
Lightning Aura Components
Developer Guide

Version 60.0, Spring ’24

Last updated: April 5, 2024



© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Chapter 1: Introducing Aura Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

What is Salesforce Lightning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Use Lightning Web Components instead of Aura Components . . . . . . . . . . . . . . . . . . . . . . . 2
Aura Components Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Aura Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Browser Support for Aura Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Using the Developer Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Online Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Before You Begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Trailhead: Explore Lightning Aura Components Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Create a Component for Lightning Experience and the Salesforce Mobile App . . . . . . . . . . . . . 7

Load the Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Fire the Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3: Creating Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Component Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Create Aura Components in the Developer Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Lightning Bundle Configurations Available in the Developer Console . . . . . . . . . . . . . . . 19
Create Aura Components Using Salesforce CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Component Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Component Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Using the Default Namespace in Organizations with No Namespace Set . . . . . . . . . . . . 24
Using Your Organization’s Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Using a Namespace in or from a Managed Package . . . . . . . . . . . . . . . . . . . . . . . . . 25
Creating a Namespace in Your Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Namespace Usage Examples and Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Component Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Component IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
HTML in Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Supported HTML Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CSS in Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Component Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Supported aura:attribute Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Basic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Function Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Object Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Standard and Custom Object Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Collection Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Custom Apex Class Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Framework-Specific Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Using Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Dynamic Output in Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Data Binding Between Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Value Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Expression Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Expression Operators Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Expression Functions Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Component Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Component Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Component Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Controlling Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Application Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Interface Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Component Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Attribute Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Event Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Using Object-Oriented Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Favor Composition Over Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
What is Inherited? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Inherited Component Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Abstract Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Inheritance Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Best Practices for Conditional Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Aura Component Versioning for Managed Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Base Components with Minimum API Version Requirements . . . . . . . . . . . . . . . . . . . . . . . 83
Validations for Aura Component Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Validation When You Save Code Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Validation During Development Using ESLint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Aura Component Validation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Using Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Using Custom Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Input Component Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Dynamically Populating Label Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Getting Labels in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Getting Labels in Apex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Setting Label Values via a Parent Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Working with Base Lightning Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Contents



Base Lightning Components Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Event Handling in Base Lightning Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Creating a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Validating Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Lightning Design System Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Migrate Components from the ui Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Supporting Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Accessibility for Base Lightning Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Write Aura Component Accessibility Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Writing Documentation for the Component Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Creating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Creating Documentation Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Providing Specification Information and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 4: Using Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Aura Component Bundle Design Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Use Aura Components in Lightning Experience and the Salesforce Mobile App . . . . . . . . . . . 141

Configure Components for Custom Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Add Aura Components as Custom Tabs in a Lightning Experience App . . . . . . . . . . . . 142
Lightning Component Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Override Standard Actions with Aura Components . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Navigate Across Your Apps with Page References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Basic Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Add Links to Lightning Pages from Your Custom Components . . . . . . . . . . . . . . . . . . . 156
Add Query Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Navigate to a Record Create Page with Default Field Values . . . . . . . . . . . . . . . . . . . . 157
Navigate to a Web Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Migrate to lightning:isUrlAddressable from force:navigateToComponent . . . . . . . . . . . . 161
pageReference Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Get Your Aura Components Ready to Use on Lightning Pages . . . . . . . . . . . . . . . . . . . . . . 175
Configure Components for Lightning Pages and the Lightning App Builder . . . . . . . . . . 176
Configure Components for Lightning Experience Record Pages . . . . . . . . . . . . . . . . . . 177
Create Components for the Outlook and Gmail Integrations . . . . . . . . . . . . . . . . . . . . 178
Create Components for Forecast Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Create Dynamic Picklists for Your Custom Components . . . . . . . . . . . . . . . . . . . . . . . 186
Create a Custom Lightning Page Template Component . . . . . . . . . . . . . . . . . . . . . . . 187
Lightning Page Template Component Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . 191
Make Your Lightning Page Components Width-Aware with
lightning:flexipageRegionInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Tips and Considerations for Configuring Components for Lightning Pages and the Lightning
App Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Use Aura Components in Experience Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Configure Components for Experience Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Create Custom Theme Layout Components for Experience Builder . . . . . . . . . . . . . . . . 196

Contents



Create Custom Component for Guest User Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Create Custom Search and Profile Menu Components for Experience Builder . . . . . . . . 202
Create Custom Content Layout Components for Experience Builder . . . . . . . . . . . . . . . 203

Use Aura Components with Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Considerations for Configuring Components for Flows . . . . . . . . . . . . . . . . . . . . . . . 206
Customize Flow Screens Using Aura Components . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Create Flow Local Actions Using Aura Components . . . . . . . . . . . . . . . . . . . . . . . . . 220
Embed a Flow in a Custom Aura Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Display Flow Stages with an Aura Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Add Components to Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Integrate Your Custom Apps into the Chatter Publisher . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Using Background Utility Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Use Lightning Components in Visualforce Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Use Aura and Lightning Web Components Outside of Salesforce with Lightning Out (Beta) . . . 243
Lightning Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Using a Third-Party Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Lightning Container Component Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
The Lightning Realty App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
lightning:container NPM Module Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Chapter 5: Communicating with Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Actions and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Handling Events with Client-Side Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Component Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Component Event Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Create Custom Component Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Fire Component Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Handling Component Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Component Event Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Application Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Application Event Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Create Custom Application Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Fire Application Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Handling Application Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Application Event Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Event Handler Behavior for Active Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Event Handling Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Advanced Events Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Firing Events from Non-Aura Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Events Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Events Anti-Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Events Fired During the Rendering Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Events Handled in the Salesforce Mobile App and Lightning Experience . . . . . . . . . . . . . . . 294
System Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Contents



Chapter 6: Communicating Across the DOM with Lightning Message Service . . . . . 297

Create a Message Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Publish on a Message Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Subscribe to a Message Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Lightning Message Service Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Chapter 7: Creating Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

App Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Designing App UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Creating App Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Using the AppCache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Distributing Applications and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Apex Class Considerations for Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Adding Aura Components to Managed Packages . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Deleting Aura Components from Managed Packages . . . . . . . . . . . . . . . . . . . . . . . 306

Chapter 8: Styling Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Using the Salesforce Lightning Design System in Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Using External CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
More Readable Styling Markup with the join Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Tips for CSS in Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
CSS for RTL Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Vendor Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Styling with Design Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Tokens Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Create a Tokens Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Defining and Using Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Using Expressions in Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Extending Tokens Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Using Standard Design Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Chapter 9: Developing Secure Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Lightning Locker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
JavaScript Strict Mode Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
DOM Access Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Secure Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
eval() Function is Limited by Lightning Locker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
MIME Types Permitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Access to Supported JavaScript API Framework Methods Only . . . . . . . . . . . . . . . . . . 340
What Does Lightning Locker Affect? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Lightning Locker Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Select the Locker API Version for an Org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Disable Lightning Locker for a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Don’t Mix Component API Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Contents



Lightning Locker Disabled for Unsupported Browsers . . . . . . . . . . . . . . . . . . . . . . . . 349
Lightning Web Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Content Security Policy Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Stricter CSP Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Chapter 10: Using JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Supported JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Invoking Actions on Component Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Sharing JavaScript Code in a Component Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Sharing JavaScript Code Across Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Using External JavaScript Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Dynamically Creating Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Detecting Data Changes with Change Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Finding Components by ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Working with Attribute Values in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Working with a Component Body in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Working with Events in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Modifying the DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Modifying DOM Elements Managed by the Aura Components Programming Model . . . 371
Modifying DOM Elements Managed by External Libraries . . . . . . . . . . . . . . . . . . . . . 375

Checking Component Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Modifying Components Outside the Framework Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . 377
Throwing and Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Calling Component Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Return Result for Synchronous Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Return Result for Asynchronous Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Dynamically Adding Event Handlers To a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Dynamically Showing or Hiding Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Adding and Removing Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Which Button Was Pressed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Formatting Dates in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Using JavaScript Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Making API Calls from Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Control Access to Browser Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Manage Trusted URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Chapter 11: Working with Salesforce Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Lightning Data Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Loading a Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Editing a Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Creating a Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Deleting a Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Record Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Contents



Changing the Display Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Lightning Action Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
SaveRecordResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Displaying the Create and Edit Record Modals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Using Apex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Creating Server-Side Logic with Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Testing Your Apex Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Making API Calls from Apex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Make Long-Running Callouts with Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Creating Components in Apex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Chapter 12: Testing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Chapter 13: Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Enable Debug Mode for Lightning Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Disable Caching Setting During Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Salesforce Lightning Inspector Chrome Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Install Salesforce Lightning Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
Salesforce Lightning Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Log Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Chapter 14: Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Performance Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Enable Secure Browser Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Enable CDN to Load Applications Faster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Fixing Performance Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
<aura:if>—Clean Unrendered Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
<aura:iteration>—Multiple Items Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Chapter 15: Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Component Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Differences Between Documentation Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

System Tag Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
aura:application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
aura:dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
aura:event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
aura:interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
aura:method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
aura:set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

JavaScript API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
$A namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
AuraLocalizationService . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Contents



Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Util . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Contents



CHAPTER 1 Introducing Aura Components

Lightning components is the umbrella term for Aura components and Lightning web components. As
of Spring ’19 (API version 45.0), you can build Lightning components using two programming models:
the Lightning Web Components (LWC) model, and the original Aura Components model.

In this chapter ...

• What is Salesforce
Lightning?

The Lightning Component framework is a UI framework for developing Lightning components for mobile
and desktop devices. Lightning web components and Aura components can coexist and interoperate
on a page.

• Use Lightning Web
Components instead
of Aura Components

Lightning Web Components uses core Web Components standards and provides only what’s necessary
to perform well in browsers supported by Salesforce. Because it’s built on code that runs natively in

• Aura Components
Release Notes

browsers, Lightning Web Components is lightweight and delivers exceptional performance. Most of the
code you write is standard JavaScript and HTML.

• Aura Components

• Events
For new components, create Lightning web components instead of Aura components. Lightning web
components perform better and are easier to develop than Aura components. However, when you

• Browser Support for
Aura Components

develop Lightning web components, you also may need to use Aura, because LWC doesn’t yet support
• Using the Developer

Console
everything that Aura does. We're actively working in each release to eliminate these gaps so that LWC
works for all use cases.

• Online Content
Configure Lightning web components and Aura components to work in Lightning App Builder and
Experience Builder. Admins and end users don’t know which programming model was used to develop
the components. To them, they’re simply Lightning components.

This developer guide covers how to develop custom Aura components. The Lightning Web Components
Developer Guide covers how to develop custom Lightning web components.

Tip:  The name of the programming model is Aura Components (uppercase). When we refer to
the components themselves, we use Aura components (lowercase).

1

https://github.com/w3c/webcomponents/
https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/lwc


What is Salesforce Lightning?

Lightning includes the Lightning Component Framework and some exciting tools for developers. Lightning makes it easier to build
responsive applications for any device.

Lightning includes these technologies:

• Lightning components accelerate development and app performance. Develop custom components that other developers and
admins can use as reusable building blocks to customize Lightning Experience and the Salesforce mobile app.

• Lightning App Builder empowers admins to build Lightning pages visually, without code, using off-the-shelf and custom-built
Lightning components. Make your Lightning components available in the Lightning App Builder so administrators can build custom
user interfaces without code.

• Experience Builder empowers admins to build communities visually, without code, using Lightning templates and components.
Make your Lightning components available in Experience Builder so administrators can build community pages without code.

Using these technologies, you can seamlessly customize and easily deploy new apps to mobile devices running Salesforce. In fact, the
Salesforce mobile app and Salesforce Lightning Experience are built with Lightning components.

This guide teaches you to create your own custom Aura components and apps. You also learn how to package applications and
components and distribute them in the AppExchange.

To learn how to develop Lightning web components, see Lightning Web Components Developer Guide.

Use Lightning Web Components instead of Aura Components

Lightning web components perform better and are easier to develop than Aura components. However, when you develop Lightning
web components, you also may need to use Aura, because LWC doesn’t yet support everything that Aura does.

How do you decide which components to develop as Lightning web components and which to develop as Aura components?

The answer is to always choose Lightning Web Components unless you need a feature that isn’t supported.

For information on gaps between Lightning Web Components and Aura Components, see the Lightning Web Components Developer
Guide.

To migrate Aura components to Lightning web components, see the Lightning Web Components Developer Guide.

Aura Components Release Notes

Use the Salesforce Release Notes to learn about the most recent updates and changes to Aura Components.

For updates and changes that impact Aura Components, see Lightning Components in the Salesforce Release Notes.

For new and changed Aura components, see Lightning Components: New and Changed Items in the Salesforce Release Notes.

Aura Components

Aura components are the self-contained and reusable units of an app. They represent a reusable section of the UI, and can range in
granularity from a single line of text to an entire app.

The framework includes a set of prebuilt components. For example, components that come with the Lightning Design System styling
are available in the lightning  namespace. These components are also known as the base Lightning components. You can assemble

2

What is Salesforce Lightning?Introducing Aura Components

https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_lwc_or_aura
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_lwc_or_aura
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.migrate_introduction
https://help.salesforce.com/s/articleView?id=release-notes.rn_lc.htm&language=en_US
https://help.salesforce.com/s/articleView?id=release-notes.rn_lc_nc.htm&language=en_US


and configure components to form new components in an app. Components are rendered to produce HTML DOM elements within the
browser.

A component can contain other components, as well as HTML, CSS, JavaScript, or any other Web-enabled code. This enables you to
build apps with sophisticated UIs.

The details of a component's implementation are encapsulated. This allows the consumer of a component to focus on building their
app, while the component author can innovate and make changes without breaking consumers. You configure components by setting
the named attributes that they expose in their definition. Components interact with their environment by listening to or publishing
events.

SEE ALSO:

Creating Components

Working with Base Lightning Components

Events

Event-driven programming is used in many languages and frameworks, such as JavaScript and Java Swing. The idea is that you write
handlers that respond to interface events as they occur.

A component registers that it may fire an event in its markup. Events are fired from JavaScript controller actions that are typically triggered
by a user interacting with the user interface.

There are two types of events in the framework:

• Component events are handled by the component itself or a component that instantiates or contains the component.

• Application events are handled by all components that are listening to the event. These events are essentially a traditional
publish-subscribe model.

You write the handlers in JavaScript controller actions.

SEE ALSO:

Communicating with Events

Handling Events with Client-Side Controllers

Browser Support for Aura Components

Aura Components support the same browsers as Lightning Experience.

For more information, see Supported Browsers for Lightning Experience.

SEE ALSO:

Salesforce Help: Recommendations and Requirements for all Browsers

Lightning Locker Disabled for Unsupported Browsers

Content Security Policy Overview

3

EventsIntroducing Aura Components

https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US
https://help.salesforce.com/articleView?id=getstart_browser_recommendations.htm&language=en_US


Using the Developer Console

The Developer Console provides tools for developing your Aura components and applications.

You can use the Developer Console in the same supported browsers as Lightning Experience and Salesforce Classic.

The Developer Console enables you to perform these functions.

• Use the menu bar (1) to create or open these Lightning resources.

– Application

– Component

– Interface

– Event

– Tokens

• Use the workspace (2) to work on your Lightning resources.

• Use the sidebar (3) to create or open client-side resources that are part of a specific component bundle.

– Controller

– Helper

– Style

– Documentation

– Renderer

– Design

– SVG

While the Developer Console provides an easy way to work with Aura components, it doesn’t include many developer tools and features.
To enable source-drive development with editor features like code completion and linting, consider these alternatives:

• Code Builder—A web-based IDE that has all the power and flexibility of VS Code, Salesforce Extensions for VS Code, and Salesforce
CLI in your web browser. You can install Code Builder as a managed package in a supported Salesforce org edition.

4

Using the Developer ConsoleIntroducing Aura Components

https://help.salesforce.com/s/articleView?id=sf.getstart_browsers_sfx.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.getstart_browser_aloha.htm&language=en_US
https://developer.salesforce.com/tools/vscode/en/codebuilder/about


• Salesforce DX Tools—Use the Salesforce CLI and VS Code with the Salesforce Extension Pack to deploy code to an org.

SEE ALSO:

Salesforce Help: Open the Developer Console

Create Aura Components in the Developer Console

Component Bundles

Online Content

This guide is available online. To view the latest version, go to:

https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/

Go beyond this guide with exciting Trailhead content. To explore more of what you can do with Lightning Components, go to:

Trailhead Module: Lightning Components Basics
Link: https://trailhead.salesforce.com/module/lex_dev_lc_basics

Learn with a series of hands-on challenges on how to use Lightning Components to build modern web apps.

Quick Start: Lightning Components
Link: https://trailhead.salesforce.com/project/quickstart-lightning-components

Create your first component that renders a list of Contacts from your org.

Project: Build an Account Geolocation App
Link: https://trailhead.salesforce.com/project/account-geolocation-app

Build an app that maps your Accounts using Lightning Components.

Project: Build a Restaurant-Locator Lightning Component
Link: https://trailhead.salesforce.com/project/workshop-lightning-restaurant-locator

Build a Lightning component with Yelp’s Search API that displays a list of businesses near a certain location.

Project: Build a Lightning App with the Lightning Design System
Link: https://trailhead.salesforce.com/project/slds-lightning-components-workshop

Design a Lightning component that displays an Account list.

