salesforce

Consumer Goods Cloud Real
Time Reporting Developer

Guide

Last updated: July 25, 2025

© Copyright 2000-2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc,, as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Infroduction e 1
Chapter 2: Exporting the KPIs from Hyperforce 2
PrereqUISITES . . . o o oo e 3
Configuring Integration Dimension Meta 3
ACcount DIMENSION .« . . . oot e 4
Promotion DIMENSIONo e 4
Tactic DIMENSION . . o o e 5
Product DIMENSION 6
Product Part DIMENSION e e 7
Configuration of Integration Meta Data 8
Triggering the CSV EXport ProCESS v vttt e e e e e e e e 10
Triggering CSV EXPOIt . . . oo 10
Checking CSV EXport Statuso n
Committing CSV EXpOrt © . . .o 12
Retfrieving CSV EXpOrto e 12
Getting Access Token forthe User e 13
Gething CSV FUIl EXPOrt .« .« . o e 14
Getting CSV Delta EXport o oo e 14
REST APl ENAPOINtS .« .« o ottt 15
Triggering CSV EXPOMS oo e 15
Checking Job Status 16
Committing CSV . .. L e 17
Refrieving CSV EXpOrtS . . . o o e 18
EXAMPIES oo 18
Data Source: Account and Promotion Measureso oo oo e e e oo e 19
Data Source: Promotion Measures oot 22
Data Source: Promotion Measures with BOM Components 25
Data Source: Promotion and Tactic Measuresot 28
Data Source: Promotion and Tactic Measures with BOM Components 32
Data Source: DailyRealData/DailyintDatao o 36
Data Source: ACCOUNIMEQSUNe oo 37
Data Source: PromotionTacticDailyMeasureReal 38
Data Source: PromotionTacticWeeklyMeasureReal 39
Data Source: AccountProductMeasure oo oot 40
Data Source: ProductMeasureot 14
Data Source: WeeklyMeasureReal o 42
Data Source: WeeklyMeasurelnt 43

CGCIoUd NOMESPACE .« & o v v vttt e e e e e e e e e e e e e e e e e e 44

Contents

RTRReportResult Classo e 44
ReportComponent ClIASS vttt 49
Flatlist Class oo 49
FlatlistRowlterable Class 51
FlatlistRow Class 52
ScoreCard ClaSS . . . o o v it e 53
Chapter 3: Customizing Real Time Reporting (RTR) with APEX 55
Create a Fund Report with Custom Apex Datasources 57
Use Case: Fund AmMOUNt oo 57
TPM_RTRReportingWrapper_AMS (Base Class) 58
TPM_RTRSalesforceMonthlyMeasures AMS (Base Class)t .. 59
TPM_RTRFunds_AMS (The Logic Class)o 59
Use Case: Fixed FUNds 60
TPM_RTRReportingWrapper_AMS (Base Class) 62
TPM_RTRSalesforceMonthlyMeasures AMS (Base Class) 63
TPM_RTRFixedFunds_AMS (The Logic Class) 65
Create Reports with Custom Apex Filter e 65
ClaSSES .« . . e 66
TPM_RTRFiXedFUNAS_AMS . . . 66
TPM_RTRPromoTypeFilter AMS e e e e e e 70

TPM_RTRReportingParentPromoFilter n

CHAPTER 1 Introduction

This document explains the Salesforce configurations required to EDITIONS
export CSV files from within Real Time Reporting (RTR) using the

Integration API, and provides information on customizing the RTR
using APEX. RTR exports support the export of BOM components.

Available in: Lightning
Experience in Enterprise and
Unlimited Editions that have
Consumer Goods Cloud
Trade Promotion
Management enabled.

CHAPTER 2

In this chapter ...

e Prerequisites

e Configuring
Integration
Dimension Meta

e Triggering the CSV
Export Process

e REST API Endpoints

* Examples

e CGCloud
Namespace

Exporting the KPIs from Hyperforce

This section provides information on how to export the KPIs from Hyperforce. You can create CSV export
integration metadata configuration by adding new report configuration entry to RTR Report
Configurations.

Exporting the KPIs from Hyperforce Prerequisites

Prerequisites

e Consumer Goods Cloud Retail Execution and Trade Promotion Management. EDITIONS

e Salesforce Connected App (for user authentication). See Connected Apps in Salesforce Help.

* Integration APl user with appropriate rights (that is, read files) configured. Available in: Lightning
Experience in Enterprise and

Unlimited Editions that have
Consumer Goods Cloud
Trade Promotion

e Ensure to activate Business Years for all the export functions. Export functions are based on the
sales org, business year, and data source (e.g. account, promotion).

Management enabled.
Configuring Integration Dimension Meta
Create RTR report configuration records to export CSVs. EDITIONS
There's a object called RTR Report
Configuration—CGCloud RTR Report Configuration c—availableinyourSalesforce Available in: Lightning
org. You must create RTR report configuration records to export CSVs as they hold the dimension Experience in Enterprise and
meta information for the integration export. Unlimited Editions that have

Consumer Goods Cloud
@ Nofe: The user mapped to Calculation Result Export Processing Service should have access Trade Promotion

to the fields and objects configured in report dimensions. The TPM Calculation Result Export Management enabled.
permission set provides access to product, account, promotion, tactic, and product part

objects and fields. An administrator can assign the TPM Calculation Result Export permission

set for this user and also provide access to the additional objects that are used in report

dimensions.

For each dimension and sales org, you must create dimension metaas RTR Report Configuration records:
e Account Dimension

e Promotion Dimension

e Tactic Dimension

e Product Dimension

@ Notfe: When the dimension meta is created and configured, you must save and synchronize the dimension meta to Consumer
Goods Cloud Processing Service.

Account Dimension
The account dimension for integration export must be configured for each sales org on which CSV exports is executed.

Promotion Dimension
You must configure the promotion dimension for integration export for each sales org on which CSV exports is executed.

Tactic Dimension
You must configure the tactic dimension for integration exports for each sales org on which CSV exports is executed.

Product Dimension
You must configure product dimension for integration export for each sales org on which CSV exports is executed.

https://help.salesforce.com/s/articleView?id=sf.connected_app_overview.htm&language=en_US

Exporting the KPIs from Hyperforce Account Dimension

Product Part Dimension
To extract data at the Bill of Materials (BOM) component or product part level, configure Product Part Dimension for each sales org
on which CSV exports are executed.

Configuration of Integration Meta Data
The integration meta configuration defines dimensions, export columns, filters, or conditions for CSV exports.

Account Dimension

The account dimension for integration export must be configured for each sales org on which CSV exports is executed.

The integration export fetches content of the account dimension from the Salesforce object—Account. After creation of RTR Report
Configuration" records, provide the following information and a meta JSON:

Attribute Description

Information Internal Name A unique internal name of the account.
Configuration Usage Integration Account Dimension

Configuration of sales org The sales organization to which the account belongs.

Account dimension meta JSON example
[

"name" : "name",
"fieldsf":"Name",
"fieldsf$label":"Name"

"name" :"externalid",
"fieldsf":"CGCloud Externalld c",
"fieldsf$label":"CGCloud Externalld c"

"name" :"accountnumber",
"fieldsf":"CGCloud Account Number c",
"fieldsf$label":"CGCloud Account Number c"

Promotion Dimension

You must configure the promotion dimension for integration export for each sales org on which CSV exports is executed.

The integration export fetches content of the promotion dimension from the Salesforce object—CGCloud___Promotion___c. After creation
of RTR Report Configuration records, provide the following information and a meta JSON:

Attribute Description

Information Internal Name A unique internal name of the promotion.

https://developer.salesforce.com/docs/atlas.en-us.256.0.retail_api.meta/retail_api/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.retail_api.meta/retail_api/sforce_api_objects_cgcloud__promotion__c.htm

Exporting the KPIs from Hyperforce Tactic Dimension

Attribute Description
Configuration Usage Integration Promotion Dimension
Configuration of sales org The sales organization to which the promotion belongs.

@ Note: You mustinclude the accountid attribute in the dimension referencing on the
field—CGCloud Anchor Account c.

Promotion dimension meta JSON example

[
"fieldsf":"Id",

"name":"id"

"fieldsf":"CGCloud Date From c",
"name" :"datefrom"

"fieldsf":"CGCloud PromotionTemplate c",
"fieldsf$label":"CGCloud Promotion Template r.CGCloud Description Language 1 c",

"name" :"templateName"

"fieldsf":"CGCloud Relevant For Account Plan c",
"name" :"accountplanrelevant"

"fieldsf":"CGCloud Anchor Account c",
"name":"accountid"

"fieldsf":"CGCloud Anchor Account r.CGCloud Externalld c",
"name":"accountexternalid"

Tactic Dimension

You must configure the tactic dimension for integration exports for each sales org on which CSV exports is executed.

The integration export fetches content of the tactic dimension from the Salesforce object—CGCloud__Tactic__c. After creation of RTR
Report Configuration records, provide the following information and a meta JSON:

Attribute Description
Information Internal Name A unique internal name of the tactic.
Configuration Usage Integration Tactic Dimension

https://developer.salesforce.com/docs/atlas.en-us.256.0.retail_api.meta/retail_api/sforce_api_objects_cgcloud__tactic__c.htm

Exporting the KPIs from Hyperforce

Attribute Description

Configuration of sales org

Tactic dimension meta JSON example

[

"name" : "name",
"fieldsf":"Name",
"fieldsfS$Slabel":"Name"

"name":"compensationmodel",
"fieldsf":"CGCloud Compensation Model c",

"fieldsf$label”:"CGCloud Compensation Model c"

"name" : "amount",
"fieldsf":"CGCloud Amount c",
"fieldsf$label”:"CGCloud Amount c"

"name":"lifttype",
"fieldsf":"CGCloud Lift Type c",
"fieldsf$label”:"CGCloud Lift Type c"

"name":"liftvalue",
"fieldsf":"CGCloud Lift Value c",
"fieldsf$label":"CGCloud Lift Value c"

Product Dimension

You must configure product dimension for integration export for each sales org on which CSV exports is executed.

The sales organization to which the tactic belongs.

Product Dimension

The integration export fetches content of the product dimension from the Salesforce object—Product2. After creation of RTR Report

Configuration" records, provide the following information and a meta JSON:

Attribute Description

Information Internal Name
Configuration Usage

Configuration of sales org

A unique internal name of the product.
Integration Product Dimension

The sales organization to which the product belongs.

https://developer.salesforce.com/docs/atlas.en-us.256.0.retail_api.meta/retail_api/sforce_api_objects_product2_custom_objects.htm

Exporting the KPIs from Hyperforce Product Part Dimension

Product dimension meta JSON example
[

"fieldsf$label”:"CGCloud Description 1 c",
"fieldsf":"CGCloud Description 1 c",
"name":"description"

"fieldsf$label":"CGCloud Consumer Goods External Product Id c",
"fieldsf":"CGCloud Consumer Goods External Product Id c",

"name" :"externalid"

"fieldsf$label":"CGCloud Product Short Code c",
"fieldsf":"CGCloud Consumer Goods Product Code c",
"name" : "productcode"

"fieldsf$label":"CGCloud Criterion 1 Product Description c",
"fieldsf":"CGCloud Criterion 1 Product Description c",
"name" :"category"

Product Part Dimension

To extract data at the Bill of Materials (BOM) component or product part level, configure Product Part Dimension for each sales org on
which CSV exports are executed.

@ Nofe: To save the KPIs related to BOM components in the database, enable the BOM scope in the KPI definition and the BOM
Component Writeback option in the storage settings. For more information,
see https://help.salesforce.com/s/articleView?id=sf.tpm_foundation_create_kpi_definitions.htm.

The integration export fetches content of the product part dimension from the Salesforce object—CGCloud Child Product c.
After creation of RTR Report Configuration records, provide the following information and a meta JSON:

Report Configuration Attribute Description

Information Internal Name A unique internal name of the product.
Configuration Usage Integration Product Part Dimension

Configuration of sales org The sales organization to which the product belongs.

Integration Product Part Dimension meta JSON example
[

"fieldsf":"Id",
"name":"id"

by

{

https://help.salesforce.com/s/articleView?id=sf.tpm_foundation_create_kpi_definitions.htm&language=en_US

Exporting the KPIs from Hyperforce Configuration of Integration Meta Data

"name":"quantity",
"fieldsf":"CGCloud Quantity c",
"fieldsf$label”:"CGCloud Quantity c"

"name" :"externalid",
"fieldsf":"CGCloud Externalld c",
"fieldsf$label":"CGCloud ExternalId c"

"fieldsf":"CGCloud Child Product r.Name",
"fieldsf$label":"CGCloud Child Product r.Name",
"name" : "componentName"

Configuration of Integration Meta Data

The integration meta configuration defines dimensions, export columns, filters, or conditions for CSV exports.

Before creating an integration meta configuration entryin RTR Report Configuration™ the Salesforceintegration dimension

meta configuration must be created, saved, and synchronized to off-platform.

@ Nofte: If additional custom period is enabled for a salesorg, then the property enableForCustomTimeLevel : true should
be added to the export configuration.

You can create CSV export integration metadata configuration by adding new report configuration entry to RTR Report

Configurations.

@ Nofe: Itis mandatory to include the key fields of each dimension in the exported columns when exporting a CSV file
of the report.

For CSV export reports, provide the following inputs:

Attribute Description

Information Internal Name A unique internal name of the integration metadata configuration.
Configuration Usage Integration Metadata.

Configuration of sales org The sales organization to which the product belongs.
Configuration Reporting KPI Set The KPI set connected to measure dimension.

@ Notfe: When you trigger an inbound integration data source, ensure that you specify the calendaryear instead of
businessyear in the request parameters. For more information, see Triggering CSV Exports on page 15.

