
	
		

	

	
	
	
	

	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	 Developing	for	Digital	I	

	

	
Student Guide

	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	2	

	
	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	3	

Table	of	Contents	
About	the	Course	...	5

Module	1:		Getting	Started	...	6
Lesson	1.1:	Platform	Review	..	6

Lesson	1.2:	SiteGenesis	Overview	..	8

Lesson	1.3:	Site	Configuration	..	9

Module	2:	UX	Studio	..	13

Lesson	2.1:	Creating	a	Workspace	..	13

Lesson	2.2:	Creating	a	Server	Connection	..	14

Lesson	2.3:	Commerce	Cloud	Digital	Views	..	16

Module	3:	Cartridges	..	18
Lesson	3.1:	Cartridge	Path	..	18

Lesson	3.2:	Cartridge	Types	..	19

Lesson	3.3:	Creating	a	SiteGenesis	Storefront	Cartridge	..	21

Module	4:	JavaScript	Controllers	...	23

Lesson	4.1:	Introduction	to	JavaScript	Controllers	...	23

Lesson:	Displaying	a	Product	Using	Script	API	..	27

Module	5:	ISML	..	31

Lesson	5.1:	ISML	Tags	and	Expressions	..	32

Lesson	5.2:	Creating	and	Accessing	Variables	..	35

Lesson	5.3:	Reusing	Code	in	Templates	...	38

Lesson	5.4:	Conditional	Statements	and	Loops	..	45

Module	6:	Content	Slots	...	50

Lesson	6.1:	Creating	&	Configuring	Content	Slots	..	50

Lesson	6.2:	Using	Content	Link	Functions	..	54

Module	7:	Commerce	Cloud	Digital	Script	...	59
Lesson	7.1:	Commerce	Cloud	Digital	Script	API	..	59

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	4	

Lesson	7.3:	Script	and	JavaScript	Controller	Debugging	...	64

Lesson	7.4:	Resource	API	and	Resource	Bundles	...	66

Module	8:	Forms	Framework	...	71

Lesson	8.1:	XML	Metadata	File	..	73

Lesson	8.2:	ISML	Form	Template	...	75

Lesson	8.3:	Pipeline	Elements	..	77

Module	9:	Custom	Objects	...	80

Lesson	9.1:	Using	Digital	Script	to	Create	Custom	Object	Instances	..	83

Lesson	9.2:	Custom	Logging	...	84

Module	10:	Data	Binding	and	Explicit	Transactions	...	88
Lesson	10.1:	Data	Binding	with	Forms	and	Objects	...	88

Module	11:	Site	Maintenance	..	93

Lesson	11.1	Site	and	Page	Caching	...	93

Lesson	11.2	Site	Performance	..	97

Lesson	11.3	Code	Replication	...	98

Lesson	11.4	Data	Replication	...	101

Appendix	A:	Pipelines	...	104

Pipeline	Overview	...	104

Creating	a	Pipeline	...	106

Call	Nodes	and	End	Nodes	...	109

The	Pipeline	Dictionary	..	112

Troubleshooting	with	the	Pipeline	Debugger	..	113

Pipelets	...	116

Appendix	B:	Data	Integration:	Simple	Feeds	..	119

Congratulations	..	125

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	5	

About	the	Course	

Description	
This	course	covers	how	to	modify	and	customize	the	Commerce	Cloud	Digital	
reference	application,	SiteGenesis,	using	core	Digital	programming	concepts,	
files,	and	scripting	language.	

Audience	

Developers	who	have	the	following	background	and	experience:	
▪ Java	or	JavaScript	programming	(at	least	2	years)	
▪ Working	with	XML	files	(data	imports	and	exports)	
▪ Familiarity	with	jQuery	library	and	JSON	syntax	
▪ Use	of	Firebug	or	Web	Developer	toolkits	

Duration	 4	days	

Prerequisites	

To	successfully	participate	in	this	course,	you	must	complete	the	following	prior	
to	attending	class:	
▪ GEN001:	Digital	Overview	
▪ DEV001:	Digital	Architecture	Overview	

System	
Requirements	

A	laptop	computer	(with	the	appropriate	administrative	system	rights)	with	the	
Eclipse	IDE	and	UX	studio	installed.		A	high-speed	Internet	connection	and	
reference	code	installed.	

Course	Objectives	

After	completing	this	course,	you	will	be	able	to:	

▪ Create	cartridges	to	add	reusable	functionality	to	a	site.	

▪ Use	JavaScript	controllers	to	add	business	logic	to	a	site.	

▪ Create	reusable	code	using	ISML	templates.	

▪ Use	Commerce	Cloud	Digital	Script	in	ISML	templates	and	script	files.	

▪ Use	content	slots	to	improve	the	appearance	and	flexibility	of	a	site.	

▪ Use	the	Forms	Framework	to	control	the	validation,	rendering,	and	storing	of	consumer-entered	
values.	

Note:	The	focus	of	the	course	is	to	use	JavaScript	controllers	for	new	site	development.		If	you	need	to	
use	pipelines	to	maintain	an	existing	site,	notify	your	instructor—Appendix	A.	covers	pipeline	concepts.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	6	

Module	1:		Getting	Started	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

▪ Create	a	new	empty	site.	

▪ Import	a	copy	of	SiteGenesis	into	a	site	and	configure	its	settings.		
	

	
Lesson	1.1:	Platform	Review	

A	realm	contains	segmentation	for	development,	staging,	and	production	for	one	or	more	storefronts.		

	
Every	Realm	includes	a	Primary	Instance	Group	(PIG)	which	includes	three	Commerce	Cloud	Digital	
instances:	

▪ Production	–	this	is	the	live	instance	used	as	the	actual	eCommerce	storefront.	

▪ Staging	–	use	this	instance	for	configuration,	data	enrichment,	data	import,	and	uploading	of	code	
to	prepare	it	for	testing	in	the	Development	instance.	Through	data	replication	you	can	move	data	
from	the	staging	instance	to	either	the	development	or	the	production	instance.	

▪ Development	–	developers	use	this	instance	to	test	processes	without	impacting	the	production	
storefront	(i.e.	Product	import	feed)	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	7	

Every	Realm	also	includes	a	Secondary	Instance	Group	(SIG)	that	has	five	sandboxes	(but	can	
accommodate	more).	Developers	use	sandboxes	to	develop	and	test	code.	They	are	not	as	powerful	as	
PIG	instances	in	terms	of	performance,	memory,	and	storage.	However,	they	have	a	smaller	footprint.	

Platform	Tools:	Business	Manager	

Both	merchants	and	developers	use	Business	Manager	to	manage	administrative	tasks.	Every	Digital	
instance	has	a	Business	Manager	portal.	For	example,	a	merchandiser	would	log	into	Business	Manager	
in	the	Staging	instance.	

	

Merchandisers	use	Business	Manager	to	manage…	 Developers	use	Business	Manager	to	manage…	

▪ Products	&	Catalogs	

▪ Content		

▪ Marketing	campaigns	

▪ Search	settings	

▪ Customers	

▪ Site	Analytics	

▪ Site	URLs		

▪ Site	Preferences	

▪ Code	&	Data	Replication	

▪ Code	Versioning	

▪ Site	Development	

▪ Data	Import/Export	

▪ Global	Preferences	for	all	sites	
/organization	

	

	

	

Exercise:	Business	Manager	Organization	

1. In	Business	Manager,	click	each	of	the	Merchant	menu	items	in	SiteGenesis	to	determine	the	main	
tasks	in	Business	Manager.	These	are	located	on	the	left	side	under	Site	–	SiteGenesis.	

2. Click	the	Administration	menu	items	to	determine	the	main	tasks	in	Business	Manager.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	8	

Deploying	a	Storefront	

When	you	first	log	into	Business	Manager	for	a	given	instance,	by	default	no	storefront	has	been	
deployed.		You	must	either:	

▪ Create	a	new	empty	site	(which	contains	no	data).	

▪ Import	an	existing	site,	such	as	SiteGenesis.		

	

Exercise:	Create	an	Empty	Site	

1. In	Business	Manager,	select	Administration	>	Sites	>	Manage	Sites.	

2. Click	New.	

3. Enter	the	site	ID,	“Training”.	The	ID	is	required	and	should	not	include	spaces.		

4. Enter	the	Name,	“Training”.	The	Name	is	required	and	can	be	any	text	string.		

5. Click	the	Currency	drop-down	and	select	the	default	currency.	You	can	only	have	one	default	
currency	per	site.	This	is	a	required	field.	

6. Click	Apply.		

7. Now,	you	can	view	or	configure	your	new	site.	

a. To	select	the	site,	click	the	site	name,	Training,	located	on	the	site	list.			

b. Select	Site	>	Storefront.	A	browser	window	opens,	displaying	the	storefront	URL.	

	
Lesson	1.2:	SiteGenesis	Overview	

Commerce	Cloud	includes	the	SiteGenesis	sample	reference	site,	which	you	can	use	as	the	basis	of	
your	custom	Commerce	Cloud	Digital	sites.	It	is	a	full	featured	demonstration	eCommerce	site,	which	
you	can	use	to	explore	the	Digital	platform	and	its	capabilities.	SiteGenesis	is	a	resource	for	both	
developers	and	merchants:	

▪ For	developers,	it	provides	sample	code—scripts,	and	ISML	templates.		

▪ For	merchants,	it	provides	sample	configurations	for	catalogs,	categories,	products,	and	so	on.		

Notes	on	Importing	SiteGenesis		

Import	the	current	version	of	the	SiteGenesis	package	(read-only)	as	a	sample	site	into	every	
Sandbox	instance.	Caution:	Never	Import	SiteGenesis	into	a	Primary	Instance	Group	(PIG)	
Instance.		

▪ It	is	recommended	that	you	import	SiteGenesis	into	an	empty	sandbox	before	importing	your	
custom	sites.		The	prevents	you	from	overwriting	existing	attributes	and	data	for	the	custom	site.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	9	

After	importing	SiteGenesis,	you	can	validate	its	behavior	by	comparing	it	to	the	site	running	on	the	
demo	instance.		

	
Exercise:		Import	SiteGenesis	from	a	SiteGenesis	Package	

Import	the	latest	version	of	SiteGenesis	

1. Log	into	Business	Manager.	

2. Select	Administration	>	Site	Development	>	Site	Import	&	Export.	

3. Determine	if	you	want	to	import	the	site	from	a	local	or	a	remote	instance	and	select	the	
corresponding	radio	button.	

Import	a	site	from	a	local	copy	

1. Select	the	SiteGenesis	Demo	Site	(alternatively	click	Browse	to	retrieve	another	local	file;	then	click	
Upload).	

2. A	confirmation	message	displays.	Click	OK.	

3. You	can	view	the	status	of	the	import	in	the	Status	section	of	the	page.		

4. When	the	import	has	completed,	Business	Manager	lists	the	new	site.	You	will	also	receive	an	email	
that	the	job	has	completed.	

Import	from	a	remote	server	

1. Enter	all	required	data	for	accessing	the	remote	server	account,	including	the	Hostname,	Login,	and	
Password.	Click	Connect.	

2. You	can	view	the	importable	files	from	the	remote	server.	Select	the	radio	button	next	to	the	name	
of	the	import	file	you	want	to	use.	

3. Click	Import.	

4. A	confirmation	message	displays.	Click	OK.	

5. You	can	view	the	status	of	the	import	in	the	Status	section	of	the	page.		

When	your	import	has	completed,	Business	Manager	lists	the	new	site.	You	will	also	receive	an	email	
that	the	job	is	complete.	

	
Lesson	1.3:	Site	Configuration	

After	creating	an	empty	site,	disable	site	caching	in	your	sandbox	to	see	your	code	changes	
immediately	in	the	site.	This	prevents	the	page	cache	from	taking	effect,	so	that	pages	reflect	the	most	
recent	code	changes.	In	production	instances	the	cache	is	on	by	default.		

You	need	to	index	the	site	to	be	able	to	search	for	products	from	the	storefront.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	10	

	
Exercise:		Disable	Caching	for	an	Empty	Site	or	Training	Site	

1. In	Business	Manager,	select	Administration	>	Sites	>	Manage	Sites.	Select	your	site	name.	

2. Select	the	Cache	tab.	

3. Set	the	Time	to	Live	value	to	0	and	uncheck	the	Enable	Page	Caching	setting.	

4. Click	Apply.		

5. You	should	invalidate	the	cache	at	this	stage.	You	can	Invalidate	Page	Cache	fully	or	partially.	

6. Check	the	status	of	the	Training	site.		

	
Exercise:		Re-Index	Search	for	SiteGenesis	

1. In	Business	Manager,	select	the	site	to	index	(SiteGenesis).	

2. Select	Site	>	Search.		

3. Click	Search	Indexes.	

4. Select	the	top	checkbox	Index	Type	to	select	all	the	indexes.	

5. Click	Reindex.	

6. In	Site	>	SiteGenesis	>	Site	Preferences	>	Storefront	URLs	uncheck	Enable	Storefront	URLs.	This	
enables	you	to	see	the	pipeline	calls,	rather	than	just	the	categories.	

The	indexes	begin	rebuilding.	When	complete,	the	status	changes	to	Online.	

Using	Catalogs	to	Share	Data	Between	Sites	

The	SiteGenesis	import	contains	both	site-specific	data	and	data	shared	among	all	sites	in	the	
organization.	The	SiteGenesis	catalogs	are	available	to	the	empty	site	you	created	earlier.	

There	are	two	types	of	catalogs:	master	catalogs	define	all	shared	products	of	an	organization,	while	
site	catalogs	specific	category	navigation	and	products	for	a	site.	Therefore,	a	site	can	have	only	one	
site	catalog.		However,	a	site	can	have	one	or	more	master	catalogs.	

Because	multiple	sites	can	share	a	master	catalog,	you	can	specify	some	attributes	at	the	site	level.	For	
example,	use	the	OnlineFlag	attribute	enables	a	product	to	be	online	in	one	site,	but	offline	in	another.		

	
Exercise:		Share	a	Catalog	between	Sites	and	Set	a	Product	Offline	

1. In	Business	Manager,	select	SiteGenesis	>	Products	and	Catalogs	>	Catalogs.	

2. Open	Storefront	Catalog	–	EN.	Click	Edit.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	11	

3. To	share	this	catalog	with	the	Training	site:	

a. Select	the	Site	Assignments	tab.		

b. Check	the	Training	site.		

c. Click	Apply.		

4. Select	Training	>	Search	>	Search	Indexes.		

5. Check	the	top	index	box	to	select	all	indexes.	

6. Click	Reindex.	This	ensures	that	indexing	occurs	automatically	after	any	changes	that	require	it.		

7. Select	Training	>	Products	and	Catalogs	>	Products.	Find	the	P0048	product.	

8. Lock	the	product	for	editing.	

9. Locate	the	Online/Offline	site	attribute.	Set	the	Online	field	to	No	for	the	Training	site	only.	

10. Apply	your	changes	and	verify	that	the	product	is	not	available	on	the	Training	site.	(Go	to	
SiteGenesis	and	search	for	P0048).		 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	12	

	
Knowledge	Check	

 Question	 True	 False	

 A	Realm	is	a	Digital	instance	used	only	by	developers.	 	 	

 Merchants	use	Business	Manager	to	manage	products	and	
catalogs.	

	 	

 You	can	import	SiteGenesis	through	site	import	at	any	time	
without	risk.		

	 	

 Catalogs	are	not	shareable	between	sites	within	an	organization.	 	 	

 A	site	must	have	one	and	only	one	site	catalog.	 	 	

	

 Enter	item	number	from	Column	B	that	matches	the	item	in	Column	A	

 Column	A	 Column	B	

 	 Sandbox	instance	 1.	 Is	a	customer’s	live	storefront	

 	 Production	instance	 2.	 Used	for	code	testing	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	13	

Module	2:	UX	Studio	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Use	UX	Studio	to	create	a	new	workspace.	

§ Set	up	a	server	connection.	

§ Navigate	the	user	interface.	

Introduction	

UX	Studio	is	an	Integrated	Development	Environment	(IDE)	used	for	programming	for	Commerce	Cloud	
Digital.		It	is	a	plugin	built	on	the	Eclipse	open-source	development	platform	(www.eclipse.org),	which	
many	developers	use	to	build	Java	applications.	It	is	not	necessary	to	know	Java	to	use	UX	Studio.		

	
Lesson	2.1:	Creating	a	Workspace	

A	workspace	is	an	Eclipse-specific	local	directory	that	contains	Eclipse	projects.	Normally,	Eclipse	
projects	are	connected	to	Java	source	directories	(packages).	UX	Studio	projects	are	different:	they	
either	define	a	connection	to	a	Digital	instance	or	they	point	to	a	Digital	cartridge.	They	are	never	used	
to	compile	Java	projects,	since	Java	code	is	not	used	in	Digital	application	programming.	

Each	workspace	should	have	only	one	Digital	server	connection.	For	example,	if	you	are	working	on	
numerous	client	projects,	you	should	create	a	separate	workspace	for	each	client.	Each	client	
workspace	then	has	only	one	specific	server	connection.	

	
Exercise:		Install	the	UX	Studio	Plugin	and	Create	a	Workspace	

Create	a	new	workspace	(when	using	UX	Studio	for	the	first	time).	Note:	This	assumes	that	you	have	installed	
the	UX	Studio	plugin	into	Eclipse.		

1. The	first	time	you	use	the	application,	you	will	be	prompted	to	create	a	new	workspace	name.	You	
can	use	a	workspace	that	references	your	client.		

2. Eclipse	displays	a	Welcome	message	in	the	main	working	area.		

3. Select	Help	>	Install	New	Software.	

4. Click	Add.	The	Add	Repository	dialog	displays.	

5. In	the	Name	field,	enter	UX	Studio.	

6. In	the	Location	field,	enter	one	of	the	following	URLs	based	on	your	version	of	Eclipse:	

§ Juno	-	http://updates.demandware.com/uxstudio/4.2	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	14	

§ Kepler	-	http://updates.demandware.com/uxstudio/4.3	

§ Luna	-	http://updates.demandware.com/uxstudio/4.4	

§ Mars	-		http://updates.demandware.com/uxstudio/4.5

§ Neon	-	http://updates.demandware.com/uxstudio/4.6

7. Provide	a	name	for	the	URL.	

8. Select	Salesforce	Commerce	Cloud	from	the	list.	Click	Next.	At	this	point,	Eclipse	compares	UX	
Studio’s	requirements	with	what	is	available	to	ensure	compatibility.	The	Install	Details	dialog	
displays.		

9. Click	Next.	The	Review	Licenses	dialog	displays.	

10. Select	the	license	agreement	radio	button.	Click	Finish.	The	Installing	Software	dialog	displays,	
indicating	the	installation’s	progress.	

11. In	the	Security	Warning	dialog,	click	OK.	

12. Select	Yes	when	prompted	to	restart	Eclipse.	

UX	Studio	is	now	installed.	You	can	now	use	the	Digital	Development	perspective	in	the	upper	right	
corner.
If	you	already	have	a	workspace	and	need	to	create	a	new	one:	

1. From	the	main	menu	in	UX	Studio,	select	File	>	Switch	Workspace	>	Other.	

2. The	Workspace	Launcher	dialog	displays.	

3. In	the	Workspace	field,	enter	a	new	workspace	name	and	location.	Click	OK.	

4. UX	Studio	closes	and	reopens.		

	
Lesson	2.2:	Creating	a	Server	Connection	

You	must	create	a	server	connection	in	UX	Studio	to	be	able	to	upload	your	code	to	the	Digital	server	
instance.	Note:	It	is	a	one-way	push	connection;	you	cannot	pull	code	onto	a	local	computer	from	the	
Digital	server.

	
Exercise:		Create	a	New	Server	Connection	

1. From	UX	Studio,	select	File	>	New	>	Digital	Server	Connection.	The	New	Digital	Server	Connection	
dialog	displays.	

2. In	the	Project	name	and	Host	name	fields,	enter	the	host	name	provided	by	your	instructor	or	
client:	

§ student##-training-na-dw.demandware.net	(where	#	is	unique	for	each	student).

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	15	

§ partner##.cloud01.pod3.demandware.net	(where	partner##	varies	by	partner	company)

3. Enter	your	Business	Manager	password.		

4. Click	Next.		

5. A	security	warning	regarding	an	invalid	certificate	for	your	sandbox	displays.	Click	Yes	to	continue.	

6. In	the	Target	version	directory	field,	select	version1	as	the	target	version	for	your	uploaded	files.	

7. Click	Finish.	

Your	project	is	now	connected	to	your	sandbox.	You	will	use	that	connection	to	upload	any	cartridge	
projects	to	that	sandbox.

	

Exercise:		Run	the	View	Commerce	Cloud	Digital	Help	

To	open	the	Digital	API	Javadoc:	

1. From	UX	Studio,	click	Help	>	Help	Contents.		

2. Expand	the	Digital	API	link.	

3. Select	any	of	the	available	help	items.	Note:	The	first	two	items	offer	Javadoc-style	help.	

	

Exercise:		Import	a	Project	into	UX	Studio	

1. In	UX	Studio,	select	File	>	Import.	An	Import	dialog	displays.	

2. Expand	the	General	menu	and	select	Existing	Projects	into	Workspace.		

3. Click	Next.	

4. In	the	Select	Root	Directory	field,	click	Browse.	

5. Find	the	folder	on	your	hard	drive	where	cartridges	are	stored.	Your	instructor	will	provide	a	zip	file	
with	all	solution	cartridges	for	you	to	install	locally.		

6. Click	OK.	

7. Any	cartridges	in	the	folder	structure	(including	subfolders)	will	display	in	the	Projects	box.	Click	
Select	All.	

8. Click	Finish.		

9. If	you	already	have	an	active	server	connection	in	your	workspace,	the	next	dialog	prompts	you	to	
link	your	imported	projects	with	that	server	connection.			

Note:	If	you	want	to	upload	the	imported	cartridges	to	the	active	server,	click	Yes.	Otherwise	the	
cartridges	will	reside	in	your	workspace,	but	will	not	upload	automatically	when	you	make	changes.

10. Click	OK	to	upload	the	cartridges	and	finish	the	import	process.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	16	

Note:	You	might	receive	a	dialog	that	asks	if	you	want	to	delete	projects	on	the	server	not	
matching	the	ones	in	your	workspace.	If	you	are	the	only	one	working	on	that	instance	(e.g.	it’s	
your	personal	sandbox),	you	can	make	that	decision.		However,	if	you	are	working	on	a	
collaborative	instance	consult	first	with	your	colleagues.	
	
Note:	If	you	import	cartridges	before	you	have	an	active	server	connection	or	have	failed	to	link	a	
cartridge	to	the	server,	perform	the	following	steps	to	ensure	that	cartridges	upload	correctly:	

§ Right-click	the	server	connection	and	select	Properties.

§ In	the	Properties	dialog,	select	Project	References.	Then	select	every	cartridge	that	you	want	
uploaded	to	the	server	connection.	Click	OK.

	
Lesson	2.3:	Commerce	Cloud	Digital	Views	

The	UX	Studio	plugin	provides	access	to	specific	Digital	programming	files.	These	files	are	sorted	and	
given	their	own	custom	views	in	the	application.	The	primary	files	include:	cartridges,	templates,	and	
scripts.	UX	Studio	contains	tabs	for	each.
Tips	

§ You	can	filter	the	results	by	typing	in	the	first	few	letters	of	the	file	name	you	are	searching	for.

§ To	view	the	file	path	for	a	file,	click	the	Show/Hide	Resource	Part	icon.

§ The	Navigation	tab	enables	you	to	view	all	files	in	your	workspace	in	a	tree	view	structure.	It	also	
facilitates	common	tasks,	such	as:	copy/paste,	file	comparisons,	etc.	

Searching	for	Text	in	Files	

There	are	often	numerous	files	used	to	display	a	single	web	page	in	a	browser.	You	can	use	the	UX	
Studio	search	tool	to	quickly	find	specific	code	within	that	set	of	files.		

	
Exercise:		Search	for	Text	in	Files	

1. In	the	main	menu	bar,	select	Search	>	Search.	Select	the	File	Search	tab.	The	search	window	
displays.		

2. In	the	Containing	text	field,	enter	your	text	search	criteria.		

3. In	the	File	name	patterns	field,	enter	any	patterns	to	use	as	a	filter.	

4. Click	Search.	Your	results	display	in	the	Search	box.	

5. Double-click	a	file	to	view	it.	The	file	will	open	in	the	workspace	area	with	the	search	term	
highlighted.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	17	

	
Knowledge	Check	

Question	 Answer	

1.		To	upload	your	code	to	a	Digital	server	

A. Copy	files	to	the	root	folder	on	the	web	server.	

B. Connect	to	a	production	server	in	a	PIG.	

C. Create	a	server	connection	in	Studio.	

D. Contact	Digital	support	to	open	a	server	connection	for	you.	

2.	To	find	text	in	any	workspace	file:	

A. Select	File	>	Find	Text.	

B. Select	Search	>	Search.	

C. Select	Edit	>	Find.	

D. Use	the	Windows	search	option.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	18	

Module	3:	Cartridges	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to	

§ Describe	what	a	cartridge	is,	its	directory	structure,	and	its	path	in	Business	Manager.

§ Create	an	empty	cartridge.

§ Create	a	new	storefront	cartridge.

Introduction

A	cartridge	is	a	directory	structure	that	provides	a	flexible	deployment	mechanism	for	customized	
functionality.	It	can	contain	many	different	types	of	files	including:	static	files	(CSS,	JavaScript,	etc.),	
image	files,	etc.	It	also	contains	folders	for	Commerce	Cloud	Digital	specific	files,	such	as:	scripts,	
templates,	and	form	definitions.	