5

Online ContentIntroducing Aura Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_dx_tools.htm
https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/
https://trailhead.salesforce.com/module/lex_dev_lc_basics
https://trailhead.salesforce.com/project/quickstart-lightning-components
https://trailhead.salesforce.com/project/account-geolocation-app
https://trailhead.salesforce.com/project/workshop-lightning-restaurant-locator
https://trailhead.salesforce.com/project/slds-lightning-components-workshop


CHAPTER 2 Quick Start

The quick start provides Trailhead resources for you to learn core Aura components concepts, and a
short tutorial that builds an Aura component to manage selected contacts in the Salesforce mobile app

In this chapter ...

• Before You Begin and Lightning Experience. You’ll create all components from the Developer Console. The tutorial uses
several events to create or edit contact records, and view related cases.• Trailhead: Explore

Lightning Aura
Components
Resources

• Create a Component
for Lightning
Experience and the
Salesforce Mobile
App

6



Before You Begin

To work with Lightning apps and components, create a Developer Edition org.

Note:  For this quick start tutorial, you don’t need to create a Developer Edition organization or register a namespace prefix. But
you want to do so if you’re planning to offer managed packages. You can create Aura components using the UI in Enterprise,
Performance, Unlimited, Developer Editions, or a sandbox.

You need an org to do this quick start tutorial, and we recommend that you don’t use your production org. You only need to create a
Developer Edition org if you don’t already have one.

1. In your browser, go to https://developer.salesforce.com/signup?d=70130000000td6N.

2. Fill in the fields about you and your company.

3. In the Email  field, make sure to use a public address you can easily check from a Web browser.

4. Type a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same as your
email address, and in fact, it’s usually better if they aren’t the same. Your username is your login and your identity on
developer.salesforce.com, so you’re often better served by choosing a username such as
firstname@lastname.com.

5. Read and then select the checkbox for the Main Services Agreement  and then click Submit Registration.

6. In a moment you’ll receive an email with a login link. Click the link and change your password.

Trailhead: Explore Lightning Aura Components Resources

Learn the fundamentals of Lightning Aura components with Trailhead resources.

Whether you’re a new or seasoned Salesforce developer, we recommend that you start with the following Trailhead resource: Quick
Start: Aura Components.

Create a Component for Lightning Experience and the Salesforce Mobile
App

Explore how to create a custom UI that loads contact data and interacts with Lightning Experience and the Salesforce mobile app.

This tutorial walks you through creating a component that:

• Displays a toast message (1) using the force:showToast event when all contacts are loaded successfully.

• Updates the number of contacts (2) based on the selected lead source.

• Filters the contacts using the lightning:select component (3) when a lead source (referral or social media) is selected.

• Displays the contact data using the lightning:card component (4).

• Navigates to the record when the Details button (5) is clicked.

7

Before You BeginQuick Start

https://developer.salesforce.com/signup?d=70130000000td6N
https://trailhead.salesforce.com/projects/quickstart-lightning-components
https://trailhead.salesforce.com/projects/quickstart-lightning-components


Here’s how the component looks in the Salesforce mobile app. You’re creating two components, contactList  and contacts,
where contactList  is a container component that iterates over and displays contacts  components. All contacts are displayed
in contactList, but you can select different lead sources to view a subset of contacts associated with the lead source.

8

Create a Component for Lightning Experience and the
Salesforce Mobile App

Quick Start



In the next few topics, you create the following resources.

DescriptionResource

Contacts Bundle

The component that displays individual contactscontacts.cmp

The client-side controller action that navigates to a contact record using the
force:navigateToSObject  event

contactsController.js

contactList Bundle

The component that loads the list of contactscontactList.cmp

The client-side controller actions that call the helper resource to load contact data and handles the lead
source selection

contactListController.js

The helper function that retrieves contact data, displays a toast message on successful loading of contact
data, displays contact data based on lead source, and update the total number of contacts

contactListHelper.js

Apex Controller

9

Create a Component for Lightning Experience and the
Salesforce Mobile App

Quick Start



DescriptionResource

The Apex controller that queries all contact records and those records based on different lead sourcesContactController.apxc

Load the Contacts
Create an Apex controller and load your contacts. An Apex controller is the bridge that connects your components and your Salesforce
data.

Your organization must have existing contact records for this tutorial.

1. In the Developer Console, click File > New > Apex Class, and then enter ContactController  in the New Class window. A
new Apex class, ContactController.apxc, is created. Enter this code and then save.

public with sharing class ContactController {
@AuraEnabled

public static List<Contact> getContacts() {
List<Contact> contacts =

[SELECT Id, Name, MailingStreet, Phone, Email, LeadSource FROM Contact];

//Add isAccessible() check
return contacts;

}
}

ContactController  contains methods that return your contact data using SOQL statements. This Apex controller is wired
up to your component in a later step. getContacts()  returns all contacts with the selected fields.

2. Click File > New > Lightning Component, and then enter contacts  for the Name  field in the New Lightning Bundle popup
window. This creates a component, contacts.cmp. Enter this code and then save.

<aura:component>
<aura:attribute name="contact" type="Contact" />

<lightning:card variant="Narrow" title="{!v.contact.Name}"
iconName="standard:contact">

<aura:set attribute="actions">
<lightning:button name="details" label="Details" onclick="{!c.goToRecord}"

/>
</aura:set>
<aura:set attribute="footer">

<lightning:badge label="{!v.contact.Email}"/>
</aura:set>
<p class="slds-p-horizontal_small">

{!v.contact.Phone}
</p>
<p class="slds-p-horizontal_small">

{!v.contact.MailingStreet}
</p>

</lightning:card>

</aura:component>

10

Load the ContactsQuick Start



This component creates the template for your contact data using the lightning:card  component, which simply creates a
visual container around a group of information. This template gets rendered for every contact that you have, so you have multiple
instances of a component in your view with different data. The onclick  event handler on the lightning:button  component
calls the goToRecord  client-side controller action when the button is clicked. Notice the expression {!v.contact.Name}?
v  represents the view, which is the set of component attributes, and contact  is the attribute of type Contact. Using this dot
notation, you can access the fields in the contact object, like Name  and Email, after you wire up the Apex controller to the
component in the next step.

3. Click File > New > Lightning Component, and then enter contactList  for the Name  field in the New Lightning Bundle
popup window, which creates the contactList.cmp  component. Enter this code and then save. If you’re using a namespace
in your organization, replace ContactController  with myNamespace.ContactController. You wire up the Apex
controller to the component by using the controller="ContactController"  syntax.

<aura:component implements="force:appHostable" controller="ContactController">
<!-- Handle component initialization in a client-side controller -->
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<!-- Dynamically load the list of contacts -->
<aura:attribute name="contacts" type="Contact[]"/>
<aura:attribute name="contactList" type="Contact[]"/>
<aura:attribute name="totalContacts" type="Integer"/>

<!-- Page header with a counter that displays total number of contacts -->
<div class="slds-page-header slds-page-header_object-home">

<lightning:layout>
<lightning:layoutItem>

<lightning:icon iconName="standard:contact" />
</lightning:layoutItem>
<lightning:layoutItem class="slds-m-left_small">

<p class="slds-text-title_caps slds-line-height_reset">Contacts</p>
<h1 class="slds-page-header__title slds-p-right_x-small">Contact

Viewer</h1>
</lightning:layoutItem>

</lightning:layout>

<lightning:layout>
<lightning:layoutItem>

<p class="slds-text-body_small">{!v.totalContacts} Contacts • View
Contacts Based on Lead Sources</p>

</lightning:layoutItem>
</lightning:layout>

</div>

<!-- Body with dropdown menu and list of contacts -->
<lightning:layout>

<lightning:layoutItem padding="horizontal-medium" >
<!-- Create a dropdown menu with options -->
<lightning:select aura:id="select" label="Lead Source" name="source"

onchange="{!c.handleSelect}" class="slds-m-bottom_medium">

<option value="">-- Select a Lead Source --</option>
<option value="Referral" text="Referral"/>
<option value="Social Media" text="Social Media"/>
<option value="All" text="All"/>

11

Load the ContactsQuick Start



</lightning:select>

<!-- Iterate over the list of contacts and display them -->
<aura:iteration var="contact" items="{!v.contacts}">

<!-- If you’re using a namespace, replace with myNamespace:contacts-->
<c:contacts contact="{!contact}"/>

</aura:iteration>
</lightning:layoutItem>

</lightning:layout>
</aura:component>

Let’s dive into the code. We added the init  handler to load the contact data during initialization. The handler calls the client-side
controller code in the next step. We also added two attributes, contacts  and totalContacts, which stores the list of contacts
and a counter to display the total number of contacts respectively. Additionally, the contactList  component is an attribute
used to store the filtered list of contacts when an option is selected on the lead source dropdown menu. The lightning:layout
components simply create grids to align your content in the view with Lightning Design System CSS classes.

The page header contains the {!v.totalContacts}  expression to dynamically display the number of contacts based on the
lead source you select. For example, if you select Referral and there are 30 contacts whose Lead Source  fields are set to
Referral, then the expression evaluates to 30.

Next, we create a dropdown menu with the lightning:select  component. When you select an option in the dropdown
menu, the onchange  event handler calls your client-side controller to update the view with a subset of the contacts. You create
the client-side logic in the next few steps.

In case you’re wondering, the force:appHostable  interface enables your component to be surfaced in Lightning Experience
and the Salesforce mobile app as tabs, which we are getting into later.

4. In the contactList sidebar, click CONTROLLER to create a resource named contactListController.js. Replace the
placeholder code with the following code and then save.

({
doInit : function(component, event, helper) {

// Retrieve contacts during component initialization
helper.loadContacts(component);

},

handleSelect : function(component, event, helper) {
var contacts = component.get("v.contacts");
var contactList = component.get("v.contactList");

//Get the selected option: "Referral", "Social Media", or "All"
var selected = event.getSource().get("v.value");

var filter = [];
var k = 0;
for (var i=0; i<contactList.length; i++){

var c = contactList[i];
if (selected != "All"){

if(c.LeadSource == selected) {
filter[k] = c;
k++;

}
}
else {

12

Load the ContactsQuick Start



filter = contactList;
}

}
//Set the filtered list of contacts based on the selected option
component.set("v.contacts", filter);
helper.updateTotal(component);

}
})

The client-side controller calls helper functions to do most of the heavy-lifting, which is a recommended pattern to promote code
reuse. Helper functions also enable specialization of tasks, such as processing data and firing server-side actions, which is what we
are covering next. Recall that the onchange  event handler on the lightning:select  component calls the handleSelect
client-side controller action, which is triggered when you select an option in the dropdown menu. handleSelect  checks the
option value that’s passed in using event.getSource().get("v.value"). It creates a filtered list of contacts by checking
that the lead source field on each contact matches the selected lead source. Finally, update the view and the total number of contacts
based on the selected lead source.

5. In the contactList sidebar, click HELPER to create a resource named contactListHelper.js. Replace the placeholder code
with the following code and then save.

({
loadContacts : function(cmp) {

// Load all contact data
var action = cmp.get("c.getContacts");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

cmp.set("v.contacts", response.getReturnValue());
cmp.set("v.contactList", response.getReturnValue());
this.updateTotal(cmp);

}

// Display toast message to indicate load status
var toastEvent = $A.get("e.force:showToast");
if (state === 'SUCCESS'){

toastEvent.setParams({
"title": "Success!",
"message": " Your contacts have been loaded successfully."

});
}
else {

toastEvent.setParams({
"title": "Error!",
"message": " Something has gone wrong."

});
}
toastEvent.fire();

});
$A.enqueueAction(action);

},

updateTotal: function(cmp) {
var contacts = cmp.get("v.contacts");
cmp.set("v.totalContacts", contacts.length);

13

Load the ContactsQuick Start



}
})

During initialization, the contactList component loads the contact data by:

• Calling the Apex controller method getContacts, which returns the contact data via a SOQL statement

• Setting the return value via cmp.set("v.contacts", response.getReturnValue())  in the action callback,
which updates the view with the contact data

• Updating the total number of contacts in the view, which is evaluated in updateTotal

You must be wondering how your component works in Lightning Experience and the Salesforce app. Let’s find out next!

6. Make the contactList  component available via a custom tab in Lightning Experience and the Salesforce app.

• Add Aura Components as Custom Tabs in a Lightning Experience App

For this tutorial, we recommend that you add the component as a custom tab in Lightning Experience.

When your component is loaded in Lightning Experience or the Salesforce app, a toast message indicates that your contacts are loaded
successfully. Select a lead source from the dropdown menu and watch your contact list and the number of contacts update in the view.

Next, wire up an event that navigates to a contact record when you click a button in the contact list.

Fire the Events
Fire the events in your client-side controller or helper functions. The force  events are handled by Lightning Experience and the
Salesforce mobile app, but let’s view and test the components in Lightning Experience to simplify things.

This demo builds on the contacts component you created in Load the Contacts on page 10.

1. In the contacts sidebar, click CONTROLLER to create a resource named contactsController.js. Replace the placeholder
code with the following code and then save.

({
goToRecord : function(component, event, helper) {

// Fire the event to navigate to the contact record
var sObjectEvent = $A.get("e.force:navigateToSObject");
sObjectEvent.setParams({

"recordId": component.get("v.contact.Id")
})
sObjectEvent.fire();

}
})

The onclick  event handler in the following button component triggers the goToRecord  client-side controller when the
button is clicked.

<lightning:button name="details" label="Details" onclick="{!c.goToRecord}" />

You set the parameters to pass into the events using the event.setParams()  syntax. In this case, you’re passing in the Id of
the contact record to navigate to. There are other events besides force:navigateToSObject  that simplify navigation within
Lightning Experience and the Salesforce app. For more information, see Events Handled in the Salesforce Mobile App and Lightning
Experience.

2. To test the event, refresh your custom tab in Lightning Experience, and click the Details button.

The force:navigateToSObject  is fired, which updates the view to display the contact record page.

14

Fire the EventsQuick Start



We stepped through creating a component that loads contact data using a combination of client-side controllers and Apex controller
methods to create a custom UI with your Salesforce data. The possibilities of what you can do with Aura components are endless. While
we showed you how to surface a component via a tab in Lightning Experience and the Salesforce app, you can take this tutorial further
by surfacing the component on record pages via the Lightning App Builder and even Experience Builder. To explore the possibilities,
blaze the trail with the resources available at Trailhead: Explore Lightning Aura Components Resources.

15

Fire the EventsQuick Start



CHAPTER 3 Creating Components

Components are the functional units of the Lightning Component framework.In this chapter ...
A component encapsulates a modular and potentially reusable section of UI, and can range in granularity
from a single line of text to an entire application.

• Component Names

• Create Aura
Components in the
Developer Console

• Create Aura
Components Using
Salesforce CLI

• Component Markup

• Component
Namespace

• Component Bundles

• Component IDs

• HTML in Components

• CSS in Components

• Component
Attributes

• Using Expressions

• Component
Composition

• Component Body

• Component Facets

• Controlling Access

• Using
Object-Oriented
Development

• Best Practices for
Conditional Markup

• Aura Component
Versioning for
Managed Packages

• Base Components
with Minimum API
Version
Requirements

• Validations for Aura
Component Code

16



• Using Labels

• Localization

• Working with Base
Lightning
Components

• Supporting
Accessibility

• Writing
Documentation for
the Component
Library

17

Creating Components



Component Names

A component name must follow the naming rules for Lightning components.

A component name must follow these naming rules:

• Must begin with a letter

• Must contain only alphanumeric or underscore characters

• Must be unique in the namespace

• Can’t include whitespace

• Can’t end with an underscore

• Can’t contain two consecutive underscores

SEE ALSO:

Create Aura Components in the Developer Console

Component Markup

Create Aura Components in the Developer Console

The Developer Console is a convenient, built-in tool you can use to create new and edit existing Aura components and other bundles.

1. Open the Developer Console.

Select Developer Console from the Your Name or the quick access menu ( ).

2. Open the New Lightning Bundle panel for an Aura component.

Select File > New > Lightning Component.

3. Name the component.

For example, enter helloWorld  in the Name field.

4. Optional: Describe the component.

Use the Description field to add details about the component.

5. Optional: Add component configurations to the new component.

You can select as many options in the Component Configuration section as you wish, or select no configuration at all.

6. Click Submit to create the component.

Or, to cancel creating the component, click the panel’s close box in the top right corner.

18

Component NamesCreating Components



IN THIS SECTION:

Lightning Bundle Configurations Available in the Developer Console

Configurations make it easier to create a component or application for a specific purpose, like a Lightning page or Experience Builder
site page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle panel
in the Developer Console offers a choice of component configurations when you create an Aura component or application bundle.

SEE ALSO:

Using the Developer Console

Lightning Bundle Configurations Available in the Developer Console

Create Aura Components Using Salesforce CLI

Lightning Bundle Configurations Available in the Developer Console
Configurations make it easier to create a component or application for a specific purpose, like a Lightning page or Experience Builder
site page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle panel in the
Developer Console offers a choice of component configurations when you create an Aura component or application bundle.

Configurations add the interfaces required to support using the component in the desired context. For example, when you choose the
Lightning Tab configuration, your new component includes implements="force:appHostable"  in the
<aura:component>  tag.