Examples of the supported data sources

Examples of different supported data sources are listed in this section. Such a meta JSON must be saved to off-platform in order to enable
CSV export. A meta JSON consists of the following blocks:

° datasources:

Inbound datasources:

Exporting the KPIs from Hyperforce Configuration of Integration Meta Data

-~ PromotionTacticDailyMeasureReal

-~ PromotionTacticWeeklyMeasureReal
- DailyRealData

- DailylntData

-~ ProductMeasures

- AccountMeasures

-~ AccountProductMeasures
Writeback datasources:

— AccountAndPromotionMeasures

- PromotionMeasures

— AccountAndTacticMeasures

@ Nofte: See Triggering the CSV Export Process for more information.

o dimensions:
Specifies dimensions to fetch data based on the selected data source:
— accountdimension: Retrieves Salesforce data from CGCloud__ Account_Extension__c
— promotiondimension: Retrieves Salesforce data from CGCloud__Promotion__c
— tacticdimension: Retrieves Salesforce data from CGCloud__Tactic__c¢
— productdimension: Retrieves Salesforce data from Product2

- kpidimension: Specifies the KPIs that are exported. The KPIs that are calculated based on the KPI set defined in the report
configuration are available for the export.

- timedimension: Specifies how to define the time dimension, by default, it’s fixed to the business year.
e includetotal: true or false (include the total value of the KPI)
e splitweeks: true (only valid for weekly or custom period) or false

e period: weekly, monthly, custom, customweek, and custommonth. An additional custom period-enabled salesorg
supports only custom, customweek, and custommonth whereas a custom period-enabled salesorg supports custom
and monthly period types only. An org using a standard calendar supports only weekly and monthly period types.

@ Note: For period type customweek/custommonth, it is mandatory to include the timedimension.StartDate as
the first timedimension column.

° exportsettings:

Specifies columns to generate in CSV file and CSV separator

— columns: Array of strings referencing dimension attributes.
dimensionname.attribute must exist in the corresponding dimension. the allowed accessors for timedimension:
e timedimension.label
e timedimension.StartDate
e timedimension.EndDate
e timedimension.yearnumber
The allowed accessors for kpidimension:

e kpidimension.label

https://developer.salesforce.com/docs/atlas.en-us.256.0.cgcloud_rtr_dev_guide.meta/cgcloud_rtr_dev_guide/rtr_triggering_csv_export_process.htm

Exporting the KPIs from Hyperforce Triggering the CSV Export Process

e kpidimension.measurecode

e kpidimension.name

Spread operator: The last column requires spread operator on either a kpidimension or timedimension accessor.

@ Note: When spread operator is used on kpidimension as the last column, accessors of kpidimension can't be used in
columns before. When spread operator is used on timedimension as the last column, accessors of timedimension
can't be used in columns before.

- Separator: The string specifying CSV separator. The allowed separators are:

o exportfilters:

Specifies conditions to apply when export process fetches data from Salesforce dimensions.

Triggering the CSV Export Process

The CSV export for a configured integration metadata report is triggered with endpoints provided EDITIONS
by the RTR gateway. When the CSV export process is finished, the CSV file can be downloaded
through the integration APl endpoints.

Available in: Lightning
Experience in Enterprise and
Triggering CSV Export Unlimited Editions that have
Consumer Goods Cloud
Trade Promotion
Management enabled.

This Apex call expects the mandatory values of the business year, the actual name of the RTR
report config record, and the sales org that must be exported.

Checking CSV Export Status
The next step is to check the status of this export.

Committing CSV Export

Retrieving CSV Export
You can fetch the history of the CSV export by making an Apex call.

Getting Access Token for the User
Getting CSV Full Export
Getting CSV Delta Export

Triggering CSV Export

This Apex call expects the mandatory values of the business year, the actual name of the RTR report config record, and the sales org that
must be exported.

You can trigger the CSV export by making an Apex call. A maximum of five calls can be triggered simultaneously.

10

Exporting the KPIs from Hyperforce Checking CSV Export Status

Sample Apex Request

<namespace>.0ffPlatformCallout request = new
<namespace>.O0ffPlatformCallout ('SCHEDULE RTR EXPORT', '0001"');
Map<String, Object> data = new Map<String, Object>();
data.put ('metaname', 'ReportData0001"');

data.put ('salesorg', '0001"');

data.put ('businessyear',2022);

String requestBodyContent = JSON.serialize(data, true);
Map<String, String> params = new Map<String, String>();

<namespace>.0ffPlatformCalloutResponse response =

request.execute (K<namespace>.TransactionHandler.getTransactionIdentifier (), params,
requestBodyContent) ;

System.debug (response) ;

Sample Response

The response contains a unique identifier for this export in JSON format. This GUID is needed in the subsequent calls.

{
"csvGuid": "94f49a3f-37bc-4794-8051-123456789"

Checking CSV Export Status

The next step is to check the status of this export.
As soon as it's ready (that is, "Status" = "Ready"), you can continue with the actual download of the file.

Sample Apex Request:

<namespace>.0ffPlatformCallout request = new
<namespace>.0ffPlatformCallout ('GET RTR EXPORT STATUS', '0001");

Map<String, String> params = new Map<String, String>();

params.put ('csvGuid', '<CSV Guid received as response from Triggering CSV Export>"');
<namespace>.0ffPlatformCalloutResponse response =

request.execute (<namespace>.TransactionHandler.getTransactionIdentifier (), params, null);

Sample Response

{
"Status": "Ready",
"RequestDate": "2021-09-14T13:33:29.0002",
"MetaName": "AccountAndPromotionMeasures",
"BusinessYear": 2020,
"Statistics": {
"csvGuid": "94£49a3f-37bc-4794-8051-123456789",
"jobStartTime": "Tue, 14 Sep 2021 13:34:02 GMT",
"hasDelta": false,
"deltaToCsvGuid": null,
"metaName": "AccountAndPromotionMeasures",

n

Exporting the KPIs from Hyperforce Committing CSV Export

"metaVersion": 8,
"totalAccounts": 1,
"totalCategories": 6,
"dimDataRetrievalDuration": 1188,
"numRecords": 0,
"numAccountCategoryKeys": 6,

"runDuration": 1592,
"processedAccountCategories": 6,
"jobCompletionTime": "Tue, 14 Sep 2021 13:34:06 GMT",

"jobDuration": 4734
by
"FullExport": "tpm/long/export/full/94£f49a3f-37bc-4794-8051-396£545500eb.csv.gz",
"DeltaExport": "tpm/long/export/delta/94f49a3f-37bc-4794-8051-396f545500eb.csv.gz"

Committing CSV Export

Generally, there are two types of CSV exports generated by the system—a full and a delta export.
e The full data contains all the data for the provided business year, report, and sales org.
e The delta export contains only the changed data for the provided business year, report, and sales org since the last commit.

Sample Apex Request

<namespace>0ffPlatformCallout request = new
<namespace>.0ffPlatformCallout ('COMMIT RTR EXPORT', '<salesorg>');

Map<String, Object> data = new Map<String, Object>();

data.put ('metaname', 'ReportDatal001") ;

data.put ('salesorg', '0001');

data.put ('businessyear',2020) ;

String requestBodyContent = JSON.serialize (data, true);

Map<String, String> params = new Map<String, String>();

params.put ('csvGuid', '<CSV Guid received as response from Triggering CSV Export>"');
<namespace>.0ffPlatformCalloutResponse response =

request.execute (<namespace>.TransactionHandler.getTransactionIdentifier (), params,
requestBodyContent) ;

System.debug (response) ;

Sample Response

{
"csvGuid": "94f49a3f-37bc-4794-8051-123456789",
"commitdate": "Thu, 16 Sep 2021 13:04:23 GMT"

Retrieving CSV Export

You can fetch the history of the CSV export by making an Apex call.
Sample Apex Request

<namespace>.0ffPlatformCallout request = new

12

Exporting the KPIs from Hyperforce Getting Access Token for the User

<namespace>.0OffPlatformCallout ('GET RTR EXPORT HISTORY', '0001"');

Map<String, String> params = new Map<String, String>();

params.put ('metaname’', 'ReportDatal001');

<namespace>.0ffPlatformCalloutResponse response =

request.execute (<namespace>.TransactionHandler.getTransactionIdentifier (), params, null);

System.debug (response) ;
Sample Response

[

"csvGuid": "e9b73d84-2a08-4815-a6ff-88a787dc007a",
"metaname": "ReportData0OO1l",
"metaversion": 1,
"businessyear": 2022,
"salesorg": "0001",
"status": "Ready",
"fullExportFile": "full/e9%9b73d84-2a08-4815-a6ff-88a787dc007a.csv.gz",
"deltaExportFile": "delta/e9b73d84-2a08-4815-a6ff-88a787dc007a.csv.gz",
"fileexpiry": "2022-06-15T08:20:35.000z",
"commitdate": "2022-05-16T08:24:53.000z",
"deltaAgainst": "c32al252-eedd-457d-98b2-3£72029c1722",
"statistics": {
"csvGuid": "e9b73d84-2a08-4815-a6ff-88a787dc007a",
"jobStartTime": "Mon, 16 May 2022 08:21:24 GMT",
"hasDelta": true,
"deltaToCsvGuid": "c32al252-eed4d-457d-98b2-3£72029cl1722",
"metaName": "ReportDataOOO01",
"metaVersion": 1,
"totalAccounts": 1,
"totalCategories": 6,
"dimDataRetrievalDuration": 1401,
"numRecords": 1392,
"numAccountCategoryKeys": 6,
"runDuration": 2032,
"processedAccountCategories": 6,
"jobCompletionTime": "Mon, 16 May 2022 08:21:27 GMT",
"jobDuration": 2441

Getting Access Token for the User

To perform subsequent requests to the Integration API, you must get an access token for accessing the Integration API. You can get
access tokens in multiple ways before sending requests to the RTR API endpoints. This example uses the simple username-password
combination (not recommended in non-DEV environments). The response contains "access_token", which is needed for subsequent
requests.

13

Exporting the KPIs from Hyperforce Getting CSV Full Export

cURL example:

curl --location --request POST 'https://login.salesforce.com/services/oauth2/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \

-—header 'Cookie: BrowserId=S0x8SC iEeu04d3AnIIKOw; CookieConsentPolicy=0:0" \
--data-urlencode 'grant type=password' \

--data-urlencode 'client id={{CONNECTED APP CLIENT ID}}' \

--data-urlencode 'client secret={{CONNECTED APP CLIENT SECRET}}' \

--data-urlencode 'username={{USERNAME}}"' \

--data-urlencode 'password={{PASSWORT}}"'

Sample Response:

{

"access token": "xyzl!xyz",

"instance url": "xyz",

"id": "https://login.salesforce.com/id/xyz/xyz",
"token type": "Bearer",

"issued at": "1631625949723",

"signature": "xyz"“

}

Getting CSV Full Export

After you've retrieved the access token, the actual full export file can be requested.

cURL example:

curl --location --request GET
'https://int-vir-us.consumergoodscloudprocessingservices.com/api/vl/files/getcsv/{{csvGuid} } ?path=full
--header 'Content-Type: application/json' \

-—-header 'Authorization: Bearer {{access_ token}}'

The response is a binary file that must be stored. The format of this file is <filename>. csv. This archive can then be opened with
a compression software.

Getting CSV Delta Export

Once the actual export file is requested, the CSV delta export file can be requested.

cURL example:

curl --location --request GET
'https://int-vir-us.consumergoodscloudprocessingservices.com/api/vl/files/getcsv/ { {csvGuid} } ?path=delta
--header 'Content-Type: application/json' \

--header 'Authorization: Bearer {{access token}}'

The response s a binary file that must be stored. Its formatis <£ilename>. csv.Thisarchive can then be opened with a compression
software.

14

Exporting the KPIs from Hyperforce REST API Endpoints

REST API Endpoints

This section describes the different REST APl endpoints.

EDITIONS

Triggering CSV Exports Available in: Lightning
Trigger five CSV exports simultaneously. The CSV exports are generated asynchronously in the Expfari?nce in.E.n'rerprise and
backend. A subsequent endpoint provides the status of the generation. Unlimited Editions that have

' Consumer Goods Cloud
Checking Job Status Trade Promotion
This endpoint responds with the status of the triggered CSV Export, represented by its Management enabled.
csvGuid.
Committing CSV

This endpoint is used to commit a specific csvGuid and take the related CSV as a new baseline for future delta exports—that is,
after this commit, the next delta export contains only those KPIs that have been either added, changed, or deleted from this committed
state.

Retrieving CSV Exports

Triggering CSV Exports

Trigger five CSV exports simultaneously. The CSV exports are generated asynchronously in the backend. A subsequent endpoint provides
the status of the generation.

Endpoint

SCHEDULE RTR EXPORT

Request Parameters

Parameter Mandatory Type
businessyear Yes Integer
metaname Yes String
salesorg Yes String

@ Note: When you trigger an inbound integration data source, ensure that you specify calendaryear instead of
businessyear inthe request parameters.

