
1 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

GETTING
STARTED WITH
HEADLESS
COMMERCE
ON SALESFORCE B2C COMMERCE

http://www.salesforce.com
http://www.salesforce.com

2 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Going headless with Salesforce B2C Commerce gives you the flexibility to interact with your
customers on multiple touchpoints using simple yet powerful APIs that perform and scale to meet
your growing business needs. The Salesforce B2C Commerce APIs make it easy for your engineering
teams to focus on the front-end user experience while leaving the heavy lifting to us when it comes to
programmatically interacting with your digital ecommerce resources. If you’re completely new to headless
or still deciding whether headless is right for you, consider reading this blog post: Everything You Need to
Know About Headless Commerce (But Were Afraid to Ask).

The Salesforce B2C Commerce APIs have been productized to provide even easier and more powerful
integrations with your custom applications that perform and scale even beyond the level you’ve come to
expect from Salesforce B2C Commerce. For example, with Salesforce Einstein artificial intelligence (AI) built
right into our APIs, you won’t need to hire a team of data scientists to ensure your users are always getting
the most relevant recommendations to help boost your revenue.

Whether your storefront already uses the full Salesforce B2C Commerce stack or not, headless is
becoming an important consideration as your customers engage in more commerce outside of the
traditional online storefront. Some of our customers choose to build their digital online storefront using
100% headless architecture while others use a traditional Salesforce B2C Commerce implementation
based off of our Storefront Reference Architecture (SFRA) — with headless implementations for other
touchpoints such as mobile/social applications, smartwatch integrations, or even connected vehicle
integrations. Regardless of which touchpoints you’ve chosen to go headless, the high-level architecture
involved in the integration with Salesforce B2C Commerce will not vary significantly.

Taking on this challenge is not for everyone since building, hosting, and maintaining high-traffic public-
facing applications can be extremely challenging. There are a number of considerations we hope to help
your team understand when it comes to maintaining the same level of predictable performance and scale
offered by the Salesforce B2C Commerce platform.

Introduction

With a custom head, you have the flexibility to be creative in order
to provide the unique and tailored front-end user experience that
your customers have come to associate with your brand.

http://www.salesforce.com
http://www.salesforce.com
https://www.salesforce.com/blog/2018/06/define-headless-commerce.html
https://www.salesforce.com/blog/2018/06/define-headless-commerce.html

3 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Contents

1. Roles ..04

Solutions Architect ...04

Developer ...04

Quality Assurance (QA) Engineer ...04

Security Engineer ..04

Site Reliability Engineer (SRE)...04

Operations Engineer ...04

2. Architecture Overview..05

3. Considerations for Deploying and Maintaining a Headless Architecture ...06

Content Delivery Network (CDN) ...06

Scaling ..07

Caching ...08

Resilience, Redundancy, High Availability, and Disaster Recovery (HADR)09

Middleware and Operating System Configuration ...10

Networking ...10

Serviceability (Logging, Alerting, Monitoring, Troubleshooting) ..11

Security ...11

Bot Detection/Mitigation (PerimeterX, Cloudflare, Akamai Bot Manager)12

Load Testing ...12

Penetration Testing ...12

4. Conclusion ..13

5. Appendix ...14

http://www.salesforce.com
http://www.salesforce.com

4 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

1 Roles

Building and maintaining a headless solution requires the following high-level roles in your or your
partners’ organization. Skillsets may overlap in these roles, and your organization may define them
slightly differently.

Solutions Architect
The solutions architect designs the technical solution and oversees the development from both a technical
and process perspective.

Developer
The developer is responsible for delivering a functional product that meets the requirements laid out by
the solutions architect. Your custom head will likely consist of both front-end applications that provide the
presentation layer as well as a back end that serves content to the front end. A front-end developer will focus on
building the front-end user interface (UI), while a back-end developer might deliver an API client for the front-
end developer to leverage from the UI. It is also possible for an experienced full stack developer to work on
both the front end and the back end.

