salesforce

Lightning Aura Components

Developer Guide

Version 60.0, Spring ‘24

20 e

Last updated: April 5, 2024



© Copyright 2000-2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc,, as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Browser Support for Aura Components . . . . ...t 3
Using the Developer Console . . . . . . ..t e e 4
Online Confent . . . . .. e 5
Chapter 2: Quick Start . . . ... . e 6
Before YOU Begin . . . . .o 7
Trailhead: Explore Lightning Aura Components Resources . ... ... ... 7
Create a Component for Lightning Experience and the Salesforce Mobile App . . .. ......... 7
Load the Contacts . . . . ..o e 10
Firethe Bvents . . . . . e 14
Chapter 3: Creating Components .. ......ouiiit ittt ee i 16
Component NOMES . . . .ot e 18
Create Aura Components in the Developer Console . . . .. ... ... ..., 18
Lightning Bundle Configurations Available in the Developer Console . . .. ........... 19
Create Aura Components Using Salesforce CLI . . . . .. ... i 20
Component MArKUP .« . . oottt e e 23
Component NOMESPACE .« .« . o ot it e e e 24
Using the Default Namespace in Organizations with No Namespace Set . . .. ........ 24
Using Your Organization’s Namespace . . . .. ... it 25
Using a Namespace in or from a Managed Package . . . . ... ..o oo 25
Creating @ Namespace in Your Organization . .. ... ... 25
Namespace Usage Examples and Reference . . ... ... ... .. i 26
Component BUNAIES . . . . oo 28
Component IDS . . . .o 29
HTML in COMPONENTS . . . o o e e e e e e e e 31
Supported HTML TAQS .« . o oo vttt e 31
CSS N COMPONENTS © . o o e 33
Component Atributes . . . . . . 34
Supported aura:attribute Types . . . . . . . 35
BASIC TYPES .« ot ot 36
FUNCHION TYPE .« o o e e e 38

ObjeCt TYPES . @ . oottt e 38



Contents

Standard and Custom Object Types . . . . . . oot 39
Collection TYPES .« « v v ittt e 39
CuStomM APEX ClaSS TYPES & . o v v v vt ettt e e 4
Framework-Specific TYPES . . . . 42
UsiNg EXPressions . . . ..o e 44
Dynamic Output in EXpressions . . . . ..o e 45
Conditional EXPresSioNnS « . .« o oo v vt e e e e e e e 46
Data Binding Between Components . . . ... ..ottt 46
Value Providers . . ... 51
Expression Evaluation . .. ... ... 58
Expression Operators Reference . . . ... .. 59
Expression Functions Reference . . ... ... 62
Component ComMPOSITION . . . .. o e 66
Component Body . . . .. oo 69
Component FACEES . . . . oo e 70
ControlliNg ACCESS .« . o v v et e e e e e A
Application Access Control . . . . ... o e 74
Interface Access Control . . . . .o oo 74
Component Access CoNfrol . ... .t e 74
Aftribute Access Control . . . .. e 75
Event Access Control . . . . .. .. 75
Using Object-Oriented Development . . . . ... o e 75
Favor Composition Over Inherifance . . . . .. ... e 76
What is Inherited? . . . ..o 76
Inherited Component Affributes . . . . ... ... 77
Abstract ComPOoNENtS . . . .. 79
Inferfaces . ... 79
Inheritance Rules . . . ... e 80
Best Practices for Conditional Markup . . . ... 81
Aura Component Versioning for Managed Packages . ... ... ... 82
Base Components with Minimum API Version Requirements . . .. ................... 83
Validations for Aura Component Code . . . .. ...t 85
Validation When You Save Code Changes . . . . ... ..ot 85
Validation During Development Using ESLint . . . ... ... o 86
Aura Component ValidationRules . . . .. ... . 87
Using Labels . . . . oo 92
Using Custom Labels . . . . .o 93
Input Component Labels . ... ... . 93
Dynamically Populating Label Parameters . . .. ... ... .. 94
Getting Labels in JavaScript . . . ... 94
Getting Labels iN APEX . . . . ot e 96
Setting Label Values via a Parent Attribute . . . . ... ... o 97
Localization . . . . oo 98

Working with Base Lightning Components . . . .. ... ... i 100



Contents

Base Lightning Components Considerations . . . ........ .. ... .. ........... 107
Event Handling in Base Lightning Components . . . .. ............ ... ... ...... 108
Creating @ FOrm . . .. o e m
Validating Fields . . . . .. N4
Lightning Design System Considerations . . . ... ... . .. N6
Migrate Components from the ui Namespace . . ... ... n9
Supporting Accessibility . . .. ... 122
Accessibility for Base Lightning Components . . . . ... ... 122
Write Aura Component Accessibility Tests . . ... .. .. ... 127
Writing Documentation for the Component Library . . .. ... .. ... ... ... .. ... ..... 130
Creating EXamples . . . . . . 131
Creating Documentation Content . . . . . . ... e 132
Providing Specification Information and Descriptions . ....................... 135
Chapter 4: Using COmMpPOoNneNnts . .. ...uitit ittt et eeeannn 137
Aura Component Bundle Design RESOUICES . . . . . oo vttt e e 138
Use Aura Components in Lightning Experience and the Salesforce Mobile App . . . .. ... ... 1M
Configure Components for Custom Tabs . ... ... ... .. .. . . . . 11
Add Aura Components as Custom Tabs in a Lightning Experience App . . . . ... ... .. 142
Lightning Component ACiONS . . . .. ..ottt 142
Override Standard Actions with Aura Components . . .. ...................... 151
Navigate Across Your Apps with Page References . . . ... ... ... .. .. 155
Basic Navigation . . . .. .. e 155
Add Links to Lightning Pages from Your Custom Components . . ... .............. 156
Add Query Parameters . . . . . 157
Navigate to a Record Create Page with Default Field Values . . .. ................ 157
NavigatetoaWeb Page . . ... ... 160
Migrate to lightning:isUrlAddressable from force:navigateToComponent . . . . ...... .. 161
pPageReferenCe TYPES . . . . o ottt 162
Get Your Aura Components Ready to Use on LightningPages . . .. .................. 175
Configure Components for Lightning Pages and the Lightning App Builder . . ... ... .. 176
Configure Components for Lightning Experience RecordPages . . . .. ............. 177
Create Components for the Outlook and Gmail Integrations . . ... ............... 178
Create Components for Forecast Pages . .. ... ... 183
Create Dynamic Picklists for Your Custom Components . . .. ................... 186
Create a Custom Lightning Page Template Component . . .. ................... 187
Lightning Page Template Component Best Practices . . . ...................... 191
Make Your Lightning Page Components Width-Aware with
lightning:flexipageRegioninfo . . ... ... ... .. . 192
Tips and Considerations for Configuring Components for Lightning Pages and the Lightning
App Builder . . . e 193
Use Aura Components in Experience Builder . . . ... ... .. 194
Configure Components for Experience Builder . . .. .......... ... ... ... ..... 195

Create Custom Theme Layout Components for Experience Builder . . .. ............ 196