Sample Request Body

<namespace>.0ffPlatformCallout request = new
<namespace>.OffPlatformCallout('SCHEDULE_RTR_EXPORT','OOOl');
Map<String, Object> data = new Map<String, Object>();
data.put ('metaname’', 'AccountAndPromotionMeasures') ;

15

Exporting the KPIs from Hyperforce Checking Job Status

data.put ('salesorg', '0001');
data.put ('businessyear',2022);

String requestBodyContent = JSON.serialize(data, true);
Map<String, String> params = new Map<String, String>();

<namespace>.0ffPlatformCalloutResponse response =

request.execute (<namespace>.TransactionHandler.getTransactionIdentifier (), params,
requestBodyContent) ;

System.debug (response) ;

Sample Response Body

{
"csvGuid": "94£f49a3f-37bc-4794-8051-123456789"

Checking Job Status

This endpoint responds with the status of the triggered CSV Export, represented by its csvGuid.
The status can have one of the following values:

e Queued

e InProgress

e Ready
e Error
Endpoint

GET RTR EXPORT STATUS

Request Parameters

URL Parameter Sample Value

csvGuid 3b549543-d420-4013-b424-29c7f3c75713

Sample Response Body

<namespace>.0ffPlatformCallout request = new
<namespace>.0OffPlatformCallout ('GET RTR EXPORT STATUS', '0001");

Map<String, String> params = new Map<String, String>();

params.put ('csvGuid', '<CSV Guid received as response from Triggering CSV Export>"');
<namespace>.0ffPlatformCalloutResponse response =

request.execute (<namespace>.TransactionHandler.getTransactionIdentifier (), params, null);

16

Exporting the KPIs from Hyperforce Committing CSV

Committing CSV

This endpoint is used to commit a specific csvGuid and take the related CSV as a new baseline for future delta exports—that is, after
this commit, the next delta export contains only those KPIs that have been either added, changed, or deleted from this committed state.

You can see the current version of this commit when checking the status of the export. For example: "metaVersion": 8.

If the underlying RTR Report Configuration record in Salesforce changes, It's reflected as an implicit commit and therefore, set as a new
baseline.

Endpoint

COMMIT RTR EXPORT

Request Parameters

URL Parameter Sample Value

csvGuid 3b549543-d420-401a-b424-29¢7f3¢75713
Parameter Mandatory Type
businessyear Yes Integer
metaname Yes String

salesorg Yes String

Sample Request Body

<namespace>0OffPlatformCallout request = new
<namespace>.0ffPlatformCallout ('COMMIT RTR EXPORT', '<salesorg>');

Map<String, Object> data = new Map<String, Object>();

data.put ('metaname’', 'AccountAndPromotionMeasures') ;

data.put ('salesorg', '0001');

data.put ('businessyear',2020);

String requestBodyContent = JSON.serialize (data, true);

Map<String, String> params = new Map<String, String>();

params.put ('csvGuid', '<CSV Guid received as response from Triggering CSV Export>"');
<namespace>.0ffPlatformCalloutResponse response =

request.execute (<namespace>.TransactionHandler.getTransactionIdentifier (), params,
requestBodyContent) ;

System.debug (response) ;

Sample Response Body
{

"csvGuid": "94f49a3f-37bc-4794-8051-123456789",
"commitdate": "Thu, 16 Sep 2021 13:04:23 GMT"

17

Exporting the KPIs from Hyperforce Retrieving CSV Exports

Retrieving CSV Exports

The response body is a binary file and can be saved locally. This file with the ending csv . gz isazipped CSV file, so it must be extracted
first.

Endpoint

<CGCloud Processing Services Integration>/api/vl/files/getcsv/{{csvGuid}}?path={{full
or delta}l}

Nofe: You can get the CGCloud Processing Services Integration value from the Processing Services Pairing App page in your
Salesforce org.

HTTP Method
GET
URL Parameter Mandatory Sample Values
csvGuid Yes 30b549543-d420-401a-b424-29c¢7f3¢75713
path Yes Must be either:
e tpm/long/export/full (to retrieve a full
export)
e tpm/long/export/delta (to retrieve a
delta export)
Examples

This section provides sample code snippets for different data sources.

Available in: Lightning Experience in Enterprise and Unlimited Editions that have Consumer Goods Cloud Trade Promotion Management
enabled.

Data Source: Account and Promotion Measures
This section provides sample code snippets for different data sources.

Data Source: Promotion Measures
An integration metadata report configuration using the data source PromotionMeasures requires dimensions.

Data Source: Promotion Measures with BOM Components
The PromotionMeasuresWithBOMComponents data source allows export of information related to promotion measures
at the Bill of Material (BOM) component or product part level in RTR.

Data Source: Promotion and Tactic Measures
An integration metadata report configuration using the data source PromotionAndTacticMeasures requires dimensions.

18

Exporting the KPIs from Hyperforce Data Source: Account and Promotion Measures

Data Source: Promotion and Tactic Measures with BOM Components
The PromotionAndTacticMeasuresWithBOMComponents datasource allows export of information related to promotion
and tactic measures at the Bill of Material (BOM) component or product part level in RTR.

Data Source: DailyRealData/DailyIntData
This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows
the datasources configuration payload for DailyRealData/dailyIntData.

Data Source: AccountMeasure

This example provides details on the integration metadata JSON with the data source. This example provides details on the integration
metadata JSON with the data source. The following example shows the datasources configuration payload for AccountMeasure.
Data Source: PromotionTacticDailyMeasureReal

This example provides details on the integration metadata JSON with the data source. This example provides details on the integration
metadata JSON with the data source. The following example shows the datasources configuration payload for
PromotionTacticDailyMeasureReal.

Data Source: PromotionTacticWeeklyMeasureReal

This example provides details on the integration metadata JSON with the data source. This example provides details on the integration
metadata JSON with the data source. The following example shows the datasources configuration payload for
PromotionTacticWeeklyMeasureReal.

Data Source: AccountProductMeasure

This example provides details on the integration metadata JSON with the data source. The following example shows the datasources
configuration payload for AccountProductMeasure.

Data Source: ProductMeasure

This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows
the datasources configuration payload for ProductMeasure.

Data Source: WeeklyMeasureReal

This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows
the datasources configuration payload for weeklyMeasureReal.

Data Source: WeeklyMeasurelnt

This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows
the datasources configuration payload for weeklyMeasureInt.

Data Source: Account and Promotion Measures

This section provides sample code snippets for different data sources.

An integration metadata report configuration using the data source AccountandPromotionMeasures requires the following
dimensions:

® accountdimension

® promotiondimension
® productdimension

® kpidimension

® timedimension

19

Exporting the KPIs from Hyperforce Data Source: Account and Promotion Measures

Example: Spreading Time Label
This example provides details on the integration metadata JSON with datasource AccountAndPromotionMeasures (time label
spreaded).

Example: Spreading Time Label

This example provides details on the integration metadata JSON with datasource AccountAndPromotionMeasures (time label spreaded).

{

"datasources": [
{
"name": "AccountAndPromotionMeasures"
}
] 14
"dimensions": {
"accountdimension": {

"attributes": [

{

"label": "ExternalId",
"name": "externalid"
by
{
"label": "Name",
"name": "name"
by
{
"label": "AccountNUmber",
"name": "accountnumber"
}
I
"key": "externalid",
"level": ""
by
"productdimension": {

"attributes": [

{

"label": "Description",
"name": "description"
by
{
"label": "ExternalId",
"name": "externalid"
by
{
"label": "Category",
"name": "category"
}
i
"key": "externalid",
"level”: "Product"
s
"timedimension": {
"includetotal": false,
"splitweeks": false,

20

Exporting the KPIs from Hyperforce Data Source: Account and Promotion Measures

"periodtype": "custom"
by
"kpidimension": {
"measures": [
{
"name": "ProPlanIncrVolume",
"label": "Incremental Volume"
by
{
"name": "PlanTotalVolumeResult",
"label": "Planned Baseline"
}
]
by
"promotiondimension": {

"attributes": [

{
"label™: "id",

"name": "id"
}I
{
"label": "accountid",
"name": "accountid"
}I
{
"label": "accountplanrelevant",
"name": "accountplanrelevant"
}
]I
"key": "id",
"level": ""
}
}I
"exportsettings": {
"columns": [

"accountdimension.externalid",
"productdimension.externalid",
"productdimension.category",
"productdimension.description",
"kpidimension.label",
"kpidimension.measurecode",
"...timedimension.label"

1,

"csvseparator": ","
by
"exportfilters": {
"conditions": [
{
"operator": "includes",
"value": [

"Kroger Atlanta"
1,

"attribute": "externalid",
"dimension": "accountdimension",

21

Exporting the KPIs from Hyperforce Data Source: Promotion Measures

"name": "condl"

Data Source: Promotion Measures

An integration metadata report configuration using the data source PromotionMeasures requires dimensions.
Here is a list of dimensions:

® accountdimension

® promotiondimension

® productdimension

® kpidimension

® timedimension

Example
This example provides details on the integration metadata JSON with data source.

Export CSV File

Example

This example provides details on the integration metadata JSON with data source.

PromotionMeasures

{

"datasources": |
{
"name": "PromotionMeasures"
}
] 14
"dimensions": {
"accountdimension": {

"attributes": [
{

"label": "ExternalId",
"name": "externalid"
}I
{
"label”": "Name",
"name": "name"
}I
{
"label": "AccountNUmber",
"name": "accountnumber"
}
]I
"key": "externalid",

22

Exporting the KPIs from Hyperforce Data Source: Promotion Measures

"level": ""
Yo
"productdimension": {
"attributes": [
{

"label": "Description",
"name": "description"
by
{
"label": "ExternalId",
"name": "externalid"
by
{
"label": "Category",
"name": "category"
}
1y
"key": "externalid",
"level”™: "Product"
}y
"timedimension": {
"includetotal": false,
"splitweeks": false,
"periodtype": "custom"
bo
"kpidimension": {
"measures": [
{
"name": "ProPlanIncrVolume",
"label": "Incremental Volume"
}
]
I
"promotiondimension": {

"attributes": [

{

"label": "id",
"name": "id"
s
{
"label": "datefrom",
"name": "datefrom"
s
{
"label": "templateName",
"name": "templateName"
s
{
"label": "accountid",
"name": "accountid"
s
{
"label": "accountplanrelevant",
"name": "accountplanrelevant"

23

Exporting the KPIs from Hyperforce Data Source: Promotion Measures

by
{

"label": "accountexternalid",
"name": "accountexternalid"
}
I
"key": "id",
"level": ""
}
by
"exportsettings": {
"columns": [

"accountdimension.externalid",
"promotiondimension.id",
"promotiondimension.datefrom",
"promotiondimension.templateName",
"productdimension.externalid",
"productdimension.category",
"productdimension.description",
"kpidimension.label",
"kpidimension.measurecode",
"...timedimension.label"

1,

"csvseparator": ", "
bo
"exportfilters": {
"conditions": [
{
"operator": "includes",
"value": [

"Kroger Atlanta"
1,

"attribute": "externalid",
"dimension": "accountdimension",
"name": "condl"

Export CSV File

accountdimension.externalid, promotiondimension.id, promotiondimension.datefrom, promotiondimension.tem
plateName,
productdimension.externalid, productdimension.category,productdimension.description, label, measurecode
,Period-1

/2021, Period-2/2021,Period-3/2021, Period-4/2021, Period-5/2021,Period-6/2021, Period-7/2021, Period—
8/2021,Period-9

/2021,Period-10/2021,Period-11/2021,Period-12/2021,Period-13/2021,Period-14/2021, Period-
15/2021,Period-16/2021,

24

Exporting the KPIs from Hyperforce Data Source: Promotion Measures with BOM Components

Period-17/2021,Period-18/2021,Period-19/2021, Period-20/2021, Period-21/2021, Period-22/2021, Period-
23/2021, Period-
24/2021,Period-25/2021,Period-26/2021,Period-27/2021,Period-28/2021,Period-29/2021, Period-
30/2021, Period-31

/2021,Period-32/2021,Period-33/2021,Period-34/2021,Period-35/2021,Period-36/2021, Period-
37/2021,Period-38/2021,

Period-39/2021, Period-40/2021,Period-41/2021, Period-42/2021, Period-43/2021, Period-44/2021, Period-
45/2021, Period-
46/2021,Period-47/2021, Period-48/2021, Period-49/2021, Period-50/2021, Period-51/2021, Period-52/2021

Kroger Atlanta,a2011000001950rAAA,2021-03-08,Customer
Promotion,Crispy Caramel Wafer, Snacks,Upples

Matcha

Chocolate Chip, Incremental Volume,PPIV,,,,,,/,//,
1388.888333,1620.369722,1620.369722,231.481389, ;s vsrrrrrrrorrorororrororrorororrorsy
Kroger Atlanta,a2011000001950rAAA,2021-03-08,Customer
Promotion,Crispy Cream Wafer, Snacks,Upples

Golden Oat

Crumples, Incremental Volume,PPIV,,,,,,,,/s/
1388.888333,1620.369722,1620.369722,231.481389, ,, s rrrrrrrrrrrrrrrrrrrrrrrrorrrorrrny

Data Source: Promotion Measures with BOM Components
The PromotionMeasuresWithBOMComponents data source allows export of information related to promotion measures at
the Bill of Material (BOM) component or product part level in RTR.

Here's a list of dimensions required forthe PromotionMeasuresWithBOMComponents data source in the integration metadata
report configuration:

® accountdimension

® promotiondimension
® productdimension

® kpidimension

® timedimension

® productpartdimension

Example
This sample integration metadata configuration specifies product data at the product part level, and defines the fields from the
sObjects to be exported along with the KPIs.

Example

This sample integration metadata configuration specifies product data at the product part level, and defines the fields from the sObjects
to be exported along with the KPIs.