Using configurations is optional. You can use them in any combination, including all or none.

The following configurations are available in the New Lightning Bundle panel.

DescriptionMarkupConfiguration

Aura component bundle

Creates a component for use as a
navigation element in Lightning
Experience or Salesforce mobile apps.

implements="force:appHostable"Lightning Tab

Creates a component for use in
Lightning pages or the Lightning App
Builder.

implements="flexipage:availableForAllPageTypes"
and access="global"

Lightning Page

Creates a component for use on a
record home page in Lightning
Experience.

implements="flexipage:availableForRecordHome,
force:hasRecordId"  and access="global"

Lightning Record Page

Creates a component that’s available
for drag and drop in the Experience
Builder.

implements="forceCommunity:availableForAllPageTypes"
and access="global"

Experience Builder Site
Page (previously
Lightning Communities
Page)

Creates a component that can be
used with a Lightning quick action.

implements="force:lightningQuickAction"Lightning Quick Action

Lightning application bundle

19

Lightning Bundle Configurations Available in the Developer
Console

Creating Components



DescriptionMarkupConfiguration

Creates an empty Lightning Out
dependency app.

extends="ltng:outApp"Lightning Out
Dependency App

Note:  For details of the markup added by each configuration, see the respective documentation for those features.

SEE ALSO:

Create Aura Components in the Developer Console

Configure Components for Custom Tabs

Configure Components for Custom Actions

Configure Components for Lightning Pages and the Lightning App Builder

Configure Components for Lightning Experience Record Pages

Configure Components for Experience Builder

Create Aura Components Using Salesforce CLI

To develop Aura components, use Salesforce CLI to synchronize source code between your Salesforce orgs and version control system.
Alternatively, you can use the Developer Console.

Your development environment includes:

• Salesforce CLI

• Visual Studio Code or another code editor

• Salesforce Extension Pack, if using Visual Studio Code

• A Developer Edition org

To install Salesforce CLI and verify the installation, follow the instructions at Salesforce CLI Setup Guide.

Note:  If you have an old version of the CLI installed, run this command to update it.

sf update

Use your favorite code editor with Salesforce CLI. We recommend using Visual Studio Code because its Salesforce Extension Pack provides
powerful features for working with Salesforce CLI, the Lightning Component framework, Apex, and Visualforce.

If you choose to work with Visual Studio Code, install it and the Salesforce Extension Pack.

• Visual Studio Code (VS Code)

• Salesforce Extension Pack for Visual Studio Code

To create and deploy an Aura Component to your org:

1. Create a Salesforce DX project.

a. In Visual Studio code, open the Command Palette by pressing Ctrl+Shift+P on Windows or Cmd+Shift+P on macOS.

b. Type SFDX  and then select SFDX: Create Project.

c. Enter HelloAuraComponent  and then press Enter. Select a folder to store the project.

d. Click Create Project. You should see something like this in your Visual Studio Code workspace.

20

Create Aura Components Using Salesforce CLICreating Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode


Note:  The default Salesforce DX project structure facilitates moving source to and from your orgs. See Create a Salesforce
DX Project.

2. Create an Aura component.

a. Open the Command Palette and select SFDX: Create Lightning Component.

b. Enter a name for your component, such as myComponent. Press Enter.

c. Enter the directory for your component or press Enter to accept the default. The default directory is
force-app/main/default/aura. You should see a similar directory like this.

21

Create Aura Components Using Salesforce CLICreating Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm


d. Open myComponent.cmp and replace its content.

<aura:component>
Hello World!

</aura:component>

3. Authenticate to your org. This step uses a Dev Hub org.

Note:  You can develop Aura components in scratch orgs and non-scratch orgs. A Dev Hub org enables you to create scratch
orgs. Configure an org as a Dev Hub by following the instructions at Salesforce DX Developer Guide.

a. Open the Command Palette and select SFDX: Authorize a Dev Hub Org. A browser window opens with a Salesforce login
page.

b. Log in to your org. If prompted to allow access, click Allow.

After you authenticate in the browser, the CLI remembers your credentials. The success message looks like this.

13:40:34.679 sfdx org:login:web --alias <alias> --set-default-dev-hub
Successfully authorized username@my.org with org ID 00D1a0000000000000
13:41:48.720 sfdx org:login:web --alias <alias> --set-default-dev-hub ended with exit
code 0

If the authentication fails, follow the troubleshooting guide at Salesforce CLI Setup Guide.

4. Deploy your files.

a. In the Visual Studio Code terminal, run this command.

sf project deploy start --source-dir force-app --target-org username@my.org

The success message looks like this.

Deployed Source
============================================================================================================
| State Name Type Path
| ─────── ─────────── ────────────────────
──────────────────────────────────────────────────────────────────

22

Create Aura Components Using Salesforce CLICreating Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_troubleshoot.htm


| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.auradoc
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.cmp
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.cmp-meta.xml
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.css
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.design
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponent.svg
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponentController.js
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponentHelper.js
| Created myComponent AuraDefinitionBundle
force-app/main/default/aura/myComponent/myComponentRenderer.js

If you make changes to your component via the Developer Console in the Dev Hub org, use the project retrieve start
command to retrieve your changes. The source you retrieve overwrites the corresponding source files in your local project.

sf project retrieve start --source-dir force-app --target-org username@my.org

SEE ALSO:

Component Bundles

Salesforce DX Developer Guide: Develop Against Any Org

Salesforce DX Developer Guide: Pull Source from the Scratch Org to Your Project

Using the Developer Console

Component Markup

Component resources contain markup and have a .cmp  suffix. The markup can contain text or references to other components, and
also declares metadata about the component.

Let's start with a simple "Hello, world!" example in a helloWorld.cmp  component.

<aura:component>
Hello, world!

</aura:component>

This is about as simple as a component can get. The "Hello, world!" text is wrapped in the <aura:component>  tags, which appear
at the beginning and end of every component definition.

Components can contain most HTML tags so you can use markup, such as <div>  and <span>. HTML5 tags are also supported.

<aura:component>
<div class="container">

<!--Other HTML tags or components here-->
</div>

</aura:component>

23

Component MarkupCreating Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_develop_any_org.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_pull_md_from_scratch_org.htm


Note:  Case sensitivity should be respected as your markup interacts with JavaScript, CSS, and Apex.

SEE ALSO:

Using the Developer Console

Component Names

Component Access Control

Component Namespace

Every component is part of a namespace, which is used to group related components together. If your organization has a namespace
prefix set, use that namespace to access your components. Otherwise, use the default namespace to access your components.

Another component or application can reference a component by adding <myNamespace:myComponent>  in its markup. For
example, the helloWorld  component is in the docsample  namespace. Another component can reference it by adding
<docsample:helloWorld />  in its markup.

Lightning components that Salesforce provides are grouped into several namespaces, such as aura, lightning, and force.
Components from third-party managed packages have namespaces from the providing organizations.

In your organization, you can choose to set a namespace prefix. If you do, that namespace is used for all of your Lightning components.
A namespace prefix is required if you plan to offer managed packages on the AppExchange.

If you haven’t set a namespace prefix for your organization, use the default namespace c  when referencing components that you’ve
created.

Namespaces in Code Samples
The code samples throughout this guide use the default c  namespace. Replace c  with your namespace if you’ve set a namespace
prefix.

Using the Default Namespace in Organizations with No Namespace Set
If your organization hasn’t set a namespace prefix, use the default namespace c  when referencing Lightning components that you’ve
created.

The following items must use the c  namespace when your organization doesn’t have a namespace prefix set.

• References to components that you’ve created

• References to events that you’ve defined

The following items use an implicit namespace for your organization and don’t require you to specify a namespace.

• References to custom objects

• References to custom fields on standard and custom objects

• References to Apex controllers

See Namespace Usage Examples and Reference on page 26 for examples of all of the preceding items.

24

Component NamespaceCreating Components



Using Your Organization’s Namespace
If your organization has set a namespace prefix, use that namespace to reference Lightning components, events, custom objects and
fields, and other items in your Lightning markup.

The following items use your organization’s namespace when your organization has a namespace prefix set.

• References to components that you’ve created

• References to events that you’ve defined

• References to custom objects

• References to custom fields on standard and custom objects

• References to Apex controllers

• References to static resources

Note:  Support for the c  namespace in organizations that have set a namespace prefix is incomplete. The following items can
use the c  namespace if you prefer to use the shortcut, but it’s not currently a recommended practice.

• References to components that you’ve created when used in Lightning markup, but not in expressions or JavaScript

• References to events that you’ve defined when used in Lightning markup, but not in expressions or JavaScript

• References to custom objects when used in component and event type  and default system attributes, but not in
expressions or JavaScript

See Namespace Usage Examples and Reference on page 26 for examples of the preceding items.

Using a Namespace in or from a Managed Package
Always use the complete namespace when referencing items from a managed package, or when creating code that you intend to
distribute in your own managed packages.

Another component or application can reference a component by adding <pkgNamespace:pkgComponent>  in its markup. For
example, let’s look at a package that contains the helloWorld  component in the docsample  namespace. Another component
can reference the component from the package by adding <docsample:helloWorld />  in its markup.

SEE ALSO:

Namespace Usage Examples and Reference

Creating a Namespace in Your Organization
Create a namespace for your organization by registering a namespace prefix.

If you’re not creating managed packages for distribution then registering a namespace prefix isn’t required, but it’s a best practice for
all but the smallest organizations.

Your namespace must:

• Begin with a letter

• Contain one to 15 alphanumeric characters

• Not contain two consecutive underscores

For example, myNp123  and my_np  are valid namespaces, but 123Company and my__np  aren’t.

To register a namespace:

25

Using Your Organization’s NamespaceCreating Components



1. From Setup, enter Package Manager  in the Quick Find box and select Package Manager.

2. In the Namespace Settings panel, click Edit.

Note:  After you’ve configured your namespace settings, this button is hidden.

3. Enter the namespace you want to register.

4. Click Check Availability to determine if the namespace is already in use.

5. If the namespace prefix that you entered isn’t available, repeat the previous two steps.

6. Click Review.

7. Click Save.

Namespace Usage Examples and Reference
This topic provides examples of referencing components, objects, fields, and so on, in Aura components code.

Examples are provided for the following.

• Components, events, and interfaces in your organization

• Custom objects in your organization

• Custom fields on standard and custom objects in your organization

• Server-side Apex controllers in your organization

• Dynamic creation of components in JavaScript

• Static resources in your organization

Organizations with No Namespace Prefix Set
The following illustrates references to elements in your organization when your organization doesn’t have a namespace prefix set.
References use the default namespace, c, where necessary.

ExampleReferenced Item

<c:myComponent />Component used in markup

<aura:component extends="c:myComponent">

<aura:component implements="c:myInterface">

Component used in a system
attribute

<aura:component controller="ExpenseController">Apex controller

<aura:attribute name="expense" type="Expense__c" />Custom object in attribute data type

<aura:attribute name="newExpense" type="Expense__c"
default="{ 'sobjectType': 'Expense__c',

Custom object or custom field in
attribute defaults

'Name': '',
'Amount__c': 0,
…

}" />

26

Namespace Usage Examples and ReferenceCreating Components



ExampleReferenced Item

<lightning:inputNumber type="number"
value="{!v.newExpense.Amount__c}" label=… />

Custom field in an expression

updateTotal: function(component) {
…

Custom field in a JavaScript function

for(var i = 0 ; i < expenses.length ; i++){
var exp = expenses[i];
total += exp.Amount__c;

}
…

}

var myCmp = $A.createComponent("c:myComponent", {},
function(myCmp) { }

);

Component created dynamically in
a JavaScript function

aCmp.isInstanceOf("c:myInterface")Interface comparison in a JavaScript
function

<aura:registerEvent type="c:updateExpenseItem" name=… />Event registration

<aura:handler event="c:updateExpenseItem" action=… />Event handler

<aura:dependency resource="markup://c:myComponent" />Explicit dependency

var updateEvent = $A.get("e.c:updateExpenseItem");Application event in a JavaScript
function

<ltng:require scripts="{!$Resource.resourceName}"
styles="{!$Resource.resourceName}" />

Static resources

Organizations with a Namespace Prefix
The following illustrates references to elements in your organization when your organization has set a namespace prefix. References use
an example namespace yournamespace.

ExampleReferenced Item

<yournamespace:myComponent />Component used in markup

<aura:component extends="yournamespace:myComponent">

<aura:component implements="yournamespace:myInterface">

Component used in a system
attribute

<aura:component controller="yournamespace.ExpenseController">Apex controller

<aura:attribute name="expenses"
type="yournamespace__Expense__c[]" />

Custom object in attribute data type

27

Namespace Usage Examples and ReferenceCreating Components



ExampleReferenced Item

<aura:attribute name="newExpense"
type="yournamespace__Expense__c"

Custom object or custom field in
attribute defaults

default="{ 'sobjectType': 'yournamespace__Expense__c',
'Name': '',
'yournamespace__Amount__c': 0,
…

}" />

<lightning:input type="number"
value="{!v.newExpense.yournamespace__Amount__c}" label=… />

Custom field in an expression

updateTotal: function(component) {
…

Custom field in a JavaScript function

for(var i = 0 ; i < expenses.length ; i++){
var exp = expenses[i];
total += exp.yournamespace__Amount__c;

}
…

}

var myCmp = $A.createComponent("yournamespace:myComponent",
{},

Component created dynamically in
a JavaScript function

function(myCmp) { }
);

aCmp.isInstanceOf("yournamespace:myInterface")Interface comparison in a JavaScript
function

<aura:registerEvent type="yournamespace:updateExpenseItem"
name=… />

Event registration

<aura:handler event="yournamespace:updateExpenseItem"
action=… />

Event handler

<aura:dependency resource="markup://yournamespace:myComponent"
/>

Explicit dependency

var updateEvent = $A.get("e.yournamespace:updateExpenseItem");Application event in a JavaScript
function

<ltng:require
scripts="{!$Resource.yournamespace__resourceName}"
styles="{!$Resource.yournamespace__resourceName}" />

Static resources

Component Bundles

A component bundle contains a component or an app and all its related resources.

28

Component BundlesCreating Components



See AlsoUsageResource NameResource

Creating Components on page
16

aura:application on page 497

The only required resource in a
bundle. Contains markup for the
component or app. Each bundle
contains only one component
or app resource.

sample.cmp  or
sample.app

Component or Application

CSS in Components on page 33Contains styles for the
component.

sample.cssCSS Styles

Handling Events with Client-Side
Controllers on page 262

Contains client-side controller
methods to handle events in the
component.

sampleController.jsController

Aura Component Bundle Design
Resources

File required for components
used in Lightning App Builder,
Lightning pages, Experience
Builder, or Flow Builder.

sample.designDesign

Writing Documentation for the
Component Library

A description, sample code, and
one or multiple references to
example components

sample.auradocDocumentation

Create a Custom Renderer on
page 372

Client-side renderer to override
default rendering for a
component.

sampleRenderer.jsRenderer

Sharing JavaScript Code in a
Component Bundle on page 355

JavaScript functions that can be
called from any JavaScript code
in a component’s bundle

sampleHelper.jsHelper

Configure Components for
Lightning Pages and the

Custom icon resource for
components used in the

sample.svgSVG File

Lightning App Builder on page
176

Lightning App Builder or
Experience Builder.

All resources in the component bundle follow the naming convention and are auto-wired. For example, a controller
<componentName>Controller.js  is auto-wired to its component, which means that you can use the controller within the
scope of that component.

File-Size Limits
Each resource, such as a cmp, css, or js  file, in an Aura component bundle has a maximum file size of 1,000,000 bytes. However, for
performance reasons, we recommend that you don’t exceed a maximum file size of 128 KB (131,072 bytes).

Component IDs

A component has two types of IDs: a local ID and a global ID. You can retrieve a component using its local ID in your JavaScript code. A
global ID can be useful to differentiate between multiple instances of a component or for debugging purposes.

29

Component IDsCreating Components



Local IDs
A local ID is an ID that is only scoped to the component. A local ID is often unique but it’s not required to be unique.

Create a local ID by using the aura:id attribute. For example:

<lightning:button aura:id="button1" label="button1"/>

Note: aura:id  doesn't support expressions. You can only assign literal string values to aura:id.

Find the button component by calling cmp.find("button1")  in your client-side controller, where cmp  is a reference to the
component containing the button.

find()  returns different types depending on the result.

• If the local ID is unique, find() returns the component.

• If there are multiple components with the same local ID, find()  returns an array of the components.

• If there is no matching local ID, find()  returns undefined.

To find the local ID for a component in JavaScript, use cmp.getLocalId().

Global IDs
Every component has a unique globalId, which is the generated runtime-unique ID of the component instance. A global ID (1) is
not guaranteed to be the same beyond the lifetime of a component, so it should never be relied on. A global ID can be useful to
differentiate between multiple instances of a component or for debugging purposes.

To create a unique ID for an HTML element, you can use the globalId  as a prefix or suffix for your element. For example:

<div id="{!globalId + '_footer'}"></div>

In your browser’s developer console, retrieve the element using document.getElementById("<globalId>_footer"),
where <globalId>  is the generated runtime-unique ID.

