
B2C Commerce Continuous Integration and
Continuous Delivery Implementation

Introduction
Continuous Integration/Continuous Delivery (CI/CD) is an important aspect of the development
process. This document provides solutions and guidelines for setting up a CI/CD process on
Salesforce B2C Commerce and applying CI/CD to B2C Commerce and its target environments
throughout the development lifecycle. We assume you are familiar with NodeJS and NPM and
have a basic understanding of B2C Commerce.

What is Continuous Integration and Delivery?
CI/CD provides an automated release process for a software application. In most cases, the
CI/CD process automatically pushes code into a repository. The specifics of how you implement
CI/CD depends on your Git-Workflow process and your build system, but most of the CI/CD
principles apply to all tools.

Continuous Integration
CI is the practice of managing your code in a central repository, such as Git, and using tooling
and automation to provide feedback on the quality of changes. Using CI, your code is
automatically compiled, built, and tested, and the results are published in a central repository
where developers can review the status of each phase of the process.

Continuous Delivery
CD extends the integration process so that you can test and release your software more quickly.

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Combined CI and CD Process

In this document, we combine CI/CD into one process that allows you to release software early,
release software often, and release stable software.

B2C Commerce Environments
B2C Commerce provides four environments.

Sandboxes
Sandboxes are small environments where you can work without affecting other environments.
Typically, developers use sandboxes to develop features independently.

Currently B2C Commerce offers two types of sandboxes:

● POD Sandboxes
○ Part of the production hardware
○ Statically provisioned

● On-Demand Sandboxes
○ Provisioned as required
○ Hosted in a public cloud environment

Development
The development environment is part of the primary instance group (PIG). The development
environment is capable of receiving the full data set of the production system. Unlike
sandboxes, development environments can execute scheduled jobs. For most B2C Commerce
customers, the development environment serves as the main environment for integration and
front-end automated tests as well as tests by QA engineers, and for UAT and acceptance tests.
The development environment is an important quality gate within the CI process. We
recommend that you set up continuous delivery to development to ensure you always have a
deployable code base.

Staging
The staging environment is the master record for many kinds of data, including product, prices,
content, and campaigns. Merchandisers work in the staging environment and expect it to be
bug-free. Developers should ensure that the staging environment is stable at all times, since
staging is the preproduction environment. Replications are allowed only from the staging
environment to the development or production environments.

Production
In B2C Commerce, all data (with a few exceptions, for example, inventory) and code are
replicated from staging to the production instance. To keep the environments in sync and keep
the metadata on all instances the same, use a CI/CD process to avoid manual and therefore
error-prone tasks.

https://salesforce.quip.com/obPyAP2wvxY8#JbYACAjwo3w

CI/CD in B2C Commerce Environments
We have divided the B2C process into three steps that reflect the state of the software
development process and the environments involved.

1. Sandbox: Developers work in their personal sandboxes and push a feature branch that
triggers and executes the sandbox CI process. While working on features, a developer
must ensure that the code is working and passes all development quality gates. This
approach ensures that only code that is functional is reviewed. In large enterprise
projects, where time is critical, this process saves time and pull requests discussions.

2. Development: After the code passes review, it’s merged into the main development
branch, often called the release branch. If the code passes defined quality gates, it’s
ready to be accepted. Quality gates in development are focused on acceptance and
functional testing that ensure the code works well from an end-user perspective in the
overall application.

3. Staging: To release code, the code must be deployed to staging, where it’s replicated to
production. The CI process running against the staging instance is a bit different. It must
provide one-time data uploads that don’t overwrite existing objects on the instance, such
as a content library. Replication to production should be a manual process in nearly all
cases.

Using NPM with CI/CD
NodeJS and its package manager NPM allow developers to manage all tasks through the
Package-Json-File in a single place. You can use NPM as a task manager, which allows you to
create new tasks easily by adding them into the package.json file

Defining tasks in the package.json is straightforward. Add the task under “scripts,” as in this
example:

"scripts": {

 "build": "npm run compile:js;npm run compile:fonts;npm run

compile:scss;",

 },

After the tasks have been defined, you can run them from the command-line using the npm-run
command

> npm run build

In addition, some IDEs, such as Visual Studio Code provide a simple visualisation of your NPM
tasks.

https://www.npmjs.com/
https://www.npmjs.com/
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://code.visualstudio.com/

Building Code for a CI/CD Process
Building your code on B2C commerce involves linting and bundling static files, such as
javascript, CSS, and images.