PromotionMeasuresWithBOMComponents

{

"datasources": [

25

Exporting the KPIs from Hyperforce Data Source: Promotion Measures with BOM Components

"name" :"PromotionMeasuresWithBOMComponents"

1,
"dimensions": {
"accountdimension™: {
"attributes": [
{
"label":"ExternalId",
"name" :"externalid"

"label":"Name",
"name" : "name"

"label":"AccountNUmber",
"name" : "accountnumber"

1y
"key":"externalid",
"level™:""
by
"productdimension": {
"attributes": [
{
"label":"Description",
"name":"description"

"label":"ExternalId",
"name" : "externalid"

"label":"Category",
"name" :"category"

Iy
"key":"externalid",
"level":"Product"
I
"timedimension": {
"includetotal":false,
"splitweeks":false,
"periodtype":"custom"
by
"kpidimension": {
"measures": [
{
"name" : "BOMPlanIncrVolAll",
"label":"Planned Incremental Volume"

26

Exporting the KPIs from Hyperforce Data Source: Promotion Measures with BOM Components

"promotiondimension": {
"attributes": [
{
"label™:"id",
"name":"id"

"label":"datefrom",
"name":"datefrom"

"label":"templateName",
"name":"templateName"

"label":"accountid",
"name" : "accountid"

"label":"accountplanrelevant",
"name":"accountplanrelevant"

"label":"accountexternalid",
"name" :"accountexternalid"

1,
" keyll Il id",
"leyelm.nn

}y
"productpartdimension: {
"attributes": [
{
"label":"id",
llname" H " id"

"label":"quantity",
"name" :"quantity"

"label":"externalid",
"name" :"externalid"

]I

"key":"id",

"level":""

}I
"exportsettings":{

"columns": [
"accountdimension.externalid",
"promotiondimension.id",
"promotiondimension.datefrom",

27

Exporting the KPIs from Hyperforce Data Source: Promotion and Tactic Measures

"promotiondimension.templateName",
"productdimension.externalid",
"productdimension.category",
"productdimension.description",
"productpartdimension.id",
"productpartdimension.externalid",
"productpartdimension.quantity",
"kpidimension.label",
"kpidimension.measurecode",
"timedimension.label"

1,

"csvseparator":","

by

"exportfilters":{

"conditions": [
{
"operator":"includes",
"value": [

"Kroger Atlanta"
1,

"attribute":"externalid",
"dimension":"accountdimension",
"name" :"condl"

Data Source: Promotion and Tactic Measures

An integration metadata report configuration using the data source PromotionAndTacticMeasures requires dimensions.
Here is a list of dimensions:

® accountdimension

® promotiondimension

® productdimension

® kpidimension

® timedimension
Example

This example provides details on the integration metadata JSON with data source.

Export CSV File

Example

This example provides details on the integration metadata JSON with data source.

28

Exporting the KPIs from Hyperforce

PromotionandTacticMeasures

"datasources": [
{
"name": "PromotionAndTacticMeasures"
}
] 4
"dimensions": {
"accountdimension": {

"attributes": [

{

"label": "ExternalId",
"name": "externalid"
by
{
"label": "Name",
"name": "name"
b
{
"label": "AccountNUmber",
"name": "accountnumber"
}
I
"key": "externalid",
"level": ""
br
"productdimension": {

"attributes": [

{

"label": "Description",
"name": "description"
s
{
"label": "ExternalId",
"name": "externalid"
s
{
"label": "Category",
"name": "category"
}
I
"key": "externalid",
"level": "Product"
s
"timedimension": {
"includetotal": false,
"splitweeks": false,
"periodtype": "custom"
bo
"kpidimension": {
"measures": [
{
"label": "Incremental Volume",
"name": "ProPlanIncrVolume"

29

Data Source: Promotion and Tactic Measures

Exporting the KPIs from Hyperforce Data Source: Promotion and Tactic Measures

"label": "Tactic Spend",
"name": "PlanTotalPromoCosts"
I
{
"label": "Lump Sum",
"name": "FixedAmountLumpSum"
}
]
by
"promotiondimension": {

"attributes": [

{
"label": "id",

"name": "id"
bo
{
"label": "datefrom",
"name": "datefrom"
bo
{
"label": "templateName",
"name": "templateName"
bo
{
"label": "accountid",
"name": "accountid"
I
{
"label": "accountplanrelevant",
"name": "accountplanrelevant"
I
{
"label": "accountexternalid",
"name": "accountexternalid"
}
I
"key": "id",
"level": ""
I
"tacticdimension": {

"attributes": [

{

"name": "lifttype",
"label": "lifttype"
s
{
"name": "name",
"label": "name"
s
{
"name": "liftvalue",
"label": "liftvalue"

30

Exporting the KPIs from Hyperforce

by
{

"name": "compensationmodel",
"label": "compensationmodel"
}
]I
"key": "name",
"level": ""
}
}I
"exportsettings": {
"columns": [

"accountdimension.externalid",
"promotiondimension.id",
"promotiondimension.datefrom",
"promotiondimension.templateName",
"tacticdimension.name",
"tacticdimension.compensationmodel”,
"productdimension.externalid",
"productdimension.category",
"productdimension.description",
"kpidimension.label",
"kpidimension.measurecode",
"...timedimension.label"

] ’

"csvseparator": ","
by
"exportfilters": {
"conditions": [
{
"operator": "includes",
"value": [

"Kroger Atlanta"
1,

"attribute": "externalid",
"dimension": "accountdimension",
"name": "condl"

Export CSV File

Data Source: Promotion and Tactic Measures

accountdimension.externalid, promotiondimension.id, promotiondimension.datefrom, promotiondimension.tem

plateName,

tacticdimension.name, tacticdimension.compensationmodel, productdimension.externalid, productdimension.

category,

productdimension.description, label, measurecode, Period-1/2021, Period-2/2021,Period-3/2021, Period-

4/2021,Period-5

/2021, Period-6/2021, Period-7/2021, Period-8/2021, Period-9/2021, Period-10/2021, Period-11/2021, Period-

Exporting the KPIs from Hyperforce Data Source: Promotion and Tactic Measures with BOM
Components

12/2021,

Period-13/2021, Period-14/2021, Period-15/2021,Period-16/2021,Period-17/2021,Period-18/2021, Period-
19/2021,Period-

20/2021,Period-21/2021,Period-22/2021, Period-23/2021,Period-24/2021,Period-25/2021, Period-
26/2021,Period-27

/2021,Period-28/2021,Period-29/2021,Period-30/2021, Period-31/2021, Period-32/2021,Period-
33/2021,Period-34/2021,

Period-35/2021, Period-36/2021,Period-37/2021, Period-38/2021, Period-39/2021, Period-40/2021, Period-
41/2021,Period-
42/2021,Period-43/2021,Period-44/2021,Period-45/2021,Period-46/2021, Period-47/2021, Period-
48/2021,Period-49

/2021,Period-50/2021, Period-51/2021, Period-52/2021

Kroger Atlanta,a2011000001950rAAA,2021-03-08,Customer
Promotion,,,Crispy Caramel Wafer, Snacks,Upples

Matcha

Chocolate Chip, Incremental Volume,PPIV,,,,,,/,//,
1388.888333,1620.369722,1620.369722,231.481389, ,, s rrrrrrrrrrrrrrrrrrrrrorrrorrrorrray

Kroger Atlanta,a2011000001950rAAA,2021-03-08,Customer Promotion,T-
0000064, LumpSum, Crispy Caramel Wafer, Snacks,

Upples Matcha Chocolate Chip,Lump Sum,FIXA,,,,/rrrrs
59'52381169'444444!69'444444!9'9206351!I!I!I!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Data Source: Promotion and Tactic Measures with BOM Components
The PromotionAndTacticMeasuresWithBOMComponents data source allows export of information related to promotion
and tactic measures at the Bill of Material (BOM) component or product part level in RTR.

Here's a list of dimensions required for the PromotionAndTacticMeasuresWithBOMComponents data source in the
integration metadata report configuration:

® accountdimension

® promotiondimension
® productdimension

® kpidimension

® timedimension

® productpartdimension

Example
This sample integration metadata configuration specifies product data at the product part level.

32

Exporting the KPIs from Hyperforce Data Source: Promotion and Tactic Measures with BOM
Components

Example

This sample integration metadata configuration specifies product data at the product part level.

PromotionAndTacticMeasuresWithBOMComponents

{

"datasources": [
{

"name" :"PromotionAndTacticMeasuresWithBOMComponents"

1,
"dimensions": {
"accountdimension": {
"attributes": [
{
"label":"ExternalId",
"name" :"externalid"

"label":"Name",
"name" : "name"

"label":"AccountNUmber",
"name" :"accountnumber"

I
"key":"externalid",
"level":""
}y
"productdimension": {
"attributes": [
{
"label":"Description",
"name":"description"

"label":"ExternalId",
"name" :"externalid"

"label":"Category",
"name":"category"

1,
"key":"externalid",
"level":"Product"

}y

"timedimension": {
"includetotal":false,
"splitweeks":false,
"periodtype":"custom"

by

"productpartdimension": {

33

Exporting the KPIs from Hyperforce

"attributes": [

{

i
eryu .

"label":"id"
. ’
"name":"id"

"label":"quantity",
"name" :"quantity"

"label":"externalid",
"name":"externalid"
"id"

4

"leyel":""

s

"kpidimension": {

"measures": [

{

by

"label":"Incremental Volume",
"name" :"ProPlanIncrVolume"

"label":"Tactic Spend",
"name":"PlanTotalPromoCosts"

"label":"Lump Sum",
"name" :"FixedAmountLumpSum"

"promotiondimension": {
"attributes": [

{

"label":"id",
"name" . "id"

"label":"datefrom",

"name" :"datefrom"

"label":"templateName",

"name" :"templateName"
"label":"accountid",
"name":"accountid"
"label":"accountplanrelevant",
"name" :"accountplanrelevant"

34

Data Source: Promotion and Tactic Measures with BOM

Components

Exporting the KPIs from Hyperforce

by

"label":"accountexternalid",
"name":"accountexternalid"
}
]I
"key":"id",

"level":""

"tacticdimension": {

by

"attributes": [
{
"name":"lifttype",
"label":"lifttype"

"name" : "name",
"label":"name"

}I

{
"name":"liftvalue",

"label":"liftvalue"

"name" :"compensationmodel",
"label":"compensationmodel"

i
"key" s"name" ,
"levelmnn

"exportsettings": {
"columns": [

1y

"accountdimension.externalid",
"promotiondimension.id",
"promotiondimension.datefrom",
"promotiondimension.templateName",
"tacticdimension.name",
"tacticdimension.compensationmodel",
"productdimension.externalid",
"productdimension.category",
"productdimension.description",
"productpartdimension.id",
"productpartdimension.externalid",
"kpidimension.label",
"kpidimension.measurecode",
"timedimension.label"

"csvseparator":","

by

"exportfilters":({
"conditions": [

{

35

Data Source: Promotion and Tactic Measures with BOM

Components

Exporting the KPIs from Hyperforce

Data Source: DailyRealData/DailylintData

"operator":"includes",
"value": [

"Kroger Atlanta"
1y

"attribute":"externalid",
"dimension":"accountdimension",
"name" :"condl"

Data Source: DailyRealData/DailylntData

This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows the

datasources configuration payload for DailyRealData/dailyIntData.

{

"datasources": [

"name": "{{DatasourceName}}"

1,

"dimensions": {

"kpidimension": {

"measures": [

"name": "ProPlanIncrVolume",

"label": "Planned Incr. Volume"

by
"exportsettings": {

"csvseparator": ", ",

36

Exporting the KPIs from Hyperforce

by
"exportfilters": {
"conditions": []

}
}

Data Source: AccountMeasure

Data Source: AccountMeasure

This example provides details on the integration metadata JSON with the data source. This example provides details on the integration
metadata JSON with the data source. The following example shows the datasources configuration payload for AccountMeasure.

{

"datasources": [

"name": "{{DatasourceName}}"

1,

"dimensions": {

"kpidimension": {

"measures": [

"name": "ProPlanIncrVolume",

"label": "Planned Incr. Volume"

by

"exportsettings": {

"csvseparator": ", ",

s

"exportfilters": {

Exporting the KPIs from Hyperforce

"conditions": []
}
t

Data Source: PromotionTacticDailyMeasureReal

Data Source: PromotionTacticDailyMeasureReal

This example provides details on the integration metadata JSON with the data source. This example provides details on the integration
metadata JSON with the data source. The following example shows the datasources configuration payload for

PromotionTacticDailyMeasureReal.

{

"datasources": [

{

"name": "{{DatasourceName} }"

}

1y

"dimensions": {

"kpidimension": {

"measures": [

{

"name": "ProPlanIncrVolume",

"label": "Planned Incr.

}

]

}

by

"exportsettings": {

"csvseparator": ", ",

by

"exportfilters": {

"conditions": []

}

38

Exporting the KPIs from Hyperforce

Data Source: PromotionTacticWeeklyMeasureReal

Data Source: PromotionTacticWeeklyMeasureReal

This example provides details on the integration metadata JSON with the data source. This example provides details on the integration
metadata JSON with the data source. The following example shows the datasources configuration payload for

PromotionTacticWeeklyMeasureReal.

{

"datasources": [

{

"name": "{{DatasourceName}}"

}

1s

"dimensions": {

"kpidimension": {

"measures": [

{

"name": "ProPlanIncrVolume",

"label": "Planned Incr.

}

]

}

b

"exportsettings": {

"csvseparator": ", ",

by

"exportfilters": {

"conditions": []

}

39

Exporting the KPIs from Hyperforce Data Source: AccountProductMeasure

Data Source: AccountProductMeasure

This example provides details on the integration metadata JSON with the data source. The following example shows the datasources
configuration payload for AccountProductMeasure

{

"datasources": [

"name": "{{DatasourceName}}"

1,
"dimensions": {
"kpidimension": {

"measures": [

"name": "ProPlanIncrVolume",

"label": "Planned Incr. Volume"

by

"exportsettings": {
"csvseparator": ", ",
}r

"exportfilters": {

"conditions": []

}

40

Exporting the KPIs from Hyperforce

Data Source: ProductMeasure

Data Source: ProductMeasure

This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows the

datasources configuration payload for ProductMeasure.