A	cartridge	is	fully	contained	in	one	directory.	Every	cartridge	has	specific	sub-directories	where	certain	
file-types	must	be	stored.	For	instance,	you	must	store	all	Digital	Script	files	in	a	scripts	folder.	

Note:	UX	Studio	generates	the	required	storefront.properties	file	when	you	create	a	new	
cartridge.	

	
Lesson	3.1:	Cartridge	Path	

For	a	site	to	use	a	cartridge,	you	must	add	the	cartridge	to	the	cartridge	path	in	Business	Manager.	
Select	Sites	>	Manage	Sites	>	Site	Genesis	–	Settings.	

When	a	call	is	made	to	a	file,	the	Digital	server	looks	for	the	file	starting	with	the	first	cartridge	listed	in	
the	cartridge	path.	For	example,	if	a	call	is	made	to	the	productfound.isml	file	and	that	file	is	
located	in	two	cartridges	that	are	both	in	the	cartridge	path,	the	Digital	server	uses	the	first	one	it	
finds.		

	

Exercise:		Add	a	Cartridge	to	a	Cartridge	Path	

1. In	Business	Manager,	select	Administration	>	Sites	>	Manage	Sites.	

2. Select	the	site	where	you	want	to	add	the	cartridge.	In	this	case,	select	SiteGenesis.	

3. Select	the	Settings	tab.	

4. Enter	the	name	of	the	cartridge	to	add.		

To	add	multiple	cartridges,	use	a	colon	between	cartridge	names.	In	this	case,	delete	the	existing	
path	completely	and	add	the	following	path:

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	19	

 training:storefront_core:storefront_controllers	

Note:	All	names	are	case-sensitive	and	must	match	your	cartridge	name	if	they	exist	in	Eclipse.	
There	should	be	no	spaces	between	each	item.			

5. Click	Apply.	

	
Lesson	3.2:	Cartridge	Types	

Your	business	needs	determine	the	type.	However,	every	new	site	will	have	at	least	one	cartridge.	

Cartridge	Type	 Description	

SiteGenesis	
Storefront	Cartridge	

A	new	storefront	cartridge	contains	a	copy	of	the	default	SiteGenesis	
cartridge	available	in	the	SiteGenesis	Demo	Site	package.	Most	projects	start	
with	this	SiteGenesis	reference	code.		

Cartridge	

	

Use	to	build	site-specific,	re-usable	functionality	when	there	are	multiple	
sites	in	a	production	instance.	

You	may	want	to	add	a	new	cartridge	when	functionality	is:	

§ Generic:	reusable	code	used	in	multiple	sites.

§ An	integration	to	an	external	system.

§ Specific	to	a	localized	site:	CSS,	images	and	resource	files	for	a	language-
specific	site.

Business	Manager	
Extension	Cartridge

See	your	Commerce	Cloud	Digital	documentation	for	more	information.	

Best	Practices	

§ Keep	an	original	SiteGenesis	cartridge	in	your	project	for	comparison	or	refer	to	your	demo	
instance.

§ Use	a	storefront	cartridge	for	common	code	that	you	intend	to	reuse	in	multiple	sites:	
<client>_core

§ Create	cartridges	for	site-specific	functionality	that	might	overwrite	the	core:	app_<site>

§ Place	any	integration	code	in	a	int_<site>	cartridge.

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	20	

	
Exercise:	Working	with	Cartridges			

View	the	WebDAV	Cartridge	Directory	in	Business	Manager	

1. Log	into	the	Business	Manager	instance	where	you	want	to	view	cartridge	contents	(i.e.:	staging	
instance).	

2. Select	Administration	>	Site	Development.	Click	Development	Setup.	

3. In	the	WebDAV	Access	section,	click	the	Cartridges	link.	

4. The	Authentication	dialog	displays.	Enter	your	Business	Manager	username/password.	

5. Click	OK.	

6. Click	the	link	that	corresponds	to	the	code	version	that	you	want	to	view.	

7. Click	a	version	to	see	the	uploaded	cartridges.	

Create	a	New	Version	on	the	Server	

1. In	Business	Manager,	select	Administration	>	Site	Development.	Click	Code	Deployment.	

2. Click	Add	to	create	version2.	Click	Apply.	

3. Click	the	new	version.	Notice	that	the	Cartridges	directory	is	empty.	

4. In	UX	Studio	on	the	connection	project,	select	Digital	Server	>	Change	Upload	Staging	
Directory….		The	Change	Upload	Staging	Directory	dialog	displays.	

5. Select	version2	from	the	dropdown.	

6. Click	OK.	Wait	for	the	cartridges	to	upload.	

7. In	Business	Manager,	check	the	version2.	Note	the	contents	of	the	Cartridges	directory.	

8. In	the	File	Filter	field,	enter	a	filename	and	click	Find	to	see	all	versions	of	it.	

9. Click	Activate	to	make	version2	active.	

Now,	any	new	cartridges	are	uploaded	to	version2,	which	is	also	the	active	version	on	the	server.	

Create	an	Empty	Cartridge

When	you	need	to	segregate	code	between	sites,	you	can	create	a	new	empty	cartridge.	This	enables	
you	to	add	only	the	code	you	need	for	a	site	(or	specific	sites)	in	an	organization.			

1. In	UX	Studio,	log	into	your	workspace.	

2. From	the	main	menu,	select	File	>	New	>	Cartridge.		The	New	Cartridge	dialog	displays.	

3. Enter	the	cartridge	properties	exactly	as	listed:		

§ Name:	training

§ Location:	C:\projects\DigitalServer\sources\cartridges

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	21	

§ Link	to	Digital	Server:	Checked

4. Click	Finish.	

5. Review	the	training	cartridge.	Notice	that	the	directory	structure	was	created	but	there	are	no	files.		

	
Lesson	3.3:	Creating	a	SiteGenesis	Storefront	Cartridge	

When	you	create	a	new	storefront	cartridge	in	UX	Studio,	a	copy	of	the	SiteGenesis	cartridge	
downloads	to	your	workspace	and	is	renamed	with	the	name	you	specify.	The	reference	cartridge	has	
all	of	the	code	needed	for	a	SiteGenesis	storefront	to	work	in	Commerce	Cloud	Digital.	It	contains:	

§ The	business	layer,	all	of	the	server-side	components	(such	as	Digital	scripts).

§ The	simple	presentation	layer,	including	ISML	templates,	common	CSS	files,	forms,	and	resource	
files.	

The	specific	CSS	and	advanced	UI	elements	required	create	the	look	and	feel	of	the	SiteGenesis	
storefront.	

Changes	made	to	the	new	storefront	cartridge	are	uploaded	to	the	Digital	server.	To	view	them	
immediately:	

1. Set	the	cartridge	to	be	uploaded	to	your	workspace	server.

2. Put	the	new	cartridge	in	the	cartridge	path.

3. Disable	site	caching	for	the	site.

	

Exercise:		Create	a	New	Storefront	Cartridge	

1. In	UX	Studio,	log	into	your	workspace.	

2. From	the	main	menu,	select	File	>	New	>	SiteGenesis	Storefront	Cartridge.		The	New	Storefront	
Cartridge	dialog	displays.	

3. Complete	the	fields	in	the	New	Standard	Storefront	cartridge	dialog.	

§ Name:	storefront

§ Location:	C:\projects\DigitalServer\sources\cartridges

§ Attach	to	Commerce	Cloud	Digital	Servers	(studentxxx.training.dw.demandware.net):	Checked

4. Click	Finish.	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	22	

	
Knowledge	Check	

Question	 True	 False	

A	SiteGenesis	Storefront	cartridges	are	an	empty	cartridges	with	empty	sub-folders.	 	 	

You	should	create	a	new	cartridge	when	you	need	to	build	generic	functionality	that	
can	be	reused	in	many	sites.	

	 	

You	can	view	a	list	of	all	files	in	a	cartridge	located	on	a	Digital	server	from	Business	
Manager.	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	23	

Module	4:	JavaScript	Controllers	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Describe	JavaScript	controller	usage	

§ Create,	execute	and	troubleshoot	JavaScript	controllers

Lesson	4.1:	Introduction	to	JavaScript	Controllers	

JavaScript	controllers	enable	you	to	use	a	common	open	technology	to	build	the	business	logic	of	the	
site.	Note:	Salesforce	recommends	that	all	new	sites	use	JavaScript	controllers	rather	than	pipelines.		
However,	if	you	need	to	maintain	an	existing	site	that	use	pipelines,	see	Appendix	A.	

Cartridge	Folder	Structure
<cartridge>	

+-- modules	
+-- package.json	
+-- cartridge	
+-- controllers	
+-- forms
+-- pipelines	
+-- scripts	
+-- static

	

Controller	Code	Example	

Here	is	a	simple	example	of	a	JavaScript	controller.	

	
var guard = require('storefront_controllers/cartridge/scripts/guard');	
var ISML = require('dw/template/ISML');	

	

function start() {	
 	
 ISML.renderTemplate(
 'helloworld1.isml',

{
 myParameteronISML:"Hello from Controllers"

}
); 	
};	
exports.Start = guard.ensure(['get'], start);	

	

The	require	keyword	imports	a	class	from	the	API	package	to	be	used	in	the	code.	
	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	24	

The	guard	exposes	the	function	with	a	new	name.	In	this	case,	the	function	start	is	exposed	to	the	
URL	with	the	name	Start.	It	can	also	enforce	an	http	method	(In	this	case,	it	is	exposing	the	function	
with	a	get	method).	
	
The	ISML	object	gives	the	control	to	ISML,	which	can	display	the	results.		You	can	use	response	object	
directly	to	display	the	results	as	shown	below	but	it	is	not	recommended.		
	
response.setContentType('text/html');
response.getWriter().println('<h1>Hello World from Javascript controllers!</h1>');

Ideally	the	output	should	be	rendered	through	ISML	which	is	the	view	(Just	like	HTML	or	JSP).	Also	to	
pass	the	results	to	the	ISML.		Here	is	an	example	code	to	output	the	results	to	an	isml	named	
demo.isml and	passing	a	string	message	to	the	parameter myParameter to	the	ISML.

 ISML.renderTemplate(
 'demo.isml',

{
myParameter:”Message from Controllers”

}
);

The	parameter	myParameter	gets	loaded	on	a	hashmap	named	pdict	and	can	can	be	retrieved	from	
the	ISML	(demo.isml)	using	the	syntax	shown	below.			
	
${pdict.myParameter}

	
More	details	about	the	pdict	are	coming	later	in	this	course.		
		

	

Exercise:		Create	a	JHelloWorld	JavaScript	Controller	

1. In	Business	Manager,	select	Administration	>	Sites	>	Manage	Sites	>	SiteGenesis	>	Settings.	

2. If	it	is	not	already	there,	add	the	storefront_controllers	cartridge	to	the	cartridge	path.		It	
should	now	be	similar	to:	

11. training:storefront_controllers:storefront_core

3. Upload	your	cartridge	to	the	Sandbox:	

4. Select	Eclipse.	Right-click	and	select	DigitalServer	>	Properties	>	Project	References.	Check	the	
storefront_controllers	cartridge.	

5. Create	a	new	controller	named	JHelloWorld.js		in	the	training	cartridge	(right-click	controllers.	
Select	New	file).	Note:	This	is	the	only	cartridge	that	you	will	use	in	this	course.	

6. Copy	and	paste	the	following	structure	to	create	a	start	function.	Use	ISML	and	guard.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	25	

/**
* A hello world controller. This file is in cartridge/controllers folder	
* @module controllers JHelloWorld 	
*/	

	
var guard = require('storefront_controllers/cartridge/scripts/guard');	
var ISML = require('dw/template/ISML');	

	
function start() {	
 	
};	
exports.Start = guard.ensure(['get'], start);	

	

7. Inside	the	function	start,	add	the	following	code	to	render	the	control	to	ISML:	
 ISML.renderTemplate(
 'helloworld1.isml', {	
 myParameteronISML:	

 "Hello from Controllers"	
}	

);	

8. In	the	templates/default	folder,	create	an	ISML	file	named	helloworld1.isml with	the	
following	code	in	it.	Note:	pdict	will	be	discussed	later.	
 ${pdict.myParameteronISML}

9. Execute	the	controller.	

10. Navigate	to	the	storefront.	
11. At	the	end	of	the	URL	add	/default/JHelloWorld-Start	

12. Press	<enter>	to	execute	the	controller.	

Pipeline	Dictionary	to	Global	Variables	

pdict	is	a	hashmap	on	which	key,	object	pairs	can	be	loaded.		However,	there	are	some	built	in	pdict	
keys	(variables)	that	provide	access	to	the	most	commonly	used	objects,	such	as	session	and	request.		

JavaScript	controllers	can	use	alternatives	to	pdict	keys.		Here	are	some	of	them.	The	strikethroughs	indicate	
implicit	packages	or	classes	in	JavaScript	controllers.	
	
pdict	keys	 Alternatives	
CurrentSession	 TopLevel.global.session	
CurrentRequest	 TopLevel.global.request	
CurrentCustomer	 TopLevel.global.customer	
CurrentHttpParameterMap	 TopLevel.global.request.httpParameterMap	
CurrentPageMetaData	 TopLevel.global.request.pageMetaData	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	26	

CurrentForms	 TopLevel.global.session.forms	

	

In	other	words,	controllers	have	access	to	request, response, session,
customer		objects	if	you	have	used	the	valid	import	or	require	statements.		They	also	have	access	to	
CurrentHttpParameterMap	variable	using	request.httpParameterMap	and	
pageMetaData.																																	

	
Exercise:		Create	a	JavaScript	Controller		

The	goal	of	this	activity	is	to	display	query	parameters	using	JavaScript	controllers.	

1. Create	a	controller	named	JCall.js	in	the	controllers	folder.		

2. Use	the	quickcard	(section	“Import	an	Object”)	to	require	ISML	and	guard	in	your	controller.	

3. Use	the	quickcard	(section	“Function	declaration	and	exposure”)	to	declare	the	function	and	
expose	start	function	as	Start	

4. Inside	the	start	function,	paste	the	following	template:	
 var myParam =

/* Use the quickcard section “Dealing with query parameters” get the
Parameter named param */	

 	
 if (myParam.stringValue != null)	
 {	

/* Use the quickcard section “Giving control to ISML” to give control
to call/jnotEmpty.isml 	
and loading myParam on a variable paramOnPdict	
*/ 	

 	
 }	
 else{	
 ISML.renderTemplate(
 'call/jempty.isml',

{
paramOnPdict:'param not found'

} 	
);	

 };	

5. Follow	the	instructions	in	the	template	comments	to	complete	the	code.		

6. Create	two	templates	jnotEmpty.isml	and	jempty.isml (under	
templates/default/call)	that	display	different	messages.		

The	successful	path	should	have	an	ISML	code	in jnotEmpty.isml	as	shown:

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	27	

Got the parameter ${pdict.paramOnPdict.stringValue}	

The	path	which	does	not	have	parameter	()	should	have	ISML	code	in	jempty.isml	as	shown:	
Could not find the parameter!	

7. Execute	the	code	by	Navigating	to	storefront	and	adding	/default/JCall?param=1234	to	the	
URL	at	the	end.	

8. Execute	the	code	without	the	query	parameter.	

Import	Packages	

Use	the	require	method	to	import	Digital	script	packages,	JavaScript,	or	Digital	script	modules.	You	
can	use	it	anywhere	in	your	script	so	that	you	can	only	load	the	functionality	as	needed	to	improve	
performance.	

For	example:	require('dw/system/Transaction')	

Note:	Earlier	versions	of	SiteGenesis	used	importPackage	to	import	Digital	packages	into	scripts.	
Require	is	now	the	recommended	approach	as	it	has	it	has	greater	flexibility	and	improves	
performance.	However,	you	may	still	see	importPackage	if	you	are	maintaining	a	site	from	earlier	
version.	

Troubleshooting	with	the	Request	Log	Tool

The	Request	Log	tool	enables	you	to	troubleshoot	error	messages	on	your	storefront.	It	displays	the	log	
for	the	last	request	and	any	request	prior	to	that	request	during	the	current	session.	You	can	view	both	
debug	messages	and	error	messages.	The	tool	is	part	of	the	Storefront	Toolkit,	which	is	available	in	all	
instances	(except	Production).	

	

	

Exercise:		Run	the	Request	Log	

1. From	Business	Manager,	click	the	storefront	link	to	open	your	sandbox	storefront.	

2. Click	the	Storefront	Toolkit	drop-down	located	in	the	upper-left	hand	corner	of	the	site.	

3. Check	the	Request	Log.	The	Request	Log	window	displays.	

Note:	If	a	login	screen	displays	instead	of	the	request	log,	enter	your	Business	Manager	login	
credentials;	close	the	window;	and	repeat	steps	2-3.	

Lesson:	Displaying	a	Product	Using	Script	API

	

Exercise:		Create	a	JavaScript	Controller	JShowProduct	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	28	

1. Create	a	new	JavaScript	Controller	called	JShowProduct.js.		

2. Copy	and	paste	the	following	template	to	it.	
'use strict';
/** @module controllers/JShowProduct */	

var ISML = require('dw/template/ISML');	
var guard = require('storefront_controllers/cartridge/scripts/guard');	

function start() {	

}	
exports.Start = guard.ensure(['get'], start);	

3. Use	the	require	syntax	to	import	ProductMgr	class	from	dw.catalog	package	after	the	guard.	

4. Inside	the	start() function,	paste	the	following	code	to	get	the	parameter	pid	from	the	URL.	

 var parameterId =request.httpParameterMap.<parameter name>.stringValue

5. Get	the	product	from	ProductMgr	as	shown.	

 var product = ProductMgr.getProduct(parameterId);	

6. Copy	and	paste	the	following	code	to	forward	the	control	to	ISML.	
 if (product===null) {
 ISML.renderTemplate(

'productnotfound.isml',
{
message:'product with id '+parameterId+' not found'

} 	
); 	
 } 	
 else{	
 ISML.renderTemplate(
 'productfound.isml',

{
myProduct:product
} 	

); 	
 }	

7. If	not	already	created,	create	templates/default/productnotfound.isml	with	the	
following	code	in	it.	
${pdict.message}

8. If	not	already	created,	create	templates/default/productfound.isml	with	the	
following	code	in	it.	
${pdict.myProduct.name} has been found

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	29	

9. Run	the	JavaScript	Controller	(add	/default/JShowProduct?pid=P0048	at	the	end	of	
storefront	URL).	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	30	

	
Knowledge	Check	

Commerce	Cloud	JavaScript	Controller	Review	Questions	 True	 False	

If	the	execution	of	a	controller	is	not	providing	accurate	results,	
you	should	use	the	request	log	tool.		

	 	

You	should	preferably	use	response.getWriter(..)	to	
print	results	on	the	browser	

	 	

	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	31	

Module	5:	ISML	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Use	ISML	tags	in	templates,	including:	<isset>,	<isinclude>,	<isdecorate>,	and	conditional	
tags.

§ Use	local	and	remote	includes	in	ISML.

Introduction

Internet	Store	Markup	Language	(ISML)	templates	are	files	with	a	.isml	extension.	They	define	how	
data,	tags,	and	page	markup	are	transformed	into	HTML	that	is	sent	to	the	browser,	using	Cascading	
Style	Sheets	(CSS)	for	page	layout	and	styling.		

Commerce	Cloud	Digital	uses	templates	to	generate	dynamic	HTML-based	web	pages	for	responses	
sent	back	to	the	client.	Templates	are	created	using	ISML	tags	and	expressions.	

When	describing	a	Digital	application	using	the	Model-View-Controller	(MVC)	pattern,	the	Digital	Script	
API	represents	the	model,	templates	represent	the	view,	and	the	JavaScript	controllers	are	the	
controller.	

Create	an	ISML	Template	

1. In	UX	Studio,	select	a	cartridge	in	Navigator	View.	Select	File	>	New	>	ISML	Template.	The	Create	
Template	dialog	displays.	

2. In	the	parent	folder	field,	enter	the	name	of	the	folder	where	you	want	to	store	your	template.	If	
the	folder	does	not	exist,	it	will	be	created.	

3. In	the	Template	name	box,	enter	a	name	for	your	template.	You	do	not	need	to	enter	the	.isml	
extension.	

4. Click	Finish.		

Your	new	template	opens	in	the	ISML	editor	in	UX	Studio.	This	editor	supports	HTML	and	ISML	system	
tag	auto-completions	as	shown.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	32	

	
Lesson	5.1:	ISML	Tags	and	Expressions	

ISML	tags	are	Commerce	Cloud	proprietary	extensions	to	HTML	that	developers	use	inside	ISML	
templates.	ISML	tags	and	expressions	can	only	be	written	in	in	ISML	templates.	ISML	tags	are	SGML-like	
extension	tags	that	start	with	is,	e.g.	<isprint>	and	describe,	together	with	regular	HTML,	how	
dynamic	data	will	be	embedded	and	formatted	on	the	page.	

Depending	on	their	tasks,	ISML	tags	can	be	divided	into	the	following	groups:	

Group	 Tags	 Purpose	

HTTP-
related	

<iscookie>	 Sets	cookies	in	the	browser	
<iscontent>	 Sets	the	MIME	type	

<isredirect>	 Redirects	browsers	to	specific	URLs	

<isstatus>	 Define	status	codes	

Flow	
Control	

<isif>	 Evaluates	a	condition	
<iselse> <iselseif>	 Specifying	alternative	logic	when	an	<isif>	condition	does	

not	evaluate	to	true	

<isloop>	 Creates	a	loop	statement	

<isnext>	 Jumps	to	the	next	iteration	in	a	loop	statement	

<isbreak>	 Terminates	loops	
<isset>	 Creates	a	variable	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	33	

Variable-
related	

<isremove>	 Removes	a	variable	

Include	

<isinclude>	 Includes	the	contents	of	one	template	on	the	current	template	
<ismodule>	 Declares	a	custom	tag	

<iscomponent>	 Includes	the	output	of	a	controller	or	pipeline	on	the	current	
page	

Scripting	
<isscript>	 Allows	Commerce	Cloud	Digital	Script	execution	inside	

templates	

Forms	 <isselect>	 Enhances	the	HTML	<select>	tag	

Output	
<isprint>	 Formats	and	encodes	strings	for	output	
<isslot>	 Creates	a	content	slot	

Others	

<iscache>	 Caches	a	page	
<iscomment>	 Adds	comments	
<isdecorate>	 Reuses	a	template	for	page	layout	
<isreplace>	 Replaces	content	inside	a	decorator	template	

Active	
Data	

<isactivedatahead>	 Allows	collection	of	active	data	from	pages	with	a	<head> tag	
<isactivecontenthead>	 Collects	category	context	from	a	page	for	active	data	

collection	

<isobject>	 Collects	specific	object	impressions/views	dynamically	

ISML	Expressions	

ISML	Expressions	are	based	on	the	Digital	Script	language.	Since	Digital	Script	implements	the	
ECMAScript	standard,	access	to	variables,	methods,	and	objects	is	the	same	as	using	JavaScript.		

ISML	expressions	are	embedded	inside	${…}	to	enable	the	ISML	processor	to	interpret	the	expression	
prior	to	executing	an	ISML	tag	or	the	rest	of	the	page.	ISML	expressions	provide	access	to	data	by	using	
dot	notation.	This	example	accesses	a	property	of	the	Product	object	in	the	pipeline	dictionary:	

${pdict.myProduct.UUID} 	

The	difference	between	this	ISML	expression	and	one	used	inside	a	pipeline	node	property	(i.e.	
decision	node)	is	that	in	ISML	you	must	specify	the	${pdict.object.property}	if	you	want	to	
access	a	value	in	the	pipeline	dictionary,	whereas	inside	pipeline	node	properties	the	access	to	the	
pdict	is	implicit	and	the	${}	not	used:	i.e.	Product.UUID	.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	34	

ISML	expressions	can	also	access	Digital	Script	classes	and	methods.	Two	packages	are	available	
implicitly	in	ISML,	so	classes	do	not	need	to	be	fully	qualified:	

§ TopLevel	package:	session.getCustomer()	

§ dw.web	package:	URLUtils.url(),	URLUtils.webRoot()		

TopLevel package	has	a	class	named global which	is	implied	so	doesn’t	need	to	be	in	the	
prefix.

Other	access	to	classes	and	methods	must	be	fully	qualified:		
${dw.system.Site.getCurrent().getName()}	

Examples	of	ISML	expressions:	
${TopLevel.global.session.getCustomer().getProfile().getLastName()}	

Since	TopLevel	package	and	global	class	are	implicit,	the	previous	code	is	equivalent	to	the	following	
code:	

${session.getCustomer().getProfile().getLastName()}	

You	can	replace	the	get	method	with	properties.	So	the	previous	code	example	is	equivalent	the	
following	code:	

${session.customer.profile.lastName}	
${pdict.CurrentSession.customer.profile.lastName}	
${pdict.CurrentCustomer.profile.lastName}	
${dw.system.Site.getCurrent().getName()}	
${dw.system.Site.current.name}	

ISML	expressions	allow	complex	arithmetical,	boolean,	and	string	operations:	
${pdict.myProduct.getLongDescription() != null} 	

This	course	covers	the	most	frequently	used	tags:	<isset>,	<isinclude>,	<isdecorate>,	
<isloop>	and	the	conditional	tags	<isif>, <iselseif>,	and	<iselse> 	

Note: Although	there	are	some	ISML	tags	that	do	not	need	a	corresponding	closing	</>	tag	(i.e.:	the	
<isslot>	tag),	it	is	best	practice	to	always	use	a	closing	tag.	

