

Constraint Modeling Language (CML)
User Guide
Version 1.6
Winter ‘25

What Is CML?​ 3
Constraint Model Example: Modeling a House​ 3
CML Core Concepts​ 6

Global Properties and Settings​ 6
Global Constants​ 6
External Variables​ 7

Types​ 9
Type Declaration Example​ 9
Type Hierarchies​ 10
Type Annotations​ 10

Variables​ 11
Variable Data Types​ 11
Variable Domains and Domain Restrictions​ 12
Variable Functions​ 12
Proxy Variables​ 13
Variable Annotations​ 16

Relationships​ 17
Relationship Annotations​ 18

Constraints​ 19
Supported Constraints​ 19
How User Input Order Affects Constraint Engine Behavior​ 20
Logical Constraint​ 20
Implication Operator (→)​ 22
Table Constraint​ 23
Message Rule​ 24
Preference Rule​ 25
Require Rule​ 25
Exclude Rule​ 26
Hide/Disable Rule​ 27

CML User Guide

Action Rule​ 29
CML Best Practices​ 32
Debugging CML​ 36

About the Apex Debugging Log File​ 36
Use the Apex Debugging Log File​ 38

2

CML User Guide

What Is CML?
Constraint Modeling Language (CML) is a domain-specific language that defines models for
complex systems. For product configuration, constraint models describe real-world entities and
their relationships to each other, and enforce business logics declaratively without the need for
extensive code in a general-purpose programming language. The constraint engine compiles
CML code into a constraint model and uses the model to construct a product configuration that
complies with the specified constraints.

To build a constraint model in CML, use this basic workflow:

●​ Create global properties and settings with fixed values that set up the foundation of the
constraint model.

●​ Define types, which represent entities or objects in the model. Types are the building
blocks of CML. They’re similar to classes in object-oriented programming. In Revenue
Cloud, types represent standalone products, bundles, product components and product
classes.

●​ Create variables to define the properties or characteristics of a type. Variables can hold
different kinds of data, such as strings, numbers, or lists, and can be calculated from other
variables and values. In Revenue Cloud, variables represent product fields, product
attributes, and sometimes context tags. For more information on context tags, see Create
a Context Definition in Salesforce Help.

●​ Define relationships that describe how different types are associated with each other. In
Revenue Cloud, relationships represent the product structure in a bundle. For example,
the root product has a relationship with its components.

●​ Apply constraints to define logical restrictions and enforce rules and conditions on types,
variables, and relationships.

Note: To define a constraint for a child product in a bundle, you must include the entire bundle in
the constraint model. For example, if you define a constraint for a laptop, and the laptop is a
child product in the Laptop Pro Bundle, you must include the Laptop Pro Bundle in the
constraint model in order for the constraint on the laptop to run.

For more information on constraint models, see Constraint Model Example: Modeling a House
and CML Core Concepts.

Constraint Model Example: Modeling a House
The Costraint Model for a House example uses CML to define a simple house design. Each
element in the model corresponds to a core CML concept. For more information on each
concept, see the topics linked here.

3

https://help.salesforce.com/s/articleView?id=ind.context_service_create_context_definitions.htm&type=5
https://help.salesforce.com/s/articleView?id=ind.context_service_create_context_definitions.htm&type=5

CML User Guide

Global Properties and Settings: In the example, COLORS and MAX-ROOM are global constants
whose values remain fixed throughout the model.
Types: House, Room, LivingRoom, and Bedroom are types that represent entities.
LivingRoom and Bedroom inherit from the Room type. MasterBedroom inherits from
Bedroom.
Variables: The House type defines several variables including address, numberOfRooms,
and totalArea. The Room type defines several variables including width, length, area,
and color. The color for each room is chosen from the values in the global constant COLORS.
Relationships: The rooms relationship connects the House type to two Room types,
LivingRoom and Bedroom. Minimum and maximum cardinality 1 and MAX_ROOM
(Room[1…MAX_ROOM]) enforces the rule that each house must have between 1 and 10 rooms
where the global constant MAX_ROOM has a value of 10.
Constraints: The constraint rooms[Bedroom] > 0 enforces the rule that each house must
have at least one bedroom (>0). The constraint numberOfRooms == rooms[Room]
enforces the rule that the number of rooms in each house must be equal to the value of the
variable numberOfRooms. This forces the configuration engine to create numberOfRooms in
the configuration. (order (LivingRoom, Bedroom) instructs the configuration engine to
create LivingRoom first and BedRoom second.

Note: CML supports single-line code comments with // and block comments with
 /* */.

Constraint Model for a House

define COLORS ["Red", "Blue", "White"]
define MAX_ROOM 10
define MAX_ROOM_SIZE 100

type House {
 string address;
 int numberOfRooms = [1..MAX_ROOM];
 decimal(2) totalArea = rooms.sum(area);

 relation rooms : Room[1..MAX_ROOM] order (LivingRoom,
Bedroom);

 // Ensure there is at least one bed bedroom
 constraint(rooms[Bedroom] > 0);

4

CML User Guide

 constraint(numberOfRooms == rooms[Room]);

 // Show a message if the area is very large
 message(totalArea > 5000, "This is a spacious house!");
}

type Room {
 decimal(2) width = [1..MAX_ROOM_SIZE];
 decimal(2) length = [1..MAX_ROOM_SIZE];
 decimal(2) area = width * length;
 string color = COLORS;

 // retrieve total area from the house
 decimal(2) houseArea = parent(totalArea);
}

type LivingRoom : Room;
type Bedroom : Room;
Type MasterBedroom : Bedroom;

5

CML User Guide

CML Core Concepts
See these topics for information on each core concept and the ways they work together:
Global Properties and Settings
Types
Variables
Relationships
Constraints

Global Properties and Settings
Header-level declarations define the global properties and settings for a model, including
constants, properties, and external values that set up the foundation of the CML code. Use these
declarations to create reusable components and configuration settings that you can reference
throughout the model.

Global Constants
Use global constants to define values that remain fixed throughout the model. These constants
can be numeric values, strings, lists, or other supported data types. Use constants to create
standardized settings or options that can be referenced multiple times.

