
Custom Property Types
and Property Editors
Beta
Salesforce, Summer ’23, Version 58.0

@salesforcedocs
Last updated: May 30, 2023

Important: This feature is a Beta Service. Customer may opt to try such Beta Service in its
sole discretion. Any use of the Beta Service is subject to the applicable Beta Services Terms
provided at Agreements and Terms.

© Copyright 2000–2023 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of
Salesforce, Inc., as are other names and marks. Other marks appearing herein may be trademarks of

their respective owners.

https://www.salesforce.com/company/legal/agreements/

CONTENTS

Introduction 5
Background 5
Considerations and Limitations for Custom Property Types and Editors 6

Important Changes from the Developer Preview 8

Overview: Creating Custom Property Types and Editors 9
Decide what kind of validation you want for each property in the component. 10

Decide what kind of property editors to give your Experience Builder users to configure
each property in the component. 11

Create the necessary custom property types and property editors. 12

High-Level Guide to Creating a Custom Property Type and Editor 12

Create an ExperiencePropertyTypeBundle 13
Structure of the ExperiencePropertyTypeBundle 13

Use SFDX or Metadata API to Deploy ExperiencePropertyTypeBundles 14

SFDX and Packaging Support 15

The Schema.json File 15

Include Custom Labels 17

The Design.json File 17

The View Specification 18

Out-of-the-Box Definitions for Views 22

lightning/propertyLayout 22

lightning/verticalLayout 22

lightning/accordionLayout 24

lightning/tabSetLayout 26

Custom Definitions 28
Property Renderers 29

Full Editor Override 30

Include the Namespace Prefix for Metadata References 30

The Editor Resolution Algorithm 31

Design Example 32

Lightning Property Types 34

lightning__booleanType 35

lightning__dateType 36

lightning__dateTimeType 36

lightning__integerType 38

lightning__multilineTextType 40

lightning__numberType 41

lightning__objectType 42

lightning__richTextType 45

lightning__textType 46

lightning__urlType 48

Create a Custom Property Editor 49
The Property Editor Contract 49

Build the Property Editor HTML and CSS 51

XML Configuration 51

Link a Custom Property Editor or Property Type to Your Custom Component 52
Reference a Custom Property Editor by Editor Attribute 52

Reference a Custom Property Type by Type Attribute 52

Overriding Custom Property Type Attributes 53

Escaping Special XML Characters in Default Values 54

Supported Attributes for the Property Tag in the js-meta.xml File 54

type 54

filter 54

screenResponsive 55

exposedTo 55

translatable 55

Testing 55
General Guidelines 56
Conclusion 57

Introduction
Add custom property editors and property types to your custom Lightning web components to make
component configuration more intuitive in Experience Builder. Without custom property editors and
types, property editing options are limited to a few field types, such as text boxes and dropdown
menus. Custom property editors let you create color selectors, sliders, and more.

This guide introduces you to property types and property editors, and demonstrates how to use them
in custom Lightning web components. First it outlines planning steps and design decisions and
shows how they determine the steps you take to build a component. Next it offers step-by-step
instructions, including a sample component, for creating a custom property type and property
editor. Detailed sections discuss

● Creating an ExperiencePropertyTypeBundle and deploying it with the Metadata API
● Defining the JSON schema and design of a custom property type
● Creating a custom property editor, including HTML and CSS code samples and XML

configuration
● Linking the custom property editor and property type to the component to test it

Background
Let’s start with definitions of some key terms: property, property type, property editor, and property
sheet.

To an Experience Builder user, a property is a field in a component. Every Lightning web component
has a set of exposed properties, or attributes, that site builders can configure in Experience Builder.
When Experience Builder users assign a value for font family, color, size, margin, or any other field in
a component property panel, they’re configuring a property. (For more information about Lightning
web components, see the Lightning Web Components Developer Guide.)

When you create a Lightning web component, you specify the property type, description, and title for
every property in the component. The property type determines the kind of value that a property
can hold. Another term for property type is data type. Salesforce supports five out-of-the-box
property types for Lightning web components in Experience Builder: String, Integer, Boolean,
ContentReference, and Color.

After you define a property’s data type, you can specify its property editor—that is, the user
experience for configuring the property. In Experience Builder components, users enter a property
value in a property editor such as a picklist, checkbox, button, or text-input field.

Property editors are gathered into a property sheet—a collection of all the property editors in the
property panel for a given Experience Builder component. The property panel is where Experience
Builder users enter values for the component properties.

https://developer.salesforce.com/docs/component-library/documentation/en/lwc

Considerations and Limitations for Custom
Property Types and Editors
Before you create a custom property type or editor, review these limitations and known issues for the
beta release.

In all editions, you can create custom property types and property editors only for Lightning web
components in Lightning Web Runtime (LWR) sites in Experience Builder. You can’t create them for
Aura sites or Aura components. (For more information about Experience Builder, see Customize Sites
with Experience Builder in Salesforce Help. For more information about LWR sites, see the LWR Sites
for Experience Cloud developer guide.)

When you include a custom property type or custom property editor in a Lightning web component,
the component’s js-meta.xml file has these limitations.

● You can use custom property types and property editors only in Lightning web components
that target lightningCommunity__Default. You can’t use them in components that target

https://help.salesforce.com/s/articleView?id=sf.community_designer_overview.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.community_designer_overview.htm&type=5
https://developer.salesforce.com/docs/atlas.en-us.exp_cloud_lwr.meta/exp_cloud_lwr/intro.htm
https://developer.salesforce.com/docs/atlas.en-us.exp_cloud_lwr.meta/exp_cloud_lwr/intro.htm

lightningCommunity__Page_Layout, lightningCommunity__Theme_Layout, or other
targets that are unrelated to Experience Builder. If you do, deployment of the component
fails.

● If a property references a custom property type or lightning type (for example, <property
name="myProperty" type="c__customType" />), you can’t specify any of these
attributes in the property. If you do, deployment fails.

○ datasource
○ max
○ min
○ placeholder

● If a property references a custom property editor, you can specify screenResponsive=”true”
for that property. However, in the component property panel, the screen-responsive icon
doesn’t appear next to that property’s label.

See XML Configuration File Elements in the Lightning Web Components Developer Guide for more
information on the js-meta.xml file.

The ExperiencePropertyTypeBundle metadata type has these limitations.

● You can’t update an existing custom property type. You can only create and delete one. This
limitation also applies to updating a package that contains custom property types.

● Custom property types don’t support the JSON schema array data type, so you can't deploy a
custom property type of the data type array. (For more information, see Understanding JSON
Schema: array).

● You can’t nest object properties in a custom property type schema. In a given schema, a
custom property type of the data type object can’t contain child properties of the data type
object. Instead, create a custom property type for the child object property and reference it
in the current schema using the lightning:type keyword. Here’s an example of an invalid
schema. For more information, see The Schema.json File.

{
"title": "Invalid Nested ObjectType",
"lightning:type": "lightning__objectType",
"properties": {
"postalCode": {
"title": "Invalid Nested ObjectType Property",
"lightning:type": "lightning__objectType",
“properties”: {

“propertyName”: { … }
}

}
}
}

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_configuration_tags
https://json-schema.org/understanding-json-schema/reference/array.html
https://json-schema.org/understanding-json-schema/reference/array.html

When a custom property editor or type is invalid, an error message appears instead in the
component property panel in Experience Builder.

You can find more details on the error cause in the browser console.

We recommend that you don’t save a property type that contains a circular reference. A circular
reference occurs when property type A refers to property type B, and property type B refers back to
property type A. You aren’t prevented from saving a property type with a circular reference, but these
references cause gacks when they render a property editor. You also can’t delete circularly referenced
property types. For example, you can’t delete property type A when property type B refers to A, and
you can’t delete property type B when property type A refers to B.

