salesforce

Pub/Sub API (Pilot)

Salesforce,
August-November 2021

y@salesforcedocs
Last updated: April 26, 2022

© Copyright 2000-2022 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of
Salesforce, Inc., as are other names and marks. Other marks appearing herein may be trademarks of
their respective owners.

CONTENTS

PUB/SUB API (PILOT)
Pub/Sub API (Pilot) Product and Documentation Updates

Pub/Sub API Overview
Pub/Sub API as a gRPC API
Terminology
Event or Event Message
Topic
Event Bus
Generating Code from the Proto File
Bidirectional Streaming
Event Data Serialization with Apache Avro
Event Deserialization Considerations
Bitmap Fields in Change Events
Date Fields
Change Event Differences with Streaming API (CometD)
Supported Authentication
Supported Event Types

Python Code Quick Start Example
Step 1: Generate the Stub Files
Step 2: Build the Python Client
Step 3: Set Up Events
Step 4: Write Code That Subscribes to an Event Channel
Received Event Example
Step 5: Write Code That Publishes a Platform Event Message
Pub/Sub API Proto File

Other Code Examples
Go Code Examples

RPC Methods in the Pub/Sub API
Subscribe RPC Method
Keepalive Behavior
Replaying an Event Stream
Publish RPC Method
PublishStream RPC Method
GetSchema RPC Method
GetTopic RPC Method

11
11
12
12
12
12
13
13
13
14
14
15
15

15
15
16
18
18
20
22
24

24
24

25
25
25
25
26
27
28
28

Headers for RPC Method Calls

Handling Errors
Exception Example
Error Codes

Event Allocations
Event Message Size
Event Publishing Allocation
Event Delivery Allocations

29

30
31
31

34
34
34
35

PUB/SUB API (PILOT)

Pub/Sub API (Pilot) Product and Documentation
Updates

Date Changes

4/26/2022 Product and documentation changes:

e The gRPC exception that Pub/Sub API throws no longer contains
the internal -cause trailer. This trailer was for internal use only.
This trailer was removed from the exception example in this guide.
(See Exception Example.)

3/29/2022 Code sample changes:

e We added new code examples for the Go programming language to
the Pub/Sub AP| GitHub repo in a new folder named go.

e The existing Python code examples were moved under the python
folder.

e The Pub/Sub API proto file has been updated to support the Go
examples.

e Other updates made to the Pub/Sub API proto file include adding
the rpc_id field in PublishResponse (see Handling Errors) and
using the new names for session authentication headers that were
introduced earlier (see Headers for RPC Method Calls).

Documentation changes:

e Added a link to the new Go examples and updated existing links so
that they work in the restructured GitHub repo. (See Other Code
Examples.)

e Updated the Python quick start example so that it runs in the new

directory structure. (See Python Code Quick Start Example.)

3/17/2022 Product and documentation changes:

e Documented the new RPC ID returned in
StatusRuntimeException and updated the exception example.
The RPC ID identifies the method execution that caused the

exception. (See Handling Errors.)

e Documented the new
sfdc.platform.eventbus.grpc.topic.not. found error.
(See Error Codes.)

https://github.com/developerforce/pub-sub-api-pilot/
https://github.com/developerforce/pub-sub-api-pilot/tree/main/go
https://github.com/developerforce/pub-sub-api-pilot/tree/main/python
https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto
https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto

e Updated the description of the
sfdc.platform.eventbus.grpc.service.tenant.license

error. (See Error Codes.)
10/29/2021 Documentation enhancements:

e Added a link to a code example for decoding bitmap fields for
change data capture events. (See Bitmap Fields in Change Events.)

e Clarified the description of the instanceurl header to include the
various types of Salesforce URLs and authentication methods. (See
Headers for RPC Method Calls.)

e Corrected the PublishRequest size limit to indicate that it's the limit
of the batch of events. Added the limit of an individual event. (See
Event Message Size.)

10/6/2021 Product and documentation changes:

e New Pub/Sub API endpoint:
api.pilot.pubsub.salesforce.com. The old endpoint,
eventbusapi-corel.sfdc-ypmvl8.svc.sfdcfc.net, is still
supported. (See Step 2: Build the Python Client.)

e RPC method headers have been shortened. The original header
names are still supported. (See Headers for RPC Method Calls and
Step 2: Build the Python Client.)

e The tenant ID has been simplified. You can supply the Salesforce
org ID as the tenant ID value. The API constructs the remaining
values for the tenant ID. (See Headers for RPC Method Calls and
Step 2: Build the Python Client.)

10/01/2021 Documentation enhancements:

e Added information about the Avro binary format that the Pub/Sub
API uses and event deserialization considerations. (See Event Data
Serialization with Apache Avro and Event Deserialization
Considerations.)

e Added use cases for when to use replay options for the Subscribe
method. (See Replaying an Event Stream.)

e Clarified the value of the replay_id returned in an empty
FetchResponse. (See Keepalive Behavior.)

9/7/2021 Documentation enhancements:

e Fixed an issue with the quick start code sample for setting up the

gRPC channel. (See Step 2: Build the Python Client.)
8/30/2021 e |Initial pilot release.

Pub/Sub API Overview

The Pub/Sub API pilot provides a single interface for publishing and subscribing to platform
events, including real-time event monitoring events and change data capture events. The
Pub/Sub APl is a gRPC API that is based on HTTP/2.

Available in: Enterprise, Performance, Unlimited, and Developer Editions

@ Important: This feature is not generally available and is being piloted with certain Customers
subject to additional terms and conditions. It is not part of your purchased Services. This
feature is subject to change, may be discontinued with no notice at any time in SFDC'’s sole
discretion, and SFDC may never make this feature generally available. Make your purchase
decisions only on the basis of generally available products and features. This feature is made
available on an AS IS basis and use of this feature is at your sole risk.

The Pub/Sub API provides many benefits:
e Publishing, subscribing, and event schema retrieval all in one API.

Final publish results of publish operations, and not intermediate queueing results.
Scalable, and secure publishing and delivery of platform events, change data capture
events, and real-time event monitoring events.
Real-time, highly performant data streaming that uses compression through HTTP/2.
Support for 11 programming languages in the client that are offered by the gRPC AP,
such as Python, Java, Node, and C++. For all the supported languages, see
https://grpc.io/docs/languages!/.
An active online developer community presence for gRPC.
Bidirectional data streaming through the gRPC API. The client and the server can send a
sequence of messages to each other using two independent streams.
Flow control that lets developers specify how many events to receive at a time.
Cross-cloud integration capabilities enabling the development of event-driven apps that
integrate across Salesforce clouds.