In this example, MAX_ROOM_SIZE is a constant that restricts dimensions of a room and
COLORS is a list that can be referenced to assign colors to different rooms.

define MAX_ROOM_SIZE 1000​
define COLORS ["Red", "Blue", "Green", "White"]​
​
// define max double model can support​
property maxDouble = 99999999;​
​
type House {​
 string color = COLORS;​
}​
​
type Room {​
 int size = [0..MAX_ROOM_SIZE];​
 string color = COLORS;​
}

6

CML User Guide

External Variables
External variables are global CML variables that are defined outside of any CML type. The
values for external variables are usually set by the environment that launches the constraint
solver engine. If the external variable is not mapped to any external data source, its value is set to
the default value. External variables can be used to import sales transaction fields from the
context definition. Use the contextPath annotation to denote sales transaction fields. See
External Variable Annotations.

Basic Declaration Syntax

extern int MAX_VALUE = 9999;
extern decimal(2) threshold = 1.5;

This example shows external variables of integer and decimal data types with default values.
Their values are set to the values of the same name tag in the context header.

Example 1: Using External Variables with Constraints

// External variable declarations

extern int MAX_BEDROOMS = 10;
extern decimal(2) MIN_AREA = 500.00;
extern decimal(2) PRICE_PER_SQFT = 250.00;

type House {
 string ownerName;
 decimal(2) areaInSquareFeet;
 int numberOfBedrooms;
 decimal(2) estimatedPrice = areaInSquareFeet *
PRICE_PER_SQFT;

 // Constraints using external variables
 constraint(areaInSquareFeet >= MIN_AREA);
 constraint(numberOfBedrooms <= MAX_BEDROOMS);
}

Example 2: Using External Variables with Context Path Annotation

// External variable declaration with context path annotation

@(contextPath = “SalesTransaction.TotalAmount”)

7

CML User Guide

extern decimal TotalAmount;

type House {

 @(tagName = "HouseFeature,HouseFeature")
 string houseFeatureField;

 string msg1 = "House feature is " + featureField;
 string msg2 = "Total price is " + TotalAmount;

 message(true, msg1);
 message(true, msg2);
}

Data Types for External Variables

 Data Type Description

boolean A value that can only be assigned true, false,
or null

date A value that indicates a particular day. Same
as java local date

double(n) A 64-bit number that includes a decimal
point. It is same as double in Java

decimal(n) A fixed-point numeric value with n decimal
places

int Integer. A 32-bit number that doesn’t include
a decimal point, same as int in Java

string Any set of characters surrounded by single
quotes

8

CML User Guide

External Variable Annotations

Annotation Possible Value Description

contextPath

"SalesTransaction.<ST_FIELD>",
where the sales transaction field is
pulled directly from the context
definition.

References sales transaction values,
like account name, sales transaction
total, or address, directly from their
context definition.

Types
In CML you define types to represent entities or objects in the model. Types are the foundational
building blocks of CML. A type encapsulates the property, relationships, constraint and rules for
the entity. A type is similar to a class in object-oriented programming.

You can define relationships that represent associations between different types. See
Relationships.

Type Declaration Example
In this example, House is a type with the variables address and numberOfRooms.

type House {
 string address;
 int numberOfRooms;
}

In this example, House is a type with a relationship to rooms.

type House {
 relation rooms : Room[1..5] order (LivingRoom, Bedroom);
}

type Room;
type LivingRoom : Room;
type Bedroom : Room;

9

CML User Guide

Type Hierarchies
CML supports inheritance and overriding, which allow you to create hierarchies between types.

In this example, Bedroom and LivingRoom inherit from Room, and MasterBedroom
inherits from Bedroom, allowing the types to share common variables and relationships.

type Room;
type Bedroom : Room;
type MasterBedroom : Bedroom;
type LivingRoom : Room;

Type Annotations
You can annotate types to add information.

In this example, the annotation split = true specifies that the quantity of the instance of
type Building is always 1.

@(split = true)
type Building;

Type Annotations

Annotation Possible Values Description

groupBy Variable name

Used with virtual = true, specifies that the
engine needs to group the instances of this child type in
its relationship by the attribute value specified by this
annotation, and create a virtual container to hold its
child type instances.

split true, false, none

Specifies whether the type should be split or not.
●​ If split=true, there can be multiple

instances of the type, and the quantity of each
instance is always 1.

●​ If split=false, there is only one instance
in the relationship. If the user adds more

10

CML User Guide

instances, the engine adds more quantity to the
existing instance.

●​ If split split=none (the default), there are
multiple instances of the same type in the
relationship, with different quantities.

virtual true, false
If true, specifies the indicated type to be the type for
the transaction header (such as Quote or Order).

Variables
Variables are the properties or characteristics defined within a type. Variables can hold different
kinds of data, such as strings, numbers, or lists, and can be calculated from other values.

Variable Data Types
Variables support multiple data types including boolean, date, decimal, and so on.

In this example, for the House type:

●​ The variable ownerName is a string
●​ The variable areaInSquareFeet is a decimal value with a scale of 2

type House {
 string ownerName;
 decimal(2) areaInSquareFeetarea;
}

Data Types for Variables

Data Type Description

boolean A value that can only be assigned true,
false, or null.

date A value that indicates a particular day, the
same as local date in Java.

double(n) A 64-bit number that includes a decimal
point, the same as double in Java.

int Integer. A 32-bit number that doesn’t include

11

CML User Guide

a decimal point, the same as int in Java.

string Any set of characters surrounded by single
quotes.

string[] Used in multi-select picklists to allow the user
to select more than one item from multiple
options. For example, if a user selects “Red”,
“Green”, and “Blue” values in a color picker,
this variable holds those selected values.

Variable Domains and Domain Restrictions
A variable can have a fixed domain that defines the set of allowed values. You can specify a
domain as:

●​ A list of discrete values
●​ A continuous range
●​ A combination of ranges and discrete values

For more information, see domainComputation in Variable Annotations.