Important Changes from the Developer Preview

Some components with custom property types or editors that you built in Spring ’23 can be
incompatible with the metadata in Summer ’23. We recommend that you delete these custom
components, property types, and editors and redeploy them so that the components work as
intended. Otherwise, when you try to open an Experience Builder page with these custom
components, the page doesn’t render correctly, and an error window can appear. If the page fails to
render, open the Page Structure panel in Experience Builder, find the custom component, and click
the trash icon beside it. Then reload the page.

● Packaging is supported for the ExperiencePropertyTypeBundle metadata type, which
describes property types, and for Lightning web components that reference a custom
property type or property editor. Now you can easily distribute custom components that
contain custom property types or editors to other users in your own or other companies.

○ Updates of managed packages containing custom property types are not supported.
This includes deleting types. If you upgrade a package that contains a custom
property type or editor, users who installed this package must uninstall it and reinstall
the updated package. We recommend that you don’t include
ExperiencePropertyTypeBundles in non-beta managed packages.

● You can add the translatable attribute to properties with a custom property type whose
underlying JSON schema type is string. You can translate the values in these properties into
all your site languages. (See Supported Attributes for the Property Tag in the js-meta.xml
File.)

● Custom labels are now supported for a custom property type’s title and description
fields. You can use custom labels to add translations of the title and description into all your
site languages.

● Custom property types with an underlying JSON schema type of type string, integer, or
number can specify the exposedTo and screenResponsive attributes for a property. Now you
can configure values for a custom property that are tailored to different screen sizes.

● In a component with properties that reference custom property types, you can reference the
Color and the ContentReference types. No need to create a selector from scratch for color or
content references.

● In the Salesforce CLI, you can now use source commands to deploy an
ExperiencePropertyTypeBundle. No more creating a .zip file and using mdapi commands in
the CLI—you can use fewer steps and more convenient commands.

● ExperienceBundle and DigitalExperienceBundle deployments validate property values for
custom property types. When a site builder enters an invalid value for a custom property
type, a message flags the error.

● The syntax to reference a custom property editor has changed. In Spring ’23, you specified
editor = "c__myCustomEditor". In Summer ’23, you specify editor = "c/myCustomEditor".

● The syntax to define a property renderer override for an entire property is updated. Now it’s
clearer to developers which lines in design.json files are property editor overrides. (See Full
Editor Override)

See Also
Create an ExperiencePropertyTypeBundle
Lightning Web Components Developer Guide: XML Configuration File Elements
Metadata API Developer Guide: ExperienceBundle
Metadata API Developer Guide: DigitalExperienceBundle (Beta)

Overview: Creating Custom Property Types and
Editors
Let’s consider some data and design decisions to make before you create a custom Lightning web
component. Then we can go through an overview of the steps to create custom property types and
editors.

Before you start to build the component, consider the data validation and user experience needs for
the properties in the component. Those needs can establish which custom property types and
property editors to create, and whether you can use an out-of-the-box solution instead of creating a
custom one.

Let’s say that you want your Lightning web component, called MyCustomComponent, to include
properties for title, date updated, content, text alignment, background color, and layout borders and
size. Here’s how you want the component to look.

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_configuration_tags
https://developer.salesforce.com/docs/atlas.en-us.240.0.api_meta.meta/api_meta/meta_experiencebundle.htm
https://developer.salesforce.com/docs/atlas.en-us.240.0.api_meta.meta/api_meta/meta_digitalexperiencebundle.htm

This code sample shows a custom component that’s configured for Experience Builder with these
properties: articleDate, textAlignment, layoutProperties.

class MyCustomComponent extends Lightning Element {

@api articleDate;
@api textAlignment;
@api layoutProperties;
...

}

Here’s an overview showing how you can develop this custom Lightning web component for
Experience Builder.

Decide what kind of validation you want for each property in the component.

Usually when you create a custom Lightning web component, you include validations to verify that
the data values that users enter into each component property are acceptable. For example, an
address property doesn’t work with integer values, so you want to validate that an integer value isn’t
entered in an address field.

Consider each property’s data type and how to validate it, and whether you need to create a custom
property type for that validation. (For a list of out-of-the-box property types available for use in a
custom property type, and descriptions of their validations, see Lightning Property Types.)

In this example, these are the validations that you want for the properties in MyCustomComponent.

● articleDate —You want to ensure that users enter a date. Looking at the list of Lightning
property types, you see that lightning_dateType provides the validation that you need.

● textAlignment— You don’t need any special data validations for this property, so you don’t
need a custom property type. You can just specify <property type = “String”> in
MyCustomComponent’s js-meta.xml file.

● layoutProperties—You want to ensure that borders always include border style, weight, and
radius. On the list of Lightning property types, you find lightning__objectType, which you can
use to create a custom property type with multiple properties.

In summary, the validations you want require you to use a lightning property type for articleDate, and
create a custom property type for layoutProperties.

Decide what kind of property editors to give your Experience Builder users to configure
each property in the component.

Think about the user experience for entering values into the properties of MyCustomComponent in
Experience Builder. For example, for a text alignment property, do you want the property editor to be
a text input field, dropdown menu, or icon group? Look at the default property editor that comes
with the property type for each property in your custom component, and decide if that editor offers
the user experience that you want. If it doesn’t, you must create a custom property editor. (For a list
of out-of-the-box property types, including their default property editors, see Lightning Property
Types.)

In this example, these are the property editors that you want for the properties in
MyCustomComponent.

● articleDate—The default property editor for lightning_dateType is a date picker. That’s the
user experience you want, so you don’t need to create a custom property editor.

● textAlignment—The default property editor for this property is a combobox. You want an icon
group to visually display the alignment options possible. You need to create a custom
property editor.

● layoutProperties—You want to arrange the layout properties on separate tabs, but the default
property editor for lightning__objectType is a vertical layout. You need to create a custom
property editor.

In summary, you want a date picker, an alignment icon group, and a border combobox selector for
MyCustomComponent. The color selector and search-selection fields require you to create custom
property editors. (For more information, see Create a Custom Property Editor.)

Create the necessary custom property types and property editors.

After you decide which validations and property editors you want for the properties in your
component, it's time to start building. This process requires you to create a new metadata type,
called ExperiencePropertyTypeBundle, and new Lightning web components for the property
editors.

To recap, these are the custom elements that you want for MyCustomComponent.
● articleDate, which requires a lightning type
● textAlignment, which requires a custom property editor
● layoutProperties, which requires a custom property type and custom property editor

High-Level Guide to Creating a Custom Property Type and
Editor
Here's a step-by-step overview of how you can build the component. To follow along, download the
sample component, which are shared throughout this documentation.

1. Create a custom property editor.
a. Create a Lightning web component to act as the property editor. (See Create a

Custom Property Editor.)
b. To show the custom property editor in MyCustomComponent, reference it by editor

attribute in the MyCustomComponent js-meta.xml file. (See Reference a Custom
Property Editor by Editor Attribute.)

2. Create a custom property type.
a. Create an ExperiencePropertyTypeBundle folder and define the schema.json file

for the property in the folder. (See Structure of the ExperiencePropertyTypeBundle
and The Schema.json File.)

b. Deploy the ExperiencePropertyTypeBundle to your org. (See Use SFDX or
Metadata API to Deploy ExperiencePropertyTypeBundles.)

c. To show the custom property type in MyCustomComponent, reference it by type
attribute in the MyCustomComponent js-meta.xml file. (See Reference a Custom
Property Type by Type Attribute.)

3. Create a custom property type that includes a custom property editor.
a. Create the custom property type.
b. Create the custom property editor.

https://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/ArticlewithCPE1stMay.zip

c. Specify the custom property editor for the custom property type.
i. Create a design.json file. (See The Design.json File.)
ii. Reference the custom property editor in the propertyRenderer object in

the design.json file. (See Property Renderers.)
d. Deploy the ExperiencePropertyTypeBundle.
e. To show the custom property type in MyCustomComponent, reference it by type

attribute in the MyCustomComponent js-meta.xml file.