ESlint helps to create consistent code that adheres to predefined styling rules and identifies
errors during the build process. The StyleLint tool can accomplish the same tasks for SCSS and
CSS.

You can do client-side bundling with module bundlers like Webpack or ParcelJS.
Those tools help to structure your javascript and CSS code into modules and optimize the
modules during build time.

Setting Up SFRA
If you are extending the Storefront Reference Architecture (SFRA) for your own implementation,
you can define SFRA as a NodeJS dependency in package.json and also include scripts in the
package.json file.

When you add SFRA as a NodeJS dependency, the application is stored inside the
node_modules folder. Since many build systems provide capabilities to cache
node-dependencies, this approach allows you to reduce your build-time and avoid cloning
SFRA within a longer process on each CI-process. Bundling all scripts into a single command to
setup your projects eliminates some repetitive tasks in your process.

https://eslint.org/
https://stylelint.io/
https://stylelint.io/
https://webpack.js.org/
https://webpack.js.org/
https://parceljs.org/
https://parceljs.org/

The following example shows a package.json file modified to include SFRA as a dependency
and use scripts.

{

 "name": "your application",

 "version": "1.0.0",

 "scripts": {

 "build:sfra" : "cd salesforce-storefront-reference-architecture

&& npm run build"

 "init:sfra": "rsync -a ./node _modules/sfra/

salesforce-storefront-reference-architecture",

 "setup:project": "npm install && npm run init:sfra && npm

build:sfra"

 },

 "dependency": {

 "sfra":

" https://github.com/SalesforceCommerceCloud/storefront-reference-arch
itecture ",

 },

}

Executing npm run setup:project downloads, installs, and builds SFRA.

To decrease build time, you could also run your build tasks in parallel, for example using
Concurrently.

"parallel:test+lint": "concurrently \"npm run test\" \"npm run

lint\" "

https://github.com/SalesforceCommerceCloud/storefront-reference-architecture
https://github.com/SalesforceCommerceCloud/storefront-reference-architecture
https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/concurrently

Importing Data
You can update B2C Commerce instances using our standard site import process. The site
import feature allows you to populate different environments with the same data. Site imports
provide an easy way to get sandboxes quickly up and running.

The Site Import/Export documentation describes how to prepare the site data for import.

A best practice is to put the site import files into a common area such as Git, thereby allowing
the whole team to synchronise data changes. You can specify different site import folders for
each build environment.

● common / site_template
○ Can be uploaded safely to either sandbox, development, or staging
○ Includes metadata (like system-object-definitions)

● testdata / site_template
○ Should be uploaded only to sandbox or development environments
○ Includes data used for automated integration and acceptance tests

You can build a NodeJS script, for example, dataUpload.js, that selects the correct site import
folder for your build process, as in this example:

// dataUpload.js

const environment = process.env.TARGET_ENVIRONMENT;

let folder;

if (environment === 'common') {

 folder = 'common/site_template';

 siteTemplate = 'site_template';

} else if (environment === 'test') {

 folder = 'testdata/site_template';

}

...

https://documentation.b2c.commercecloud.salesforce.com/DOC1/index.jsp?topic=%2Fcom.demandware.dochelp%2Fcontent%2Fb2c_commerce%2Ftopics%2Fimport_export%2Fb2c_site_import_export.html

Creating Code and Uploading Data
You can upload code and metadata using the Open Commerce API (OCAPI). The SFCC-CI tool
provides a “wrapper” around OCAPI that allows you to easily accomplish these tasks. The
SFCC-CI tool is open sourced. Install it using npm install sfcc-ci . The README file in
the SFCC-CI GitHub repository provides information about how to set up and use SFCC-CI:

https://github.com/SalesforceCommerceCloud/sfcc-ci/blob/master/README.md

You can execute SFCC-CI commands either by using the command-line or the NodeJs-API.
Which approach you use depends on your configuration. The NodeJS-API provides better
response handling, while the command-line approach is faster to set up.