This example defines a Room type with five variables, each having a fixed domain:

●​ color can be one of the specified string values
●​ height can be one of the specified integer values
●​ width can be any integer between 2 and 10 (inclusive)
●​ depth can be an integer in the range 3-5, exactly 7, 9 -11, or 13-15
●​ area must be exactly 300

type Room {
 string color = ["Red", "White", "Blue"];
 int height = [1, 3, 5, 7];
 int width = [2..10];
 int depth = [3..5, 7, 9..11, 13..15];
 int area = 300;
}

Variable Functions
You can use functions like sum(), min(), max(), count(), and total() to calculate
values from all variables with the same name in the descendants of the current type.

12

CML User Guide

In this example, the totalHeight variable calculates the sum of all height values from the
descendants of the House type.

type House {
 decimal(2) totalHeight = sum(height);
}

This example shows how functions can be used both within a constraint and in variable
declarations.

define MAX_ROOM 10
define MAX_ROOM_SIZE 100
type House {
 relation rooms : Room[0..10];
 decimal(2) totalWidth = rooms.sum(width);
 decimal(2) minWidth = rooms.min(width);
 decimal(2) maxWidth = rooms.max(width);
 decimal(2) redRoomCount = rooms.count(color == “Red”);
 constraint(rooms.sum(width) > 0); // Sum Example
 preference(rooms.count(color == "Red") > 5); //Count Example
 constraint(rooms.count(color == “Red”) > 2 &&
rooms.count(color == “Blue”)); //Count example showing how to
count multiple conditions
 constraint(rooms.min(width) > 0); // Min example
 constraint(rooms.max(length) == 100; // Max example
}
type Room {
 string color = ["Red", "Blue", "Green"];
 decimal(2) width = [1..MAX_ROOM_SIZE];
 decimal(2) length = [1..MAX_ROOM_SIZE];
}

Proxy Variables
Use proxy variables to reference the variables of related types, including parent, root, and sibling
types.

These proxy variables are supported. For more information, see each linked topic.
Cardinality
Parent
this.quantity

13

CML User Guide

Cardinality
The cardinality proxy variable refers to the cardinality of a relationship (the quantity of
instances of the same type in a relationship). The first parameter is the type name. The second,
optional parameter is the port name. This variable differs from the this.quantity proxy
variable, which refers to the quantity of the current instance.

Use this format:

cardinality(<type name>, <port name>)

Each parameter value can be a string or a string variable. If the port name isn’t specified, the
engine searches all ports to find the type. Use the cardinality proxy variable without the
port name parameter to get cardinality dynamically using another string variable, or to reference
a product that isn’t defined in CML.

In this example, the cardinality proxy variable specifies the quantity of all instances of
rooms of type Bedroom and Bathroom.

type House {
 string roomSelection = ["Bedroom", "Bathroom"];

 int roomCardinality = cardinality(roomSelection);

 // alternatively, you can use the string representation of
//a type name; for example ​
 int bedroomCardinality = cardinality("Bedroom");

 relation rooms : Room[0..5];
}

type Room;

type Bedroom : Room;
type Bathroom : Room;

Parent
The parent proxy variable refers to any attribute in the parent or ancestor variable. The first
parameter identifies the attribute name in the parent. The second, optional parameter specifies
the level. The type can reach up multiple levels, beyond the immediate parent.

14

CML User Guide

Use this format:

parent(<parent variable name>, <level>)

In this example, the parent proxy variable specifies that the type Room and type Bathroom
inherit the color of type House.

type House {
 string color = ["Red", "Green", "Blue"];

 relation rooms : Room[0..5];
}

type Room {
 string color = parent(color); // room's color inherits the
//color of the house

 relation bathrooms : Bathroom[0..1];
}

type Bathroom {
 string color = parent(color, 1); // bathroom's color inherits
the color of the house
}

this.quantity

The this.quantity proxy variable refers to the quantity of the current instance. The
this.quantity proxy variable can be used only in the calculation rule. This variable differs
from the cardinality proxy variable, which includes the quantity of other instances of the
same type.

In this example, the this.quantity proxy variable specifies the quantity of rooms.

type Room {
 int qty = this.quantity;
 decimal(2) price;
 decimal(2) totalPrice = qty * price;
}

15

https://docs.google.com/document/d/1OvoUNFpU5jF-hDqCLeHLQ9ngonO3RkSbOzP9XM01RI8/edit?tab=t.0#heading=h.emut8ak7r70l

CML User Guide

Variable Annotations
You can annotate variables with properties.

In this example, the color variable is annotated to indicate that it’s configurable and has a
default value of “Red”.

@(configurable = true, defaultValue = "Red")
string color = ["Red", "Green", "Blue"];

Variable Annotations

Property Values Description

configurable true, false

Indicates whether the variable is
configurable. If the value is false, the
configuration engine doesn’t assign a value
to the variable.

defaultValue literal

Indicates the default value for the variable.​
​
Note: If devaultValue is not specified, the
attribute picklist for an item in Product
Configurator defaults to the first value in the
range.

domainComputation true, false

Indicates whether the variable has a fixed set
of values (a fixed domain). If the value is
true, the values update when the
configuration is changed. If the value is false,
the values are fixed and do not update.

sequence integer

Indicates the sequence in which the variables
are configured.

The constraint engine assigns the values
based on the sequence, with the lowest in the
sequence assigned first. For example:

16

CML User Guide

type Desktop {
@(defaultValue = "1080p
Built-in Display", sequence=1)
string Display = ["1080p
Built-in Display", "4k
Built-in Display", "2k
Built-in Display"];

@(defaultValue = "15 Inch",
sequence=2)
string Display_Size = ["15
Inch", "24 Inch", "13 Inch",
"27 Inch"];
}

sourceAttribute
Variable name in
string

Sets the domain of the current variable to be
the domain of the source variable.

tagName string value

Value can be a comma-delimited string.
Maps the tag from context definitions to the
type attribute in the model. For example:​
type Quip {
string SubscriptionType =
["Business", "Enterprise"];

@(tagName = "ItemSubtotal")
decimal ItemSubtotal1;
constraint(ItemSubtotal1 > 300 ->
SubscriptionType=="Enterprise",
"If Subtotal is greater than $300
the subscriptionType should be
Enterprise");
}

Relationships
Relationships define how different types relate to each other.

