salesforce

Branding LWR Sites for Experience
Cloud (Developer Preview)

Salesforce, Spring '21, Version 51.0

21

’@salesforcedocs
Last updated: February 22, 2021

@ Important: Branding for LWR sites is available as a developer preview. The feature isn’t generally
available unless or until Salesforce announces its general availability in documentation or in press
releases or public statements. All commands, parameters, and other features are subject to change
or deprecation at any time, with or without notice. Don't implement functionality developed with
these commands or tools. You can provide feedback and suggestions for branding LWR sites in the
Lightning Web Runtime Experiences group in the Trailblazer Community.

© Copyright 2000-2021 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of
salesforce.com, inc., as are other names and marks. Other marks appearing herein may be trademarks of
their respective owners.

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HZFq

Contents

Overview 4
--dxp Styling Hooks 5
Available --dxp Styling Hooks 6
Root 6

Brand 6
Success 7
Destructive 7
Warning 7

Info 7

Neutral 8

Start Using the -dxp Styling Hooks 9
Brand Your Custom Components 9
Add Custom Fonts 10
Upload Fonts as a Static Resource 10
Use Externally Hosted Fonts 1

Overview

The new Lightning Web Runtime (LWR) powers the latest template from Experience Cloud—Build Your
Own (LWR)—and introduces a new branding system that uses --dxp styling hooks. With the new system,
you can modify base Lightning components and custom components more easily to achieve a consistent
look and feel across your site.

Note: To use this developer preview branding system, your site must be based on the Build Your
Own (LWR) template. For more information, see the LWR Sites for Experience Cloud guide.

The Salesforce Lightning Design System (SLDS) currently uses styling hooks for base components. Styling
hooks use CSS custom properties, which are variables within your CSS that cascade to all descendents
within the scope of a selector. For example, the lightning-button component uses the styling hook
--sds-c-button-color-background to change its background color. You can define the hook in any
selector.

<link rel="stylesheet" href="{ basePath }/assets/styles/dxp-styling-hooks.min.css?{
versionKey}" />

<link rel="stylesheet" href="{ basePath
}/assets/styles/dxp-slds-extensions.min.css?{ versionKey}" />

<style>
/**

* Scoped to the root of the document and all its descendant elements.
*/
:root {

--sds-c-button-color-background: peachpuff;

3

/**
* Scoped to any element with the class applied and all its descendant elements
*/
.container {
--sds-c-button-color-background: peachpuff;

}
</style>

Although it’s helpful to define these variables in the head markup when you want to test changes, a more
permanent solution is to add a global stylesheet as a static resource. By using these styling hooks, you can
programmatically define branding for individual base components used throughout your application.

However, accurately reflecting your brand across every component in a site or application, including
associated variations and states, often requires hundreds of styling hook definitions. Also, most colors
come in pairs—a background and foreground—such as the text on top of a card background. These color
pairings must also have sufficient contrast to meet accessibility standards. And manually defining every
styling hook can be tedious and error prone.

But with the introduction of the new --dxp styling hooks, you can brand an entire application much more
easily.

https://www.lightningdesignsystem.com/platforms/lightning/styling-hooks/
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties
https://www.lightningdesignsystem.com/components/buttons/#Styling-Hooks-Overview
https://developer.salesforce.com/docs/atlas.en-us.exp_cloud_lwr.meta/exp_cloud_lwr/intro.htm

--dxp Styling Hooks

The new --dxp styling hooks are a reduced set of custom
properties that map to the lower-level component styling hooks.
With --dxp styling hooks, you can set a single hook that affects
many individual components.

For example, setting the hook --dxp-g-brand affects the
background color of the button, the link color, and the focus
border color of the input.

Root is the background color of the container, with root-contrast
the foreground color. Each color pairing must maintain an
acceptable contrast ratio for accessibility.

Any container can inherit styles (default) or define new styles. If a
scoped container sets its own root (background color), you must
reevaluate all other --dxp hooks to make sure that they’re
accessible against the new root.