Quality Assurance (QA) Engineer
The quality assurance engineer is responsible for validating the quality of the application stack, including
functional, performance, and resilience characteristics. The QA engineer will define the test suite and execute it
against the application after each build to ensure no functional regressions have been introduced with new code.
The QA engineer will also design requirements for load testing and advise the technical team on where certain
code might require performance optimizations.

Security Engineer
The security engineer is responsible for protecting the network and applications from users with malicious
intent. The security engineer will also oversee security-related tests — for example, penetration testing or
source code vulnerability scans. The security engineer also assists in investigations related to potential
security-related incidents.

Site Reliability Engineer (SRE)
The site reliability engineer (SRE) is responsible for the overall health and performance of the application
stack. The SRE provides emergency response to production incidents and also builds systems to monitor and
maintain the reliability and performance of your applications.

Operations Engineer
The operations engineer has expertise in systems and network engineering. These engineers will be involved
in designing and maintaining operating systems and middleware configuration, patching software and
systems, and maintaining/troubleshooting network-related issues.

http://www.salesforce.com
http://www.salesforce.com

5 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

2 Architecture Overview

Your custom head will serve as the front-end presentation layer, providing a rich digital shopping
experience for your customers. The head interacts with Salesforce B2C Commerce APIs to provide the user
with digital content and functionality to complete their purchase from a wide range of devices. The Salesforce
B2C Commerce APIs provide the functionality to easily and securely interact with all of your digital content
while your custom head can connect to third parties to allow the user to complete their transaction.

You will have the flexibility to develop your custom head using a combination of industry-standard open-source
technologies, home-grown frameworks, or Salesforce-guided solutions that use technologies like Heroku for
managing and deploying your runtime. In the end, your goal is to provide your users with the best front-end
experience possible while maintaining a highly performant and scalable system no matter the load level.

Amazon API Gateway

CLOUDFLARE CONTENT DELIVERY NETWORK (CDN)

Node.JS API

Docker Container
Node.JS API

Docker Container
Node.JS API

Docker Container

Kubernetes Cluster

Mobile App
(OS/Android)

React Web
Application

Logging

Monitoring

Application
Performance

Monitoring (APM)

Cart

Pricing and
Promotions Inventory Search Customers

Catalog Images Einstein
Recommendations

Third Party Services

Order
Management Tax Loyalty Gift Cards

ShippingImagesInventoryPayment/
Fraud

HTTP or NodeJS SDK

See the Appendix section for an overview of other technologies that might also be used in a headless implementation.

Example of Salesforce B2C Headless Implementation

http://www.salesforce.com
http://www.salesforce.com

6 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

3 Considerations for Deploying and
Maintaining a Headless Architecture

The Salesforce B2C Commerce platform provides a highly reliable, scalable, and performant solution
to ecommerce. A number of components contribute to our success, including a dedicated 24/7 operations
team, networking and security experts, performance experts, database experts, load-testing experts, an
embedded content delivery network (eCDN), highly tuned middleware components, proactive monitoring/
alerting, and much more.

Many of these components and areas of expertise do not come “out of
the box” in a headless implementation and will be required within your or
your partners’ organization as you develop your head for the same level of
performance and scale you have come to expect from the Salesforce B2C
Commerce platform.

Content Delivery Network (CDN)
The Salesforce B2C Commerce platform leverages an eCDN to serve cached static content such as product
images, JavaScript, and HTML from a point of presence (PoP) server closest to the user (otherwise known
as the “edge”) in order to ensure the fastest content delivery possible.