In this example, type House is related to multiple type Room entities, with a specified quantity
range of [1..5], meaning that a house must have at least one and at most five rooms. In

17

CML User Guide

addition, the cardinality (number) of type Bathroom is 2, meaning that a house must have
exactly two bathrooms (both the minimum and maximum number of bathrooms is two).

The order keyword specifies the order of child types for the relationship. The engine uses the
order to instantiate the instance of the type. For example, if you specify one instance of Room in
rooms, the engine creates LivingRoom. If you specify two instances of Room, the engine
creates one LivingRoom and one Bedroom.

type House {
 relation rooms : Room[1..5] order (LivingRoom, Bedroom);
 relation bathrooms : Bathroom[2];
}

type Room;
type LivingRoom : Room;
type Bedroom : Room;
type Bathroom : Room;

The order keyword is optional. This example of the rooms relationship doesn’t include
order:

type House {
 relation rooms : Room[1..5] (LivingRoom, Bedroom);
}

type Room;
type LivingRoom : Room;
type Bedroom : Room;

Relationship Annotations
You can annotate relationships, as in this example.

@(configurable = true)
relation components : Component;

18

CML User Guide

Relationship Annotations

Constraints
Constraints enforce rules and conditions on types, variables, and relationships. Use constraints to
define logical restrictions and ensure consistency within the model.

Supported Constraints
These constraints are supported. For more information, see the linked topic for each constraint.
Logical Constraints
Implication Operator (→)
Table Constraint
Message Rule
Preference Rule
Require Rule
Exclude Rule
Hide/Disable Rule
Action Rule

19

Annotation Values Description

closeRelation true, false
If the value is true, prevents the addition of
new line items to the relationship. false is the
default value.

configurable true, false

Indicates whether a relationship is
configurable. If the value is false,
configuration engine doesn’t assign a value to
the variable or instantiate a product in the
relationship. true is the default value.

sequence integer
Indicates the sequence in which the
relationship is configured and executed.

sourceContextNode string
For cases that use a virtual container, specifies
the path in the context service for the
instances in the relationship

CML User Guide

How User Input Order Affects Constraint Engine Behavior

The order in which a user sets attribute values for a product in PCM affects how the constraint
engine computes the results.

For example, in this constraint for a laptop, Display and Display_Size are attributes. The
constraint specifies that when Display is 2K, Display_Size should be 24 Inch.

 constraint(Display == “2K Built-in Display” -> Display_Size ==
”24 Inch”, “2K -> 24 Inch”)

When a user adds a laptop to a quote and configures it, the constraint engine delivers different
results depending on the order in which the user sets values for the attributes.

●​ If the user sets Display to 2K, the constraint engine updates the Display_Size to 24 Inch,
to validate the constraint.

●​ If the user sets Display_Size to 15 Inch, then sets Display to 2K, the Display_Size of 15
Inch violates the constraint. The constraint engine never overrides or modifies a
user-selected value. Instead of updating the Display_Size to 24 Inch, the constraint
engine displays an error. To resolve the error and validate the constraint, the user can
update Display to a value that is not 2K, or update Display_Size to 24 Inch.

Note: For the exclude rule, the constraint engine overrides user input when necessary to validate
the constraint requirements. See Exclude Rule.

Logical Constraint
A logical constraint defines a statement that must hold true logically. The constraint can be any
logical expression using a logical operator, such as one of these:

●​ and (&&)
●​ conditional operator (?)
●​ implication (→)
●​ logical equivalent (<->)
●​ or (||)
●​ xor (^)

For example, the statement c0 ? c1 : c2 means that if c0 is true, then c1 needs to be true,
otherwise c2 needs to be true.

In this example, the constraint uses the conditional operator to set the windowShape based on
an equivalence comparison of color.

20

CML User Guide

define COLORS ["Red", "Blue", "White", “Green”]
define MAX_ROOM 10
define MAX_ROOM_SIZE 100
type Room {
 decimal(2) width = [1..MAX_ROOM_SIZE];
 decimal(2) length = [1..MAX_ROOM_SIZE];
 decimal(2) area = width * length;
 string color = COLORS;
 string windowShape = [“Oval”, “Square”];
 constraint(color == “Red” ? windowShape == “Oval” :
windowShape == “Square”, “If color is red, windows should be
oval. Otherwise they should be square.”);

This example shows how to alter an attribute to different values in the if and else portions of the
conditional operator.

 constraint(color != “Blue” && color != “Green” ? width <= 40
: width > 40);

The logical constraint has this syntax.

constraint(logic expression, string literal | string variable,
arg, …, arg);
constraint(logic expression, string literal | string variable);
constraint(logic expression);

Basic logical expressions are math expressions with variables and math operators, such as one of
these:

●​ addition (+)
●​ subtraction(-)
●​ multiplication (*)
●​ division(/)
●​ remainder (%)

Basic logical expressions can use relational operators, such as one of these:

●​ equal (==)
●​ not equal (!=)
●​ greater than (>)
●​ greater than or equal to (>=)

21

CML User Guide

●​ less than (<)
●​ less than or equal to (<=)

A logical constraint can cast variables from one data type to another. Each constraint takes an
optional string variable or string literal, as the failure explanation if the constraint is violated.
The failure explanation could be string format with additional arguments. CML supports two
string formats. One is the java string format and another is a string with {} placeholder. The
constraint solver uses the Java string format method to format the string or replace the
placeholder with the actual argument value.

In this example, the first constraint specifies that, if there are more than two rooms, one of them
must have the value “Red” for color. The {} placeholder is used for the failure explanation
The second constraint ensures that the value for size must be greater than 2000.

type House {
 relation rooms : Room[2..10];
 expectedColor = “Red”;

 constraint(rooms[Room] > 2 -> rooms.count(color == "Red") >
0, “one of the rooms must have the {} color)”, expectedColor);
 constraint(rooms.sum(size) > 2000);
}

type Room {
 string color = ["Red", "Green", "Blue"];
 decimal width;
 decimal length;
 decimal size = width * length;
}

Implication Operator (→)
The implication operator -> enforces a conditional constraint such that, if a precondition is
satisfied, then the postcondition must also be satisfied, but if the precondition is not satisfied, the
postcondition doesn’t need to be satisfied. This operator is equivalent to the statement, “If a
precondition holds, then a postcondition must also hold.”

