
1 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

B2C HEADLESS
COMMERCE
IMPLEMENTATION
GUIDE

http://www.salesforce.com
http://www.salesforce.com

salesforce.com

Contents

1. Introduction..04

2. Sample Architecture..05

ReactJS.. 05

Content Delivery Network (CDN).. 06

Apollo Client... 06

Apollo Server.. 06

NodeJS.. 07

MongoDB.. 07

Redis.. 07

Docker... 07

Kubernetes.. 07

Salesforce B2C Commerce.. 07

Third-Party Systems.. 08

Logging/Monitoring/Application Performance Monitoring (APM)... 08

3. Optimizing Page Load Time..09

Content Delivery Network (CDN)..09

Caching Static Content.. 09

Performance Optimization Features... 10

Application Caching...10

API Caching.. 10

In-Memory Cache... 11

Distributed Cache... 12

Platform API/SDK Cache... 12

4. Designing and Planning for Availability...13

Scaling...13

Horizontal Scaling... 13

Vertical Scaling... 14

Waiting Room... 14

Fault Tolerance...14

Rate Limiting... 15

Circuit Breaking.. 15

Salesforce B2C Commerce API Fault Tolerance... 16

Load Testing..17

Preparing for a successful load test.. 17

Use Realistic Load Scenarios... 17

2 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE

http://www.salesforce.com
http://www.salesforce.com

3 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

1. Sample Architecture

Contact Salesforce B2C Commerce Support Prior to Load Testing... 18

Contact Salesforce B2C Commerce Client Services for Advanced Load Testing Support................................... 18

Monitor Your Application Stack.. 18

Load Test Post-Launch... 19

Secure Your Load Test Environment... 19

5. Protecting and Securing the Storefront...20

Web Application Firewall (WAF)..20

Firewall Rules..20

Rate Limiting...20

Penetration Testing..21

Two-Factor Authentication (2FA)...22

Business Manager Access Settings..22

6. Operational Best Practices..23

Logging and Monitoring...23

Logging and Metrics... 23

Monitoring and Alerting.. 24

Real User Monitoring (RUM)... 25

Container Memory Management..25

Running Applications in Production Mode...25

Client Identification...25

Continuous Integration and Continuous Deployment (CI/CD)...26

7. Leveraging Salesforce B2C Commerce APIs...27

REST API..27

NodeJS SDK..27

Authentication..27

Search Example (Guest Shopper)..29

HTTP (REST).. 29

SDK.. 30

Create a Coupon...31

OAuth2 Token Request.. 31

HTTP (REST).. 32

SDK.. 34

8. Conclusion...35

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com

salesforce.com4 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE

If you are considering a headless commerce solution with Salesforce B2C Commerce or have already
chosen this approach, this guide is for you.

This paper will cover how to approach essential aspects of developing a solution to headless ecommerce
using Salesforce B2C Commerce APIs. The guidance focuses on designing for performance and scale, with
a sample architecture provided for context.

We strongly recommend reading Getting Started with Headless Commerce first to get familiar with many
of the topics covered in more detail in this paper. We also recommend visiting the Salesforce Commerce
Cloud Developer Center (CCDC) for documentation on the Salesforce B2C Commerce APIs, solution kits,
and sample apps to better understand our headless product offerings.

1 Introduction

http://www.salesforce.com
http://www.salesforce.com
https://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/WhitePaper_GettingStartedwithHeadlessCommerce_022120_V6.pdf
https://developer.commercecloud.com
https://developer.commercecloud.com

salesforce.com5 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE

2 Sample Architecture

At Salesforce B2C Commerce, we believe in a back-end for front-end (BFF) architecture approach
to headless ecommerce. Having a BFF layer custom-tailored for each user experience allows you to
design your back end to support the use cases of your front end in a way that can perform and scale to
suit growing demands for your brand. Designing a BFF layer reduces direct chatter between the client and
back-end systems, and allows your front-end and back-end teams to work independently while delivering
new functionality. The architecture depicted below is meant to serve as a point of reference for the topics
described in this paper. This should not be confused with a recommended or required architecture, as your
architecture will vary depending on the requirements for your headless implementation.

Below is a description of each component involved in the sample architecture:

ReactJS
ReactJS is a component-based front-end JavaScript library for designing features of your UI, often those that
require interaction with back-end systems.

http://www.salesforce.com
http://www.salesforce.com
https://github.com/SalesforceCommerceCloud/sfcc-sample-apps/blob/master/docs/architecture.md

6 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

2. Sample Architecture

Content Delivery Network (CDN)
The role of the CDN is to cache and serve static content to the user in order to reduce the pressure on
downstream systems. This significantly reduces page load times, which improves the user experience and
higher order conversation rates. Caching static content will allow your application to only do processing that
requires retrieving real-time data. The CDN deploys Point of Presence (PoP) servers around the world to
ensure your geographically distributed user base is always receiving cached content from the nearest PoP.
Most CDNs also provide other performance optimization features we will discuss in more detail in a
later section.

Apollo Client
The Apollo client within your front end is the single point of entry into the underlying back-end systems that
comprise your ecommerce solution. The Apollo client retrieves data from the Apollo Server via GraphQL queries
over HTTP.

Apollo Server
The Apollo Server is a graph-based platform for connecting clients to your back-end services using a simple query
language called GraphQL. The Apollo server will be the front end’s single point of entry into multiple underlying
systems that comprise your ecommerce solution, for example, a third-party REST API that calculates taxes for
a customer cart, or a database that contains information about a customer. The Apollo Server provides several
benefits to your architecture. It:

•	 Reduces the number of requests needed between the front end and underlying back-end systems

•	 Abstracts back-end systems from front-end developers, requiring them to learn just one API

•	 Offers fine-grained cache control for improved performance

•	 Has built-in monitoring and logging for execution of GraphQL operations

Below is an example of how using an Apollo Server provides a benefit over a direct client-to-service approach. In
the second diagram depicting the latter, the client has to assemble a response based on three separate requests,
while the Apollo Server approach makes a single call to one endpoint that does the heavy lifting and returns a
single response back to the client.

http://www.salesforce.com
http://www.salesforce.com
https://www.apollographql.com/docs/apollo-server/

7 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

2. Sample Architecture

NodeJS
A server-side JavaScript runtime built on Chrome’s V8 JavaScript engine, NodeJS will be used to build the
custom head application(s) that serve API requests where custom business logic is required. There are a variety
of libraries available for NodeJS that can be installed into your application using the Node Package Manager
(npm). Salesforce also provides a NodeJS SDK (commerce-sdk) that can be used to interact with Salesforce B2C
Commerce, which we will cover in more detail in this guide.

MongoDB
A NoSQL document-based distributed database, MongoDB is used in the sample architecture as the database
layer for the custom head applications. Consider opting for a managed solution, which will eliminate the need for
you to deploy and maintain your own implementation of MongoDB.

Redis
An in-memory, distributed data structure store, Redis is used in the sample architecture as a caching layer for your
custom applications, backed by MongoDB. The Salesforce B2C Commerce NodeJS SDK will implement a Redis
cache that gives a developer control over caching behavior of SDK calls.

Docker
Docker is a virtualization platform for deploying your custom applications into portable packages called containers.
These containers are then deployed and managed by container orchestration software such as Kubernetes.