The Pub/Sub API enables you to build event-driven integration apps. Here are some examples
of what you can do with the Pub/Sub API.
e Subscribe to Event Monitoring real-time events and publish a platform event back into
Salesforce to restrict a user’s profile when they log into Salesforce after working hours.
e Subscribe to change data capture events and synchronize order data in an external
inventory system.
e Subscribe to a standard platform event, such as AppointmentSchedulingEvent, and
integrate with Google Calendar to update users’ calendars.

https://grpc.io/docs/
https://grpc.io/docs/languages/
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/sforce_api_objects_appointmentschedulingevent.htm

Using the Pub/Sub API, you can interface with the expanded and improved Salesforce event
bus by publishing and subscribing to events. The event bus is a multitenant, multicloud event
storage and delivery service based on a publish-subscribe model. Platform events and change
data capture events are published to the event bus, where they’re stored temporarily. You can
retrieve stored event messages from the event bus with the Pub/Sub API. Each event message
contains the replay ID field, represented as replay_id in the protocol specification. It is an
opaque ID that identifies the event in the stream and enables replaying the stream after a
specific replay ID.

Event Event Event
Producer Producer Producer

Event Bus

Event Event
Consumer Consumer

The expanded event bus service is built outside the main Salesforce CRM stack, which powers
the original Salesforce products (Sales Cloud and Service Cloud). As such, the API provides
cross-cloud integration capabilities between Sales and Service clouds and other Salesforce
clouds, such as Marketing Cloud, Commerce Cloud, and Tableau Analytics. It also provides
enhanced scalability and performance. Developers can focus on building event-driven apps that
scale and that integrate across various Salesforce clouds.

Pub/Sub APl as a gRPC API

Because the Pub/Sub APl is a gRPC API, let's define what a gRPC APl is. gRPC is an open
source Remote Procedure Call (RPC) framework that enables connecting devices, mobile
applications, and browsers to backend services. With gRPC, a client app can call a method on a
server as if it were a local object, making it easier for you to create distributed apps and
services.

gRPC requires defining a service, which specifies the methods that can be called remotely with
their parameters and return types. The server implements this interface and runs a gRPC server
to handle client calls. The client has a stub that mirrors the methods available on the server.

gRPC Server Request gRPC Stub

Response

[)

The Pub/Sub API service is defined in a proto file, with RPC method parameters and return
types specified as protocol buffer messages. Our proto file example is based on the Pub/Sub
API proto file but has been shortened for illustration purposes. This proto file defines the service
by listing the methods to publish, subscribe, get the schema, and get the topic information.

10

message{
J/ Topic to publish on
string topic_name = 1;
// Batch of ProducerEvent(s) to send
repeated ProducerEvent events = 2;

J/ Authenticotion refresh token if opplicoble

string auth_refresh = 3;

message| PublishResponse| {
J// Publish results

repeated PublishResult results = 1;

// Schema fingerprint for this event which is o hash of the schema
string schema_id = 2;

// RPC Id to troce errors. This will only be populated if publish foils.
string rpc_id = 3;

service PubSub {
rpc Subscribe (stream FetchRequest) returns (stream FetchResponse);
rpc GetSchema (SchemaRequest) returns (Schemalnfo);

rpc GetTopic (TopicReguest) returns (TopicInfo);

rpc Publish (PublishRequest) returns (PublishResponse);
rpc PublishStream (stream PublishRequest) returns (stream PublishResponse);

The proto file lists the messages for the Publish and PublishStream methods. PublishRequest is
the request message of the publish methods. PublishResponse is the response message of the
publish methods. Other messages are omitted for brevity. For the full definition of the Pub/Sub
API proto file, see Pub/Sub API proto file in GitHub.

Terminology
The Pub/Sub API uses these terms.

Event or Event Message

Event can refer to the event entity definition in Salesforce or the event message.

11

https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto

Event is a Salesforce entity that represents the definition of the data that is sent in an event
message. You can define the event entity, such as with a custom platform event. Or it can be
defined by Salesforce, such as a change data capture event like AccountChangeEvent.

An event message is the real-time notification that contains the data that the publisher sends
and the subscriber receives. When there is no ambiguity, event is used in the documentation
instead of event message for brevity.

Topic
The API name of the event object preceded by a path. The topic indicates the type of event to

publish and the type of event to subscribe to. For example, the topic of a custom platform event
with the API name of Order_Event__eis /event/Order Event _e.

Event Bus

A multitenant, multicloud event storage and delivery service based on a publish-subscribe
model. The event bus is based on a time-ordered event log, which ensures that event
messages are stored and delivered in the order that they’re received by Salesforce.

See Also
e Salesforce Engineering Blog: How Apache Kafka Inspired Our Platform Events
Architecture

Generating Code from the Proto File

To generate code from the proto file, use a gRPC plug-in with protoc. This process generates
client code, server code, and protocol buffer code for populating, serializing, and retrieving
message types. For more information, see Infroduction to gRPC in the gRPC documentation.

The quick start example walks you through the steps of generating the code from the proto file
using gRPC tools for Python.

The client has a local object known as a stub that implements the service methods. When a
gRPC client calls the API, the corresponding API implementation is called on the server. The
gRPC infrastructure decodes incoming requests, executes service methods, and encodes
service responses. The client calls the methods on the local object, wrapping the parameters for
the call in the appropriate protocol buffer message type. gRPC handles sending the requests to
the server and returning the server’s protocol buffer responses.

Bidirectional Streaming

Bidirectional streaming is one of the four types of RPC methods that can be defined in a gRPC
API. With bidirectional streaming, both the client and the server can send a sequence of

12

https://engineering.salesforce.com/how-apache-kafka-inspired-our-platform-events-architecture-2f351fe4cf63
https://engineering.salesforce.com/how-apache-kafka-inspired-our-platform-events-architecture-2f351fe4cf63
https://grpc.io/docs/what-is-grpc/introduction/

messages to each other using two independent streams. The client doesn’t need to wait until
the server finishes sending all the messages to send new requests. Similarly, the server doesn’t
need to wait until the client has sent all the messages before responding.

The Subscribe method in the example above, as well in the Pub/Sub API, uses bidirectional
streaming to subscribe to an Event Bus topic. The PublishStream method also uses
bidirectional streaming. For more information, see Core concepts, architecture and lifecycle in
the gRPC documentation.