You will need to ensure you are adopting a content delivery network (CDN) to serve cached content from your
custom head back to the user. Doing so will prevent unnecessary requests to your applications and infrastructure
as content gets served from the edge, allowing you to only process requests that actually require real-time
processing. This allows for better performance and scalability of your custom head. Many CDNs also provide other
performance-optimization-related features such as code minification, bot detection/mitigation, firewall security,
and advanced routing capabilities.

http://www.salesforce.com

7 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Scaling
The Salesforce B2C Commerce platform uses scaling techniques that ensure your storefront remains available
and equally performant during periods of heavy traffic. As system resource utilization increases (often due
to a significant increase in traffic), additional application nodes are often added to the cluster to ensure the
performance of your storefront remains unchanged. This technique is referred to as horizontal scaling.

When it comes to the custom head, it is important to implement similar strategies to ensure your applications
scale to meet the demands of customer traffic. Many cloud providers offer features for defining autoscaling
policies that will provision additional applications when necessary in the event key metrics such as memory
and CPU utilization have breached predefined thresholds. You will need to understand the boundaries of your
application stack to determine the ideal autoscaling triggers to ensure your application can withstand sudden
bursts of traffic.

If your application stack is deployed using containers, you will need to understand container orchestration. This
is handled by Kubernetes in our high-level architecture diagram in the Architecture Overview section. These
tools will help with application provisioning, resource balancing among a cluster of servers, health monitoring,
load balancing, and more.

3. Considerations for Deploying and Maintaining a Headless Architecture

Represents a single
application node

2GB RAM
2 CPU

2GB RAM
2 CPU

2GB RAM
2 CPU

2GB RAM
2 CPU

2GB RAM
2 CPU

2GB RAM
2 CPU

2GB RAM
2 CPU

2GB RAM
2 CPU

Horizontal Scaling

http://www.salesforce.com
http://www.salesforce.com

8 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Caching
Caching is one of the most important aspects of a highly performant and scalable system, as it reduces the need for
a request to travel all the way from the client’s browser to the origin server before returning content back to the user.
With multiple layers involved in a headless ecommerce architecture, it is important to return data back to the user at
the closest layer whenever possible. As mentioned in the preceding section, scaling an application cluster horizontally
lets multiple applications process requests when you need more processing power, but this can still result in a poorly
performing system if caching is not properly implemented throughout your applications and infrastructure.

The diagram below depicts an example of a cached image request being served by the CDN as well as an
uncached request traveling all the way through the infrastructure to retrieve an image. For a single image, this
could mean the difference between a 30ms response time and a 500ms+ response time. Caching content at
every layer will greatly improve the overall response time of your application while also taking the strain off
of your back-end applications.

You’ll need to determine which types of requests should be cached throughout the various layers of your
infrastructure to ensure the fastest possible page-load times, as well as the duration for which resources will be
cached. Other types of caching to consider include:

1. Distributed caches such as Redis that are shared across application nodes for the purpose of reducing the load
on your underlying storage systems. For example, you might choose to cache an expensive API query result in a
distributed cache to prevent each application in a cluster from issuing the same request multiple times.

2. In-memory caches that live within your applications’ physical memory that serve to avoid expensive
calculations within your application. These types of caches are usually provided by your application
runtime SDK or as supplemental libraries.

3. Salesforce B2C Platform caching within Salesforce B2C Commerce APIs to ensure that a request
already processed by one user does not need to be recalculated for another — as long as the
requested data is not unique across users. Our APIs make it easy for developers to cache requests
with granularity to ensure flexibility and optimal performance.

3. Considerations for Deploying and Maintaining a Headless Architecture

C
O

N
TE

N
T

D
EL

IV
ER

Y
 N

ET
W

O
R

K
 (

C
D

N
)

WWW.