Kubernetes
Kubernetes (often referred to as “k8s”) provides the platform for managing your container workloads. In the
sample architecture, Kubernetes manages the custom applications running in Docker containers. Kubernetes is
responsible for managing the cluster of your applications, which includes autoscaling, resource monitoring, health
checks, load balancing, and updating software with minimal downtime.

Salesforce B2C Commerce
The Salesforce B2C Commerce platform provides the resources and processing for your ecommerce sites, called a
storefront. Salesforce B2C Commerce provides HTTP REST APIs or a NodeJS SDK for managing storefront resources,
such as baskets, categories, orders, products, recommendations, promotions and pricing, stores, and more.

http://www.salesforce.com
https://www.npmjs.com/
https://developer.commercecloud.com/s/tools-sample-apps
https://www.mongodb.com/cloud/atlas

8 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

2. Sample Architecture

Third-Party Systems
These include any system that isn’t part of the custom head, or Salesforce B2C Commerce — for example, a loyalty
service hosted on infrastructure separate from Salesforce B2C Commerce.

Logging/Monitoring/Application Performance Monitoring (APM)
This will consist of several systems that provide critical insights into the health of your overall solution. Aside from
having comprehensive logging built into your custom applications, you should also have tools that store and
aggregate logs, such as Splunk. Include tools for monitoring and alerting you about the health of critical systems
such as Grafana or AppDynamics. We will cover this in more detail.

Now that you have an understanding of the sample architecture and purpose of each component, we will cover
some best practices for a successful headless implementation.

http://www.salesforce.com
http://www.salesforce.com

9 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

3 Optimizing Page Load Time

Aside from having an appealing storefront design, page load time is the most important technical factor in
achieving optimal conversion rates. Page load time not only impacts how long users will stay, but it also affects
how users reach your site in the first place. Major search engines such as Google use page load time as a factor
when ranking your pages in their search results.

While some of the recommendations below require significant implementation effort, page load time affects your
bottom line and therefore these should be considered for any headless implementation.

Content Delivery Network (CDN)
The CDN is typically the first point of entry into your application stack. The more content that can be served
by your CDN, the less you need to serve from your infrastructure. This means less processing required from
your application stack. Most CDNs also provide performance optimizations that can significantly improve the
speed in which content is delivered to the user, as well as rule-based filters to eliminate unwanted traffic to
your applications.

Caching Static Content
This is your CDN’s most important feature. Most websites load over 50% faster with the CDN serving cached
static content such as images, CSS, HTML, and JavaScript, with the CDN serving up to 75% to 90% of all user
requests from cache. Without the CDN in place, every request to every file required to load your site will need
to be served from within your application stack every time a user loads your website, which can overwhelm your
application much sooner.

Regardless of which CDN you use in front of your application, you have full control over which and where
resources are cached, and for how long they are cached (commonly referred to as Time to Live, or TTL) before a
request to the resource needs to be reissued to your application. This is achieved by using a Cache-Control header,
with directives dictating the specific behavior of how the content is cached. Refer to this article from Cloudflare for
more detail on implementing the Cache-Control header.

http://www.salesforce.com
http://www.salesforce.com
https://developers.google.com/web/updates/2018/07/search-ads-speed
https://developers.google.com/web/updates/2018/07/search-ads-speed
https://www.cloudflare.com/learning/cdn/glossary/what-is-cache-control/

10 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

3. Optimizing Page Load Time

Performance Optimization Features
Most CDNs provide performance optimization features that reduce the size of content a client needs to download
before your website is fully loaded in the browser.

For example, code minification condenses your HTML, CSS, and JavaScript into much smaller code without
impacting execution or how content is rendered on the page. While this makes your code much lighter weight for
transport purposes, debugging minified code becomes difficult, due to how the code is obfuscated. To overcome
this, consider using a source map that allows you to debug the original version of the code.

We highly recommend compressing static content (CSS, JS, and HTML) using standard compression methods
such as gzip when possible. Doing so will significantly reduce the size of files a client needs to download to render
a page on your site.

Most CDNs offer many of these types of performance optimization features that will go a long way in reducing
the time it takes a user to load your website. Make sure you understand the potential risks involved with these
optimization features. Run functional testing against your website before and after, enabling each one to ensure
there are no functional regressions.

Application Caching
Now that you understand the importance of caching static and dynamic content at the CDN, focus on how to
implement caching within your application stack to prevent your applications from spending time and resources
on requests for data that have already been processed. For example, if you have 100 users browsing product
categories on your storefront, there is no need for subsequent requests to travel through your entire application
stack to calculate the response for each product category request. A number of caching concepts are available to
help you reduce load on your stack.

API Caching
Determining which resources to cache is complicated. It requires thought and effort to ensure users always
receive up-to-date and relevant content. Consider grouping your resources to understand which resources are
public (eligible for caching), and which are private (will not be cached). Also consider the frequency in which
each resource will be changing. For example, product and pricing data may only change once a day, while
inventory is constantly changing. We recommend you consider the following exercise prior to implementing
caching throughout your application stack:

1.	 Build a directory of resources based on the endpoints of your application.

2.	 Determine which resources are public (to be cached) and private (not cached). For example, product
pricing would be considered public, while stored payment instruments should be considered private.

3.	 Determine the frequency in which your data is changing (< 1 minute, >= 10 minutes,
>= 1 hour, >= 1 day)

4.	 Become familiar with caching headers and directives (Cache-Control, max-age, ETag) before
implementing caching within your application

With this information, you will be better prepared to implement a caching strategy throughout your
application stack.

http://www.salesforce.com
http://www.salesforce.com
https://developer.mozilla.org/en-US/docs/Tools/Debugger/How_to/Use_a_source_map
https://tools.ietf.org/html/rfc7234

11 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

3. Optimizing Page Load Time

The Apollo Server can cache and serve cached GraphQL queries to users using the same concepts for the
CDN. Since data is often coming from a range of data sources, it’s possible that only certain fields involved in
the query will be cached. Refer to Caching in Apollo Docs for more detail on the caching flexibility offered by
the Apollo server.

Caching at your API layer is well worth the time investment, as it prevents your application from calculating
and serving requests that have already been processed for other users.

You should also consider using Apollo’s Automatic Persisted Queries (APQ) to take advantage of caching
GraphQL queries at your CDN layer, thus reducing network bandwidth and query latency. With APQ enabled,
the Apollo client sends the query above as a GET command, and the query response can be served from
cache by the CDN.

In-Memory Cache
For requests to your application that are not cached by the CDN or Apollo Server, consider implementing an
in-memory cache to allow your application to cache and serve requests that may be expensive to calculate
often. In the example of users browsing product categories, consider caching product and pricing data
in-memory. This ensures product and pricing requests don’t need to be retrieved from Salesforce B2C
Commerce APIs every time a user accesses a category page containing product and pricing data.