For CI/CD, the following SFCC-CI commands are most relevant:

● client:auth
○ For unattended deployment, you can authenticate using Account Manager

credentials with clientId & clientSecret.
■ The clientSecret needs to be stored securely, for example, as a secured

environment variable in your build system like in Github Secrets
● code:upload & code:activate

○ Provides a mechanism to upload a zipped code version to B2C commerce
WebDAV and activate that code.

● instance:upload & instance:import
○ Uploads zipped site import data to a B2C commerce instances and runs the

import job.
● job:run <jobName>

○ Runs a job in B2C Commerce to process data on the instance.

https://github.com/SalesforceCommerceCloud/sfcc-ci/blob/master/README.md
https://github.com/SalesforceCommerceCloud/sfcc-ci
https://github.com/SalesforceCommerceCloud/sfcc-ci
https://github.com/SalesforceCommerceCloud/sfcc-ci

Uploading Code
The following example illustrates how to upload and activate a code version file using SFCC-CI
from the command line and using NodeJS-API.

CodeUpload: Command-Line API Approach

$> sfcc-ci client:auth $client_ID $client_SECRET

package.json

{

 "name": "your application",

 "version": "1.0.0",

 "scripts": {

 "auth:unattended": "sfcc-ci client:auth $client_ID

$client_SECRET",

 "code:upload": "sfcc-ci code:deploy code_version.zip",

 "code:activate": "sfcc-ci code:activate code_version",

 "code:deploy": "npm run code:upload && npm run code:activate"

 },

 "dependency": {

 "sfra":

" https://github.com/SalesforceCommerceCloud/storefront-reference-arch
itecture ",

 },

}

https://github.com/SalesforceCommerceCloud/storefront-reference-architecture
https://github.com/SalesforceCommerceCloud/storefront-reference-architecture

CodeUpload: NodeJS-API Approach
 /**
 * Upload to webDav using sfccCi

 * @param {string} codeVersionToUpload - path of code version

 * @param {string} codeVersionName - name of code version

 */

 uploadCode(codeVersionToUpload, codeVersionName) {

 return new Promise((resolve, reject) => {

 console.info('Start code upload');

 sfcc.auth.auth(this.clientId, this.clientSecret, (err, token) =>

{

 sfcc.code.deploy(

 this.instance,

 `${codeVersionToUpload}.zip`,

 token,

 {},

 err => {

 if (err) {

 console.error('Code deploy error: %s', err);

 reject(err);

 return;

 }

 console.info('Finished code deploy');

 /**

 * Active the code version

 */

 sfcc.code.activate(this.instance, codeVersionName, token,

err => {

 if (err) {

 reject(err);

 return;

 }

 resolve();

 });

 },

);

 });

 });

 }

Uploading Data
Depending on what kind of data was uploaded, sometimes you have to trigger addiional steps
on the B2C Commerce instance in order to have the data fully functional. An example would be
assigning products to a given category that involves triggering site-import-processes on the
instance.

The following example illustrates how to upload, process, and post-process (meta) data.

Upload the metadata file in B2C Commerce

> sfcc-ci instance:upload yourmetadata.zip

Import the uploaded metadata file

> sfcc-ci instance:import yourmetadata.zip

/**

* Upload to webDav using sfccCi

* @param {string} zipPath - path of zip file

* @param {string} zipName - name of zip file

*/

uploadAndImportMetaData(zipPath, zipName) {

 return new Promise((resolve, reject) => {

 sfcc.auth.auth(this.clientId, this.clientSecret, (err, token)

=> {

 if (err) {

 reject(err);

 return;

 }

 sfcc.instance.upload(this.instance, zipPath, token, {},

err => {

 if (err) {

 reject(err);

 return;

 }

 sfcc.instance.import(this.instance, zipName, token,

err => {

 if (err) {

 reject(err);

 return;

 }

 resolve();

 });

 });

 });

 });

}

After the data has been uploaded, a job process is started that triggers, for example, a
Search-Index rebuild.