Event Data Serialization with Apache Avro

The Pub/Sub API enables the publishing and delivery of binary-encoded events using the
Apache Avro schema. Apache Avro is a data serialization system that provides a binary or
JSON data encoding and a schema. The Avro binary encoding is more efficient than the Avro
JSON encoding because it enables faster serialization and produces smaller sizes of serialized
data. For more information, see Data Serialization and Deserialization in the Apache Avro
specification.

When sending or receiving events from the Pub/Sub API, your app must use Apache Avro to
serialize and deserialize event payloads. Before you publish an event message, you must
encode it to the Avro format. When you receive an event message, you must decode it using the
Avro format before you can retrieve the contents of the event payload. For more information,
see the Apache Avro Documentation. The Python Code Example Quick Start includes example
functions for encoding and decoding the event messages using Avro.

Event Deserialization Considerations

The Pub/Sub API delivers events in the raw Avro binary format without modifying the fields in
the event message. As a result, some fields in the deserialized event aren’t readable when you
print them for debugging and must be decoded before they can be processed in the subscriber.
Also, the fields received in change data capture events with Pub/Sub APl and Streaming API
(CometD) have differences.

Bitmap Fields in Change Events

Change data capture events contain bitmap fields whose contents aren’t readable when printed
and must be decoded for processing in the subscriber app logic. The Pub/Sub API delivers the
events in the raw Avro binary format without converting these fields. The bitmap fields are:

e changedFields—Contains the fields that were changed.

e diffFields—Contains the fields whose values were sent as a data diff.

e nulledFields—Contains the fields that were set to null.

When you print these fields, you get a hexadecimal value and not the field names. For example:
"changedFields': ['Ox650004EQ']

13

https://grpc.io/docs/what-is-grpc/core-concepts/
https://avro.apache.org/docs/current/spec.html#Data+Serialization+and+Deserialization
https://avro.apache.org/docs/current/index.html

A bitmap field uses a bitmap, encoded as a hexadecimal string, to represent the fields. This
method is more space efficient than using a list of field names. A bit set to 1 indicates that the
field at the corresponding position in the Avro schema was changed for changedFields, for
example.

A bitmap field is an array of strings. The first element of the array contains a bitmap for the
individual fields. Compound fields are placed in additional elements of the array with bitmaps
indicating nested fields. The format for the additional array elements is
“<ParentFieldPosition>-<NestedFieldBitmap>".

To decode the bitmap, match it against the fields in the schema. The GitHub repository contains
a code example that shows how to decode bitmap fields in Python. See
ChangeEventHeaderUtility.py in Pub/Sub APl Examples - Utility Code. In the
SalesforcelListener.py example, the process_confirmation function shows how to
get and convert the changedFields bitmap field by calling the process_bitmap function.

Date Fields

After you deserialize a received platform event or change event in your client, Date and
Date/Time fields are in Epoch time. As a result, when you print them, you get a number. For
example:

'CreatedDate': 1632858587281
If you want to make the Date field readable for debugging purposes, convert the Epoch format
into another date format. For more information, see Unix time.

Change Event Differences with Streaming APl (CometD)

Change data capture events that are delivered with the Pub/Sub API contain some fields that
aren’t present on the change events received with Streaming API (CometD). This difference is
because Streaming API uses JSON encoding for delivered events while Pub/Sub API uses the
Avro binary format.

e Change events received with Pub/Sub API contain all the record fields, including the
unchanged fields. Unchanged fields have an empty value in the change event, for
example, 'Description': None, even if they have a value in the Salesforce record.
The changedFields field indicates which fields have changed. The nulledFields
field indicates which fields were set to null. In contrast, change events received with
Streaming APl (CometD) contain only the changed fields and exclude unchanged fields.

e Change events received with Pub/Sub API contain header fields that aren’t included in
Streaming API events. The header fields are: diffFields and nulledFields. These
fields are present on events received in Apex triggers. For more information, see
Change Event Triggers in the Change Data Capture Developer Guide.

14

https://github.com/developerforce/pub-sub-api-pilot/tree/main/python/util
https://en.wikipedia.org/wiki/Unix_time
https://developer.salesforce.com/docs/atlas.en-us.change_data_capture.meta/change_data_capture/cdc_trigger_intro.htm

Supported Authentication

The Pub/Sub API supports any authentication mechanism that enables retrieving the session
ID, including username and password authentication, and OAuth. The session ID is part of the
authentication metadata header that is passed to the Pub/Sub APlI RPC methods. For more
information about authorizing your app with OAuth, see OAuth Authorization Flows in
Salesforce Help.

Supported Event Types

The Pub/Sub API supports high-volume platform events, including custom and standard events,
real-time event monitoring events, and change data capture events. It doesn’t support legacy
events, such as standard-volume platform events, PushTopic events, and generic streaming
events.

Python Code Quick Start Example

In this quick start, you learn how to build a Pub/Sub API client in Python. The steps walk you
through generating the stub files, authenticating to Salesforce, configuring events, writing code
to subscribe to events, and writing code to publish events.

@ Note: The steps provide enough instructions and code snippets so that you can build your
own client but don't provide the full code sample. You can find full code examples in

https://github.com/developerforce/pub-sub-api-pilot. However, the full examples aren’t
intended for production use and haven’t undergone thorough functional and performance

testing. You can use these examples as a starting point to build your own client.

Step 1: Generate the Stub Files

1. Install the Python package manager by running this command in the terminal.
pip3 install grpcio grpcio-tools avro-python3
You can use a different package manager or a different version of Python.

2. Clone the GitHub repository for Pub/Sub API from
https://qithub.com/developerforce/pub-sub-api-pilot. The proto file name is
pubsub_api.proto.

3. Switch to the python directory.

cd python

4. Generate the stubs for the Pub/Sub API by running this command from the cloned
directory.
python3 -m grpc_tools.protoc --proto_path=../ pubsub_api.proto
--python_out=. --grpc_python_out=.

15

https://help.salesforce.com/articleView?id=sf.remoteaccess_oauth_flows.htm&type=5
https://github.com/developerforce/pub-sub-api-pilot
https://github.com/developerforce/pub-sub-api-pilot

This command generates two files in your current directory: pubsub_api_pb2.py and
pubsub_api_pb2_grpc.py. It also generates client and server code, and protocol
buffer code for populating, serializing, and retrieving message types.

Step 2: Build the Python Client

1.

Create a Python file. For example, PubSubAPIClient.py.