A number of cache technologies are available for in-memory caching on NodeJS, for example, node-cache.
In-memory caches typically store data using key/value pairs, where the key contains a unique string and the
value contains the data associated with the key. For example, in a cache containing category results, your
key might contain the category ID where the value would contain a JSON representation of a list of products
assigned to the category. When your application receives a request to return products in a category, your
application can first check the cache to see if the data requested is in the cache. If it isn’t, the request will be
issued to the back end that contains the product and pricing data (for example, the Salesforce B2C Commerce
API). You also can define a maximum number of cached entries allowed in the cache to ensure your cache
doesn’t consume a significant portion of the memory allocated to your application. Monitoring the size of your
cache during load tests helps determine a safe threshold, if one must be imposed.

http://www.salesforce.com
http://www.salesforce.com
https://www.apollographql.com/docs/apollo-server/performance/caching/
https://www.apollographql.com/docs/apollo-server/performance/apq/
https://www.npmjs.com/package/node-cache

12 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

3. Optimizing Page Load Time

The in-memory cache is unique for each application node in the cluster. But as users and SEO robots browse
your production storefront, the cache will often warm quickly across your application cluster. We recommend
allowing the cache-warming process to complete naturally, rather than building cache-warming scripts that
may not simulate real traffic.

The B2C Commerce SDK implements an in-memory Redis cache that can be enabled within its client
configuration. Refer to SDK Caching for more detail.

Distributed Cache
A distributed cache has the same advantages of an in-memory cache, with a few key differences:

•	 The cache persists to storage.

•	 The cache can be shared among application nodes in your cluster. This eliminates the need for cache
warming at each application node.

The sample architecture uses Redis for this purpose. A NodeJS npm package is available for it.

Platform API/SDK Cache
The Salesforce B2C Commerce APIs return a Cache-Control header, which dictates the TTL for a given
API request to be cached. Our NodeJS SDK is capable of implementing a Redis cache which will check for a
cached response prior to initiating an API call. By doing so, we reduce the number of API calls made by the
SDK, thus improving the performance of applications implementing the SDK. More information about this
implementation of Redis within the Commerce NodeJS SDK can be found here.

http://www.salesforce.com
http://www.salesforce.com
https://github.com/SalesforceCommerceCloud/commerce-sdk/blob/master/packages/generator/README.md#caching
https://redis.io/
https://www.npmjs.com/package/redis
https://github.com/SalesforceCommerceCloud/commerce-sdk
https://www.npmjs.com/package/commerce-sdk#redis-cache

13 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

4 Designing and Planning for Availability

Scaling
As you have learned, appropriate use of caching throughout your infrastructure prevents a high percentage of
requests from ever reaching your application cluster. But what about instances where your cache can’t protect
your application from a higher workload than expected? This can happen in a number of cases:

•	 An increase in requests to endpoints that aren’t cached by design (for example, POST requests
performing account creations during a big sale event)

•	 Your cache has been flushed/invalidated

•	 Your cache is full or incorrectly sized, causing a low cache hit ratio

•	 You have sent out a marketing campaign containing links with unique parameters that evade your
cache. For example, /myAPI_v1/categories/mens?emailAddress=customer123@email.com

In these cases, it is important your infrastructure can scale up quickly to handle the increased traffic and avoid
performance degradations or service disruptions. Two types of scaling techniques are often implemented in
production environments.

Horizontal Scaling
Horizontal scaling allocates more application nodes to a cluster to achieve optimal performance under higher
workloads. For example, if there are four application nodes in the cluster with four CPUs and 4GB of RAM,
you can simply provision additional application nodes to the cluster, rather than allocate more resources to
existing nodes. This is the more common approach in ecommerce, as there are often more limiting factors
to supporting higher workloads than just physical resources such as CPU and memory. For example, your
application might use a thread pool to manage client tasks with plenty of CPU and memory available before
the thread pool becomes exhausted This is where horizontal scaling helps, as adding additional application
nodes increases the number of available threads in the pool.

A common misconception about horizontal scaling is that it can be used to absorb infinite load. While
horizontal scaling increases the physical system resources available to your applications, doing so during
periods of unexpected traffic will put more pressure on other systems (such as your database and third-party
endpoints). Understand the constraints of these systems so when your throughput increases, other systems
can handle the increased load.

http://www.salesforce.com
http://www.salesforce.com

14 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

4. Designing and Planning for Availability

Vertical Scaling
Vertical scaling allocates more physical resources to the application cluster to achieve optimal performance
under higher workloads. For example, if there are four application nodes in the cluster with four CPUs and
4GB of RAM, the cluster can be scaled vertically so that the instance is allocated eight CPUs and 16GB of RAM
to handle a higher workload. This often requires application nodes be restarted to update the configuration
of the cluster. However, this may be an acceptable solution if a single node or fixed sized cluster will handle a
higher workload simply by adding more resources. Vertical scaling is common practice for scaling datastore
applications such as Redis that might only be deployed as a single node or fixed size cluster.

Kubernetes provides autoscaling features that allow you to scale an application cluster horizontally based on
user defined conditions, or even by custom application metrics. For more detail on Kubernetes Autoscaling,
refer to Horizontal Pod Autoscaler for more information.

Waiting Room
While your headless implementation is likely to be deployed on a technology stack that includes auto-scaling
features, sometimes it’s not enough to simply spin up additional application nodes to sustain levels of traffic
that are beyond the bounds of what you have tested or expected. Waiting room technologies such as Queue-
it integrate with your CDN, allowing you to embed a branded experience into your storefront that controls the
level of traffic that is allowed to reach your application, while overflow users are placed in a queue. Over time,
implementations mature to handle higher workloads based on lessons learned from load testing and sale
events. But in the beginning phases of an implementation where levels of traffic are unknown or higher than
what your application currently supports, a waiting room is a good way to safeguard your user experience in
the event of sudden performance degradations.

Fault Tolerance
Consider using fault tolerance features such as rate limiting and circuit breaking within your application stack
to ensure your system doesn’t become overloaded in the event of abuse or sudden bursts in traffic. Through
load testing, you will learn the upper limits of each of your APIs and determine at what level performance
begins to degrade.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://queue-it.com/
https://queue-it.com/

15 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

4. Designing and Planning for Availability

A number of fault tolerance npm packages are available for NodeJS. You can search the npm repository for
one that suits your specific needs.

Rate Limiting
Rate limiting is the concept of defining thresholds for the frequency in which a particular endpoint can be
called by a single client or across all clients, and determining what action should be taken if the defined
thresholds are violated. For example, if a single client calls your search endpoint more than 100 times in 10
seconds, you might decide to block subsequent requests from that client for 10 minutes. Or you might decide
to place the requests in a queue to be processed when the application isn’t busy processing other requests
from clients who are issuing them at lower rates. The below diagram depicts how requests are handled in a
simple rate limiting scenario:

Circuit Breaking
Circuit breaking is the concept of defining upper limits for how long requests to a certain endpoint will remain
active before a response is returned, and determining what actions will be taken if the thresholds are violated.
For example, if your page load time for logged in customers depends on a call to a third-party loyalty service ,
you might only want to wait up to two seconds for that call to complete before you close the connection and
hide the loyalty point balance element on the page until the user re-loads the page, or an automatic retry is
attempted. This is different than simply defining a timeout on an outbound HTTP request, as your application
will keep track of overall failures across all users, and open the circuit breaker when certain failure conditions
are met within a defined period of time. Doing so prevents your application from spending time attempting
requests that are unlikely to be successful.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://www.npmjs.com/

16 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

4. Designing and Planning for Availability

Below is a diagram illustrating how requests are handled using typical circuit breaker logic:

Salesforce B2C Commerce API Fault Tolerance
The Salesforce B2C Commerce APIs have rate limiting capabilities built in, which define the maximum
number of requests a tenant is able to issue to a given API per hour. If the number of requests is violated, the
client will receive a 429 response code and the request will not be executed. Refer to the API Reference in
the Developer Center for documentation on the rate limiting feature. Below is a description of the rate limiting
specific headers returned with any Salesforce B2C Commerce API request:

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://developer.commercecloud.com/s/api-reference

17 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

4. Designing and Planning for Availability

Load Testing
Load testing is essential to understanding where your application may experience degraded performance, or
even unavailability when placed under heavy load. At Salesforce B2C Commerce, we work closely with customers
alongside partners who conduct load testing prior to go-live to ensure customer applications and our platform
can withstand projected load targets. The following considerations will help you plan for successful load tests:

Preparing for a successful load test
Often times when developing a new system, trying to understand results of a full load test suite can be
overwhelming. Prior to running a full test suite, consider testing each component of your application separately
when possible. Doing so will help ensure you understand the performance characteristics of each component of
your system, including the Salesforce B2C Commerce APIs.