{

"datasources": [

"name": "{{DatasourceName}}"

i

"dimensions": {

"kpidimension": {

"measures": [

"name": "ProPlanIncrVolume",

"label": "Planned Incr.

by

"exportsettings": {

"csvseparator": ", ",

s

"exportfilters": {

"conditions": []

}

41

Exporting the KPIs from Hyperforce

Data Source: WeeklyMeasureReal

Data Source: WeeklyMeasureReal

This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows the
datasources configuration payload for Wweek1yMeasureReal.

{

"datasources": [

"name": "{{DatasourceName}}"

i

"dimensions": {

"kpidimension": {

"measures": [

"name": "ProPlanIncrVolume",

"label": "Planned Incr.

by

"exportsettings": {

"csvseparator": ", ",

s

"exportfilters": {

"conditions": []

}

42

Exporting the KPIs from Hyperforce

Data Source: WeeklyMeasurelnt

Data Source: WeeklyMeasurelnt

This section provides sample code snippets for the integration metadata JSON with the data source. The following example shows the

datasources configuration payload for weeklyMeasureInt.

{

"datasources": [

"name": "{{DatasourceName}}"

i

"dimensions": {

"kpidimension": {

"measures": [

"name": "ProPlanIncrVolume",

"label": "Planned Incr.

by

"exportsettings": {

"csvseparator": ", ",

s

"exportfilters": {

"conditions": []

}

43

Exporting the KPIs from Hyperforce

CGCloud Namespace

CGCloud Namespace

The CGC1oud namespace provides classes that allow you to customise Real Time Reporting (RTR)
data extraction from Apex.

The following are the classes in the CGCLloud namespace.

RTRReportResult Class
Use this class to execute the Trade Promotion Management Real Time Reporting (RTR) report
and access the report data.

ReportComponent Class
Represents a Real Time Reporting (RTR) report Ul component. This is an abstract class and can't
be instantiated.

FlatList Class

Available in: Lightning
Experience in Enterprise and
Unlimited Editions that have
Consumer Goods Cloud
Trade Promotion
Management enabled.

Represents a Real Time Reporting (RTR) report Ul Flatlist component. This class extends the ReportComponent class.

FlatListRowlterable Class

Represents a Real Time Reporting (RTR) report Ul Flatlist component set of rows. This class implements the Tterable interface

that allows it to be used in batch processes.

FlatListRow Class
Represents a Real Time Reporting (RTR) report Ul Flatlist component single rows.

ScoreCard Class

Represents a Real Time Reporting (RTR) report scorecard component. This class extends the ReportComponent class.

RTRReportResult Class

Use this class to execute the Trade Promotion Management Real Time Reporting (RTR) report and access the report data.

Namespace
CGCloud

Example

Here's an example of how to use Apex to run the Trade Promotion Management Real Time Reporting reports.

cgcloud.RTRReportResult reportResult = cgcloud.RTRReportResult.execute (

'Promotion Report', // Report Name
'0001', // Sales Org
new Map<String, Object> { // Report filters
'periodmonth' => new Map<String, Object> {
'start' => 0,
'total' => 12,
'yvear' => 2022
by

'accountsfids' => new List<String> {'001SLO000004dfgYAA'},
'productsfids' => new List<String> {'01tSLO00000180oNYAQ'},

44

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_classes_iterable.htm

Exporting the KPIs from Hyperforce RTRReportResult Class

'promo_templatesfid' => new List<String> {'a2USL0000000js12AA"',
'a2USL0000000jrz2AA" },
'promo phase' => new List<String> {
'Planning’,
'Modeling',
'Committed’',
'ForApproval'
}y

'productlevel'=> 'product'
) i
This returns an instance of a RTRReportResult object after running the report. Use the methods provided by the
RTRReportResult class to access the report data.

Filters can be specified for the report execution. The report filters specified match the filters defined in the RTR Report Metadata
configuration (RTR Report Configuration SObject record). Depending on the filter type, the expected filter must have a specific structure
or type.

singleselect

Here's an example of how the report's filter metadata looks:

{

"type": "singleselect",
"name": "kpigroup",
"label": "KPI Set",
"source": "KPIGroup"

}

Here's an example of how the filter using Apex looks:

'kpigroup' => 'Plan',

multiselect

Here's an example of how the report's filter metadata looks:

{

"type": "multiselect",

"name": "promo phase",

"label": "Promotion Phase",

"source": "PromotionPhase",

"defaultValue": [
"Planning"

}

Here's an example of how the filter using Apex looks:

'promo_phase' => new List<String> {
'Planning’,
'Modeling',
'Committed’',
'ForApproval'

45

Exporting the KPIs from Hyperforce

by

periodmonth

Here's an example of how the report's filter metadata looks:

{

"label": "Period",
"type": "periodmonth",
"name": "periodmonth"

}

Here's an example of how the filter using Apex looks:

RTRReportResult Class

@ Nofte: The filter must be represented by an object with the year, start,and total properties.

'periodmonth' => new Map<String, Object> {
'start' => 0, // The starting month. A value between

'total' => 12, // How many month data to retrieve.

'year' => 2022 // The starting year
I

periodweek

Here's an example of how the report's filter metadata looks:

{

"label": "Period",
"type": "periodweek",
"name": "periodweek"

}

Here's an example of how the filter using Apex looks:

0

(January) and 11 (December)

A value between 1 and 18

@ Note: The filter must be represented by an object with the year, start,and total properties.

'periodweek' => new Map<String, Object> {

'start' => 0, // The starting Week. A value between 0 (First week of the year)

to 70

'total' => 12, // How many weeks data to retrieve. A value between 1 and 100

'year' => 2022 // The starting year
bo

hidden

Here's an example of how the report's filter metadata looks:

{

"label": "Not Seen",

"type": "promo s textfield",
"name": "hidden",

"defaultValue" : "<<FIRST VALUE>>",

46

Exporting the KPIs from Hyperforce

"source" : [{
"label" "example",
"value" "valuel"

H
}

Here's an example of how the filter using Apex looks:

@ Note: The filter must be represented with a string.

'promo s textfield' => 'valuel',

fixed

Here's an example of how the report's filter metadata looks:

{

"label"™: "Fixed Filter",
"type": "promo s textfield2",
"name": "fixed",
"defaultvalue" "<<FIRST VALUE>>",
"source" : [{

"label™ "example",

"value" "valuel"

H
}

Here's an example of how the filter using Apex looks:

@ Note: The filter must be represented with a string.

'promo s textfield2' => 'valuel',

subaccount

Here's an example of how the report's filter metadata looks:

{

"type": "subaccount",

"name": "subaccountsfids",
"label": "Sub Accounts",
"accountfilter": "accountsfids",
"source": "SubAccounts"

}
Here's an example of how the filter using Apex looks:

@ Note: The filter must be represented with a List of strings.

'subaccountsfids' => new List<String> {

47

'001SL0O000004dfgYAA"

by

RTRReportResult Class

Exporting the KPIs from Hyperforce RTRReportResult Class
RTRReportResult Methods

RTRReportResult Methods

The following are methods for RTRReportResult.

execute(String name, String salesOrg, Map<String, Object> filters)
Execute a RTR Report and retrieve all the Report data.

getComponent(String name)
Retrieve an instance of the Reporting Ul component.

execute(String name, String salesOrg, Map<String, Object> filters)

Execute a RTR Report and retrieve all the Report data.

Signature

static RTRReportResult execute (String name, String salesOrg, Map<String, Object> filters)

Parameters

name

Type:String
The name of the RTR report configuration to execute.

salesOrg

Type:String
The Salesforce org name to execute the report on.

filters
Type:String

Report filters as defined in the RTR report metadata.

The filters attribute must align with the expected filters as defined in the RTR reporting configuration.

Return Value

Type:RTRReportResult

getComponent(String name)

Retrieve an instance of the Reporting Ul component.

Signature

static RTRReportResult execute (String name, String salesOrg, Map<String, Object> filters)

48

Exporting the KPIs from Hyperforce ReportComponent Class

Parameters

name

Type:String

The name of the reporting component as defined in the report metadata uimapping.

Return Value
Type:ReportComponent

e For the Flatlist component, specify the response to RTRReportResult.FlatList

e For the Scorecard component, specify the response to RTRReportResult.ScoreCard

ReportComponent Class

Represents a Real Time Reporting (RTR) report Ul component. This is an abstract class and can't be instantiated.

Namespace
CGCloud

FlatList Class

Represents a Real Time Reporting (RTR) report Ul Flatlist component. This class extends the ReportComponent class.

Namespace
CGCloud

Usage

The RTRReportResult.FlatList classisused to access Flatlist information from RTR reports.

Example
Here's an example of how to extract the Flatlist data from the RTRReportResult object.

// Extract the Flatlist from the result

// - The component name must match its 'uimapping' name

// - The result must be casted to the correct type.

cgcloud.RTRReportResult.Flatlist flatlist = (cgcloud.RTRReportResult.Flatlist)
reportResult.getComponent ('FlatList"') ;

// Retrieve the rows Iterable object
// All rows can be retrieved with the parameter-less "getRows"
cgcloud.RTRReportResult.FlatlistRowIterable iterator = flatlist.getRows ('Promo-Product') ;

// Iterate over all the rows

while (iterator.hasNext()) {
cgcloud.RTRReportResult.FlatlistRow row = iterator.next();

49

Exporting the KPIs from Hyperforce FlatList Class

// Extract column data. We assume the specified columns are in the report

// Dimension information can be extracted with <dimension name>.<field>
String promotionId = String.valueOf (row.getColumnValue ('promotiondimension.id'));
// KPI Value information can be extracted by querying the KPI Name

Decimal kpiValue = (Decimal) row.getColumnValue ('ProPlanIncrVolume');
system.debug ('Values: ' + promotionId + ' ' + kpiValue);
}
FlatList Methods
FlatList Methods

The following are methods for FlatList.

getRows()
Returns aninstance ofa FlatlistRowIterable object with all the rows contained in the Flatlist.

getRows(String rowTypeFilter)
Returnsaninstanceofa FlatlistRowIterable object with all the rowsthat match the specified row type filter. The available
values for the row type filter can be extracted with the getRowTypes method.

getColumns()
Returns a set that includes all the available column names in the Flatlist.

getRowTypes()
Returns all the available row type filters present in the Flatlist. The row type filters can be used to filter the dataset.

getRows|)

Returns aninstance ofa FlatlistRowIterable object with all the rows contained in the Flatlist.

Signature

static RTRReportResult.FlatList getRows ()

Return Value

Type:FlatlistRowlterable
getRows(String rowTypeFilter)
Returnsan instance of a FlatlistRowIterable object with all the rows that match the specified row type filter. The available

values for the row type filter can be extracted with the getRowTypes method.

Signature

static RTRReportResult.FlatList getRows (String rowTypeFilter)

50

Exporting the KPIs from Hyperforce FlatListRowlterable Class

Parameters

rowTypeFilter
Type:String

The value of the row type to filter the rows.

Return Value

Type:FlatlistRowlterable

getColumns)
Returns a set that includes all the available column names in the Flatlist.
The method returns the following:

e Dimension attributes—Include the name of the dimension and a report field separated by a dot. For example,

productdimension.id, promotiondimension.id,and promotiondimension.phase

e KPI columns—Include the KPI name. For example, ProPlanincrVolume.

Signature

static RTRReportResult.FlatList getColumns ()

Return Value

Type:Set<String>

getRowTypes|)

Returns all the available row type filters present in the Flatlist. The row type filters can be used to filter the dataset.

Signature

static RTRReportResult.FlatList getRowTypes ()

Return Value

Type:Set<String>

FlatListRowlterable Class

Represents a Real Time Reporting (RTR) report Ul Flatlist component set of rows. This class implements the ITterable interface that
allows it to be used in batch processes.

Namespace
(CGCloud

FlatlistRowlterable Methods

51

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_classes_iterable.htm

Exporting the KPIs from Hyperforce FlatListRow Class

FlatlistRowlterable Methods

The following are methods for FlatlistRowIterable.

hasNext()
Returns true if a record can be retrieved.

next()
Returns the next record in the dataset.

hasNext()

Returns true if a record can be retrieved.

Signature

public RTRReportResult.FlatlistRowIterable hasNext ()

Return Value

Type:Boolean

next()

Returns the next record in the dataset.

@ Note: If no more records are present in the dataset, this method returns an error.

Signature

public RTRReportResult.FlatlistRowIterable hasNext ()

Return Value

Type:FlatlistRow

FlatListRow Class

Represents a Real Time Reporting (RTR) report Ul Flatlist component single rows.

Namespace
CGCloud

FlatListRow Methods

FlatListRow Methods

The following are methods for FlatListRow.

52

Exporting the KPIs from Hyperforce ScoreCard Class

getColumnValue(String columnName)
Extracts the column value specified for the column name Row type filters can be used to filter the dataset.

getColumnValue(String columnName)

Extracts the column value specified for the column name Row type filters can be used to filter the dataset.

Signature

public RTRReportResult.FlatListRow getColumnValue (String columnName)

Parameters

columnName

Type:String
The name of the column whose value is to be retrieved.
The column name has the following format:

e Dimension attributes—Include the name of the dimension and a report field separated by a dot. For example,

productdimension.id, promotiondimension.id,and promotiondimension.phase

e KPI columns—Include the KPI name. For example, ProPlanincrVolume.

Return Value
Type:Object

ScoreCard Class

Represents a Real Time Reporting (RTR) report scorecard component. This class extends the ReportComponent class.

Namespace
(CGCloud

Usage

The RTRReportResult.ScoreCard classis accessible outside of the managed package.

Example
Here's an example of how to extract the ScoreCard data from the RTRReportResult object.