Reindex is the name of the job on B2C Commerce

> sfcc-ci job:run Reindex

/**

* Triggers a job on B2C commerce

*/

uploadAndImportMetaData(packageId, jobId, jobParams) {

 return new Promise((resolve, reject) => {

 sfcc.auth.auth(this.clientId, this.clientSecret, (err, token)

=> {

 if (err) {

 reject(err);

 return;

 }

 sfcc.job.run(this.instance, jobId, jobParams, token, {},

err => {

 if (err) {

 reject(err);

 return;

 }

 resolve();

 });

 });

 });

}

Executing the CI Process
Execute the CI process using a separate build system. Common build systems are
bitbucket-pipelines, Github Actions, CircleCi, AWS-CodeBuild, and Jenkins.

Since the storefront-reference-architecture (SFRA) repository provides a bitbucket build
pipeline, we focus on bitbucket in this document, but the same information applies to other build
systems. When choosing a build system, consider whether you want to maintain your own build
system, like Jenkins, or prefer to use an out-of-the-box solution such as Bitbucket pipelines.

You can modify the standard bitbucket-pipeline.yaml configuration to support the CI approach.
The following sections show how to use npm-tasks inside a bitbucket-pipeline in combination
with SFCC-CI.

https://bitbucket.org/product/features/pipelines

Standard Approach

This is a sample build configuration for Javascript.

Check our guides at https://confluence.atlassian.com/x/VYk8Lw for

more examples.

Only use spaces to indent your .yml configuration.

You can specify a custom docker image from Docker Hub as your build

environment.

image: node:6.9.2

pipelines:

 default:

 - step:

 script: # Modify the commands below to build your repository.

 - npm install

 - npm run lint

 - npm test

 - npm run compile:js

 - npm run compile:scss

 - npm run compile:fonts

Extended CI Approach

You can specify a custom docker image from Docker Hub as your build

environment.

image: node:10.16.4

pipelines:

 pull-requests:

 '**':

 ###

 # Target environment sandbox

 ###

 - step:

 script:

 ##

 # Summed up SFRA installment

 ##

 - npm run setup:project

 - npm run auth:interactive $client_ID $client_SECRET

 ##

 # assuming we created data + code upload

 ##

 - npm run dataupload 'common'

 - npm run dataupload 'testdata'

 - npm run code:deploy

 ##

 # execute further instance specific build steps

 ##

 - npm run test:acceptance:smoke

 branches:

 ###

 # Target environment development

 ###

 release/v*:

 - step:

 script:

 ##

 # Summed up SFRA installment

 ##

 - npm run setup:project

 - npm run auth:interactive $client_ID $client_SECRET

 ##

 # assuming we created data + code upload

 ##

 - npm run dataupload 'common'

 - npm run dataupload 'testdata'

 - npm run code:deploy

 ##

 # execute further instance specific build steps

 ##

 - npm run test:acceptance:deep

 tags:

 ###

 # Target environment staging

 ###

 '**':

 - step:

 script:

 ##

 # Summed up SFRA installment

 ##

 - npm run setup:project

 - npm run auth:interactive $client_ID $client_SECRET

 ##

 # assuming we created data + code upload

 ##

 - npm run dataupload 'common'

GitHub Example
name: Development CI

on:

 push:

 branches: [develop]

jobs:

 build:

 name: Deploy - Integration instance

 runs-on: ubuntu-latest

 steps:

 # Check out the repository

 - uses: actions/checkout@v2

 # Install Node.js

 - uses: actions/setup-node@v1

 with:

 node-version: 10

 - run: npm run setup:project

 - run: npm run lint

 - run: npm run auth:unattended ${{ secrets.CLIENT_ID }} ${{

secrets.CLIENT_SECRET }}

 - run: npm run config:generate:environment ${{

secrets.INTEGRATION_ENV }}

 - run: npm run dataupload 'common'

 - run: npm run dataupload 'testdata'