Note: While we recommend load testing Salesforce B2C Commerce APIs, we don’t recommend load testing the
Einstein Recommendations API, as doing so will negatively impact recommendation results.

When it comes to load testing third-party services, providers often have test endpoints that aren’t intended to
scale for production level traffic, while testing production level endpoints will incur costs to your organization.
Prior to load testing components that leverage third-party APIs, make sure you understand the load in which the
service can handle, and also the response time of the service level agreement (SLA) provided by each endpoint.
It may be necessary to contact your third-party providers to ensure they allocate appropriate resources for your
testing. If using production endpoints for load testing isn’t an option, and test endpoints cannot handle your
target load, consider mocking the service calls in your code to simulate a realistic delay based on the response
time SLA of the third-party service.

Use Realistic Load Scenarios
Forecasting target load can be difficult. As a general rule, test 2x the load of your highest volume sale event from
the previous year, or to date. Forecasting the following metrics will help you or your partner design realistic load
test scenarios:

•	 Maximum orders per hour

•	 Maximum visits/sessions per hour, or page views per hour

It is also important to define a realistic breakdown of the test cases that will be executed by the virtual test users.
Doing so will help ensure you aren’t stressing endpoints beyond what they will handle in real world scenarios. For
example, the number of users in the system checking a gift card balance is substantially lower than the number
of users browsing categories and products.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com

18 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

4. Designing and Planning for Availability

Test Case
% Users
Executing

Notes

Homepage 100

Search 50 User initiates search term from list of popular search terms

Add to cart 65
65% of users will add between 1–10 products to their cart of
random quantities between 1–5

Checkout 65
65% of users will complete checkout, using a randomly selected
shipping and payment method

Checkout with gift card 5

Track order 2

Navigate category 80 User browses 3 random categories and pages through 3 pages of results

Apply coupon 40 40% of users will apply a coupon to their order during checkout

Check gift card balance 1

Navigate product 85

Contact Salesforce B2C Commerce Support Prior to Load Testing
It is important to contact Salesforce B2C Commerce support prior to running load tests to ensure the target
instance for your test is provisioned with an appropriate initial size capable of handling the target load. This will
also prevent sudden increases in traffic from being flagged as potentially malicious.

Contact Salesforce B2C Commerce Client Services for Advanced Load Testing Support
Our client services organization can provide you with an expert who will monitor the Salesforce B2C
Commerce platform during your load tests and provide a summary of their findings. This will help pinpoint any
potential performance bottlenecks, such as excessive or inefficient API calls that might be contributing to less
than optimal response times in your load test report.

Monitor Your Application Stack
Your partner will provide a detailed report highlighting key client-side metrics captured during the load test.
But you need to monitor your applications in the event response times are higher than expected. Monitoring
high-level system metrics such as CPU and memory utilization of each component will help you understand

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com

19 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

4. Designing and Planning for Availability

how well your custom head scales under load, as well as headroom for handling additional load. We will cover
monitoring in more detail.

Load Test Post-Launch
While most customers load test their storefront prior to going live, often customers don’t test again, despite
significantly changing their storefront design. Load test frequently, especially after introducing major functional
changes to help ensure there are no unexpected performance regressions. Consider adding a load test suite
to your automated build process, and mark your builds as failed or unstable if performance regressions are
observed. Treating performance as a first-class citizen will help you avoid performance regressions as you
release new functionality to your storefront.

There are a number of load testing frameworks available for designing and executing your tests, as well as
plugins to common build frameworks for trending on performance metrics across builds. To name a few:

•	 JMeter: An open-source Apache Java application for designing, conducting, and analyzing load tests

•	 XLT: A free Java-based test automation and load test tool

•	 OctoPerf: A software-as-a-service (SaaS)-based load testing framework, compatible with JMeter

•	 Jenkins: A popular open-source build automation engine

•	 Performance Plugin: A popular Jenkins plugin that allows you to trend performance baselines
across builds and react accordingly by marking your build as good, unstable, or failed

Secure Your Load Test Environment
It’s common to isolate non-production environments and applications behind a private network. But in the
case of load testing, it’s common for a production-like copy of your storefront to be accessible through a
custom domain name, such as loadtest.mystorefront.com. To ensure your non-production storefront
isn’t accessible to users or SEO crawlers that could negatively impact your brand, consider the following
mechanisms for protecting your storefront:

1.	 Whitelist IP ranges — If your load test environment is behind a CDN, use an IP whitelist configuration
to allow access only to authorized IP ranges from which load will be generated

2.	 Password Protect — Implement and enable basic authentication for your application. Enabling basic
authentication will require clients to pass valid base64 encoded credentials in an Authorization
header when issuing requests to your application. For example, if the username and password
are myUser:myPassword, the load testing client would pass the following header in a request to
the server:

Authorization: Basic bXlJRDpteVBhc3N3b3Jk

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
http://jmeter.apache.org/
https://www.xceptance.com/en/xlt/
https://octoperf.com/
https://jenkins.io/
https://plugins.jenkins.io/performance/

20 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

5 Protecting and Securing the Storefront

Opening your storefront to the public may attract more visitors than you originally anticipated. You should
expect friendly and malicious robots to crawl your storefront 24/7, indexing pages to be displayed in search
engine results, attempting web-based attacks in attempts to steal sensitive customer data, and more. See how
to safeguard your storefront to ensure you are well equipped handle various types of traffic.

Web Application Firewall (WAF)
Having a WAF at the CDN level protects your application stack at the first point of entry by filtering malicious
requests that violate rules based on the Open Web Application Security Project (OWASP) Core Rule Set
(CRS). These rules are developed based on common web-based attacks often exercised by malicious robots
scanning your website for known vulnerabilities. In the case of Cloudflare, the WAF can be enabled in Log-
Only Mode for you to review incoming requests that violate OWASP rules before you enable strict (blocking)
mode. This practice ensures you are comfortable with the traffic being blocked by your CDN.

Firewall Rules
The Firewall rule configuration provided by the CDN allows you to build conditions and actions to take based
on the characteristics of a request being issued to your system. For example, you may want to block access to
a public endpoint intended only for employees. To achieve this, you might consider creating a firewall rule that
blocks access to the endpoint, unless the request comes from a certain range of IP addresses or contains a
certain header in the HTTP request.