Now that you have an idea of the process, let’s explore the technical details. We introduce the
custom property type and its relationship to JSON schema, how to create a custom property editor,
and how to link everything together, with examples, throughout the implementation.

Create an ExperiencePropertyTypeBundle
The ExperiencePropertyTypeBundle is a new metadata type that describes property types.
ExperiencePropertyTypeBundle components are available in API version 58.0 and later.

For a list of the ExperiencePropertyTypeBundles deployed in your org, use the Connect API
resource connect/experience-model/property-types. (See Experience Model Resources in the
Connect REST API Developer Guide.)

Structure of the ExperiencePropertyTypeBundle
Let’s look at how an ExperiencePropertyTypeBundle folder is structured. Here’s an example that
shows an experiencePropertyTypeBundles folder for a custom property type, layoutProperty.

+--myMetadataPackage
+--experiencePropertyTypeBundles (1)

+--layoutProperty (2)
+--schema.json (3)
+--design.json (4)

● The experiencePropertyTypeBundles folder (1) contains a folder for each custom
property type.

● Each custom property type in the bundle folder has a propertyTypeName folder that’s
named for the property type. In this example, the custom property type is layoutProperty
(2).

● Each propertyTypeName folder contains a JSON file or files that define the property type.
○ A schema.json file, which is a JSON schema that drives the property type validation

(3)
○ An optional design.json file, which provides the user experience and property editor

information for that property type (4)

Here’s how this experiencePropertyTypeBundles folder looks in practice.

https://developer.salesforce.com/docs/atlas.en-us.244.0.chatterapi.meta/chatterapi/connect_resources_experience_model_resources.htm

See Also
Connect REST API Developer Guide: Experience Model Resources
Understanding JSON Schema
The Schema.json File
The Design.json File

Use SFDX or Metadata API to Deploy ExperiencePropertyTypeBundles

To deploy or delete an ExperiencePropertyTypeBundle to your org, use the Metadata API or
SFDX.

In Metadata API, a manifest file defines the metadata that you want to deploy. Here’s a package.xml
manifest file for an ExperiencePropertyTypeBundle that contains one custom property type,
called layoutProperty.

<xml version="1.0" encoding="UTF-8">
<package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>layoutProperty</members>
<name>ExperiencePropertyTypeBundle</name>

</types>
<version>58.0</version>

</package>

https://developer.salesforce.com/docs/atlas.en-us.244.0.chatterapi.meta/chatterapi/connect_resources_experience_model_resources.htm
https://json-schema.org/understanding-json-schema/index.html

To delete a custom property type, deploy a destructiveChanges package to your org that lists the
types to delete.

See Also
Metadata API Developer Guide: Deploying and Retrieving Metadata with the Zip File
Metadata API Developer Guide: Deleting Components from an Organization

SFDX and Packaging Support

ExperiencePropertyTypeBundle is supported by SFDX commands for retrieve, deploy, and
tracking source control of this metadata. For a reference on SFDX commands, see source Commands
in the Salesforce CLI Command Reference developer guide.

You can include ExperiencePropertyTypeBundles in first- and second-generation packages. For more
information, see Use Managed Packages to Develop Your AppExchange Solution.

See Also
Salesforce CLI Command Reference
Considerations and Limitations for Custom Property Types and Editors
Use Managed Packages to Develop Your AppExchange Solution

The Schema.json File
For custom property types, Salesforce uses JSON Schema to define the data type and data structure
of Lightning web component properties. We use JSON Schema so we can ensure that the structure
of the property values that you set for the component is valid. For example, a complex component
property can be expressed in different ways: It can be a string that describes all the properties in a
list. It can be an object with each property, such as borders and layout size, separated into respective
sub-properties. The schema lets you expect a specific data structure and type for that property and
build around that information.

The schema.json file follows the JSON Schema specification to define the custom property type. The
schema is composed of a set of specific keywords. Each keyword carries meaning to apply constraints
to the structure of the data.

These are the keywords that you can specify in a schema.json file. Unless otherwise noted, the
keywords follow the JSON Schema specification.

Keyword Required? Type Description

title Yes String Text used as the display name for the
property

description No String Explanatory text about the property
type

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/file_based_zip_file.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_deploy_deleting_files.htm
https://developer.salesforce.com/docs/atlas.en-us.236.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_force_source.htm
https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/managed_packaging_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_force_source.htm#cli_reference_force_source
https://developer.salesforce.com/docs/atlas.en-us.packagingGuide.meta/packagingGuide/managed_packaging_intro.htm

const No JSON Specifies a constant value that’s
supported for a property. Equivalent to
setting a default value with readOnly
set to true

enum No Array Specifies a list of values that are
supported for a property

lightning:type Yes String Refers to other property types by fully
qualified name. This keyword is specific
to ExperiencePropertyTypeBundle
but is syntactic sugar for the $ref
keyword in JSON Schema, which links
together schemas. (See Understanding
JSON Schema: The $ref keyword.)

The lightning:type property can reference only standard Lightning property types and the custom
property types that you create. As in JSON Schema, each Lightning property type has additional
type-specific keywords that apply only to that type. For example, lightning__objectType requires
the keyword properties to specify the object’s sub-properties, each with its own type.

A property type that contains other property types is a complex type. Only object and array types are
considered complex. Primitive types don’t contain other property types.

Example: Let’s say that you want to create an ExperiencePropertyTypeBundle for
Property, a complex type that includes sub-properties for borderStyle, borderWeight,
borderRadius, layoutHeight, and layoutWidth. Each of the sub-properties is a primitive
type. Here’s what the json.schema file looks like.

{

"title": "Layout Properties",

"lightning:type": "lightning__objectType",

"properties": {

"borderStyle": {

"lightning:type": "lightning__textType",

"title": "Border Style"

},

"borderWeight": {

"lightning:type": "lightning__integerType",

"title": "Border Weight (px)"

},

"borderRadius": {

"lightning:type": "lightning__integerType",

https://json-schema.org/understanding-json-schema/structuring.html?highlight=ref#ref
https://json-schema.org/understanding-json-schema/structuring.html?highlight=ref#ref

"title": "Border Radius (px)"

},

"layoutHeight": {

"lightning:type": "lightning__integerType",

"title": "Layout Height (px)"

},

"layoutWidth": {

"lightning:type": "lightning__integerType",

"title": "Layout Width (px)"

}

},

"required": []

}

See Also
Understanding JSON Schema: What is a schema?
Understanding JSON Schema: Generic keywords
Lightning Property Types
Create an ExperiencePropertyTypeBundle

Include Custom Labels

You can use custom labels for the title and description values for a custom property type. With
custom labels, you can add translations of the title and description into all your site languages.
Experience Builder users can see the title and description labels in their chosen language.

Follow these steps to create and use a translated custom label in a custom property type:
1. In Setup, enter Labels in the Quick Find box, and select Custom Labels.
2. Click New Custom Label and create the label.
3. In the schema.json file for the custom property type, use the expression

{!$Label.c.MyLabel1} for the title and description values. “c” is the namespace prefix, and
“MyLabel1” is the API name of the custom label.

See Also
Translate Custom Labels

The Design.json File
Design.json is an optional file where you can specify the layout of your property type—for example, as
an accordion section or on tabs. You can also specify an editor override—a property editor that
overrides the default editor for any lightning:type that the current property type references.

https://json-schema.org/understanding-json-schema/about.html
https://json-schema.org/understanding-json-schema/reference/generic.html?highlight=default
https://help.salesforce.com/s/articleView?id=sf.cl_translate_edit.htm&language=en_US&type=5

The JSON design specification encompasses the keywords that make up the design JSON file. The
root of the JSON must have the propertySheet key, a JSON object that represents the design
configuration for the property type. The propertySheet key determines the representation of the
property in the Experience Builder user interface.

The propertySheet JSON object contains these keys.