Contents

Create Custom Component for GuestUserFlows . . . ... ... .. .......... 199
Create Custom Search and Profile Menu Components for Experience Builder . . . . . . .. 202
Create Custom Content Layout Components for Experience Builder . . .. ......... .. 203
Use Aura Components With FIOWS . . . . ... e 205
Considerations for Configuring Components for Flows . . . .................... 206
Customize Flow Screens Using Aura Components . . ... ..o, 210
Create Flow Local Actions Using Aura Components . . .. ..., .. 220
Embed a Flow in a Custom Aura Component . ... ...t .. 224
Display Flow Stages with an Aura Component . . ... ... ... ... 230
Add ComponentsS 10 APPS - - < v v v v v e 235
Integrate Your Custom Apps into the Chatter Publisher . . .. ... ... ... ... ... .. ... 236
Using Background Utility ltems . . . .. ... o 240
Use Lightning Components in Visualforce Pages . . . .. ... ... ... .. 241
Use Aura and Lightning Web Components Outside of Salesforce with Lightning Out (Beta) . . . 243
Lightning Container . . . ... o 243
Using a Third-Party Framework . . . .. ... o 243
Lightning Container Component Limifs . . . . .. ... it 250
The Lightning Realty App . . . . oo i 252
lightning:container NPM Module Reference . . ...... . ... ... ... .. ....... 255
Chapter 5: CommunicatingwithEvents . . ........ ... ... ... 260
Actions and Bvents . .. ... 261
Handling Events with Client-Side Controllers . . . . ... ... . e 262
Component EVeNtS . . . . o e e 264
Component Event Propagation . . . ... .. e 265
Create Custom ComponentEvents . . . . . ... 265
Fire Component Events . . . .. . e 266
Handling Component Events . . ... ... 267
Component Event Example . . . .. ..o 273
Application EVENTS . . . . . 275
Application Event Propagation . . ... ... 276
Create Custom Application Events . . . . . ... 277
Fire Application EVents . . . . . ..o 278
Handling Application Events . . . . . ... e 279
Application Event Example . . . ... e 281
Event Handler Behavior for Active Components . . .. ... ... . 283
Event Handling Lifecycle . . . .. . 284
Advanced Events Example . . . . ... 286
Firing Events from Non-Aura Code . . . . ... it 290
Events Best Practices . . . . .. .. e 291
Events Anti-Patterns . . ... .. e 292
Events Fired During the Rendering Lifecycle . ... ... ... .. . . . . 292
Events Handled in the Salesforce Mobile App and Lightning Experience . . .. ........... 294

Systemn Events . . .. e e 296



Contents

Chapter 6: Communicating Across the DOM with Lightning Message Service . . . .. 297
Create a Message Channel . . . . ... 298
Publish on a Message Channel . . . ... ... 298
Subscribe to a Message Channel . . . ... ... 299
Lightning Message Service Limitations . . . .. ... ... 300
Chapter 7: Creating APPS - . v ot et et e et e 302
APP OVEIVIEW .« o o o e 303
Designing App Ul . . o oo e 303
Creating App Templates . . . . .o e 304
Using the AppCache . . . ... e e e 304
Distributing Applications and Components . . . . . ... 304
Apex Class Considerations for Packages . . . ... ... 305
Adding Aura Components to Managed Packages . . .. ... ... oo 306
Deleting Aura Components from Managed Packages . ... ................... 306
Chapter 8: Styling AppS . . ..o e 308
Using the Salesforce Lightning Design System in Apps . . . . . ..o oo oo i i 309
Using EXternal CSS . . . . . oot 309
More Readable Styling Markup with the join Expression . . . . ... ... .. ... ... ..... 3an
Tips for CSSin ComMPONENtS . . . o oo e e 312
CSSTOrRTLLANQUOGES - .« o o e e e e e e e e e e e e e e e e e 312
Vendor Prefixes . . . ... 315
Styling with Design TOKeNS . . . . .o e 316
Tokens Bundles . . . . . 316
Create a Tokens Bundle . . . . ... 317
Defining and Using TOKENS . . . . . . .ttt 317
Using EXpressions iN TOKENS . . . . o oo vttt 318
Extending Tokens Bundles . ... ... ... 319
Using Standard Design TOKeNS . . . . o o oottt 320
Chapter 9: Developing Secure Code . ... ..ottt 332
Lightning LoCKer . . . . . e 333
JavaScript Strict Mode Enforcement . . ... .. 334
DOM Access Containment . . . . ..o e 334
Secure WIAPPEIS .« . . oot e 336
evall) Function is Limited by Lightning Locker . . ... ....... ... ... ... .. ... .. .. 338
MIME Types Permifted . . . . ... 339
Access to Supported JavaScript APl Framework Methods Only . . ... ............. 340
What Does Lightning Locker Affect? . . . ... .. ... .. 340
Lightning Locker TOOIS . . . . . . oo 340
Select the Locker APl Versionforan Org . . ... ..o e 345
Disable Lightning Locker for a Component . . ... ... . i 347

Dont Mix Component APl Versions . . . .. ... . 348



Contents

Lightning Locker Disabled for Unsupported Browsers . . .. ... .oovviiii ... 349
Lightning Web Security . . . . . . 349
Content Security Policy OVEIVIEW . . . . .o oot 349

Stricter CSP Restrictions . . . . .. o 351
Chapter 10: Using JavaScript . . . . ..o e e 352
Supported JavaScript . ... 354
Invoking Actions on Component Initialization . . .. ... ... ... L 354
Sharing JavaScript Code in a ComponentBundle . . .. ... ... ... 355
Sharing JavaScript Code Across Components . . . . ..ottt 357
Using External JavaScript Libraries . . ... ... . 359
Dynamically Creating Components . . . . . ..ttt 361
Detecting Data Changes with Change Handlers . . . ... ... ... . ... ... .. ... ..... 364
Finding Components by ID . . . . . .. e 365
Working with Aftribute Values in JavaScript . . . .. ..o o 365
Working with a Component Body in JavaScript . . .. ... .. o 367
Working with Events in JavaScript . . . . ..o oo 368
Modifying the DOM . . ... 370

Modifying DOM Elements Managed by the Aura Components Programming Model . . . 371

Modifying DOM Elements Managed by External Libraries . .. .................. 375
Checking Component Validity . . . ... ... 375
Modifying Components Outside the Framework Lifecycle . . .. ... ... ... ... .. ... 377
Throwing and Handling Errors . . . . . .. e 378
Calling Component Methods . . . . . ... 379

Return Result for Synchronous Code . . . . ... ... . 381

Return Result for Asynchronous Code . . . ... ..ot 383
Dynamically Adding Event Handlers To a Component . . ... .. ... . i .. 385
Dynamically Showing or Hiding Markup . . . .. ... . 387
Adding and Removing StYIEs . . . . . . 388
Which Button Was Pressed? . . . . . ..o e 389
Formatting Dates in JavaScript . . . . ..o e 390
Using JavaScript Promises . . . ... oo 392
Making API Calls from Components . . . . ... ittt 394
Control Access to Browser Features . . . . ... ..ot 395
Manage Trusted URLS . . . . . . oo it 396
Chapter 11: Working with Salesforce Data . ........ . ... ... ... .. ... .... 400
Lightning Data SErviCe . . . . . 401