<isredirect>	tag	

This	tag	can	redirect	the	control	to	another	pipeline	and	redirect	can	be	permanent	or	temporary.	
<isredirect location="${URLUtils.https('Account-Show')}"
permanent="true"/>	
<isredirect location="${URLUtils.url('LoginPanel')}">	
<isredirect location="${URLUtils.url('LoginPanel-Start')}"
permanent="false">	

<iscomment>	tag	

This	tag	is	used	to	write	comments	in	the	ISML.	For	example.	
<iscomment>This is a comment....</iscomment> 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	35	

<isprint>	tag	

This	tag	can	print	formatted	output	of	a	variable	or	an	expression	to	the	browser.		In	order	to	do	so,	it	
uses	built	in	styles	or	formatters.		You	can	see	the	documentation	for	formatters.		Examples	using	
isprint	with	styles:	

 <isprint value="${myMoney}" style="MONEY_LONG"/>	
 <isprint value="${myMoney}" style="MONEY_SHORT"/>	
 <isprint value="${myNumber}" style="DECIMAL"/>	
 <isprint value="${myNumber}" style="INTEGER"/>	
 <isprint value="${myDate}" style="DATE_LONG"/>	
 <isprint value="${myDate}" style="DATE_SHORT"/>	
 <isprint value="${myString}" encoding="off"/>	

MONEY_LONG	prints	money	with	currency	symbol	e.g.	$3,333.00		

MONEY_SHORT	prints	money	without	the	symbol	e.g.	3,333.00		

DECIMAL	prints	the	value	with	two	decimal	places	e.g.	3,455.35	

INTEGER	rounds	of	and	prints	only	the	integer	portion	e.g.	3,455	

DATE_LONG	prints	date	in	the	long	format	like	Jul	24,	2016		

DATE_SHORT	prints	date	in	the	long	format	like	07/24/2016	

encoding="off"		prints	strings	containing	HTML,	for	example:	

<h1> Welcome to Developing for Digital I Class</h1>	prints	as:	

	
Welcome	to	Developing	for	Digital	I	Class	
	

	
Lesson	5.2:	Creating	and	Accessing	Variables	

You	can	create	and	access	your	own	custom	variables	in	an	ISML	template	by	using	the	<isset>	tag.		

When	using	the	<isset>	tag,	name	and	value	are	required	attributes	that	must	be	assigned.	The	
default	scope	is	session,	so	you	must	be	careful	to	qualify	your	variables	accordingly	if	you	do	not	
want	them.		

Example:		
<isset	
name = "<name>"	
value = "<expression>"	
scope = "session"|"request"|"page"	
>	

Here	are	some	examples	of	using	isset	tag	and	retrieving	the	variables	back	from	the	scope	

session	Scope	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	36	

<isset name = "x" value = "12343" scope="session"/>	
<isset name = "x" value = "12343" /> (session	is	implied	here)	
<isset name = "x" value = "${12343}" scope="session"/> 	

Retrieving	from	session	
${session.custom.x}	
${pdict.CurrentSession.custom.x}	

request	Scope	
<isset name="x" value="${12343}" scope="request"/>	
${request.custom.x}	
${pdict.CurrentRequest.custom.x}	

pdict	Scope	
<isset name = "x" value = "${12343}" scope = "pdict"/>	

Retrieving	from	pdict	
${pdict.x}	

Page	Scope	
<isset name = "x" value = "${12343}" scope = "page"/>	
${page.custom.x} does	not	work	

Retrieving	form	page	
${page.x} does not work	
${x} works	

Value	Attribute	

The	value	attribute	can	be	a	hardcoded	string	or	number,	or	an	ISML	expression	accessing	another	
variable	or	object.	

Value	Type	 Example	
String	 value=”hardcoded text”	
Expression	value=”${pdict.myProduct.name}” 	

Scope	Attribute	

A	variable’s	scope	attribute	refers	to	its	accessibility	level,	such	as	session,	request,	and	page.		It	
is	important	to	understand	the	scopes	of	a	variable	and	which	objects	can	access	that	variable	at	each	
level.	Listed	are	the	scopes	from	widest	to	narrowest	access.		

Scope	 Description	

Global	
Preferences	

Available	to	any	site	within	an	organization.	
Accessible	via	the	dw.system.OrganizationPreferences	class.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	37	

Site	
Preferences	

Available	to	any	controller	or	pipeline	executing	as	part	of	a	site.	
Accessible	via	the	dw.system.SitePreferences	class.	

Session	 Available	through	the	whole	customer	session,	even	across	multiple	requests.	Any	
variable	added	to	the	session	scope	becomes	a	custom	attribute	of	the	session	object.	
Since	it	is	not	a	standard	attribute	it	must	be	accessed	with	the	session.custom	
qualifier:	
${session.custom.myVar} 	

pdict	 A	hashmap,	the	scope	of	which	is	the	JavaScript	controller	itself.	It	can	span	across	
multiple	requests	if	there	is	a	form	displayed	and	submitted	as	a	part	of	the	JavaScript	
controller.	

Request	 Available	through	a	single	browser	request-response	cycle;	it	does	not	persist	in	
memory	for	a	subsequent	request.	Typically,	it	has	the	same	scope	as	the	JavaScript	
controller	execution.	
They	are	available	via	the	request	scope.	Similar	to	session	variables,	you	must	prefix	
request	variables	with	a	qualifier	request.custom	when	accessing	them:	
${request.custom.myRequestVar} 	

Page	 Available	only	for	a	specific	ISML	page,	and	its	locally	included	pages.	Their	scope	is	
limited	to	the	current	template,	and	any	locally	included	templates.	They	are	accessed	
without	a	prefix:	
${pageVar}	

Slotcontent	 Available	only	in	the	rendering	template	for	a	content	slot.	

<isloop>	
variable	

Available	only	inside	the	loop.	

	

	
Exercise:		Set	and	Retrieve	Variables	

1. Create	a	controller	(using	the	quickcard	as	a	guide)	called	VarTest.	Note:	You	can	use	JVarTest.js	
from	jsolutions	cartridge.

2. Create	a	new	ISML	template	called	vartest.	

3. In	the	template,	create	a	new	variable	called	sessionVar	with	hardcoded	text	as	the	value	and	
print	the	value	to	the	page:

<isset name="sessionVar" value="${1}" scope = "session"/>

4. Display	the	contents	of	the	sessionVar	variable.	Its	value	is:	
 ${session.custom.sessionVar}

5. Open	a	web	browser	and	test	the	controller.	

6. Add	similar	examples	of	request	and	page	variables	to	the	vartest	template	and	display	them.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	38	

7. Modify	the	examples	using	boolean	and	string	values	(i.e.,	“${false}”	and	“Hello”).	

8. Test	the	JavaScript	controller	again	to	see	the	new	variable	values.	

9. Increment	the	variables	using	the	following	syntax:	
"${request.custom.requestVar + 1}"	

	
Lesson	5.3:	Reusing	Code	in	Templates	

Reusable	code	saves	time	in	both	code	creation	and	update.	It	also	reduces	errors	and	helps	to	ensure	
a	consistent	look	and	feel.	

You	can	use	the	following	tags	to	reuse	code	in	ISML	templates:	

Tag	 Description	

<isinclude> 	 Embed	an	ISML	template	inside	an	invoking	template.	There	are	two	types:	

12. Local	Include	–	include	the	code	of	one	ISML	template	inside	of	another	while	
generating	the	page.	All	variables	from	the	including	template	are	available	in	
the	included	template,	including	page	variables.	SiteGenesis	uses	local	includes	
extensively.

13. Remote	Include	–	include	the	output	of	another	controller	or	pipeline	inside	of	
an	ISML	template.	This	is	used	primarily	for	partial	page	caching.	Note:	Pipeline	
dictionary	and	page	variables	from	invoking	template	are	not	available	in	the	
included	template.	The	only	variables	available	to	a	remotely	included	
JavaScript	controller	are	session	variables.

Note:	Includes	from	another	server	are	not	supported.

<isdecorate>	

	
Decorate	the	enclosed	content	with	the	contents	of	the	specified	(decorator)	
template.	A	decorator	is	an	ISML	template	that	has	HTML,	CSS,	and	the	overall	
page	design.		

<ismodule>	 Define	your	own	ISML	tags	which	can	be	used	like	any	standard	tags.	

<iscomponent>	 Invokes	a	remote	include.	You	can	pass	as	many	attributes	as	you	want	without	
having	to	use	the	URLUtils methods.	

Local	Include	Syntax	

<isinclude template=”[directory/]templatename”/> 	

Note:	You	do	not	need	to	add	the	.isml	extension	when	including	a	template.	

Example	

Template	1:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	39	

<h1>My Template</h1>
 	
<isinclude template=”extras/calendar”/> 	

	

Template	2:	

(calendar.isml)	
<h1>Included template</h1> 	

When	the	browser	renders	the	template,	the	user	will	see:	

My	Template	

Included	template	

Locally	include	one	template	into	another		

1. Open	any	ISML	template.	

2. In	the	ISML	code,	determine	where	you	want	to	embed	the	locally	included	template.	

3. Add	the	<isinclude>	tag	to	the	template.	

4. Save	the	template.	

5. To	test,	use	your	template	in	a	JavaScript	controller.		

	

Exercise:		Use	Local	Includes		

1. Study	the	template	to	include:	

2. Locate	and	study	the	producttile.isml	template.	

3. Notice	that	the	first	<isset>	tag	expects	pdict.product	in	the	pipeline	dictionary.	

4. Include	producttile.isml	in	your	current	template:	

5. Open	the	JShowProduct	controller	that	you	previously	created.	

Note	that	you	will	output	myProduct	object	on	pdict,	however	the	producttile	template	
expects	pdict.product.	These	are	not	the	same	variables.	

6. Open	the	productfound.isml	template.	

7. Create	a	pipeline	dictionary	variable	that	matches	the	variable	and	scope	expected	in	the	
producttile.isml	template:	

<isset	name="product"	value="${pdict.myProduct}"	scope="pdict"/>			

8. Use	a	local	include	to	display	the	product	tile:	

<isinclude	template="product/producttile"/>		

9. Test	the	JavaScript	controller	with	an	existing	product:	
JShowProduct-Start?pid=P0048.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	40	

Remote	Includes
Using	a	remote	include	in	a	template	will	invoke	another	controller	or	pipeline	which	returns	HTML	at	
runtime.	This	example	calls	a	pipeline	without	passing	URL	parameters:		

Syntax	
<isinclude url=”pipeline_url”/> 	

Example
<isinclude url="${URLUtils.url('Product-IncludeLastVisited')}" /> 	

In	this	example,	the	dw.web.URLUtils url()	method	builds	a	site-specific	URL	for	the	Product-
IncludeLastVisited	controller.	This	is	a	best	practice	since	you	should	never	hardcode	a	controller	
URL	since	it	would	contain	a	specific	server	in	it.	Use	the	URLUtils	methods	instead.		

Here	is	an	example	of	passing	URL	parameters:	
<isinclude url="${URLUtils.https('Product-
GetLowATSThreshold','productid','ETOTE','typeOfTV','Wide-screen')}"/> 	

The	page	generated	by	the	invoked	controller	can	be	dynamic	or	it	may	come	from	cache.		

You	can	also	implement	a	remote	include,	via	the	<iscomponent>	tag.	It	supports	passing	multiple	
attributes.	

<iscomponent 	
 pipeline = <string> | <expression> 	
 [locale = <string> | <expression>] 	
 [any number of additional arbitrarily named parameters] 	
/> 	

Example	
<iscomponent pipeline="Product-GetLowATSThreshold" productid="ETOTE"
typeOfTV="Wide-screen"/>

Using	a	Remote	Include	

1. Open	an	ISML	template.	

2. In	the	ISML	code,	determine	where	you	want	to	embed	the	remotely	included	controller.	

3. Add	the	<isinclude>	tag	to	the	template	using	the	following	as	an	example	(param	and	value	
are	optional):	
<isinclude url="${URLUtils.url(‘Controller-Function’, [‘param’, ‘value’,
…])}"/>

4. Save	the	template.	

5. Test	your	controller.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	41	

	

Exercise:		Use	a	Remote	Include	

1. Study	the	Digital	Script	API	help	for	the	dw.web.URLUtils class,	url()	method.	

2. Locate	and	study	the	Product-IncludeLastVisited 	(look	for	Product.js)	controller	in	the	
storefront	cartridge.	

3. Study	the	lastvisited.isml	template,	specifically:	

§ The	use	of	the	<isloop>	tag.	

§ The	use	of	the	pdict.LastVisitedProducts.	

4. Open	the	JShowProduct	controller	and	the	productfound.isml	template.	

5. Add	a	remote	include	at	the	bottom	of	the	template	to	show	the	last	visited	products.	Verify	your	
syntax	to	ensure	it	is	exactly	as	shown:	
<isinclude url="${URLUtils.url('Product-IncludeLastVisited') }"/>

6. Test	the	controller	with	an	existing	product:	JShowProduct-Start?pid=P0048.	

7. On	a	different	browser	tab,	visit	at	least	three	other	products	in	the	storefront.	

8. Retest	the	controller:	all	the	visited	products	should	display.	

Using	Decorator	Templates

The	decorator	template	uses	<isreplace/> to	identify	where	to	include	the	decorated	content.	The	
following	example	shows	a	decorator	and	the	area	where	the	code	is	being	replaced.	

	

	
Typically,	the	decorator	template	only	uses	one	tag,	<isreplace/>.	However,	you	can	use	multiple	
tags.	If	the	decorator	template	uses	multiple	<isreplace/>	tags,	the	content	to	be	decorated	will	be	
included	for	each	<isreplace/>	tag.	

A	typical	use	case	is	to	decorate	the	content	body	with	a	header	and	footer.		

Example:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	42	

Template	using	a	decorator	

<isdecorate template="decoratorFolder/pt_myDecorator">	
 ...My content...to be decorated	
</isdecorate>
	

Decorator	Template	(templates/default/decoratorFolder/pt_myDecorator.isml)							

 <html> 	
 <head>…</head> 	
 <body> 	
 This contains Header/Banner/Menus etc.	
 <isreplace/> 	
 This contains footer/Copyright notice etc.	
 </body> 	
 <html> 	

Final	generated	page	

 <html> 	
 <head>…</head> 	
 <body> 	
 This contains Header/Banner/Menus etc.	
 ...My content...to be decorated	
 This contains footer/Copyright notice etc.	
 </body> 	
 <html> 	

Using	the	<isdecorate>	Tag	

1. Open	the	ISML	template	that	has	the	code	you	want	to	replace	in	a	decorator.	Add	the	
<isdecorate>	tag	around	the	code	to	include	in	a	decorator.		
<isdecorate template="[directory/]decoratorname">
 Your code goes here.
</isdecorate>

2. Save	the	template.	

3. Open	the	decorator	template.	If	you	are	using	a	SiteGenesis	template,	the	decorator	templates	
names	start	with	pt_.	

4. Find	the	location	in	the	code	where	you	want	to	use	the	<isreplace/>	tag.	Add	the	tag	to	the	
template.	

5. Test	the	page	by	calling	the	controller	that	uses	the	decorator	template.	For	example,	if	the	
decorator	template	is	used	by	the	Account-Show	controller,	type	in	the	URL	that	will	execute	the	
Account-Show	controller.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	43	

	

Exercise:		Use	a	Decorator		

1. In	UX	Studio,	using	the	Search	function,	locate	the	product/pt_productdetails	template.	
Notice	the	different	areas	of	the	page	this	decorator	defines.	

2. Locate	the	<isreplace/>	tag.	

3. Open	the	ShowProduct	pipeline	or	JshowProduct.js	that	you	created	earlier.	

4. In	your	productfound.isml	template,	remove	any	html,	body	and	head	tags	as	the	decorator	
already	contains	these.	

5. Add	the	product/pt_productdetails	decorator	so	it	wraps	the	existing	content	on	the	page:	
	
<isdecorate template="product/pt_productdetails">
...existing content...	
</isdecorate>	

6. Test	the	controller	with	an	existing	product:	ShowProduct-Start?pid=P0048 (or
JShowProduct-Start?pid=P0048)	

Creating	Custom	Tags	with	<ismodule>

There	are	three	key	ISML	files	required	for	creating	and	using	a	custom	tag:	

§ The	ISML	file	which	sets	the	values	of	any	attributes	of	the	custom	tag.	This	example	is	in
util/modules.isml:

<ismodule template="components/breadcrumbs"	
 name="breadcrumbs"	
 attribute="bctext1"	
 attribute="bcurl1"	
 attribute="bctext2"	
 attribute="bcurl2"	
 attribute="bctext3"	
 attribute="bcurl3"	
/>	

§ The	ISML	file	which	specifies	what	happens	when	the	attributes	are	passed.	See	the	code	snippet	
from	inside	breadcrumbs.isml:	

<isif condition="${pdict.bcurl1 != null}">
 …	
 	
 ${pdict.bctext1}	
</isif>	

§ Invoke	the	custom	tag	inside	an	ISML	template:	
<html …>

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	44	

<isinclude template=”util/modules”/>	
<head>	
…	
</head>	
<body>	
…	
<isbreadcrumbs bctext1=”…” bcurl1=”…”/>	
</body>	
</html>	
	

Here	is	how	it	would	be	organized.	

	
	

	

Exercise:		Use	a	Custom	Tag		

In	this	exercise,	you	will	invoke	a	custom	tag	already	created	in	SiteGenesis.	

1. Open	the	util/modules.isml	template.	

2. Locate	the	producttile	custom	tag	definition.	Note	the	different	inputs	defined	for	the	
producttile	custom	tag.	

3. Locate	the	template	that	implements	this	custom	tag,	and	study	it:	producttile.isml.	

4. Open	the	productfound.isml	template	that	you	were	referring	to	from	JshowProduct	
controller.	

5. Remove	the	remote	include.	

6. Change	the	existing	local	include	to	include	the	template	that	contains	all	custom	tag	definitions:		
<isinclude template="util/modules">

7. Invoke	the	<isproducttile>	custom	tag	passing	the	product	from	the	pipeline	dictionary:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	45	

<isproducttile	product="${pdict.myProduct}"/>

8. Test	the	controller	with	an	existing	product:	JShowProduct-Start?pid= P0048.	

9. In	the	custom	tag	invocation,	enable	other	attributes	expected	by	the	custom	tag.	Notice	that	a	
proper	Digital	script	expression	is	required	to	specify	true	or	false:	
<isproducttile product="${pdict.myProduct}" showswatches="${true}"
showpricing="${true}" />

10. Test	the	JShowProduct	controller.	

	
Lesson	5.4:	Conditional	Statements	and	Loops	

Most	programming	languages	use	the	keywords	if,	else	if,	and	else	for	conditional	statements.	
Commerce	Cloud	Digital	uses	similar	keywords,	but	adds	is to	the	beginning	of	the	syntax:		

<isif condition=”${ISML expression evaluated}”>	
 Do something here if true.	
<iselseif condition=”${check another condition}”>	
 Do something if this one is true.	
<iselse>	
 If none of the above conditions are true, do this.	
</isif>	

Using	Conditional	Statements	

1.		To	use	a	conditional	statement	in	an	ISML	template:	

a. Determine	the	location	on	your	ISML	page	where	you	want	to	write	your	conditional	statement.	

b. Open	your	conditional	statement	with	the	<isif condition=””>	tag.	

Example:
<isif condition="${pdict.myProduct.online}"> 	
 Product is online	
<iselse>	
Product is offline	
</isif>	

Loops	

With	<isloop> you	can	loop	through	the	elements	of	a	specified	collection	or	array.	For	example,	
you	can	list	data	such	as:	categories,	products,	shipping	and	payment	methods.	You	can	nest	
<isloop>	statements.	

You	can	use	the	following	supporting	tags	with	<isloop>:		

§ Use	the	<isbreak>	tag	within	a	loop	to	terminate	a	loop	unconditionally.	If	used	in	a	nested	loop,	
it	terminates	only	the	inner	loop.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	46	

§ Use	<isnext>	to	jump	forward	within	a	loop	to	the	next	list	element	of	an	iterator.	This	tag	affects	
only	the	iterator	of	the	inner	loop.	If	an	iterator	has	already	reached	its	last	element,	or	an	iterator	
is	empty	when	an	<isnext>	is	processed,	the	loop	is	terminated	instantly.

The	full	syntax	for	using	the	<isloop>	tag	is:
<isloop	
iterator|items = "<expression>"	
[alias|var = "<var name>"]	
[status = "<var name>"]	
[begin = "<expression>"]	
[end = "<expression>"]	
[step = "<expression>"]>	
…do something in the loop using <var_name>…	
</isloop>	

	

The	attributes	have	the	following	usage:	

Attribute	 Description	

items	
(iterator)	

Expression	returning	an	object	to	iterate	over.	Attributes	iterator	and	items	can	be	used	
interchangeably.	

var	(alias)	 Name	of	the	variable	referencing	the	object	in	the	iterative	collection	referenced	in	the	
current	iteration.	

Status	 Name	of	the	variable	name	referencing	loop	status	object.	The	loop	status	is	used	to	
query	information	such	as	the	counter	or	whether	it	is	the	first	item.	

Begin	 Expression	specifying	a	begin	index	for	the	loop.	If	the	begin	is	greater	than	0,	the	
<isloop>	skips	the	first	x	items	and	starts	looping	at	the	begin	index.	If	begin	is	smaller	
than	0,	the	<isloop>	is	skipped.	

End	 Expression	specifying	an	end	index	(inclusive).	If	end	is	smaller	than	begin,	the	<isloop>	
is	skipped.	

Step	 Expression	specifying	the	step	used	to	increase	the	index.	If	step	is	smaller	than	1,	1	is	
used	as	the	step	value.	

	

For	the	status	variable,	the	following	properties	are	accessible:	

Attribute	 Description	

Count	 The	number	of	iterations,	starting	with	1.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	47	

Index	 The	current	index	into	the	set	of	items,	while	iterating.	

First	 True,	if	this	is	the	first	item	while	iterating	(count	==	1).	

Last	 True,	if	this	is	the	last	item	while	iterating.	

Odd	 True,	if	count	is	an	odd	value.	

Even	 True,	if	count	is	an	even	value.	

For	example,	if	the	<isloop>	tag	declares	a	status=”loopstate”	variable,	then	it	is	possible	to	
determine	the	first	time	the	loop	executes	by	using:		<isif condition=”loopstate.first”>.	

Another	example	of <isloop> tag	is:	
<isloop items="${order.object.shipments}" var="Shipment" status="loopState">
 	
<isif condition="${loopState.count >= (pdict.OrderPagingModel.pageSize +
1)}">	
 <isbreak/>	
</isif>	
 <isif condition="${loopState.count==0}">	
 <isnext/>	
 </isif>	
 ${loopState.count}	
 ${loopState.index}	
 ${loopState.first}	
 ${loopState.last}	
 ${loopState.even}	
 ${loopState.odd}	
</isloop>

	

Exercise:		Creating	a	JBasket	JavaScript	Controller	and	Using	a	Loop	in	ISML	

1. Review	the	script	API	(The	instructor	will	help	you	with	this	and	visit	the	package	dw.order).	

2. In	this	package	find	the	class	named	BasketMgr	and	property	named	currentBasket.		Study	
what	it	does.		You	are	going	to	use	it	in	your	code.	

3. Create	a	JavaScript	controller	named	JBasket.js	

4. Copy	and	paste	the	following	template	and	complete	instructions	described	in	the	comment.	
 var ISML = /* get ISML object from dw.template package */
 var guard = require('storefront_controllers/cartridge/scripts/guard');	
 var BasketMgr = /* get BasketMgr from dw.order package */	
 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	48	

 function start() {	
 	
 var basket=BasketMgr.currentBasket;	

	
/*use ISML to display basket on Basket. The rendered ISML should be
showBasket.isml (Use the quickcard section “Giving control to ISML”	for
help*/ 	

 }	
exports.Start = guard.ensure(['get'], start);	

5. Create	an	ISML	named	showBasket.isml	under	templates/default	folder.	

6. Copy	and	paste	the	following	code	in	the	ISML	to	display	the	contents	of	the	basket.		

<isloop	
items="${pdict.Basket.allProductLineItems}" var="productLineItem">	
${productLineItem.product.name}
	
</isloop>	

7. Open	a	browser	to	your	storefront.	Add	products	to	the	cart	first,	including	a	product	with	an	
option	(like	a	TV	warranty).	

8. Open	another	browser	tab	and	invoke	the	Basket-Start	controller.	

9. Add	a	status	attribute	in	the	<isloop>	tag	so	that	you	can	see	what	the	count	and	index	
parameters	return.	

10. Replace	the	allProductLineItems	property	of	the	basket	with	the	method	
getProductLineItems().		

11. Execute	the	code	(Navigate	to	storefront>add	/default/JBasket-Start	at	the	end	of	the	URL)	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	49	

	
Knowledge	Check	

	

Question	 Answer	

1.	 What	ISML	tag	is	used	to	create	a	variable?	 	

2.	 What	ISML	tag	is	used	to	format	output	to	a	page?	 	

3.	 What	ISML	tag	is	used	to	include	a	local	template?	 	

	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	50	

Module	6:	Content	Slots	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Create	content	slots	for	products	and	images.

§ Use	rendering	templates	with	content	slots.

§ Configure	content	slots.