To retrieve a component’s global ID in JavaScript, use the getGlobalId() function.

var globalId = cmp.getGlobalId();

SEE ALSO:

Finding Components by ID

Which Button Was Pressed?

30

Component IDsCreating Components



HTML in Components

An HTML tag is treated as a first-class component by the framework. Each HTML tag is translated into an <aura:html> component,
allowing it to enjoy the same rights and privileges as any other component.

For example, the framework automatically converts a standard HTML <div>  tag to this component:

<aura:html tag="div" />

You can add HTML markup in components. Note that you must use strict XHTML. For example, use <br/>  instead of <br>. You can
also use HTML attributes and DOM events, such as onclick.

Warning:  Some tags, like <applet>  and <font>, aren’t supported.

Unescaping HTML
To output pre-formatted HTML, use aura:unescapedHTML. For example, this is useful if you want to display HTML that is generated
on the server and add it to the DOM. You must escape any HTML if necessary or your app might be exposed to security vulnerabilities.

You can pass in values from an expression, such as in <aura:unescapedHtml value="{!v.note.body}"/>.

{!expression}  is the framework's expression syntax. For more information, see Using Expressions on page 44.

IN THIS SECTION:

Supported HTML Tags

The framework supports most HTML tags, including the majority of HTML5 tags.

SEE ALSO:

Supported HTML Tags

CSS in Components

Supported HTML Tags
The framework supports most HTML tags, including the majority of HTML5 tags.

We recommend that you use components in preference to HTML tags. For example, use lightning:button  instead of  <button>.

Components are designed with accessibility in mind so users with disabilities or those who use assistive technologies can also use your
app. When you start building more complex components, the reusable out-of-the-box components can simplify your job by handling
some of the plumbing that you would otherwise have to create yourself. Also, these components are secure and optimized for performance.

Note that you must use strict XHTML. For example, use <br/> instead of <br>.

Some HTML tags are unsafe or unnecessary. The framework doesn’t support these tags.

The HtmlTag  enum in this Aura file lists the supported HTML tags. Any tag followed by (false)  is not supported. For example,
applet(false)  means the applet  tag isn't supported.

31

HTML in ComponentsCreating Components

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
https://github.com/forcedotcom/aura/blob/master/aura/src/main/java/org/auraframework/def/HtmlTag.java


IN THIS SECTION:

Anchor Tag: <a>

Don’t hard code or dynamically generate Salesforce URLs in the href  attribute of an <a> tag. Use events, such as
force:navigateToSObject  or force:navigateToURL, instead.

SEE ALSO:

Supporting Accessibility

Anchor Tag: <a>
Don’t hard code or dynamically generate Salesforce URLs in the href  attribute of an <a> tag. Use events, such as
force:navigateToSObject  or force:navigateToURL, instead.

Avoid the href  Attribute

Using the href  attribute of an <a>  tag leads to inconsistent behavior in different apps and shouldn’t be relied on. For example, don’t
use this markup to link to a record:

<a href="/XXXXXXXXXXXXXXXXXX">Salesforce record ID (DON'T DO THIS)</a>

If you use #  in the href  attribute, a secondary issue occurs. The hash mark (#) is a URL fragment identifier and is often used in Web
development for navigation within a page. Avoid #  in the href  attribute of anchor tags in Lightning components as it can cause
unexpected navigation changes, especially in the Salesforce mobile app. That’s another reason not to use href.

Use the Navigation Service
Use the navigation service for consistent linking behavior across Lightning Experience, the Salesforce mobile app, and Experience Builder
sites.

lightning:navigation
Navigates to a page or component.

lightning:isUrlAddressable
Enable a component to be navigated directly via a URL.

We recommend replacing these navigation events with the navigation service.

force:navigateToList
Navigates to a list view.

force:navigateToObjectHome
Navigates to an object home.

force:navigateToRelatedList
Navigates to a related list.

force:navigateToSObject
Navigates to a record.

force:navigateToURL
Navigates to a URL.

32

Supported HTML TagsCreating Components



As well as consistent behavior, using navigation events instead of <a>  tags reduces the number of full app reloads, leading to better
performance.

SEE ALSO:

Navigate Across Your Apps with Page References

CSS in Components

Style your components with CSS.

Add CSS to a component bundle by clicking the STYLE button in the Developer Console sidebar.

Note:  You can’t add a <style>  tag in component markup or when you dynamically create a component in JavaScript code.
This restriction ensures better component encapsulation and prevents component styling interfering with the styling of another
component. The <style>  tag restriction applies to components with API version 42.0 or later.

For external CSS resources, see Styling Apps on page 308.

All top-level elements in a component have a special THIS  CSS class added to them. This, effectively, adds namespacing to CSS and
helps prevent one component's CSS from overriding another component's styling. The framework throws an error if a CSS file doesn't
follow this convention.

Let's look at a sample helloHTML.cmp  component. The CSS is in helloHTML.css.

Component source

<aura:component>
<div class="white">
Hello, HTML!

</div>

<h2>Check out the style in this list.</h2>

<ul>
<li class="red">I'm red.</li>
<li class="blue">I'm blue.</li>
<li class="green">I'm green.</li>

</ul>
</aura:component>

CSS source

.THIS {
background-color: grey;

}

.THIS.white {
background-color: white;

}

.THIS .red {
background-color: red;

}

33

CSS in ComponentsCreating Components



.THIS .blue {
background-color: blue;

}

.THIS .green {
background-color: green;

}

Output

The top-level elements, h2  and ul, match the THIS  class and render with a grey background. Top-level elements are tags wrapped
by the HTML body  tag and not by any other tags. In this example, the li  tags are not top-level because they are nested in a ul  tag.

The <div class="white">  element matches the .THIS.white  selector and renders with a white background. Note that
there is no space in the selector as this rule is for top-level elements.

The <li class="red">  element matches the .THIS .red  selector and renders with a red background. Note that this is a
descendant selector and it contains a space as the <li>  element is not a top-level element.

SEE ALSO:

Adding and Removing Styles

HTML in Components

Component Attributes

Component attributes are like member variables on a class in Apex. They are typed fields that are set on a specific instance of a component,
and can be referenced from within the component's markup using an expression syntax. Attributes enable you to make components
more dynamic.

Use the <aura:attribute>  tag to add an attribute to the component or app. Let’s look at the following sample,
helloAttributes.app:

<aura:application>
<aura:attribute name="whom" type="String" default="world"/>
Hello {!v.whom}!

</aura:application>

All attributes have a name and a type. Attributes may be marked as required by specifying required="true", and may also specify
a default value.

In this case we've got an attribute named whom  of type String. If no value is specified, it defaults to "world".

Though not a strict requirement, <aura:attribute> tags are usually the first things listed in a component’s markup, as it provides
an easy way to read the component's shape at a glance.

Attribute Naming Rules
An attribute name must follow these naming rules:

34

Component AttributesCreating Components



• Must begin with a letter or an underscore

• Must contain only alphanumeric or underscore characters

Expressions
helloAttributes.app  contains an expression, {!v.whom}, which is responsible for the component's dynamic output.

{!expression}  is the framework's expression syntax. In this case, the expression we are evaluating is v.whom. The name of the
attribute we defined is whom, while v  is the value provider for a component's attribute set, which represents the view.

Note:  Expressions are case sensitive. For example, if you have a custom field myNamespace__Amount__c, you must refer
to it as {!v.myObject.myNamespace__Amount__c}.

IN THIS SECTION:

Supported aura:attribute Types

aura:attribute  describes an attribute available on an app, interface, component, or event.

Basic Types

Function Type

An attribute of an aura:method  can have a type corresponding to a JavaScript function so that you can pass a function into the
method. An attribute of a component can’t have a type corresponding to a JavaScript function.

Object Types

Standard and Custom Object Types

Collection Types

Custom Apex Class Types

Framework-Specific Types

SEE ALSO:

Supported aura:attribute Types

Using Expressions

Supported aura:attribute Types
aura:attribute  describes an attribute available on an app, interface, component, or event.

DescriptionTypeAttribute Name

Indicates whether the attribute can be used outside of its own namespace.
Possible values are public  (default), and global, and private.

Stringaccess

Required. The name of the attribute. For example, if you set
<aura:attribute name="isTrue" type="Boolean" />

Stringname

on a component called aura:newCmp, you can set this attribute when you
instantiate the component; for example,<aura:newCmp
isTrue="false" />.

35

Supported aura:attribute TypesCreating Components



DescriptionTypeAttribute Name

Required. The type of the attribute. For a list of basic types supported, see Basic
Types.

Stringtype

The default value for the attribute, which can be overwritten as needed. When
setting a default value, expressions using the $Label, $Locale, and

Stringdefault

$Browser global value providers are supported. Alternatively, to set a
dynamic default, use an init  event. See Invoking Actions on Component
Initialization on page 354.

Determines if the attribute is required. The default is false.Booleanrequired

A summary of the attribute and its usage.Stringdescription

All <aura:attribute>  tags have name and type values. For example:

<aura:attribute name="whom" type="String" />

Note:  Although type values are case insensitive, case sensitivity should be respected as your markup interacts with JavaScript,
CSS, and Apex.

SEE ALSO:

Component Attributes

Basic Types
Here are the supported basic type values. Some of these types correspond to the wrapper objects for primitives in Java. Since the
framework is written in Java, defaults, such as maximum size for a number, for these basic types are defined by the Java objects that
they map to.

DescriptionExampletype

Valid values are true  or false. To set a default value
of true, add default="true".

<aura:attribute
name="showDetail"
type="Boolean" />

Boolean

A date corresponding to a calendar day in the format
yyyy-mm-dd. The hh:mm:ss portion of the date isn’t stored.
To include time fields, use DateTime instead.

<aura:attribute
name="startDate" type="Date"
/>

Date

A date corresponding to a timestamp. It includes date and
time details with millisecond precision.

<aura:attribute
name="lastModifiedDate"
type="DateTime" />

DateTime

Decimal  values can contain fractional portions (digits to
the right of the decimal). Maps to java.math.BigDecimal.

Decimal  is better than Double  for maintaining
precision for floating-point calculations. It’s preferable for
currency fields.

<aura:attribute
name="totalPrice"
type="Decimal" />

Decimal

36

Basic TypesCreating Components

http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html


DescriptionExampletype

Double  values can contain fractional portions. Maps to
java.lang.Double. Use Decimal  for currency fields instead.

<aura:attribute
name="widthInchesFractional"
type="Double" />

Double

Integer  values can contain numbers with no fractional
portion. Maps to java.lang.Integer, which defines its limits,
such as maximum size.

<aura:attribute
name="numRecords"
type="Integer" />

Integer

Long  values can contain numbers with no fractional
portion. Maps to java.lang.Long, which defines its limits,
such as maximum size.

Use this data type when you need a range of values wider
than those provided by Integer.

<aura:attribute
name="numSwissBankAccount"
type="Long" />

Long

A sequence of characters.<aura:attribute name="message"
type="String" />

String

You can use arrays for each of these basic types. For example:

<aura:attribute name="favoriteColors" type="String[]" default="['red','green','blue']" />

Retrieving Data from an Apex Controller
This example retrieves a string array of favorite colors from an Apex controller.

This component is bound to the AttributeTypes Apex controller and retrieves the string array when the Update  button is
clicked. The colors are displayed using a favoriteColors attribute.

<aura:component controller="AttributeTypes">
<aura:attribute name="favoriteColors" type="String[]" default="['cyan', 'yellow',

'magenta']"/>
<aura:iteration items="{!v.favoriteColors}" var="s">

<p>{!s}</p>
</aura:iteration>
<lightning:button onclick="{!c.getString}" label="Update"/>

</aura:component>

The Apex controller has a getStringArray() method that returns a String[].

public class AttributeTypes {

@AuraEnabled
public static String[] getStringArray() {

String[] arrayItems = new String[]{ 'red', 'green', 'blue' };
return arrayItems;

}

}

37

Basic TypesCreating Components

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html


The component’s client-side controller retrieves the string array from the Apex controller by calling getStringArray(). The
controller then sets the result in the favoriteColors  attribute, which is refreshed in the UI.

({
getString : function(component, event) {
var action = component.get("c.getStringArray");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

var stringItems = response.getReturnValue();
component.set("v.favoriteColors", stringItems);

}
});
$A.enqueueAction(action);

}
})

To retrieve data from an object that’s returned by an Apex controller, create an attribute with a type corresponding to a standard or
custom object.

<aura:attribute name="accounts" type="Account[]"/>

You can access a field on the object using the {!account.fieldName}  syntax. For more information, see Using Apex to Work
with Salesforce Records.

Function Type
An attribute of an aura:method  can have a type corresponding to a JavaScript function so that you can pass a function into the
method. An attribute of a component can’t have a type corresponding to a JavaScript function.

For an example of using a function type with aura:method, see Return Result for Asynchronous Code.

Note:  Don’t send attributes with type="Function"  to the server. These attributes are intended to only be used on the
client side.

The most robust way to communicate between components is to use an event. If you get an error in a component with an attribute
of type Function, fire an event in the child component instead and handle it in the parent component.

Object Types
An attribute can have a type corresponding to an Object. For example:

<aura:attribute name="data" type="Object" />

Warning:  We recommend using type="Map"  instead of type="Object"  to avoid some deserialization issues on the
server. For example, when an attribute of type="Object"  is serialized to the server, everything is converted to a string. Deep
expressions, such as v.data.property  can throw an exception when they are evaluated as a string on the server. Using
type="Map"  avoids these exceptions for deep expressions, and other deserialization issues.

38

Function TypeCreating Components



Checking for Types
To determine a variable type, use typeof  or a standard JavaScript method instead. The instanceof  operator is unreliable due to
the potential presence of multiple windows or frames.

SEE ALSO:

Using Apex to Work with Salesforce Records

Using Apex to Work with Salesforce Records

Standard and Custom Object Types
An attribute can have a type corresponding to a standard or custom object. For example, this is an attribute for a standard Account
object:

<aura:attribute name="acct" type="Account" />

This is an attribute for an Expense__c  custom object:

<aura:attribute name="expense" type="Expense__c" />

SEE ALSO:

Using Apex to Work with Salesforce Records

Using Apex to Work with Salesforce Records

Collection Types
Here are the supported collection type values.

DescriptionExampletype

An array of items of a defined type.<aura:attribute
name="colorPalette"

type[] (Array)

Note:  To set a default value, surround
comma-separated values with []; for

type="String[]" default="['red',
'green', 'blue']" />

example default="['red',
'green', 'blue']". Setting a default
value without square brackets is deprecated
and can lead to unexpected behavior.

An ordered collection of items.<aura:attribute
name="colorPalette" type="List"

List

Note:  To set a default value, surround
comma-separated values with []; for

default="['red', 'green',
'blue']" />

example default="['red',
'green', 'blue']". Setting a default
value without square brackets is deprecated
and can lead to unexpected behavior.

39

Standard and Custom Object TypesCreating Components



DescriptionExampletype

A collection that maps keys to values. A map can’t
contain duplicate keys. Each key can map to at
most one value.

An attribute with no default value defaults to
null  in JavaScript. If you want to set map values

<aura:attribute
name="sectionLabels" type="Map"
default="{ a: 'label1', b:
'label2' }" />

Map

in JavaScript, use default="{}"  in markup
for an empty map.

A collection that contains no duplicate elements.
The order for set items is not guaranteed. For

<aura:attribute name="collection"
type="Set" default="['red',
'green', 'blue']" />

Set

example, "['red', 'green', 'blue']"
might be returned as blue,green,red.

Note:  To set a default value, surround
comma-separated values with []; for
example default="['red',
'green', 'blue']". Setting a default
value without square brackets is deprecated
and can lead to unexpected behavior.

Checking for Types
To determine a variable type, use typeof  or a standard JavaScript method, such as Array.isArray(), instead. The instanceof
operator is unreliable due to the potential presence of multiple windows or frames.

Setting List Items
There are several ways to set items in a list. To use a client-side controller, create an attribute of type List and set the items using
component.set().

This example retrieves a list of numbers from a client-side controller when a button is clicked.

<aura:attribute name="numbers" type="List"/>
<lightning:button onclick="{!c.getNumbers}" label="Display Numbers" />
<aura:iteration var="num" items="{!v.numbers}">
{!num.value}

</aura:iteration>

/** Client-side Controller **/
({
getNumbers: function(component, event, helper) {
var numbers = [];
for (var i = 0; i < 20; i++) {
numbers.push({
value: i

});
}
component.set("v.numbers", numbers);

40

Collection TypesCreating Components



}
})

Working with Map Items
To add a key and value pair to a map, use the syntax myMap['myNewKey'] = myNewValue.

var myMap = cmp.get("v.sectionLabels");
myMap['c'] = 'label3';

To retrieve a value, use cmp.get("v.sectionLabels")['a'].

Here’s a controller with a function that adds a value, retrieves a value, and iterates over a map.