Loading a RECOId . . . .o oot 402

Ediing a Record . . . ..o e 406

Creating a Record . .. ... am

Deleing @ Record . . . . .. 417

Record ChaNGes . . . . . oo e 49

Handling Errors . ..o oo 420



Contents

Changing the Display Density . . . . . ... 422
Considerations . . . . ..o 425
Lightning Action Examples . . . . . ..o 426
SaveRecordResuUlt . . . . ... 433
Displaying the Create and EditRecord Modals . . . . . ... ... ... 434
USING APEX . o o o ot 434
Creating Server-Side Logic with Controllers . . ... ........ ... ... ... ... .... 435
Testing Your Apex Code . . . . .t 462
Making APl Calls from APEX . . . . . 462
Make Long-Running Callouts with Confinuations . . ... ....... ... ... ....... 463
Creating Components in APEX . . . .ottt 468
Chapter 12: Testing Components . .. ....ot ittt et eaannn 469
Chapter 13: Debugging . . . .. oot e 470
Enable Debug Mode for Lightning Components . . . . ... ... . . i 4an
Disable Caching Setting During Development . . ... ... ... i 4an
Salesforce Lightning Inspector Chrome Extension . . . ...... ... ..., 472
Install Salesforce Lightning Inspector . . ... ... .. . 472
Salesforce Lightning INSpector . . . . .. o 472
LOg MESSAQES . .« . o i 486
Chapter 14: Performance . ... ... e e e e 487
Performance Seftings . . . . .. 488
Enable Secure Browser Caching . . ... ... o 488
Enable CDN to Load Applications Faster . . . .. ... ... 488
Fixing Performance Warnings . . .. .o oottt 489
<aura:if>—Clean Unrendered Body . . ....... ... i 489
<aura:iteration>—Multiple Items Set . . ... ... 491
Chapter 15: Reference .. ... ... i e 494
Component LIbrary . . . ..o 495
Differences Between Documentation Sites . . . .. ... ... i 496
System Tag Reference . . . . . .. e 496
aAuUrd:appPlication . . . .. 497
AUIA:AEPENAENCY .« .« o ottt 498
AUIQEEVENT .« L e 499
aurasinterface . .. 500
aura:method . .o 500
AURQESEE L e 502
JavaS Pt APl L e 504
SANAMESPACE .« vttt e e e e e e e 504
ACHON e 512
AuralocalizationService . . . . .. 518

COMPONENT .« o e 549



Contents



CHAPTER 1

In this chapter ...

e What is Salesforce
Lightning?

e Use Lightning Web
Components instead
of Aura Components

e Aura Components
Release Notes

e Aura Components
e Events

e Browser Support for
Aura Components

e Using the Developer
Console

¢ Online Content

Intfroducing Aura Components

Lightning components is the umbrella term for Aura components and Lightning web components. As
of Spring '19 (AP version 45.0), you can build Lightning components using two programming models:
the Lightning Web Components (LWC) model, and the original Aura Components model.

The Lightning Component framework is a Ul framework for developing Lightning components for mobile
and desktop devices. Lightning web components and Aura components can coexist and interoperate
on a page.

Lightning Web Components uses core Web Components standards and provides only what's necessary
to perform well in browsers supported by Salesforce. Because it's built on code that runs natively in
browsers, Lightning Web Components is lightweight and delivers exceptional performance. Most of the
code you write is standard JavaScript and HTML.

For new components, create Lightning web components instead of Aura components. Lightning web
components perform better and are easier to develop than Aura components. However, when you
develop Lightning web components, you also may need to use Aura, because LWC doesn't yet support
everything that Aura does. We're actively working in each release to eliminate these gaps so that LWC
works for all use cases.

Configure Lightning web components and Aura components to work in Lightning App Builder and
Experience Builder. Admins and end users don't know which programming model was used to develop
the components. To them, they're simply Lightning components.

This developer guide covers how to develop custom Aura components. The Lightning Web Components
Developer Guide covers how to develop custom Lightning web components.

o Tip: The name of the programming model is Aura Components (uppercase). When we refer to
the components themselves, we use Aura components (lowercase).


https://github.com/w3c/webcomponents/
https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/lwc

Introducing Aura Components What is Salesforce Lightning?

What is Salesforce Lightning?

Lightning includes the Lightning Component Framework and some exciting tools for developers. Lightning makes it easier to build
responsive applications for any device.
Lightning includes these technologies:

e Lightning components accelerate development and app performance. Develop custom components that other developers and
admins can use as reusable building blocks to customize Lightning Experience and the Salesforce mobile app.

e Lightning App Builder empowers admins to build Lightning pages visually, without code, using off-the-shelf and custom-built
Lightning components. Make your Lightning components available in the Lightning App Builder so administrators can build custom
user interfaces without code.

e Experience Builder empowers admins to build communities visually, without code, using Lightning templates and components.
Make your Lightning components available in Experience Builder so administrators can build community pages without code.

Using these technologies, you can seamlessly customize and easily deploy new apps to mobile devices running Salesforce. In fact, the
Salesforce mobile app and Salesforce Lightning Experience are built with Lightning components.

This guide teaches you to create your own custom Aura components and apps. You also learn how to package applications and
components and distribute them in the AppExchange.

To learn how to develop Lightning web components, see Lightning Web Components Developer Guide.

Use Lightning Web Components instead of Aura Components

Lightning web components perform better and are easier to develop than Aura components. However, when you develop Lightning
web components, you also may need to use Aura, because LWC doesn't yet support everything that Aura does.

How do you decide which components to develop as Lightning web components and which to develop as Aura components?
The answer is to always choose Lightning Web Components unless you need a feature that isn't supported.

For information on gaps between Lightning Web Components and Aura Components, see the Lightning Web Components Developer
Guide.

To migrate Aura components to Lightning web components, see the Lightning Web Components Developer Guide.

Aura Components Release Notes

Use the Salesforce Release Notes to learn about the most recent updates and changes to Aura Components.
For updates and changes that impact Aura Components, see Lightning Components in the Salesforce Release Notes.

For new and changed Aura components, see Lightning Components: New and Changed Items in the Salesforce Release Notes.

Aura Components

Aura components are the self-contained and reusable units of an app. They represent a reusable section of the Ul, and can range in
granularity from a single line of text to an entire app.

The framework includes a set of prebuilt components. For example, components that come with the Lightning Design System styling
areavailableinthe 1ightning namespace. These components are also known as the base Lightning components. You can assemble


https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_lwc_or_aura
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_lwc_or_aura
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.migrate_introduction
https://help.salesforce.com/s/articleView?id=release-notes.rn_lc.htm&language=en_US
https://help.salesforce.com/s/articleView?id=release-notes.rn_lc_nc.htm&language=en_US

Introducing Aura Components Events

and configure components to form new components in an app. Components are rendered to produce HTML DOM elements within the
browser.