Tip: If you define a new scoped container, make sure that
O your custom component references the root hooks:
background-color: var (--dxp-g-root);
color: var (--dxp-g-root-contrast);
@ Important: Use the --dxp styling hooks to make general
changes across all components. Then use the --sds styling
hooks to fine-tune individual components where necessary.

<link rel="stylesheet" href="{ basePath

--dxp-g-brand --dxp-g-brand-contrast

Q_ Button text

* Input Label

[Placeholder text... }

Parent Entity > Parent Record Name

Paragraph text

!

--dxp-g-root-contrast --dxp-g-root

Scoped Brand & Brand Scoped Root & Root
Contrast Contrast

Brand button Some text

Brand button Some text

Brand & Brand Contrast Root & Root Contrast

}/assets/styles/dxp-styling-hooks.min.css?{ versionKey}" />

<link rel="stylesheet" href="{ basePath

}/assets/styles/dxp-slds-extensions.min.css?{ versionKey}" />

<style>
:root {

/*¥* Use --dxp-g to make broad changes **/
--dxp-g-root: #lalble;
--dxp-g-root-contrast: #fff;
--dxp-g-brand: #5eb4ff;
--dxp-g-brand-contrast: #fff;
--dxp-g-neutral: #76716b;
--dxp-g-neutral-contrast: #fff;

/** Use --sds-c to fine-tune where necessary **/
--sds-c-button-color-background: peachpuff;

}

</style>

Available --dxp Styling Hooks

DXP provides a number of hooks for specific semantic use cases. It's important to use these global hooks
correctly, or your custom component can respond incorrectly when the hooks are defined.

The color palette is divided into families of colors. Each family has a specific use case with a scale of
possible values. The derivation of those values are increasingly contrasted against the root. For example:

If the root background color is dark, derivation becomes increasingly lighter to contrast against the
background.
If the root background color is light, derivation becomes increasingly darker to contrast against the
background.

These derivation colors are often used for interaction states. For example, the color of a button can change
from --dxp-g-brand to --dxp-g-brand-1 on hover.

0,

Important: Use the correct family of hooks for your use case. For example, if the main color of your
brand is red, don’t use --dxp-g-destructive because it also happens to be red. Use
--dxp-g-destructive only for error and invalid states. Instead, to define your brand color, use
--dxp-g-brand.

Root

The background color of the page or a section within the --dxp-g-root-1 --dxp-g-root
page. Root-1is often used for components that retain the + +
root background color, but have an interaction state—for Neutral Button@

example, the background hover state of neutral buttons.

O

Lorem ipsum dolor sit amet, consectetur

--dxp-g-root adipiscing,elit.
--dxp-g-root-contrast ?
--dxp-g-root-1 --dxp-g-root-contrast

--dxp-g-root-contrast-1

Tip: If you redefine --dxp-g-root on a section within a page, reevaluate all other --dxp styling
hooks to make sure that they’re accessible against the new root. If they’re not, you must redefine
the hooks.

Brand

The primary brand color of your site. For Salesforce, the

--dxp-brand-contrast

color is blue. Commonly used on buttons, links, focus
states, and so on.

Brand Button

--dxp-g-brand

--dxp-g-brand-contrast Brand Button Hover
--dxp-g-brand-1
--dxp-g-brand-contrast-1

--dxp-g-brand-1 --dxp-g-brand-contrast-1

Success

--dxp-g-success-1 --dxp-g-success-contrast-1

Communicates success. Commonly used on badges,
alerts, toasts, and success variant buttons. Success Button

e --dxp-g-success

P-9 Success toast X

e --dxp-g-success-contrast

e --dxp-g-success-1

° --dxp-g-success-contrast-1 --dxp-g-success-contrast --dxp-g-success
Destructive --dxp-g-destructive-1

--dxp-g-destructive-contrast-1

Communicates an error or an invalid state. Used on
alerts, badges, toasts, form fields in an error state, and Destructive Hover
destructive variant buttons.