In this example, the implication operator -> specifies that, if the value of color is “Red”, then
the value of size must be “S”. The equality operator == specifies the variable values for the
precondition and postcondition.

22

CML User Guide

type House {
 string color = ["Red", "Blue", "Green"];
 string size = ["XS", "S", "M", "L"];

 constraint((color == "Red") -> (size == "S"));
}

Table Constraint
The table constraint defines valid combinations of values, specified in rows.

The table constraint has this syntax.

table(variable, …, variable, {value, .. value}, …, {value, …,
value});

Each row inside {} defines a valid combination of values.

In this example, the table constraint specifies valid values for each of the house dimension
variables, in separate rows.

type House {
 int width = [1..9];
 decimal(2) height;
 decimal(2) depth;
 string size = ["XXS", "XS", "S", "M", "L", "XL", "XXL"];

 // table constraint
 constraint(
 table(width, height, depth, size, // table columns
 {1, 1.25, 1.25, "XXS"}, // table rows
 {2, 1.5, 2.5, "XS" },
 {3, 2.0, 3.0, "S" },
 {4, 6.0, 6.0, "M" },
 {5, 7.0, 8.0, "L" },
 {7, 9.0, 13.0, "XL" },
 {9, 10.0, 18.0, "XXL"}
));
 }

23

CML User Guide

Message Rule
The message rules display a message to users based on specified conditions.

Message rules have the following syntax.

message(logical expression, string literal | string variable,
argument, .., argument, severity);
message(logical expression, string literal | string variable,
severity);
message(logical expression, string literal | string variable);

A message rule can take optional arguments to generate the message and indicate the severity of
the message as the last argument. Message severity can be Info, Warning, or Error. At
runtime, each message severity type behaves as follows:

●​ The Info message type doesn't require the user to take any action in order to continue
with the current task. Info messages display a gray banner.

●​ The Warning message type allows the user to continue working on the current task, but
blocks them from taking the next step until they take action to address the issue described
in the message. Warning messages display a yellow banner.

●​ The Error message type blocks the user from continuing with the current task until
they fix the error described in the message. Error messages display a red banner.

Note: An Error message doesn't block a user working in the Transaction Line Editor
(Transaction Line Table, or TLT). In that component, the user can still make changes and
save the quote, even when the quote contains conditions that trigger an Error message.

Message format can be a Java string, or a string with {} as a placeholder. The constraint solver
replaces each {} with arguments specified after the string, in the order they are written. For
example:

constraint(laptop[Laptop].Display_Size == "27 Inch", "display {​}
be 27 inches. This is a {​} message", "must", "failure");

In this example, if the number of rooms is greater than 8, a message is displayed with the
number of rooms, as information only.

type House {
 relation rooms : Room[0..10];

24

CML User Guide

 message(rooms.size > 8, "That's %d rooms!", rooms[Room],
“Info”);
}

Preference Rule
The preference rule encourages the constraint solver to satisfy the condition, but doesn’t enforce
it if the condition can’t be met. The system tries to satisfy the condition in a preference rule, but
if for some reason it can’t, the system delivers a failure message to the user with Info severity.

The preference rule has this syntax.

preference(logic expression, string literal | string variable,
argument, .., argument);
preference(logic expression, string literal | string variable);
preference(logic expression);

A preference rule can include an optional explanation message for failure. The message is of Info
severity, meaning it does not block the user from continuing with the action.

In this example, the preference rule encourages the user to include at least five red rooms in the
house, and delivers a message if they don’t meet that preference.

type House {
 relation rooms : Room[0..10];

 // with explanation message
 preference(rooms.count(color == "Red") > 5, "Failure: There
are fewer than five red rooms");
}

type Room {
 string color = ["Red", "Blue", "Green"];
}

Require Rule
The require rule requires certain components to be included in a relationship when specified
conditions are met. Required components can have attributes and quantity specified. The require
rule can include an optional explanation message of Info severity, for failure explanation.

In certain scenarios, you can independently add a type at the header level. This means you can
include a specific type even if it isn't explicitly defined as part of any of the relationships you've

25

CML User Guide

configured. This capability offers flexibility in managing and including necessary types that
might not always fall under a specific relationship structure

Note: When you assign a require rule to a virtual bundle (a bundle related to the sales
transaction, where the parent product has no associated price), set one Product Selling Model
Option on the required product to Default. For more information on Product Selling Model
Options, see Manage Product Selling Model in Revenue Cloud.

The require rule has this syntax.

require(logic expression, relationship[type] {var = value, ..,
var = value} == integer value);

In this example, the require rule specifies that if the house has more than five rooms, it must
include a media room of designated dimensions and color, and delivers a failure message if a
specific media room can’t be included.

type House {
 relation rooms : Room[0..10];

 require(rooms.size > 5, rooms[MediaRoom]{ width = 5, height =
7, color = "Red" });

 // with explanation message
 require(rooms.size > 10, rooms[MediaRoom], "Failure: Big
houses should have a media room");
}

type Room;
type MediaRoom : Room;

Exclude Rule
The exclude rule is used to automatically remove a specific type in a relationship if a certain
condition is met.

The exclude rule has this syntax.

exclude(logic expression, relationship[type]);

26

https://help.salesforce.com/s/articleView?id=ind.product_catalog_product_selling_model.htm&type=5

CML User Guide

The type must be leaf type, a node without children.

In the exclude rule, if a user sets attribute values in the PCM that violate the rule requirements,
the constraint engine overrides the user input in order to validate the constraint. This behavior is
different than other constraints, in which the constraint engine doesn’t override user input, but
displays an error if user input violates the constraint. See How User Input Order Affects
Constraint Engine Behavior.

Note: The exclude rule and the exclusion constraint both use the exclude keyword, but
perform different functions. The exclusion constraint excludes a value from a relationship
variable.