Introduction

A	content	slot	is	an	area	on	the	page	where	a	merchant	defines	content	to	display	based	on	certain	
qualifiers	or	rules.		

A	content	slot	is	used	to	show	different	types	of	content:

§ One	or	many	products	selected	by	the	merchant

§ Category	attributes	(images	or	other	visual)

§ Content	assets	from	the	content	library

§ Static	HTML	and	images	from	the	static	library

To	view	a	content	slot,	use	the	Storefront	Toolkit	>	Content	Information	tool.		Hover	the	mouse	
pointer	around	the	page	to	reveal	where	content	slots	exist	and	to	access	a	link	to	the	slot’s	
configuration	page	in	Business	Manager.	

There	are	several	types	of	content	slots:	

§ Global	slots	can	appear	on	any	page.

§ Category	slots	appear	on	category-specific	pages	since	they	depend	on	the	category	ID.

§ Folder	Slots	–	appear	in	content	library	folders	dependent	on	the	folder	ID.

There	are	many	rules	that	drive	the	appearance	of	a	slot:	marketing	campaigns,	ranks,	AB	tests,	
customer	groups,	etc.	Campaigns	and	A/B	testing	are	out	of	the	scope	of	this	course.

Content	Slots	vs.	Content	Assets	

Slots	are	controlled	by	campaigns:	start/end	dates,	customer	groups,	source	codes,	coupons	and	rank	
are	qualifiers	that	affect	the	appearance	of	a	slot.	Content	Assets	are	reusable	elements	that	do	not	
have	qualifiers.		Content	slots	and	content	assets	are	managed	in	different	areas	within	Business	
Manager.	Slots	are	a	marketing	tool,	therefore	configuration	information	for	content	slots	reside	in	
Site	>	Online	Marketing	>	Content	Slots;	content	assets	are	in	the	Content	module.	

	
Lesson	6.1:	Creating	&	Configuring	Content	Slots	

Creating	a	content	slot	requires	a	collaborative	effort:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	51	

§ The	developer	inserts	a	<isslot> tag	in	a	template	in	the	location	where	the	slot	will	appear.	

§ The	developer	creates	a	rendering	template	for	the	slot	that	defines	how	the	slot	data	is	to	be	
presented.	

§ The	merchant	creates	a	configuration	for	the	slot	in	Business	Manager.	

	
Creating	Content	Slots	-	Developer	Tasks

You	create	a	content	slot	inside	a	template	using	the	<isslot>	tag.	The	tag	must	be	located	exactly	
where	it	should	appear	on	the	page.	Here	are	some	examples	of	tag	usage:	

Global	slot	example:	
<isslot id=”header_banner” description=”…” context=”global”/>	

Category	slot	example:	
<isslot id=”category_top_featured” context=”category” description=”…”
context-object=”${pdict.ProductSearchResult.category}”/>	

Folder	slot	example:	
<isslot id="fldr-landing-slotbanner" context="folder" description="Large
Folder Landing Banner" 	
context-object="${pdict.ContentSearchResult.folder}"/>	

Whenever	the	template	is	saved,	the	new	content	slot	automatically	displays	in	the	list	of	slots	under	
Site	>	Online	Marketing	>	Content	Slots	(this	occurs	because	Commerce	Cloud	Digital	scans	any	
template	for	the	use	of	the	<isslot>	tag).	

Creating	the	Slot	Rendering	Template	

The	slot	displays	the	type	of	content	out	of	four	possible	types.	The	developer	creates	a	rendering	
template	that	takes	into	account	the	type	of	content,	how	many	objects	to	display,	plus	any	CSS	styling	
required	for	the	slot.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	52	

The	header_banner	slot	uses	the	htmlslotcontainer	template	as	the	rendering	template:	
<iscache type="relative" hour="24"/>	
<div class="htmlslotcontainer">	
 <isif condition="${slotcontent != null}">	
 <isloop items="${slotcontent.content}"	
 var="markupText">	
 	
<isprint value="${markupText.markup}" 	
encoding="off"/> 	
</isloop>	
 </isif>	
</div>	

Using	slotcontent	and	<isprint>	in	Rendering	Templates	

Every	slot	is	rendered	by	a	system	pipeline	inside	the	core	cartridge:	_SYSTEM_Slot-Render.	You	do	
not	have	access	to	this	pipeline.	It	uses	the	slot	configuration	that	the	merchant	creates	and	provides	
all	the	configuration	information	to	the	rendering	template	by	means	of	the	
TopLevel.global.slotcontent	constant.	Only	slot	rendering	templates	get	data	via	this	constant.	

The	rendering	template	code	checks	that	the	slotcontent	is	not	empty:	
<isif condition="${slotcontent != null}"> 	
Then it loops through the slotcontent.content (the content provided for
the slot):	
<isloop items="${slotcontent.content}" var="markupText">	

<isprint value="${markupText.markup}" encoding="off"/> 	
</isloop>	

Inside	the	loop	the	code	uses	the	<isprint>	tag:		
<isprint value="${markupText.markup}" encoding="off"/> 	

Note:	For	more	information	on	the	<isprint> tag	in	detail,	there	is	extensive	documentation	and	
usage	examples	for	it	in	SiteGenesis.		

Using	the	encoding="off"	setting	enables	the	HTML	snippet	to	be	generated	without	encoding,	so	
that	the	browser	renders	it	correctly.		

	

Exercise:		Create	a	Slot	

Create	a	banner	slot	containing	an	image	on	the	nohits.isml	template.	This	template	displays	when	
a	search	does	not	return	any	products.	

1. Use	the	storefront	search	box	and	search	for	a	product	which	does	not	exist.	

2. Investigate	which	template	is	used	to	generate	that	page	(which	tool	would	you	use	to	find	that	
out?).	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	53	

3. Copy	the	found	template	from	the	storefront	cartridge	to	the	exact	same	location	into	your	
cartridge.	

4. Before	the	no-hits-footer	div,	add	a	global	slot:	
<isslot id="search-no-hits-banner"
description="recommendations banner for search no results page"
context="global" />

5. Study	the	htmlslotcontainer.isml	rendering	template	that	is	used	to	render	HTML-type	slots.	

Creating	Content	Slot	Configurations	-	Merchant	Tasks	

Merchants	create	content	slot	configurations	by	navigating	to	Site	>	Online	Marketing	>	Content	Slots	
and	locating	the	specific	slot	that	the	developer	created,	e.g.	header-banner.	The	merchant	can	
select	an	existing	configuration	or	click	New	to	create	a	new	one.			

The	merchant	selects	the	type	of	content,	for	example,	Product	or	HTML.		Different	fields	display	
depending	on	the	content	type	selected,	for	example:	

§ For	a	Product	content	slot,	the	Product	field	displays	and	the	merchant	enters	the	IDs	of	the	
products	to	be	displayed.		The	merchant	then	selects	one	of	the	templates	designed	to	display	
products	from	the	Template	drop-down	menu.

§ For	an	HTML	content	slot,	an	HTML	text	area	displays	and	the	merchant	enters	the	HTML	content.	
The	merchant	then	selects	one	of	the	templates	designed	to	display	HTML	from	the	Template	
drop-down	menu.

The	Template	menu	contains	all	possible	rendering	templates	that	are	available	in	all	cartridges	in	the	
cartridge	path	for	this	content	type.	The	SiteGenesis	storefront	cartridge	comes	with	default	templates	
for	every	type	of	content.	The	templates	are	located	in	specially	named	folders	that	Business	Manager	
discovers	by	default	(for	example,	slots/html	for	the	HTML	type).

Here	is	the	directory	structure	for	the	slot	rendering	templates	in	the	SiteGenesis	storefront	cartridge:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	54	

	
The	merchant	can	choose	to	reuse	an	existing	rendering	template	or	use	a	new	one	as	instructed	by	
the	developer.	This	is	why	the	collaboration	between	merchant	and	developer	is	important—without	a	
rendering	template,	there	is	no	way	to	visualize	the	slot.	

The	merchant	also	provides	a	schedule	for	the	slot.	This	is	either	the	default	schedule	or	based	on	a	
marketing	campaign.		

	
Lesson	6.2:	Using	Content	Link	Functions	

Commerce	Cloud	Digital	uses	attributes	of	type	HTML	in	many	places:	content	assets,	content	slots	
with	HTML-type	content,	product	descriptions,	etc.	You	can	also	add	an	attribute	of	type	HTML	to	any	
system	object	where	you	may	need	to	show	HTML.	These	attributes	are	represented	by	the	class	
dw.content.MarkupText.	

Note:	When	using	HTML	in	content	assets	or	content	slots,	avoid	hardcoding	hyperlinks	to	pages	or	
images	in	the	storefront.	They	are	instance-specific	(e.g.,	Staging)	and	would	have	to	be	changed	every	
time	after	a	replication.		Instead,	Digital	offers	the	following	Content	Link	Functions	for	use	in	
attributes	of	type	HTML:	

§ $staticlink$	-	Creates	a	static	link	to	an	image.

§ $url()$	-	Creates	an	absolute	URL	that	retains	the	protocol	of	the	outer	request.	

§ $httpUrl()$	-	Creates	an	absolute	URL,	with	the	http	protocol.	

§ $httpsUrl()$	-	Creates	an	absolute	URL,	with	the	https	protocol.

§ $include()$	-	Makes	a	remote	include	call	(relevant	for	caching	purposes).

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	55	

Here	is	an	example	of	a	function	that	creates	a	hyperlink	to	the	Page-Show	controller	passing	cid=2-
day-shipping-popup	in	the	query	string:

href="$url('Page-Show', 'cid', '2-day-shipping-popup')$"

	

Exercise:		Create	a	Slot	Configuration	

Complete	the	configuration	for	the	content	slot	created	previously.	

1. In	Business	Manager,	select	Site	>	Online	Marketing	>	Content	Slots.	

2. Locate	the	new	search-no-hits-banner	slot	in	the	global	section.Create	a	new	configuration	
for	the	slot.	

3. Provide	an	ID:	banner-for-everyone.	

4. Enable	it.	

5. Make	it	the	default.	

6. Select	HTML	for	the	content	type.	

7. In	the	HTML	editor:	

a. Click	the	Insert/Edit	Image	icon.	

b. Click	Browse	Server.

c. Locate	the	/images/slot/	directory	and	select	it.

d. On	the	Upload	File	section,	find	the	nohits.png	image	in	the	contentslot	cartridge,	
static/default	folder,	and	upload	it.

e. After	uploading,	select	the	image.

f. The	generated	HTML	should	look	like	this:
<p><img width="700" height="100" src="nohits.png?$staticlink$" alt=""
/></p>

8. Select	slots/html/htmlslotcontainer.isml	as	the	rendering	template	for	the	slot.	

9. Click	Add	Schedule	>	Default	Schedule	to	ensure	that	the	slot	displays	continuously.	

10. Click	Apply	to	save	the	configuration.	

11. Test	the	slot	by	searching	for	some	non-existent	product:	the	nohits	page	should	display	with	the	
new	slot	visible.	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	56	

	
Knowledge	Check	

	

Question	 Answer	

1.	 What	contexts	of	content	slots	can	you	create?	 	

2.	 Can	a	slot	be	created	in	Business	Manager?	 	

3.	 How	does	<isprint>	preserve	the	markup	of	an	HTML	slot?	 	

4.	 Where	can	<isslot>	be	placed	in	templates?		 	

Demo:		Create	a	Slot	with	a	Rendering	Template	for	a	Vertical	Carousel	of	Products		

Create	a	content	slot	in	the	nohits.isml	that	displays	some	products	selected	by	a	merchant.	The	
components	involved	will	be:	a	rendering	template,	a	style	sheet,	an	ISML	that	has	the	content	slot	and	
finally	an	ISML	to	link	to	the	style	sheet.		

1. Open	the	nohits.isml	template	in	your	cartridge.	This	is	the	page	which	shows	up	when	the	
product	that	the	customer	searches	is	not	found.		

2. Below	the	search-no-hits-banner	slot,	add	another	global	slot:	<isslot	id="merchant-products"	
description="content	for	search	no	results	page"	context="global"/>		

3. Create	a	directory	structure	so	that	you	have	slots/product	folder	as	follows.		

						training/cartridge/templates/default/slots/product

4. Copy	the	verticalcarousel.isml	from	storefront	to	exactly	the	same	location	in	the	
training	cartridge.	This	is	the	rendering	template	that	you	are	going	to	modify.		

5. Rename	this	verticalcarousel.isml	in	the	training	cartridge	to	
verticalcarouselx4.isml		

6. Modify	the	carousel	to	match	the	following	code:		
<iscontent type="text/html" charset="UTF-8" compact="true"/>
<iscache type="relative" minute="30" varyby="price_promotion"/>	
<isinclude template="util/modules"/>	
<h2>${Resource.msg('global.carousel.featuredproducts','locale',null)}</h2
>	

	
<div id="vertical-carousel">	
 	
 	
 <div class="productcarousel">	
 <isloop items="${slotcontent.content}" var="product" status="status" >	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	57	

 <div class="analytics capture-product-id"><isprint
value="${product.getID()}"/></div>	
 <isproducttile product="${product}"
showpricing="${true}"/>	
 <isif condition="${status.count%4==0 &&
!status.last}">	
 </div>	
 	
 	
 <div class="productcarousel">	
 </isif>	
 </isloop>	
 </div><!-- END: productcarousel -->	
 	
 	
 	
 	
 	
 	
</div>	

	
<!-- END: verticalcarousel -->	

7. Create	a	template	named	pt_productsearchresult_UI.isml	in	the	following	location	in	the	
training	cartridge:	training/cartridge/templates/default/search	

8. Add	the	following	line	to	point	to	a	new	CSS	file	that	redefines	the	vertical	carousel	styling.		
<link href="${URLUtils.staticURL('/css/verticalcarouselx4.css')}" type="text/css"
rel="stylesheet"/>

9. Copy	the	provided	verticalcarouselx4.css	file	to	
/static/default/css/verticalcarouselx4.css	in	your	cartridge	(create	the	directory	
structure	if	it	is	not	there).		

10. Copy	the	pt_productsearchresult_nohits.isml	from	the	storefront	cartridge	into	your	
cartridge	to	the	same	location	(create	the	folder	structure	if	it	is	not	present).	

11. The	event	handler	for	our	buttons	is	in	the	Namespace	named	storefront.	So	modify	the	script	
block	to	match	the	following:		

<isscript>	
 var pageContext = {	
 title: 'Product Search Results No Hits',	
 type:'storefront',	
 ns:'storefront'	
 };	
</isscript>	

12. In	Business	Manager,	select	Site	>	SiteGenesis	>	Online	Marketing>	Content	Slots.		

13. Search	for	the	merchant-products	slot.	Create	a	new	slot	configuration	for	this	slot	so	that	it	
displays	multiple	products	using	the	new	verticalcarouselx4.isml	rendering	template.	The	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	58	

rendering	template	will	have	to	be	chosen	from	the	training	cartridge.	Make	sure	that	you	add	
some	products	rather	than	the	HTML	(unlike	you	did	in	one	of	the	previous	exercise).		

14. Go	to	the	storefront	from	Business	Manager	in	the	browser.	Search	for	some	non-existent	product	
like	MyBestPants.		

15. Verify	that	the	nohits.isml	shows	both	the	previous	banner	and	multiple	products	in	a	vertical	
carousel.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	59	

Module	7:	Commerce	Cloud	Digital	Script	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Describe	the	Commerce	Cloud	Digital	Script	syntax.

§ Describe	the	Digital	Script	API	packages.

§ Use	Digital	Script	in	ISML.

§ Debug	Digital	Script	in	UX	Studio.

§ Use	the	Resource	API	and	resource	bundles.

Introduction

Commerce	Cloud	Digital	Script	(Digital	Script)	is	the	server-side	language	used	for	coding	in	Commerce	
Cloud	Digital.		

§ It	is	based	on	JavaScript,	which	is	standardized	as	ECMAScript.	It	implements	ECMA-262	and	the	
ECMA-357	standard,	also	known	as	ECMA	for	XML	or	E4X.	

§ It	supports	all	JavaScript	language	extensions	by	Mozilla	known	as	JavaScript	1.7	as	well	as	optional	
type	specification	(from	JavaScript	2.0/ECMA	4th	edition	proposal	and	ActionScript).	

Use	Commerce	Cloud	Digital	Script	to	access	data	about	the	system,	such	as:	products,	catalogs,	prices,	
etc.		You	write	Digital	Script	in	controllers	and	in	ISML	templates	for	expressions	or	inside	
<isscript>	tags.		
	

ISML	

	
	

	
Lesson	7.1:	Commerce	Cloud	Digital	Script	API	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	60	

Each	new	Digital	update	includes	a	well-documented	API.	The	Script	is	available	under	the	Studio	Help	
menus.	The	ISML	documentation	is	available	in	the	Digital	documentation.		

Salesforce	continually	updates	clients	to	the	latest	version.	Deployments	happen	globally	on	Tuesday	
and	Thursday	between	2	and	7	am	local	POD	time.	The	current	version	number	displays	at	the	bottom	
of	the	Business	Manager	screen	and	it	corresponds	to	Year.Deployment,	for	example,	version	17.4	
represents	the	fourth	deployment	in	2017.	

Salesforce	provides	access	to	Preview	releases	by	updating	sandboxes	prior	to	updating	the	PIG	
instances.	This	gives	your	organization	an	opportunity	to	test	any	new	API	updates	and	other	
customizations	on	your	site	prior	to	using	that	update	in	production.	For	more	information,	refer	to	the	
Global	Release	Process	FAQ	https://xchange.demandware.com/docs/DOC-1815.	

The	Global	Release	Process	ensures	that	all	Salesforce	clients	stay	on	the	same	version	of	code	and	that	
updates	containing	defect	corrections	as	well	as	new	functionality	can	be	applied	uniformly	with	
minimal	down	time.	

API	Packages	

The	Digital	Script	API	is	organized	in	packages,	just	like	Java.	Unlike	Java,	inheritance	is	not	possible	
from	these	classes	or	packages	when	you	create	a	script.	You	can	only	use	the	properties	and	methods	
of	these	classes	in	your	scripts.	

In	Commerce	Cloud	Digital	Script,	the	TopLevel	package	is	the	default	package.	It	is	similar	to	
java.lang	in	Java.	It	does	not	need	to	be	imported	in	scripts.	It	provides	standard	ECMAScript	
classes	and	extensions,	such	as:	Error, Date, Function, String, Math, Number, XML.	

The	TopLevel.global	class	contains	many	of	the	common	constants,	and	properties	used	in	scripts.	
Some	properties	are:	customer, request	and	session.	

Note: In	the	following	packages	there	are	many	classes	that	end	with	Mgr
(e.g.,		dw.catalog.ProductMgr.	These	classes	retrieve	instances	of	business	objects	related	to	the	
package	they	belong	to.	For	example,	use	ProductMgr.getProduct(String id)	to	get	a	product	
using	a	unique	identifier.	The	method	returns	a	Product	instance	which	you	can	use	to	find	
information	about	the	product.	This	pattern	is	repeated	for	all	Managers.

eCommerce	API	Packages	
dw.campaign 	 For	campaign	and	promotions		

Classes:	PromotionMgr, Campaign, Promotion, SourceCodeGroup,	etc.	
dw.catalog 	 For	catalog,	product,	and	price	book		

Classes:	CatalogMgr, Category, Product, Recommendation,
PriceBook,	etc.	

dw.content 	 For	non-product	content	management		

Classes:	ContentMgr, Content, Folder, Library,	etc.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	61	

dw.customer	 For	customer	profile	and	account		

Classes:	CustomerMgr, Customer, Profile, ProductList,
OrderHistory,	etc.	

dw.order 	 For	orders,	including:	basket,	coupons,	line	items,	payment,	shipment	

Classes:	Basket, Order, ProductLineItem, ShippingMgr, TaxMgr,	etc.	

	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	62	

Generic	API	Packages	
dw.crypto 	 Encryption	services	using	JCA;	DES,	Triple-DES,	AES,	RSA,	etc.	

Classes:	Cipher, MessageDigest	
dw.io	 Input	and	output		

Classes:	File, FileReader, CSVStreamReader, XMLStreamReader,	etc.	
dw.net	 Networking		

Classes: FTPClient, HTTPClient		

dw.object 	 System	base	classes	and	custom	objects		

Classes:	PersistentObject, ExtensibleObject, CustomObjectMgr,	etc.	
dw.rpc	 Web	services	related	APIs	

Classes:	WebReference, Stub	

dw.system 	 System	functions	

Classes:	Site, Request, Session, Logger	
dw.util 	 Similar	to	the	java.util	API:	collections, maps	and	calendar	classes		
dw.value 	 Immutable	value	objects	

Classes:	Money, Quantity	
dw.web	 Web-processing	

Classes:	URLUtils, Forms, Cookie, HttpParameterMap,	etc.	

Using	Commerce	Cloud	Digital	Script	in	ISML	

You	can	embed	Commerce	Cloud	Digital	Script	into	ISML	by	using	the	<isscript>	tag.	This	example	
uses	Digital	Script	to	get	the	root	category	of	a	current	site’s	navigation	catalog	and	the	category	
named	‘sale’.	

	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	63	

Inside	of	the	<isscript>	tag	you	can	fully	qualify	every	class	you	want	to	use	or	you	can	import	any	
packages	at	the	top	of	the	script:	

<isscript>	
 var CatalogMgr=require('dw.catalog.CatalogMgr'); get smart quotes out.	
 var siteCatalog = CatalogMgr.getSiteCatalog();	
…	
</isscript>

	

Exercise:		Use	Commerce	Cloud	Digital	Script	in	ISML	

1. Create	a	new	JavaScript	controller	called	JDScript.	

2. Create	a	new	ISML	template	named	dscript.isml	and	display		it	using	the	controller.	

3. Using	the	dw.customer.CustomerMgr	class,	print	the	registered	customer	count.		

4. Test	your	controller	in	the	storefront.	

Calling	a	script	with	JavaScript	Controller	

A	script	can	be	invoked	by	using	‘require’	to	get	Script	and	then	invoking	method	on	it.		For	example	
the	following	piece	of	code	can	invoke	the	script	method	doJobForMe(…)	

var myModel = require('~/cartridge/scripts/MyModel');
var co=myModel.doJobForMe(takeThisObject);

~	indicates	the	current	cartridge	from	where	the	script	is	being	invoked.		If	the	script	is	invoked	from	
some	other	cartridge	then	the	cartridge	still	has	to	be	in	the	cartridge	path	and	it	has	to	be	mention	in	
in	the	require	statement	as	well.		

	

Exercise:		Calling	a	Script	from	the	JShowProduct	JavaScript	Controller	

1. You	can	keep	a	backup	copy	of	the	JShowProduct that	you	previously	created.		

2. Copy	jsolutions/cartridge/scripts/ProductFinder.js	to	your	training	cartridge	in	
the	same	location.			

3. In	the	present	controller,	remove	all	the	previous	code	and	copy	and	paste	the	following	template	
'use strict';
/** @module controllers/JShowProductCallingScript */	
	
var ISML = require('dw/template/ISML');	
var guard = require('storefront_controllers/cartridge/scripts/guard');	
/*	
 Use the quickcard section “Invoking a Script”. Use that as a help to complete the
following code to use the script named ProductFinder from the scripts folder. 	
 var ProductFinder= …require	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	64	

	
*/	
function start() {	
 var parameterId = request.httpParameterMap.pid.stringValue;;	
 //var product = ProductMgr.getProduct(parameterId);	
 	
 var product=/* Use the quickcard section “Invoking a Script” again to invoke the
method on ProductFinder */	
 	
 if (product==null) {	
 ISML.renderTemplate(

'productnotfound.isml',
{

Log:'product with id '+parameterId+' not found'
 } 	

); 	
 } 	
 else{	
 ISML.renderTemplate(
 'productfound.isml',

{
myProduct:product

} 	
); 	
 	
 }	
} 	
exports.Start = guard.ensure(['get'], start);	

4. If	not	done	already,	modify	your	productnotfound.isml	template	so	that	it	displays	the	
contents	of	the	Log as follows:	
${pdict.Log}

5. Test	your	controller.	Verify	that	the	product	name	appears	as	before	and	check	the	error	path	as	
well.	

	
Lesson	7.3:	Script	and	JavaScript	Controller	Debugging	

UX	Studio	enables	you	to	debug	scripts	and	controllers.	To	use	the	script	debugger	you	must	first	
create	a	script	debug	configuration.	The	process	for	creating	a	script	debug	configuration	is	identical	to	
the	pipeline	debug	configuration	setup.	To	use	the	debug	configuration,	you	need	to	add	breakpoints	
in	your	script	files.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	65	

		
When	debugging,	it	is	possible	to	run	the	script	debugger	along	with	the	pipeline	debugger.	