({
addToMap : function(cmp, event, helper) {

var myMap = cmp.get("v.sectionLabels");
myMap['c'] = 'label3';
console.log("myMap: " + JSON.stringify(myMap));

// get map entry
var entryA = myMap['a'];
console.log("entryA: " + entryA);

// iterate map
for (var key in myMap){

console.log("key: " + key + ", value: " + myMap[key]);
}

}
})

SEE ALSO:

Passing Data to an Apex Controller

Custom Apex Class Types
An attribute can have a type corresponding to an Apex class. For example, this is an attribute for a custom Color  Apex class:

<aura:attribute name="color" type="docSampleNamespace.Color" />

Component attribute types can be custom Apex classes, and the following standard Apex classes.

• List

• Map

To make use of values held in other Apex built-in classes, create a custom Apex class, and copy needed values from instances of the
standard class into your custom class.

When an instance of an Apex class is returned from a server-side action, the instance is serialized to JSON by the framework. Only the
values of public  instance properties and methods annotated with @AuraEnabled  are serialized and returned.

The following Apex data types can be serialized from @AuraEnabled  properties and methods.

• Primitive types except for BLOB

• Object, subject to limitations described above

41

Custom Apex Class TypesCreating Components



• sObject

• Collections types (List and Map) when they hold elements of a supported type

Note:  Custom classes used for component attributes shouldn’t be inner classes or use inheritance. While these Apex language
features might work in some situations, there are known issues, and their use is unsupported in all cases.

Using Arrays
If an attribute can contain more than one element, use an array.

This aura:attribute  tag shows the syntax for an array of Apex objects:

<aura:attribute name="colorPalette" type="docSampleNamespace.Color[]" />

SEE ALSO:

Returning Data from an Apex Server-Side Controller

AuraEnabled Annotation

Using Apex to Work with Salesforce Records

Returning Data from an Apex Server-Side Controller

AuraEnabled Annotation

Using Apex to Work with Salesforce Records

Apex Developer Guide: Data Types

Framework-Specific Types
Here are the supported type values that are specific to the framework.

DescriptionExampletype

A single component. We recommend using
Aura.Component[] instead.

N/AAura.Component

Use this type to set blocks of markup. An
attribute of type Aura.Component[]
is called a facet.

<aura:attribute
name="detail"
type="Aura.Component[]"/>

To set a default value for
type="Aura.Component[]", put

Aura.Component[]

the default markup in the body of
aura:attribute. For example:

<aura:component>
<aura:attribute

name="detail"
type="Aura.Component[]">

<p>default
paragraph1</p>

</aura:attribute>
Default value is:

42

Framework-Specific TypesCreating Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/langCon_apex_data_types.htm


DescriptionExampletype

{!v.detail}
</aura:component>

Use this type to pass an action to a
component. See Using the Aura.Action
Attribute Type.

<aura:attribute
name="onclick"
type="Aura.Action"/>

Aura.Action

IN THIS SECTION:

Using the Aura.Action Attribute Type

An Aura.Action  is a reference to an action in the framework. If a child component has an Aura.Action attribute, a parent
component can pass in an action handler when it instantiates the child component in its markup. This pattern is a shortcut to pass
a controller action from a parent component to a child component that it contains, and is used for on*  handlers, such as onclick.

SEE ALSO:

Component Body

Component Facets

Component Body

Component Facets

Using the Aura.Action Attribute Type
An Aura.Action  is a reference to an action in the framework. If a child component has an Aura.Action attribute, a parent
component can pass in an action handler when it instantiates the child component in its markup. This pattern is a shortcut to pass a
controller action from a parent component to a child component that it contains, and is used for on*  handlers, such as onclick.

Warning:  Although Aura.Action  works for passing an action handler to a child component, we recommend registering an
event in the child component and firing the event in the child’s controller instead. Then, handle the event in the parent component.
The event approach requires a few extra steps in creating or choosing an event and firing it but events are the standard way to
communicate between components.

Aura.Action  shouldn’t be used for other use cases. Here are some known limitations of Aura.Action.

• Don’t use cmp.set()  in JavaScript code to reset an attribute of type="Aura.Action"  after it’s previously been set.
Doing so generates an error.

Unable to set value for key 'c.passedAction'. Value provider does not implement
'set(key, value)'. : false

• Don’t use $A.enqueueAction()  in the child component to enqueue the action passed to the Aura.Action  attribute.

Example
This example demonstrates how to pass an action handler from a parent component to a child component.

43

Framework-Specific TypesCreating Components



Here’s the child component with the Aura.Action attribute. The onclick  handler for the button uses the value of the onclick
attribute, which has type of Aura.Action.

<!-- child.cmp -->
<aura:component>

<aura:attribute name="onclick" type="Aura.Action"/>

<p>Child component with Aura.Action attribute</p>
<lightning:button label="Execute the passed action" onclick="{!v.onclick}"/>

</aura:component>

Here’s the parent component that contains the child component in its markup.

<!-- parent.cmp -->
<aura:component>

<p>Parent component passes handler action to c:child</p>
<c:child onclick="{!c.parentAction}"/>

</aura:component>

When you click the button in c:child, the parentAction  action in the controller of c:parent  is executed.

Instead of an Aura.Action  attribute, you could use <aura:registerEvent>  to register an onclick  event in the child
component. You’d have to define the event and create an action in the child’s controller to fire the event. This event-based approach
requires a few extra steps but it’s more in line with standard practices for communicating between components.

SEE ALSO:

Framework-Specific Types

Handling Events with Client-Side Controllers

Framework-Specific Types

Handling Events with Client-Side Controllers

Using Expressions

Expressions allow you to make calculations and access property values and other data within component markup. Use expressions for
dynamic output or passing values into components by assigning them to attributes.

An expression is any set of literal values, variables, sub-expressions, or operators that can be resolved to a single value. Method calls are
not allowed in expressions.

The expression syntax is: {!expression}

expression  is a placeholder for the expression.

Anything inside the {! }  delimiters is evaluated and dynamically replaced when the component is rendered or when the value is
used by the component. Whitespace is ignored.

Note: If you're familiar with other languages, you may be tempted to read the !  as the “bang” operator, which negates boolean
values in many programming languages. In the Aura Components programming model, {!  is simply the delimiter used to begin
an expression.

If you're familiar with Visualforce, this syntax will look familiar.

Here’s an example in component markup.

{!v.firstName}

44

Using ExpressionsCreating Components



In this expression, v  represents the view, which is the set of component attributes, and firstName  is an attribute of the component.
The expression outputs the firstName  attribute value for the component.

The resulting value of an expression can be a primitive, such as an integer, string, or boolean. It can also be a JavaScript object, a component
or collection, a controller method such as an action method, and other useful results.

There is a second expression syntax: {#expression}. For more details on the difference between the two forms of expression
syntax, see Data Binding Between Components.

Identifiers in an expression, such as attribute names accessed through the view, controller values, or labels, must start with a letter or
underscore. They can also contain numbers or hyphens after the first character. For example, {!v.2count}  is not valid, but
{!v.count} is.

Important:  Only use the {! }  syntax in markup in .app  or .cmp files. In JavaScript, use string syntax to evaluate an expression.
For example:

var theLabel = cmp.get("v.label");

If you want to escape {!, use this syntax:

<aura:text value="{!"/>

This renders {!  in plain text because the aura:text  component never interprets {!  as the start of an expression.

IN THIS SECTION:

Dynamic Output in Expressions

The simplest way to use expressions is to output dynamic values.

Conditional Expressions

Here are examples of conditional expressions using the ternary operator and the <aura:if>  tag.

Data Binding Between Components

When you add a component in markup, you can use an expression to initialize attribute values in the component based on attribute
values of the container component. There are two forms of expression syntax, which exhibit different behaviors for data binding
between the components.

Value Providers

Value providers are a way to access data. Value providers encapsulate related values together, similar to how an object encapsulates
properties and methods.

Expression Evaluation

Expressions are evaluated much the same way that expressions in JavaScript or other programming languages are evaluated.

Expression Operators Reference

The expression language supports operators to enable you to create more complex expressions.

Expression Functions Reference

The expression language contains math, string, array, comparison, boolean, and conditional functions. All functions are case-sensitive.

Dynamic Output in Expressions
The simplest way to use expressions is to output dynamic values.

Values used in the expression can be from component attributes, literal values, booleans, and so on. For example:

{!v.desc}

45

Dynamic Output in ExpressionsCreating Components



In this expression, v  represents the view, which is the set of component attributes, and desc  is an attribute of the component. The
expression is simply outputting the desc  attribute value for the component that contains this markup.

If you're including literal values in expressions, enclose text values within single quotes, such as {!'Some text'}.

Include numbers without quotes, for example, {!123}.

For booleans, use {!true}  for true  and {!false} for false.

SEE ALSO:

Component Attributes

Value Providers

Conditional Expressions
Here are examples of conditional expressions using the ternary operator and the <aura:if>  tag.

Ternary Operator
This expression uses the ternary operator to conditionally output one of two values dependent on a condition.

<a class="{!v.location == '/active' ? 'selected' : ''}" href="#/active">Active</a>

The {!v.location == '/active' ? 'selected' : ''} expression conditionally sets the class attribute of an HTML
<a>  tag, by checking whether the location  attribute is set to /active. If true, the expression sets class  to selected.

Using <aura:if>  for Conditional Markup
This snippet of markup uses the <aura:if>  tag to conditionally display an edit button.

<aura:attribute name="edit" type="Boolean" default="true"/>
<aura:if isTrue="{!v.edit}">

<lightning:button label="Edit"/>
<aura:set attribute="else">

You can’t edit this.
</aura:set>

</aura:if>

If the edit  attribute is set to true, lightning:button  displays. Otherwise, the text in the else  attribute displays.

SEE ALSO:

Best Practices for Conditional Markup

Data Binding Between Components
When you add a component in markup, you can use an expression to initialize attribute values in the component based on attribute
values of the container component. There are two forms of expression syntax, which exhibit different behaviors for data binding between
the components.

This concept is a little tricky, but it will make more sense when we look at an example. Consider a c:parent  component that has a
parentAttr  attribute. c:parent contains a c:child  component with a childAttr  attribute that’s initialized to the value

46

Conditional ExpressionsCreating Components



of the parentAttr  attribute. We’re passing the parentAttr  attribute value from c:parent  into the c:child  component,
which results in a data binding, also known as a value binding, between the two components.

<!--c:parent-->
<aura:component>

<aura:attribute name="parentAttr" type="String" default="parent attribute"/>

<!-- Instantiate the child component -->
<c:child childAttr="{!v.parentAttr}" />

</aura:component>

{!v.parentAttr}  is a bound expression. Any change to the value of the childAttr attribute in c:child  also affects the
parentAttr  attribute in c:parent  and vice versa.

Now, let's change the markup from:

<c:child childAttr="{!v.parentAttr}" />

to:

<c:child childAttr="{#v.parentAttr}" />

{#v.parentAttr}  is an unbound expression. Any change to the value of the childAttr attribute in c:child  doesn’t affect
the parentAttr  attribute in c:parent  and vice versa.

Here’s a summary of the differences between the forms of expression syntax.

{#expression}  (Unbound Expressions)
Data updates behave as you would expect in JavaScript. Primitives, such as String, are passed by value, and data updates for the
expression in the parent and child are decoupled.

Objects, such as Array  or Map, are passed by reference, so changes to the data in the child propagate to the parent. However,
change handlers in the parent aren’t notified. The same behavior applies for changes in the parent propagating to the child.

{!expression}  (Bound Expressions)
Data updates in either component are reflected through bidirectional data binding in both components. Similarly, change handlers
are triggered in both the parent and child components.

Tip: Bi-directional data binding is expensive for performance and it can create hard-to-debug errors due to the propagation
of data changes through nested components. We recommend using the {#expression}  syntax instead when you pass
an expression from a parent component to a child component unless you require bi-directional data binding.

Unbound Expressions
Let’s look at another example of a c:parentExpr  component that contains another component, c:childExpr.

Here is the markup for c:childExpr.

<!--c:childExpr-->
<aura:component>

<aura:attribute name="childAttr" type="String" />

<p>childExpr childAttr: {!v.childAttr}</p>
<p><lightning:button label="Update childAttr"

onclick="{!c.updateChildAttr}"/></p>
</aura:component>

47

Data Binding Between ComponentsCreating Components



Here is the markup for c:parentExpr.

<!--c:parentExpr-->
<aura:component>

<aura:attribute name="parentAttr" type="String" default="parent attribute"/>

<!-- Instantiate the child component -->
<c:childExpr childAttr="{#v.parentAttr}" />

<p>parentExpr parentAttr: {!v.parentAttr}</p>
<p><lightning:button label="Update parentAttr"

onclick="{!c.updateParentAttr}"/></p>
</aura:component>

The c:parentExpr  component uses an unbound expression to set an attribute in the c:childExpr  component.

<c:childExpr childAttr="{#v.parentAttr}" />

When we instantiate childExpr, we set the childAttr  attribute to the value of the parentAttr  attribute in c:parentExpr.
Since the {#v.parentAttr}  syntax is used, the v.parentAttr  expression is not bound to the value of the childAttr
attribute.

The c:exprApp  application is a wrapper around c:parentExpr.

<!--c:exprApp-->
<aura:application >

<c:parentExpr />
</aura:application>

In the Developer Console, click Preview in the sidebar for c:exprApp  to view the app in your browser.

Both parentAttr  and childAttr  are set to “parent attribute”, which is the default value of parentAttr.

Now, let’s create a client-side controller for c:childExpr  so that we can dynamically update the component. Here is the source for
childExprController.js.

/* childExprController.js */
({

updateChildAttr: function(cmp) {
cmp.set("v.childAttr", "updated child attribute");

}
})

In the Developer Console, click Update Preview for c:exprApp.

Press the Update childAttr button. This updates childAttr  to “updated child attribute”. The value of parentAttr  is unchanged
since we used an unbound expression.

<c:childExpr childAttr="{#v.parentAttr}" />

Let’s add a client-side controller for c:parentExpr. Here is the source for parentExprController.js.

/* parentExprController.js */
({

updateParentAttr: function(cmp) {
cmp.set("v.parentAttr", "updated parent attribute");

}
})

48

Data Binding Between ComponentsCreating Components



In the Developer Console, click Update Preview for c:exprApp.

Press the Update parentAttr button. This time, parentAttr  is set to “updated parent attribute” while childAttr  is unchanged
due to the unbound expression.

Warning:  Don’t use a component’s init event and client-side controller to initialize an attribute that is used in an unbound
expression. The attribute will not be initialized. Use a bound expression instead. For more information on a component’s init
event, see Invoking Actions on Component Initialization on page 354.

Alternatively, you can wrap the component in another component. When you instantiate the wrapped component in the wrapper
component, initialize the attribute value instead of initializing the attribute in the wrapped component’s client-side controller.

Bound Expressions
Now, let’s update the code to use a bound expression instead. Change this line in c:parentExpr:

<c:childExpr childAttr="{#v.parentAttr}" />

to:

<c:childExpr childAttr="{!v.parentAttr}" />

In the Developer Console, click Update Preview for c:exprApp.

Press the Update childAttr button. This updates both childAttr  and parentAttr  to “updated child attribute” even though
we only set v.childAttr  in the client-side controller of childExpr. Both attributes were updated since we used a bound
expression to set the childAttr  attribute.

Change Handlers and Data Binding
You can configure a component to automatically invoke a change handler, which is a client-side controller action, when a value in one
of the component's attributes changes.

When you use a bound expression, a change in the attribute in the parent or child component triggers the change handler in both
components. When you use an unbound expression, the change is not propagated between components so the change handler is only
triggered in the component that contains the changed attribute.

Let’s add change handlers to our earlier example to see how they are affected by bound versus unbound expressions.

Here is the updated markup for c:childExpr.

<!--c:childExpr-->
<aura:component>

<aura:attribute name="childAttr" type="String" />

<aura:handler name="change" value="{!v.childAttr}" action="{!c.onChildAttrChange}"/>

<p>childExpr childAttr: {!v.childAttr}</p>
<p><lightning:button label="Update childAttr"

onclick="{!c.updateChildAttr}"/></p>
</aura:component>

Notice the <aura:handler>  tag with name="change", which signifies a change handler. value="{!v.childAttr}"
tells the change handler to track the childAttr  attribute. When childAttr  changes, the onChildAttrChange  client-side
controller action is invoked.

49

Data Binding Between ComponentsCreating Components



Here is the client-side controller for c:childExpr.

/* childExprController.js */
({

updateChildAttr: function(cmp) {
cmp.set("v.childAttr", "updated child attribute");

},

onChildAttrChange: function(cmp, evt) {
console.log("childAttr has changed");
console.log("old value: " + evt.getParam("oldValue"));
console.log("current value: " + evt.getParam("value"));

}
})

Here is the updated markup for c:parentExpr  with a change handler.