Keyword Required? Type Description

propertyRenderers No PropertyRenderers Defines the editor overrides for the
property type’s schema. (See Property
Renderers)

view No View Defines the visual representation for
the property type via an abstract
component tree (See The View
Specification)

The View Specification

The view is a specification for a standard way to represent the metadata of pages in Salesforce. It
represents a page, or a fragment of a page, as an abstract tree of components expressed in a JSON
object. For design.json files, view represents the visual representation for editing that property. For
primitive property types, such as string, view could define a single property editor.

For a complex property type, such as an object, you can use view to define the layout of this property
type’s sub-properties. The sub-properties of a complex type are laid out in a property sheet, a
collection of editors for each sub-property. Let’s say that you have a complex type that contains three
properties, borderStyle, borderWeight, borderRadius. Here are some examples of what you
can do using view.

● Specify the order in which the property editors appear in the property sheet (and, therefore,
in the component property panel in Experience Builder). For example, you can specify that
the property editor for borderWeight is the first one shown in the property sheet, then
borderStyle, then borderRadius.

● Specify which properties of the object property type to show. For example, you can opt not to
show the property editor for borderStyle in the property sheet. This can be useful when
certain properties of the component that you’re configuring aren’t relevant in Experience
Builder.

● Specify the layout of the complex type, such as whether to arrange the properties in an
accordion section or on tabs.

A view JSON object contains these keys.

Keyword Required Type Description

definition Yes String Specifies the layout of a complex
property type. Can reference the
out-of-the-box definitions or the
fullyQualifiedName of any Lightning
web component

attributes No Object The key-value pairs for the properties of
the view component

children No View[] A list of child views

To help demonstrate the view, here’s an example of a view layout for an objectType with three
sub-properties, which are arranged on two tabs. We illustrate the same view in different formats.

This representation of the object layout is in the form of a user interface component, with each
component and sub-component labeled with its definition.

● The yellow section (1) represents the entire tabset component.
● The purple sections (2) represent each tab component.
● The green sections (3) represent each property layout component.

Here’s the same view, represented as a tree. This is how the view will be represented in the DOM. The
numbers and text colors correspond to the same ones described in the preceding object layout
format.

Finally, here’s the same view represented as a JSON object, the format that we use to define a view
for property sheets. The text colors correspond to the same colors in the preceding tree and user
interface formats.

{
"definition": "lightning/tabsetLayout",
"children": [
{
"definition": "lightning/tabLayout",
“attributes”: {

“label”: “First Tab”
},
“children”: [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "aProperty"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "bProperty"

}
},

]
},
{
"definition": "lightning/tabLayout",
“attributes”: {

“label”: “Second Tab”
},
“children”: [
{

"definition": "lightning/propertyLayout",
"attributes": {
"property": "cProperty"

}
},

]
},

]
}

Out-of-the-Box Definitions for Views
When you use a view to specify the layout for a complex property type, you can leverage a few
out-of-the-box definitions of layout components. Each layout component can contain a
lightning/propertyLayout to specify where the property editor is expected to appear within the
property sheet.

These are the out-of-the-box definitions.

● lightning/propertyLayout
● lightning/verticalLayout
● lightning/tabSetLayout
● lightning/accordionLayout

lightning/propertyLayout

The lightning/propertyLayout is a component that renders a property editor. Its definition takes
a required attribute called “property,” the value of which is a reference to a sub-property in the
schema. The property editor that’s rendered is based on the lightning:type that it references and
whether the property is overridden by the propertyRenderers. (See The Editor Resolution
Algorithm for more details on how the property editor is chosen. See the other layouts listed here for
examples of how propertyLayout is used in accordance with other layouts.)

lightning/verticalLayout

To arrange your property sheet in a flat list, use the lightning/verticalLayout component.
Properties appear in the order in which they’re defined in the schema. This layout can take only
lightning/propertyLayouts as children.

Here’s a code snippet of a vertical layout view with properties for borderStyle, borderWeight,
borderRadius, layoutHeight, and layoutWidth arranged in vertical order.

{
"propertySheet": {
"view": {
"definition": "lightning/verticalLayout",

"children": [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderStyle"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderWeight"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderRadius"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutHeight"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutWidth"

}
}

]
}

}
}

Here’s how the layout looks in the component property panel in Experience Builder.

lightning/accordionLayout

To arrange your property sheet in accordion sections, use the lightning/accordionLayout
component. This layout can take only lightning/accordionSectionLayout as its children. The
lightning/accordionSectionLayout component, in turn, can use only
lightning/propertyLayout components as children.

Here’s an example of the properties for borderStyle, borderWeight, borderRadius,
layoutHeight, and layoutWidth laid out in accordion sections for Borders and Size.

{
"propertySheet": {
"view": {
"definition": "lightning/accordionLayout",
"children": [
{
"definition": "lightning/accordionSectionLayout",
"attributes": {
"label": "Borders"

},
"children": [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderStyle"

}

},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderWeight"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderRadius"

}
}

]
},
{
"definition": "lightning/accordionSectionLayout",
"attributes": {
"label": "Size"

},
"children": [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutHeight"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutWidth"

}
}

]
}

]
}

}
}

Here’s how the accordion layout looks in the component property panel in Experience Builder.

lightning/tabSetLayout

To arrange your property sheet in tabs, use the lightning/tabSetLayout component. This layout
can take only lightning/tabLayout as its children. The lightning/tabLayout component, in
turn, can take only lightning/propertyLayouts as children.

Here’s an example of the properties borderStyle, borderWeight, borderRadius, layoutHeight,
and layoutWidth laid out on tabs for Borders and Size.

{
"propertySheet": {
"view": {
"definition": "lightning/tabSetLayout",
"children": [
{
"definition": "lightning/tabLayout",
"attributes": {
"label": "Borders"

},
"children": [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderStyle"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderWeight"

}

},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderRadius"

}
}

]
},
{
"definition": "lightning/tabLayout",
"attributes": {
"label": "Size"

},
"children": [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutHeight"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutWidth"

}
}

]
}

]
}

}
}

Here’s how the tab set layout looks in the component property panel in Experience Builder.

Custom Definitions

If you don’t want to use one of the out-of-the-box view definitions, you can provide your own custom
Lightning web component and reference it using the definition property. Use the attributes
property on the view to pass values into the exposed @api properties of your layout component. Use
the children property of the view to put any child components inside the default <slot> of your
component.

Any view definitions with children are considered layout components. Layout components are used
to arrange your property editors in the property sheet however you like. For example, like arranging
property editors into tabs or accordions.

Any view definitions that aren’t lightning/propertyLayout and have no children are considered info
components. Info components aren’t considered property editors and aren’t required to implement
the property editor contract (see Property Editor Contract). Info components are purely for
informational purposes and don’t contribute to editing property values the way property editors do.

When you’re ready to place a property editor inside the view, use the lightning/propertyLayout
definition to indicate where you want that editor to appear.

Here is an example of a view with a custom layout component and an info component.

{
"propertySheet": {
"view": {
"definition": "c/myCustomCarouselLayout",
"children": [
{
"definition": "c/infoComponent",
"attributes": {

"text": "Here is my display text with Helpful information."
}

},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "propertyName"

}
}

]
}

}
}

Property Renderers

You can use the propertyRenderers object to override the property editors for custom types that
are referenced in your own custom property type. Each lightning type provides a default property
editor that’s used when there are no property renderer overrides. The propertyRenderers JSON
object is a map where each key-value pair maps a sub-property to a view override for that property.
This view serves as a property editor override for that property.

Example: Let’s take an example of a complex property type, layoutProperty, that has the
sub-properties borderStyle, borderWeight, borderRadius, layoutHeight, and layoutWidth.
You want to use a custom property editor for the borderStyle sub-property and use default
property editors for the rest.

In this code snippet of a design.json file, a propertyRenderer overrides the default property editor
for postal code by changing the definition to c/borderStyleDropdownCPE.
c/borderStyleDropdownCPE is a custom property editor that you created. (For details on how to
create a custom property editor, see Create a Custom Property Editor.)