In this example, the exclude rule automatically removes the MediaRoom from the type House
if there are fewer than five rooms.

type House {
 relation rooms : Room[0..10];

 exclude(rooms[Room] < 5, rooms[MediaRoom], "Can't have a
media room if there are fewer than 5 rooms in total");
}

type Room;
type MediaRoom : Room;

Hide/Disable Rule
Hide or disable a component in a bundle, an attribute, or an attribute value when certain
conditions are true, to remove the element from view, or to disable selections for it.

●​ On a bundle, hide a component to remove it from the selection menu, or disable a
component to preserve it in the menu but prevent users from selecting options for it.

●​ On an individual product, hide an attribute to remove it from the selection menu, or
disable an attribute to preserve it in the menu but prevent users from selecting options ​
for it.

●​ On an attribute, hide or disable an attribute value to preserve it in the menu but prevent
users from selecting options for it. For attribute values, the hide and disable rules have
the same behavior.

Note: In Visual Builder in Salesforce, for attribute values, only the hide rule is enabled.
When you apply the hide rule to an attribute value in Visual Builder, the value appears in
the menu but selections are disabled.

27

CML User Guide

The hide and disable rules use this syntax, where action is replaced by either hide or
disable:

rule(logic expression, action, actionScope, actionTarget)

rule(logic expression, action, actionScope, actionTarget,
actionClassification, actionValueTarget)

Variables for Hide/Disable Rule

Variable in Rule Usage Example

declaration Condition upon which the
constraint occurs

Display_Size==”24
Inch”

action Designates whether rule is
hide or disable

“disable”, “hide”

actionScope Designates whether the rule
acts on an attribute or
relationship scope

“attribute”,
“relation”

actionTarget Designates the specific
variable that the rule acts on

“storage”,
“software”

actionClassification Designates whether the rule
acts on a type or a value

“type”, “value”

actionValueTarget Designates the type or value
that the rule acts on

“Quip”, [“Cloud
Storage Enterprise -
2 TB”, “SSD Hard
Drive 1TB”], “SSD
Hard Drive 1TB”

A hide or disable rule can include an optional explanation message for failure. The message is of
Info severity, meaning it does not block the user from continuing with the action.

These examples use the hide rule. To use similar code for disable rules, replace “hide” with
“disable”.

Hide a component:
relation productivitySoftware : Software;

28

CML User Guide

// Hide the quip component as an acceptable software choice
rule(mouse.Wireless == true, "hide", "relation",
"productivitySoftware", "type", "Quip");

Hide an attribute:
// Hide Attribute
rule(Display_Size == "24 Inch", "hide", "attribute", "Memory");

Hide an attribute value:
// Hide Attribute Value
rule(Display_Size == "24 Inch", "hide", "attribute", "Storage",
"value", "Cloud Storage Enterprise - 2 TB");

Action Rule

The action rule is used to define simple conditions and actions. When the condition is met, the
constraint solver engine raises the action with parameters and the caller can execute the action
with the parameters. The action can be anything the caller defines.

Action rules have the following syntax.

rule(condition, action, arg, ..., arg)

rule(<condition>, <action>, "attribute", <attribute>);

rule(<condition>, <action>, "attribute", <attribute>, "value",
[<attribute values>]);

rule(<condition>, <action>, "relation", <relation>, "type",
<type>);

●​ condition is any logic expression such as a constraint in CML.
●​ action is a string literal that specifies an action that can be interpreted by the Product

Configurator API or any custom code. The Product Configurator API supports these
actions:

○​ Hide: hide attribute, attribute value, product option
○​ Disable: disable attribute, attribute value, product option

●​ args are a list of arguments needed to execute the action. An argument is a pair
including a string literal and an identifier, a literal, or a domain, enclosed in brackets [] to
specify multiple values. The string literal specifies what kind of argument follows. The

29

CML User Guide

identifier attribute can be defined in the type. The engine retrieves the argument value
and passes it to the caller to execute the action.

This example uses the Product Configurator API:

type accessory;

type Case : accessory;

type Charger : accessory;

type Wallet : accessory;

type WirelessPlan {
 @(defaultValue=true)
 boolean highEnd;
 @(defaultValue="iPhone")
 string phone = ["iPhone", "Xiaomi", "Galaxy"];
 int price;

 relation accessories : accessory {
 }

 constraint(table(phone, price, {"Xiaomi", 900}, {"iPhone",
1000}, {"Galaxy", 1100}));

 // HIDE ACTION RULE

 // [Attribute] Hide price attribute
 rule(highEnd == true, "hide", “attribute”, "price");

 // [Attribute Value] Hide "Xiaomi" attribute value from phone
 rule(highEnd == true, "hide", "attribute", "phone", "value",
"Xiaomi");
 rule(highEnd, "hide", "attribute", "phone", "value",
["Xiaomi", "Galaxy"]);

 // use java String.format to format the string
 message(highEnd, "High end phone %s", phone, "Warning");
 // use {} as parameter placeholder

30

CML User Guide

 message(highEnd, "High end phone {}", phone, "Info");

 // [Product] Hide Wallet from accessories
 rule(phone != "iPhone", "hide", "relation", "accessories",
"type", "Wallet");

 //

 // DISABLE ACTION RULE
 // [Attribute] disable the price attribute
 rule(highEnd == true, "disable", "attribute", "price");

 // [Attribute Value] disable the "Xiaomi" attribute from
phone attribute - If phone is a Picklist attribute, the “Xiaomi”
option is just removed from the dropdown in the UI
 rule(highEnd, "disable", "attribute", "phone", "value",
"Xiaomi");

 // [Product] disables Wallet from accessories
 rule(phone != "iPhone", "disable", "relation", "accessories",
"type","Wallet");

 //

 // MESSAGE ACTION RULE (INFO, WARN, ERROR)
 message(phone != "iPhone", "Your phone isn't an iPhone.",
"info");

 message(phone != "iPhone", "Your phone isn't an iPhone. Your
phone: {}", phone, "warning");

 message(phone != "iPhone", "Your phone isn't an iPhone. Your
phone: %s", phone, "error");
}

31

CML User Guide

CML Best Practices
To prevent performance degradation or unexpected behaviors when the constraint engine
executes CML code, follow these practices when writing code. For tips on troubleshooting, see
Debugging CML.