	

	

Exercise:		Create	a	Script/Controller	Debug	Configuration	

1. In	UX	Studio,	find	the	menu	to	create	debug	configurations.	

2. Double-click	UX	Studio:	Script	Debugger	to	create	a	new	configuration.	

3. Complete	the	dialog	as	follows.	Click	Select	to	select	your	server	and	site.	

4. Click	Debug	and	change	to	the	Debug	Perspective.	

5. Open	the	JShowProduct	controller	you	previously	created.	

6. Put	a	breakpoint	in	the	first	executable	line	inside	the	controller's	start()	function:	double-click	
the	gray	border	to	the	left	of	the	highlighted	line.	The	breakpoint	display	has	a	blue	dot.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	66	

7. Refresh	the	controller's	invocation	on	the	browser	to	hit	the	breakpoint	(F5).	

8. The	debugger	stops	at	the	breakpoint.	

9. Debug	the	script.	

10. Check	the	Variables	window	to	determine	the	args	that	are	coming	into	the	execute()	
function.	

11. Use	F5	to	execute	the	line.	

12. Study	the	output	variable	which	has	the	product:	it	should	not	be	null.	

13. Execute	through	the	end	of	the	controller	(F8).	The	product	name	should	display	in	the	browser.	

14. Fix	any	errors	that	you	may	have	found,	or	just	continue.	

15. Debug	the	controller	again,	but	this	time	use	an	invalid	product	ID	in	the	URL.	

16. Change	the	product	URL	parameter	on	the	browser	to	a	non-existing	product.	

17. After	the	breakpoint,	verify	the	output	variable	holding	the	product:	it	should	be	null	in	this	
case.	

18. Execute	through	the	end	of	the	controller.	

	
Lesson	7.4:	Resource	API	and	Resource	Bundles	

In	storefront	code,	avoid	hard-coding	text	strings	that	become	visible	to	the	user.	Titles,	labels,	
messages,	button	and	field	names	should	all	be	externalized	by	using	resource	bundles	(a.k.a.	
properties	files.).	If	you	do	not	want	to	duplicate	ISML	templates	in	order	to	create	locale-specific	
templates,	you	can	use	resource	bundles	to	keep	your	template	generic	and	reusable.	

A	resource	bundle	is	a	file	with	a	.properties	extension	that	contains	the	hardcoded	strings	to	be	
used	in	ISML	templates.	In	SiteGenesis	bundles	are	loosely	named	by	the	functional	area	where	the	
strings	are	used,	but	you	can	use	any	file	name	and	organization	you	want.	
	

Note:	Property	files	can	be	suffixed	by	Bundlename_<<locale_id>>.properties	where		

<<locale_id>>	stands	for	a	specific	locale	term	other	than	the	default	locale.	For	example,	“de”	or	
“en”	(or	locale	plus	country	like	“de_DE”	or	“en_GB”).	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	67	

	
The	resource	bundles	contain	key=value	pairs	where	the	key	might	be	compound	(key.subkey)	and	
the	value	is	a	hard-coded	string	that	uses	Java	MessageFormat	syntax	to	implement	parameter	
replacement.	Bundles	are	stored	in	each	cartridge	within	the	/templates/resources	directory.		

Strings	from	the	bundles	are	accessible	to	all	ISML	templates	via	the	dw.web.Resource.msg(key :
String , bundleName : String , defaultMessage : String)	method:		

	
Notice	that	the	second	parameter	points	to	the	account.properties	file,	which	may	be	overridden	
by	another	cartridge	in	the	cartridge	path.	The	null	in	the	third	parameter	means	that	the	key	itself	will	
be	used	whenever	that	key	is	not	found	in	any	resource	bundle.	Instead	of	the	null	you	can	also	show	
a	string	to	display	on	the	storefront	in	case	the	key	could	not	be	found.	

Another	useful	method	is	the	dw.web.Resource.msgf(key : String , bundleName :
String , defaultMessage : String , args : Object ...).	Using	this	method,	you	can	
specify	a	key	with	placeholders	which	can	be	dynamically	replaced	by	the	parameters	specified	in	the	
args	argument	of	the	method.	For	example,	this	usage	of	the	method:	

${Resource.msgf('singleshipping.wishlist', 'checkout', null,
owners.get(addressKey).profile.firstName)}	

will	be	paired	with	the	following	Java	MessageFormat	definition	in	the	resource	bundle	to	allow	the	
first	name	of	the	wishlist’s	owner	to	show	up	as	Stefan’s	Wishlist:	

singleshipping.wishlist={0}\'\'s Wishlist

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	68	

	
Knowledge	Check	

Commerce	Cloud	Digital	Script	Review	Questions	 True	 False	

You	have	to	mention	the	cartridge	name	when	requiring	a	
script	from	another	cartridge	into	a	script	file	

	 	

If	cartridgeA	invokes	a	script	from	cartridgeB,	cartridgeB	does	
not	need	to	be	in	the	cartridge	path	

	 	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	69	

	

Exercise:		Use	a	Resource	Bundle	in	the	Commerce	Cloud	Digital	Script	in	JavaScript	Controller	

Goal:	Modify	the	GetProduct	script	and	ISML	to	use	an	externalized	string	instead	of	a	hardcoded	
string.		

1. Open	controllers/JShowProduct.ds.	Inside	this	controller,	after	checking	if	the	product	
is	null,	add	the	following	line	of	code	to	pick	up	a	string	productnotfoundMsg	from	the	
resource	bundle	named	myBundle.properties:	
var errorMsg=dw.web.Resource.msgf('productnotfoundMsg', 'myBundle', null,
parameterId);

2. Using	the	quickcard	as	a	guide	(section “Giving	control	to	ISML”),	edit	the	next	line		to	use	the	ISML	
to	render	the	template	productnotfound.isml	and	pass	the	JSON	
code		{message:errorMsg}.	

3. Create	a	file	/templates/resources/myBundle.properties	with	the	following	content	
(create	the	folder	structure	if	not	already	there).	
 productnotfoundMsg=The product with the id {0} is not found

4. Create	a	file		/templates/resources/myBundle_fr.properties.		

5. Change	the	encoding	of	this	file	to	UTF8	to	support	French	characters.		

Right-click	myBundle_fr.properties	and	change	the	default	encoding	to	UTF-8.	

6. In	myBundle_fr.properties	enter:	
productnotfoundMsg = Le produit avec l\'\'ID {0} ne est pas trouvé

7. In	Business	Manager,	select	Site-SiteGenesis	>	Site	Preferences	>	Locales.	Check	‘fr’	and	click	
Apply.	

8. Run	the	ShowProduct	pipeline	or	JShowProduct	controller	as	you	have	been	running	before.	
Your	URL	will	be	similar	to:	
https://studentXX.training-na02.dw.demandware.net/on/demandware.store/Sites-
SiteGenesis-Site/default/JShowProduct-Start?pid=452345

Note:	Replace	the	xx	with	your	student	id.		

You	should	see	the	message	of	the	product	not	being	found	in	English	language	

9. In	the	URL,	replace	'default'	with	'fr'.	

10. You	should	see	the	results	in	French.	

11. Internationalize	the	product	name.		In	Business	Manager,	select	Products	&	Catalogs	>	Products.	

12. Search	for	the	product	with	id	'P0048'.	

13. Click	the	product	link	and	lock	it	for	editing.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	70	

14. Notice	that	the	name	of	the	product	in	‘default’	language	is	‘Laptop	Briefcase	with	wheels	(37L)’.	
Change	Select	Language	dropdown	to	‘French’.		The	name	entry	will	be	now	blank.	Paste	‘Laptop	
Briefcase	avec	des	roues	(37L)’	without	quotes	in	the	name.	Click	Apply.		

15. In	your	isml	that	displays	your	product	(productfound.isml),		enter	the	following	to	print	the	
product	name	(remove	the	earlier	text):	
${Resource.msgf('productfoundMessage', 'myBundle',null, pdict.myProduct.name)}

16. In	templates/resources/myBundle_fr.properties	add	the	following:	
 productfoundMessage=Le nom du produit est {0}

17. In	templates/resources/myBundle.properties	add	the	following:	
productfoundMessage=The product is found and the name is {0}

18. Run	the	ShowProduct	pipeline	or	JShowProduct	controller	with	the	parameter	pid=P0048.	
Your	URL	will	be	similar	to:	
https://studentXX.training-na02.dw.demandware.net/on/demandware.store/Sites-
SiteGenesis-Site/default/JShowProduct-Start?pid=P0048

Note:	Replace	the	XX	with	your	student	id.		

	 You	should	see	the	product	page	with	product	name	in	English.	

19. In	the	URL,	replace	‘default'	with	'fr'	.	

					You	should	see	the	results	in	French.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	71	

Module	8:	Forms	Framework	

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Describe	the	concepts	and	usage	of	the	Commerce	Cloud	Digital	Forms	framework.

§ Create	a	new	form	and	implement	it	in	a	pipeline.

Introduction

Commerce	Cloud	Digital	provides	tools	to	simplify	form	display	and	processing.	Use	the	Digital	Forms	
framework	to	control	how	consumer-entered	values	are	validated	by	the	application,	rendered	in	a	
browser,	and	possibly	stored	on	a	server.	

	
To	use	the	DigitalForms	framework,	you	need	the	following	files:	

§ An	xml	form	to	define	and	store	the	metadata

§ A	pipeline	or	JS	Controller	that	will	validate	and	process	the	form

§ A	properties	file	that	contains	externalized	form	labels	and	possible	error	messages

§ An	ISML	template	that	will	display	the	form	to	the	user

There	are	three	objects	that	interact	when	working	with	Digital	forms:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	72	

§ XML	metadata	file:	located	in	the	cartridge/forms/default	directory.	It	describes	the	fields,	
labels,	validation	rules	and	actions	that	apply	when	the	field	is	used	in	an	ISML	template.

§ ISML	template:	it	uses	the	form	metadata	fields	and	actions	to	show	an	HTML	form	to	the	user.	
§ Object	(optional):	this	object	represents	a	single	system	or	custom	object	in	the	pdict,	and	it	can	

be	used	to	pre-fill	the	metadata	file	as	well	as	to	store	submitted	form	data	to	the	database.

Example		

Given	this	form	metadata	XML	file:	

	
You	can	create	this	ISML	template	whose	fields	depend	on	the	data	from	the	form	metadata.	

	
Optionally,	a	pdict	object	containing	data	from	the	database	can	be	bound	to	the	form	metadata	file,	
allowing	it	to	be	prefilled	with	data.	This	data	would	appear	in	the	ISML	template	since	it	references	
the	form	fields.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	73	

	

	
Lesson	8.1:	XML	Metadata	File	

Identify	the	fields	that	a	user	will	need	to	enter,	and	what	actions	can	be	taken	when	implementing	a	
form.	This	information	typically	comes	from	a	wireframe	or	a	functional	specification.	Once	the	form	
fields	are	determined,	create	them	in	an	xml	form	that	will	set	the	form	field	parameters	and	hold	the	
data	for	the	form.		

The	form	metadata	file	uses	the	following	xml	elements:	

Element		 Description		
form	 Required:	top	level	tag	that	contains	all	other	elements	inside	<form>…</form>	

field	 Required:	Defines	data	field	with	many	attributes	(see	table	below)	
options	 Use	as	a	child	element	inside	a	field	to	pre-fill	multiple	options	like	months,	days,	etc.	
Option	 Use	as	a	child	element	inside	an	options	element	to	specify	a	single	option	
action 	 Required:	Defines	a	possible	action	the	user	might	take	on	the	form	
Include	 Allows	inclusion	of	one	form	metadata	definition	into	another	
List	 Allows	inclusion	of	several	items	(i.e.	collection	of	addresses)	as	a	single	field	
Group	 Allows	grouping	of	elements	to	be	invalidated	together		

	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	74	

The	field element	may	use	the	following	attributes:	

Attributes		 Description		
formid 	 Required:	unique	ID	to	identify	the	field	for	ISML	templates	and	controllers.	
Type	 Required:	data	type	for	field	(see	table	below).	
label 	 Usually	a	key	to	an	externalized	string	in	the	forms.properties	resource	

bundle.	
description 	 Description	for	field,	might	be	used	in	tooltips.	
min-length,
max-length 	

Restricts	the	field	length	for	data	entry.		

min, max	 Valid	range	for	integer,	number	and	dates.		
range-error	 Message	shown	if	value	provided	does	not	fall	within	the	specified	range.	
regexp 	 Regular	expression	for	string	fields:	email,	phone,	zip	code,	etc.	
parse-error	 Message	shown	when	the	data	entered	does	not	match	the	regex.	Usually	a	

key	to	an	externalized	string.		
mandatory 	 Field	is	required	via	server-side	validation	when	true.	
missing-error	 Message	shown	if	the	primary	key	validation	error	is	generated	in	a	pipeline.	
value-error	 Shown	if	an	element	is	invalidated	in	a	pipeline.	
Binding	 Used	to	match	field	to	a	persistent	object	attribute.		
Masked	 Specify	#	of	characters	to	mask.	
Format	 Format	for	display	of	dates,	numbers,	etc.	
whitespace	 Specify	whitespace	handling	(none	or	remove).	
timezoned	 Optional	flag	for	date	objects	(true	or	false).	
default-value	 Pre-defines	a	value	for	a	field.	
checked-value	 Value	when	field	is	checked	in	a	form.	
unchecked-
value	

Value	when	field	is	unchecked	in	form.	

Field	types	can	be	as	follows:		

Field	type		 Description		
string 	 Use	for	text	data.	
integer 	 Use	for	numeric	data	like	days,	months.		
number 	 Use	for	quantity	fields.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	75	

boolean 	 Use	with	multiple-choice	fields.	
Date	 Use	this	when	timezoned	or	format	are	needed	for	dates.	

Here	is	an	example	of	a	simple	form	metadata	file:	
<?xml version="1.0"?>
<form>
<field formid="fname" label="forms.contactus.firstname.label" type="string"
mandatory="true" binding="custom.firstName" max-length="50"/>	
<field formid="lname" label="forms.contactus.lastname.label" type="string"
mandatory="true" binding="custom.lastName" max-length="50"/>	
<field formid="email" label="forms.contactus.email.label" type="string"
mandatory="true" regexp="^[\w-\.]{1,}\@([\da-zA-Z-]{1,}\.){1,}[\da-zA-Z-
]{2,6}$"
parse-error="forms.contactus.email.parse-error"
value-error="forms.contactus.email.value-error" binding="custom.email"
max-length="50"/> 	
<action formid="subscribe" valid-form="true"/>
</form>	

In	this	example,	the	fields	fname,	lname	and	email	store	the	information	needed	to	send	a	
newsletter	to	a	non-registered	user.	The	fields	are:	

§ Mandatory
§ Contain	label	keys	that	point	to	the	cartridge/templates/resources/forms.properties	

file
The	email	field	has	an	extra	requirement.	It	uses	a	regular	expression	(regexp)	to	define	what	an	
acceptable	email	can	be.	Additionally,	it	specifies	a	parse-error	key	which	matches	an	error	
message	in	the	forms.properties	file.

The	action	subscribe	identifies	the	possible	actions	that	a	user	may	take	on	the	form.	The	attribute	
valid-form="true"	means	that	this	form	requires	validation:	3	required	fields	plus	a	valid	email	
format	for	the	last	one	will	be	enforced	on	the	server	side.	

Note: Although	it	is	not	a	requirement,	it	is	a	best	practice	to	use	lower-case	letters	when	naming	your	
xml	forms.		

	
Lesson	8.2:	ISML	Form	Template	

Define	an	ISML	template	with	the	same	tags	needed	for	a	valid	HTML	form:		
<form>…</form>	

You	can	implement	your	own	form	action	by	specifying	a	controller	URL,	but	that	would	circumvent	the	
Forms	framework.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	76	

<form action="${URLUtils.continueURL()}" method="post">The	method	
dw.web.URLUtils.continueURL()	ensures	that	the	form	gets	submitted	back	to	the	controller	
that	displayed	the	form	template.		

When	creating	input	fields,	use	the	object	pdict.CurrentForms.<form metadata
file>.<formid>	to	reference	the	specific	formid in	the	form	metadata.	SiteGenesis	has	an	
<isinputfield>	custom	tag	which	facilitates	the	creation	of	form	fields.	For	example,	to	show	the	
fname	field	from	the	newsletter.xml	file	as	a	text	field	in	an	ISML	template,	use:	

<isinputfield formfield="${pdict.CurrentForms.newsletter.fname}"
type="input">	

The	custom	tag	uses	the fname formid	from	the	metadata	file	and	builds	an	HTML	label	using	the	
forms.properties	file	to	pull	the	text	for	the	forms.contactus.firstname.label	key.	It	also	
creates	an	HTML	input	field	to	the	right	of	the	label	with	the	necessary	client-side	JavaScript	to	enforce	
required	fields,	as	shown.	

	
You	can	modify	the	behavior	of	the	<isinputfield>	tag	since	it	is	a	custom	tag	implemented	in	the	
SiteGenesis	cartridge.	

The	final	requirement	in	the	ISML	template	is	to	implement	the	button	that	matches	the	action	in	the	
form	metadata.	For	this,	create	a	standard	HTML	button	with	a	name	attribute	that	points	to	a	specific	
action	in	the	form	metadata:	

<input type="submit"	
value="${Resource.msg('global.submit','locale',null)}" 	
name="${pdict.CurrentForms.newsletter.subscribe.htmlName}"/>	

	

Here	the	pdict.CurrentForms.newsletter.subscribe.htmlName	refers	to	the	htmlName
property	of	the	action	subscribe	in	the	form	metadata.	In	the	debugger	you	can	view	the	value	of	
this	property	at	runtime:	dwfrm_newsletter_subscribe.	This	value	identifies	a	specific	action	for	a	
specific	form,	which	is	necessary	when	the	controller	determines	which	form	action	to	process.	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	77	

	
Lesson	8.3:	Pipeline	Elements		

A	controller	that	uses	the	Digital	Forms	framework	has	a	distinctive	pattern	that	uses	these	elements:	

§ ClearFormElement	function	to	clear	an	existing	form	object	in	the	pdict using	a	specified	form	
metadata	file.

§ InvalidateFormElement function	invalidates	the	specified	FormElement

§ Use	the	ISML	object	to	display	ISML	form,	and	to	perform	server-side	validation.

To	create	a	form	using	the	form	framework:	

1. Create	an	xml	metadata	file	that	will	hold	your	form	data.	

2. Create	an	ISML	template	that	will	display	a	form	to	a	visitor.	

3. Create	a	controller	to	display	and	process	the	form.	

	

Exercise:		Use	the	Forms	Framework		

Note:	Perform	steps	1-	4,	if	you	did	not	complete	them	from	the	previous	exercise.	

1. Define	form	metadata	to	store	newsletter	subscription	data.	

2. Study	the	fields	and	action	in	the	newsletter.xml	file	from	the	solutions	cartridge.	

3. Save	newsletter.xml	into	your	cartridge	at	exactly	the	same	location	as	in	solutions.	

4. Create	templates/resources/forms.properties	and	externalize	the	keys	in	
newsletter.xml.		For	example:	
forms.contactus.firstname.label=Enter your first name please.

5. Define	a	template	to	capture	form	data.	

6. Study	the	use	of	the	<isinputfield>	custom	tag	in	the	newslettersignup.isml	template	in	
the	jsolutions	cartridge.	

7. Study	the	use	of	the	URLUtils.httpsContinue()	method.	What	will	this	method	accomplish	in	
the	context	of	the	form	action?	

8. Save	newslettersignup.isml	from	the	solutions	cartridge	into	your	cartridge	under	similar	
directory	structure	(templates/default/newsletter).	

9. Create	a	template	to	display	the	form	values	submitted.	

10. Save	newslettersuccess.isml	from	the	solutions	cartridge	into	your	cartridge:	this	displays	a	
“Thank	you	<fname>	<lname>	for	signing	up”	under	similar	directory	structure.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	78	

11. Create	resource	bundle		templates/resources/locale.properties		and	externalize	the	
keys	used	in		newslettersignup.isml	and	newslettersuccess.isml. 	

For	example:	
 global.newslettersignup=Please sign up for our newsletter	
 global.newsletterthanks=Thank you {0} {1} for signing up!	

12. Create	a	JavaScript	controller	named	JNewsletter.js.		Copy	code	from	JNewsletter_exercise.js	into	
it.	Follow	the	instructions	in	the	comments	to	complete	the	code.	

13. Adjust	the	links	in	newslettersuccess.isml	to	point	to	JNewsletter	controller.	

14. Execute	the	code.	

	
Knowledge	Check	

4. 	

Forms	Framework	Questions	 True	 False	

The	<isinputfield>	is	a	custom	tag	used	to	populate	form	field	attributes.	 	 	

The	following	piece	of	code	can	display	and	submit	a	form	
 ISML.renderTemplate('registerForBenefits', {
 displayForm : session.forms,
 Subscription : co
 });

	

	 	

	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	79	

	

Exercise:		Create	Form	Metadata	on	Your	Own	

To	add	rows,	right-click	in	any	cell	and	select	Insert	Rows	Above	(or	below).	

In	this	exercise,	you	will	capture	customer	interests	related	to	categories	and	products	on	the	site.	You	
will	just	create	the	form	interaction;	Later,	you	will	store	this	data	in	the	profile	system	object.	

1. Copy	cartridges/forms/default/newsletter.xml	from	the	training	cartridge	to	
preferences.xml	in	the	same	location.	You	will	modify	this	form	metadata	file	that	captures	
marketing	and	personal	information	from	a	registered	visitor.	The	modification	must	use	the	
following:	

Formid Label	 Data	type	 binding	 Externalized	Strings	

interestApparel	 forms.interestedinApparel	 boolean	 custom.interestApparel	 Are	you	interested	in	Apparel	?	

interestElectronics	 forms.interestedinElectronics	 boolean	 custom.interestElectronics	 Are	you	interested	in	Electronics	?	

newsletter	 forms.interestedinNewsletter	 boolean	 custom.newsletter	 Are	you	interested	in	Newsletter	?	

None	of	the	choices	are	mandatory.	

2. Add	an	apply	action	that	does	not	require	validation.	You	will	not	use	this	metadata	until	a	later	
exercise.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	80	

Module	9:	Custom	Objects

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Define	custom	objects	and	create	instances	programmatically.

§ Use	transactions	to	save	the	custom	object	in	the	database.

§ Implement	custom	logging	to	allow	debugging	and	error	messages	to	be	written	to	logs.

Introduction

Previously,	you	created	a	simple	form	using	an	Interaction	Continue	Node.	You	validated	the	data	
being	submitted,	but	did	not	store	the	data	permanently.	Custom	Objects	(CO)	enable	the	data	to	be	
persistent.	

Custom	Objects	extend	the	Commerce	Cloud	Digital	data	model.	They	are	basically	a	new	table	in	the	
database	where	you	specify	the	primary	key	and	storage	attributes	(columns)	that	suit	your	business	
needs.		

Note:		Always	first	consider	if	you	can	use	a	Digital	System	object	(Product,	Catalog,	etc.)	instead	of	
creating	a	custom	object.	Although	you	can	create	custom	objects,	they	are	best	used	to	store	static	
data	(like	configuration	parameters),	not	for	uncontrolled	amounts	of	data	(like	analytics).	Custom	
objects	searches	can	be	slow	if	the	data	is	large.	You	should	consider	data	growth	and	cleanup	in	your	
Custom	Objects.	Commerce	Cloud	Digital	Governance	has	quotas	around	custom	object	API	usage	and	
data	size	which	will	be	enforced	in	the	future.	

Custom	Object	Creation	

You	create	custom	objects	at	the	organization	level;	therefore,	they	are	available	for	use	in	all	
storefronts	within	the	organization.	You	use	two	Business	Manager	modules	to	define	and	manage	
your	custom	objects:	

§ Custom	Object	Definitions:	facilitates	naming,	primary	key	and	column	specification.	It	is	located	in	
Administration	>	Site	Development.	

§ Custom	Object	Editor:	facilitates	instance	creation	and	editing.	It	is	located	in	Site	-	<site>	>	Custom	
Objects	>	Custom	Object	Editor.

When	defining	the	Custom	Object,	specify	the	storage	scope	of	the	instances:	site	or	organization.	

§ Organization	Custom	Objects	can	be	used	by	any	site.

§ Site	Custom	Objects	are	created	by	one	site	and	cannot	be	read	by	another.	

The	Custom	Object	type	itself	is	always	available	to	the	entire	organization.	Also,	you	can	specify	if	you	
want	Custom	Object	instances	to	be	replicable.	This	means	you	can	copy	them	from	Staging	to	
Production	during	the	replication	process.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	81	

An	example	of	Custom	Object	usage	is	a	newsletter.	Customers	can	sign	up	for	it,	but	the	platform	
does	not	have	a	system	table	to	support.	These	subscriptions	are	intended	for	export	since	the	
platform	should	not	be	used	for	mass	mailing	campaigns.	It	is	tempting	to	add	the	subscription	data	to	
the	Profile	system	object,	but	this	would	imply	that	only	registered	users	would	be	able	to	sign	up.	To	
enable	anyone	to	get	a	newsletter,	you	need	to	define	a	Custom	Object.	This	Custom	Object	should	not	
be	replicable,	since	subscriptions	created	in	staging	should	not	be	copied	to	Production.		

You	also	need	to	consider	how	to	clean	up	Custom	Objects	once	they	have	been	exported	or	after	a	
certain	expiration	period.	This	means	the	creation	of	a	cleanup	batch	job	that	should	run	on	a	
schedule.	

Custom	Objects	can	also	store	configuration	parameters	to	integrate	with	external	systems,	avoiding	
the	need	to	create	multiple	Site	Preferences.	These	Custom	Objects	need	to	be	replicable	if	the	
settings	made	in	Staging	are	suitable	for	Production.	

You	can	either	create	custom	objects	using	Business	Manager	or	programmatically.	Before	you	can	
create	a	custom	object	instance	you	must	first	define	the	custom	object	data	type	in	Business	
Manager.	

Creating	a	New	Custom	Object	Type	Using	Business	Manager	

1. Log	into	Business	Manager.	

2. Select	Administration	>	Site	Development	>	Custom	Object	Definitions.	

3. Click	New	to	create	a	new	Custom	Object	type.	

4. Fill	in	the	required	fields	for	the	Custom	Object	type:	

ID:	the	unique	ID	of	the	object	type.	It	cannot	contain	spaces.	