// Extract the ScoreCard from the result

// - The component name must match its 'uimapping' name
// - The result must be casted to the correct type.
cgcloud.RTRReportResult.ScoreCard scoreCard = (cgcloud.RTRReportResult.ScoreCard)

reportResult.getComponent ('ScoreCard’') ;

// Extract KPI data. We assume the specified KPI's are in the configured scorecard
Decimal kpiValue = scoreCard.getValue ('ProPlanIncrVolume');

53

Exporting the KPIs from Hyperforce ScoreCard Class

system.debug ('Value: ' + kpiValue);

ScoreCard Methods

ScoreCard Methods

The following are methods for ScoreCard.

getValue(String kpiName)
Returns true if a record can be retrieved.

getValue(String kpiName)

Returns true if a record can be retrieved.

Signature

public RTRReportResult.ScoreCard getValue (String kpiName)

Parameters

kpiName
Type:String

The name of the KPI from which the value is to returned. The key performance indicator (KPI) must be included in the scorecard.

Return Value

Type:Decimal

54

CHAPTER 3 Customizing Real Time Reporting (RTR) with APEX

In this chapter ...

e Create a Fund Report
with Custom Apex
Datasources

e Use Case: Fund
Amount

e Use Case: Fixed
Funds

e Create Reports with
Custom Apex Filter

e Classes

You can create a fund report with custom APEX data sources to integrate KPI values that are obtained
from other sources such as a Salesforce attribute. You can also create reports with custom APEX filters,
along with the standard filters.

Although requirements vary across clients and markets, these general requirements apply for different
processes:

e Strategic Planning: Provides flexible views on business metrics (profit, profit margin, ROI, costs,
revenue, and so on) on either a regional or national level (across many or all key accounts) to drive
future recommendations for target volumes, target revenues, marketing initiatives, brand initiatives,
and pricing.

¢ Fund Management: Provides you with a hollistic view of the budgeting not only within but also
across funds prior to, during, and after a financial year, so that you can control the financials on both
an overall and granular level.

e Account Planning: Provides you with flexible views on a single account to monitor business
development within the full P&L (Profit and Loss) for the relevant brands and categories and on a
detailed plan product level.

e Promotion Planning: Provides overviews on key promotion metrics (profit, profit margin, RO, costs,
revenue, etc.) for a single account and time frame on both summary and detailed levels to conduct
pre-event and post-event analysis.

e Promotion Execution: Tracks claims against promotions or tactics in promotion-based reports and
fund reporting to be always aware of missing claim information and outstanding deductions.

¢ Post-Event Analysis: Evaluates the success of single promotional events, brand and marketing
initiatives across accounts, and the overall success rate on account-related contracts and their impact
on single accounts.

Real Time Reporting supports these requirements by providing a technical foundation to retrieve the
important business metrics and allowing flexible configurations to design reports according to client
requirements.

Example: Consider this scenario:

During an iterative planning processes, John—the Key Account Manager (KAM), identifies gaps

in promotion planning and makes the relevant changes. Real Time Reporting (RTR) helps him to
view the impact on his account directly after releasing the changes, allowing him to create a more
fruitful Account Plan for his retail partner. The immediate effect of changes that reflect in the report
helps him to act instantly and adapt promotion planning on the fly. With RTR, John can view the
impact on a summary level by either brand or category and on a detailed plan product level.

These are the five key functional benefits of RTR:

e Supports the full TPM closed loop with real-time insights to drive the decision-making process.

e Provides a consistent user experience for CG Cloud TPM users.

55

Customizing Real Time Reporting (RTR) with APEX

e Builds the trust of users because the numbers that are shown in RTR and other application areas (for
example, P&L sheets) are consistent.

e Supports the export of data in MS-Excel format for all reports that allow users to work further on
exported data.

e Allows you to define user-specific views so that users can switch between reports instantly.

56

Customizing Real Time Reporting (RTR) with APEX Create a Fund Report with Custom Apex Datasources

Create a Fund Report with Custom Apex Datasources

The data that's required for the reports is available on a Hyperforce server and is interfaced via regular data sources such as
AccountMonthlyMeasures or AccountWeeklyMeasures.

If you want to integrate KPI values that's obtained from other sources such as a Salesforce attribute, use Real Time Report (RTR) to add
a custom datasource. A custom datasource is an Apex endpoint that delivers KPI values to the report.

RTR offers you these custom data sources:
e RTRSalesforceMonthlyMeasures: Used to integrate monthly values for KPIs.
e RTRSalesforceWeeklyMeasures: Used to integrate weekly values for KPIs.

Depending on your report, you can use either weekly or monthly custom data sources to fetch KPIs for that time level. Ensure that you
alsoimplement an Apex endpoint that corresponds to these data sources that can deliver these KPIs in the corresponding time granularity
(week or month).

Snippet to Define Custom Datasources

"datasources": [
{
"name": "AccountMonthlyMeasures"
by
{
"name": "RTRSalesforceMonthlyMeasures"

}
I

In addition to defining the datasource in the report configuration, ensure that you also create a base Apex class (based on your use case)
and a logic Apex class.

Use Case: Fund Amount

The Fund object stores the fund amount in Salesforce. To show a fund amount for a particular category or brand, fetch it from the
Salesforce database by using custom data sources.

Prerequisites

1. Create aKPIdefinition for the fund amount. For this KPI definition, ensure that the object scope is Accountand it has the writeback
feature enabled.

@ Nofte: This KPI definition only provides a name for the external KPI. The Apex class defines how to input values in this KP!.

2. Enter the name of the datasource table as Account Measure.

3. Add the KPI'to the Reporting KPI set that's used in the report.

57

Customizing Real Time Reporting (RTR) with APEX TPM_RTRReportingWrapper_AMS (Base Class)

Report Configuration

Apart from defining RTRSalesforceMonthlyMeasures as an additional datasource in the report configuration, ensure that you add the
newly created KPI to the list of measures.

{
"label": "Fund Amount",
"name": "myFndAmount"

by

Apex Classes

The custom data sources are related to two base Apex classes. You can use both classes only for code-routing and not to perform any
actual logic, queries, or calculations; this is because all reports share these classes.

@ Note: In RTR, integration users run both the Apex classes, not the user who opens the report. As a result, integration users must
have access permissions to the used Apex classes.

TPM_RTRReportingWrapper_AMS (Base Class)

TPM RTRReportingWrapper AMS isa base Apex class that receives the payload that's constructed by filter selection in the
report. The payload contains the KPIs that are defined in the report, the customer, dates, and other important attributes. It then
deserializes the payload into an object that can be used in all other related classes.

TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)

TPM RTRSalesforceMonthlyMeasures AMS isone of the base classes that's used for code-routing and is required to
retrieve the information by a Salesforce REST endpoint (/services/apexrest/RTRSalesforceMonthlyMeasures).

TPM_RTRFunds_AMS (The Logic Class)
Use RTRSalesforceMonthlyMeasures as the datasource to execute the base classes by every report.

TPM_RTRReportingWrapper_AMS (Base Class)

TPM RTRReportingWrapper AMS isabase Apex class that receives the payload that's constructed by filter selection in the
report. The payload contains the KPIs that are defined in the report, the customer, dates, and other important attributes. It then deserializes
the payload into an object that can be used in all other related classes.

Note: Ensure that this wrapper class name is the same as the one in the Fund Amount use case. However, to incorporate this
class with the fund amount scenario, modify the class.

Sample Code

global with sharing class TPM RTRReportingWrapper AMS {
global class Periodmonth ({

global Integer year;

global Integer start;

global Integer total;

}

global class InputPayload {
global List<String> accountsfids;
global List<String> productsfids;
global Periodmonth periodmonth;
global String timelevel;

58

Customizing Real Time Reporting (RTR) with APEX TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)

global List<String> readproductsfids;
global List<String> kpis;

global String responsetype;

global Boolean error;

}

global class OutputRecord {

global String pdim;

global String kdim;

global String tdim;

global Double v;

global OutputRecord(String pdim, String kdim, String tdim, Double v) {
this.pdim = pdim;

this.kdim = kdim;

this.tdim = tdim;

this.v = v;

}

}

}

TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)

TPM RTRSalesforceMonthlyMeasures AMS isone of the base classes that's used for code-routing and is required to retrieve
the information by a Salesforce REST endpoint (/services/apexrest/RTRSalesforceMonthlyMeasures).

The system sends the selected filter criteria and the list of KPIs as input payload to the REST endpoint. The APEX REST method then
returns the fund amounts as output records to show in the report.

The fund values are returned by a function that's executed when a POST request is sent.

These steps are run within the Apex function:

1. The payload with filter values is converted into a format that can be used in the Apex code.
2. Thetime range (start and end date) is built by the selected month information.

3. The function that contains the logic for this use case is invoked.

Sample Code

@RestResource (urlMapping="'/RTRSalesforceMonthlyMeasures/*")

global with sharing class TPM RTRSalesforceMonthlyMeasures

{

@httpPost

global static List<TPM RTRReportingWrapper AMS.OutputRecord> doPost () {

String requestBody = RestContext.request.requestbody.tostring();

TPM RTRReportingWrapper AMS.InputPayload payload = (TPM RTRReportingWrapper AMS.InputPayload)
JSON.deserialize (requestBody , TPM RTRReportingWrapper AMS.InputPayload.class);

Date inputDateBegin = Date.newlInstance (payload.periodmonth.year,payload.periodmonth.start,1);
Date inputDateEnd = inputDateBegin.addMonths(payload.periodmonth.total);

return TPM RTRFunds AMS.doPost (inputDateBegin , inputDateEnd, payload);

}

}

TPM_RTRFunds_AMS (The Logic Class)

Use RTRSalesforceMonthlyMeasures as the datasource to execute the base classes by every report.

59

Customizing Real Time Reporting (RTR) with APEX Use Case: Fixed Funds

This function performs these steps:
1. Defines a list of output record items.

2. Retrieves the fund amounts from Salesforce data by using SOQL, depending on the use case. In this example, only funds at the
category level are shown. You can use the category filter as the selection criterion. The funds are also limited to the account and
time frame that's selected in the filter.

3. Forevery result record, the function creates an output record and adds it to the list of results.

global with sharing class TPM RTRFunds AMS({

global static List<TPM RTRReportingWrapper AMS.OutputRecord>
doPost (Date inputDateBegin , Date inputDateEnd,

TPM RTRReportingWrapper AMS.InputPayload payload) {
List<TPM_RTRReportingWrapper AMS.OutputRecord> output =

new List<TPM RTRReportingWrapper AMS.OutputRecord> ();
String pdim ;

String kdim ;

String tdim ;

Double v ;

AggregateResult[] groupedResults = [SELECT cgcloud Anchor Product c,
sum (cgcloud Deposits Approved c) sumValue

from cgcloud Fund c

WHERE cgcloud Anchor Product c¢ IN :payload.productsfids
AND cgcloud Anchor Account c IN :payload.accountsfids

AND ((cgcloud Valid From c¢ <= :inputDateEnd

AND cgcloud Valid From c >= :inputDateBegin)

OR (cgcloud Valid Thru c¢ <= :inputDateEnd

AND cgcloud Valid Thru c¢ >= :inputDateBegin))

group by cgcloud Anchor Product c

17

for (Integer i1i=0; i < groupedResults.size(); i++) {

v =(Double) groupedResults[i].get ('sumValue');

pdim =(String) groupedResults[i].get('cgcloud Anchor Product c');
kdim = 'myFndAmount';

tdim = 'Total';

output.add(new TPM RTRReportingWrapper AMS.OutputRecord(pdim ,kdim, tdim, v));
}

return output;

}

}

Use Case: Fixed Funds

In this use case, the custom datasource is used to include a fixed fund KPl'in Real Time Report (RTR). As a result, the fixed funds are
aggregated on both category and brand levels. One visualization option is this report, in which a brand value is only available for one
brand. However, this value is not summed up to the category level. For the calculation of category levels, the data that's stored on
Salesforce and Processing Services is used.

Prerequisites

1. Create a KPI definition for the fund amount. For this KPI definition, ensure that the object scope is Account and it has the writeback
feature enabled.

60

Customizing Real Time Reporting (RTR) with APEX

Use Case: Fixed Funds

@ Nofte: This KPI definition only provides a name for the external KPI. The Apex class defines how to enter values in this KP!.

2. Enter the name of the datasource table as Account Measure.

3. Add the KPI to the Reporting KPI set that's used in the report.

1. Create new KPI definitions for each use case, such as Fixed RDF Brand. Ensure that the object scope of these KPI definitions is Account.

Create a custom metadatatype, TPM_RTRRouting _mdt, whichislinked to the KPI definition, sales organization, fund template,

Description

Determines the KPI to which the fixed funds are to be attributed.
For example, All Transaction Row Records, in which the target fund
has the RDF Brand Fund that belongs to the Fixed RDF KPI.

Name of the Fixed Funds KPI (such as FXDR and FTDR) that
determines the data which should be returned from the logicin the
Apex class.

Fixed funds can be stored on different levels (currently, category
and brand). This is needed to determine the method that should
be run. (category and brand use different logic.)

2. Enter the name of the datasource table as Account Measure.
3. Define these KPI definitions in the report configuration
4.
and KPI levels.

Field APl Name Type

Fund_Template__c Text

KPI_Definition__c Text

KPI_Level__c Text

Sales_Org__c Text

Sales organization to which the record belongs.

5. Onthe cgcloud Fund Transaction Row__ c object,add a new field.

Field APl Name Type
TPM_RTRAmMount__c Formula (Double)

Description Formula

Fixed Funds for Brands are IF(ISPICKVAL(
calculated based on the value | cgcloud__Transaction_Type__c

of the Amount field on the ,'Withdraw'),
transaction record. Depending cgcloud__Amount__c* (-1),
on the transaction type cgcloud__Amount__¢)

(withdraw or deposit), the sum
of the aggregated amounts
either increases (deposit) or
decreases (withdraw).

The formula field turns the
amounts of records with
transaction type = deposit to
negative values. Instead of
aggregating the amount field,
you can aggregate the
TPM_RTR_Amount__c field.