A component can contain other components, as well as HTML, CSS, JavaScript, or any other Web-enabled code. This enables you to
build apps with sophisticated Uls.

The details of a component's implementation are encapsulated. This allows the consumer of a component to focus on building their
app, while the component author can innovate and make changes without breaking consumers. You configure components by setting
the named attributes that they expose in their definition. Components interact with their environment by listening to or publishing
events.

SEE ALSO:
Creating Components

Working with Base Lightning Components

Events

Event-driven programming is used in many languages and frameworks, such as JavaScript and Java Swing. The idea is that you write
handlers that respond to interface events as they occur.

A component registers that it may fire an eventin its markup. Events are fired from JavaScript controller actions that are typically triggered
by a user interacting with the user interface.

There are two types of events in the framework:

e Component events are handled by the component itself or a component that instantiates or contains the component.

e Application events are handled by all components that are listening to the event. These events are essentially a traditional
publish-subscribe model.

You write the handlers in JavaScript controller actions.

SEE ALSO:
Communicating with Events

Handling Events with Client-Side Controllers

Browser Support for Aura Components

Aura Components support the same browsers as Lightning Experience.

For more information, see Supported Browsers for Lightning Experience.

SEE ALSO:
Salesforce Help: Recommendations and Requirements for all Browsers
Lightning Locker Disabled for Unsupported Browsers

Content Security Policy Overview


https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US
https://help.salesforce.com/articleView?id=getstart_browser_recommendations.htm&language=en_US

Introducing Aura Components

Using the Developer Console

Using the Developer Console

The Developer Console provides tools for developing your Aura components and applications.

You can use the Developer Console in the same supported browsers as Lightning Experience and Salesforce Classic.

File ~

Edit -

Debug ~ Test~ Workspace » Help~ < > 1

L R

9
10
11
12
13
14
15
16
17
18

- {

ExpenseTracker.app

formContrallerjs *  form.cmp * |[formHelpergs %] form.css

getExpenses : function(component) {
var action = component.get("c.getExpenses");
var self = this;
action.setCallback(this, function(a) {

i
SA.
}

component.set('v.expenses", a.getReturnvalue());

self.updateTotal (component);

enqueueAction(action);

updateTotal : function(component) {
var expenses = component.get("v.expenses");
var total = 0;
for(var 1 = 0 ; 1 < expenses.length ; i++){

}

var e = expenses[i];
total += e.Amount_ c;

form
Ctrl + Shift + 1 COMPONENT
Ctrl + Shift + 2 CONTROLLER
Ciri + Shift + 3 HELPER
Ctrl + Shift + 4 STYLE
Ctrl + Shift + 5 DOCUMENTATION Create
Ctrl + Shift + 6 RENDERER Create
Ctrl + Shift + 7 DESIGN Create
Ctrl + Shift + 8 SVG Create

Bundle Version Settings

3

The Developer Console enables you to perform these functions.

e Use the menu bar (1) to create or open these Lightning resources.

e Use the workspace (2) to work on your Lightning resources.

e Use the sidebar (3) to create or open client-side resources that are part of a specific component bundle.

Application

Component

Interface

Event

Tokens

Controller

Helper
Style

Documentation

Renderer

Design
SVG

While the Developer Console provides an easy way to work with Aura components, it doesn't include many developer tools and features.
To enable source-drive development with editor features like code completion and linting, consider these alternatives:

e (Code Builder—A web-based IDE that has all the power and flexibility of VS Code, Salesforce Extensions for VS Code, and Salesforce
CLI'in your web browser. You can install Code Builder as a managed package in a supported Salesforce org edition.


https://help.salesforce.com/s/articleView?id=sf.getstart_browsers_sfx.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.getstart_browser_aloha.htm&language=en_US
https://developer.salesforce.com/tools/vscode/en/codebuilder/about

Introducing Aura Components Online Content

e Salesforce DX Tools—Use the Salesforce CLI and VS Code with the Salesforce Extension Pack to deploy code to an org.

SEE ALSO:
Salesforce Help: Open the Developer Console
Create Aura Components in the Developer Console

Component Bundles

Online Content

This guide is available online. To view the latest version, go to:
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/
Go beyond this guide with exciting Trailhead content. To explore more of what you can do with Lightning Components, go to:

Trailhead Module: Lightning Components Basics
Link: https://trailhead.salesforce.com/module/lex_dev_Ic_basics

Learn with a series of hands-on challenges on how to use Lightning Components to build modern web apps.

Quick Start: Lightning Components
Link: https://trailhead.salesforce.com/project/quickstart-lightning-components

Create your first component that renders a list of Contacts from your org.

Project: Build an Account Geolocation App
Link: https://trailhead.salesforce.com/project/account-geolocation-app

Build an app that maps your Accounts using Lightning Components.

Project: Build a Restaurant-Locator Lightning Component
Link: https://trailhead.salesforce.com/project/workshop-lightning-restaurant-locator

Build a Lightning component with Yelp's Search API that displays a list of businesses near a certain location.

Project: Build a Lightning App with the Lightning Design System
Link: https://trailhead.salesforce.com/project/slds-lightning-components-workshop

Design a Lightning component that displays an Account list.


https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_dx_tools.htm
https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/
https://trailhead.salesforce.com/module/lex_dev_lc_basics
https://trailhead.salesforce.com/project/quickstart-lightning-components
https://trailhead.salesforce.com/project/account-geolocation-app
https://trailhead.salesforce.com/project/workshop-lightning-restaurant-locator
https://trailhead.salesforce.com/project/slds-lightning-components-workshop

CHAPTER 2 Quick Start

In this chqpter The quick start provides Trailhead resources for you to learn core Aura components concepts, and a
short tutorial that builds an Aura component to manage selected contacts in the Salesforce mobile app
* Before You Begin and Lightning Experience. You'll create all components from the Developer Console. The tutorial uses
e Trailhead: Explore several events to create or edit contact records, and view related cases.
Lightning Aura
Components
Resources

e Create a Component
for Lightning
Experience and the
Salesforce Mobile

App



Quick Start Before You Begin

Before You Begin

To work with Lightning apps and components, create a Developer Edition org.

@ Nofte: For this quick start tutorial, you don't need to create a Developer Edition organization or register a namespace prefix. But
you want to do so if you're planning to offer managed packages. You can create Aura components using the Ul in Enterprise,
Performance, Unlimited, Developer Editions, or a sandbox.

You need an org to do this quick start tutorial, and we recommend that you don't use your production org. You only need to create a
Developer Edition org if you don't already have one.

1. Inyourbrowser,gotohttps://developer.salesforce.com/signup?d=70130000000td6N
Fill in the fields about you and your company.

Inthe Email field, make sure to use a public address you can easily check from a Web browser.

> W N

Type a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same as your
email address, and in fact, it's usually better if they aren’t the same. Your username is your login and your identity on
developer.salesforce.com, S0 you're often better served by choosing a username such as
firstname@lastname.com

5. Read and then select the checkbox forthe Main Services Agreement and then click Submit Registration.

6. Inamoment you'll receive an email with a login link. Click the link and change your password.

Trailhead: Explore Lightning Aura Components Resources

Learn the fundamentals of Lightning Aura components with Trailhead resources.