Because you didn’t override the property renderers for borderWeight, borderRadius,
layoutHeight, or layoutWidth, the property editor shown in the property sheet for each of those
properties is the default editor.

{
"propertySheet": {
"propertyRenderers": {
"postalCode": {
"definition": "c/borderStyleDropdownCPE"

},
}

}
}

Full Editor Override

To use a single custom property editor for your entire complex property type, use the “$” keyword in
your propertyRenderer.

Let’s say you have a complex property type for map with two properties, latitude and longitude.
You can create a custom property editor, customMapEditor, that plots a map. Then, in the
design.json file, you can use "$" to define customMapEditor as the editor for all the properties in
the type—in this case, latitude and longitude.

{
"propertySheet": {
"propertyRenderers": {
"$": {
"definition": "c/myCustomMapEditor"

}
}

}
}

Include the Namespace Prefix for Metadata References
When you reference any external metadata in your custom property type, always use “c” as the
namespace prefix for the reference to metadata in the current org. This includes referencing other
custom property types, custom property editors, and labels. For example, a postal code custom
property editor reference in your current org should be c/postalCodePicker. If your org has a
namespace defined, still use “c” as the prefix. The exception is if the referenced custom property
editor or property type is from a managed package. In that case, use the package's namespace as the
prefix. For example, isv/postalCodePicker.

Here’s an example schema.json file using local org metadata references for label and custom
property types.

{
"title": "Address Type",
"lightning:type": "lightning__objectType",
"properties": {
"postalCode": {
"lightning:type": "c__postalCodeType",
"title": "{!$Label.c.PostalCodeTitle}"

}
}
}

Here’s an example design.json file using local org metadata for a custom property editor.

{
"propertySheet": {
“propertyRenderers”: {

“postalCode”: {
“definition”: "c/postalCodePicker"

}
}

}

See Also
Create a Custom Property Editor
The Editor Resolution Algorithm

The Editor Resolution Algorithm
To understand which property editor appears in the property sheet for a given property, it can help to
know the algorithm that the property sheet uses to choose the correct property editor to render.
Here is a representation of the algorithm that the property sheet uses to show the correct editor in
Experience Builder.

1. If the design file is defined for a property type:
a. If propertyRenderers is present and contains a full editor

override ($), use the given definition as the property editor.
b. Else if the current type is a primitive lightning:type, use the

property editor defined by the property type schema’s
lightning:type referenced. Repeat algorithm for the
lightning:type referenced to find the lightning:type’s property
editor.

c. Else if the current type is a complex lightning:type (object),
render the complex property editor as a layout of sub-property
editors.
i. Calculate the layout of the object properties:

1. If a view is not defined, the layout of the object
properties defaults to a vertical layout of all of
the properties’ editors, in the order the properties
are defined in the property type schema.

2. Else if a view is defined, use the layout specified.
ii. Calculate the property editors for each property in the

layout:
1. For each object sub-property:

a. If propertyRenderers contains the property,
use the property editor override defined.

b. Else then use the property editor from the
lightning:type in the schema for that

sub-property. Repeat algorithm for the
lightning:type referenced to find that
lightning:type’s property editor.

2. Else if the design file is not defined:
a. If the current type is a primitive type, use the property editor

from the lightning:type. Repeat the algorithm for the
lightning:type referenced to find its property editor.

b. Else if the current type is a complex type, all the properties
are laid out in vertical order as defined in the schema. For
each sub-property:
i. Use the property editor found at its lightning:type

referenced.

Design Example
Let’s look at a custom component, MyCustomComponent, for which you created an
experiencePropertyTypeBundle for the complex property layoutProperty. layoutProperty has
the sub-properties borderStyle, borderWeight, borderRadius, layoutHeight, and
layoutWidth. Now you want to arrange the sub-properties in tabs, and you want to use a custom
property editor for the sub-property borderStyle.

Here’s what the design.json file looks like. We use the propertyRenderers object to define a property
editor override for borderStyle. To arrange the sub-properties in tabs, we use the
lightning/tabSetLayout in the view definition

.{
"propertySheet": {
"propertyRenderers": {
"borderStyle": {
"definition": "c/borderStyleDropdownCPE"

}
},
"view": {
"definition": "lightning/tabSetLayout",
"children": [
{
"definition": "lightning/tabLayout",
"attributes": {
"label": "Borders"

},
"children": [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderStyle"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderWeight"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "borderRadius"

}
}

]
},
{
"definition": "lightning/tabLayout",
"attributes": {
"label": "Size"

},
"children": [
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutHeight"

}
},
{
"definition": "lightning/propertyLayout",
"attributes": {
"property": "layoutWidth"

}
}

]
}

]
}

}
}

Here’s how the custom property editor appears in the component property panel in Experience
Builder.

And here’s how layoutProperty looks in the component property panel in Experience Builder.

Lightning Property Types
In the schema.json file of an ExperiencePropertyTypeBundle, you specify a lightning:type for
each property. The lightning:type is syntactic sugar for the JSON schema $ref keyword that’s
used to combine schemas. (See Understanding JSON Schema: $ref). The main difference between
lightning:type and $ref is that you don’t have to enter a full URL path for your lightning:type
reference. Instead, you can just use the fully qualified name of an
ExperiencePropertyTypeBundle.

Salesforce created several Lightning property types—out-of-the-box property types that act as the
basic types that you can reference to structure a more complex schema. For example, you can use
the lightning:type called lightning__objectType to reference a schema with the underlying
type “object.”

It’s important to understand the underlying type used for each lightning:type to understand how
the Lightning property type is validated. By combining the basic Lightning types, you can construct
any property type of higher complexity. Each Lightning property type includes a default property
editor, so if you use one of these property types, you don’t have to create a property editor yourself.

Like JSON Schema types, each Lightning property type comes with type-specific keywords that apply
only to that type. The ensuing subsections describe the keywords available and the default property
editor associated with each of these Lightning property types.

● lightning__booleanType
● lightning__dateType
● lightning__dateTimeType
● lightning__integerType
● lightning__multilineTextType
● lightning__numberType
● lightning__objectType

https://json-schema.org/understanding-json-schema/structuring.html?highlight=ref#ref

● lightning__richTextType
● lightning__textType
● lightning__urlType
● lightning__booleanType

lightning__booleanType

This property type maps to an underlying JSON schema boolean type. (See Understanding JSON
Schema: boolean.) It’s expressed as a toggle property editor.

The lightning__booleanType property type includes these configurable parameters.

Keyword Required Type Description

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the
lightning__booleanType and configures its parameters.

{
"title": "Custom Property with Boolean Property Type",
"description": "This explains how to refer a OOTB booleanType property type
in a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"booleanProperty": {
"lightning:type": "lightning__booleanType",
"title": "Boolean Property",
"description": "description of this property"

}
}

Here’s how the default property editor for lightning__booleanType appears in the component
property panel in Experience Builder. Notice that the title is used as the property editor label.

https://json-schema.org/understanding-json-schema/reference/boolean.html#boolean
https://json-schema.org/understanding-json-schema/reference/boolean.html#boolean

lightning__dateType

This property type is a string used to specify a date in yyyy-mm-dd format. (That is, four-digit year,
two-digit month, and two-digit date format.)

These are the parameters used to configure the lightning__dateType property.

Keyword Required Type Description

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the lightning__dateType
and configures its parameters.

{
"title": "Custom Property with Date Property Type",
"description": "This explains how to refer a OOTB dateType property type in
a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"boolean": {
"lightning:type": "lightning__dateType",
"title": "Date Property",
"description": "description of this property"

}
}

Here’s how the default property editor for lightning__dateType appears in the component
property panel in Experience Builder.

lightning__dateTimeType

This property type describes a complex property type that’s an object with a dateTime and optional
timeZone properties. Use this property type to specify date and time together.

Because lightning__dateTimeType is a predefined complex property type, its value is an object.
The following is the schema for the object property value that this type describes.