Amazon
API

Gateway

= Cached Image Request

= Uncached Image Request

Custom Head
Application

Cluster
High availability architecture

Capacity on-demand
Efficient resource utilization

Full redundancy
Failover management

Commerce Cloud

GET /image.png GET /image.pngGET /image.png

Network

Application
Servers

Storage

Web
Servers

Database
Servers

http://www.salesforce.com
http://www.salesforce.com
http://redis.io
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/OCAPI/current/usage/Caching.html

9 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Resilience, Redundancy, High Availability, and Disaster Recovery (HADR)
Salesforce didn’t get their best-in-class reputation by having single points of failure. Not only does every
component within the Salesforce B2C Commerce infrastructure have redundancy in the event of single node
failures, we are also prepared for disasters with standby systems running in separate data centers to minimize
interruption should disaster strike. We also design our applications to fail fast in the event of known service
degradations. For example, in our traditional storefront implementation, we prevent calls to third parties if
we know their service is performing poorly. Doing so prevents application threads from being tied up for long
periods of time in order to avoid a performance degradation or unavailability. You’ll retain this quality of service
when calling Salesforce B2C Commerce APIs from your custom head, but you will need to think about how
you’ll provide the same level of service within your custom head.

Plan for both single node failures as well as entire infrastructure outages to
ensure your application remains available in the event of a disaster.

Most modern cloud providers build high availability and disaster recovery into their offerings. However, it is
important to understand how a single node failure can impact your application. For example, if you are load-
balancing between two web servers to serve traffic coming into your application, make sure you understand
the impact to your application should one or both web servers become unavailable, especially during periods
of heavy traffic. Furthermore, make sure you have a recovery plan for these situations, whether you are using
autoscaling policies to provision new applications or having a 24/7 team in place to quickly react in the event of
a partial or total service disruption.

You will need to design your applications to be resilient enough to handle service disruptions gracefully
without causing negative user experiences. For example, if your loyalty service becomes extremely slow to
respond to requests or becomes unavailable, consider implementing circuit breaker logic that blocks calls to the
point balance check when a user logs in to your application until the service recovers. A user who cannot see
their loyalty balance after logging in is more likely to continue shopping than a user who can’t log in at all. Many
cloud providers offer flow control/circuit breaker functionality within their API gateways, and there are libraries
such as resilience4j for building the same functionality into your custom back-end systems.

3. Considerations for Deploying and Maintaining a Headless Architecture

http://www.salesforce.com
http://www.salesforce.com
https://github.com/resilience4j/resilience4j

10 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Middleware and Operating System Configuration
The Salesforce B2C Commerce platform is comprised of many different middleware components that are
configured for optimal performance and scale to suit our entire customer base. Tuning middleware and
supporting components such as web servers, relational database management systems (RDBMS), runtime
containers such as Docker, operating systems, and even custom application parameters can be a time-consuming
process, often involving trial and error through load testing before reaching the optimal configuration.

Not only do you need to find the middleware architecture that best suits
the needs of your custom head, you will need experts within your or your
partners’ organization who have a good understanding of middleware
deployment, maintenance, and configuration.

A highly performant and scalable application can still suffer a performance degradation if middleware and
supporting systems are not correctly configured or maintained. For example, performance of an application
that interacts with an RDBMS might degrade due to index fragmentation if routine database tasks are not
performed regularly.

Networking
Our network team within Salesforce B2C Commerce is extremely knowledgeable about how traffic flows
through our network and infrastructure and ultimately into our point of delivery (POD) hosting our Salesforce
B2C Commerce applications. We are able to quickly troubleshoot network issues should they arise, even if the
issue resides outside of our network.

Understanding the networking components related to your custom
applications and infrastructure will be paramount to your success.

Application components deployed on different networks across different cloud providers can be extremely
difficult to troubleshoot when network issues arise. Consider this when designing your system architecture and
ensure you have network experts in-house who are capable of capturing and reviewing network traces when the
network comes into question due to performance or unavailability-related problems.