§ Key	Attribute:	This	is	the	unique	key	for	the	custom	object	type.	

§ Data	Replication:	Specify	whether	the	custom	object	type	data	will	be	replicable	to	other	
instances.	

§ Storage	Scope:	Specify	whether	the	custom	object	type	will	be	available	for	a	site	or	for	the	
entire	organization.	

5. Click	Apply.	The	Attribute	Definitions	and	Attribute	Grouping	tabs	become	available.	

6. Click	the	Attribute	Definitions	tab.	Notice	the	default	values	created	with	your	Custom	Object	type.	
These	values	cannot	be	changed	once	they	are	created.	

7. To	create	the	attributes	(values	you	wish	to	capture	in	the	table),	click	New.	

8. In	the	ID	field,	specify	a	unique	name.	In	the	Value	Type	drop-down,	select	the	type	of	data	being	
entered	for	the	attribute.	

9. Click	Apply.	

10. Click	the	Back	button	to	add	another	attribute.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	82	

11. When	you	are	finished	adding	attribute	definitions,	create	an	Attribute	Group.	Click	the	Attribute	
Grouping	tab.	

12. In	the	ID	field,	enter	a	name	for	your	grouping.	In	the	Name	field,	enter	a	name.		Click	Add.		

13. Add	field	attributes	to	the	group.	Click	the	Edit	link.		

14. To	the	right	of	the	ID	field,	click	the	ellipses	to	select	field	attributes.	

15. Select	the	attributes	you	wish	to	add	from	the	list	by	clicking	in	the	checkbox	next	to	each	one.	
Click	Select.	

You	can	now	view,	add,	and	edit	new	instances	of	the	custom	object	type	you	just	created	in	the	
Custom	Object	Editor	section.		

Creating	a	New	Custom	Object	Instance	Manually	Using	Business	Manager

1. In	Business	Manager,	select	the	site	for	which	you	want	to	manage	custom	objects.	

2. Select	Custom	Objects	>	Custom	Object	Editor.	The	Manage	Custom	Objects	page	display.	

3. From	the	drop-down	list,	select	the	custom	object	type	that	you	wish	to	manage.	

4. To	create	a	new	custom	object,	click	New.	

5. Enter	data	in	each	of	the	required	fields.	Click	Apply.	

6. You	have	now	created	a	custom	object.	Click	the	Back	button	to	exit	the	custom	object	editor.	

	

Exercise:		Create	a	Custom	Object	Definition	

Define	a	custom	object	to	store	the	customer	data	gathered	from	your	Newsletter	form.	

7. In	Business	Manager,	select	Administration	>	Site	Development	>	Custom	Object	Definitions.	

8. Create	a	new	Custom	Object	type	with	the	following	attributes:	

§ ID	–	NewsletterSubscription	

§ Key	Attribute	–	email,	type	String	

§ Name	of	the	Table	-	your	choice	

§ Data	Replication	–	not	replicable	

§ Storage	Scope	–	Site	

9. Add	the	following	attributes:	

§ firstName,	type	String	

§ lastName,	type	String	

10. Create	an	attribute	group	for	the	NewsletterSubscription Custom	Object:	

§ Name:	Presentation.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	83	

§ Attributes:	firstName,	lastName	and	email	

11. Select	Site	-	SiteGenesis	>	Custom	Objects	>	Custom	Object	Editor.	Find	the	new	
NewsletterSubscription	type	and	manually	enter	a	new	subscription.	

	
Lesson	9.1:	Using	Digital	Script	to	Create	Custom	Object	Instances	

The	Digital	Script	API	provides	the	following	classes	in	the	dw.object	package,	among	others:	

§ CustomAttributes:	attributes	defined	by	a	user	in	Business	Manager	to	extend	a	system	object	or	
Custom	Object.	Accessible	via	the	syntax:	co_instance.custom.attribute.

§ CustomObject:	represents	an	instance	of	a	Custom	Object.

§ CustomObjectMgr:	enables	Custom	Object	instance	creation.

§ PersistentObject:	enables	persistent	storage.

§ ExtensibleObject:	enables	custom	attributes	to	be	added.

This	is	the	inheritance	tree	for	the	CustomObject	type:
Object > dw.object.PersistentObject > dw.object.ExtensibleObject >
dw.object.CustomObject (or dw.object.SystemObject)	

Custom	Objects	persist	in	the	database.	An	administrator	or	developer	can	add	custom	attributes	
added	to	them	in	Business	Manager.	Many	commonly	used	classes	such	as	dw.catalog.Product,	
dw.system.SitePreferences	and	many	others	share	this	inheritance	tree.	Objects	of	these	
class	types	are	saved	in	the	database	and	can	be	extended	to	store	extra	attributes.	

The	following	use	of	the	CustomObjectMgr	class	enables	creation	of	an	instance	of	a	Custom	
Objects	by	providing	the	Custom	Object	type	and	the	primary	key:	
CustomObjectMgr.createCustomObject("NewsletterSubscription", UUIDUtils.createUUID());	

This	creates	an	instance	with	a	system-generated,	unique	PK.	You	could	also	use:	
CustomObjectMgr.createCustomObject("NewsletterSubscription", args.email);	

This	assumes	that	the	args.email	value	is	a	unique	string	every	time	a	Custom	Object	is	created.	
Otherwise,	a	duplicate	PK	error	occurs.	

Database	Transaction	Handling	

There	are	two	approaches	to	database	transaction	handling	in	Commerce	Cloud	Digital:	

§ Implicit	–	The	script	automatically	starts	the	transaction	and	then	commits	or	rolls	back	if	
Commerce	Cloud	Digital	determines	it	to	be	appropriate.

§ Explicit	–	the	transaction	is	controlled	in	the	script.		The	developer	explicitly	indicates	in	the	code	
when	the	transaction	should	begin,	rollback,	or	commit.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	84	

	

Exercise:		Create	a	Custom	Object	Using	a	JavaScript	Controller	

Create	a	JavaScript	controller	named	JNewsletterV2.js.		Copy	code	from	
JNewsletterV2_exercise.js	into	it.	Follow	the	instructions	in	the	comments	to	complete	the	
code.	

1. Copy	MyModel.js		from	the JSolutions cartridge	to	your	training	cartridge	(in	similar	
location)	and	study	how	it	is	creating	the	object.	

2. Copy	newsletter/newslettererrorV2.isml and newslettererrorV2	from
JSolutions cartridge	into	your	cartridge	in	the	similar	location.	Adjust	the	links	in	
newslettererrorV2.isml to	point	to	JNewsletterV2.js	controller.	

3. Execute	the	controller	and	see	if	objects	are	being	created.	

	
Lesson	9.2:	Custom	Logging	

Commerce	Cloud	Digital	supports	custom	logging	using	log	categories	and	severity	levels	as	defined	by	
the	Apache	log4j	open	source	project.	

Log4j	supports	multiple	severities	and	categories	of	logging	to	enable	the	developer	to	capture	debug	
messages	at	different	levels	of	granularity.	The	severity	levels	are:	

Debug	<	Info	<	Warn	<	Error	<	Fatal		

If	custom	logging	is	enabled	for	a	certain	severity	level,	then	it	is	enabled	for	higher	severity	levels	as	
well	(read	from	left	to	right).	Fatal	and	Error	are	always	enabled	and	cannot	be	turned	off.	

The	developer	can	define	as	many	levels	of	categories	and	subcategories	as	needed.	Commerce	Cloud	
Digital	does	not	impose	a	certain	categorization;	the	developer	determines	the	organization.	For	
example:	

§ product

§ product.import

§ product.import.staging

If	logging	is	enabled	for	a	category	(such	as	product),	all	its	subcategories	are	also	enabled.	For	
example,	if	Warn	logging	is	enabled	for	product,	then	Warn,	Error	and	Fatal	errors	are	logged	for	
product	and	all	its	sub-categories.

However,	if	Warn	logging	is	enabled	for	product	and	Debug	is	enabled	for	product.import,	then:	

§ Warn,	Error	and	Fatal	messages	are	logged	for	"product"	and	all	its	sub-categories.

§ Debug	and	Info	are	logged	for	"product.import"	and	all	its	sub-categories.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	85	

To	write	to	a	custom	log,	you	need	to	use	the	dw.system.Logger.getLogger()	factory	method.	
This	method	creates	a	Logger	object	for	a	specified	category:

var logger = Logger.getLogger("logFilePrefix","category");	
logger.debug("Input params received in pipelet 	
 firstName: {0}\n lastName: {1}\n email: {2}", 	
 args.firstName, args.lastName, args.email);	
 	
try	
{	
 … do something…	
 	
}	
catch (e)	
{	
 logger.warn(“error description: {0}", e.causeMessage);	
 	
}	

Use	the	Logger	object	to	write	a	message	for	a	specific	severity	level:	Logger.error(String msg).	

The	message	uses	the	Java	MessageFormat	API,	so	you	can	specify	placeholders.	Typically,	these	
messages	are	not	localized	since	they	are	read	internally	by	site	administrators,	but	they	can	be.	

Enabling	Custom	Logging		

In	order	to	write	to	log	files,	you	need	to	enable	Custom	Log	Settings:	

1. In	Business	Manager,	select	Administration	>	Operations	>	Custom	Log	Settings.	

2. Create	a	log	category.	Enter	it	in	the	field	under	a	given	severity.	Click	Add.	

3. Enable	the	checkbox	next	to	the	log	category	where	you	want	to	write.	Click	Apply.	

4. Click	Log	Debug	to	File	to	enable	debug	messages	to	be	written	to	a	log	up	to	10	megabytes.	
Usually	Debug	and	Info	messages	are	written	to	memory	only,	and	visible	via	the	Request	Log	tool.	

5. Run	the	pipeline	you	wish	to	debug.	

6. In	Business	Manager,	review	the	custom	log	file.	Select	Administration	>	Site		Development	>	
Development	Setup	>	Log	Files.	

7. Open	the	log	file	that	was	just	created.	Search	for	the	file	by	date.	The	custom	log	file	name	is	
similar	to:	customdebug-177.aaaq.demandware.net-appserverxxxx.log. However,	if	
you	gave	a	prefix	while	creating	the	log,	the	file	name	starts	with custom-<prefix name>	

	

Exercise:		Custom	Logging	in	a	JavaScript	Controller	

Modify	the	script	from	the	Newsletter	Subscription	so	that	it	writes	debug	messages	to	a	log	file,	as	
well	as	error	messages	when	a	duplicate	key	is	used.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	86	

1. Modify	MyModel.js	to	Write	to	Debug	Log.	

2. Open	the	scripts/MyModel.js	script.	

a. Use	the	require	to	get	Logger	from	dw.system	package.	

b. Copy	MyModel_exercise.js	and	overwrite	it	to	MyModel.js.	Complete	the	template	by	
following	the	comments.	If	you’re	unsure	on	how	to	complete	it,	use	MyModelWithLogging.js	
as	a	guideline.	

3. Enable	Logging	for	Debug	Messages.	

4. In	Business	Manager,	select	Administration	>	Operations	>	Custom	Log	Settings.	

5. In	the	Log	Category	field,	set	root	to	DEBUG	Level.		This	covers	all	categories.	

6. Click	Add	to	enable	debugging	for	all	debug	messages.	

7. Click	Log	Debug	to	File.	

8. Click	Save.	

9. Test	your	pipeline	with	a	duplicate	email	address	and	verify	the	latest	customwarn	log	files.	

10. Select	Administration	>	Site	Development	>	Development	Setup	>	Log	Files.	

11. Verify	the	messages	on	the	customdebug	and	customerror	log	files	that	appear	with	the	most	
recent	timestamp.	The	name	of	the	file	should	start	with	custom-NewsLogs	

12. Verify	the	debug	messages	also	appear	on	the	request	log.	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	87	

	
Knowledge	Check	

Custom	Object	Questions	 True	 False	

Custom	objects	are	the	only	way	to	store	custom	data	in	Commerce	Cloud	Digital.	 	 	

The	“custom”	keyword	is	required	to	access	custom	attributes	of	an	object.	 	 	

A	custom	object	needs	a	primary	key.	 	 	

Custom	object	instances	can	only	be	created	in	Business	Manager.	 	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	88	

Module	10:	Data	Binding	and	Explicit	Transactions	
Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Use	data	binding	to	pre-fill	forms	and	update	persistent	data	from	the	form.

§ Use	an	explicit	transaction	to	commit	changes	to	the	database.

	
Lesson	10.1:	Data	Binding	with	Forms	and	Objects	

The	Commerce	Cloud	Digital	forms	framework	supports	binding	of	persistent	objects	to	form	fields	by	
automatically	updating	a	persistent	object	with	form	data	without	having	to	issue	an	insert	statement	
or	calling	a	Digital	API.	The	reverse	mechanism	is	also	supported:	pre-populating	a	form	object	with	
data	from	a	persistent	object.		

The	object	that	is	bound	to	the	form	must	be	a	persistent	object	(system	or	custom),	and	must	be	
available	in	the	pdict.	The	form	metadata	must	have	field(s)	with	the	binding	attribute	specified.	
The	field	formid	attribute	is	not	used	to	make	the	match;	only	the	binding	attribute	identifies	what	
fields	match	between	the	form	and	the	object.	The	following	form	metadata	uses	
custom.firstName, custom.lastName, custom.email	as	the	bindings

	
Because	NewsletterSubscription	is	a	Custom	Object,	you	want	to	bind	this	form	to	have	
firstName,	lastName	and	email	fields	which	are	all	custom	attributes.	Notice	that	the	fields	do	
not	have	a	lock	icon	(you	added	them	as	custom	attributes	of	the	Custom	Object):	

	

	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	89	

When	the	information	is	stored	in	a	custom	object	in	the	code,	you	can	manage	that	transaction	
explicitly	in	the	code	using	dw.system.Transaction.			The	following	methods	can	then	handle	
the	transaction.	

Transaction.begin(..)
Transaction.commit(..)
Transaction.rollback(..)

	
Transactions	can	also	be	implicit.			This	means	that	the	transactions	will	not	have	to	be	explicitly	begun	
or	committed.			They	will	be	handled	by	the	Commerce	Cloud	Digital.		The	following	is	an	example	code	
for	implicit	transaction.		
	

var txn = require('dw/system/Transaction');
 txn.wrap(function(){
 // work with business objects here
 });

	

Exercise:		Create	a	Custom	Object	Using	a	JavaScript	Controller	

1. Save	the	controller	JNewsletterV2.js	as	JNewsletterV3.js in	your	training	cartridge.	

2. In	JNewsletterV3.js	replace	all	occurrences	of	JNewsletterV2	as	JNewsletterV3	in	the	code.	

3. Comment	the	following	lines	of	code:	
 var myModel = require('~/cartridge/scripts/MyModel');
 var co=myModel.createMyObject(newsletterForm);

4. Just	below	these	lines,	use	the	require	syntax	to	get	CustomerObjectMgr	form	dw.object	
package.s	

5. Add	the	next	line	as:	
 var co=CustomObjectMgr./*invoke a method to create object from

NewsletterSubscription custom object type with the
newsletterForm.email.value as the primary key. */

														Note:	Follow	the	instruction	in	the	comment	to	make	the	line	fully	executable	and	working	(use	
Script	API	as	the	guide	if	needed).	

6. Use	the	copyTo	method	(use	the	quickcard	section	“Handling	Forms”)	to	store	newsletterForm	
to	the	object	created	above.	

7. Adjust	newslettersuccessV2.isml	to	point	to	the	controller	JNewsletterV3.js.	

8. Execute	the	JavaScript	controller.	

9. In	Business	Manager,	select	Merchant	Tools	>	Custom	Objects	>	Custom	Object	Editor.	Determine	
if	the	object	was	created.	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	90	

	

	
Knowledge	Check	

Forms	Framework	Questions	 True	 False	

To	implement	Explicit	Transactions	you	use	the	
beginTransaction()	method	in	the	controller.	

	 	

You	can	rollback	a	transaction	in	the	code	using	implicit	
transaction.	

	 	

	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	91	

	

Exercise:	Store	and	Retrieve	the	Preferences	using	the	JavaScript	Controller	JEditPreferences.js	

Create	a	new JEditPreferences.js	controller	to	pre-fill	the	form	with	the	logged-in	customer	
preferences.	Once	the	customer	changes	his/her	preferences,	save	the	data	to	the	database.	

Note:		Perform	Step	1-3	only	if	you	have	not	so	in	the	previous	exercise.	

1. Extend	the	Profile	System	Object.	

1. In	Business	Manager,	extend	the	Profile	system	object	with	the	following	custom	attributes:	
(Administration	>	Site	Development	>	System	Object	Definitions)	

2. interestApparel :	Boolean

3. interestElectronics : Boolean

4. newsletter : Boolean

a. None	of	the	attributes	are	mandatory.	

b. Add	them	to	an	Attribute	Group	Preferences	to	view	the	settings	later	in	the	Customer	area.	

5. Modify	the	Content	Asset	that	shows	the	Account	Overview.	

6. Login	to	your	Storefront	account	(register	as	a	new	customer	if	you	haven’t	already).	

a. On	the	account	overview	page,	use	the	Storefront	Toolkit	>	Content	Information	to	locate	the	
account-landing	content	asset	which	is	located	in	the	middle	of	the	page	(or	locate	it	
Business	Manager).	

b. In	the	account-landing	asset,	add	a	new	list	item	that	calls	the	JEditPreferences
pipeline.	Use	the	$httpsUrl(JEditPreferences-Start)$	content	link	function	to	invoke	
your	pipeline	(this	syntax	was	covered	in	the	Content	Slot	module):	

	

	
 <a title="View and modify items on your list or invite friends"
href="$httpsUrl(JEditPreferences-Start)$">	
 <i class="fa fa-bookmark"></i>	
 <h2>Preferences</h2>	
 <p>View and modify your preferences</p>	
 	
 	

	

7. Edit	the	Form	Metadata	to	add	bindings	and	externalization	of	strings.	

8. Open	the	preferences.xml	form	metadata	file.	

9. Externalize	the	keys	in	preferences.xml	in	templates/resources/forms.properties	file	for	example:	
forms.preferences.apparel=Are you interested in Apparel ?

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	92	

Likewise	externalize	the	other	two	keys.	

10. For	each	custom	attribute	you	defined	in	the	Profile	system	object,	make	sure	there	is	a	
corresponding	form	field	with	a	binding	that	matches	the	spelling	you	used	as	the	object	attribute.	
For	example:	
<field formid="interestApparel"
 label="forms.preferences.apparel" type="boolean"
 binding="custom.interestApparel"/>

11. Copy	the	editpreferences.isml	from	the	customerpreferences	cartridge	to	your	own	
cartridge	under	similar	directory	structure	(templates/default/account/user).	Make	sure	
the	formfields	are	matching	the	formids	of	the	preferences.xml	metadata	file.		

12. Create	a	JavaScript	controller	named	JEditPreferences.js.		Copy	code	from	
JEditPreferences_exercise.js	into	it.	Follow	the	instructions	in	the	comments	to	
complete	the	code.	

13. Execute	the	controller	from	the	account	page	(You	will	have	to	modify	the	content	asset	to	invoke
JEditPreferences (not EditPreferences)).	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	93	

Module	11:	Site	Maintenance
Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Learn	about	page	caching	

§ Use	the	JavaScript	Controller	Profiler		

§ Replicate	code	and	data	in	the	Primary	Instance	Group	(PIG).	

Note:	In	the	Business	Manager,	the	JavaScript	Controller	Profiler	is	referred	to	as	the	Pipeline	Profiler.

Introduction

Commerce	Cloud	Digital	provides	tools	that	you	can	use	to	improve	site	performance	as	well	as	
replicate	code	and	data.		

Note:	The	Developing	for	Digital	II	course	provides	additional	information	on	this	topic.	

	
Lesson	11.1	Site	and	Page	Caching	

Page	download	time	is	a	critical	factor	in	keeping	visitors	in	your	storefront.	The	longer	it	takes	to	
download	a	page,	the	higher	your	risk	of	losing	a	sale.	Therefore,	it	is	best	to	cache	your	pages	as	much	
as	possible	to	minimize	page	download	times.		

Furthermore,	rendering	pages	containing	many	business	objects	or	complex	calculations	such	as	
category	and	search	result	pages	or	product	detail	pages	can	consume	a	lot	of	resources.	Since	this	
information	generally	does	not	change	from	one	user	to	another,	not	caching	these	pages	can	
excessively	waste	processing	resources	which	slows	down	the	entire	site	for	all	users	(including	job	
processing)	and	not	just	for	the	requested	pages.			

Commerce	Cloud	Digital	controls	caching	on	a	per	page	basis,	via	the	ISML	template	for	the	page.	Set	
caching	on	a	page	using	the	<iscache>	tag:	

<iscache type="relative" hour="24">	

Commerce	Cloud	Digital	follows	these	rules	when	using	the	tag:	

§ If	<iscache> tag	occurs	multiple	times	in	a	template	or	its	locally	included	templates,	the	
shortest	duration	is	used.

§ Caching	from	a	local	include	affects	the	including	template.
§ If	there	is	no	<iscache> defined,	the	template	is	not	cached.

Use	the	<iscache> to	set	the	following	parameters:

Parameter	 Description		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	94	

type =
"relative	|	daily"	

Relative	enables	you	to	specify	a	certain	period	of	time,	in	minutes	and	
hours,	after	which	the	page	will	be	deleted	from	the	cache.	Daily	enables	
you	to	specify	an	exact	time	when	the	page	will	be	deleted	from	the	cache.		

hour = integer	

	
Indicates	either	the	caching	duration	or	the	time	of	day.	If	the	type	
attribute	is	set	to	daily,	the	hour	value	must	be	an	integer,	ranging	from	
0	to	23.	If	type	is	set	to	relative,	all	integer	values	greater	than	0	are	
valid	(the	default	value	is	0,	meaning	either	the	page	is	never	cleared	from	
the	cache	or	only	the	minute	attribute	is	relevant).	

minute = integer 	 Indicates	either	the	caching	duration	or	the	time	of	day.	If	the	type	
attribute	is	set	to	daily,	the	minute	value	must	be	an	integer	ranging	
from	0	to	59.	If	type	is	set	to	relative,	all	integer	values	greater	than	0	
are	valid	(the	default	value	is	0,	meaning	either	the	page	is	never	cleared	
from	the	cache	or	only	the	hour	attribute	is	relevant).	

varyby=
"price_promotion"	

Enables	you	to	mark	a	page	as	personalized:	this	does	not	mean	that	the	
page	is	unique	for	a	person	but	rather	that	different	versions	of	the	same	
page	showing	different	prices,	promotions,	sorting	rules	or	AB	test	
segments	will	be	cached	by	Commerce	Cloud	Digital.	For	example,	this	
parameter	is	necessary	for	product	pages	since	a	customer	belonging	to	a	
customer	group	might	get	special	promotions	that	other	customer	groups	
don’t	get.	While	the	ISML	template	is	the	same,	the	generated	pages	vary,	
and	therefore	caching	every	version	of	the	page	benefits	performance.	For	
performance	reasons,	a	page	should	only	be	marked	with	the	varyby
property	if	the	page	is	really	personalized;	otherwise,	the	performance	
can	unnecessarily	degrade.		

Frequently	changing	pages	benefit	from	a	shorter	caching	period.	Stored	pages	are	only	invalidated	
and	a	new	one	pulled	from	the	application	server	if	any	of	the	following	occur:	

§ The	defined	caching	time	is	exceeded.	

§ A	replication	has	been	performed	(with	the	exception	of	coupons	and	geolocation	data).

§ An	explicit	page	cache	invalidation	is	triggered	by	a	merchant	in	Business	Manager.

As	a	best	practice,	disable	page	caching	on	sandboxes,	development	and	staging	environments	in	order	
to	see	changes	immediately.	In	Production	caching	is	always	on	by	default.

Portions	of	pages	can	be	cached	separately.	You	can	assemble	a	page	from	snippets	with	different	
caching	attributes	using	remote	includes.	Each	part:	

§ Must	be	a	result	of	a	pipeline	request	to	the	application	server.
§ Is	included	using	the	<isinclude url="">	or	the	<iscomponent pipeline=….>	syntax.

§ Can	have	different	cache	times	or	no	caching	at	all.

In	general,	do	not	cache	pages	that	show	buyer	or	session	information.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	95	

Studying	Page	Analytics	to	Determine	Caching	Problems	

To	access	Digital	caching	metrics,	select	Site	>	Analytics	>	Technical	Reports.	Shown	is	the	Pipeline	
Performance	report.	

	
These	types	of	analytics	are	only	collection	on	Production	instances,	not	Sandboxes.	In	this	example,	it	
reveals	that	the	Home-Show	controller	(which	generates	the	homepage)	is	not	cached:	the	Caching	
column	shows	red	for	all	hits.	If	you	see	this	trend	in	your	analytic	data,	you	may	decide	to	alter	the	
caching	settings	or	the	caching	interval.	

Across	Digital	customers,	the	two	critical	metrics	to	focus	on	from	a	performance	perspective	are	the	
average	response	times	of	Search-Show	and	Product-Show	controllers.	These	controllers	are	used	
across	all	customers	and	are	the	main	components	of	most	pages	on	Digital	installations.	

§ For	Search-Show	the	average	response	is	400ms.	Customers	should	be	<=	to	this	value	to	be	in	a	
good	performance	range.

§ For	Product-Show	the	average	response	is	320ms-400ms.	Customers	should	be	<=	to	this	value	to	
be	in	a	good	performance	range.