@ Error Toast 2%
--dxp-g-destructive

L]
e --dxp-g-destructive-contrast «Input Label
e --dxp-g-destructive-1 []
e --dxp-g-destructive-contrast-1
Complete this field.
--dxp-g-destructive
--dxp-g-destructive-contrast
Warning

Communicates a warning to the user. Used on badges,

Warning badge
alerts, and toasts. ERac

e --dxp-g-warning A Werning toast X
e --dxp-g-warning-contrast

--dxp-g-warning & --dxp-g-warning-contrast

Info

Communicates non-urgent information. Used on tooltips

and popovers. Sit nulla est ex deserunt exercitation anim occaecat.
Nostrud ullamco deserunt aute id consequat veniam

incididunt duis in sint irure nisi.

--dxp-g-info
--dxp-g-info-contrast Help Text
--dxp-g-info-1

--dxp-g-info-contrast-1

--dxp-g-info & --dxp-g-info-contrast

Neutral

Used to break flow between elements with borders and
shadows. Neutral colors are also used for non-urgent
informational elements, such as toasts and badges, and
elements that don’t have interaction, such as icons and
disabled inputs.

--dxp-g-neutral
--dxp-g-neutral -contrast
--dxp-g-neutral-1
--dxp-g-neutral -contrast-1
--dxp-g-neutral -2
--dxp-g-neutral -contrast-2
--dxp-g-neutral-3
--dxp-g-neutral -contrast-3

--dxp-g-neutral-1 --dxp-g-neutral

6 Base / ihfo toast.Learn more

Ea Accounts

Anything can go into the card bod

View All

Badge Label 423 Credits Available §

Input Label
Placeholder text...

Radio Group Label
Radio Label One
Radio Label Two

[V %

New

Start Using the -dxp Styling Hooks

To use the --dxp styling hooks, add the DXP branding stylesheet to your LWR site. Click Settings |
Advanced | Edit Head Markup, and include the following code in the Head Markup editor.

<link rel="stylesheet" href="{ basePath }/assets/styles/dxp-styling-hooks.min.css?{

versionKey}" />
<link rel="stylesheet" href="{ basePath
}/assets/styles/dxp-slds-extensions.min.css?{ versionKey}" />

Head Markup

For security purposes, we allow only specific tags, attributes, and values in the <head> section. Learn More

1 <link rel="stylesheet" href="{ basePath } /assets/styles/dxp-styling-hooks.min.css?{ versionKey}" />

href="{ basePath }/assets/styles/dxp-slds-extensions.min.css?{ versionKey}"

2| <link rel="stylesheet" /=

O Tip: Make sure that the dxp-styling-hooks.min.css and dxp-slds-extension.min.css files
are loaded after salesforce-lightning-design-system.min.css.

Brand Your Custom Components

To build a custom component that uses the new branding system, you must use the --dxp styling hooks.

This sample shows the code for a custom combobox component.

<template>
<input type="text'>

Option 1</1i>
Option 2</1i>

</template>

To ensure that the input looks similar to other base Lightning components that also respond to branding
changes, the CSS must reference the --dxp styling hooks as follows.

input {
border-color: var(--dxp-g-neutral);

3

input:focus {
border-color: var(--dxp-g-brand);

3

@ Important:

e Only reference --dxp hooks within your custom components. Don’t reference --sds
hooks.

o Values of CSS custom properties are resolved at the time of evaluation. For example, let’s
say you have a CSS custom property that references another CSS custom property. If you
update the value of the latter CSS custom property in a lower scope, the value of the
former CSS custom property doesn’t reflect the new value.

Add Custom Fonts

You can add custom fonts by uploading the font file as a static resource. Alternatively, you can reference a
file that’s hosted externally.

Upload Fonts as a Static Resource

To upload your custom font as a static resource and reference it within the head markup:
1. In Setup, in the Quick Find box, enter Static Resources, and then select Static Resources.

2. Click New, upload the file, and give the static resource a name. Keep a note of the resource name.
If your site has public pages, select Public in the Cache Control setting. If you don’t make the font
resource publicly available, the page uses the browser’s default font instead.