3. Considerations for Deploying and Maintaining a Headless Architecture

http://www.salesforce.com
http://www.salesforce.com

11 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Serviceability (Logging, Alerting, Monitoring, Troubleshooting)
At Salesforce B2C Commerce, we build our applications not only for performance and scale, but also to provide
valuable data to our support and operations teams about application behavior in the event of a problem. Not
only do we have a flexible logging and monitoring/alerting framework in place, we also provide applications
for visualizing system and application logs, which allow us to quickly highlight common problem areas of our
applications before a user would ever notice something is wrong.

We highly recommend defining your logging and monitoring framework
requirements prior to building your custom applications to avoid rewriting
code to facilitate logging and monitoring.

Consider using application performance monitoring (APM) tools such as AppDynamics that interrogate your
application runtime environments to populate analytics data without introducing significant performance
overhead. These tools will make it much easier to identify the source of a problem. Many APM tools also
provide alerting capabilities that will let your support and operations teams know as soon as a potential
problem has been detected. These problems could include an increase in error messages, sustained
increases in server level metrics, or even specific application function calls performing worse than normal.

Built-in debugging capabilities exist in most application runtime SDKs that make it easy for you to periodically
collect diagnostic data from your applications. This data can be extremely valuable if collected regularly and
retained for some period of time. It can enable you to troubleshoot problems after they’ve occurred, rather
than having to wait for the problem to reoccur while you debug in real time.

Security
There’s nothing Salesforce takes more seriously than securing our applications and our customers’ data.
At Commerce Cloud, we regularly patch every component that makes up our platform to keep the risk of
security-related incidents as low as possible.

The responsibility of security comes with running your own infrastructure
and application stack.

Many cloud providers take care of patching operating systems and middleware, but security vulnerabilities
can also exist within your custom applications’ third-party libraries. Ensure you have security experts in-house
who have a plan for routine software patching, and ensure developers are trained to take appropriate security
measures when building your custom applications. Your security experts should be able to monitor and review
application logs in the event of a potential security-related incident and understand the wide variety of web-based
vulnerabilities. We recommend running security scans and penetration tests on test/sandbox instances in order to
eliminate the risk of corrupting production data in the event the penetration tests are successful in modifying your
application data.

3. Considerations for Deploying and Maintaining a Headless Architecture

http://www.salesforce.com
http://www.salesforce.com
https://www.appdynamics.com/

12 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

Bot Detection/Mitigation (PerimeterX, Cloudflare, Akamai Bot Manager)
Malicious bots are a real and growing threat to ecommerce websites. Since you will be running your head
outside of Commerce Cloud, it is important to consider the various endpoints that might be abused by
malicious bots and understand how you can protect yourself against them. Implementing CAPTCHAs on login
pages is just one technique used to protect against brute force attacks, but there are many common types
of attacks that are often not considered until it’s too late. Read this whitepaper by PerimeterX to get a clear
understanding of the common types of attacks launched against ecommerce sites and learn what you can do
to protect yourself against them. Consider techniques offered by your CDN, such as Rate Limiting on commonly
abused endpoints such as login pages and gift card/loyalty balance checks, and consider blocking requests to
sensitive endpoints that do not contain headers that you would expect to see coming from a real user’s browser.

Load Testing
Load testing is a critical component of the success of your online Salesforce B2C Commerce Storefront, whether
you are running your own head or not. Obvious application performance issues may be resolved prior to load
testing. However, there are likely scenarios you did not consider that may result in poor performance when your
application is under heavy load. Consider using a partner to conduct and deliver results of your load test to
ensure your application can scale to handle your projected traffic forecasts. Load test reports will highlight weak
spots in your application that did not perform as expected under load. Most of our headless customers load
test the Salesforce B2C Commerce integrations independent of site functionality provided by the custom head.
Using this approach, you’ll be able to differentiate between a performance problem related to Salesforce B2C
Commerce and a performance problem involving your custom head.

Penetration Testing
Penetration testing is the practice of executing scripts against your application that test for known security
vulnerabilities. This is an important activity to conduct throughout your development cycle as it
will identify security vulnerabilities in your applications that could allow an attacker to gain access to sensitive
back-end data through the front end. Penetration testing applications are destructive by their nature, so
always make sure to only run penetration tests in environments that can easily be rebuilt, such as a sandbox or
test environment.