Keyword Required Type Description

dateTime Yes String This field must be specified in the format
yyyy-MM-dd'T'HH:mm:ss.SSSZ

timeZone No String Use the timezone attribute to specify a
time zone in IANA time zone database
format.

Here are some examples of valid data for a property value of this type. This sample shows an object
with both dateTime and timeZone values set.

{
"dateTime": "2012-05-31T01:30:05.000Z",
"timeZone": "Asia/Kolkata"
}

This sample shows an object with only the dateTime value set.

{
"dateTime": "2012-05-31T01:30:05.000Z"
}

Here are some examples of invalid data for a property value of this type. This sample shows an object
without the required dateTime field.

{
"timeZone": "Asia/Kolkata"

}

This sample shows an object with an invalid timeZone format (without milliseconds).

{

"dateTime": "2012-05-31T01:30:05Z",

"timeZone": "Asia/Kolkata"

}

The lightning__dateTimeType property type includes these configurable parameters.

Keyword Required Type Description

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the
lightning__dateTimeType and configures its parameters.

{
"title": "Custom Property with DateTime Property Type",
"description": "This explains how to refer a OOTB dateTimeType property
type in a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"dateTime": {
"lightning:type": "lightning__dateTimeType",
"title": "Date Time Property",
"description": "description of this property"

}
}

Here’s how the default property editor for lighting__dateTimeType appears in the component
property panel in Experience Builder.

lightning__integerType

Use this property type to specify integers. This property will be used for integral numbers. This
property type maps to an underlying JSON schema integer type. (See Understanding JSON Schema:
integer.)

https://json-schema.org/understanding-json-schema/reference/numeric.html#integer
https://json-schema.org/understanding-json-schema/reference/numeric.html#integer

The lightning__integerType property type accepts these configurable parameters.

Keyword Required Type Description

maximum No Number Sets the maximum value that a number
can be for this property

minimum No Number Sets the minimum value that a number
can be for this property

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the lightning__integerType
and configures its parameters. Notice that this example includes a default, which is set inside the
property editor.

{
"title": "Custom Property with Integer Property Type",
"description": "This explains how to refer a OOTB integerType property type
in a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"integer": {
"lightning:type": "lightning__integerType",
"title": "Integer Property",
"description": "description of this property",
"minimum": 100,
"maximum": 200,
"default": 5

}
}

Here’s how the default property editor for lightning__integerType appears in the component
property panel in Experience Builder.

lightning__multilineTextType

This property type is similar to lightning__textType, but it accommodates a larger maximum
character length and a property editor for larger text input. This lightning property type maps to an
underlying JSON string type. (See Understanding JSON Schema: string.)

The lightning__multilineTextType property type accepts these configurable parameters.

Keyword Required Type Description

maxLength No Number This field sets the maximum length of
characters for the property value. Values
can range from 0 to 2,000

minLength No Number This field sets the minimum length of
characters for the property value. Values
can range from 0 to 2,000

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the
lightning__multilineTextType and configures its parameters. Notice that this example includes
a default, which is set inside the property editor.

{
"title": "Custom Property with MultilineText Property Type",
"description": "This explains how to refer a OOTB multilineTextType
property type in a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"text": {
"lightning:type": "lightning__multilineTextType",
"title": "Multiline Text Property",
"description": "description of this property",
"maxLength": 200,
"minLength": 1,

https://json-schema.org/understanding-json-schema/reference/string.html

"default": "some text",

}
}

Here’s how the default property editor for lightning__multilineTextType appears in the
component property panel in Experience Builder.

lightning__numberType

Use this property type to specify numbers. Number type is validated as a decimal number, also
known as a float in some programming languages. This property type maps to an underlying JSON
schema number type. (See Understanding JSON Schema: number.)

The lightning__numberType property type accepts these configurable parameters.

Keyword Required Type Description

maximum No Number Sets the maximum value that a number
can be for this property

minimum No Number Sets the minimum value that a number
can be for this property

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the
lightning__numberType and configures its parameters. Notice that this example includes a
default, which is set inside the property editor.

{
"title": "Custom Property with Number Property Type",
"description": "This explains how to refer a OOTB numberType property type
in a custom property type",

https://json-schema.org/understanding-json-schema/reference/numeric.html#number

"lightning:type": "lightning__objectType",
"properties": {
"number": {
"lightning:type": "lightning__numberType",
"title": "Number Property",
"description": "description of this property",
"minimum": .555,
"maximum": 20.555,
"default": 5.55,

}
}

}

Here’s how the default property editor for lightning__numberType appears in the component
property panel in Experience Builder.

lightning__objectType

Use the lightning__objectType to create object property types. This property type is a complex
type—it can contain sub-properties, each with its own property type. In other words, you can use this
property type to group other property types. This property type maps to an underlying JSON schema
object type. (See Understanding JSON Schema: object.)

The lightning__objectType accepts these configurable parameters.

Keyword Required? Type Description

title yes String The text associated with the property
label and used as the display label for
the property editor

description no String Additional information about the
property

required no String[] Specifies an array of strings where each
string is a property name in the object’s
sub-properties. All property names
included in this array must be present
in order for the object to be valid.

properties yes PropertyType Specifies the map of sub-properties for

https://json-schema.org/understanding-json-schema/reference/object.html

the property type. Each key of the map
is a property name, and the value is a
PropertyType schema.

Here’s an example of a valid use of the lightning__objectType type.

{
"title": "Custom Property with Object Property Type",
"description": "This explains how to refer a OOTB objectType property type
in a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"url": {
"lightning:type": "lightning__urlType",
"title": "URL property",
"description": "description of this property",
"lightning:allowedUrlSchemes": ["https"]

},
"number": {
"lightning:type": "lightning__numberType",
"title": "Number property",
"description": "description of this property",
"minimum": 100,
"maximum": 200

},
"boolean": {
"lightning:type": "lightning__booleanType",
"title": "Boolean property",
"description": "description of this property"

}
}
}

Here’s an example of invalid code, declaring properties without using the lightning__objectType.
This schema would be blocked on save.

{
"title": "Invalid Custom Property Without Object Property Type",
"description": "This explains how a complex property type needs
objectType property type",
"properties": {
"url": {
"lightning:type": "lightning__urlType",
"title": "title of this property",

"description": "description of this property",
}

}
}

This example of invalid code shows an objectType with an empty set of properties.

{
"title": "Invalid Custom Property with Empty Properties",
"lightning:type": "lightning__objectType",
"properties": { }

}

This example of an invalid use of lightning__objectType shows an objectType nested inside of
itself.

{
"title": "Custom Property with Object Property Type",
"description": "This explains how to refer a OOTB objectType property type
in a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"nestedProperty": {
"lightning:type": "lightning__objectType",
"properties": {
"url": {
"lightning:type": "lightning__urlType",
"title": "title of this property",
"description": "description of this property",
"lightning:allowedUrlSchemes": ["https"]

}
}

}
}

By default, the object properties are laid out vertically, in the order that the properties are declared in
the schema. Here’s how an object with the firstName, middleName, and lastName properties in
that order appears in the component property panel in Experience Builder.

If you want a different layout or order, you can use view in the design.json file to override the design
configuration and arrange the properties in accordion sections or on tabs.

lightning__richTextType

This property type lets users add, edit, and delete rich text. The maximum length of a text field can’t
exceed 100,000 characters. (See the Rich Text Editor documentation for more information on the
editor supports.)

The lightning__richTextType property type includes these configurable parameters.

Keyword Required Type Description

maxLength No Number This field sets the maximum length of
characters for the property value. Values
can range from 0 to 100,000

minLength No Number This field sets the minimum length of
characters for the property. Values can
range from 0 to 100,000

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the
lightning__richTextType and configures its parameters. Notice that this example includes a
default, which is set inside the property editor.