Salesforce	strongly	recommends	that	you	check	analytics	reports	each	week	and	after	you	make	code	
changes	to	track	these	metrics.
Page	Level	Caching	

Once	the	<iscache>	tag	is	added	to	an	ISML	template,	the	entire	ISML	page	will	be	cached	for	the	
time	specified	in	the	tag.	

For	example,	the	page	shown	will	be	cached	for	1	hour	and	30	minutes:		

	

Exercise:	Page-Level	Caching	

1. Create	an	ISML	template	named	cachedpage.isml	that	has	caching	enabled	for	30	minutes:	
<iscache type="relative" minute="30" />

2. Add	a	Date	object	to	the	page	that	prints	the	current	time:	
<isprint value="${new Date()}" style="DATE_TIME" />

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	96	

3. Create	a	new	pipeline	named	Caching or	a	javaScript	controller	named JCaching to	display	
the	above	template.	

4. Test	the	template	in	your	SiteGenesis	storefront.	Refresh	your	page.	Does	the	time	change	on	
refresh?		

5. Enable	caching	on	your	SiteGenesis	site.	Retest	the	template.	You	may	need	to	wait	a	minute	
before	you	see	the	page	has	been	cached.	

Partial	Page	Caching

Generally,	a	single	page	should	not	be	cached	completely.	Some	parts	of	the	page	should	be	cached,	
while	other	parts	should	not	be	cached.	In	this	case	you	need	to	use	remote	includes	for	every	part	
that	has	unique	caching	characteristics.	Every	remote	include	calls	a	different	pipeline	which	generates	
an	ISML	template,	each	template	having	(possibly)	different	page	caching.		

The	syntax	for	a	remote	includes	uses	the	URLUtils	class	to	call	a	remote	pipeline	with	optional	
parameters	appended:	

<isinclude url="${URLUtils.url('Page-Include', 'cid',
 'COOKIE_TEST')}">	

You	can	also	use	the	newer	<iscomponent>	tag	to	implement	a	remote	include.]	

	

Exercise:	Partial	Page	Caching	

1. In	the	template	cachedPage.isml,	add	a	remote	include	call	to	the	Product-
IncludeLastVisited		(pipeline	or	controller)	
<iscomponent pipeline="Product-IncludeLastVisited" />

2. Invalidate	the	cache	in	Business	Manager.	

3. Go	to	another	tab	and	visit	a	few	products	(3	at	most).	

4. Refresh	the	Caching-Start	pipeline	or	JCaching-Start	controller	

5. Visit	more	products	on	the	other	browser.	

Result:	the	time	remains	unchanged	while	the	last	visited	products	change	every	time	a	new	
product	is	visited.

6. Once	you	have	finished	this	exercise,	do	not	forget	to	turn	your	caching	off	again	in	Business	
Manager	(Administration	>	Sites	>	Manage	Sites	>	SiteGenesis	>	Cache)	

Using	the	Storefront	Toolkit	to	Determine	Cache	Settings

You	can	enable	the	Cache	Information	tool	in	the	Storefront	Toolkit	to	see	how	partial	page	caching	is	
implemented	for	a	page:	

The	page	now	shows	special	icons	that	you	can	click	to	reveal	how	the	whole	page	and	its	remote	
includes	are	cached:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	97	

	

	

Exercise:	Use	the	Cache	Information	Tool	

1. Browse	the	SiteGenesis	home	page.	

2. Turn	on	Storefront	Toolkit	>	Cache	Information.	

3. Study	the	cache	information	for	the	whole	page.	

4. Study	the	cache	information	for	a	content	slot	and	open	the	template	to	see	the	cache	settings.	

5. Study	the	cache	information	for	the	Cart	remote	include.	Why	is	this	page	not	cached?	

	
Lesson	11.2	Site	Performance	

The	Pipeline	Profiler	is	a	Business	Manager	tool	that	provides	insight	into	pipeline	and	script	
performance.	It	tracks	pipeline	execution	metrics,	which	is	a	critical	component	of	overall	page	and	site	
load	and	performance.	This	enables	you	to	proactively	identify	bottlenecks	in	performance	while	
developing	applications.	

To	track	the	performance	of	a	pipeline	using	the	Pipeline	Profiler:	

1. In	Business	Manager,	select	Administration	>	Operations	>	Pipeline	Profiler.	

2. Reset	previously	collected	statistics	and	turn	on	the	Pipeline	Profiler.	

3. Browse	specific	pipeline	in	storefront.	

4. Return	to	profiler	and	analyze	the	collected	data.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	98	

5. Click	the	link	for	that	site	where	you	want	to	capture	data:	

a. The	pipeline	profiler	displays	a	high-level	view	of	response	times	per	script	or	pipeline,	such	as	
hits,	total	time	for	a	page	to	be	generated,	average	time,	etc.	

b. Look	for	scripts	with	high	average	run	times	and	high	hits.	These	are	the	first	areas	to	focus	on	

performance	improve.	

c. To	view	more	detailed	data	for	a	specific	script,	click	the	script	name.	

6. Test	the	script	or	a	different	one	again.	

7. While	the	pipeline	profiler	runs	you	have	access	also	to	captured	script	data.	

8. Turn	off	the	profiler	and	analyze	the	results.	

9. If	you	make	modifications	to	the	script,	retest	to	verify	if	performance	has	improved.	

	
Lesson	11.3	Code	Replication	

Code	replication	is	set	and	managed	in	Business	Manager.	Once	you	have	uploaded	a	new	code	version	
to	the	PIG	staging	instance,	you	can	set	code	replication	to	occur	between	staging	and	development	or	
staging	and	production.		

Code	Replication	Overview	

In	a	typical	development	environment,	a	source	management	system	is	used	for	code	version	control.	
Each	developer	uses	their	own	sandbox	for	development,	while	checking	in	their	code	to	a	source	
management	system.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	99	

	
	

UX	Studio	integrates	with	SVN	for	source	management.	To	learn	more	about	using	SVN	in	UX	Studio,	
view	our	online	webinar	in	XChange:	http://xchange.demandware.com/docs/DOC-2667.	

When	a	developer	has	tagged	a	new	code	version	and	is	ready	to	upload	the	new	code	to	staging,	
he/she	creates	a	new	code	version	on	Staging	in	Business	Manager	from	Administration	>	Site	
Development	>	Code	Deployment	page.		

Next,	the	developer	uploads	custom	cartridges	with	UX	Studio	or	WebDAV	client	using	2-factor	
authentication	and	tests	the	storefront	in	Staging.	A	rollback	to	a	previous	version	is	available.	

For	major	code	changes,	it	is	recommended	to	use	a	sandbox	for	testing:	

	
	

To	test	in	a	sandbox,	export	the	site	data	to	the	global	directory	from	staging	and	import	it	into	your	
sandbox	using	the	Site	Import/Export	module	in	Business	Manager.	

When	you	need	to	test	code	metadata	(site	preferences,	new	attributes,	etc.),	the	build	engineer	
replicates	from	Staging	to	Development:	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	100	

	
This	is	also	good	practice	for	testing	processes	without	impacting	the	production	storefront	(i.e.	
Product	import	feed).	

The	last	step	in	code	replication	is	moving	code	from	Staging	to	Production	using	Business	Manager.	

	
To	replicate	code	from	Staging	to	Development	or	Staging	to	Production:	

1. Log	into	the	Staging	Business	Manager	with	an	account	that	has	code	replication	permissions.	

1. Select	Administration	>	Replication	>	Code	Replication.		

2. Click	New	to	create	a	new	replication	process.	

3. From	the	Target	drop-down	menu,	specify	whether	the	replication	process	is	to	Development	or	
Production.	

4. Select	whether	you	want	to	process	to	run	manually	or	automatically.	Click	Next.	

5. Specify	what	type	of	replication	you	want:		

1. Code	Transfer	&	Activation:	immediately	activates	the	new	code	version.	

d. Code	Transfer:	Only	transfers	the	code.	

2. Click	Next.	

3. Click	Start	to	start	the	replication	process.	Click	Create	to	add	the	replication	process	to	the	list.	

4. If	you	selected	the	process	to	run	manually,	click	Start	to	start	the	job	from	the	list.	
	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	101	

	
Lesson	11.4	Data	Replication	

Data	replication	promotes	merchant	edits,	product,	and	system	objects	from	Staging	to	Production	(or	
Development).	The	best	practice	is	to	replicate	to	development	first,	verify	that	data	and	storefront	
work,	and	then	replicate	from	staging	to	production.	

Data	can	be	replicated	granularly:	

§ Organization	objects

§ Per	Site	objects

	
													

Data	Replication	has	two	phases:	

§ Transfer	–	long	running	processes	where	data	is	copied	from	Staging	into	shadow	tables	and	folders	
on	Production.	No	changes	are	shown	in	storefront.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	102	

§ Publishing	–	Very	fast	process.	Changes	in	shadow	tables	and	folders	become	active,	the	page	
cache	is	purged,	and	the	new	version	is	shown	in	storefront.

After	data	has	been	replicated,	a	one-time	rollback	(undo)	is	possible.	This	reverses	the	data	to	the	
state	of	the	last	successful	replication.

To	view	the	progress	of	a	replication,	monitor	the	staging	logs	on	the	staging	and	production	instance.	

Like	code	replication,	you	set	up	data	replication	in	Business	Manager.	The	process	similar,	except	you	
select	the	data	that	you	want	to	replicate.		

Just	as	code	replication	can	only	occur	between	Staging	and	Development	or	Staging	and	Production,	
data	replication	is	a	one-way	process	from	Staging	to	the	other	primary	instances.	

	
To	replicate	data	from	Staging	to	Development	or	Staging	to	Production:	

1. Log	into	the	Staging	Business	Manager	with	an	account	that	has	code	replication	permissions.	

2. Select	Administration	>	Replication	>	Data	Replication.	

3. Click	New	to	create	a	new	data	replication	process.	

4. Specify	the	target	for	the	data	replication	process:	Development	or	Production.	

5. Select	whether	you	want	to	process	to	run	manually	or	automatically.	If	automatically,	specify	the	
date	and	time	the	process	should	run.	

6. Specify	when	you	want	an	email	notification	and	who	should	receive	it.	Click	Next.	

7. At	the	next	screen,	specify	what	type	of	replication	you	want:	Data	Transfer	&	Publishing	or	Data	
Transfer.	

8. Expand	the	sites	to	select	the	site	data	you	wish	to	replicate.		Click	Next.	

9. Click	Start	to	create	and	trigger	the	process	immediately.	Click	Create	to	add	the	replication	
process	to	the	list.	Click	Cancel	to	go	back	to	the	list	of	replication	processes	without	saving	
anything.	

10. If	you	clicked	Create,	to	start	the	process,	click	Start	from	the	list	of	processes.	

	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	103	

	
Knowledge	Check	

Question	 Answer	

1.	 What	instance	is	used	to	replicate	data	in	a	PIG?	 	

2.	 What	two	caching	types	can	be	used	when	using	the	<iscache>	tag?	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	104	

Appendix	A:	Pipelines		

Learning	Objectives	

After	completing	this	module,	you	will	be	able	to:	

§ Describe	what	a	pipeline	is,	the	pipeline	dictionary,	and	the	elements	in	a	pipeline.	

§ Create	a	pipeline	that	includes:	start,	interaction,	call,	and	jump.	

§ Use	pipelets	within	pipelines.	

§ Execute	and	troubleshoot	pipelines.	

Note:	In	general,	JavaScript	controllers	replace	pipelines	throughout	Commerce	Cloud	Digital.		If	you	
are	creating	a	new	site,	Salesforce	strongly	recommends	the	use	of	JavaScript	controllers.		However,	if	
you	are	working	with	an	existing	site	that	has	pipelines,	it	is	important	to	understand	how	pipelines	
work	so	that	you	can	maintain	and	extend	them	if	needed.	

Cartridge	Folder	Structure
Cartridges	can	contain	either	controllers	and	pipelines	or	controllers	alone.	If	you	have	
controllers	and	pipelines	in	the	same	cartridge,	and	they	have	the	same	name,	the	platform	uses	the	
controller	and	not	the	pipeline.	Even	if	they	are	in	different	cartridges	and	have	the	same	name,	the	
platform	uses	the	controller	in	the	path	and	not	the	pipeline.	

Pipeline	Overview	

A	pipeline	is	a	logical	model	of	a	particular	business	process,	similar	to	a	flow	chart.	UX	Studio	provides	
a	visual	representation	of	the	process	within	the	Eclipse	IDE.	This	example	shows	the	Product-Show	
pipeline	that	renders	the	product	detail	page	on	the	SiteGenesis	site.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	105	

	
Pipelines	are	stored	in	XML	files	in	the	file	system,	both	locally	and	on	the	server.	You	define	and	store	
pipelines	within	the	context	of	a	cartridge.	

When	the	storefront	application	references	a	pipeline	in	a	cartridge,	it	searches	for	the	pipeline	in	the	
cartridge	path	and	uses	the	first	one	it	finds.	When	a	pipeline	with	the	same	name	exists	on	two	
cartridges,	the	first	one	found	in	the	path	is	used.	Therefore,	use	unique	pipeline	names	to	ensure	that	
the	framework	locates	the	correct	pipeline.	

There	are	many	pipeline	elements	available.	

Element	 Icon	 Description	

Start	Node	 	 Begins	the	logical	branch	of	a	pipeline.		

Interaction	Node	 	 Use	when	a	request	requires	a	page	as	a	response.	

Transition	Node	 	 Define	a	path	along	a	pipeline	between	pipeline	nodes.	

Call	Node	 	 Invoke	a	specified	sub-pipeline.	After	the	sub-pipeline	execution,	the	
workflow	returns	to	the	calling	pipeline.	

End	Node	 	 Terminate	a	sub-pipeline	and	return	to	the	calling	pipeline.	

Jump	Node	 	 Use	when	the	pipeline	forwards	the	request	to	another	pipeline.	

Join	Node	 	 Provide	a	convergence	point	for	multiple	branches	in	workflow.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	106	

Interaction	
Continue	Node	

	 Process	a	template	based	on	user	action	via	a	browser.	

Script	Node	 	 Execute	Digital	scripts.		

Eval	Node	 	 Evaluate	an	expression.	

Assign	Node	 	 Assign	values	to	new	or	existing	Pipeline	Dictionary	entries,	using	up	to	10	
configured	pairs	of	dictionary-input	and	dictionary-output	values	

Stop	Node	 	 Terminate	a	sub-pipeline	and	calling	pipelines;	stops	execution	immediately.	
Use	in	pipelines	that	execute	a	batch	job.	

Loop	Node	 	 Use	to	loop	through	an	iterator.	

Pipelet	
Placeholder	

	 Placeholder	for	a	script	node.	

Decision	Node	 	 Evaluate	a	condition	and	navigate	to	a	different	branch	in	the	pipeline.	

	

Creating	a	Pipeline	

A	new	pipeline	needs	at	least	one	Start	node	and	one	Interaction	Node.	In	UX	Studio,	when	creating	a	
new	pipeline,	access	the	pipeline	palette	from	the	Pipeline	Editor.	Note:	If	the	palette	is	not	visible,	
click	the	button	on	the	upper-right	corner	of	the	editor.		

	
Start	Nodes	

A	pipeline	may	have	multiple	Start	nodes,	but	each	node	must	have	a	unique	name.	Every	Start	node	is	
the	beginning	of	a	specific	logical	branch	within	the	pipeline.		Configuration	properties	include:	

§ Name:	Used	in	pipeline	calls.

§ Call	mode:	Specifies	the	accessibility	of	the	pipeline	from	a	browser.

§ Public:	Can	be	called	from	the	browser	or	from	another	pipeline.

§ Private:	Can	be	called	from	another	pipeline	via	Call	or	Jump	Nodes.

§ Secure	Connection	Required:

§ False:	Pipeline	can	be	invoked	with	HTTP	and	HTTPS	protocols.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	107	

§ True:	Start	node	can	only	be	accessed	via	secure	(HTTPS)	protocol.	

Interaction	Node
This	node	specifies	the	template	to	display	in	the	browser.	If	the	Dynamic	Template	is:	

§ true:	Template	Expression	must	be	a	variable	containing	a	template	name.	The	template	to	be	
called	by	an	Interaction	node	is	not	always	hard-coded	in	the	node.	Instead,	the	name	can	be	
determined	dynamically	during	runtime	from	the	Pipeline	Dictionary.	

§ false:	The	template	expression	contains	a	path	to	the	template	under	the	templates/default	
folder.

Transition	Node

The	transition	node	creates	a	transition	between	two	nodes.	To	create	a	transition	between	two	nodes	
click	and	drag	your	mouse	between	two	nodes	in	a	pipeline.	

To	create	a	simple	pipeline	using	a	Start	node	and	an	Interaction	node:	

1. From	UX	Studio,	click	File	>	New	>	Pipeline.	The	Create	Pipeline	dialog	displays.	

2. Provide	a	name	that	describes	its	business	purpose.	

3. Click	Finish.	

4. From	the	palette,	click	and	drag	a	Start	node	to	the	work	area.		

5. Click	and	drag	an	Interaction	Node	to	the	work	area.	

6. Hold	your	mouse	pointer	down	over	the	white	dot	at	the	bottom	of	the	Start	Node.	Drag-and-drop	
your	mouse	pointer	over	to	the	white	dot	at	the	top	of	the	Interaction	Node.	Release	your	mouse.	
A	Transition	Node	connects	the	two	elements.	

7. Click	the	Interaction	Node	twice	(not	double-click).	This	displays	an	ellipsis	button	next	to	the	node.	

8. Click	the	ellipsis	button	to	select	the	template	you	wish	to	display	with	the	Interaction	node.	

9. Select	the	template.	Click	OK.	

10. Save	the	pipeline:	CTRL+S.	

	

Exercise:		Create	a	Pipeline	

1. In	UX	Studio,	select	File	>	New	>	Pipeline	in	the	training	cartridge.	

2. Name	the	pipeline	Hello.	Do	not	specify	a	group.	Keep	View	as	the	pipeline	type.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	108	

3. Use	the	palette	to	drag	a	start	node	onto	the	pipeline	editor.	The	name	defaults	to	Start.	

4. Drag	an	Interaction	Node	below	the	start	node,	and	connect	them	with	a	Transition.	

5. Create	a	template	hello.isml	that	renders	a	simple	HTML	page	with	a	“Hello	World!”	greeting:	
<html>

<head>	
<title>Hello</title>	

</head>	
<body>	

Hello World!	
</body>	

</html> 	

6. In	the	pipeline’s	Interaction	node,	specify	the	template	name	hello.isml	in	its	properties.	

7. Double-click	the	Interaction	node	to	verify	that	it	opens	the	hello.isml	template.	

8. Save	both	the	pipeline	and	the	template.	

Executing	a	Pipeline	

Execute	pipelines	from	the	browser	via	an	HTTP(S)	request	or	via	Call	or	Jump	Nodes.	Note:	If	the	
pipeline	Start	node	is	set	as	Private	it	can	only	be	called	via	a	Call	or	Jump	node.		

Calling	a	pipeline	via	a	HTTP	request	requires	the	pipeline	name	and	start	node	at	the	end	of	the	
storefront	URL:	http://instance.realm.client.demandware.net/on/
demandware.store/Sites-YourSite-Site/default	

	
You	can	also	pass	parameters	via	HTTP	requests	using	this	syntax:	

	
To	execute	a	public	pipeline	from	the	storefront:	

1. Open	your	storefront	in	a	browser	window.	

2. At	the	end	of	the	URL	add	the	default/	directory,	then	enter	your	pipeline	name	and	start	node	
using	the	following	syntax:		
/Sites-SiteGenesis-Site/default/Hello-Start	

3. To	pass	parameters,	add	a	query	string	after	the	pipeline	invocation:		
Sites-SiteGenesis-Site/Default/Product-Show?pid=ETOTE

	

Exercise:		Execute	a	Pipeline	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	109	

1. Test	your	pipeline	in	the	storefront:	
http://student1.training.dw.demandware.net/on/demandware.store/Sites-
SiteGenesis-Site/default

2. Close	the	Storefront	Toolkit	on	the	upper-left	corner	of	the	page	to	view	the	output.	

3. Bookmark	this	URL	to	use	it	for	future	pipelines	invocations	during	this	class.	

Pipeline	Setting	Troubleshooting

If	your	pipeline	does	not	work,	use	this	checklist	to	review	your	settings	from	the	Navigator	view.		

§ Right-click	DigitalServer.	A	pop-up	menu	displays.		Hover	your	mouse	pointer	over	the	Digital	
Server	menu	item.	Ensure	that	Active	Server	and	Auto-Upload	are	checked.		

§ Select	DigitalServer	>	Properties	>	Project	References.	Ensure	that	your	cartridges	are	checked	for	
being	uploaded	to	the	server.		

§ Select	DigitalServer	>	Digital	Server>	Change	Upload	Staging	Directory.	Ensure	that	the	Target	
version	directory	and	Active	version	directory	match.		

§ Select	DigitalServer	>	Digital	Server>	Update	Server	Configuration.		Ensure	that	the	configuration	
strings	are	correct.		

§ In	Business	Manager,	select	Administration	>	Sites	>	Manage	Sites	>	SiteGenesis.	Select	the	
Settings	tab.	Check	your	cartridge	path.	It	should	have	the	exact	name	as	the	cartridges	in	Eclipse.	
Names	are	case	sensitive	and	should	have	no	spaces	in	the	path.	There	should	be	no	semicolons	in	
place	of	colons.		

§ Select	Administration	>	Sites	>	Manage	Sites	>	SiteGenesis.	Select	the	Cache	Tab.	Check	if	Time	to	
live	(TTL)	is	0	and	Enable	Page	Caching	is	disabled.		

§ If	you	have	not	done	so,	index	your	site.	Select	Site	>	SiteGenesis	>	Search	>	Search	Indexes.		Check	
all	checkboxes	and	click	Reindex.		

§ Save	your	project	before	executing	the	pipeline	and	type	the	URL	correctly.	

In	Eclipse,	in	the	Project	menu	ensure	that	your	project	is	configured	to	build	automatically.	

Invoke	a	Pipeline	

1. Open	your	sandbox	storefront.		

2. Invoke	a	Test-Start	pipeline	(which	has	not	been	created).	

3. Open	the	Request	Log	to	view	the	error	message.	

	 Call	Nodes	and	End	Nodes	

Call	nodes	and	End	nodes	work	together	to	process	specific	functionality	in	a	pipeline.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	110	

Call	Nodes	

A	Call	node	invokes	a	specified	sub-pipeline.	A	sub-pipeline	is	a	pipeline	that	is	designed	for	reusability	
and	typically	is	defined	as	private,	meaning	that	it	cannot	be	invoked	from	a	URL.	

After	the	sub-pipeline	executes,	the	workflow	returns	to	the	calling	pipeline	by	means	of	an	End	node.	
It	behaves	like	a	function	call	where	the	function	might	return	one	or	multiple	values.	

A	Call	node	requires	only	a	Pipeline-Start	node	to	invoke.	You	can	provide	this	information	as	a	fixed	
configuration	value	or	from	a	pipeline	dictionary	key.		

	
End	Nodes	

An	End	node	finishes	the	execution	of	the	called	sub-pipeline	and	returns	a	value	equal	to	the	End	
node	name.	This	name	must	be	unique	within	the	sub-pipeline	and	it	may	be	used	by	the	calling	
pipeline	to	control	flow	after	the	call.	

After	the	call,	a	transition	from	the	Call	node	with	the	same	name	as	the	returned	value	is	followed.	In	
the	following	example,	if	the	CheckValue	sub-pipeline	returns	a	notEmpty	value,	then	that	transition	is	
followed	on	the	Start	pipeline.	Additionally,	a	Call	node	is	used	to	invoke	another	pipeline.	At	the	end	
of	the	execution	of	the	called	pipeline	is	a	Decision	node	that	checks	whether	a	value	called	param	has	
been	passed	in	a	URL	string.	The	End	nodes	return	control	back	to	the	Call	node.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	111	

	
To	use	a	Call	node	with	a	Transition	node:	

1. In	UX	Studio,	open	the	pipeline	where	you	want	to	add	the	Call	node.	

2. Select	the	Call	node	from	the	palette	and	drag	it	over	the	transition	node	where	you	want	it.	Note:	
Be	sure	the	transition	node	turns	red	before	you	release	the	mouse.	

3. Click	the	ellipsis	next	to	the	Call	node.	

4. Select	the	pipeline	and	start	node	you	want	to	call	using	the	Call	node.	

5. From	the	Called	Pipeline	dialog,	select	Show	Pipelines	from	the	drop-down.	In	the	first	field,	enter	
the	name	of	the	pipeline	that	you	want	to	find.	The	lower	boxes	will	populate	with	available	
pipelines	and	Start	nodes.	 	 	

6. Click	OK.	

7. Add	Interaction	nodes	that	will	display	the	proper	isml	template,	depending	on	which	value	is	
returned	by	the	called	pipeline.	

8. Name	the	Transition	nodes	from	the	Call	node	according	to	the	values	returned	by	the	End	nodes	in	
the	called	pipeline.	

Jump	Nodes

A	Jump	node	invokes	a	specified	sub-pipeline.	After	the	sub-pipeline’s	execution,	the	workflow	does	
not	return	to	the	calling	pipeline.	It	is	the	responsibility	of	the	sub-pipeline	to	complete	the	task.	