3. Considerations for Deploying and Maintaining a Headless Architecture

http://www.salesforce.com
http://www.salesforce.com
https://perimeterx.pathfactory.com/c/5-major-bot-threats-
https://www.xceptance.com/en/services/salesforce-commerce-cloud.html

13 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

4 Conclusion

By now you should have a clear understanding of what it takes to develop a headless solution that
integrates with Salesforce B2C Commerce. While developing a headless solution is a large undertaking that
requires extremely knowledgeable development, support, and infrastructure teams, going headless gives you
the flexibility to provide the functionality you need in your front end when you need it.

The Salesforce B2C Commerce platform provides flexible and highly
performant APIs for securely accessing our back end, allowing you to
focus on your front-end user experience.

If you do not intend to build and maintain your headless solution entirely in-house, our experienced partner
network, in conjunction with Salesforce Client Services, is available to assist with implementations.

http://www.salesforce.com
http://www.salesforce.com

14 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

5 Appendix

We’ve covered what a headless architecture looks like at a high level. However, no one architecture suits every need.

WWW.

Custom Head
(Presentation Layer)

Cart

Pricing and
Promotions Inventory Search Customers

Catalog Images Einstein
Recommendations

Third Party Services

B2C Commerce API Layer

Order
Management Tax Loyalty Gift Cards

ShippingImagesInventoryPayment/
Fraud

High availability architecture
Capacity on-demand

Efficient resource utilization
Full redundancy

Failover management

Commerce Cloud

Network

Application
Servers

Storage

Web
Servers

Database
Servers

http://www.salesforce.com
http://www.salesforce.com

15 GETTING STARTED WITH HEADLESS COMMERCE ON SALESFORCE B2C COMMERCE salesforce.com

(Appendix continued)

Refer to the table below for an overview of some of the industry- standard technologies recommended for use in
developing and managing your custom head. While some of these technologies overlap when used in conjunction
with one another, the table can serve as a starting point for evaluating technologies to suit your needs.

Technology Description Information Tutorial Category

Lightning Web Components
Salesforce Web UI Framework
providing custom UI elements built
using HDML and modern JaveScript

lwc.dev Quick Start: Lightning Web
Components on Trailhead Front End

NodeJS JavaScript runtime built on Chrome’s
V8 VM JavaScript engine nodejs.org w3schools.com Front End

React A component-based JavaScript library
for building user interfaces reactjs.org Intro to React Front End

Java Application Development language for
back end systems oracle.com/OpenJDK The Java Tutorials Back End

GraphQL
A query language for designing API’s
and server-side runtime for executing
queries using custom type system

graphql.org Introduction to GraphQL Back End

Heroku

Salesforce cloud Platform as a Service
(PaaS) allowing you to build, deliver,
monitor, and scale your custom
applications

heroku.com Getting Started on Heroku Container
Management

Kubernetes
Open Source container orchestration
system for automating application
deployment, scaling, and management

kubernetes.io Tutorials Container
Management

Docker Enterprise container runtime docker.com Get Started with Docker Container
Management

Amazon Web Services (AWS) Amazon Cloud PaaS aws.amazon.com 10-Minute Tutorials Cloud Services

Google Cloud Platform (GCP) Google Cloud PaaS cloud.google.com Getting Started with
Google Cloud Platform Cloud Services

NGINX High performance load balancer, web
server, and reverse proxy nginx.com Getting Started Web Tier

MongoDB Document-based (NoSQL)
distributed database mongodb.com Getting Started Storage