Rate Limiting
Many CDNs offer rate limiting capabilities that allow you to get ahead of the inevitable scenarios where
malicious robots attempt to gain access to sensitive data such as gift cards, user accounts, or loyalty points.
You can set thresholds to limit the amount of times a single IP address can issue requests to certain endpoints.
For example, you can create a rate limiting rule that will block a client from your website for one hour if they
exceed more than 10 POST requests to your gift card balance check in 10 seconds. While rate limiting isn’t
a perfect solution to bot mitigation, it helps limit how often malicious bots can attempt to gain access to
sensitive data before being blocked. For more sophisticated bot detection and mitigation solutions, consider
implementing advanced features of your CDN such as Cloudflare Bot Management, Akamai Bot Manager, as
well as partner solutions such as PerimeterX.

http://www.salesforce.com
http://www.salesforce.com
https://www.owasp.org/index.php/Category:Attack
https://www.cloudflare.com/products/bot-management/
https://www.akamai.com/us/en/products/security/bot-manager.jsp
https://www.perimeterx.com/solutions/ecommerce/

21 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

5. Protecting and Securing the Storefront

Penetration Testing
Penetration testing (often referred to as “pen testing”) is the practice of conducting destructive testing against
your system by attempting to exploit a wide range of vulnerabilities, often times web-based, and without any
prior knowledge about the systems architecture. The goal is to understand what vulnerabilities exist within
the system and determine the impact should these vulnerabilities be exploited in an environment containing
sensitive customer data.

While there are tools available for conducting pen tests, we recommend employing a third party with
expertise in conducting the tests and presenting the results in a meaningful way. Consider the following when
conducting your testing:

1.	 Given the destructive nature of pen testing, conduct the testing on an environment that mimics your
production environment as closely as possible from an architectural perspective. In the event a pen
test is successful in modifying back-end data, you’ll want to make sure you can restore or discard the
environment once testing has been completed.

2.	 Review the results of the pen test with your team and with your third party to make sure you
understand which vulnerabilities must be fixed prior to go-live. Have a plan for fixing the lower priority
items.

3.	 Conduct scans regularly, ideally prior to each release. Just because your previous scan was clear of
vulnerabilities doesn’t mean that new vulnerabilities haven’t been discovered, or that new versions of
libraries in use by your application don’t contain new or undiscovered vulnerabilities.

4.	 As you review potential vulnerabilities found during testing, consider how your team would have
identified the severity of the breach and who might have been affected. We’ll cover logging and
monitoring in another section, but think about what data you might need to capture and log to make
sure you’re equipped to do a post-mortem analysis in the event of an attempted breach.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com

22 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

5. Protecting and Securing the Storefront

2FA should always be implemented for back-end systems such as Salesforce B2C Commerce
Business Manager.

Business Manager Access Settings
Aside from enabling 2FA for Salesforce B2C Commerce Business Manager, consider configuring access
settings to whitelist or blacklist IP addresses to ensure your Business Manager is only accessible by users on
your network.

Two-Factor Authentication (2FA)
Two-factor authentication (2FA) has become a standard for authenticating to any system. By implementing
2FA within your system, you eliminate the possibility of someone authenticating as another user with stolen
credentials alone. After successfully entering a user ID and password, the user must then pass a second
authentication challenge that requires access to a secondary account or device that has been registered with
your system. For example:

•	 A verification code provided by email to an address that has been registered with your system

•	 A verification code provided by SMS to a cell phone that has been registered with your system

•	 A verification code provided by an automated voice call to a cell phone that has been registered with
your system

•	 A verification code or push notification from an Authenticator application such as Google or
Salesforce Authenticator

Below is a simple flow diagram outlining how 2FA works.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/IPAddressSettings.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/IPAddressSettings.html

23 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

6 Operational Best Practices

Fine tuning the configuration of middleware components and frameworks that comprise your application
stack is important to achieve optimal performance and scale. Monitoring the health of the components that
comprise your system during load testing will often help you understand where tuning may be required to
remove bottlenecks, but there are some best practices that will help get you started.

Logging and Monitoring
Monitoring and logging is an important aspect of any system, especially one where components are often
distributed across disparate networks. Having the ability to monitor the health of your entire application stack
in one centralized location can be an extremely powerful tool in monitoring and troubleshooting your system,
though this task requires a significant amount of development effort that is well worth the investment. Without
real-time and historical visibility into key metrics of your application stack, it’s extremely challenging to improve
system performance or understand root cause in the event of a service disruption.

Logging and Metrics
The goal of logging throughout your application stack is to be able to quickly troubleshoot any type of problem
using nothing but your application logs (no attaching debuggers, no looking at diagnostic dumps, graphs,
alerts, etc.). No matter which logging framework you choose, make sure you can log each component of
your application in various levels of verbosity, with as little overhead as possible. For example, if the search
functionality of your application stops working as expected, know where to find the relevant log entries for
a given user session and how to configure log levels for lower level debugging as needed. Make sure you are
logging the following types of messages throughout your application stack, whether done through custom
logging or as a part of another component of your stack:

•	 Correlation IDs — This is a unique ID used to trace a transaction across all systems involved in your
application stack. Consider logging the correlation ID wherever you log a message throughout your
application stack, and return the correlation ID as an HTTP response header in your application for
troubleshooting purposes.

•	 Access logs — These contain information about each request type (for example, the HTTP request,
method, user agent, response size, referrer, and execution time). Many types of web servers log this
information by default, but consider adding custom fields such as Correlation ID.

•	 Application Server logs — At a minimum, ERROR level logs from each component of your
custom application.

Emitting custom metrics from your applications will significantly help you troubleshoot your application stack.
Consider scenarios in which you might need to troubleshoot, then determine which metrics would be helpful
in troubleshooting those scenarios. For example, if you anticipate that the response time of your search
feature might degrade under certain conditions, consider emitting response time metrics from within your
search code so you can monitor the metric in the event of a problem. Whether you find that response
time increases with memory consumption or request volume, you will have the insights available for you to
react accordingly.

Below are some monitoring tools and frameworks that can help you implement your custom metrics
and monitoring:

http://www.salesforce.com
http://www.salesforce.com

24 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

6. Operational Best Practices

Prometheus — An open-source framework for storing and monitoring/alerting of time-series data

Grafana — An open-source analytics and monitoring solution for a variety of data sources
(including Prometheus)

AppDynamics Application Performance Management (APM) — A monitoring and alerting solution for
identifying performance bottlenecks, addressing inefficiencies, and improving application performance

Monitoring and Alerting
Once you have defined your logging and metrics strategy, consider how to monitor and alert on the behavior
of your system. The framework you choose to implement your monitoring and alerting will dictate the specific
features available, but it’s most important to alert on metrics that provide you enough time to react prior to
service disruptions, whether the reaction is automatic or manual. Refer to Prometheus Alerting Best Practices
for an overview of what to alert on and why.