61

Customizing Real Time Reporting (RTR) with APEX TPM_RTRReportingWrapper_AMS (Base Class)

6. On the cgcloud__Fund_Transaction_Header__c object, add a new field.

Field APl Name Type Description

TPM_Product__c Lookup(Product) Used to link products to the Multi-Fund
Transaction object.

7. Onthe cgcloud__Fund_Template__c object, add a new field.

Field APl Name Type Description

TPM_RTRRoutingFundType__c Picklist Used to filter fund template records. The
picklist values of this field are fund
template record names.

@ Note: Ensure that you create new fund templates for each case, such as RDF Brand Fund. Maintain the newly created
TPM_RTRRoutingFundType__c field on the fund template.

Apex Classes

Custom data sources are related to two base Apex classes. Because all reports share these classes, you can use both classes only for
code-routing, not to perform any actual logic, queries, or calculations.

@ Note: InRTR, the integration user runs both Apex classes, not the user who opens the report. As a result, the integration user
must have access permissions for the used Apex classes.

TPM_RTRReportingWrapper_AMS (Base Class)

TPM RTRReportingWrapper AMS isa base class that contains the structures to load the input. This class contains the list
of KPIs and filter criteria that you chose in the report—selected time frame or the list of customers and products. Depending on
various use cases, the payload method can contain different attributes.

TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)

TPM RTRSalesforceMonthlyMeasures AMS is the second base class that's used for code-routing and is required to
retrieve the information by a Salesforce REST endpoint (/services/apexrest/RTRSalesforceMonthlyMeasures).
TPM_RTRFixedFunds_AMS (The Logic Class)

The actual logic is defined in this class. The benefit of routing to a separate third class is that the code runs only when needed.

TPM_RTRReportingWrapper_AMS (Base Class)

TPM RTRReportingWrapper AMS isa base classthat contains the structures to load the input. This class contains the list of KPls
and filter criteria that you chose in the report—selected time frame or the list of customers and products. Depending on various use
cases, the payload method can contain different attributes.

The OutputRecord method returns product (pdim), KPI (kdim), time (tdim),and values (v).Thevaluesare
defined in the actual logic class, which is TPM_RTRFunds_AMS in this use case. For example, you can use tdim to display values on
amore granular view—weeks, months, or quarters. If a report meta has monthly values, the external datasource can also provide monthly
values.

62

Customizing Real Time Reporting (RTR) with APEX TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)

@ Nofe: Ensure that kdim contains the name of the fund KPI.
Sample Code

global with sharing class TPM RTRReportingWrapper AMS
{

global class PeriodMonth ({

global Integer year;

global Integer start;

global Integer total;

}

global class InputPayload{

global List <String> accountsfids;
global List <String> productsfids;
global PeriodMonth periodmonth;
global List <String> kpis;

global String responsetype;

global String callingsfuser;

}

global class OutputRecord{

global String pdim;

global String kdim;

global String tdim;

global Double v;

global OutputRecord(String pdim, String kdim , String tdim , Double v) {
this.pdim = pdim;

this.kdim = kdim;

this.tdim = tdim;

this.v = v;

}

}

}

TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)

TPM RTRSalesforceMonthlyMeasures AMS isthe second base class that's used for code-routing and is required to retrieve
the information by a Salesforce REST endpoint (/services/apexrest/RTRSalesforceMonthlyMeasures).

@RestResource (urlMapping="'/RTRSalesforceMonthlyMeasures')

global with sharing class TPM RTRSalesforceMonthlyMeasures AMS {
@HttpGet

global static String doGet () {

return 'Hello world!';

}

@HttpPost
global static List<TPM RTRReportingWrapper AMS.OutputRecord> doPost () {
RestContext.response.statuscode = 200;

These are the code details:

63

Customizing Real Time Reporting (RTR) with APEX TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)

1. The payload is received, and is then turned into an object of our wrapper class. The payload contains the KPIs that are defined in the

report configuration.

String requestBody = RestContext.request.requestBody.toString() ;
TPM RTRReportingWrapper AMS.InputPayload payload =
(TPM_RTRReportingWrapper AMS.InputPayload) JSON.deserialize (requestBody,
TPM RTRReportingWrapper AMS.InputPayload.class);

System.debug (payload) ;

if (payload.error == true) {

RestContext.response.statuscode = 500;

return null;

}

2. The integration user runs the base classes, not the user who opens the report. As a result, ensure that you query an account on the

payload that the user selected to retrieve the actual user's sales org.

//Get Sales Org of the user who initiated the report

Account acc = [SELECT Id, cgcloud Sales Org c¢ FROM Account WHERE Id IN
:payload.accountsfids LIMIT 1];

String userSFOrg = acc.cgcloud Sales Org c;

Helper maps and lists are created.

//Helper Maps/List

List<TPM RTRReportingWrapper AMS.OutputRecord> output = new

List<TPM RTRReportingWrapper AMS.OutputRecord>();

Map<String, TPM RTRRouting mdt> categoryKPIs = New Map<String, TPM RTRRouting mdt>();
Map<String, TPM RTRRouting mdt> brandKPIs = New Map<String, TPM RTRRouting mdt>();

4. The dates from the payload are converted to a workable format.

5.

//Loading and transforming the dates selected in the filter

Date inputDateBegin = Date.newlInstance (payload.periodmonth.year,
payload.periodmonth.start+1l, 1);

Date inputDateEnd = inputDateBegin.addMonths (payload.periodmonth.total) .addDays (-1);

The Apex class contains use case-specific code. Here, you can query all custom metadata records that were defined earlier and that
belong to the sales org of the user. Then you can check whether the payload contains any KPIs in the custom metadata records. If
it does, verify the level on which those KPIs are available and then add them to a dedicated map (category KPIs or brand KPIs map).

//Check against custom metadata if payload contains relevant KPIs and sort them
For (TPM RTRRouting mdt kpi : [SELECT Id, KPI Definition ¢, KPI Level ¢,

Fund Template c¢, Sales Org c¢ FROM TPM RTRRouting mdt WHERE Sales Org c = :userSFOrg]) {
If (payload.kpis.contains (kpi.KPI Definition c)) {
If (kpi.KPI Level c == 'Category'){

categoryKPIs.put (kpi.KPI Definition ¢, kpi);
}

Else If(kpi.KPI Level c¢ == 'Brand') {
brandKPIs.put (kpi.KPI Definition c¢, kpi);

}

}

}

64

Customizing Real Time Reporting (RTR) with APEX TPM_RTRFixedFunds_AMS (The Logic Class)

6. You can check whether the two maps (brandKPIs and categoryKPIs) contain any values — if not, nothing happens. If they do, the
actual class where all the logic happens is called and parameters such as the payload are passed.

//Run logic

try{

If(!categoryKPIs.isEmpty()) {

TPM RTRFixedFunds AMS.getCategory (inputDateBegin, inputDateEnd, payload, output,
categoryKPIs) ;

}

If(!brandKPIs.isEmpty()) {

TPM RTRFixedFunds AMS.getBrand (inputDateBegin, inputDateEnd, payload, output, brandKPIs);
}

}

catch (Exception ex) {

RestContext.response.statuscode = 400;

System.debug (ex) ;

}

return output;
}
}

TPM_RTRFixedFunds_AMS (The Logic Class)

The actual logic is defined in this class. The benefit of routing to a separate third class is that the code runs only when needed.

For example, the Apex classes run only when the report contains the custom datasource and any of the KPIs defined in the custom
metadata. If the report contains fixed funds KPIsonly on the brand level, then only that particular method is run while the method
that's related to categories is skipped. Also if the report contains fixed funds on brand level for only one particular template, then only
this particular KPI'is aggregated, calculated, and returned.

It's important to see how to write back values to the report. For the fixed funds logic, grouping, aggregations, and calculations are
performed. And when that logic is performed, the values are written back to the report. This is done by adding the values to the output
list and then returning it.

The outputRecord method in the wrapper class creates the output list and contains product, KPI, time, and value.

Create Reports with Custom Apex Filter

Along with standard filters, you can also define custom Apex filters that reference the attributes of the Promotion object.

Core examples are filtering by the promotion type and phase of the promotion. A custom example is linking one promotion to one
specific event.

With that, the main benefit of a custom Apex filter is to offer the opportunity to filter promotions by promotion attributes that aren’t
covered by standard filters. In addition to that, if all the values of the standard filter aren't visible, you can limit the available filter values
of a promotion attribute for a specific real-time report.

@ Note: Custom Apex filters work only with single-select picklists, not with multi-select picklists.

Report Configuration

In the report configuration, ensure that you define the custom Apex filters in the same section as standard filters.

65

Customizing Real Time Reporting (RTR) with APEX Classes

@ Note: You can't use a standard and custom filter with the same name (for example, promo_templatesfid) in the same report
configuration.

@ Example: Sample Code
{

"type": "singleselect",

"label": "Promotion Type",

"name": "promo templatesfid",
"source": {

"class": "TPM RTRPromoTypeFilter AMS",
"method": "Event"

I

"defaultValue": "<<FIRST VALUE>>"

Here, method is the name of a parameter. This parameter is the Developer Name ¢ field of a metadata type record.

However, you can also write a filter without parameters and discard the method line and modify the Apex code accordingly.

Apex Class

To implement the new filter logic, create an Apex class. You can construct the code for all Apex filters as specified here:
1. Implement System.Callable.

2. Retrieve the user's sales organization for later use.

3. Define the custom logic that returns a map with values.

4

Define a public object call that the report always initially calls. When the public object is called, it calls the method with the custom
logic and passes a string parameter (based on the value of method in the report configuration).

Classes

Detailed samples of the classes that are used in report configurations.

TPM_RTRFixedFunds_AMS
Sample of the TPM_RTRFixedFunds_AMS class.

TPM_RTRPromoTypeFilter_AMS
Sample of the TPM_RTRPromoTypeFilter_AMS class.

TPM_RTRReportingParentPromofFilter
Sample of the TPM_RTRReportingParentPromoFilter class.

TPM_RTRFixedFunds_AMS
Sample of the TPM_RTRFixedFunds_AMS class.

global class TPM RTRFixedFunds_ AMS{
global static List<TPM RTRReportingWrapper AMS.OutputRecord> getBrand(Date inputDateBegin,
Date inputDateEnd, TPM RTRReportingWrapper AMS.InputPayload payload,

List<TPM RTRReportingWrapper AMS.OutputRecord> output, Map<String, TPM RTRRouting mdt>
fixedFunds) {

66

Customizing Real Time Reporting (RTR) with APEX TPM_RTRFixedFunds_AMS

//This code creates a list based on the map that was passed into the method. In this List
only the Fund Template

//Names are stored so that the list can be used in the AggregateResult query (where clause).
The goal is to only load records that

//are related to the Fund Templates we're looking at.

List<String> FundTemplateTypes = New List<String>();

String SalesOrg;

For (String cmID : fixedFunds.keyset()) {

FundTemplateTypes.add(fixedFunds.get(chD).Fund_Template__c);

if (Salesorg == Null) {

Salesorg = fixedFunds.get (cmID).Sales Org c;

}

}

//The query returns Fund Transaction Row records based on the selected timeframe, customer,
category and templates

//The results are aggregated TPM RTR Amount values grouped by BRAND, FUND TEMPLATE

AggregateResult[] groupedResults = [SELECT SUM(TPM RTRAmount c¢) amount,

cgcloud Target Fund r.cgcloud Fund Template r.Name template,

cgcloud Target Fund r.cgcloud Fund Template r.TPM RTRRoutingFundType c

RTRRoutingFundType,

cgcloud Fund Transaction r.cgcloud Fund Transaction Header r.TPM Product c brand
FROM cgcloud Fund Transaction Row cC

WHERE cgcloud Target Fund r.cgcloud Fund Template r.TPM RTRRoutingFundType c in

:FundTemplateTypes
AND cgcloud Target Fund r.cgcloud Sales Org c= :SalesOrg
AND

cgcloud Fund Transaction r.cgcloud Fund Transaction Header r.TPM Product r.cgcloud Criterion 1 Product c
IN :payload.productsfids

AND cgcloud Target Fund r.cgcloud Anchor Account c¢ IN :payload.accountsfids

AND cgcloud Transaction Type c¢ IN ('Deposit',6 'Withdraw')

AND ((cgcloud Target Fund r.cgcloud Valid From c <= :inputDateEnd

AND cgcloud Target Fund r.cgcloud Valid From c¢ >= :inputDateBegin) OR

(cgcloud Target Fund r.cgcloud Valid Thru c <= :inputDateEnd

AND cgcloud Target Fund r.cgcloud Valid Thru c >= :inputDateBegin))

GROUP BY cgcloud Fund Transaction r.cgcloud Fund Transaction Header r.TPM Product c,
cgcloud Target Fund r.cgcloud Fund Template r.Name,

cgcloud Target Fund r.cgcloud Fund Template r.TPM RTRRoutingFundType c];

String brand, template, RTRRoutingFundType;

Double amount;

Map<String, Decimal> templateMap;

Map<String, Map<String, Decimal>> cmap = New Map<String, Map<String, Decimal>>();

Map<String, String> RTRRoutingFundTypeMap = New Map<String, String>();

//This For-Loop works on the aggregateResults and allocates all the records to their
respective "place" -

//it basically sorts all data into the right maps

For (AggregateResult ar : groupedResults) {

brand = String.valueOf (ar.get('brand')); //the last part of this line retrieved the brand
id of our query (brand is an alias)

template = String.valueOf (ar.get ('template')); //the last part of this line retrieved the
template Name of our query (template is an alias)

RTRRoutingFundType = String.valueOf (ar.get ('RTRRoutingFundType')); //the last part of this
line retrieved the RTR Routing Fund Type of our query (RTRRoutingFundType is an alias)'));
amount = Double.valueOf (ar.get ('amount')); //the last part of this line retrieved the

aggregated amount of our query (amount is an alias)