{

https://help.salesforce.com/s/articleView?id=sf.fields_using_html_editor.htm&type=5

"title": "Custom Property with RichText Property Type",
"description": "This explains how to refer a OOTB richTextType property
type in a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"richText": {
"lightning:type": "lightning__richTextType",
"title": "title of this property",
"description": "description of this property",
"maxLength": 90000,
"minLength": 100,
"default": "Sample rich text",

}
}

Here’s how the default property editor for lightning__richTextType appears in the component
property panel in Experience Builder.

lightning__textType

Use this property type for text fields such as titles and descriptions. The maximum character length
of this text field is 255 characters. This lightning property type maps to an underlying JSON schema
string type. (See Understanding JSON Schema: string.)

https://json-schema.org/understanding-json-schema/reference/string.html

The lightning__textType property type includes these configurable parameters.

Keyword Required Type Description

maxLength No Number This field sets the maximum length of
characters for the property. Values can
range from 0 to 250

minLength No Number This field sets the minimum length of
characters for the property. Values can
range from 0 to 250

title Yes String The text associated with the property
label and used as the display label for the
property editor

description No String Additional information about the property

Here’s a sample custom object property type that contains a property of the lightning__textType
and configures its parameters. The example includes a default, which is set inside the property editor.

{
"title": "Custom Property with Text Property Type",
"description": "This explains how to refer a OOTB textType property type in
a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"text": {
"lightning:type": "lightning__textType",
"title": "Text Property”,
"description": "description of this property",
"maxLength": 200,
"minLength": 1,
"default": "default string value",

}
}

Here’s how the default property editor for lightning__textType appears in the component
property panel in Experience Builder.

lightning__urlType

Use this property type for URL values. This type uses a configurable parameter called
lightning:allowedUrlSchemes to let you specify the URL schemes that this type can validate
against.

The lightning__urlType property includes these configurable parameters.

Keyword Required Type Description

lightning:allowedUrlSchemes No String[] Array of the supported schemes for the
url type to validate against. Must be
one of the following values: https,
http, relative, mailto, tel.
If none specified, defaults to [https,
http, relative]

title Yes String The text associated with the property
label and used as the display label for
the property editor

description No String Additional information about the
property

Here’s a sample custom object property type that contains a property of the lightning__urlType
and configures its parameters. This example includes lightning:allowedUrlSchemes to ensure
that the URL entered includes https. In this code, valid data for the url property is
https://google.com. But http://google.com is invalid, because http isn't included in
lightning:allowedUrlSchemes.

{
"title": "Custom Property with Url Property Type",
"description": "This explains how to refer a OOTB urlType property type in
a custom property type",
"lightning:type": "lightning__objectType",
"properties": {
"url": {
"lightning:type": "lightning__urlType",
"title": "URL Property",
"description": "description of this property",
"default": "https://sampleurl.com",
"lightning:allowedUrlSchemes": ["https"]

}
}

Here’s how the default property editor for lightning__urlType appears in the component
property panel in Experience Builder.

Create a Custom Property Editor
To replace the default property editor for a given property type in a custom Lightning web
component, create a custom property editor. First you create a Lightning web component, including
HTML and CSS, to serve as the property editor. Then you link your custom property editor back to the
component properties that you want to use this editor for.

The Property Editor Contract
To work successfully with the property sheet and function smoothly in Experience Builder, the
component that you create for your property editor must satisfy the property editor contract. The
contract requires your custom property editor component to include these public properties in its
element class: label, description, required, value, errors, and schema. After the contract is satisfied,
you have access to all existing Lightning web component tools, such as UI APIs and Apex, to make
the component behave the way you want it to. (For in-depth information on creating Lightning web
components, see the Lightning Web Component Developer Guide.)

Here’s an interface that outlines the required properties of the property editor contract. Each
required property is injected into the property editor from the property sheet with the relevant
information. Think of these properties as the inputs to the property editor.

interface PropertyEditorContract {
label: string;
description: string;
required: boolean;
value: any;
errors: PropertyError[];
schema: JSONSchema
}

interface PropertyError {
message: string;
}

When users enter a value into the property editor, the property sheet expects the editor to throw a
single CustomEvent called valuechange to send the value to Experience Builder. Here’s a code

https://lwc.dev/
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_introduction

sample that shows an interface for the object payload expected for the valuechange event. Think of
this interface as the output of the property editor.

interface PropertyChangedEventPayload {
value: any
}

After the event fires, the property sheet validates the entered value against the property editor’s
property type schema and persists the value to the component on the canvas in Experience Builder.
If any errors occur during the validation process, they’re injected back into the editor via the errors
property of the property editor. (See General Guidelines for more information to help you avoid
common mistakes when you create the property editor component.)

Let’s say you have a custom Lightning web component called MyCustomComponent, and you want
to create a custom property editor for the textAlignment property in this component. The default
editor for type=String is a combobox, and you want to replace that with a button group where
users can visually toggle the alignment . So you create a custom Lightning web component to act as
the property editor, called alignmentCPE .

The component class of alignmentCPEmust follow the property editor contract. Here’s a code
snippet showing a basic editor component class for the editor. Notice that the public properties of
the component follow the property editor contract, and that the editor is firing the valuechange
event when users blur their changes.

export default class AlignmentCPE extends LightningElement {
@api value;
@api label;
@api schema; // the JSON Schema derived from the accompanying property
type.
@api errors;

@track buttons = [...]

handleAlignmentClick(event) {
const value = event.target.value;
this.value = value;
this.dispatchEvent(new CustomEvent("valuechange", {detail: {value:

this.value}}));
}

}

Build the Property Editor HTML and CSS
The HTML markup and CSS for your custom property editor don’t have the additional restrictions that
the property editor contract imposes on the component class. You can make the editor look and feel
however you like. For example, you can assign the font, type size, and text color of your choice. (See
General Guidelines for information that can help you avoid common mistakes in editor
development.)

Let’s return to your custom Lightning web component, MyCustomComponent. You want to create a
custom property editor for textAlignment so that your Experience Builder users can select
alignment from a button group. Here’s how the HTML for this custom property editor can look.

<template>
<div>

<lightning-button-group onclick={handleAlignmentClick}>
<template for:each={buttons} for:item="button">

<lightning-button-icon-stateful
key={button.value}
value={button.value}
selected={button.selected}
icon-name={button.icon}></lightning-button-icon-stateful>

</template>
</lightning-button-group>

</div>
</template>

XML Configuration
The js-meta.xml file of your custom property editor component must include the
lightning__PropertyEditor target to indicate that this component is a property editor.

Here’s how the js-meta.xml for alignmentCPE looks when the lightning__propertyEditor target
is set.

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata"
fqn="alignmentCPE">

<apiVersion>58.0</apiVersion>
<isExposed>true</isExposed>
<masterLabel>Alignment Editor Component</masterLabel>
<targets>
<target>lightning__PropertyEditor</target>

</targets>
</LightningComponentBundle>

Link a Custom Property Editor or Property Type to
Your Custom Component
After you create your custom property editor or custom property type, link it back to the property of
the custom Lightning web component. Link a custom property editor to your component using the
editor attribute, and link a custom property type to your component using the type attribute.

Reference a Custom Property Editor by Editor Attribute
A component property can reference a custom property editor directly through the new editor

attribute. The editor attribute is a reference to a custom property editor by a
fullyQualifiedName string. This option is best if you want only to override the default user
experience, without needing the additional validations of a custom property type.

In this example, you specify an editor reference to your custom alignmentCPE for the
textAlignment of MyCustomComponent.

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata"
fqn="lwcWithCustomPropertyType">
<masterLabel>My Custom Component</masterLabel>
<apiVersion>58.0</apiVersion>
<targets>
<target>lightningCommunity__Page</target>
<target>lightningCommunity__Default</target>

</targets>
<targetConfigs>
<targetConfig targets="lightningCommunity__Default">
<property name="textAlignment" type="String" editor="c/alignmentCPE"

label="Text Alignment"/>
</targetConfig>
</targetConfigs>
</LightningComponentBundle>

Besides referencing a custom property editor by editor attribute in the js-meta.xml file, you can also
reference a property editor in the design.json file. See Design.json for details.