1. Relationship Cardinality: Specify the smallest range required
In a relationship, cardinality is the quantity of instances of the same type. Specify the smallest
required cardinality for a variable, to avoid testing unneeded combinations of values. If you
specify a higher cardinality than required, or don’t specify cardinality, the constraint engine tests
more combinations, which impacts performance.

This example doesn’t specify cardinality. The constraint engine tries to set a quantity with 1, 2, 3,
all the way up to 9,999:

relation engine : Engine;

This example specifies minimum and maximum cardinality as 0 and 1, so the constraint engine
sets the quantity to 1. The engine tests fewer combinations to find a solution.

relation engine : Engine[0..1];

2. Decimals and Doubles: Consider the impact of scale on performance
In a decimal or double, scale is the number of digits that follow the decimal point. Using
decimals and doubles in expressions can cause performance problems due to the number of
permutations.

In this example, myNumber is a double with a scale of 2. The value can be 0.00, 0.01, 0.02, all
the way up to 2.99, which can impact constraint engine performance:

double(2) myNumber = [0..3];

In this example, myNumber is an integer. The value can only be 0, 1, 2 or 3, wich has less impact
on constraint engine performance:

int myNumber = [0..3];

32

CML User Guide

3: Variable Domains: Keep domains as small as possible
A variable domain is the set of all possible values that the variable can take. In this example, the
variable color has a domain with three values:

string color = [“Red”, “Yellow”, “Green”];

The larger the domain, the more possible values for the variable, which means more
combinations for the engine to test. A large domain can impact performance and lead to slower
searches, errors, or unexpected behaviors.

4. Calculating Values: Put calculations inside of constraints
To calculate a value, put the calculation inside of a constraint, instead of in an inline expression.

For example, to calculate area, use this constraint:

 constraint(area == length * width)

Avoid this example, which calculates the area with an inline expression, and can impact
performance:

area = length * width.

5: Relationships: Combine relationships to reduce performance impact
Creating multiple relationships on a type can impact performance. When possible, combine
relationships to improve performance.

When possible, avoid this example, which includes separate relationships for Mouse and
Keyboard, two accessories in a product bundle:

relation mouse : Mouse;
relation keyboard : Keyboard;

Follow this example, which uses one relationship for Accessories, which can include Mouse,
Keyboard, and other accessories.

relation accessories : Accessories;

33

CML User Guide

6: Sequence: Use the sequence variable annotation to specify the order of execution
If a constraint model includes multiple attributes and relationships that should follow a certain
order of execution, use the sequence variable annotation to specify the order. The constraint
engine follows sequence designations in satisfying constraint requirements and resolving
constraint violations.

In this example, for the Desktop type, the sequence annotation directs the constraint engine to set
the default values for attributes in this order:

●​ Display: sequence=1
●​ Windows_Processor: sequence=2
●​ Display_Size: sequence=3

type Desktop {
 @(defaultValue = "1080p Built-in Display", sequence=1)
 string Display = ["1080p Built-in Display", "4k Built-in
Display", "2k Built-in Display"];

 @(defaultValue = "15 Inch", sequence=3)
 string Display_Size = ["15 Inch", "24 Inch", "13 Inch", "27
Inch"];

 @(defaultValue = "i5-CPU 4.4GHz", sequence=2)
 string Windows_Processor = ["i5-CPU 4.4GHz", "i7-CPU
4.7GHz", "Intel Core i9 5.2 GHz"];

 constraint(Display == "1080p Built-in Display" &&
Display_Size == "15 Inch" -> Windows_Processor == "i7-CPU
4.7GHz");
}

For Desktop, Display is set to 1080p, Windows_Processor to i5-CPU, and Display_Size to 15
Inch.

The conrstraint specifies that a type with Display of 1080p and Display_Size of 15 Inch must
have a Windows_Processor of i7-CPU:

constraint(Display == "1080p Built-in Display" && Display_Size
== "15 Inch" -> Windows_Processor == "i7-CPU 4.7GHz");

34

CML User Guide

The Windows_Processor default value of i5-CPU for Desktop violates the constraint. In order to
satisfy the constraint and resolve the violation, the constraint engine uses a different
Display_Size for Desktop, such as 24 Inch.

If the user manually updates Display_Size for Desktop to 15 Inch in the Product Configurator,
the constraint engine updates Windows_Processor to i7-CPU to satisfy the constraint.

7: Automatically Adding a Product: Define as a separate constraint
If you need to automatically add a product, and also set attributes on the product, define these
procedures as separate constraints, as in this example:

constraint(laptop[Laptop] > 0, warranty[Warranty] > 0);
constraint(warranty[Warranty] > 0, warranty[Warranty].type ==
“Premium”);
​
Avoid this example, which automatically adds a product and sets attributes on the product, in the
same constraint:

constraint(laptop[Laptop] > 0, warranty[Warranty] > 0 &&
warranty[Warranty].type == “Premium”);

35

CML User Guide

Debugging CML
To debug constraint models and troubleshoot performance issues, enable debug logging in Apex
and set the debug log level to FINE. For more information on debug logging in Salesforce, see
these topics in Salesforce Help:

●​ Set Up Debug Logging
●​ Debug Log
●​ Debug Log Levels

​
Use the Apex log to get information about configurator engine performance when running a
constraint model, including performance degradation or unexpected behavior. To improve
performance, modify the constraint model based on information in the log.

For tips on writing trouble-free CML, see CML Best Practices.