Whether you're a new or seasoned Salesforce developer, we recommend that you start with the following Trailhead resource: Quick
Start: Aura Components.

Create a Component for Lightning Experience and the Salesforce Mobile
App

Explore how to create a custom Ul that loads contact data and interacts with Lightning Experience and the Salesforce mobile app.

This tutorial walks you through creating a component that:

e Displays a toast message (1) using the force:showToast event when all contacts are loaded successfully.

e Updates the number of contacts (2) based on the selected lead source.

e Filters the contacts using the 1ightning:select component (3) when a lead source (referral or social media) is selected.
e Displays the contact data using the 1ightning:card component (4).

e Navigates to the record when the Details button (5) is clicked.


https://developer.salesforce.com/signup?d=70130000000td6N
https://trailhead.salesforce.com/projects/quickstart-lightning-components
https://trailhead.salesforce.com/projects/quickstart-lightning-components

Quick Start Create a Component for Lightning Experience and the
Salesforce Mobile App

EEE Sales Home  Chatter  Opportunities Lleads W Tasks Files  MNotes v  Accounts “  Contacts v
CONTACTS
. Success!
Contact Viewer Your contacts have been loaded successfully.

133 Contacts - Select Lead Sources

Lead Source

- Select a Lead Source -- -

E Chris Post Details

(415) 555-5590
1 Market St.

CPOSTREXAMPLE.COM

E Aiden Pearson Details
(415) 555-7722

50 Fremont Street

APEARSONEEXAMPLE.COM

E Brad Anastasio Details
(415) 555-9065

800 3rd Street

BANASTASIO®EXAMPLE.COM

Here's how the component looks in the Salesforce mobile app. You're creating two components, contactList and contacts,
where contactList isacontainer component that iterates over and displays contacts components. All contacts are displayed
in contactList, butyou can select different lead sources to view a subset of contacts associated with the lead source.



Quick Start

CONTACTS
Contact Viewer

Create a Component for Lightning Experience and the

contactlList.cmp

133 Contacts - Select Lead Sources

Lead Source

v -- Select a Lead Source --
Referral
Social Media
All

(415) 555-5590
1 Market St.

CPOST@ENAMPLE.COM

[Z) Aiden Pearson

(415) 555-7722
50 Fremont Street

Details

contacts.cmp

APEARSON@EXAMPLE.COM

[£] Brad Anastasio

(415) 555-9065
800 3rd Street

Details

contacts.cmp

BANASTASIO@EXAMPLE.COM

In the next few topics, you create the following resources.

Resource
Contacts Bundle

contacts.cmp

contactsController.js The client-side controller action that navigates to a contact record using the
force:navigateToSObject event

contactList Bundle

contactList.cmp

Description

The component that displays individual contacts

The component that loads the list of contacts

Salesforce Mobile App

contactlistController.js The client-side controller actions that call the helper resource to load contact data and handles the lead

source selection

contactListHelper.js The helperfunctionthat retrieves contact data, displays a toast message on successful loading of contact

Apex Controller

data, displays contact data based on lead source, and update the total number of contacts



Quick Start Load the Contacts

Resource Description

ContactController.apxc The Apex controller that queries all contact records and those records based on different lead sources

Load the Contacts

Create an Apex controller and load your contacts. An Apex controller is the bridge that connects your components and your Salesforce
data.

Your organization must have existing contact records for this tutorial.

1. Inthe Developer Console, click File > New > Apex Class, and then enter ContactController inthe New Class window. A
new Apex class, ContactController.apxc, is created. Enter this code and then save.

public with sharing class ContactController {
@AuraEnabled
public static List<Contact> getContacts () {
List<Contact> contacts =
[SELECT Id, Name, MailingStreet, Phone, Email, LeadSource FROM Contact];

//Add isAccessible () check
return contacts;

}

ContactController contains methods that return your contact data using SOQL statements. This Apex controller is wired
up to your component in a later step. getContacts () returns all contacts with the selected fields.

2. (lick File > New > Lightning Component, and then enter contacts for the Name field in the New Lightning Bundle popup
window. This creates a component, contacts . cmp. Enter this code and then save.

<aura:component>
<aura:attribute name="contact" type="Contact" />

<lightning:card variant="Narrow" title="{!v.contact.Name}"
iconName="standard:contact">
<aura:set attribute="actions">
<lightning:button name="details" label="Details" onclick="{!c.goToRecord}"
/>
</aura:set>
<aura:set attribute="footer">
<lightning:badge label="{!v.contact.Email}"/>
</aura:set>
<p class="slds-p-horizontal small">
{!v.contact.Phone}
</p>
<p class="slds-p-horizontal small">
{!v.contact.MailingStreet}
</p>
</lightning:card>

</aura:component>

10



Quick Start Load the Contacts

This component creates the template for your contact data using the 1ightning: card component, which simply creates a
visual container around a group of information. This template gets rendered for every contact that you have, so you have multiple
instances of acomponent in your view with different data. The onc1ick eventhandleronthe 1ightning:button component
callsthe goToRecord client-side controller action when the button is clicked. Notice the expression { ! v.contact.Name}?
v represents the view, which is the set of component attributes, and contact is the attribute of type Contact. Using this dot
notation, you can access the fields in the contact object, like Name and Emai 1, after you wire up the Apex controller to the
component in the next step.

3. C(lick File > New > Lightning Component, and then enter contactList forthe Name field in the New Lightning Bundle
popup window, which creates the contactList.cmp component. Enter this code and then save. If you're using a namespace
in your organization, replace ContactController with myNamespace.ContactController.You wire up the Apex
controller to the component by using the controller="ContactController" syntax.

<aura:component implements="force:appHostable" controller="ContactController">
<!-- Handle component initialization in a client-side controller -->
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<!-- Dynamically load the list of contacts -->
<aura:attribute name="contacts" type="Contact[]"/>
<aura:attribute name="contactList" type="Contact[]"/>
<aura:attribute name="totalContacts" type="Integer"/>

<!-- Page header with a counter that displays total number of contacts -->
<div class="slds-page-header slds-page-header object-home">
<lightning:layout>
<lightning:layoutItem>
<lightning:icon iconName="standard:contact" />
</lightning:layoutItem>
<lightning:layoutItem class="slds-m-left small">
<p class="slds-text-title caps slds-line-height reset">Contacts</p>
<hl class="slds-page-header title slds-p-right x-small">Contact
Viewer</hl>
</lightning:layoutItem>
</lightning:layout>

<lightning:layout>
<lightning:layoutItem>
<p class="slds-text-body small">{!v.totalContacts} Contacts ¢ View
Contacts Based on Lead Sources</p>
</lightning:layoutItem>
</lightning:layout>
</div>

<!-- Body with dropdown menu and list of contacts -->
<lightning:layout>
<lightning:layoutItem padding="horizontal-medium" >
<!-- Create a dropdown menu with options -->
<lightning:select aura:id="select" label="Lead Source" name="source"
onchange="{!c.handleSelect}" class="slds-m-bottom medium">