<!--c:parentExpr-->
<aura:component>

<aura:attribute name="parentAttr" type="String" default="parent attribute"/>

<aura:handler name="change" value="{!v.parentAttr}" action="{!c.onParentAttrChange}"/>

<!-- Instantiate the child component -->
<c:childExpr childAttr="{!v.parentAttr}" />

<p>parentExpr parentAttr: {!v.parentAttr}</p>
<p><lightning:button label="Update parentAttr"

onclick="{!c.updateParentAttr}"/></p>
</aura:component>

Here is the client-side controller for c:parentExpr.

/* parentExprController.js */
({

updateParentAttr: function(cmp) {
cmp.set("v.parentAttr", "updated parent attribute");

},

onParentAttrChange: function(cmp, evt) {
console.log("parentAttr has changed");
console.log("old value: " + evt.getParam("oldValue"));
console.log("current value: " + evt.getParam("value"));

}
})

In the Developer Console, click Update Preview for c:exprApp.

Open your browser’s console (More tools > Developer tools in Chrome).

Press the Update parentAttr button. The change handlers for c:parentExpr  and c:childExpr  are both triggered as we’re
using a bound expression.

<c:childExpr childAttr="{!v.parentAttr}" />

50

Data Binding Between ComponentsCreating Components



Change c:parentExpr  to use an unbound expression instead.

<c:childExpr childAttr="{#v.parentAttr}" />

In the Developer Console, click Update Preview for c:exprApp.

Press the Update childAttr button. This time, only the change handler for c:childExpr  is triggered as we’re using an unbound
expression.

SEE ALSO:

Detecting Data Changes with Change Handlers

Dynamic Output in Expressions

Component Composition

Value Providers
Value providers are a way to access data. Value providers encapsulate related values together, similar to how an object encapsulates
properties and methods.

The value providers for a component are v  (view) and c  (controller).

See AlsoDescriptionValue Provider

Component AttributesA component’s attribute set. This value provider enables
you to access the value of a component’s attribute in the
component’s markup.

v

Handling Events with Client-Side ControllersA component’s controller, which enables you to wire up
event handlers and actions for the component

c

All components have a v  value provider, but aren't required to have a controller. Both value providers are created automatically when
defined for a component.

Note:  Expressions are bound to the specific component that contains them. That component is also known as the attribute value
provider, and is used to resolve any expressions that are passed to attributes of its contained components.

Global Value Providers
Global value providers are global values and methods that a component can use in expressions.

See AlsoDescriptionGlobal Value
Provider

Component IDsThe globalId  global value provider returns the global
ID for a component. Every component has a unique

globalID

globalId, which is the generated runtime-unique ID
of the component instance.

$BrowserThe $Browser  global value provider returns
information about the hardware and operating system
of the browser accessing the application.

$Browser

51

Value ProvidersCreating Components



See AlsoDescriptionGlobal Value
Provider

$ContentAssetThe $ContentAsset  global value provider lets you
reference images, style sheets, and JavaScript used as
asset files in your lightning components.

$ContentAsset

Using Custom LabelsThe $Label  global value provider enables you to access
labels stored outside your code.

$Label

$LocaleThe $Locale  global value provider returns information
about the current user’s preferred locale.

$Locale

$ResourceThe $Resource  global value provider lets you
reference images, style sheets, and JavaScript code you’ve
uploaded in static resources.

$Resource

Accessing Fields and Related Objects
Values in a value provider are accessed as named properties. To use a value, separate the value provider and the property name with a
dot (period). For example, v.body. You can access value providers in markup or in JavaScript code.

When an attribute of a component is an object or other structured data (not a primitive value), access the values on that attribute using
the same dot notation.

For example, {!v.accounts.id} accesses the id field in the accounts record.

For deeply nested objects and attributes, continue adding dots to traverse the structure and access the nested values.

SEE ALSO:

Dynamic Output in Expressions

$Browser

The $Browser  global value provider returns information about the hardware and operating system of the browser accessing the
application.

DescriptionAttribute

Returns a FormFactor  enum value based on the type of hardware the browser is running on.formFactor

• DESKTOP for a desktop client

• PHONE for a phone including a mobile phone with a browser and a smartphone

Indicates whether the browser is running on an Android device (true) or not (false).isAndroid

Due to changes made by Apple, $Browser  is deprecated because it no longer distinguishes between
iPad and MacOS desktop.

isIOS

Due to changes made by Apple, $Browser  is deprecated because it no longer distinguishes between
iPad and MacOS desktop.

isIPad

52

Value ProvidersCreating Components



DescriptionAttribute

Not available in all implementations. Indicates whether the browser is running on an iPhone (true) or
not (false).

isIPhone

Indicates whether the browser is running on a phone including a mobile phone with a browser and a
smartphone (true), or not (false).

isPhone

Indicates whether the browser is running on a tablet with Android 2.2 or later (true) or not (false).isTablet

Note:  Due to changes made by Apple, isTablet  is deprecated for iOS devices because $Browser
no longer distinguishes between iPad and MacOS desktop.

Indicates whether the browser is running on a Windows phone (true) or not (false). This attribute
detects only Windows phones and doesn’t detect tablets or other touch-enabled Windows 8 devices.

isWindowsPhone

Example: This example shows usage of the $Browser  global value provider.

<aura:component>
{!$Browser.isTablet}
{!$Browser.isPhone}
{!$Browser.isAndroid}
{!$Browser.formFactor}

</aura:component>

Similarly, you can check browser information in a client-side controller using $A.get().

({
checkBrowser: function(component) {

var device = $A.get("$Browser.formFactor");
alert("You are using a " + device);

}
})

$ContentAsset

The $ContentAsset  global value provider lets you reference images, style sheets, and JavaScript used as asset files in your Lightning
components.

Reference $ContentAsset  asset files by name instead of using cumbersome file paths or URLs. $ContentAsset  provides
sharing, versioning, and access control for all asset files, as well as options for mobile optimization and resizing of image files. You can
use $ContentAsset  in Lightning components markup and within JavaScript controller and helper code.

Using $ContentAsset  in Component Markup

To reference a specific asset file in component markup, use $ContentAsset.yourNamespace__assetName. Orgs without
a namespace can use $ContentAsset.assetDeveloperName. Use this syntax regardless of whether an asset is for authenticated
or unauthenticated sessions. To reference a content asset within an archive, add pathinarchive  as a parameter appended to the
basic syntax: $ContentAsset.yourNamespace__assetName + 'pathinarchive=images/sampleImage.jpg'.

Here are a few examples.

53

Value ProvidersCreating Components



Aura component referencing an image in an archive asset file:

<aura:component>
<img src="{!$ContentAsset.websiteImages + 'pathinarchive=images/logo.jpg'}" "alt="holiday

wreath"/>
</aura:component>

Include CSS style sheets or JavaScript libraries in a component using the <ltng:require>  tag.

Aura component using an asset file to style a div element:

Markup

<aura:component>
<ltng:require styles="{!$ContentAsset.bookStyle}"/>

<!-- "bookName" is defined in an asset file with DeveloperName of "bookStyle" -->
<div id="bookTitle" class="bookName">
</div>

</aura:component>

Aura component displays data from a testDisplayData  JavaScript asset file:

Markup

<aura:component>
<ltng:require scripts="{!$ContentAsset.testDisplayData}"

afterScriptsLoaded="{!c.displayData}"/>
...

<aura:attribute name="TestData" type="String[]" ></aura:attribute>
<div>

<input type="text" id="sampleData" value ="{!v.TestData}" />
</div>

...
</aura:component>

Controller

({
displayData : function(component, event, helper) {

var data = _datamap.getData();
component.set("v.TestData", data);

}
})

JavaScript (.js) Asset File with DeveloperName testDisplayData

window._datamap = (function() {
var data = ["Agree", "Disagree", "Strongly Agree", "Strongly Disagree", "Not

Applicable"];
return {

getData: function() {
return data.join(", ");

}
};

}());

54

Value ProvidersCreating Components



$Locale

The $Locale  global value provider returns information about the current user’s preferred locale.

Sample ValueDescriptionAttribute

"US", "DE", "GB"The ISO 3166 representation of the country code
based on the language locale.

country

"$"The currency symbol.currency

"USD"The ISO 4217 representation of the currency code.currencyCode

"."The decimal separator.decimal

1The first day of the week, where 1 is Sunday.firstDayOfWeek

","The grouping separator.grouping

falseSpecifies if a name is based on eastern style, for
example, last name first name
[middle] [suffix].

isEasternNameStyle

“Today”The label for the Today link on the date picker.labelForToday

"en", "de", "zh"The language code based on the language locale.language

“en_US”, “en_GB”The locale ID.langLocale

{ fullName: “January”, shortName: “Jan” }The full and short names of the calendar monthsnameOfMonths

{ fullName: “Sunday”, shortName: “SUN” }The full and short names of the calendar weeksnameOfWeekdays

"America/Los_Angeles"The time zone ID.timezone

“US”The country based on the current user’s localeuserLocaleCountry

“en”The language based on the current user’s localeuserLocaleLang

Deprecated. The variation for a language dialect.variant

Number and Date Formatting

Sample ValueDescriptionAttribute

"¤#,##0.00;(¤#,##0.00)"

¤ represents the currency sign, which is replaced
by the currency symbol.

The currency format.currencyFormat

"MMM d, yyyy"The date format.dateFormat

"MMM d, yyyy h:mm:ss a"The date time format.datetimeFormat

"MMMM d, yyyy"The long date format.longDateFormat

55

Value ProvidersCreating Components



Sample ValueDescriptionAttribute

"#,##0.###"

# represents a digit, the comma is a placeholder for
the grouping separator, and the period is a

The number format.numberFormat

placeholder for the decimal separator. Zero (0)
replaces # to represent trailing zeros.

"#,##0%"The percentage format.percentFormat

"M/d/yyyy"The short date format.shortDateFormat

"M/d/yyyy h:mm a"The short date time format.shortDatetimeFormat

"h:mm a"The short time format.shortTimeFormat

falseSpecifies whether to show dates in the Japanese
Imperial calendar format

showJapaneseCalendar

"h:mm:ss a"The time format.timeFormat

“0”The character for the zero digit.zero

Example: This example shows how to retrieve different $Locale  attributes.

Component source

<aura:component>
{!$Locale.language}
{!$Locale.timezone}
{!$Locale.numberFormat}
{!$Locale.currencyFormat}

</aura:component>

Similarly, you can check locale information in JavaScript using $A.get().

({
checkDevice: function(component) {

var locale = $A.get("$Locale.language");
alert("You are using " + locale);

}
})

SEE ALSO:

Localization

$Resource

The $Resource  global value provider lets you reference images, style sheets, and JavaScript code you’ve uploaded in static resources.

Using $Resource lets you reference assets by name, without worrying about the gory details of URLs or file paths. You can use
$Resource  in Aura component markup and within JavaScript controller and helper code.

56

Value ProvidersCreating Components



Using $Resource  in Component Markup

To reference a specific resource in component markup, use $Resource.resourceName within an expression. resourceName
is the Name  of the static resource. In a managed package, the resource name must include the package namespace prefix, such as
$Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic or script, you
only need the name of the resource. For example, if you uploaded myScript.js  and set the Name  to myScript, reference it as
$Resource.myScript. To reference an item within an archive static resource, add the rest of the path to the item using string
concatenation. Here are a few examples.

<aura:component>
<!-- Stand-alone static resources -->
<img src="{!$Resource.generic_profile_svg}"/>
<img src="{!$Resource.yourNamespace__generic_profile_svg}"/>

<!-- Asset from an archive static resource -->
<img src="{!$Resource.yourGraphics + '/images/logo.jpg'}"/>
<img src="{!$Resource.yourNamespace__yourGraphics + '/images/logo.jpg'}"/>

</aura:component>

Include CSS style sheets or JavaScript libraries into a component using the <ltng:require>  tag. For example:

<aura:component>
<ltng:require
styles="{!$Resource.jsLibraries + '/styles/jsMyStyles.css'}"
scripts="{!$Resource.jsLibraries + '/jsLibOne.js'}"
afterScriptsLoaded="{!c.scriptsLoaded}" />

</aura:component>

Note: Due to a quirk in the way $Resource  is parsed in expressions, use the join  operator to include multiple $Resource
references in a single attribute. For example, if you have more than one JavaScript library to include into a component the scripts
attribute should be something like the following.

scripts="{!join(',',
$Resource.jsLibraries + '/jsLibOne.js',
$Resource.jsLibraries + '/jsLibTwo.js')}"

Using $Resource  in JavaScript

To obtain a reference to a static resource in JavaScript code, use $A.get('$Resource.resourceName').

resourceName  is the Name  of the static resource. In a managed package, the resource name must include the package namespace
prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic
or script, you only need the name of the resource. For example, if you uploaded myScript.js  and set the Name  to myScript,
reference it as $Resource.myScript. To reference an item within an archive static resource, add the rest of the path to the item
using string concatenation. For example:

({
profileUrl: function(component) {

var profUrl = $A.get('$Resource.yourGraphics') + '/images/avatar1.jpg';
alert("Profile URL: " + profUrl);

}
})

57

Value ProvidersCreating Components



Note:  Static resources referenced in JavaScript aren’t automatically added to packages. If your JavaScript depends on a resource
that isn’t referenced in component markup, add it manually to any packages the JavaScript code is included in.

$Resource  Considerations

Global value providers in the Aura Components programming model are, behind the scenes, implemented quite differently from global
variables in Salesforce. Although $Resource  looks like the global variable with the same name available in Visualforce, formula fields,
and elsewhere, there are important differences. Don’t use other documentation as a guideline for its use or behavior.

Here are two specific things to keep in mind about $Resource  in the Aura Components programming model.

First, $Resource  isn’t available until the Aura Components programming model is loaded on the client. Some very simple components
that are composed of only markup can be rendered server-side, where $Resource  isn’t available. To avoid this, when you create a
new app, stub out a client-side controller to force components to be rendered on the client.

Second, if you’ve worked with the $Resource  global variable, in Visualforce or elsewhere, you’ve also used the URLFOR()  formula
function to construct complete URLs to specific resources. There’s nothing similar to URLFOR()  in the Aura Components programming
model. Instead, use simple string concatenation, as illustrated in the preceding examples.

SEE ALSO:

Salesforce Help: Static Resources

Expression Evaluation
Expressions are evaluated much the same way that expressions in JavaScript or other programming languages are evaluated.

Operators are a subset of those available in JavaScript, and evaluation order and precedence are generally the same as JavaScript.
Parentheses enable you to ensure a specific evaluation order. What you may find surprising about expressions is how often they are
evaluated. The framework notices when things change, and triggers re-rendering of any components that are affected. Dependencies
are handled automatically. When a component is re-rendered, any expressions it uses will be re-evaluated.

Action Methods
Expressions are also used to provide action methods for user interface events: onclick, onhover, and any other component
attributes beginning with "on".

Action methods must be assigned to attributes using an expression, for example {!c.theAction}. This expression assigns a
reference to the controller function that handles the action.

Assigning action methods via expressions allows you to assign them conditionally, based on the state of the application or user interface.
For more information, see Conditional Expressions on page 46.

<aura:component>
<aura:attribute name="liked" type="Boolean" default="true"/>
<lightning:button aura:id="likeBtn"
label="{!(v.liked) ? 'Like It' : 'Unlike It'}"
onclick="{!(v.liked) ? c.likeIt : c.unlikeIt}"
/>

</aura:component>

This button will show "Like It" for items that have not yet been liked, and clicking it will call the likeIt  action method. Then the
component will re-render, and the opposite user interface display and method assignment will be in place. Clicking a second time will
unlike the item, and so on.

58

Expression EvaluationCreating Components

https://help.salesforce.com/apex/HTViewHelpDoc?id=pages_static_resources.htm&language=en_US


Note:  The example demonstrates how attributes can help you control the state of a button. To create a button that toggles
between states, we recommend using the lightning:buttonStateful  component.

Action Methods with Lightning Web Components
If you try to use an action method with a Lightning web component, it doesn’t behave as expected because Lightning web components
don’t support expressions the same way that Aura components do. To write an action method, assign a controller action and execute
logic depending on a value.

<aura:component>
<aura:attribute name="liked" type="Boolean" default="true"/>
<c:lwcButton aura:id="likeBtn"
label="{!(v.liked) ? 'Like It' : 'Unlike It'}"
onclick="{!c.handleLikeButtonClick}"
/>

</aura:component>

({
handleLikeButtonClick: function (cmp) {

if (cmp.get('v.liked')) {
// like it logic

} else {
// unlike it logic

}
}

})

Expression Operators Reference
The expression language supports operators to enable you to create more complex expressions.

Arithmetic Operators
Expressions based on arithmetic operators result in numerical values.

DescriptionUsageOperator

Add two numbers.1 + 1+

Subtract one number from the other.2 - 1-

Multiply two numbers.2 * 2*

Divide one number by the other.4 / 2/

Return the integer remainder of dividing the first number by the
second.

5 % 2%

Unary operator. Reverses the sign of the succeeding number. For
example if the value of expenses  is 100, then -expenses
is -100.

-v.exp-

59

Expression Operators ReferenceCreating Components



Numeric Literals

DescriptionUsageLiteral

Integers are numbers without a decimal point or exponent.2Integer

Numbers with a decimal point, or numbers with an exponent.3.14

-1.1e10

Float

A literal null number. Matches the explicit null value and numbers
with an undefined value.

nullNull

String Operators
Expressions based on string operators result in string values.