About the Apex Debugging Log File
The Apex debugging log file contains three sections:

RLM_CONFIGURATOR_BEGIN
JSON representation of the request payload to ExecuteConstraintsRESTService:

 "contextProperties" : { },
 "rootLineItems" : [{
 "attributes" : { },
 "properties" : { },
 "ruleActions" : null,
 "attributeDomains" : { },
 "portDomainsToHide" : { },
 "lineItems" : [{}]
 }],
 "orgId" : "00Dxx0000006H2F"
}

RLM_CONFIGURATOR_STATS
Key statistics of the request execution by the constraint engine, as in this example: ​

"rootId" : "0QLxx0000004D1uGAE",

//Root ID that is being configured
 "Product" : "SFDC License",

//Root product name
 "Total Execution Time" : "2ms",

36

https://help.salesforce.com/s/articleView?id=xcloud.code_add_users_debug_log.htm&type=5
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_debugging_debug_log.htm
https://help.salesforce.com/s/articleView?id=platform.code_setting_debug_log_levels.htm&type=5

CML User Guide

//Total solver time
 "Constraints Execution Stats" : "Distinct: 18 Total: 70",

//Number of distinct and total constraint satisfaction attempts
 "Solving goal AndGoal([ConfigureComponentGoal(RootProduct
RootProduct_0)]) took " : "2ms",

//Total solver time for the goal
 "Configurator Stats" : "Total Time 2ms",

//Total time
 "Number of Component" : "6",

//Number of components instantiated
 "Number of Variables" : "42",

//Number of variables instantiated
 "Number of Constraints" : "13",

//Number of constraints instantiated
 "Number of Backtracks" : "0",

//Number of backtracks solver did for the last choice point
 "Constraints Violation Stats" : "Distinct: 0 Total: 0",

//Distinct and total number of constraint violations followed by a list of top 10
 "ChoicePoint Backtracking Stats" : "Distinct: 0 Total: 0"

// Distinct and total number of backtracked choice points followed by a list of
// top 10

}]

RLM_CONFIGURATOR_END
JSON representation of the response payload from ExecuteConstraintsRESTService:

"id" : "0QLxx0000004D1uGAE",
 "rootId" : null,
 "parentId" : null,
 "cfgStatus" : "User",
 "name" : "RootProduct",
 "relation" : null,
 "source" : "SalesTransaction.SalesTransactionItem",
 "qty" : 1,
 "actionCode" : null,
 "modelName" : "Support_instance_variable_in_CML",
 "productId" : "01txx0000006iP2AAI",
 "productRelatedComponentId" : null,
 "attributes" : {},​
 "properties" : {},
 "ruleActions" : [{}],​
 "attributeDomains" : {},​
 "portDomainsToHide" : {},
 "lineItems" : [{}]

37

CML User Guide

}]

Use the Apex Debugging Log File
To find possible reasons for the performance problems and identify solutions, look at the
RLM_CONFIGURATOR_STATS section of the log file. See the values for Total Execution
Time, Constraints Violation Stats, and ChoicePoint Backtracking Stats.

For example, consider how the constraint engine performs with this sample constraint model. In
the constraint model, the value of the volts variable is greater than 110/10000 (volts =
power/amps * 9999;). The constraint engine must backtrack the power variable to find a
value that satisfies the constraint, starting with 0.01, 0.02, and so on until it reaches a valid value.

 relation laptops : Laptop[1..9999];

 @(sequence = 1)
 decimal(2) power = [0..500];

 @(sequence = 1)
 int amps = [1..5];

 decimal(2) volts = (power / amps) * laptops[Laptop];

 constraint(volts > 110);

In the log file for this constraint model, see the execution statistics for Total Execution Time,
Constraints Violation Stats, and ChoicePoint Backtracking Stats:

"rootId" : "ref_a67c6632_fa1f_40b4_8093_226a9ab8a4d0",
"Product" : "Laptop",
"Total Execution Time" : "676ms",
"Constraints Execution Stats" : "Distinct: 2 Total: 132006",
"Solving goal AndGoal([ConfigureComponentGoal(Laptop Laptop_0)])
took " : "677ms",
"Configurator Stats" : "Total Time 677ms",
"Number of Component" : "1",
"Number of Variables" : "4",
"Number of Constraints" : "1",
"Number of Backtracks" : "49500",
"Constraints Violation Stats" : "Distinct: 1 Total: 41250",

38

CML User Guide

"IntComparison(GT,[DecimalVar(volts)])" : "41250",
"ChoicePoint Backtracking Stats" : "Distinct: 2 Total: 98999",
"VariableChoicePoint(DecimalVar(power))" : "49500",
"VariableChoicePoint(IntVar(amps))" : "49499"

Optimally, execution time for a constraint model is less than 100 milliseconds, with fewer than
1,000 backtracks and no violations. Values for the constraint model example are significantly
higher, indicating that the constraint engine is performing inefficiently. To improve performance
in this example, reduce the domain of the power variable without reducing the solution space.
For example, define the domain as [110..500] instead of [0..500]. This change reduces
the number of backtracks the constraint engine performs to find a solution.

39

	Constraint Modeling Language (CML) User Guide
	
	What Is CML?
	Constraint Model Example: Modeling a House
	Constraint Model for a House

	
	CML Core Concepts
	Global Properties and Settings
	Global Constants
	
	External Variables
	Basic Declaration Syntax
	Example 1: Using External Variables with Constraints
	Example 2: Using External Variables with Context Path Annotation
	Data Types for External Variables
	
	
	External Variable Annotations

	Types
	Type Declaration Example
	Type Hierarchies
	Type Annotations
	Type Annotations

	Variables
	Variable Data Types
	Data Types for Variables

	Variable Domains and Domain Restrictions
	Variable Functions
	Proxy Variables
	Cardinality
	Parent
	this.quantity

	Variable Annotations
	Variable Annotations

	Relationships
	Relationship Annotations
	
	Relationship Annotations

	
	
	
	
	Constraints
	Supported Constraints
	How User Input Order Affects Constraint Engine Behavior
	Logical Constraint
	Implication Operator (→)
	Table Constraint
	
	Message Rule
	Preference Rule
	Require Rule
	Exclude Rule
	Hide/Disable Rule
	Variables for Hide/Disable Rule

	Action Rule

	CML Best Practices
	1. Relationship Cardinality: Specify the smallest range required
	2. Decimals and Doubles: Consider the impact of scale on performance
	3: Variable Domains: Keep domains as small as possible
	4. Calculating Values: Put calculations inside of constraints
	5: Relationships: Combine relationships to reduce performance impact
	6: Sequence: Use the sequence variable annotation to specify the order of execution
	7: Automatically Adding a Product: Define as a separate constraint

	
	Debugging CML
	About the Apex Debugging Log File
	Use the Apex Debugging Log File