 - run: npm run code:deploy

name: Run ESLint on Pull Requests

on:

 - pull_request

jobs:

 build:

 name: Run ESLint

 runs-on: ubuntu-latest

 steps:

 # Check out the repository

 - uses: actions/checkout@v1

 # Install Node.js

 - uses: actions/setup-node@v1

 with:

 node-version: 10

 # Install your dependencies

 - run: npm ci

 - run: npm run lint

Integration Process: Sandbox
Sandboxes are not intended to be a 1:1 copy of a development or staging environment. A
sandbox is designed for development and not for a large amounts of data. As a general rule,
having 500-1000 products, including prices and inventory, is more than sufficient for all
development tasks. If other products or categories are needed, they can easily be added using
the site import process.

For CI Processes on a sandbox, a larger set of products or other data means longer build times
and therefore a longer period before a code change can be approved through test automation.
Our recommendation is to select dedicated products for individual test cases, so you have only,
for example, a single preorder product that your test automation uses to verify the preorder
functionality.

B2C Commerce on-demand sandboxes are a great fit for the CI/CD process. The on-demand
sandboxes can be created and populated during the CI/DC process for integration and testing
purposes. Refer to the on-demand sandbox documentation for more information.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/content/b2c_commerce/topics/sandboxes/b2c_developer_sandboxes.html

Integration Process: Development
Integration from the development instance integration process is very similar to the process for
sandboxes. Integration from development serves as the last quality gate before pushing code to
the staging instance. There should be a complete test suite running to ensure the code not only
works as expected for integration but also from an end-user perspective. In most projects, the
QA engineers are testing on the development instance. The automated test suites provide even
more complete regression testing.

As the data is synchronised with live data coming from staging, make sure that your test suite
can handle changes in the data set. For example, if you are testing the on-site search and want
to find out if the word blue returns a result, make sure that actual products are shown for the
search. Don’t just check to see if the search result count is 12.

Integration Process: Staging
Creating a meaningful CI process for staging is the most difficult part of the setup. Staging
requires its own process for code and data upload.

Code Upload on Staging
Two-factor authentication using a client certificate as the second factor is required when
uploading code on staging. The two-factor authentication adds an extra layer of security to the
platform. Adding two-factor authentication to the code deployment process is easy using
SFCC-CI.
Before running any code, you must create a .p12 certificate file, as in the following example.

Important: Do not store the certificate and the password together. This blog post provides
good information about security best practices for CI/CD.

Example of creating a .p12 file using openssl

> openssl req -new -newkey rsa:1024 -nodes -out {CustomName}.req

-keyout {CustomName}.key

> openssl x509 -CA

cert.staging.web.{YourInstance}.demandware.net_01.crt -CAkey

cert.staging.web.{YourInstance}.demandware.net_01.key -CAserial

cert.staging.web.{YourInstance}.demandware.net.srl -req -in

{CustomName}.req -out {CustomName}.pem -days 7300

> openssl pkcs12 -export -in {CustomName}.pem -inkey {CustomName}.key

-certfile cert.staging.web.{YourInstance}.demandware.net_01.crt -name

"{CustomName}" -out{CustomName}.p12

https://circleci.com/blog/security-best-practices-for-ci-cd/

SFCC-CI allows you to pass the .p12 file using either the command line or the NodeJS-API.

Example Using Command Line API

SFCC-CI command-line example

> sfcc-ci code:deploy code_version.zip -i my-instance.demandware.net

-c path/to/my/certificate.p12 -p "myPassphraseForTheCertificate"

Using NodeJS-API

SFCC-CI JS

/**

* Upload to webDav using sfccCi

* @param {string} codeVersionToUpload - path of code version

* @param {string} codeVersionName - name of code version

*/

uploadCode(codeVersionToUpload, codeVersionName) {

 return new Promise((resolve, reject) => {

 console.info('Start code upload');

 sfcc.auth.auth(this.clientId, this.clientSecret,

 ###

 # Allows to pass the certificate for the upload process

 ###

 { pfx: certificatePath, passphrase: certPassPhrase }, (err,

token) => {

 sfcc.code.deploy(

 this.instance,

 `${codeVersionToUpload}.zip`,

 token,

 {},

 err => {

 if (err) {

 console.error('Code deploy error: %s', err);

 reject(err);

 return;