DescriptionUsageOperator

Concatenates two strings together.'Title: ' + v.note.title+

String Literals
String literals must be enclosed in single quotation marks 'like this'.

DescriptionUsageLiteral

Literal strings must be enclosed in single quotation marks. Double quotation marks
are reserved for enclosing attribute values, and must be escaped in strings.

'hello world'string

Whitespace characters:'\n'\<escape>

• \t  (tab)

• \n  (newline)

• \r  (carriage return)

Escaped characters:

• \"  (literal ")

• \'  (literal ')

• \\  (literal \)

A Unicode code point. The # symbols are hexadecimal digits. A Unicode literal
requires four digits.

'\u####'Unicode

A literal null string. Matches the explicit null value and strings with an undefined
value.

nullnull

60

Expression Operators ReferenceCreating Components



Comparison Operators
Expressions based on comparison operators result in a true  or false  value. For comparison purposes, numbers are treated as the
same type. In all other cases, comparisons check both value and type.

DescriptionUsageAlternativeOperator

Returns true  if the operands are equal. This
comparison is valid for all data types.

1 == 1

1 == 1.0

eq==

Warning:  Don’t use the ==  operator for
objects, as opposed to basic types, such as

1 eq 1

Note:
undefined==null
evaluates to true.

Integer or String. For example,
object1==object2  evaluates
inconsistently on the client versus the server
and isn’t reliable.

Returns true  if the operands are not equal. This
comparison is valid for all data types.

1 != 2

1 != true

ne!=

1 != '1'

null != false

1 ne 2

Returns true  if the first operand is numerically
less than the second. You must escape the <

1 < 2

1 lt 2

lt<

operator to &lt;  to use it in component markup.
Alternatively, you can use the lt  operator.

Returns true  if the first operand is numerically
greater than the second.

42 > 2

42 gt 2

gt>

Returns true  if the first operand is numerically
less than or equal to the second. You must escape

2 <= 42

2 le 42

le<=

the <= operator to &lt;=  to use it in component
markup. Alternatively, you can use the le  operator.

Returns true  if the first operand is numerically
greater than or equal to the second.

42 >= 42

42 ge 42

ge>=

Logical Operators
Expressions based on logical operators result in a true  or false  value.

DescriptionUsageOperator

Returns true  if both operands are individually true.

If you have more than two arguments, you can chain multiple &amp;&amp;  operations.

isEnabled
&amp;&amp;
hasPermission

&amp;&amp;

61

Expression Operators ReferenceCreating Components



DescriptionUsageOperator

This syntax is awkward in markup so we recommend the alternative of using the and()
function when you have two arguments. For example, and(isEnabled,
hasPermission). The and()  function only works with two arguments.

Returns true  if either operand is individually true.

If you have more than two arguments, you can chain multiple || operations.

hasPermission
|| isRequired

||

You can alternatively use the or()  function when you have only two arguments. The or()
function only works with two arguments.

Unary operator. Returns true  if the operand is false. This operator should not be confused
with the !  delimiter used to start an expression in {!. You can combine the expression

!isRequired!

delimiter with this negation operator to return the logical negation of a value, for example,
{!!true}  returns false.

Logical Literals
Logical values are never equivalent to non-logical values. That is, only true == true, and only false == false; 1 !=
true, and 0 != false, and null != false.

DescriptionUsageLiteral

A boolean true  value.truetrue

A boolean false  value.falsefalse

Conditional Operator
There is only one conditional operator, the traditional ternary operator.

DescriptionUsageOperator

The operand before the ?  operator is evaluated as
a boolean. If true, the second operand is returned. If
false, the third operand is returned.

(1 != 2) ? "Obviously" : "Black
is White"

? :

SEE ALSO:

Expression Functions Reference

Expression Functions Reference
The expression language contains math, string, array, comparison, boolean, and conditional functions. All functions are case-sensitive.

62

Expression Functions ReferenceCreating Components



Math Functions
The math functions perform math operations on numbers. They take numerical arguments. The Corresponding Operator column lists
equivalent operators, if any.

Corresponding
Operator

DescriptionUsageAlternativeFunction

+Adds the first argument
to the second.

add(1,2)concatadd

-Subtracts the second
argument from the first.

sub(10,2)subtractsub

*Multiplies the first
argument by the second.

mult(2,10)multiplymult

/Divides the first argument
by the second.

div(4,2)dividediv

%Returns the integer
remainder resulting from

mod(5,2)modulusmod

dividing the first
argument by the second.

NoneReturns the absolute
value of the argument:

abs(-5)abs

the same number if the
argument is positive, and
the number without its
negative sign if the
number is negative. For
example, abs(-5) is
5.

-  (unary)Reverses the sign of the
argument. For example,
neg(100) is -100.

neg(100)negateneg

String Functions

Corresponding
Operator

DescriptionUsageAlternativeFunction

+Concatenates the two
arguments.

concat('Hello ',
'world')

add('Walk ', 'the dog')

addconcat

63

Expression Functions ReferenceCreating Components



Corresponding
Operator

DescriptionUsageAlternativeFunction

Replaces any
parameter

format($Label.ns.labelName,
v.myVal)

format

placeholders with
Note:  This function works for
arguments of type String,

comma-separated
attribute values.

Decimal, Double,
Integer, Long, Array,
String[], List, and Set.

Joins the substrings
adding the separator

join(separator, subStr1,
subStr2, subStrN)

join(' ','class1',
'class2', v.class)

join

String (first argument)
between each
subsequent argument.

Label Functions

DescriptionUsageFunction

Outputs a label and updates it.
Replaces any parameter

format($Label.np.labelName,
v.attribute1 , v.attribute2)

format($Label.np.hello, v.name)

format

placeholders with
comma-separated attribute values.
Supports ternary operators in
labels and attributes.

Informational Functions

DescriptionUsageFunction

Returns the length of an array or a string.myArray.lengthlength

Returns true  if the argument is empty. An empty
argument is undefined, null, an empty array, or an

empty(v.attributeName)empty

Note: This function works for arguments
of type String, Array, Object,
List, Map, or Set.

empty string. An object with no properties is not considered
empty.

Tip: {! !empty(v.myArray)}  evaluates
faster than {!v.myArray &&
v.myArray.length > 0}  so we recommend
empty()  to improve performance.

The $A.util.isEmpty()  method in JavaScript is
equivalent to the empty()  expression in markup.

64

Expression Functions ReferenceCreating Components



Comparison Functions
Comparison functions take two number arguments and return true  or false  depending on the comparison result. The eq  and
ne  functions can also take other data types for their arguments, such as strings.

Corresponding
Operator

DescriptionUsageFunction

==  or eqReturns true  if the specified arguments
are equal. The arguments can be any data
type.

equals(1,1)equals

!=  or neReturns true  if the specified arguments
are not equal. The arguments can be any
data type.

notequals(1,2)notequals

<  or ltReturns true  if the first argument is
numerically less than the second
argument.

lessthan(1,5)lessthan

>  or gtReturns true  if the first argument is
numerically greater than the second
argument.

greaterthan(5,1)greaterthan

<=  or leReturns true  if the first argument is
numerically less than or equal to the
second argument.

lessthanorequal(1,2)lessthanorequal

>=  or geReturns true  if the first argument is
numerically greather than or equal to the
second argument.

greaterthanorequal(2,1)greaterthanorequal

Boolean Functions
Boolean functions operate on Boolean arguments. They are equivalent to logical operators.

Corresponding OperatorDescriptionUsageFunction

&amp;&amp;

This syntax is awkward in
markup so we recommend

Returns true  if both
arguments are true.

and(isEnabled,
hasPermission)

and

Note:  This function
supports only two using the and()  function

instead when you have twoarguments. Any
arguments. If you have morearguments after the first

two are ignored. than two arguments, you can
chain multiple &amp;&amp;
operations.

65

Expression Functions ReferenceCreating Components



Corresponding OperatorDescriptionUsageFunction

||

If you have more than two
arguments, you can chain
multiple || operations.

Returns true  if either one of
the arguments is true.

or(hasPermission,
hasVIPPass)

or

Note:  This function
supports only two
arguments. Any
arguments after the first
two are ignored.

!Returns true  if the argument
is false.

not(isNew)not

Conditional Function

Corresponding OperatorDescriptionUsageFunction

?:  (ternary)Evaluates the first argument as
a boolean. If true, returns the

if(isEnabled,
'Enabled', 'Not
enabled')

if

second argument. Otherwise,
returns the third argument.

Component Composition

Composing fine-grained components in a larger component enables you to build more interesting components and applications.

Let's see how we can fit components together. We will first create a few simple components: c:helloHTML  and
c:helloAttributes. Then, we’ll create a wrapper component, c:nestedComponents, that contains the simple components.

Here is the source for helloHTML.cmp.

<!--c:helloHTML-->
<aura:component>
<div class="white">
Hello, HTML!

</div>

<h2>Check out the style in this list.</h2>

<ul>
<li class="red">I'm red.</li>
<li class="blue">I'm blue.</li>
<li class="green">I'm green.</li>

</ul>
</aura:component>

CSS source

.THIS {
background-color: grey;

66

Component CompositionCreating Components



}

.THIS.white {
background-color: white;

}

.THIS .red {
background-color: red;

}

.THIS .blue {
background-color: blue;

}

.THIS .green {
background-color: green;

}

Output

Here is the source for helloAttributes.cmp.

<!--c:helloAttributes-->
<aura:component>

<aura:attribute name="whom" type="String" default="world"/>
Hello {!v.whom}!

</aura:component>

nestedComponents.cmp  uses composition to include other components in its markup.

<!--c:nestedComponents-->
<aura:component>

Observe! Components within components!

<c:helloHTML/>

<c:helloAttributes whom="component composition"/>
</aura:component>

Output

Including an existing component is similar to including an HTML tag. Reference the component by its "descriptor", which is of the form
namespace:component. nestedComponents.cmp  references the helloHTML.cmp  component, which lives in the c
namespace. Hence, its descriptor is c:helloHTML.

67

Component CompositionCreating Components



Note how nestedComponents.cmp  also references c:helloAttributes. Just like adding attributes to an HTML tag, you
can set attribute values in a component as part of the component tag. nestedComponents.cmp  sets the whom  attribute of
helloAttributes.cmp  to "component composition".

Attribute Passing
You can also pass attributes to nested components. nestedComponents2.cmp  is similar to nestedComponents.cmp,
except that it includes an extra passthrough  attribute. This value is passed through as the attribute value for c:helloAttributes.

<!--c:nestedComponents2-->
<aura:component>

<aura:attribute name="passthrough" type="String" default="passed attribute"/>
Observe! Components within components!

<c:helloHTML/>

<c:helloAttributes whom="{#v.passthrough}"/>
</aura:component>

Output

helloAttributes  is now using the passed through attribute value.

Note: {#v.passthrough}  is an unbound expression. This means that any change to the value of the whom  attribute in
c:helloAttributes  doesn’t propagate back to affect the value of the passthrough  attribute in
c:nestedComponents2. For more information, see Data Binding Between Components on page 46.

Definitions versus Instances
In object-oriented programming, there’s a difference between a class and an instance of that class. Components have a similar concept.
When you create a .cmp resource, you are providing the definition (class) of that component. When you put a component tag in a
.cmp  resource, you are creating a reference to (instance of) that component.

It shouldn't be surprising that we can add multiple instances of the same component with different attributes.
nestedComponents3.cmp  adds another instance of c:helloAttributes  with a different attribute value. The two instances
of the c:helloAttributes component have different values for their whom attribute .

<!--c:nestedComponents3-->
<aura:component>

<aura:attribute name="passthrough" type="String" default="passed attribute"/>
Observe! Components within components!

<c:helloHTML/>

<c:helloAttributes whom="{#v.passthrough}"/>

<c:helloAttributes whom="separate instance"/>
</aura:component>

68

Component CompositionCreating Components



Output

Component Body

The root-level tag of every component is <aura:component>. Every component inherits the body  attribute from
<aura:component>.

The <aura:component>  tag can contain tags, such as <aura:attribute>, <aura:registerEvent>,
<aura:handler>, <aura:set>, and so on. Any free markup that is not enclosed in one of the tags allowed in a component is
assumed to be part of the body and is set in the body  attribute.

The body  attribute has type Aura.Component[]. It can be an array of one component, or an empty array, but it's always an array.

In a component, use “v” to access the collection of attributes. For example, {!v.body} outputs the body of the component.

Setting the Body Content
To set the body  attribute in a component, add free markup within the <aura:component>  tag. For example:

<aura:component>
<!--START BODY-->
<div>Body part</div>
<lightning:button label="Push Me" onclick="{!c.doSomething}"/>
<!--END BODY-->

</aura:component>

To set the value of an inherited attribute, use the <aura:set>  tag. Setting the body content is equivalent to wrapping that free
markup inside <aura:set attribute="body">. Since the body attribute has this special behavior, you can omit <aura:set
attribute="body">.

The previous sample is a shortcut for this markup. We recommend the less verbose syntax in the previous sample.

<aura:component>
<aura:set attribute="body">

<!--START BODY-->
<div>Body part</div>
<lightning:button label="Push Me" onclick="{!c.doSomething}"/>
<!--END BODY-->

</aura:set>
</aura:component>

The same logic applies when you use any component that has a body  attribute, not just <aura:component>. For example:

<lightning:tabset>
<lightning:tab label="Tab 1">

Hello world!
</lightning:tab>

</lightning:tabset>

69

Component BodyCreating Components



This is a shortcut for:

<lightning:tabset>
<lightning:tab label="Tab 1">

<aura:set attribute="body">
Hello World!

</aura:set>
</lightning:tab>

</lightning:tabset>

Accessing the Component Body
To access a component body in JavaScript, use component.get("v.body").

SEE ALSO:

aura:set

Working with a Component Body in JavaScript

Component Facets

A facet is any attribute of type Aura.Component[]. Use this type as a placeholder for a block of markup. The body  attribute is an
example of a facet.

To define your own facet, add an aura:attribute  tag of type Aura.Component[], which is an array of components, to your
component. For example, let's create a component called facetHeader.cmp.

<!--c:facetHeader-->
<aura:component>

<aura:attribute name="header" type="Aura.Component[]"/>

<div>
<span class="headerClass">{!v.header}</span><br/>
<span class="bodyClass">{!v.body}</span>

</div>
</aura:component>

This component has a header  facet. Note how we position the output of the header using the v.header  expression.

The component doesn't have any output when you access it directly as the header  and body attributes aren't set. Let’s create another
component, helloFacets.cmp, that sets these attributes.

<!--c:helloFacets-->
<aura:component>

See how we set the header facet.<br/>

<c:facetHeader>

This is the component body for facetHeader.

<aura:set attribute="header">
Hello Header!

70

Component FacetsCreating Components



</aura:set>
</c:facetHeader>

</aura:component>

The aura:set  tag sets the value of the header  attribute of facetHeader.cmp.

The body  attribute is special. You don’t need to use aura:set  if you’re setting the body  attribute. Any free markup that’s not
enclosed in one of the tags allowed in a component is assumed to be part of the body and is set in the body  attribute.

If you use c:helloFacets  in an app, the output is:

See how we set the header facet.
Hello Header!
This is the component body for facetHeader.

SEE ALSO:

Component Body

Framework-Specific Types

Controlling Access

The framework enables you to control access to your applications, attributes, components, events, interfaces, and methods via the
access system attribute. The access  system attribute indicates whether the resource can be used outside of its own namespace.

Use the access  system attribute on these tags:

• <aura:application>

• <aura:attribute>

• <aura:component>

• <aura:event>

• <aura:interface>

• <aura:method>

Access Values
You can specify these values for the access  system attribute.

private
Available within the component, app, interface, or event, or method and can’t be referenced outside the resource. This value can
only be used for <aura:attribute>.

Marking an attribute as private makes it easier to refactor the attribute in the future as the attribute can only be used within the
resource.

Accessing a private attribute returns undefined  unless you reference it from the component in which it’s declared. You can’t
access a private attribute from a sub-component that extends the component containing the private attribute.

public
Available within your org only. This is the default access value.

71

Controlling AccessCreating Components



global
Available in all orgs.

Note: Mark your resources, such as a component, with access="global"  to make the resource usable outside of your
own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a
Experience Builder user in another org.

You can also create documentation for a component, event, or interface marked access="global". This documentation
is automatically displayed in the Component Library of an org that uses or installs your package.

Example
This sample component has global access.

<aura:component access="global">
...

</aura:component>

Access Violations
If your code accesses a resource, such as a component, that doesn’t have an access  system attribute allowing you to access the
resource:

• Client-side code doesn’t execute or returns undefined. If you enabled debug mode, you see an error message in your browser
console.

• Server-side code results in the component failing to load. If you enabled debug mode, you see a popup error message.

Anatomy of an Access Check Error Message
Here is a sample access check error message for an access violation.