Reference a Custom Property Type by Type Attribute
A component property can reference a custom property type via the existing type attribute.
Previously, the type property was limited to a specific set of types such as String, Integer, Boolean.
But now the type property can be a fullyQualifiedName string that references an existing
ExperiencePropertyTypeBundle, whether it is an out-of-the-box Lightning property type or a
custom property type.

In this example, you add to the js-meta.xml file for MyCustomComponent and use the type
attribute to reference the custom property type layoutProperty.

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata"
fqn="lwcWithCustomPropertyType">
<masterLabel>My Custom Component</masterLabel>
<apiVersion>58.0</apiVersion>
<targets>
<target>lightningCommunity__Page</target>
<target>lightningCommunity__Default</target>

</targets>
<targetConfigs>
<targetConfig targets="lightningCommunity__Default">

<property name="layoutProperties" type="c__layoutProperty"
label="Layout" />

</targetConfig>
</targetConfigs>
</LightningComponentBundle>

In this example, you use the type attribute to reference a lightning property type for the
articleDate property.

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata"
fqn="lwcWithCustomPropertyType">
<masterLabel>My Custom Component</masterLabel>
<apiVersion>58.0</apiVersion>
<targets>
<target>lightningCommunity__Page</target>
<target>lightningCommunity__Default</target>

</targets>
<targetConfigs>
<targetConfig targets="lightningCommunity__Default">
<property name="articleDate" type="lightning__dateType" label="Date

Updated" />
</targetConfig>

</targetConfigs>
</LightningComponentBundle>

Overriding Custom Property Type Attributes
You can override some of a custom property type’s attributes in the <property> definition. In this
example, the layoutProperty label, “Layout,” overrides the “Layout Properties” title specified in the
Schema Example.

<property name="layoutProperties" type="c__layoutProperty"

label="Layout"/>

You can override the attributes label, description, and default in a custom property type. Label
overrides a custom property type’s title attribute.

Escaping Special XML Characters in Default Values

The default attribute lets you set the value for the property before an end user has a chance to
change the input. When you set the default value of a custom property type from the js-meta.xml
file, you need to escape any special characters in that value. This is standard practice in XML
documents to ensure that special characters in the value don’t affect the validity of the whole XML
document. This consideration generally isn’t applicable to most primitive types. For properties that
directly or indirectly reference a custom property type that's defined as lightning__objectType,
lightning__dateTimeType, or lightning__richTextType in its schema, you may need to
escape any special characters in those values.

For example, if the component has a property tag that uses the lightning__richTextType, any
HTML or XML usage in the default such as “bold text” must be specified as:

<property name="richTextProperty" type="lightning__richTextType"
default=">bold text" />

Similarly, if a component has a property type reference that uses the lightning__objectType, a
default object value such as “{"state":"California", "city":"San Francisco"}” must be specified as:

<property name="addressProperty" type="c__addressType"
default="{"state":"California","city":"Sa
n Francisco"}" />

Supported Attributes for the Property Tag in the js-meta.xml File
In the js-meta.xml file for a custom Lightning web component, you can use these attributes for the
property tag.

type

Salesforce supports five out-of-the-box property types for Lightning web components in Experience
Builder: String, Integer, Boolean, ContentReference, and Color. You can use all these types together
with properties that reference custom property types.

filter

This attribute is supported only if the property has type=ContentReference. It specifies the

Salesforce CMS content types to display in the component in Experience Builder. These are the valid
values.

● cms_document
● cms_image
● cms_video
● news
● custom_type, where custom_type is the name of a custom content type

screenResponsive

For properties that reference custom property types which have an underlying JSON schema type of
string, integer, or number, you can specify this attribute to indicate whether the property is screen
responsive.

exposedTo

This attribute is required if you use the screenResponsive attribute. The valid value is css.

translatable

When you specify translatable="true", you indicate that this component property can hold
different values for each language supported on your Experience Cloud site. You can specify the
translatable attribute in a property tag only when the custom property type that’s being referenced
has an underlying JSON schema type of string. For example, you can add translatable=”true” to
properties that reference these types.

● lightning__textType
● lightning__multlineTextType
● lightning__richTextType
● lightning__urlType
● lightning__dateType

You can also add translatable="true" to any custom property type that references one of these
types in its schema.json file.

When you specify translatable="true" for a property of type="lightning__richTextType",
the property’s value is exported in rich text format in the .xlf file via the Export Content feature in
Experience Builder. All other types are exported as plain text.

Testing
After you link your custom property type or editor to your custom Lightning web component, deploy
the component to your org and test it to see if it works. Drag the component onto the canvas in
Experience Builder, and look at the component property panel. Make sure that the expected
property editors appear, and that the validation matches what you expect based on your property

type schema. Use your custom property editor to change that property value, and verify that the
component property in the canvas is updated accordingly.

General Guidelines
We recommend that you follow these guidelines when you create a custom property editor. They can
help you avoid common mistakes and deliver a consistent end-user experience.

Don’t use the property editor to validate user input. The property editor is intended to affect only
the user interface in Experience Builder. Make sure that the property editor always sends its input
value without changing or processing the user input value. The property sheet takes care of the
validation of the value. To avoid inconsistent validation, the property sheet ensures that the property
value is valid according to the property’s type schema. Any validation errors that the property sheet
finds are injected into the property editor via the errors property.

To illustrate this guideline, this code sample provides an example of what not to do. In the sample,
the code violates this guideline by performing a validation check on the value entered by the user
and setting its own error message. The code also bypasses firing the valuechange event when this
special validation condition is met.

export default class CustomPropertyEditor extends LightningElement {
@api value;
@api label;
@api schema;
@api errors;
handleOnBlur(event) {
// Don’t do this
if (this.value.contains(“myCustomValidation”)) {
this.errors = [{ message: “My Special validation is broken”}];
return;

}
this.dispatchEvent(new CustomEvent("valuechange", {detail: {value:

this.value}}));
}
}

Avoid creating flyouts, popouts, and modals. These user experience patterns can interrupt the
Experience Builder user’s editing experience. Use caution - these patterns don’t always behave as
expected.

Avoid using CSS to define the absolute position of an element. This pattern also doesn’t always
behave as expected in various builder scenarios. (See MDNWeb Docs: position for more
information.)

https://developer.mozilla.org/en-US/docs/Web/CSS/position

Avoid setting CSS width properties for your property editor. Don’t set CSS properties to determine
the width of your property editor. Setting width properties affects the property panel size in
Experience Builder and can cause unexpected issues with user experience.

Don’t fire the valuechange event too often. A canvas refresh is triggered whenever the property
sheet handles the valuechange event fired from the property editor. Too many refreshes of the
canvas per second hinders the performance of Experience Builder. For example, when you bind
valuechange to events such as keydown or mousemove for an input, the canvas refreshes many
times per second. We recommend binding to a committal events, such as blur, instead.

This example shows what not to do. Here the valuechange event fires on every keypress of an input.
An Experience Builder user types rapidly can unknowingly trigger many canvas refreshes and slow
down the editing experience of this component.

export default class AlignmentCPE extends LightningElement {
@api value;
@api label;
@api errors;
// Use “blur” instead
handleOnKeyDown(event) {
this.dispatchEvent(new CustomEvent("valuechange", {detail: {value:

this.value}}));
}
}

Conclusion

Remember long ago, when you set out on your quest to create a custom property editor? You have
made it! We hope this guide has been useful. If you have any questions, suggestions for improving
the guide, or other feedback, please let us know in the Experience Cloud Trailblazer community.
Here’s to your success creating custom property editors to develop dynamic, intuitive components for
your sites.

https://trailhead.salesforce.com/trailblazer-community/groups/0F9300000001oDdCAI