A	Jump	node	requires:	

§ The	name	of	the	pipeline	to	be	jumped	to	

§ The	name	of	the	pipeline	start	node	to	be	used

This	information	can	be	provided	either:

§ As	a	fixed	configuration	value	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	112	

§ From	a	pipeline	dictionary	key	(covered	later)
An	example	of	using	Jump	nodes	is	the	Default	pipeline.	This	is	a	special	pipeline	that	the	system	
calls	if	no	pipeline	name	was	provided	in	the	URL.	In	SiteGenesis	the	Default-Start	pipeline	jumps	
to	the	Home-Show	pipeline,	which	shows	the	homepage.

	

	
The	Pipeline	Dictionary	

The	pipeline	dictionary	or	pdict	is	the	main	data	container	for	each	pipeline	execution.	It	is	created	
and	initialized	when	a	pipeline	is	invoked	and	remains	in	memory	as	long	as	the	pipeline	executes.	

The	structure	of	the	pipeline	dictionary	is	a	hashtable	with	key/value	pairs.	

The	default	keys	in	the	pdict	include:	

§ CurrentDomain

§ CurrentOrganization

§ CurrentPageMetadata

§ CurrentSession

§ CurrentRequest

§ CurrentUser

§ CurrentHttpParameterMap

§ CurrentForms

§ CurrentCustomer

§ CurrentVersion

The	pipeline	dictionary	is	passed	across	sub-pipeline	calls.	Whenever	a	call	or	jump	to	another	pipeline	
is	executed,	the	same	pdict	is	passed	to	the	invoked	sub-pipeline.

To	view	the	values	stored	in	the	pipeline	dictionary	at	run-time,	run	a	pipeline	from	the	storefront	
while	in	a	debug	session.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	113	

Passing	Parameters	

You	can	pass	parameters	to	the	pipeline	dictionary	using	a	URL	query	string:		

	
The	parameters	will	be	added	to	the	CurrentHttpParameterMap	object	inside	the	pdict.	You	can	
see	the	values	stored	in	the	pipeline	dictionary	when	you	run	the	pipeline	debugger.	

In	this	example,	the	CurrentHttpParameterMap	is	an	object	of	type	HttpParameterMap.	It	
contains	(on	this	invocation)	a	single	key	called	param,	which	in	turn	contains	multiple	values.	One	of	
them	is	the	stringValue,	which	contains	the	string	‘1234’.	You	could	also	use	the	intValue	if	you	
wanted	to	use	the	integer	value	1234	on	a	calculation.	

Note:	For	more	information	on	the	different	classes	mentioned	here,	consult	the	Digital	Script	and	
Pipeline	APIs	in	the	Help	menu.		

	
Troubleshooting	with	the	Pipeline	Debugger	

When	testing	your	pipelines	in	the	storefront,	if	you	receive	an	error	on	execution,	you	can	use	the	
Request	Log	tool	as	well	as	the	Studio	Pipeline	Debugger	to	troubleshoot	your	pipeline.	

	
Pipeline	Debugger	

The	Pipeline	Debugger	operates	at	the	pipeline	level,	not	at	source	code	level.	It	provides	step-by-step	
tracking	for	pipeline	execution	and	for	examining	the	pipeline	dictionary	at	runtime.	

The	Debugger	requires	a	running	Commerce	Cloud	Digital	system	and	a	properly	configured	Remote	
Server	connection.	You	also	need	to	create	a	debug	configuration	before	running	the	Debugger.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	114	

To	execute	the	pipeline	debugger	properly,	you	need	a	pipeline	with	breakpoints	set	on	at	least	one	
node.	When	you	launch	a	pipeline	debugger,	the	breakpoint	color	changes	from	a	semi-transparent	
green	to	solid	green:	

	
	 	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	115	

	

Exercise:		Create	a	Debug	Configuration	for	a	Pipeline	

To	create	a	debug	configuration:	

1. In	UX	Studio,	go	to	the	main	menu	and	select	Run>	Debug	Configurations	or	select	Debug	
Configurations	from	the	drop-down	menu	under	the	green	bug	icon:		

2. Double-click	the	UX	Studio:	Pipeline	Debugger	to	create	a	new	configuration.	

3. Enter	a	configuration	name:	Pipeline	Debug.	

4. In	the	Server	Configuration	section,	click	Select.	Select	the	server	connection	you	wish	to	debug	
then	click	OK.	

5. In	the	Site	to	Debug	section,	click	Select.	Select	the	site	to	debug.	Click	OK.		

6. Click	Apply	to	save	the	configuration.	

7. Click	Debug	to	start	the	debugger.	

Set	Breakpoints	Where	the	Debugger	Will	Pause

1. In	UX	Studio,	open	the	pipeline	to	debug.	

2. Click	the	pipeline	node	where	you	want	the	Debugger	to	pause	during	execution.	

3. Right-click	and	select	Add/Remove	Pipeline	Node	Breakpoint	from	the	pop-up	menu.	

To	debug	a	pipeline	using	a	debug	configuration:

1. In	UX	Studio,	open	the	Debug	perspective	so	that	you	can	view	a	debugging	session.	Use	one	of	the	
following	methods:	

§ Window	>	Open	Perspective	>	Other	>	Debug		

§ Click	the	Open	Perspective	icon	on	the	upper-right	corner	and	select	Other	>	Debug.	

Start	a	debugging	session:	

1. From	the	Debug	icon,	select	Debug	Configurations.	Double-click	the	Pipeline	Debug	configuration.	

2. Verify	that	the	Pipeline	Execution	Engine	is	running.	

3. In	a	browser,	launch	the	pipeline	to	debug.	

4. Click	the	UX	Studio	icon	on	the	taskbar,	it	should	blink	since	the	breakpoint	was	triggered.	
Sometimes	the	OS	will	switch	the	context	to	UX	Studio	automatically,	but	this	is	rare.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	116	

5. In	UX	Studio,	the	execution	stops	at	the	breakpoint,	as	indicated	by	the	vertical	bars:	

The	Debug	Perspective	toolbar	enables	you	to	step	through	the	pipeline.	Or	use	the	corresponding	
keyboard	shortcuts:	

	

	

Exercise:		Use	the	Debugger	for	a	Pipeline	

1. Create	a	pipeline	debug	configuration	called	Pipeline	Debug.	

2. Add	a	breakpoint	on	the	Call-Start	pipeline.	

3. From	the	storefront,	invoke	the	pipeline.		

4. View	the	variables	window	when	the	debugger	stops	at	the	breakpoint.	

5. Using	the	F5	key,	step	through	the	debugger.	What	are	the	values	stored	in	the	pdict?Rerun	the	
Call-Start	pipeline	but	this	time	add	a	parameter	at	the	end	of	the	string:	
/Call-Start?param=1234

6. Check	the	values	of	the	CurrentHttpParameterMap	after	the	Start	Node.	

7. Continue	stepping	thru	the	pipeline	and	observe	changes	in	the	pdict.	

	
Pipelets	

In	this	section,	you	will	use	the	pipeline	dictionary	to	print	information	to	a	page	using	Pipelets.	A	
pipelet	executes	an	individual	business	function	within	a	Digital	pipeline.	Pipelets	are	pre-coded	pieces	
of	functionality	provided	by	Salesforce,	but	you	can	also	use	other	types	of	pipelets	from	the	palette	
such	as:	

§ Script:	invoke	a	custom	Digital	script	file

§ Eval:	evaluate	data	in	the	Pipeline	Dictionary

§ Assign:	assign	values	to	specific	keys	in	the	pdict

Commerce	Cloud	Digital	Pipelets	are	available	in	UX	Studio	via	the	Pipelets	view.	They	belong	to	the	
bc_api	cartridge,	which	downloada	as	part	of	the	Digital	API	the	first	time	you	connect	to	a	server.	
There	is	a	published	API	available	under	UX	Studio	Help	menus	or	in	the	Commerce	Cloud	Digital	
documentation.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	117	

Each	Digital	pipelet	has	documentation	on	its	functionality,	input	and	output	parameters.	You	can	see	
this	information	in	the	Properties	view	when	the	pipelet	is	selected	on	the	pipeline.	

	
To	access	and	use	a	Digital	API	pipelet:	

1. In	UX	Studio,	open	or	create	the	pipeline	where	you	wish	to	add	a	pipelet.	

2. Open	the	Pipelet	view	tab.		

3. Drag	and	drop	the	pipelet	onto	the	Transition	node	between	the	two	nodes	where	you	want	the	
pipelet	to	execute.	Be	sure	the	Transition	node	turns	red	when	you	hover	your	mouse	pointer	over	
it.	Otherwise,	the	pipelet	will	not	be	connected	to	the	node.	

4. Depending	on	the	pipelet	you	are	using,	you	will	need	to	configure	the	pipelet	for	execution	in	the	

Properties	tab	of	the	pipelet.	In	the	example	shown,	a	GetProduct	pipelet	creates	a	product	object	
by	using	a	ProductID	value.	The	value	for	the	input	comes	from	a	stored	variable	in	the	pipeline	
dictionary.	The	product	object	output	will	need	a	name	value.

Undeclared	Values	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	118	

	
	

Declared	Values	

	
	

5. Save	your	pipeline.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	119	

Appendix	B:	Data	Integration:	Simple	Feeds	

Introduction	

Simple	Feed	Integration	loosely	couples	Commerce	Cloud	Digital	and	external	systems	by	exchanging	
files	on	a	File	Transfer	Server.	Simple	Feed	Integration	supports	the	protocols	WebDAV	(HTTP	and	
HTTPS)	and	SFTP	for	the	transfer	with	the	File	Transfer	Server.	WebDAV	HTTP	(no	network	layer	
encryption)	is	meant	for	development/testing	purposes	only.	When	considering	WebDAV	HTTPS,	note	
that	an	SSL-certificate	from	a	Digital	accepted	Certificate	Authority	(CA)	needs	to	be	installed	at	the	File	
Transfer	Server.	The	list	of	accepted	CAs	is	available	at	Commerce	Cloud	Digital’s	Customer	Central.	

The	File	Transfer	Server	needs	to	be	hosted	by	the	customer	or	another	3rd	party.	Commerce	Cloud	
Digital	does	not	offer	hosting	File	Transfer	Servers.	The	WebDAV	access	to	certain	folders	on	a	Digital	
instance	cannot	be	used	for	that	purpose.	

The	simple	feed	cartridges	support	the	following	integration	flow:	

	
File	Format	

The	file	format	for	the	incoming	and	outgoing	feeds	is	the	standard	Commerce	Cloud	Digital	
import/export	format.	For	XML	files	the	schema	definitions	(XSD	files)	can	be	downloaded	from	
Customer	Central.	A	good	approach	to	create	a	sample	file	to	set	up	the	data	as	desired	in	Business	
Manager,	run	an	export	from	the	Business	Manager	user	interface,	and	use	the	exported	file	as	a	
template.	

All	import	files	can	alternatively	be	provided	in	gzip	format	(not	to	be	confused	with	zip).	In	that	case	
provide	the	file	with	extensions	.xml.gz	or	.csv.gz	at	the	File	Transfer	Server	and	adjust	the	file	
matching	rule.	The	validation	and	import	processes	automatically	unzip	the	files	during	processing.	

Simple	Feed	Cartridges	

The	two	cartridges	included	in	the	Simple	Feed	integration	are:	

§ int_simplefeeds:		Implementation	of	generic	logic.	Needs	to	be	assigned	to	the	storefront	site	
and	the	Business	Manager	site.	Modification	of	the	Custom_FeedJobs	pipeline	is	necessary	to	
use	the	feed	configuration	custom	object.	Do	not	modify	other	code.

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	120	

§ test_simplefeeds:	Cartridge	to	help	troubleshooting	WebDAV	or	SFTP	connection	issues	and	
trigger	a	Simple	Feed	Integration	job	from	the	storefront	during	development.	This	cartridge	must	
not	be	assigned	to	a	site	on	Production	systems.	It	may	be	assigned	to	the	storefront	site	on	
sandbox	instances	if	the	storefront	is	password	protected.

WebDAV	is	the	only	protocol	that	CCDDW	supports	where	CCDDW	can	access	files	external	to	
Commerce	Cloud	Digital	and	where	external	systems	can	push	files	to	CCDDW.	It	is	the	only	protocol	
that	works	on	both	directions.

You	cannot	use	SFTP	to	access	files	in	CCDDW:	there	is	no	SFTP	server	in	CCDDW	instances.	However,	
CCDDW	can	access	an	external	SFTP	server.	

Importing		Objects	Using	Simple	Feed	via	the	int_simplefeed cartridge	

1. Download	and	import	the	int_simplefeeds	cartridge	into	UX	Studio.	

2. Import	Custom	Cartridges	to	your	Project	Code	Base.	

1. Add	int_simplefeeds	to	your	code	repository	(e.g.	SVN).	

e. Import	into	Studio	for	uploading	to	the	server.	

2. Assign	Cartridge	to	Sites	

1. The	feeds	are		processed	by	Digital	jobs	that	are	executed	in	the	context	of	a	site.	Pipelines	for	jobs	
are	looked	up	in	the	cartridges	at	the	Business	Manager	site,	i.e.	Sites-Site;	templates	(they	are	
used	for	emails)	are	looked	up	in	the	cartridges	for	the	respective	storefront	site.	

f. In	Business	Manager,	select	Administration	>	Sites	>	Manage	Sites	and	then	to	Sites-Site,	and	
to	each	storefront	site.	Under	Cartridges	add	int_simplefeeds.	

2. Import	Custom	Object	Type	Definitions	

1. The	generic	implementation	uses	a	custom	object,	FeedJobConfiguration,	to	store	
configuration	data.	The	custom	object	exists	in	the	context	of	a	site.	

g. The	custom	object	definition	is	located	in	metadata/ FeedJobConfigurationCO.xml.	You	
must	load	it	on	all	instances	that	use	the	feed	integration	cartridge.	You	can	store,	share,	and	
distribute	the	definition	using	Site	Import	/	Export.	To	load	it:		

§ In	Business	Manager,	select	Administration	>	Site	Development	>	Import	&	Export.	Upload	the	file	
and	then	import	it.

Note:	Business	Manager	users	that	have	the	right	to	modify	custom	objects,	can	view	and	
modify	Simple	Feed	Integration	configuration	data,	including	connection	endpoints,	
login/password,	and	public	key	for	encryption	of	credit	card	data	in	order	to	export	feeds.	Make	
sure	access	privileges	in	Business	Manager	are	set	so	that	only	authorized	users	can	access	
respective	modules.

2. Create	Job	Schedules	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	121	

1. Technically	an	arbitrary	number	of	schedules	and	feed	configurations	can	be	set	up	on	a	Commerce	
Cloud	Digital	instance.	Currently,	however,	it	is	not	possible	to	tell	the	schedule	what	configuration	
to	use.	Therefore,	the	only	way	to	tie	a	schedule	to	a	configuration	is	to	use	a	unique	pipeline	start	
node.	The	cartridge	int_simplefeeds	comes	with	a	pipeline	Custom_FeedJobs.	There	is	a	start	
node	StartDefault	that	reads	the	feed	configuration	with	the	ID	Default.	In	this	course,	we	
only	cover	start	node	and	feed	configuration.	To	set	up	additional	configurations,	add	additional	
parameters	and	reference	those	when	setting	up	the	schedules.	

h. In	most	cases,	the	feed	jobs	are	triggered	by	a	pre-defined	schedule	(e.g.	hourly,	daily).	It	is	also	
possible	to	keep	the	schedule	disabled	and	trigger	it	manually	in	Business	Manager,	or	to	
provide	code	that	triggers	the	job	with	the	RunJobNow	pipelet.	

i. To	set	up	a	new	job	schedule,	in	Business	Manager	select	Administration	>	Operations	>	Job	
Schedules.	Create	a	new	job,	name	it	(e.g.	CatalogUpdate),	make	sure	the	execution	scope	is	
Sites,	Pipeline	is	Custom_FeedJobs,	Start	node	StartDefault.	

j. On	the	Sites	tab,	select	all	storefront	sites	for	which	you	want	to	execute	the	job.	Note:	You	can	
provide	site	specific	feed	job	configurations.		

k. On	the	Resources	tab,	specify	all	object	types	that	your	feed	job	will	modify.	The	job	framework	
tries	to	acquire	locks	for	these	resources	before	the	job	starts,	effectively	avoiding	parallel	
execution	with	other	import	processes	or	data	replication.	

l. On	the	Notification	tab,	configure	email	addresses	to	receive	job	execution	status	emails.	
Additionally,	you	can	send	more	granular	success	and	error	emails	by	feed	tasks.	Configure	
them	with	the	task.	Feed	tasks	can	report	temporary	errors	such	as	communication	errors	with	
external	systems	as	job	failures	to	the	job	framework	(on-temporary-error:	FAIL).	Here	you	can	
define	how	to	handle	them:	Continue	as	Scheduled,	Retry,	or	Stop	on	Error.	

m. In	the	Parameters	tab,	you	can	define	a	parameter	for	any	resource	you	want	to	import	into	a	
site.	

n. Create	Feed	Job	Configuration	

o. A	feed	job	configuration	is	stored	in	a	site	specific	custom	object	and	may	contain	multiple	tasks	
(e.g.	DownloadAndImportCatalog and	DownloadAndImportPriceBooks).	

p. To	create	a	feed	job	configuration,	in	Business	Manager	select	Custom	Objects	>	Custom	
Object	Editor.	Create	a	new	instance	of	Feed	Job	Configuration.	

q. As	ID	provide	the	ID	you	previously	used	when	creating	a	new	instance	of	the	
FeedJobConfiguration	custom	object	(the	identifier	used	in	pipeline	
Custom_FeedJobs-StartDefault	>	check	the	properties	of	the	Script	Node),		

r. The	file	documentation/TasksXMLCatalogOnly.xml	provides	an	example	for	TasksXML.	It	
lists	all	supported	tasks	and	contains	inline	documentation.	Derive	project	specific	
configurations	from	that	file	by	removing	unneeded	tasks	and	updating	the	information.	It	may	
be	sensible	to	have	the	same	task	(e.g.	DownloadAndImportCatalog)	multiple	times	in	a	
feed	configuration	if	feeds	from	different	sources	or	with	different	content	are	processed.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	122	

2. Testing	

1. The	structure	of	the	XML	for	the	custom	object	FeedJobConfiguration	can	be	found	in	the	
sample	file	TasksXML.xml	in	the	documentation	folder.	

s. There	are	sample	import	files	in	the	sampledata	folder.	

t. In	most	cases,	the	feed	jobs	are	triggered	by	a	pre-defined	schedule	(e.g.	hourly,	daily).	It	is	also	
possible	to	keep	the	schedule	disabled	and	trigger	it	manually	in	Business	Manager,	or	to	
provide	code	that	triggers	the	job	with	the	RunJobNow	pipelet.		

Note:	It	is	not	advisable	to	expose	the	RunJobNow	pipelet	in	a	public	pipeline	as	this	could	be	
exploited	to	flood	your	job	queue.	If	you	must	use	this	pipelet	in	the	storefront,	implement	a	custom	
security	mechanism	so	that	only	authorized	requests	can	execute	the	pipelet.	

	

Exercise:	Simple	Feed	Integration	

1. Import	two	Simple	Feed	cartridges,	to	help	in	import	data	from	the	WebDAV	file	server.	

1. In	UX	Studio,	import	the	two	cartridges	that	appear	in	the	
C:\projects\simplefeeds\cartridges	directory.	

u. Add	the	following	cartridges	to	the	Project	References	on	your	sandbox	connection	project	so	
they	get	uploaded	to	your	sandbox.		
1. int_simplefeeds

2. test_simplefeeds

v. Add	the	int_simplefeeds	cartridge	to	the	SiteGenesis	site	(for	downloading	the	files).		

w. Add	the	int_simplefeeds	cartridge	to	the	Business	Manager	site	(for	debugging	and	email	
notifications)	cartridge	path.	

2. Import	the	FeedJobConfiguration	Custom	Object	Definition	from	
FeedJobConfigurationCO.xml.	The	CustomFeedJobs	pipeline	uses	this	type	of	object.	It	is	in	
the	int_simplefeeds	cartridge.	

1. Select	Administration	>	Site	Development	>	Import	&	Export.	

x. Click	Upload.	

y. Click	Browse	and	locate	C:\projects\training\cartridges\simplefeeds\metadata\.	

z. Upload	the	FeedJobConfigurationCO.xml	file.

aa. Click	the	Back	button	to	go	to	the	previous	screen.	

bb. Click	Import	(the	metadata	import	on	top,	not	the	one	in	the	Geolocations	section).	This	creates	
a	FeedJobConfiguration	custom	object	type	for	the	instance.	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	123	

cc. Check	it.	Select	Administration	>	Site	Development	>	Custom	Object	Definitions.	Do	you	see	a	
Custom	Object	Type	FeedJobConfiguration?	

dd. Edit	TasksXMLCatalogOnly.xml.	The	contents	of	this	file	becomes	an	attribute	value	of	our	
custom	object,	which	the	pipeline	uses	to	determine	the	logic	for	importing	our	data.	

ee. Open		
	
C:\projects\training\cartridges\simplefeeds\documentation\	TasksXMLCatalogOnly.xml	using	
your	favorite	editor.	

2. Refer	to	your	specific	student##	instance.	
<remote-folder-url>
 https://mydisk.se/training/studentXX/ 	
 </remote-folder-url>	

	 	 Instead	of	studentXX,	use	the	number	given	by	the	instructor.		

3. Use	your	email	address	for	job	notifications		
<success-email>noreply@demandware.com</success-email>
<error-email>noreply@demandware.com</error-email>	

Note:	This	file	is	a	simplified	version	of	the	TasksXML.xml	file.	It	points	to	a	specific,	non-	
DigitalWebDAV	server,	and	performs	only	a	catalog	download	and	import.	

4. Select	SiteGenesis	>	Custom	Object	>	Custom	Object	Editor.	Create	a	new	
FeedJobConfiguration object	(not	definition)	with	the	following	values	for	its	attributes:	

1. ID	–	catalogTest

2. From	Email	–	your	email

3. Tasks	XML	–	copy	the	contents	of	
C:\projects\training\cartrides\simplefeeds\documentation\TasksXMLCat
alogOnly.xml to this field.

5. Create	a	job	to	test	the	catalog	import.	

1. In	Business	Manager,	select	Administration	>	Operations	>	Job	Schedules.		

1. Create	a	new	schedule	and	name	it	CatalogUpdate.

2. Check	Enabled.

3. Change	the	Execution	Scope	to	Sites.

4. Set	the	pipeline	to	Custom_FeedJobs.

5. Start	node	to	StartDefault.

6. Click	Apply.	

2. On	the	Sites	tab,	select	the	SiteGenesis	site.	Click	Apply.		

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	124	

3. On	the	Resources	tab,	specify	the	catalog	and	product	object	types	that	your	feed	job	will	modify.	

4. On	the	Notification	tab:		

1. Configure	your	email	address	to	receive	job	execution	status	emails.

2. Check	Enabled.

3. Click	Apply.

4. On	the	Parameters	tab,	use	the	same	ID	as	the	parameter	in	the	Script	Node	of	the	
Custom_FeedJobs-StartDefault	pipeline	(Check	it,	it	is	Jobid?).	For	Value,	use	the	ID	of	the	
instance	of	your	FeedJobConfiguration (catalogTest)	custom	object.	

5. Run	the	job:	

1. Go	to		https://mydisk.se/training/student##/	to	see	the	contents	of	the	WebDAV	server.	

2. Verify	that	the	remote	WebDAV	server	directory	referenced	in	the	TasksXML is	already	populated	
with	test	files	from	the	C:\projects\simplefeeds\sampledata	directory.	

3. Test	the	job	by	running	the	feed	job	from	Business	Manager.		

4. Verify	if	the	job	worked	(your	catalog	imported).	

1. Select	Site	>	SiteGenesis	>	Products	and	Catalogs	>	Catalogs	>	Catalog	>	Cat1.	

2. Check	if	Prod1	is	assigned	to	it.	Do	you	know	where	it	came	from?		

From	the	WebDAV	server	…	from	Catalog_2008-03-11_20-49-12.xml	perhaps.

	

	

	

	

	
	

Developing	for	Digital	I	 	 January	2017	
©	2017	salesforce.com,	inc.	All	rights	reserved. Page	125	

Congratulations	

This	concludes	Developing	for	Digital	I.		At	this	point,	you	should	apply	what	you	have	learned	to	the	
Digital	platform	in	preparation	for	DEV101:	Developing	in	Commerce	Cloud	Digital	exam.		Additionally,	
you	should	further	your	knowledge	and	skills	by	taking	the	DEV201:	Developing	for	Digital	II	course	and	
its	associated	certification.	

	

Cartridges	when	Controllers	are	Used	in	Conjunction	with	Pipelines	

Cartridges	can	contain	either	controllers	and	pipelines	or	controllers	alone.	Controllers	must	be	
located	in	a	controllers	folder	in	the	cartridge,	at	the	same	level	as	the	Pipelines	folder.	If	you	have	
controllers	and	pipelines	in	the	same	cartridge,	and	they	have	the	same	name,	the	platform	uses	the	
controller	and	not	the	pipeline.	Even	if	they	are	in	different	cartridges	and	have	the	same	name,	the	
platform	uses	the	controller	in	the	path	and	not	the	pipeline.	
	
Note:	If	your	sub-pipeline	is	not	named	using	JavaScript	method	naming	conventions,	
you	must	rename	it	to	selectively	override	it.	For	example,	if	your	subpipeline	start	node	is	named	
1start,	you	must	rename	it	before	overriding	it	with	a	controller	method,	because	the	controller	
method	cannot	have	the	same	name	and	be	a	valid	JavaScript	method.	

	