 }

 console.info('Finished code deploy');

 sfcc.code.activate(this.instance, codeVersionName, token,

err => {

 if (err) {

 reject(err);

 return;

 }

 resolve();

 });

 },

);

 });

 });

}

Data Upload on Staging
Data uploading requires a robust process, which guarantees, to not overwrite data on the
instance where other people are working on. Let’s have a look at an example which
demonstrates the challenge

Developer A is building a new content slider for the homepage. Therefore content assets are
used, in order to provide capabilities to change the images within that slider without having to
touch the code. Further requirements are, that the link of the images are interchangeable and
the developer decides to add a new custom attribute to the content asset, which allows to
provide links.
The developer needs to push two kind of different data with the deployment to the staging
instance, system-object-extensions and the library which includes the content. If the library
remains in the version control system, it will overwrite the content on the staging instance every
time again, when a deployment happened. To avoid a manual overhead, like having the
developer adding the library to each instance a one time upload can be build.

One-time Upload and Data Seeding
In general this is custom code which can recognise, if a certain set of data has already been
pushed to the given instance.
The structure in the repository might look like this:

Illustrates how to organize data for data seeding inside a repository

data_{TimeStamp1}
|
|--- site_template
 |
 |--- sites
 |
 |--- {SiteID}
 |
 |---library.xml
another folder ####
data_{TimeStamp1}
|
|--- site_template
 |
 |--- sites
 |
 |--- {SiteID}
 |
 |---library.xml

This allows to store the latest upload timestamp either in cloud or local database, which can
read during the deployment. By comparing the timestamps, the logic within the CI process is
able to decide, wether or not the data should be added to the instance.

Which Tests to Run on Which environment
Testing your software application is a key part of the CI/CD process. We can provide only an
overview in this document, but using test-driven development processes and providing accurate
metrics for testing reduces time and cost significantly.,

Unit Tests
Unit Tests ensure that a code unit is robust on its own and can run on the CI machine with a
mocked B2C Commerce API. No B2C Commerce servers are involved. You can write unit tests
using tools such as ChaiJs, MochaJS, and other state-of the art testing frameworks for nodeJS.
SFRA includes unit tests out-of-the-box.

https://www.chaijs.com/
https://mochajs.org/
https://mochajs.org/

Integration Tests
Use integration tests to make sure your code modules can interact with each other. Write
integration tests for any custom code that affects business critical processes, such as basket
and order calculation, or customer operations. If your code interacts with web services, the B2C
Commerce platform allows you to simulate service calls as mock calls.

To expose data through REST during an integration test, you can use a separate
integration_test cartridge that is not deployed to the staging instance. With this approach, you
can ensure that no REST API endpoint exposes data. An environment guard, serving as
middleware inside your controller, can provide an additional layer of security.

function ensureTestEnvironment(req, res, next) {

 if (System.getInstanceType() === System.PRODUCTION_SYSTEM) {

 throw new Error('Request forbidden on this system');

 }

 return next();

}

Acceptance Tests
Acceptances test evaluate if the features you are building work as specified in the definition of
done and from an end-user perspective. SFRA provides out-of-the-box acceptance test
capabilities using codeceptJS. The SFRA tests allow you to quickly get started with test-driven
development. CodeceptJS also supports headless scenarios, making is a great fit for CI/CD
processes.

The following illustratration shows how different test suites can be executed on different
environments.

https://codecept.io/
https://codecept.io/

Conclusion
The CI/CD process allows you to deliver high quality software quickly while reducing manual
setup and testing steps. A carefully implemented CI/CD process allows your development team
to work as efficiently as possible, with test suites that uncover errors throughout the
development cycle.

You can also apply the principles discussed in this document to implement Continuous Delivery
for automated deployments onto production. Once you have a dependable test automation
system in place, you can trigger a replication of data code using the build system and the job
framework.