<option value="">-- Select a Lead Source --</option>
<option value="Referral" text="Referral"/>

<option value="Social Media" text="Social Media"/>
<option value="All" text="All"/>

n



Quick Start

</lightning:select>

<!-- TIterate over the list of contacts and display them -->

<aura:iteration var="contact" items="{!v.contacts}">
<!-- If you’re using a namespace, replace with myNamespace:contacts-->
<c:contacts contact="{!contact}"/>

</aura:iteration>

</lightning:layoutItem>
</lightning:layout>
</aura:component>

Let’s dive into the code. We added the init handlertoload the contact data during initialization. The handler calls the client-side
controller code in the next step. We also added two attributes, contacts and totalContacts, which stores thelist of contacts
and a counter to display the total number of contacts respectively. Additionally, the contactList component is an attribute
used to store thefiltered list of contacts when an option is selected on the lead source dropdown menu. The 1ightning: layout
components simply create grids to align your content in the view with Lightning Design System CSS classes.

The page header containsthe {!v.totalContacts} expression todynamically display the number of contacts based on the
lead source you select. For example, if you select Referral and there are 30 contacts whose Lead Source fields are set to
Referral, then the expression evaluates to 30.

Next, we create a dropdown menu with the 1ightning:select component. When you select an option in the dropdown
menu, the onchange event handler calls your client-side controller to update the view with a subset of the contacts. You create
the client-side logic in the next few steps.

In case you're wondering, the force: appHostable interface enables your component to be surfaced in Lightning Experience
and the Salesforce mobile app as tabs, which we are getting into later.

In the contactList sidebar, click CONTROLLER to create a resource named contactListController. js.Replace the
placeholder code with the following code and then save.

({
doInit : function (component, event, helper) {
// Retrieve contacts during component initialization
helper.loadContacts (component) ;

s
handleSelect : function (component, event, helper) {
var contacts = component.get ("v.contacts");

var contactlList = component.get ("v.contactList");

//Get the selected option: "Referral", "Social Media", or "ALl"

var selected = event.getSource () .get ("v.value");
var filter = [];
var k = 0;

for (var i1i=0; i<contactList.length; i++) {
var ¢ = contactList[i];

if (selected != "AI1l"){
if (c.LeadSource == selected) {
filter([k] = c;
k++;
}
}
else {

12

Load the Contacts



Quick Start Load the Contacts

filter = contactList;

}

//Set the filtered list of contacts based on the selected option
component.set ("v.contacts", filter);

helper.updateTotal (component) ;

H)

The client-side controller calls helper functions to do most of the heavy-lifting, which is a recommended pattern to promote code
reuse. Helper functions also enable specialization of tasks, such as processing data and firing server-side actions, which is what we
are covering next. Recall that the onchange eventhandleronthe 1ightning:select componentcallsthe handleSelect
client-side controller action, which is triggered when you select an option in the dropdown menu. handleSelect checks the
option value that's passedinusing event .getSource () .get ("v.value").ltcreatesafilteredlist of contacts by checking
that the lead source field on each contact matches the selected lead source. Finally, update the view and the total number of contacts
based on the selected lead source.

5. Inthe contactList sidebar, click HELPER to create a resource named contactListHelper. js.Replace the placeholder code
with the following code and then save.

({

loadContacts : function (cmp) {
// Load all contact data
var action = cmp.get ("c.getContacts");
action.setCallback(this, function (response) {
var state = response.getState();
if (state === "SUCCESS") {
cmp.set ("v.contacts", response.getReturnvValue());
cmp.set ("v.contactList", response.getReturnValue()):;

this.updateTotal (cmp) ;

// Display toast message to indicate load status

var toastEvent = $A.get ("e.force:showToast");
if (state === 'SUCCESS') {
toastEvent.setParams ({
"title": "Success!",
"message": " Your contacts have been loaded successfully."

)i
}

else {
toastEvent.setParams ({
"title": "Error!",
"message": " Something has gone wrong."

}) g
}
toastEvent.fire () ;
})
SA.enqueueAction (action) ;

b
updateTotal: function (cmp) {

var contacts = cmp.get ("v.contacts");
cmp.set ("v.totalContacts", contacts.length);

13



Quick Start Fire the Events

H)

During initialization, the contactList component loads the contact data by:

e (alling the Apex controller method getContacts, which returns the contact data via a SOQL statement

e Setting the return value via cmp . set ("v.contacts", response.getReturnValue ()) intheaction callback,
which updates the view with the contact data

e Updating the total number of contacts in the view, which is evaluated in updateTotal

You must be wondering how your component works in Lightning Experience and the Salesforce app. Let's find out next!

6. Make the contactList component available via a custom tab in Lightning Experience and the Salesforce app.

e Add Aura Components as Custom Tabs in a Lightning Experience App

For this tutorial, we recommend that you add the component as a custom tab in Lightning Experience.
When your component is loaded in Lightning Experience or the Salesforce app, a toast message indicates that your contacts are loaded
successfully. Select a lead source from the dropdown menu and watch your contact list and the number of contacts update in the view.

Next, wire up an event that navigates to a contact record when you click a button in the contact list.

Fire the Events

Fire the events in your client-side controller or helper functions. The force events are handled by Lightning Experience and the
Salesforce mobile app, but let's view and test the components in Lightning Experience to simplify things.

This demo builds on the contacts component you created in Load the Contacts on page 10.

1. Inthe contacts sidebar, click CONTROLLER to create a resource named contactsController. js.Replace the placeholder
code with the following code and then save.

({

goToRecord : function (component, event, helper) {
// Fire the event to navigate to the contact record
var sObjectEvent = S$A.get("e.force:navigateToSObject");
sObjectEvent.setParams ({

"recordId": component.get ("v.contact.Id")

})
sObjectEvent.fire();

})

The onclick event handlerin the following button component triggers the goToRecord client-side controller when the
button is clicked.

<lightning:button name="details" label="Details" onclick="{!c.goToRecord}" />

You set the parameters to pass into the events using the event . setParams () syntax.In this case, you're passing in the Id of
the contact record to navigate to. There are other events besides force :navigateToSObject thatsimplify navigation within
Lightning Experience and the Salesforce app. For more information, see Events Handled in the Salesforce Mobile App and Lightning
Experience.

2. Totest the event, refresh your custom tab in Lightning Experience, and click the Details button.

The force:navigateToSObject isfired, which updates the view to display the contact record page.

14



Quick Start Fire the Events

We stepped through creating a component that loads contact data using a combination of client-side controllers and Apex controller
methods to create a custom Ul with your Salesforce data. The possibilities of what you can do with Aura components are endless. While
we showed you how to surface a component via a tab in Lightning Experience and the Salesforce app, you can take this tutorial further
by surfacing the component on record pages via the Lightning App Builder and even Experience Builder. To explore the possibilities,
blaze the trail with the resources available at Trailhead: Explore Lightning Aura Components Resources.