The diagram below depicts the Prometheus monitoring and alerting architecture, along with supported
components for visualization and extended alerting:

Prometheus Architecture Diagram by Prometheus Authors is licensed under CC-BY-4.0

You may also consider an all-in-one approach such as Datadog.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://prometheus.io
https://grafana.com/
https://www.appdynamics.com/
https://prometheus.io/docs/practices/alerting/
https://prometheus.io/assets/architecture.png
https://prometheus.io/docs/introduction/overview/
https://creativecommons.org/licenses/by/4.0/
https://www.datadoghq.com/product/

25 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

6. Operational Best Practices

Real User Monitoring (RUM)
Real user monitoring (RUM) is the practice of monitoring performance through the lens of users of your
application. While monitoring server-side metrics is important to ensure ideal conditions for user experience,
RUM allows you to observe what a user experience is like from different locations, browsers, devices, and on
different speed networks. This is typically achieved by embedding some JavaScript on certain pages of your
storefront, which will compile and send metrics to a RUM framework for gathering valuable insights. This data
can then be used to improve important revenue-impacting metrics such as bounce rate, conversion rate, and
SEO rankings. You can contact your Salesforce CSM for more information on RUM.

Container Memory Management
Take advantage of Kubernetes memory management by setting reasonable memory limits for your
applications to ensure your containers aren’t terminated and removed from your application cluster, due to
using 100% of allocated memory. Refer to the following articles for more information:

Assign Memory Resources to Containers and Pods

Configure Default Memory Requests and Limits for a Namespace

Running Applications in Production Mode
Some frameworks offer different modes of running an application for debugging or optimized performance.
NodeJS Express as well as React both support running an application in development or production modes.
Ensure your production applications are set to run in production mode. Refer to the following articles for more
information on running in production mode, as well as other helpful tips for optimizing for performance in
production environments, such as using React to do code minification:

Express: Production best practices: performance and reliability

React: Optimizing Performance

Client Identification
In a traditional implementation using the Storefront Reference Architecture (SFRA), Salesforce B2C Commerce
systems can identify and log the users IP address and their browsers user agent. For example, a request
initiated by a Chrome user on Windows will contain a User Agent similar to Mozilla/5.0 (Windows NT
10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117
Safari/537.36.).

In a headless implementation, requests executed against the Salesforce B2C Commerce platform will often
come from a small set of IP addresses (for example, a handful of CDN load balancers, or an IP address of a
custom application issuing requests on behalf of a shopper). In these cases, the requests will often contain
generic or default user agents that identify the HTTP client library that initiated the request.

Requests with generic or default user agents (for example, Python-requests/2.2.1, Axios, or
even an empty user agent) should be avoided in favor of a more descriptive User-Agent, for example,
SalesforceB2C-Checkout-Client_v1.0. Doing so will make traffic analytics more meaningful, and will
also help avoid traffic from your client being flagged as potentially malicious.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-default-namespace/
https://expressjs.com/en/advanced/best-practice-performance.html#set-node_env-to-production
https://reactjs.org/docs/optimizing-performance.html

26 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

6. Operational Best Practices

While it depends on the HTTP client library you are using to initiate your HTTP requests, setting a user agent
can usually be done by simply passing a User-Agent header along with each request which contains a custom
value containing the name of your application. As it’s common to have a function that prepares an HTTP
request by setting static properties such as connection/socket timeouts, adding a property for User-Agent
should be a simple step in your implementation.

Continuous Integration and Continuous Deployment (CI/CD)
Continuous integration is the practice of managing your code in a central repository (such as Git), and
using tooling and automation to provide feedback on the quality of the changes. Through this process, your
code is automatically compiled, built, and tested, and the results are published in a central repository where
developers can review the status of each phase of the process.

Continuous deployment is the practice of automatically deploying code to mission critical environments such
as staging, quality assurance (QA)/dev, and production. This process will also include automatic provisioning
of infrastructure in cases where applications are deployed to cloud infrastructure such as AWS.

These practices combined make up your CI/CD pipeline, which has the overall objective of ensuring quality
code, free from functional or performance regressions.

While building and maintaining CI/CD pipelines require significant time investment, these processes replace
work manually done by developers and operations, usually resulting in human errors. Investing time in
building a CI/CD pipeline is highly recommended to save your team time and to help avoid costly mistakes.
It’s also recommended to trigger alerts on failures within the pipeline to ensure responsible teams can quickly
identify the cause and unblock other teams who might be waiting on a new build to be deployed.

The diagram below depicts what a CI/CD pipeline might look like:

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com

27 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7 Leveraging Salesforce B2C Commerce APIs

Now that you have an understanding of the components and practices required for building and maintaining
a performant and scalable system, we’ll cover how the Salesforce B2C Commerce APIs are accessed from
external systems.

REST API
Data stored in Salesforce B2C Commerce can be accessed using a RESTful API. As a developer, you will
implement an HTTP client within your application, which will talk directly to the Salesforce B2C Commerce
platform over HTTPS. This has been the traditional approach for communicating with Salesforce B2C
Commerce prior to the introduction of our NodeJS SDK.

NodeJS SDK
Resources stored in Salesforce B2C Commerce can also be accessed using our NodeJS SDK. If your application
is built using NodeJS, we recommend using the SDK to take advantage of built-in best practices, automatic
authentication, type-ahead support, error handling, and seamless support for new APIs. The SDK is promise-
based, which makes it simple to write asynchronous functions that integrate calls to the SDK.

The SDK is installed by simply running npm install commerce-sdk, as described in the SDK documentation.

We will be using Typescript in our examples, which will help us ensure our code is valid prior to execution. To
execute the sample SDK code provided below, you can install ts-node or another Typescript compiler of your
choosing. ts-node makes it simple to compile Typescript into Javascript, and execute it using NodeJS using
a single command, while other libraries may require you compile your Typescript code first and run it using a
second command.

For additional background on the SDK, refer to the Introducing the Salesforce Commerce SDK article on our
engineering blog.

Authentication
Salesforce B2C Commerce requires Authentication (AuthN) and Authorization (AuthZ) for a client to
communicate and retrieve data from our APIs. Your application will pass the required authentication token
for each API request to ensure your application or user has access to the requested resource. For example,
if you’re retrieving product data on behalf of a shopper, you need to request a shopper token prior to
initiating your API request. Once the token is provided within the API request, Salesforce B2C Commerce will
determine if the client is authorized to access the requested resource based on the configuration done by an
administrator. If you’re using our NodeJS SDK, the authentication is handled for you as part of the method call.
Below are the requirements for using Salesforce B2C Commerce APIs:

1.	 Configure an API Client ID in Account Manager

2.	 Grant your client access to resources. Instructions can be found on the Developer Center under the
Configure Access section of the Getting Started page.

3.	 You will need to know your Organization ID and Short Code, which are provided by your
account executive or customer support manager

http://www.salesforce.com
http://www.salesforce.com
https://github.com/SalesforceCommerceCloud/commerce-sdk/tree/master/packages/generator
https://www.npmjs.com/package/ts-node
https://engineering.salesforce.com/introducing-the-salesforce-commerce-sdk-e987dbf2fe95
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/AccountManager/AccountManagerAddAPIClientID.html
https://developer.commercecloud.com/s/build-apps-with-apis-getting-started

28 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7. Leveraging Salesforce B2C Commerce APIs

4.	 Identify the security scheme required for issuing your API call. The Developer Center API Reference
will tell you which security scheme is required depending on the type of action being performed.

•	 ShopperToken — used for accessing resources on behalf of a shopper

•	 OAuth 2.0 — used for administrative tasks such as creating, reading, updating, or deleting
resources not accessible by shoppers (such as managing coupons, campaigns, and catalog data)

Below is some important information to keep in mind regarding different types of security tokens. Refer to
the Commerce Cloud Developer Center for extended documentation on other types of token actions such as
logging out, refreshing tokens, or tokens for trusted systems.