Import these modules:

from _ future _ import print_ function
import grpc

import requests

import threading

import io

import pubsub_api pb2 as pb2

import pubsub_api_pb2_grpc as pb2_grpc
import avro.schema

import avro.io

import time

import certifi

Set a semaphore at the beginning of the program. Because of the way Python gRPC is
designed, the program shuts down immediately if no response comes back in the
milliseconds between calling an RPC and the end of the program. By setting a
semaphore, you cause the client to keep running indefinitely.

semaphore = threading.Semaphore(1l)

Create a global variable to store the replay ID.
Llatest_replay_id = None

Set up the gRPC channel, and generate the stub. PubSubStub comes from the
pubsub_api_pb2_grpc.py file, which you generated in the previous step.

with open(certifi.where(), 'rb') as f:
creds = grpc.ssl_channel_credentials(f.read())
with grpc.secure_channel('api.pilot.pubsub.salesforce.com:7443"',
creds) as channel:
#ALl of the code in the rest of the tutorial will go inside
this block

Retrieve your session token. You will use the username, password, and API login URL
for your Salesforce org. If you’re using a production instance, the API login URL is
https://login.salesforce.com/services/Soap/u/52.0/. If it's a sandbox, the URL is

16

https://login.salesforce.com/services/Soap/u/43.0/

https://test.salesforce.com/services/Soap/u/52.0/.
Send a POST request formatted like so to the login URL:

username = <your username>
password = <your password>
url = <the appropriate login URL>

headers = {'content-type': 'text/xml', 'SOAPAction': 'login'}
xml = "<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/' " + \

"xmlns:xsi='http://www.w3.0rg/2001/XMLSchema-instance' " + \
"xmlns:urn='urn:partner.soap.sforce.com'><soapenv:Body>" + \
"<urn:login><urn:username><![CDATA[" + username + \
"77></urn:username><urn:password><![CDATA[" + password + \
"1]></urn:password></urn:login></soapenv:Body></soapenv:Envelope>
res = requests.post(url, data=xml, headers=headers, verify=False)
#0ptionally, print the content field returned

print(res.content)

@ Note: If you haven’t set up a range of trusted IP addresses for your org,
append a security token to your password. For more information, see Reset
Your Security Token and Set Trusted IP Ranges for Your Organization.

Run this client by entering python3 PubSubAPIclient.py on the command line.
When the request returns, you have XML-formatted data in the response content field,
res.content. It contains a session ID wrapped within the <sessionId> tags. It also
contains the server URL wrapped within the <serverUrl> tags, and the org ID within
the <organizationId> tags under <userInfo>. Take note of those values because
you will use them in the next step.

@ Note: This step uses username and password authentication for simplicity,
but we recommend you use OAuth in production apps. For more
information, see Supported Authentication.

Store the authentication information (session ID, instance URL, and org ID) in a tuple
called authmetadata. Each element in this tuple is also a tuple. You use this
information when subscribing to a channel or publishing events.
a. Replace the sessionid placeholder value with the session ID that you got from
the previous step.
b. Replace the instanceurl placeholder value with the first part of the server
URL that you got from the previous step, without the path portion. For example,
https://MyDomainName.my.salesforce.com.

17

https://test.salesforce.com/services/Soap/u/43.0/
https://help.salesforce.com/s/articleView?id=sf.user_security_token.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.user_security_token.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.security_networkaccess.htm&type=5
https://mydomainname.my.salesforce.com

c. Replace the tenantid placeholder value with the org ID that you got from the
previous step. Alternatively, you can get your org ID value by following the steps

in Eind vour Salesforce Organization ID in Salesforce Help.
For more information about the headers, see Headers for RPC Method Calls.

sessionid = <the session ID you just got from the XML>
instanceurl = <the server URL you just got from the XML
ending in .com>
tenantid = <org ID>
authmetadata = (('accesstoken', sessionid),
('instanceurl', instanceurl),
('tenantid', tenantid))

8. Generate your stub object as follows.

stub = pb2_grpc.PubSubStub(channel)

Step 3: Set Up Events

To subscribe to change data capture events on the standard channel, select the objects for
which you want to receive events.
1. In Setup, search for Change Data Capture, and then select Change Data Capture.
2. On the Change Data Capture page, select the object.
3. Click Save.

To subscribe to a custom channel, ensure that the custom channel is created first. After the
channel is created, the entities are selected as part of the custom channel creation. See the
Change Data Capture Developer Guide.

To subscribe to a custom platform event, define a custom platform event on the Platform Events
page in Setup.

To subscribe to a standard platform event, including real-time event monitoring events, you can
view the available events in the Standard Platform Event Object List in the Platform Events
Developer Guide.

Step 4: Write Code That Subscribes to an Event Channel

1. Get the topic name that you want to subscribe to.
The topic format is:
o For a custom platform event: /event/EventName__e
o For a standard platform event: /event/EventName

18

https://help.salesforce.com/articleView?id=000325251&mode=1&type=1
https://developer.salesforce.com/docs/atlas.en-us.change_data_capture.meta/change_data_capture/cdc_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_intro.htm

o For a change data capture channel that captures events for all selected entities:
/data/ChangeEvents

o For a change data capture single-entity channel for a standard object:
/data/<StandardObjectName>ChangeEvent

o For a change data capture single-entity channel for a custom object:
/data/<CustomObjectName>__ChangeEvent

o For a change data capture custom channel:
/data/CustomChannelName__chn

2. Create a generator function to make a FetchRequest stream. In this FetchRequest,

num_requested is the maximum number of events that the server can send to the
client at once. The specified num_requested of events can be sent in one or more
FetchResponses, with each FetchResponse containing a batch of events. In this case,
we set it to 1 but you can set it to how many events you’re willing to process.

def fetchReqgStream(topic):
while True:
semaphore.acquire()
yield pb2.FetchRequest(
topic_name = topic,
replay_preset = pb2.ReplayPreset.LATEST,
num_requested = 1)

Create a decoding function to decode the payloads of received event messages.

def decode(schema, payload):
schema = avro.schema.parse(schema)
buf = io.BytesIO(payload)
decoder = avro.io.BinaryDecoder(buf)
reader = avro.io.DatumReader(schema)
ret = reader.read(decoder)
return ret

Make the subscribe call and handle received event messages. Decode the payloads of
the events with your decoding function. Store the latest replay ID received. You can use
the replay ID later to restart a subscription after the last consumed event, if necessary.
For more information, see Replayving an Event Stream.

mysubtopic = "/data/OpportunityChangeEvent"
substream = stub.Subscribe(fetchRegStream(mysubtopic),
metadata=authmetadata)
for event in substream:
semaphore.release()
if event.events:
payloadbytes = event.events[0].event.payload

19

schemaid = event.events[0@].event.schema_id
schema = stub.GetSchema(
pb2.SchemaRequest(schema_id=schemaid),
metadata=authmetadata).schema_json
decoded = decode(schema, payloadbytes)
print("Got an event!", decoded)
else:
print("[", time.strftime('%b %d, %Y %L:%M%kp %Z'),
"l The subscription is active.")
latest_replay_id = event.latest_replay_id

If you run your code at this point, you don't receive any event messages unless you or
Salesforce publishes an event message.