3. To add a reference to the font in your site’s head markup, return to Experience Builder, and click
Settings | Advanced | Edit Head Markup.

4. Insert the gfont-face declaration and define the appropriate --dxp styling hooks in your desired
scope (either :root{} to the whole page or within a specific selector or component).
o --dxp-g-root-font-family defines all text other than headers.
o --dxp-g-heading-font-family defines headline text.

<link rel="stylesheet" href="{ basePath
}/assets/styles/dxp-styling-hooks.min.css?{ versionKey}" />
<link rel="stylesheet" href="{ basePath
}/assets/styles/dxp-slds-extensions.min.css?{ versionKey}" />

<style>
@font-face {
font-family: 'myFirstFont';
/* Replace myFont with your resource name */
src: url('{ basePath }/sfsites/c/resource/myFont') format('woff');

}

:root {
/*¥ set the font for all root/body text *¥*/
--dxp-g-root-font-family: 'myFirstFont', Helvetica, sans-serif;

/*¥ set the font for headings **/
--dxp-g-heading-font-family: 'myFirstFont', Times, serif;

)
</style>

10

o Tip: Make sure that the font file format, for example, woff, matches your markup. Also make sure
that your fallback values, such as Helvetica, sans-serif, and so on, are properly defined for your
brand. To learn more, see @font-face.

Use Externally Hosted Fonts

You can use fonts that are hosted outside Salesforce, such as Google Fonts. However, to access externally
hosted files, you must also update the Content Security Policy (CSP) for your org by adding the hosts to
your list of CSP Trusted Sites. Otherwise, an error appears indicating that the resources can’t be accessed.

Can't Access Resources

Access to resources from an unapproved, external host violates the Content Security Policy
(CSP). To allow access to these resources, add the host to the list of trusted hosts in CSP
Trusted Sites in Salesforce Setup. More Details

Blocked URI: https://fonts.googleapis.com/css2?family=Montserrat:wght@300&display=swap
CSP directive: style-src

Don't show me CSP violations

OK

For example, for Google Fonts, you would add:

e https://fonts.googleapis.com to access the Google Fonts stylesheet
e https://fonts.gstatic.com to access fonts from Google Font

Step 1: Add Sites to Your Org’s List of CSP Trusted Sites
1. From Setup, in the Quick Find box, enter CSP Trusted Sites, and click CSP Trusted Sites.
2. Click New Trusted Site.
3. To add a trusted site for external stylesheets:
a. Enter a name—for example, GoogleFontAPI.
b. Add the URL—for example, https://fonts.googleapis.com.
c. Make sure that it's Active, and select Allow site for style-src.
d. Click Save & New.
4. To add a trusted site for external fonts:
a. Enter a name—for example, GoogleFontStatic.
b. Add the URL—for example, https://fonts.gstatic.com.
c. Make sure that it’s Active, and select Allow site for font-src.

d. Save your changes.

1

https://fonts.google.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face

Step 2: Reference the External Resources Within the Head Markup
1. In Experience Builder, click Settings | Advanced | Edit Head Markup.

2. Add the link to the external file. For example, this code sample adds a link to the Google Fonts
stylesheet and then refers to the font in the CSS style definition.

<link rel="stylesheet" href="{ basePath
}/assets/styles/dxp-styling-hooks.min.css?{ versionKey}" />
<link rel="stylesheet" href="{ basePath
}/assets/styles/dxp-slds-extensions.min.css?{ versionKey}" />

<!-- Load Google Fonts -->

<link
href="https://fonts.googleapis.com/css2?family=Montserrat:wght@300&display=swa
p" rel="stylesheet">

<style>
:root {
/** set the font for all root/body text **/
--dxp-g-root-font-family: 'Montserrat', sans-serif;

/** set the font for headings **/
--dxp-g-heading-font-family: 'Montserrat', sans-serif;

)
</style>

3. Save your changes.

12