Token
Type

Token
Generation
Endpoint

HTTP
Method POST Body Requirements Notes Expiration

SDK Helper
Method
Available?

Shopper
Token

/customers/
actions/login

POST “type”:
-{“guest”}
{“credentials”}
{“session”}
{“refresh”}

Path/URL Parameters:

• Shortcode

• OrganizationId

• SiteId

• ClientId

• �For type=credentials, you
must include a base64
encoded user:password
in the Authorization
header. For example,
Authorization:
Basic bXlVc2VybmF
tZTpteVBhc3N3b3Jk

• �For type=session, you
must provide valid dwsid
and dwsecuretoken
cookies

• �The Authorization
response header from a
successful request can
be base64 decoded to
determine the token
expiration date, issue
time, token subject
(customer id and
whether the user is a
guest), and token issuer
(the client ID)

30 mins Yes

OAuth2.0
(Account
Manager)

https://
account.
demandware.
com/dwsso/
oauth2/
access_token

POST grant_
type=client_
credentials

Basic Authorization
header containing the
client ID and password,
encoded in Base64.
For example:
Authorization:
Basic YWFh YWFh
YWFh YWFh YWFh
YWFh YWFh YWFh
YWFh YWFh OmFh
YWFh YWFh YWFh
YWFh YWFh YWFh
YWFh YWFh YWFh
YQ==

Content-Type:
application/x-
www-form-
urlencoded

•� �Sandboxes support
client ID and password =
‘aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaa’

•� �Client permissions
must be configured in
Business Manager

30 mins No

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://developer.commercecloud.com/s/api-reference

29 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7. Leveraging Salesforce B2C Commerce APIs

Search Example (Guest Shopper)
The example below will walk you through how to perform a product search as a guest shopper using the
Salesforce B2C Commerce API using direct HTTP access, as well as the NodeJS SDK. For the HTTP/REST
examples, consider using a REST client such as Postman to make it easier to initiate the request and inspect
the response body and headers.

Note: The Shopper Token expires 30 minutes from the time of issue. It is recommended you re-use tokens
when possible, as doing so will avoid overhead incurred by generating a new token.

HTTP (REST)

1.	 Visit the Developer Center API Reference which contains detailed documentation for each
Salesforce B2C Commerce API Family

2.	 Filter the CC API Family Dropdown list by Search

3.	 Click View on the Shopper Search tile. Review the Developer Guide section for high level
details on using the API, which includes the required security scheme (Shopper JWT) for accessing
the API.

4.	 Click on the API Specification tab

5.	 Expand the Endpoints section and click on /product-search

6.	 Review the Overview section for an understanding of the available methods

7.	 Click on the method productSearch. Review each section for an understanding of required
parameters and security requirements. In this case, we are required to provide the following data in
a GET request to https://{shortCode}.api.commercecloud.salesforce.com/search/
shopper-search/{version}/organizations/{organizationId}/product-search:

•	 A Shopper Token (details on obtaining token are described below)

•	 An organizationId URI parameter. This ID is customer specific and will be provided to your
administrator by support.

•	 A siteId query parameter. This is the name of the site as defined in Business Manager

•	 A q query parameter containing the query phrase to search for

8.	 To retrieve a Shopper Token, initiate a POST request to https://{shortCode}.api.
commercecloud.salesforce.com/customer/shopper-customers/v1/organizations/
{organizationId}/customers/actions/login?siteId={siteId}&clientId={clientId}.
The POST request must contain the following:

•	 A body containing the following data:

{
 “type” : “guest”
}

•	 Example POST URL:

POST

https://9IUjX4AW.api.commercecloud.salesforce.com/customer/shopper-
customers/v1/organizations/f_ecom_abcd_stg/customers/actions/
login?siteId=SiteGenesis&clientId=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://www.getpostman.com/downloads/
https://developer.commercecloud.com/s/api-reference

30 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7. Leveraging Salesforce B2C Commerce APIs

9.	 If the request is successful, the JWT token is returned in a header called Authorization with a
value Bearer
eyJfdiI6IjEiLCJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJfdiI6IjEiLC
JleHAiOE1Nzk2N DU0ODcsImlhdCI6MTU3OTY0MzY4NywiaXNzIjoiZjY2ZjBlNGYtZ
mE0NC00MWViLTliMzU tODlkZTllZTY3ZTcx Iiwic3ViIjoie1wiX3ZcIjpcIjFc
IixcImN1c3RvbWVyX2luZm9cIjp7XCJjdXN0b21lcl9pZFwiOlwiYWM5SHlhUTcxUDMxOGV
PT3 JNa21NeUhqdDZcIixcImd1ZXN0X CI6dHJ1ZX19In0.dl8XgldAVo8SGRDrrSA
dnbD_tnRnfYwIrohjhsPW78JgTif2kukQqnB74RgKHRx6U5CTBee8ktTVwqnmtguRT7y
iPBTd 2X9f4p14hJKsSE9yjhiLyhnMxRRUGh--2 WANxOFxYnJnf0kl43--pn9FXhbX
aKSnJCcdLd vbxTuppzLF0fW-yzpLi4caFUidewTrFoFBUj7M4UpF2gd0DtJhX2YEJCTn5jA4y-
ue4oY7V cp6Y2NpG_mOX_gOmYm_m7hJzKuY4 zU90SGcGYkbBKfRPK3GthTr0LNXVsknydirps
ZDI1hlBjrCxNz689-ogulmLEncHmjgg3x 84UiPt5_zRst8EmBYcx3H27qXG9_
HxXixrDevebCBvKsW21gVZk3-RoGsk4N6kLozoG uuA2mzvQ_0qzh_pkQwK02TzcJd2jr6_
r8PY2Yu83MTOka6GXnpbo2g7jPeP4a8pQYLE VAni6GUniK_zhM1KxaVq3Kw

10.	Now that we have fulfilled the security pre-requisites, we can initiate the API search request with the
required parameters:

11.	GET
https://9IUjX4AW.api.commercecloud.salesforce.com/search/shopper-search/v1/
organizations/f_ecom_abcd_stg/product-search?count=10&siteId=SiteGenesis&q=suit

•	 The token must be passed along with the request by including a request header called
Authorization with the value returned in the Authorization header from the previous
POST request (Bearer eyJfdiI6I...)

•	 If successful, you will receive a 200 HTTP Response Code along with the requested data.

SDK

1.	 Identify the method name you will be using for your API call. In this case, it is the same method
identified in step 7 above, productSearch.

2.	 Copy and paste the code from this gist into a file with a .ts (typescript) extension. Review the code
and comments to understand how the code works.