For change data capture events, make a change to a Salesforce record of a supported object,
such as Opportunity, so that Salesforce generates an event message. Make sure that Change
Data Capture is tracking the object by checking the Change Data Capture page in Setup.

Salesforce publishes most standard platform events, including real-time event monitoring
events, in response to an action in Salesforce. You can publish only the standard events that
support the create() call. For more information, see Standard Platform Event Object List in
the Platform Events Developer Guide.

Received Event Example

If you subscribe to the /data/OpportunityChangeEvent topic and you make a change to
an opportunity, you receive a change event similar to this event message. This event message
is for an opportunity whose Amount field was changed and the Type field was cleared (set to
null).

{

"ChangeEventHeader" :{

"entityName" :"Opportunity",
"recordIds":[

"006T1000001rD83TAE"
1,
"changeType" : "UPDATE",
"changeOrigin":"",
"transactionKey":"000035ad-9381-£683-046a-17395e189e78",
"sequenceNumber":1,
"commitTimestamp":1632776691000,
"commitNumber" :68582833422,
"commitUser" :"0@05T1000000Hj1LbIAC",
"nulledFields":[

"Ox0800"

20

https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_intro.htm

1,
"diffFields":[

1,
"changedFields":[
"0x21000840"

]
3
"AccountId" :"None",
"IsPrivate'":'"None'",
"Name" :"None",
"Description"”:"None",
"StageName'" :"None",
"Amount' : 200000.09,
"Probability":"None",
"ExpectedRevenue":"None",
"TotalOpportunityQuantity":'"None",
"CloseDate" :"None",
"Type":"None",
"NextStep":"None",
"LeadSource" :"None",
"TsClosed":"None",
"IsWon'":"None",
"ForecastCategory":"None",
"ForecastCategoryName":"None",
"CampaignId":"None",
"HasOpportunityLineItem":"None",
"Pricebook2Id":"None",
"OwnerId":'"None",
"CreatedDate'":'"None",
"CreatedById":"None",
"LastModifiedDate":1632776690000,
"LastModifiedById":"None",
"LastStageChangeDate" :"None",
"ContactId":"None",
"ContractId":"None",
"LastAmountChangedHistoryId":"008T1000003821TIAQ",
"LastCloseDateChangedHistoryId": "None"

You can also publish a custom platform event. The next step shows you how to do that using
the Pub/Sub APl in Python.

Step 5: Write Code That Publishes a Platform Event Message

Before you publish a custom platform event message, ensure that the platform event is defined
in your org. You can view defined platform events in Setup on the Platform Events page.

For example, this image shows the definition of Order_Event__e. This event has two fields:
Order_ Number__c of type Text and Has_Shipped__c of type Checkbox.

Platform Event

Order Event

Help for this Page &)

Standard Fields [4] | Custom Fields & Relationships [2]

Platform Event Definition Detail Edit | | Delete

Singular Label
Plural Label
Object Name
API Name

Event Type
Publish Behavior

Created By

Order Event
Order Events
Order_Event
Order_Event__e

High Volume ' *

Publish After Commit ' *
Admin User, 7/19/2021, 2:39 PM

Description

Deployment Status

Modified By

Deployed

Admin User, 7/19/2021, 2:39 PM

Standard Fields

Action Field Label Field Name Controlling Field Indexed

Created By

Data Type

CreatedBy Lookup(User)

Created Date CreatedDate Date/Time

Event UUID EventUuid Text(36)

Replay ID Replayld External Lookup

Custom Fields & Relationships New

Indexed Controlling Field Modified By

Admin User, 7/19/2021, 2:40 PM

Field Label API Name Data Type
Checkbox

Text(10)

Action

Edit | Del ~ Has Shipped Has_Shipped__c

Order Number Order_Number__c Admin User, 7/19/2021, 2:39 PM

Edit | Del

@ Note: For these steps, we recommend creating a separate Python file for publishing so
that you can run the publishing and subscribing clients independently. Include common
code for creating the channel and stub, the authentication code to build authmetadata,
and the import statements from the previous steps. Also, add this import statement: from
datetime import datetime, timedelta

1. Get the topic name for the event you want to publish. The topic format is
levent/EventName__e. For example, for Order_Event__e the topic is
/event/Order_Event__e.

2. Get the schema ID and schema for the event. To get the schema ID, call the GetTopic
method and pass the topic name. Next, pass the schema ID to the GetSchema method,

which returns the schema.

mypubtopic = <your publish topic>
schemaid = stub.GetTopic(pb2.TopicRequest(topic_name=mypubtopic),

22

metadata=authmetadata).schema_id
schema = stub.GetSchema(pb2.SchemaRequest(schema_id=schemaid),
metadata=authmetadata).schema_json

3. Create a function to encode the information that you want to send by using the schema.

def encode(schema, payload):
schema = avro.schema.parse(schema)
buf = io.BytesIO()
encoder = avro.io.BinaryEncoder(buf)
writer = avro.io.DatumWriter(schema)
writer.write(payload, encoder)
return buf.getvalue()

4. Create a function that creates a PublishRequest. Construct the payload by adding the
event fields and values in the payload variable. Populate the values of the required
system fields: CreatedDate and CreatedByld. The CreatedByld value isn't validated. For
<event field>: <field value>, listthe event fields and values. For example, for
Order_Event__e, you can add:

"Order_ Number_ c": "100",
"Has_Shipped__c": True

The req variable contains the encoded payload, which is returned by the encode
function. It also contains the schema ID. The id field uniquely identifies the event
message and helps correlate the published event message with the received one.
Ideally, assign a UUID value to this field. However, you can also supply an arbitrary
string value, like in this example.

def makePublishRequest(schemaid):
dt = datetime.now() + timedelta(days=5)

payload = {
"CreatedDate": int(datetime.now().timestamp()),
"CreatedById": '@@5R...', #Your user ID
<event field>: <field value>
b
req = {
"id": "234", # Event ID
"schema_id": schemaid,
"payload": encode(schema, payload)
3

return [req]

5. Make the publish call and handle any acknowledgements you get back.

23

publishresponse =
stub.Publish(pb2.PublishRequest(topic_name=mypubtopic, events=
makePublishRequest(schemaid)), metadata=authmetadata)

If the publish request is successful, you receive a PublishResponse message containing
the replay ID.