Mulesoft

Design high performance API’s and
integrations with eCommerce
platforms using pre-built connectors
and integration templates

mulesoft.com Tutorials API Gateway

Redis In-memory, distributed data
structure database redis.io Interactive Tutorial Cache

http://www.salesforce.com
http://www.salesforce.com
http://lwc.dev
https://urldefense.proofpoint.com/v2/url?u=https-3A__trailhead.salesforce.com_en_content_learn_projects_quick-2Dstart-2Dlightning-2Dweb-2Dcomponents&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=EERb4P4BcLpXc-mX2Kl2zO9oJsfCbMDScizCaI1lgzM&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__trailhead.salesforce.com_en_content_learn_projects_quick-2Dstart-2Dlightning-2Dweb-2Dcomponents&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=EERb4P4BcLpXc-mX2Kl2zO9oJsfCbMDScizCaI1lgzM&e=
http://nodejs.org
http://www.w3schools.com/nodejs/
http://reactjs.org
https://urldefense.proofpoint.com/v2/url?u=https-3A__reactjs.org_tutorial_tutorial.html&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=_qQ2yaPO-muYRXIbrehauV6RjnjlVoxYebKYjYbbOAg&e=
http://oracle.com
https://openjdk.java.net/
https://urldefense.proofpoint.com/v2/url?u=https-3A__docs.oracle.com_javase_tutorial_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=A57asyYYeI1pyiA5wpmNB03TxBxO6fFEnFQiMpbzTiQ&e=
http://graphql.org
https://urldefense.proofpoint.com/v2/url?u=https-3A__graphql.org_learn_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=8jKgIbOYx8OYQjeg6MkOoVtH827VgFXOopWZhG8mUFM&e=
http://heroku.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__devcenter.heroku.com_start&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=4_ADwxHF3yr1z7GWYlUpGHxgTVNOphAYXxrHl-DBmag&e=
http://kubernetes.io
http://kubernetes.io
https://urldefense.proofpoint.com/v2/url?u=https-3A__kubernetes.io_docs_tutorials_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=p8TRr3C2lWMw8S4jMSYpcdLpiEzE0TysHjGtgsYrx_c&e=
http://docker.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.docker.com_get-2Dstarted&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=yw-1O0aMvPmVyn3QR0yw6QpjjGSNoNshxUyzmfEcdB8&e=
http://aws.amazon.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__aws.amazon.com_getting-2Dstarted_tutorials_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=HdGsWvhWvbSywwk72zaY_gUXUdkVYxK1bQBuxkygbWY&e=
http://cloud.google.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__cloud.google.com_gcp_getting-2Dstarted_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=VuayHnFBl4vH28zNK0PgtbF7xHrNox0fUUndt001P1c&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__cloud.google.com_gcp_getting-2Dstarted_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=VuayHnFBl4vH28zNK0PgtbF7xHrNox0fUUndt001P1c&e=
http://nginx.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.nginx.com_resources_wiki_start_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=c63fC34H0GuMgZXxGPARL8dMKxETtHDQLsiQn6-I1v4&e=
http://mongodb.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__docs.mongodb.com_manual_tutorial_getting-2Dstarted_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=plPar9DVtbOrYZIudVv2guP2EXCN26kavU2KYhgfiJ8&e=
http://mulesoft.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__developer.mulesoft.com_tutorials-2Dand-2Dhowtos&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=0jqdhgaSm8zTzz6x1MExU2MB3WffKeorbnlp4r3S74M&e=
http://redis.io
https://urldefense.proofpoint.com/v2/url?u=http-3A__try.redis.io_&d=DwMFaQ&c=eIGjsITfXP_y-DLLX0uEHXJvU8nOHrUK8IrwNKOtkVU&r=X8mm5HVs4FsGsYRGQn_iGuYim-KMpcXTM0Aw5QdCZmI&m=49qDy5_lF_6QtlMUtICB0DVI5Y6l3TbflmUR8u5vn74&s=3Ua8MemSa8cpc-26F11lredjeFID_U5tUWakCIhTQrw&e=