15



CHAPTER 3 Creating Components

In this chapter ...

e Component Names

e Creatfe Aura
Components in the
Developer Console

e Create Aura
Components Using
Salesforce CLI

e Component Markup

e Component
Namespace

e Component Bundles

e Component IDs

e HTMLin Components

e (CSSin Components

e Component
Attributes

e Using Expressions

e Component
Composition

e Component Body

e Component Facets

e Conftrolling Access

e Using
Object-Oriented
Development

e Best Practices for
Conditional Markup

e Aura Component
Versioning for
Managed Packages

e Base Components
with Minimum API
Version
Requirements

e Validations for Aura
Component Code

Components are the functional units of the Lightning Component framewaork.

A component encapsulates a modular and potentially reusable section of U, and can range in granularity
from a single line of text to an entire application.

16



Creating Components

Using Labels
Localization

Working with Base
Lightning
Components
Supporting
Accessibility
Writing
Documentation for
the Component
Library

17



Creating Components Component Names

Component Names

A component name must follow the naming rules for Lightning components.
A component name must follow these naming rules:

e Must begin with a letter

e Must contain only alphanumeric or underscore characters

e Must be unique in the namespace

e (Can'tinclude whitespace

e (an'tend with an underscore

e (an't contain two consecutive underscores

SEE ALSO:
Create Aura Components in the Developer Console

Component Markup

Create Aura Components in the Developer Console

The Developer Console is a convenient, built-in tool you can use to create new and edit existing Aura components and other bundles.
1. Open the Developer Console.
Select Developer Console from the Your Name or the quick access menu (#5%).

2. Open the New Lightning Bundle panel for an Aura component.

Select File > New > Lightning Component.

3. Name the component.

For example, enter helloWorld inthe Name field.

4. Optional: Describe the component.

Use the Description field to add details about the component.

5. Optional: Add component configurations to the new component.

You can select as many options in the Component Configuration section as you wish, or select no configuration at all.

6. Click Submit to create the component.

Or, to cancel creating the component, click the panel’s close box in the top right corner.

18



Creating Components Lightning Bundle Configurations Available in the Developer
Console

IN THIS SECTION:

Lightning Bundle Configurations Available in the Developer Console

Configurations make it easier to create a component or application for a specific purpose, like a Lightning page or Experience Builder
site page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle panel
in the Developer Console offers a choice of component configurations when you create an Aura component or application bundle.

SEE ALSO:
Using the Developer Console
Lightning Bundle Configurations Available in the Developer Console

Create Aura Components Using Salesforce CLI

Lightning Bundle Configurations Available in the Developer Console

Configurations make it easier to create a component or application for a specific purpose, like a Lightning page or Experience Builder
site page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle panel in the
Developer Console offers a choice of component configurations when you create an Aura component or application bundle.

Configurations add the interfaces required to support using the component in the desired context. For example, when you choose the
Lightning Tab configuration, your new component includes implements="force:appHostable" inthe
<aura:component> tag.

Using configurations is optional. You can use them in any combination, including all or none.

The following configurations are available in the New Lightning Bundle panel.

Configuration Markup Description
Aura component bundle

Lightning Tab implements="force:appHostable" Creates a component for use as a
navigation element in Lightning
Experience or Salesforce mobile apps.

Lightning Page implements="flexipage:availableForAllPageTypes" Createsa component for use in
and access="global" Lightning pages or the Lightning App
Builder.
Lightning Record Page  implements="flexipage:availableForRecordHome, Createsacomponent foruseona
force:hasRecordId" and access="global" record home page in Lightning
Experience.

Experience Builder Site  implements="forceCommunity:availableForAllPageTypes" Createsacomponent that's available

Page (previously and access="global" for drag and drop in the Experience
Lightning Communities Builder.

Page)

Lightning Quick Action implements="force:lightningQuickAction" Creates a component that can be

used with a Lightning quick action.

Lightning application bundle

19



Creating Components Create Aura Components Using Salesforce CLI

Configuration Markup Description
Lightning Out extends="1ltng:outApp" Creates an empty Lightning Out
Dependency App dependency app.

@ Nofte: For details of the markup added by each configuration, see the respective documentation for those features.

SEE ALSO:
Create Aura Components in the Developer Console
Configure Components for Custom Tabs
Configure Components for Custom Actions
Configure Components for Lightning Pages and the Lightning App Builder
Configure Components for Lightning Experience Record Pages

Configure Components for Experience Builder

Create Aura Components Using Salesforce CLI

To develop Aura components, use Salesforce CLI to synchronize source code between your Salesforce orgs and version control system.
Alternatively, you can use the Developer Console.

Your development environment includes:

e Salesforce CLI

e Visual Studio Code or another code editor

e Salesforce Extension Pack, if using Visual Studio Code

e ADeveloper Edition org

To install Salesforce CLI and verify the installation, follow the instructions at Salesforce CLI Setup Guide.
@ Note: If you have an old version of the CLI installed, run this command to update it.

sf update

Use your favorite code editor with Salesforce CLI. We recommend using Visual Studio Code because its Salesforce Extension Pack provides
powerful features for working with Salesforce CLI, the Lightning Component framework, Apex, and Visualforce.

If you choose to work with Visual Studio Code, install it and the Salesforce Extension Pack.
e Visual Studio Code (VS Code)

e Salesforce Extension Pack for Visual Studio Code
To create and deploy an Aura Component to your org:
1. Create a Salesforce DX project.
a. InVisual Studio code, open the Command Palette by pressing Ctrl+Shift+P on Windows or Cmd+Shift+P on macOS.
b. Type SFDx and then select SFDX: Create Project.
Enter HelloAuraComponent and then press Enter. Select a folder to store the project.

d. Click Create Project. You should see something like this in your Visual Studio Code workspace.

20


https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode

Creating Components Create Aura Components Using Salesforce CLI

EXPLORER

4 OPEN EDITORS

» ] Welcome
4 HELLOAURACOMPOMNENT

b _sfdx

¥ .wscode

b config

4 force-app

4 main
4 default

applications
aura
classes
contentassets
flexipages
layouts
Iwe
objects
permissionsets
staticresources
tabs

v v v v v v v v v v v

triggers
forceignore

# .gitignore
.prettierignore
Jprettierrc

@ README.md

I

{} sfdx-project.json

@ Nofte: The default Salesforce DX project structure facilitates moving source to and from your orgs. See Create a Salesforce
DX Project.

2. Create an Aura component.
a. Open the Command Palette and select SFDX: Create Lightning Component.
b. Entera name for your component, such as myComponent. Press Enter.

¢. Enter the directory for your component or press Enter to accept the default. The default directory is
force-app/main/default/aura. You should see a similar directory like this.

21


https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm

Creating Components Create Aura Components Using Salesforce CLI

d. Open myComponent.cmp and replace its content.

<aura:component>
Hello World!
</aura:component>

3. Authenticate to your org. This step uses a Dev Hub org.

Nofe: You can develop Aura components in scratch orgs and non-scratch orgs. A Dev Hub org enables you to create scratch
orgs. Configure an org as a Dev Hub by following the instructions at Salesforce DX Developer Guide.

a. Open the Command Palette and select SFDX: Authorize a Dev Hub Org. A browser window opens with a Salesforce login
page.
b. Log in to your org. If prompted to allow access, click Allow.