If the publish request was not successful, you get an error back similar to the following:
results {
error {
code: PUBLISH
msg: "com.salesforce.eventbus.exceptions.PublishException:
Unsupported topic [/event/Tracker_Event__e]. Standard Volume
event type is not supported."

by

3
schema_id: "AKTsT5i@mDe_UF8gnC8Aig"

Pub/Sub API Proto File

You can get the Pub/Sub API proto file from the pub-sub-api-pilot GitHub repository.
For information about the protocol buffer language, see Language Guide (proto 3).

Other Code Examples

The Pub/Sub API GitHub repository contains code examples in other programming languages

so you can learn how to use Pub/Sub API in those languages.

Go Code Examples

The Go code examples are a collection of code examples in the Go programming language for

each RPC method call. You can use these examples as a learning resource to learn how to
implement Pub/Sub APl in Go.

24

https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto
https://github.com/developerforce/pub-sub-api-pilot
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/developerforce/pub-sub-api-pilot
https://github.com/developerforce/pub-sub-api-pilot/tree/main/go

RPC Methods in the Pub/Sub API

Subscribe RPC Method

The Subscribe method uses bidirectional streaming. It is pull-based, which means that it
requests new events. This model is in contrast to push-based subscription in which the
subscriber is a listener that waits for events to be sent.

rpc Subscribe (stream FetchRequest) returns (stream FetchResponse);

A subscriber can request more events as it consumes events. This behavior enables a client to
handle flow control. The typical flow is:
1. Client requests X number of events via FetchRequest.
2. Server receives the request and delivers events until X events are delivered to the client
via one or more FetchResponses.
3. Client consumes the FetchResponses as they’re received.
4. Client issues a new FetchRequest for Y number of events. This request can come before
the server has delivered the earlier X number of events so that the client gets a
continuous stream of events, if any.

If a client requests more events before the server finishes the last requested amount, the server
appends the new amount to the current batch of events it still needs to fetch and deliver.

Keepalive Behavior

If there are no events to deliver, the server sends an empty batch FetchResponse with the latest
replay_id as a periodic keepalive message. The empty FetchResponse is sent within 270
seconds to indicate that the subscription is alive. The returned replay_id can be of the last
event consumed in your client or an advanced position in the stream beyond the last consumed
event. An advanced position in the stream is possible even if you didn’t receive events because
the event bus combines streams from multiple orgs. No org-specific information or personally
identifiable information is shared with other orgs.

For best performance results, we recommend that you save the replay_id from each empty
FetchResponse and use it when resubscribing. That way, you restart the subscription to get the
next unprocessed event that is stored in the event bus, and you don’t have to fetch an old
stream of events.

Replaying an Event Stream

Platform events and change data capture events are retained in the event bus for 3 days. A
client can subscribe at any position in the stream by providing a replay option in the first
FetchRequest. Any subsequent FetchRequests with a new replay option are ignored. A client
needs to call the Subscribe RPC again to restart the subscription at a new position in the

25

stream. The replay option consists of a combination of replay_preset and replay_id

values in the first FetchRequest received from a client.

This table describes the replay options and when to use each.

replay preset

Behavior

When to Use

retained events.

LATEST Default if no replay preset is Use when you’re interested only in new
specified. event messages and don’t need the
Subscribe from the tip of the | €arlier event messages stored in the
stream. event bus.

CUSTOM Resubscribe after a specific Use to catch up on missed events after
replay_id. a certain event message, for example,

after a connection failure.

To use this option, also set
the replay_id to the replay
ID of the last keepalive
message or the last
processed event message,
whichever was received last.

EARLIEST Subscribe from the earliest Use to catch up on missed events and

retrieve all stored events. Use this
option after a client has been
disconnected for more than 3 days and
the last saved replay ID is no longer
valid.

Use EARLIEST sparingly because it
can slow performance when retrieving
a large number of events.

The first FetchRequest of the stream identifies the topic to subscribe to. If a subsequent
FetchRequest provides topic_name, it must match what was provided in the first
FetchRequest. Otherwise, the RPC sends an error with an INVALID_ARGUMENT status.

For more information about the fields in FetchRequest and FetchResponse, see the Pub/Sub

API proto file.

Publish RPC Method
Two publish methods are defined in the Pub/Sub API service: Publish and PublishStream.

26

https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto
https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto

The Publish method is a unary RPC, which means that it sends only one request and receives
only one response. It synchronously publishes the batch of events in PublishRequest to an
Event Bus topic. After publishing the event messages, the server sends back a response to the
client. Use Publish if you want to know the status of a publish operation before publishing the
next batch of event messages.

rpc Publish (PublishRequest) returns (PublishResponse);

The PublishResponse holds a PublishResult for each event published that indicates success
or failure of the publish operation. A successful status means that the event was published. A
failed status means that the event failed to publish, and the client can retry publishing this event.

PublishStream RPC Method

The PublishStream method uses bidirectional streaming. It can send a stream of publish
requests while receiving a stream of publish responses from the server.

rpc PublishStream (stream PublishRequest) returns (stream
PublishResponse);

The first PublishRequest of the stream identifies the topic to publish on. If a subsequent
PublishRequest provides topic_name, it must match what was provided in the first
PublishRequest. Otherwise, the RPC sends an error with an INVALID_ARGUMENT status.

The server returns a PublishResponse for each PublishRequest when publishing is
complete for the batch. A client doesn’t have to wait for a PublishResponse

before sending a new PublishRequest. Multiple publish batches can be queued

up. This behavior allows for a higher publish rate, because a client can asynchronously
publish more events while publishes are still in flight on the server side.

The PublishResponse holds a PublishResult for each event published that indicates success
or failure of the publish operation. A successful status means that the event was published. A
failed status means that the event failed to publish, and the client can retry publishing this event.

To hold onto the stream, a client must send a valid publish request with one or more events
every 70 seconds. Otherwise, the server closes the stream and notifies the client. When the
client is notified of the stream closure, it must make a new PublishStream call to resume
publishing.

For more information about the fields in PublishRequest and PublishResponse, see the
Pub/Sub API proto file.

27

https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto

GetSchema RPC Method

The GetSchema method returns the schema of an event topic using the schema ID. Use the
schema to encode the payload in the Avro format of the event to publish, or to decode the
payload of a received event.