3.	 Replace lines 27 - 30 with values for your clientId, organizationId, shortCode, and siteId

4.	 Execute the code using ts-node <filename>.ts <search string>

5.	 For example: ts-node productSearch.ts tie

6.	 If successful, you will see output similar to below:

Your search for tie resulted in 16 hits:

25752235|Checked Silk Tie|USD|29.99

25752986|Striped Silk Tie|USD|29.99

25752981|Striped Silk Tie|USD|29.99

25752218|Solid Silk Tie|USD|29.99

25720817|Tie Front Cardigan|USD|89

25589712|Tie Front Blouse|USD|73.99

25593071|Blouse with Tie Neck|USD|74

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://gist.github.com/bsilverm/8f907bd7d5d7af85dbeea05308607516

31 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7. Leveraging Salesforce B2C Commerce APIs

25589059|Tie Front Printed Blouse|USD|80.99

25591144|Dot Tie Front Blouse|USD|47.99

25592386|Floral Tie Front Shirt|USD|64

25545725|Long Sleeve Tie Front Blouse|USD|50.99

25697756|Paisley Sleeveless Shirt With Tie Front.|USD|69

25695461|Raglan Sleeve Tie Front Cardigan.|USD|89

25589408|Tie Front Animal Print Dress|USD|110.99

25688523|Short Sleeve Wrap Blouse with Tie Front|USD|109

25592150|3/4 Button Down Top with Tie Front|USD|69

Create a Coupon
Now that you have become familiar navigating the Developer Center, we will skip the steps related to
browsing to the Coupon API and describe the steps required for creating a coupon. Since creating a coupon
is not a shopper-related function, this API requires an OAuth2 token which is obtained by authenticating to
Account Manager. Ensure your client ID is also authorized to create resources of type Coupon, and follow the
steps below to obtain an OAuth2 token:

OAuth2 Token Request

1.	 Execute a POST command to https://account.demandware.com/dw/oauth2/access_token with the
following headers:

Header Name Header Value Notes Example
Authorization Basic <client ID and

client password
encoded in Base64>

This is a Base64
encoded value of your
API Client ID and
password, separated by
a colon. For example,
12345:myPassw0rd,
encoded in Base64

Basic MTIzNDU
6bXlQYXNzdzByZA==

Content-Type application/x-www-
form-urlencoded

2.	 If successful, the server will return a 200 response code with a response body example shown
below. You will use the token_type and access_token values in the Authorization header for the
subsequent request to create the coupon.

{
 “access_token”: “01e6b0c8-ec29-44de-938e-6c965fee5791”,
 “scope”: “mail”,
 “token_type”: “Bearer”,
 “expires_in”: 1799
}

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://developer.commercecloud.com/
https://account.demandware.com/dw/oauth2/access_token

32 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7. Leveraging Salesforce B2C Commerce APIs

HTTP (REST)
The API Reference in the Developer Center says we can use the putCouponById method for creating the
coupon using an HTTP PUT method:

https://{shortCode}.api.commercecloud.salesforce.com/pricing/coupons/{version}/
organizations/{organizationId}/coupons/{couponId}

The required URL parameters as demonstrated in the URL above are:

URL Parameter Name Description Example
organizationId The ID of your organization,

obtained from your administrator
f_ecom_abc_dev

couponId The ID of the coupon to create MyCoupon

The required query parameters as outlined in the API Reference are:

Query Parameter Name Description Example
siteId The identifer of the site that a

request is being made in the
context of.

SiteGenesis

type The type of coupon being created
(multiple_codes, single_code,
system_codes).

single_code

redemptionLimits.limitPerCode The defined limit on redemption
per coupon code. Null is returned
if no limit is defined, which means
that each code can be redeemed
an unlimited number of times.

0

redemptionLimits.
limitPerCustomer

The defined limit on redemption
of this coupon per customer. Null
is returned if no limit is defined,
which means that customers can
redeem this coupon an unlimited
number of times.

0

redemptionLimits.
limitPerTimeFrame

The defined limit on redemption
per customer per time-frame. Null is
returned if no limit is defined, which
means that there is no time-specific
redemption limit for customers.

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://developer.commercecloud.com/s/api-reference
https://developer.commercecloud.com/s/api-reference

33 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7. Leveraging Salesforce B2C Commerce APIs

limitPerTimeFrame.
redemptionTimeFrame

The time-frame (in days) of the
defined limit on redemption per
customer per time-frame. Null is
returned if no limit is defined, which
means that there is no time-specific
redemption limit for customers.

24

limitPerTimeFrame.limit 1

couponId The ID of the coupon to create MyCoupon
systemCodesConfig.codePrefix The prefix defined for coupons

of type. If no prefix is defined, or
coupon is of type single_code or
multiple_codes, null is returned

SG

systemCodesConfig.
numberOfCodes

The number of codes that can be
generated

50000

enabled Defines whether the coupon is
enabled or disabled

TRUE

description A description of the coupon being
created

This is a sample coupon created
using the implementation guide

The required request headers are:

Header Name Value Example
Authorization <token_type> <access_token> as

returned by the previous OAuth2
request

Bearer 01e6b0c8-ec29-44de-
938e-6c965fee5791

Content-Type application/json

Based off of our example values provided above, the PUT body would look as follows:

{
 “couponId”: “MyHTTPCoupon”,
 “description”: “This is a sample coupon created using the implementation guide
(HTTP example).\n”,
 “enabled”: true,
 “exportedCodeCount”: 0,
 “redemptionCount”: 3,
 “redemptionLimits”: {
 “limitPerCode”: 0,
 “limitPerCustomer”: 0,
 “limitPerTimeFrame”: {
 “limit”: 1,
 “redemptionTimeFrame”: 24
 }
 },
 “singleCode”: “MyCode”,

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com

34 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7. Leveraging Salesforce B2C Commerce APIs

 “systemCodesConfig”: {
 “codePrefix”: “SG”,
 “numberOfCodes”: 50000
 },
 “totalCodesCount”: 50,
 “type”: “single_code”
}
Below is an example of the PUT command:

https://9IUjX4AW.api.commercecloud.salesforce.com/pricing/coupons/v1/
organizations/f_ecom_abc_dev/coupons/MyHTTPCoupon?siteId=SiteGenesis

And the successful (200) response:
{
 “couponId”: “MyHTTPCoupon”,
 “creationDate”: “2020-01-28T17:54:35.288Z”,
 “description”: “This is a sample coupon created using the implementation guide
(HTTP example).\n”,
 “enabled”: true,
 “lastModified”: “2020-01-28T17:54:35.320Z”,
 “redemptionLimits”: {
 “limitPerCode”: 0,
 “limitPerCustomer”: 0,
 “limitPerTimeFrame”: {
 “limit”: 1,
 “redemptionTimeFrame”: 24
 }
 },
 “singleCode”: “MyCode”,
 “type”: “single_code”
}

Note: The API Reference in the CCDC will also show what a successful response looks like for any given
API method.

SDK
In this example, we will call the createCoupon SDK method to create the coupon:

1.	 Copy and paste the code found in this gist into a file with a .ts (typescript) extension:

2.	 Execute the code using ts-node <filename>.ts

3.	 If successful, you will see a 200 response code.

4.	 Optional: Write some code using your newly acquired skills to retrieve the coupon you just created!

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/Admin/ManuallyMigrateUserstoUnifiedAuthentication.html
http://www.salesforce.com
https://gist.github.com/bsilverm/b3479e48e72a70b6d3330b84afc9adbe

35 B2C HEADLESS COMMERCE IMPLEMENTATION GUIDE salesforce.com

7 Conclusion

This guide has explained what it takes to build a performant and scalable headless application that
integrates with Salesforce B2C Commerce. Head over to the Commerce Cloud Developer Center and learn
how to set up, create, deploy, and customize our sample headless application that uses the Salesforce B2C
Commerce APIs.

http://www.salesforce.com
http://www.salesforce.com
https://developer.commercecloud.com/s/