67

Customizing Real Time Reporting (RTR) with APEX TPM_RTRFixedFunds_AMS

templateMap = New Map<String, Decimal>();

If(!cmap.containsKey (brand)) {

templateMap.put (template, amount);

cmap.put (brand, templateMap) ;

}

else {

templateMap = cmap.get (brand);

if (!templateMap.containsKey (template)) {

templateMap.put (template, amount);

cmap.put (brand, templateMap);

}

}

if (!RTRRoutingFundTypeMap.containskey (RTRRoutingFundType)) {

RTRRoutingFundTypeMap.put (RTRRoutingFundType, template);

}

}

//Once all the results of our query are allocated and sorted, the data needs to be written
back to the report

//For each brand in cmap,

For (String brandId : cmap.keyset()) {

//and each template for that brand,

For (String templateId : cmap.get (brandId) .keyset()) {

//Now we loop trough the map that was passed to this method

For (String ffID : fixedFunds.keyset()) {

//to check to which KPI the map we're currently in is corrosponding to

If (templateId == RTRRoutingFundTypeMap.get (fixedFunds.get (£fID).Fund Template c)) {

//If the map we're working on right now has the RDF Fund Template, and one of the records
in our map has

//the RDF Fund Template assigned, we write back this KPI to the corrosponding KPI Definition
of the Custom Meta Data

output.add(new TPM RTRReportingWrapper AMS.OutputRecord(String.valueOf (brandId),
String.valueOf (fixedFunds.get (££fID) .KPI Definition c¢), 'Total',
Double.valueOf (cmap.get (brandId) .get (templatelId))));

}

}

}

}

return output;

}

global static List<TPM RTRReportingWrapper AMS.OutputRecord> getCategory (Date inputDateBegin,
Date inputDateEnd, TPM RTRReportingWrapper AMS.InputPayload payload,

List<TPM RTRReportingWrapper AMS.OutputRecord> output, Map<String, TPM RTRRouting mdt>
fixedFunds) {

//This code creates a list based on the map that was passed into the method. In this List
only the Fund Template

//Names are stored so that the list can be used in the AggregateResult query. The goal is
to only load records that

//are related to the Fund Templates we're looking at.

List<String> FundTemplateTypes = New List<String>();

String SalesOrg;

For (String cmID : fixedFunds.keyset()) {
FundTemplateTypes.add (fixedFunds.get (cmID) .Fund Template c);

if (SalesOrg == Null) {

SalesOrg = fixedFunds.get (cmID).Sales Org c;

68

Customizing Real Time Reporting (RTR) with APEX TPM_RTRFixedFunds_AMS

}

}

//Calculation of the current week number

Date todaysDate = date.today();

Date todaysDatelInstance = date.newlnstance (todaysdate.year(), todaysdate.month(),
todaysdate.day()) ;

todaysdate.day () ;

Integer currentyear = todaysdate.year():;

Date startDate = date.newlInstance (currentyear, 1,1);

Integer numberDaysDue = startDate.daysBetween (todaysDatelInstance);

Integer numberOfWeek = math.mod (Integer.valueOf (math.floor ((numberDaysDue))/7),52)+1;
//Support Map for NA REP FixedFund A Calculation

Map<String, Decimal> mPrdAmounts = new Map<String, Decimal>();
//Query
AggregateResult[] groupedResults = [SELECT SUM(cgcloud Deposits Approved c¢) sumValue,

cgcloud Anchor Product c,

cgcloud Fund Template c,

cgcloud Fund Template r.Name tmplName,

cgcloud Fund Template r.TPM RTRRoutingFundType c¢ RTRRoutingFundType

FROM cgcloud Fund c

WHERE cgcloud Fund Template r.TPM RTRRoutingFundType c IN :FundTemplateTypes

AND cgcloud Sales Org c= :SalesOrg

AND cgcloud Anchor Product c¢ IN :payload.productsfids

AND cgcloud Anchor Account ¢ IN :payload.accountsfids

AND ((cgcloud Valid From c¢ <= :inputDateEnd

AND cgcloud Valid From c >= :inputDateBegin)

OR (cgcloud Valid Thru c¢ <= :inputDateEnd

AND cgcloud Valid Thru c¢ >= :inputDateBegin))

GROUP BY cgcloud Anchor Product ¢, cgcloud Fund Template c,

cgcloud Fund Template r.Name, cgcloud Fund Template r.TPM RTRRoutingFundType c];

For (AggregateResult ar : groupedResults) {

//Check if current product is not already in the map, if so, add to the map with value 0

If (!mPrdAmounts.containsKey (String.valueOf (ar.get ('cgcloud Anchor Product c')))){

mPrdAmounts.put (String.valueOf (ar.get ('cgcloud Anchor Product c¢')), 0);

}

//Add the sum of the aggregateResult to the existing value in map for current product

mPrdAmounts.put(String.valueOf(ar.get('cgcloud__Anchor_Product__c')),

mPrdAmounts.get (String.valueOf (ar.get ('cgcloud Anchor Product c'))) +

Double.valueOf (ar.get ('sumValue')));

//Check Fund Template and add KPI

For (String gKPI : fixedFunds.keyset()) {

If (String.valueOf (ar.get ('RTRRoutingFundType')) == fixedFunds.get (gKPI).Fund Template c) {

output.add (new

TPM RTRReportingWrapper AMS.OutputRecord(String.valueOf (ar.get ('cgcloud Anchor Product c')),
String.valueOf (fixedFunds.get (gKPI) .KPI Definition c¢), 'Total',

Double.valueOf (ar.get ('sumValue'))));

}

}

}

//Add NA REP FixedFund A if required

If (fixedFunds.containsKey ('NA REP FixedFund A')) {

For (String cdr : mPrdAmounts.keyset ()) {

output.add(new TPM RTRReportingWrapper AMS.OutputRecord(String.valueOf (cdr),

'NA REP FixedFund A', 'Total', Double.valueOf ((mPrdAmounts.get (cdr) *numberOfWeek/52)))) ;

69

Customizing Real Time Reporting (RTR) with APEX

}
}

return output;
}
}

TPM_RTRPromoTypeFilter_ AMS
Sample of the TPM_RTRPromoTypeFilter_AMS class.

public with sharing class TPM RTRPromoTypeFilter AMS implements System.Callable {
public class TPM RTRPromotionsCallableException extends Exception {}

private static String userSalesOrgName = null;

//GET SF ID

static {

List<User> users = [SELECT cgcloud Sales Org c FROM User WHERE Id =
:String.escapeSingleQuotes (UserInfo.getUserId()) LIMIT 1];

userSalesOrgName = users[0].cgcloud Sales Org c;

}
@testVisible private static List<Map<String, Object>> getPromotionTypes (String devname) {
String myCM;

1. Query the custom metadata record based on the parameter, and then perform workarounds for the test classes.

//GET CUSTOM METADATA TYPE PROMO TYPE GROUPINGS (BASED ON ARGUMENT OF REPORT)

if (!Test.isRunningTest ()) {
TPM RTRPromoTypes mdt customMetaData = [SELECT Promo Types c FROM TPM RTRPromoTypes mdt
WHERE DeveloperName = :devname LIMIT 1];

myCM = customMetaData.Promo Types c;

}

//WORKAROUND FOR TESTCLASS (CUSTOM METADATA TYPE)
else {

myCM = devname;

}

2. From the custom metadata record, split the value of the Promo_Types ¢ fieldinto individual values and then parse them into
anew list type called groups.

List<String> splitGrouping = myCM.split(';");
List<String> typeGroups = New List<String>();
For (String item : splitGrouping) {
typeGroups.add(item.trim()) ;

}

3. Create a new list that you can later use to store the value of results = List<Map<String, Object>>.Youcanalso
query promotion templates into another active list that has the same sales org as the user and whose name matches the values in
the Groups list type.

List<Map<String, Object>> result = new List<Map<String, Object>>();

List<cgcloud Promotion Template c¢> prmTmpl = New List<cgcloud Promotion Template c>();

prmTmpl = [SELECT Id, Name FROM cgcloud Promotion Template ¢ WHERE cgcloud Active c
= true AND cgcloud Sales Org c = :userSalesOrgName AND Name IN :typeGroups];

Map<String, String> outP = New Map<String, String>();

70

TPM_RTRPromoTypeFilter_AMS

Customizing Real Time Reporting (RTR) with APEX TPM_RTRReportingParentPromoFilter

4, Return the result.

for (cgcloud Promotion Template c¢ tmpl : prmTmpl) {
If(!'outP.containsKey (tmpl.Name)) {

outP.put (String.valueOf (tmpl.Id)
}

}

for (String typelId : outP.keyset()) {

result.add(new Map<String, Object> ({

'label' => outP.get (typeld),

'value' => typeld

});

}

return result;

}

public Object call (String method, Map<String, Object> args) {
return getPromotionTypes (method) ;

}

}

, String.valueOf (tmpl.Name)) ;

TPM_RTRReportingParentPromoFilter

Sample of the TPM_RTRReportingParentPromoFilter class.

public with sharing class TPM RTRReportingParentPromoFilter implements System.Callable {
public class TPM RTRPromotionsCallableException extends Exception {}

private static List<User> users = [SELECT cgcloud Sales Org c¢ FROM User WHERE Id =
:String.escapeSingleQuotes (UserInfo.getUserId()) LIMIT 1];

private static String userSalesOrgName = users[0].cgcloud Sales Org c;
1. Create a new list that you can later use to store the value of results = List<Map<String, Object>>.

@TestVisible private static List<Map<String, Object>> getParentPromotion () {
List<Map<String, Object>> result = new List<Map<String, Object>>();

2. Query the Promotion object on all records templates that have the CustomerEvents picklist value selected on the
TPM Promo Type ControlView c field for the appropriate sales org ad user.
List<cgcloud Promotion c¢> prmTmpl = [SELECT ID, Name, cgcloud Slogan c ,
ol AvorAmrt Gt AdorAwort: xiesarod BodioBytde ropd Beridio Gartud BooinBtete rarod S0y o BoarinEye LMBorReChdiss ¢
FROM cgcloud Promotion ¢ WHERE
cgcloud Promotion Template r.TPM Promo Type ControlView c¢ ='CustomerEvent' and
cgcloud Promotion Template r.cgcloud Sales Org c =:
Map<ID, String> outP = New Map<ID, String>();
for (cgcloud Promotion c¢ templ : prmTmpl) {
If(!'outP.containsKey (templ.ID)) {

userSalesOrgName];

outP.put (String.valueOf (templ.Id), String.valueOf (templ. cgcloud Slogan_ c));
}

}

3. Return the list.

for (String statusTo : outP.keyset()) {
result.add(new Map<String, Object> {

71

Customizing Real Time Reporting (RTR) with APEX TPM_RTRReportingParentPromoFilter

'label' => outP.get (statusTo),
'value' => statusTo

1)

}

system.debug (json.serialize (result));
return result;

t
public Object call (String method, Map<String, Object> args) {

return getParentPromotion () ;

}
}

72

	Introduction
	Exporting the KPIs from Hyperforce
	Prerequisites
	Configuring Integration Dimension Meta
	Account Dimension
	Promotion Dimension
	Tactic Dimension
	Product Dimension
	Product Part Dimension
	Configuration of Integration Meta Data

	Triggering the CSV Export Process
	Triggering CSV Export
	Checking CSV Export Status
	Committing CSV Export
	Retrieving CSV Export
	Getting Access Token for the User
	Getting CSV Full Export
	Getting CSV Delta Export

	REST API Endpoints
	Triggering CSV Exports
	Checking Job Status
	Committing CSV
	Retrieving CSV Exports

	Examples
	Data Source: Account and Promotion Measures
	Example: Spreading Time Label

	Data Source: Promotion Measures
	Example
	Export CSV File

	Data Source: Promotion Measures with BOM Components
	Example

	Data Source: Promotion and Tactic Measures
	Example
	Export CSV File

	Data Source: Promotion and Tactic Measures with BOM Components
	Example

	Data Source: DailyRealData/DailyIntData
	Data Source: AccountMeasure
	Data Source: PromotionTacticDailyMeasureReal
	Data Source: PromotionTacticWeeklyMeasureReal
	Data Source: AccountProductMeasure
	Data Source: ProductMeasure
	Data Source: WeeklyMeasureReal
	Data Source: WeeklyMeasureInt

	CGCloud Namespace
	RTRReportResult Class
	RTRReportResult Methods
	execute(String name, String salesOrg, Map<String, Object> filters)
	getComponent(String name)

	ReportComponent Class
	FlatList Class
	FlatList Methods
	getRows()
	getRows(String rowTypeFilter)
	getColumns()
	getRowTypes()

	FlatListRowIterable Class
	FlatlistRowIterable Methods
	hasNext()
	next()

	FlatListRow Class
	FlatListRow Methods
	getColumnValue(String columnName)

	ScoreCard Class
	ScoreCard Methods
	getValue(String kpiName)

	Customizing Real Time Reporting (RTR) with APEX
	Create a Fund Report with Custom Apex Datasources
	Use Case: Fund Amount
	TPM_RTRReportingWrapper_AMS (Base Class)
	TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)
	TPM_RTRFunds_AMS (The Logic Class)

	Use Case: Fixed Funds
	TPM_RTRReportingWrapper_AMS (Base Class)
	TPM_RTRSalesforceMonthlyMeasures_AMS (Base Class)
	TPM_RTRFixedFunds_AMS (The Logic Class)

	Create Reports with Custom Apex Filter
	Classes
	TPM_RTRFixedFunds_AMS
	TPM_RTRPromoTypeFilter_AMS
	TPM_RTRReportingParentPromoFilter