Because the schema typically doesn't change often, we recommend you call GetSchema once
and use the returned schema for all operations. If the event schema changes, for example,
when an administrator adds a field to the event definition, the schema ID changes. We
recommend you store the schema ID and compare it with the latest schema ID retrieved from
PublishResponse or FetchResponse. If the schema ID changes, call GetSchema to retrieve the
new schema.

rpc GetSchema (SchemaRequest) returns (Schemalnfo);

To get the schema ID for the SchemaRequest parameter, do one of the following:

e Call GetTopic. The return value of this method is Topiclnfo. Topicinfo contains
schema_id, which represents the latest schema. We recommend you publish events with
the latest schema.

e For events received from the event bus, get the schema ID from the event message in
the FetchResponse, ProducerEvent.schema_id. Use this schema for deserialization. For
events published to the event bus, get the schema ID from the PublishResponse.

@ Note: You can still publish events with an old schema saved from an earlier GetTopic call.
You use an Avro code generator to generate classes based on Avro types and deploy
your app. If the event schema changes later, you can still publish and subscribe to the
events as long as the schema differences are resolvable by the Avro schema resolution
rules.

For more information about the fields in SchemaRequest and Schemalnfo, see the Pub/Sub API
proto file.

GetTopic RPC Method

Returns information for an event, such as the event topic name and the schema ID. The
schema ID is used to get the event schema with GetSchema.

rpc GetTopic (TopicRequest) returns (TopicInfo);

For more information about the fields in TopicRequest and Topicinfo, see the Pub/Sub API proto
file.

28

https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto
https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto
https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto
https://github.com/developerforce/pub-sub-api-pilot/blob/main/pubsub_api.proto

Headers for RPC Method Calls

Every time an RPC method executes, it uses the headers to authorize access to resources.

How you set the headers depends on your programming language. In Python, the headers are
provided in a tuple as a parameter to each call. For more information, see Python Code Quick
Start Example. In other languages, such as Java, you can provide the headers in the stub
separately before making a gRPC call.

Header Name Description
accesstoken The OAuth access token or the session ID
or returned in the Login() call response.

x-sfdc-api-session-token
For more information about getting an OAuth
access token, see OAuth Authorization Flows
in Salesforce Help. For more information
about the Login() call, see login() in the

SOAP API Developer Guide.
instanceurl The first part of your Salesforce server URL
or without the ending path portion. You can get
x-sfdc-instance-url this URL using one of these ways.

e Fromthe Login() call result in
serverUrl, as outlined in the quick
start example in this guide. For more
information, see LoginResult in the
SOAP API Developer Guide.

e From the result that Salesforce
returns as part of the OAuth
authorization flow in instance_url.
For more information, see OAuth 2.0
User-Agent Flow for Desktop or
Mobile App Integration in Salesforce
Help.

The Salesforce URL can be:

e A MyDomain URL. For example,
https://MyDomainName.my.sale
sforce.com.

e A custom domain URL. For example,
https://www.example.com.

e Aninstance URL if MyDomain or a
custom domain is not set up. For

29

https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_flows.htm&type=5
https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_calls_login.htm
https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_calls_login_loginresult.htm
https://help.salesforce.com/s/articleView?id=remoteaccess_oauth_user_agent_flow.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=remoteaccess_oauth_user_agent_flow.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=remoteaccess_oauth_user_agent_flow.htm&type=5&language=en_US

example,
https://InstanceName.salesfo
rce.com.

tenantid
or
x-sfdc-tenant-id

An ID that uniquely identifies your org. If you
set this header to the org ID, the Pub/Sub API
constructs the entire value for you. These
values are valid:
e <Org ID>
e core/<Subdomain>/<0rg ID>
Examples:
e OrglID: 00D5e000003TIrB
e Entire value:
core/MyDomainName/00D5e00000
3TIrB

The org ID is returned in the login() call
response. Alternatively, you can get your org
ID value by following the steps in Ein r
Salesforce Organization ID in Salesforce
Help.

If you build the entire value, get the
subdomain. The subdomain is one of the
following:

e If My Domain is set up, the name of
My Domain. For example, it's
MyDomainName in
https://MyDomainName.my.sale
sforce.com. For more information,
see What Is My Domain? in
Salesforce Help.

e |f My Domain is not set up, the
instance name. For example, it's
InstanceName in
https://InstanceName.salesfo
rce.com.

Handling Errors

If an error occurs while an RPC method executes, the Pub/Sub API throws a gRPC
StatusRuntimeException that contains a status code.

30

https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_calls_login.htm
https://help.salesforce.com/articleView?id=000325251&mode=1&type=1
https://help.salesforce.com/articleView?id=000325251&mode=1&type=1
https://help.salesforce.com/s/articleView?id=sf.faq_domain_name_what.htm&type=5
https://grpc.github.io/grpc-java/javadoc/io/grpc/StatusRuntimeException.html

The gRPC status codes can be found here. In your code, catch the exceptions after performing
an RPC method call and handle the error. After catching the exception, you can call the
getStatus() method on the exception to get the Status.

The Pub/Sub API adds a custom error code in the Trailers section of the exception. You can
retrieve the custom error code by calling getTrailers() on the exception. The error code provides
information about the cause of the failure. For more information, see Error Codes.

Also, the exception contains an RPC ID that the Pub/Sub API appends to the error message
after the "rpcId:" prefix. The RPC ID is also included in the Trailers section of the exception.
The RPC ID identifies the method execution that caused the exception and can aid Salesforce
Customer Support in troubleshooting the error. If you can't resolve the error by looking up the
error code and the documentation, contact Salesforce for help and provide the rpcId value to
Salesforce Customer Support.

Exception Example

In the example gRPC exception below, the status returned is INVALID_ARGUMENT. The custom
error code from the Pub/Sub APl is:

[Trailer] = error-code [Value] =
sfdc.platform.eventbus.grpc.subscription.fetch.replayid.corrupted

== GRPC Exception ===

io.grpc.StatusRuntimeException: INVALID_ARGUMENT: The Replay ID validation
failed. Ensure that the Replay ID is valid. rpcId:
2f6b4cee-3525-49d1-8£fdb-0bd3d662062f

=== Trailers ===

[Trailer] = content-type [Value] = application/grpc

[Trailer] rpc-id [Value] = 2f6b4cee-3525-49d1-8£db-0bd3d662062f
[Trailer] error-code [Value] =
sfdc.platform.eventbus.grpc.subscription.fetch.replayid.corrupted
[Trailer] = type [Value] = Subscribe

Error Codes

This table lists the error codes that the Pub/Sub API returns as part of the gRPC
StatusRuntimeException. The gRPC status codes can be found in the gRPC documentation.

