lightning-button-group
● lightning-button-icon
● lightning-button-icon-stateful
● lightning-button-menu
● lightning-button-stateful
● lightning-card
● lightning-checkbox-group
● lightning-combobox
● lightning-confirm
● lightning-dual-listbox
● lightning-dynamic-icon
● lightning-file-upload
● lightning-formatted-address
● lightning-formatted-date-time
● lightning-formatted-email
● lightning-formatted-location
● lightning-formatted-name
● lightning-formatted-number
● lightning-formatted-phone
● lightning-formatted-rich-text
● lightning-formatted-text
● lightning-formatted-time
● lightning-formatted-url
● lightning-helptext
● lightning-icon
● lightning-input
● lightning-input-address
● lightning-input-location
● lightning-input-rich-text

● lightning-layout
● lightning-layout-item
● lightning-menu-divider
● lightning-menu-item
● lightning-menu-subheader
● lightning-modal
● lightning-modal-body
● lightning-modal-footer
● lightning-modal-header
● lightning-pill
● lightning-pill-container
● lightning-progress-bar
● lightning-progress-indicator
● lightning-progress-ring
● lightning-progress-step
● lightning-prompt
● lightning-radio-group
● lightning-relative-date-time
● lightning-rich-text-toolbar-button
● lightning-rich-text-toolbar-button-group
● lightning-select
● lightning-slider
● lightning-spinner
● lightning-tab
● lightning-tabset
● lightning-textarea
● lightning-tile
● lightning-toast
● lightning-toast-container
● lightning-tree
● lightning-tree-item
● lightning-vertical-navigation
● lightning-vertical-navigation-item
● lightning-vertical-navigation-item-badge
● lightning-vertical-navigation-item-icon
● lightning-vertical-navigation-overflow
● lightning-vertical-navigation-section

Base components that aren’t listed haven’t been evaluated or enabled for SSR yet. See Use
Supported Base Components. For base component documentation, see the Component Library.

31

https://developer.salesforce.com/docs/component-library

Appendix B: Scoped Modules
Org and site-specific modules are frozen, which means that their values are immutable at publishing
time. User-specific modules are evaluated on the client without any server calls. See Work with
Scoped Modules Limitations.

These Salesforce scoped modules are frozen, which means immutable until publish.

● @salesforce/apex/*

● @salesforce/client/formFactor

● @salesforce/community/Id

● @salesforce/contentAssetUrl/*

● @salesforce/i18n/*

● @salesforce/label/*

● @salesforce/messageChannel/*

● @salesforce/resourceUrl/*

● @salesforce/schema/*

This scoped module is frozen and can require another publish if its value is changed.

● @salesforce/community/basePath

User-specific modules are mutable and can change independently of publishing. These modules
can’t be cached. When a user authenticates, the values are re-fetched on the client. User-specific
modules include:

● @salesforce/user

● @salesforce/userPermission

● @salesforce/customPermission

These scoped modules are frozen at publish.

● @salesforce/i18n/lang

● @salesforce/site/Id

For more information on scoped modules, see @salesforce modules.

32

https://developer.salesforce.com/docs/platform/lwc/guide/reference-salesforce-modules.html

Unset

Appendix C: Provide Your Source Code to
Salesforce
The Experience Delivery team sometimes requests access to source code and CMS content for
testing purposes. Sharing your source code is entirely optional, but it does help the team immensely.

You can use Salesforce CLI commands to export these Metadata API types for the site.

● Network

● CustomSite

● ExperienceBundle (for LWR sites)
OR
DigitalExperienceBundle and DigitalExperienceConfig (for enhanced LWR sites)

● StaticResource

● ApexClass

● LightningComponentBundle

Here’s an example of a package.xml manifest file.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
 <types>
 <members>*</members>
 <name>Network</name>
 </types>
 <types>
 <members>*</members>
 <name>CustomSite</name>
 </types>
 <types>
 <members>*</members>
 <name>ExperienceBundle</name>
 </types>
 <types>
 <members>*</members>
 <name>DigitalExperienceBundle</name>
 </types>
 <types>
 <members>*</members>
 <name>DigitalExperienceConfig</name>
 </types>
 <types>
 <members>*</members>

33

Unset

 <name>StaticResource</name>
 </types>
 <types>
 <members>*</members>
 <name>LightningComponentBundle</name>
 </types>
 <types>
 <members>*</members>
 <name>ApexClass</name>
 </types>
 <types>
 <members>*</members>
 <name>CustomObject</name>
 </types>
 <version>57.0</version>
</Package>

And here’s an example of the sf project retrieve command.

sf project retrieve start --manifest manifest/package.xml

See Also:

● Salesforce CLI Setup Guide

● Salesforce CLI Command Reference

● Experience Cloud Developer Guide: ExperienceBundle for Experience Builder Sites

● Experience Cloud Developer Guide: Deploy Your Experience Cloud Site with the Metadata API

Provide CMS Content

To export Salesforce CMS content that’s used in the site, see Import and Export Content with
Salesforce CMS in Salesforce Help.

34

https://developer.salesforce.com/docs/atlas.en-us.242.0.sfdx_setup.meta/sfdx_setup/
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_top.htm
https://developer.salesforce.com/docs/atlas.en-us.communities_dev.meta/communities_dev/communities_dev_migrate_expbundle.htm
https://developer.salesforce.com/docs/atlas.en-us.communities_dev.meta/communities_dev/networks_migrating_from_sandbox.htm
https://help.salesforce.com/s/articleView?id=sf.cms_import_export_overview.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.cms_import_export_overview.htm&type=5

	
	Overview
	
	Before You Begin
	Beta Limitations and Behavior Differences
	Changes Since Winter ’25

	
	Enable Experience Delivery
	Make Your Components Server-Side Ready
	What Is Server-Side Rendering?
	Islands Architecture and Component Hydration
	Verify Component Trees for SSR by Using lwr audit
	Configure a Component for SSR
	Identify Non-Portable Code with the ESLint Plugin
	Use Light DOM or Native Shadow with SSR
	Protect Your Code from Accessing General Browser APIs
	
	Customize Slotting Behavior
	Work with Scoped Modules Limitations
	Import Non-Portable Modules Dynamically
	Remove Host Element Mutations
	Use Supported Base Components
	Update Base Lightning Components Styling
	Fetch Data by Using Data Providers
	Convert an Apex Wire Adapter to an Apex Data Provider
	Enable an Apex Controller to Use the Apex Data Provider

	Use Islands Architecture When Implementing SSR
	Configure a Page for Islands Architecture
	Determine Island Boundaries and Capabilities
	Configure a Portable Component for SSR
	Islands Architecture Considerations

	Test and Publish Your Site
	Test Your Components
	Debug with the SSR Playground
	Use the SSR Test Runner
	Manually Verify SSR on a Component

	Publish Your Site
	Use Debug Mode for Client-Side Debugging
	Validate the Network Response of the Published Site

	
	Appendix A: Server Renderable Base Components
	Appendix B: Scoped Modules
	
	Appendix C: Provide Your Source Code to Salesforce