After you authenticate in the browser, the CLI remembers your credentials. The success message looks like this.

13:40:34.679 sfdx org:login:web --alias <alias> --set-default-dev-hub

Successfully authorized username@my.org with org ID 00D1a0000000000000

13:41:48.720 sfdx org:login:web --alias <alias> --set-default-dev-hub ended with exit
code 0

If the authentication fails, follow the troubleshooting guide at Salesforce CLI Setup Guide.

4. Deploy your files.

a. Inthe Visual Studio Code terminal, run this command.
sf project deploy start --source-dir force-app --target-org username@my.org
The success message looks like this.

Deployed Source

| State Name Type Path
|

22


https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_troubleshoot.htm

Creating Components Component Markup

| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.auradoc

| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.cmp

| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.cmp-meta.xml
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.css

| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.design

| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.svg

| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponentController.js
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponentHelper.js

| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponentRenderer.js

If you make changes to your component via the Developer Console in the Dev Hub org, use the project retrieve start
command to retrieve your changes. The source you retrieve overwrites the corresponding source files in your local project.

sf project retrieve start --source-dir force-app --target-org username@my.org

SEE ALSO:
Component Bundles
Salesforce DX Developer Guide: Develop Against Any Org
Salesforce DX Developer Guide: Pull Source from the Scratch Org to Your Project

Using the Developer Console

Component Markup

Component resources contain markup and have a . cmp suffix. The markup can contain text or references to other components, and
also declares metadata about the component.

Let's start with a simple "Hello, world!" example ina helloWorld.cmp component.

<aura:component>
Hello, world!
</aura:component>

This is about as simple as a component can get. The "Hello, world!" text is wrapped in the <aura : component> tags, which appear
at the beginning and end of every component definition.

Components can contain most HTML tags so you can use markup, such as <div> and <span>. HTML5 tags are also supported.

<aura:component>
<div class="container">
<!--Other HTML tags or components here-->
</div>
</aura:component>

23


https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_develop_any_org.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_pull_md_from_scratch_org.htm

Creating Components Component Namespace

@ Nofte: Case sensitivity should be respected as your markup interacts with JavaScript, CSS, and Apex.

SEE ALSO:
Using the Developer Console
Component Names

Component Access Control

Component Namespace

Every component is part of a namespace, which is used to group related components together. If your organization has a namespace
prefix set, use that namespace to access your components. Otherwise, use the default namespace to access your components.

Another component or application can reference a component by adding <myNamespace :myComponent> in its markup. For
example, the helloWorld componentisinthe docsample namespace. Another component can reference it by adding
<docsample:helloWorld /> inits markup.

Lightning components that Salesforce provides are grouped into several namespaces, such as aura, 1ightning, and force.
Components from third-party managed packages have namespaces from the providing organizations.

In your organization, you can choose to set a namespace prefix. If you do, that namespace is used for all of your Lightning components.
A namespace prefix is required if you plan to offer managed packages on the AppExchange.

If you haven't set a namespace prefix for your organization, use the default namespace ¢ when referencing components that you've
created.

Namespaces in Code Samples

The code samples throughout this guide use the default ¢ namespace. Replace ¢ with your namespace if you've set a namespace
prefix.

Using the Default Namespace in Organizations with No Namespace Set

If your organization hasn't set a namespace prefix, use the default namespace ¢ when referencing Lightning components that you've
created.

The following items must use the ¢ namespace when your organization doesn't have a namespace prefix set.

e References to components that you've created

e References to events that you've defined

The following items use an implicit namespace for your organization and don't require you to specify a namespace.
e References to custom objects

e References to custom fields on standard and custom objects

e References to Apex controllers

See Namespace Usage Examples and Reference on page 26 for examples of all of the preceding items.

24



Creating Components Using Your Organization’s Namespace

Using Your Organization’s Namespace

If your organization has set a namespace prefix, use that namespace to reference Lightning components, events, custom objects and
fields, and other items in your Lightning markup.

The following items use your organization’s namespace when your organization has a namespace prefix set.
e References to components that you've created

e References to events that you've defined

e References to custom objects

e References to custom fields on standard and custom objects

e References to Apex controllers

e References to static resources

@ Note: Support for the ¢ namespace in organizations that have set a namespace prefix is incomplete. The following items can
use the ¢ namespace if you prefer to use the shortcut, but it's not currently a recommended practice.

e References to components that you've created when used in Lightning markup, but not in expressions or JavaScript
e References to events that you've defined when used in Lightning markup, but not in expressions or JavaScript

e References to custom objects when used in component and event type and default system attributes, but not in
expressions or JavaScript

See Namespace Usage Examples and Reference on page 26 for examples of the preceding items.

Using a Namespace in or from a Managed Package

Always use the complete namespace when referencing items from a managed package, or when creating code that you intend to
distribute in your own managed packages.

Another component or application can reference a component by adding <pkgNamespace : pkgComponent> in its markup. For
example, let's look at a package that contains the helloWorld componentin the docsample namespace. Another component
can reference the component from the package by adding <docsample:helloWorld /> inits markup.

SEE ALSO:

Namespace Usage Examples and Reference

Creating a Namespace in Your Organization

Create a namespace for your organization by registering a namespace prefix.

If you're not creating managed packages for distribution then registering a namespace prefix isn't required, but it's a best practice for
all but the smallest organizations.

Your namespace must:
e Begin with a letter
e (Contain one to 15 alphanumeric characters

e Not contain two consecutive underscores
For example, myNp123 and my np are valid namespaces, but 123Company and my _ np aren't.

To register a namespace:

25



Creating Components Namespace Usage Examples and Reference

1. From Setup, enter Package Manager in the Quick Find box and select Package Manager.

2. Inthe Namespace Settings panel, click Edit.

@ Nofte: After you've configured your namespace settings, this button is hidden.

Enter the namespace you want to register.

Click Check Availability to determine if the namespace is already in use.

If the namespace prefix that you entered isn't available, repeat the previous two steps.
Click Review.

Click Save.

N o v & w

Namespace Usage Examples and Reference

This topic provides examples of referencing components, objects, fields, and so on, in Aura components code.
Examples are provided for the following.

e Components, events, and interfaces in your organization

e Custom objects in your organization

e Custom fields on standard and custom objects in your organization

e Server-side Apex controllers in your organization

e Dynamic creation of components in JavaScript

e Static resources in your organization

Organizations with No Namespace Prefix Set

The following illustrates references to elements in your organization when your organization doesn’t have a namespace prefix set.
References use the default namespace, c, where necessary.

Referenced ltem Example

Component used in markup <c:myComponent />

Component used in a system <aura:component extends="c:myComponent'>
attribute

<aura:component implements="c:myInterface">

Apex controller <aura:component controller="ExpenseController">
Custom objectin attribute datatype <aura:attribute name="expense" type="Expense c" />

Custom object or custom fie