Error Code Error Description

General errors

sfdc.platform.eventbus.grpc.servi [The Pub/Sub API service is unavailable.
ce.unavailable

31

https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://grpc.github.io/grpc-java/javadoc/io/grpc/StatusRuntimeException.html#getStatus--
https://grpc.github.io/grpc-java/javadoc/io/grpc/Status.html
https://grpc.github.io/grpc-java/javadoc/io/grpc/StatusRuntimeException.html#getTrailers--
https://grpc.github.io/grpc-java/javadoc/io/grpc/StatusRuntimeException.html
https://grpc.github.io/grpc/core/md_doc_statuscodes.html

sfdc.platform.eventbus.grpc.servi [An authentication exception occurred.
ce.auth.error Provide valid authentication via metadata
headers.
sfdc.platform.eventbus.grpc.servi [The auth headers value for the specified key
ce.auth.headers.invalid is invalid. Provide valid auth headers. The
auth headers can't be blank.
sfdc.platform.eventbus.grpc.servi | The auth refresh token value is invalid.
ce.auth.refresh.invalid Provide a valid auth refresh value.
sfdc.platform.eventbus.grpc.servi [The service received too many connections
ce.protection.triggered and doesn’t have the resources to accept
new connections.
sfdc.platform.eventbus.grpc.servi [The Salesforce org is not licensed to access
ce.tenant.license the Pub/Sub API. Contact Salesforce to
enable the API.
Note
If you get this error even though your org is
enabled for the Pub/Sub API pilot, retry the
RPC method call. The cause of this error can
be an intermittent issue with the service when
it fails to verify the org's access to the pilot.
Schema errors
sfdc.platform.eventbus.grpc.schem [An error occurred while getting the schema.
a.meta.permission Possible reasons are an incorrect schema ID
or incorrect credentials.
sfdc.platform.eventbus.grpc.schem [The schema information is unavailable.
a.api.unavailable
sfdc.platform.eventbus.grpc.schem [Schema validation failed. The schema ID
a.validation.failed can't be blank.
Topic errors
sfdc.platform.eventbus.grpc.topic | An error occurred while getting the metadata
.meta.permission for the specified topic. Ensure the credentials
and topic name are correct.
sfdc.platform.eventbus.grpc.topic [The topic information for the specified topic
.not.found was not found. Ensure the topic name is
correct and that the topic exists.
sfdc.platform.eventbus.grpc.topic [The topic information is unavailable for the

32

.api.unavailable

specified topic.

sfdc.platform.

eventbus.grpc.topic

.validation.empty

An error occurred while validating the topic
information provided. The topic can't be
blank.

Publish errors

sfdc.platform.

eventbus.grpc.publi

sh.event.count.invalid

The request contains no events.

sfdc.platform.

eventbus.grpc.publi

sh.topic.mismatch

There is a mismatch of topic names between
requests.

sfdc.platform.

eventbus.grpc.publi

sh.auth.refresh.invalid

The refresh token shouldn’t be provided in
the initial request.

sfdc.platform.

eventbus.grpc.publi

sh.topic.validation.empty

An error occurred while validating the
provided topic information. The topic can't be
blank.

sfdc.platform.

eventbus.grpc.publi

sh.stream.sweeper.timeout

No publish request was received during the
timeout period of 120 seconds. The publish
stream timed out.

Subscription errors

sfdc.platform.
ription.fetch.
valid

eventbus.grpc.subsc
requested.events.in

The requested number of events in a fetch
request must be greater than zero.

sfdc.platform.
ription.fetch

eventbus.grpc.subsc

.topic.mismatch

There is a mismatch of topic names between
requests.

sfdc.platform.
ription.fetch.
.failed

eventbus.grpc.subsc
replayid.validation

The Replay ID validation failed. Provide a
Replay ID in the custom preset.

sfdc.platform.
ription.fetch.

eventbus.grpc.subsc
replayid.corrupted

The Replay ID validation failed. Ensure that
the Replay ID is valid.

sfdc.platform.
ription.topic.

eventbus.grpc.subsc
cannot.subscribe

Can’t subscribe to the specified topic. Check
that you have the required permissions.

33

sfdc.platform.eventbus.grpc.subsc | Due to an internal error, the server received
ription.fetch.replay.repeated an event that is older than the one received
earlier. Its Replay ID value is lower than that
of the last received event.

sfdc.platform.eventbus.grpc.subsc [Too many total events were requested for this
ription.fetch.overflow subscription. Process some events first
before sending a new fetch request.

sfdc.platform.eventbus.grpc.subsc [The subscription encountered an internal
ription.internal.error error and can’t continue. Try restarting the
subscription.

Event Allocations

Check out allocations for the event message size, how many events you can publish, and how
many events can be delivered to subscribers.

Event Message Size

We recommend that the total size of a batch of events in a PublishRequest doesn’t exceed 3
MB. The 3 MB recommendation is below the gRPC 4 MB limit and ensures optimal
performance. If your PublishRequest exceeds 4 MB, the publish call fails with the following
gRPC error, and the server closes the stream.

Status{code=CANCELLED, description=RST_STREAM closed stream. HTTP/2
error code: CANCEL, cause=null}

Each event message in a batch in a PublishRequest has a maximum size of 1 MB. If you
publish a batch of events containing an event larger than 1 MB, the PublishResult of that event
contains an error, and the event can’t be published. Each event in the batch has its own
PublishResult, so it can still be published if there are no errors.

Event Publishing Allocation

We recommend you send no more than 200 events in one publish request for best
performance results.

Platform events are subject to an hourly publishing allocation. For more information, see
Platform Event Allocations in the Platform Events Developer Guide.

34

https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_event_limits.htm

Event Delivery Allocations

When you subscribe with the Pub/Sub API, the event delivery allocations for platform events,
change data capture events, and real-time event monitoring events apply. For more information,
see the documentation for each event type.

e Platform Events Developer Guide: Platform Event Allocations

e Change Data Capture Developer Guide: Change Data Capture Allocations

e Salesforce Help: Real-Time Event Monitoring Data Streaming

35

https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_event_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.change_data_capture.meta/change_data_capture/cdc_allocations.htm
https://help.salesforce.com/articleView?type=5&id=sf.real_time_event_monitoring_streaming.htm