Access Check Failed ! ComponentService.getDef():'markup://c:targetComponent' is not
visible to 'markup://c:sourceComponent'.

An error message has four parts:

1. The context (who is trying to access the resource). In our example, this is markup://c:sourceComponent.

2. The target (the resource being accessed). In our example, this is markup://c:targetComponent.

3. The type of failure. In our example, this is not visible.

4. The code that triggered the failure. This is usually a class method. In our example, this is ComponentService.getDef(),
which means that the target definition (component) was not accessible. A definition describes metadata for a resource, such as a
component.

Fixing Access Check Errors
Tip:  If your code isn’t working as you expect, enable debug mode to get better error reporting.

You can fix access check errors using one or more of these techniques.

• Add appropriate access  system attributes to the resources that you own.

72

Controlling AccessCreating Components



• Remove references in your code to resources that aren’t available. In the earlier example, markup://c:targetComponent
doesn’t have an access value allowing markup://c:sourceComponent  to access it.

• Ensure that an attribute that you’re accessing exists by looking at its <aura:attribute>  definition. Confirm that you’re using
the correct case-sensitive spelling for the name.

Accessing an undefined attribute or an attribute that is out of scope, for example a private attribute, triggers the same access violation
message. The access context doesn’t know whether the attribute is undefined or inaccessible.

Example: is not visible to 'undefined'

ComponentService.getDef():'markup://c:targetComponent' is not visible to 'undefined'

The key word in this error message is undefined, which indicates that the framework has lost context. This happens when your code
accesses a component outside the normal framework lifecycle, such as in a setTimeout()  or setInterval()  call or in an ES6
Promise.

Fix this error by wrapping the code in a $A.getCallback()  call. For more information, see Modifying Components Outside the
Framework Lifecycle.

Example: Cannot read property 'Yb' of undefined

Action failed: c$sourceComponent$controller$doInit [Cannot read property 'Yb' of undefined]

This error message happens when you reference a property on a variable with a value of undefined. The error can happen in many
contexts, one of which is the side-effect of an access check failure. For example, let’s see what happens when you try to access an
undefined attribute, imaginaryAttribute, in JavaScript.

var whatDoYouExpect = cmp.get("v.imaginaryAttribute");

This is an access check error and whatDoYouExpect is set to undefined. Now, if you try to access a property on
whatDoYouExpect, you get an error.

Action failed: c$sourceComponent$controller$doInit [Cannot read property 'Yb' of undefined]

The c$sourceComponent$controller$doInit  portion of the error message tells you that the error is in the doInit
method of the controller of the sourceComponent  component in the c namespace.

IN THIS SECTION:

Application Access Control

The access  attribute on the aura:application  tag controls whether the app can be used outside of the app’s namespace.

Interface Access Control

The access  attribute on the aura:interface  tag controls whether the interface can be used outside of the interface’s
namespace.

Component Access Control

The access  attribute on the aura:component  tag controls whether the component can be used outside of the component’s
namespace.

Attribute Access Control

The access  attribute on the aura:attribute  tag controls whether the attribute can be used outside of the attribute’s
namespace.

73

Controlling AccessCreating Components



Event Access Control

The access  attribute on the aura:event  tag controls whether the event can be used outside of the event’s namespace.

SEE ALSO:

Enable Debug Mode for Lightning Components

Writing Documentation for the Component Library

Application Access Control
The access  attribute on the aura:application  tag controls whether the app can be used outside of the app’s namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

Available in all orgs.global

Interface Access Control
The access  attribute on the aura:interface  tag controls whether the interface can be used outside of the interface’s namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

Available in all orgs.global

A component can implement an interface using the implements  attribute on the aura:component  tag.

Component Access Control
The access  attribute on the aura:component  tag controls whether the component can be used outside of the component’s
namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

Available in all orgs.global

Note:  Components aren’t directly addressable via a URL. To check your component output, embed your component in a .app
resource.

74

Application Access ControlCreating Components



Attribute Access Control
The access  attribute on the aura:attribute  tag controls whether the attribute can be used outside of the attribute’s namespace.

Possible values are listed below.

DescriptionAccess

Available within the component, app, interface, or event, or method and can’t be referenced outside
the resource.

private

Note: Accessing a private attribute returns undefined  unless you reference it from the
component in which it’s declared. You can’t access a private attribute from a sub-component
that extends the component containing the private attribute.

Available within your org only. This is the default access value.public

Available in all orgs.global

Event Access Control
The access  attribute on the aura:event  tag controls whether the event can be used outside of the event’s namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

Available in all orgs.global

Using Object-Oriented Development

The framework provides the basic constructs of inheritance and encapsulation from object-oriented programming and applies them to
presentation layer development.

For example, components are encapsulated and their internals stay private. Consumers of the component can access the public shape
(attributes and registered events) of the component, but can't access other implementation details in the component bundle. This
separation gives component authors freedom to change the internal implementation details and insulates component consumers from
those changes.

Inheritance in Aura components doesn’t work the way it does in Apex or Java. Using inheritance in Aura makes your code harder to
understand as the behavior isn’t always intuitive. When possible, use composition instead of inheritance.

IN THIS SECTION:

Favor Composition Over Inheritance

Aura supports inheritance, but it favors composition. When possible, use composition.

What is Inherited?

Inherited Component Attributes

A sub component that extends a super component inherits the attributes of the super component.

75

Attribute Access ControlCreating Components



Abstract Components

Interfaces

Interfaces define a component’s shape by defining attributes, events, or methods that any implementing component contains. To
use an interface, a component must implement it. An interface can’t be used directly in markup.

Inheritance Rules

Favor Composition Over Inheritance
Aura supports inheritance, but it favors composition. When possible, use composition.

When you create an Aura component, you use a mix of inheritance and composition. For example, when you create an application or
a component, you extend one of the default base components: aura:application  or aura:component. That’s inheritance
and it works well. However, when you create a custom component that extends another component, inheritance can get a little more
complicated.

Component composition happens when you nest a component in another component. To build a component body, you add components
within the body. This component composition enables you to build complex components from simpler building-block components.

Why use composition? Because code reuse and testing become easier.

Also, one feature of inheritance works differently in Aura than it does in most languages and frameworks. This difference makes inheritance
lose some of its charm.

When you instantiate a Java class you create one instance, no matter how long that class’s inheritance path is. Not so in Aura. Aura
creates one instance of the subclassed component and one instance of its parent. The more levels of inheritance, the more component
instances are created. Inheritance consumes more memory and processor resources than you might expect.

What is Inherited?
This topic lists what is inherited when you extend a definition, such as a component.

When a component contains another component, we refer in the documentation to parent and child components in the containment
hierarchy. When a component extends another component, we refer to sub and super components in the inheritance hierarchy.

Component Attributes
A sub component that extends a super component inherits the attributes of the super component. Use <aura:set>  in the markup
of a sub component to set the value of an attribute inherited from a super component.

Events
A sub component that extends a super component can handle events fired by the super component. The sub component automatically
inherits the event handlers from the super component.

The super and sub component can handle the same event in different ways by adding an <aura:handler>  tag to the sub component.
The framework doesn't guarantee the order of event handling.

Helpers
A sub component's helper inherits the methods from the helper of its super component. A sub component can override a super
component's helper method by defining a method with the same name as an inherited method.

76

Favor Composition Over InheritanceCreating Components



Controllers
A sub component that extends a super component can call actions in the super component's client-side controller. For example, if the
super component has an action called doSomething, the sub component can directly call the action using the {!c.doSomething}
syntax.

Note:  We don't recommend using inheritance of client-side controllers as this feature may be deprecated in the future to preserve
better component encapsulation. We recommend that you put common code in a helper instead.

SEE ALSO:

Favor Composition Over Inheritance

Component Attributes

Communicating with Events

Sharing JavaScript Code in a Component Bundle

Handling Events with Client-Side Controllers

aura:set

Inherited Component Attributes
A sub component that extends a super component inherits the attributes of the super component.

Attribute values are identical at any level of extension. There is an exception to this rule for the body  attribute, which we'll look at more
closely soon.

Let's start with a simple example. c:super  has a description  attribute with a value of "Default description",

<!--c:super-->
<aura:component extensible="true">

<aura:attribute name="description" type="String" default="Default description" />

<p>super.cmp description: {!v.description}</p>

{!v.body}
</aura:component>

Don’t worry about the {!v.body}  expression for now. We’ll explain that when we talk about the body attribute.

c:sub  extends c:super  by setting extends="c:super"  in its <aura:component>  tag.

<!--c:sub-->
<aura:component extends="c:super">

<p>sub.cmp description: {!v.description}</p>
</aura:component

Note that sub.cmp  has access to the inherited description  attribute and it has the same value in sub.cmp  and super.cmp.

Use <aura:set>  in the markup of a sub component to set the value of an inherited attribute.

Inherited body  Attribute
Every component inherits the body  attribute from <aura:component>. The inheritance behavior of body  is different than other
attributes. It can have different values at each level of component extension to enable different output from each component in the
inheritance chain. This will be clearer when we look at an example.

77

Inherited Component AttributesCreating Components



Any free markup that is not enclosed in another tag is assumed to be part of the body. It's equivalent to wrapping that free markup
inside <aura:set attribute="body">.

The default renderer for a component iterates through its body  attribute, renders everything, and passes the rendered data to its super
component. The super component can output the data passed to it by including {!v.body}  in its markup. If there is no super
component, you've hit the root component and the data is inserted into document.body.

Let's look at a simple example to understand how the body  attribute behaves at different levels of component extension. We have
three components.

c:superBody  is the super component. It inherently extends <aura:component>.

<!--c:superBody-->
<aura:component extensible="true">

Parent body: {!v.body}
</aura:component>

At this point, c:superBody  doesn’t output anything for {!v.body}  as it’s just a placeholder for data that will be passed in by a
component that extends c:superBody.

c:subBody  extends c:superBody  by setting extends="c:superBody"  in its <aura:component>  tag.

<!--c:subBody-->
<aura:component extends="c:superBody">

Child body: {!v.body}
</aura:component>

c:subBody  outputs:

Parent body: Child body:

In other words, c:subBody  sets the value for {!v.body}  in its super component, c:superBody.

c:containerBody  contains a reference to c:subBody.

<!--c:containerBody-->
<aura:component>

<c:subBody>
Body value

</c:subBody>
</aura:component>

In c:containerBody, we set the body  attribute of c:subBody  to Body value. c:containerBody  outputs:

Parent body: Child body: Body value

SEE ALSO:

aura:set

Component Body

Component Markup

78

Inherited Component AttributesCreating Components



Abstract Components
Object-oriented languages, such as Java, support the concept of an abstract class that provides a partial implementation for an object
but leaves the remaining implementation to concrete sub-classes. An abstract class in Java can't be instantiated directly, but a non-abstract
subclass can.

Similarly, the Aura Components programming model supports the concept of abstract components that have a partial implementation
but leave the remaining implementation to concrete sub-components.

To use an abstract component, you must extend it and fill out the remaining implementation. An abstract component can't be used
directly in markup.

The <aura:component>  tag has a boolean abstract  attribute. Set abstract="true"  to make the component abstract.

SEE ALSO:

Interfaces

Interfaces
Interfaces define a component’s shape by defining attributes, events, or methods that any implementing component contains. To use
an interface, a component must implement it. An interface can’t be used directly in markup.

An interface starts with the <aura:interface>  tag, and can contain only these tags:

<aura:attribute>
This tag defines an attribute. An interface can have zero or more attributes.

Note:  To set the value of an attribute inherited from an interface, redefine the attribute in the sub component using
<aura:attribute>  and set the value in its default attribute. When you extend a component, you can use <aura:set>
in a sub component to set the value of any attribute that’s inherited from the super component. However, this usage of
<aura:set>  doesn’t work for attributes inherited from an interface.

<aura:registerEvent>
This tag registers an event that can be fired by a component that implements the interface. There’s no logic in the interface for firing
the event. A component that implements the interface contains the code to fire the event.

<aura:method>
This tag defines a method as part of the API of a component that implements the interface. There’s no logic for the method in the
interface. A component that implements the interface contains the method logic.

You can’t use markup, renderers, controllers, or anything else in an interface.

Implement an Interface
To implement an interface, set the implements  system attribute in the <aura:component>  tag to the name of the interface
that you are implementing. For example:

<aura:component implements="mynamespace:myinterface" >

A component can implement an interface and extend another component.

<aura:component extends="ns1:cmp1" implements="ns2:intf1" >

An interface can extend multiple interfaces using a comma-separated list.

<aura:interface extends="ns:intf1,ns:int2" >

79

Abstract ComponentsCreating Components



Since there are fewer restrictions on the content of abstract components, they are more common than interfaces. A component can
implement multiple interfaces but can only extend one abstract component, so interfaces can be more useful for some design patterns.

Example
Here’s an example of an interface.

<aura:interface>
<aura:attribute name="value" type="String"/>

<aura:registerEvent name="onItemSelected" type="ui:response"
description="The event fired when the user selects an item" />

<aura:method name="methodFromInterface">
<aura:attribute name="stringAttribute" type="String" default="default string"/>

</aura:method>
</aura:interface>

IN THIS SECTION:

Marker Interfaces

A marker interface is an empty interface with no attributes, events, or methods. A marker interface is used to enable specific usage
for a component in an app.

SEE ALSO:

Setting Attributes Inherited from an Interface

Abstract Components

Marker Interfaces
A marker interface is an empty interface with no attributes, events, or methods. A marker interface is used to enable specific usage for
a component in an app.

For example, a component that implements the force:appHostable  interface can be used as a custom tab in Lightning Experience
or the Salesforce mobile app.

In JavaScript, you can determine if a component implements an interface by using
myCmp.isInstanceOf("mynamespace:myinterface").

SEE ALSO:

Configure Components for Custom Tabs

Inheritance Rules
This table describes the inheritance rules for various elements.

Default Base ElementimplementsextendsElement

<aura:component>multiple interfacesone extensible componentcomponent

80

Inheritance RulesCreating Components



Default Base ElementimplementsextendsElement

<aura:application>N/Aone extensible appapp

N/AN/Amultiple interfaces using a comma-separated list
(extends="ns:intf1,ns:int2")

interface

SEE ALSO:

Interfaces

Best Practices for Conditional Markup

Using the <aura:if>  tag is the preferred approach to conditionally display markup but there are alternatives. Consider the performance
cost and code maintainability when you design components. The best design choice depends on your use case.

Conditionally Create Elements with <aura:if>
Let’s look at a simple example that shows an error message when an error occurs.

<aura:if isTrue="{!v.isError}">
<div>{!v.errorMessage}</div>

</aura:if>

The <div>  component and its contents are only created and rendered if the value of the isTrue expression evaluates to true. If
the value of the isTrue  expression changes and evaluates to false, all the components inside the <aura:if>  tag are destroyed.
The components are created again if the isTrue expression changes again and evaluates to true.

The general guideline is to use <aura:if> because it helps your components load faster initially by deferring the creation and
rendering of the enclosed element tree until the condition is fulfilled.

Toggle Visibility Using CSS
You can use CSS to toggle visibility of markup by calling $A.util.toggleClass(cmp, 'class')  in JavaScript code.

Elements in markup are created and rendered up front, but they’re hidden. For an example, see Dynamically Showing or Hiding Markup.

The conditional markup is created and rendered even if it’s not used, so <aura:if>  is preferred.

Dynamically Create Components in JavaScript
You can dynamically create components in JavaScript code. However, writing code is usually harder to maintain and debug than using
markup. Again, using <aura:if>  is preferred but the best design choice depends on your use case.

SEE ALSO:

Conditional Expressions

Dynamically Creating Components

81

Best Practices for Conditional MarkupCreating Components



Aura Component Versioning for Managed Packages

Aura component versioning enables you to declare dependencies against specific revisions of an installed managed package.

By assigning a version to your component, you have granular control over how the component functions when new versions of a
managed package are released. For example, imagine that a <packageNamespace>:button  is pinned to version 2.0 of a package.
Upon installing version 3.0, the button retains its version 2.0 functionality.

Note:  The package developer is responsible for inserting versioning logic into the markup when updating a component. If the
component wasn’t changed in the update or if the markup doesn’t account for version, the component behaves in the context
of the most recent version.

Versions are assigned declaratively in the Developer Console. When you’re working on a component, click Bundle Version Settings
in the right panel to define the version. You can only version a component if you’ve installed a package, and the valid versions for the
component are the available versions of that package. Versions are in the format <major>.<minor>. So if you assign a component
version 1.4, its behavior depends on the first major release and fourth minor release of the associated package.

When working with components, you can version:

• Apex controllers

• JavaScript controllers

• JavaScript helpers

• JavaScript renderers

• Bundle markup

– Applications (.app)

– Components (.cmp)

– Interfaces (.intf)

– Events (.evt)

You can’t version any other types of resources in bundles. Unsupported types include:

• Styles (.css)

• Documentation (.doc)

• Design (.design)

• SVG (.svg)

82

Aura Component Versioning for Managed PackagesCreating Components



Once you’ve assigned versions to components, or if you’re developing components for a package, you can retrieve the version in several
contexts.

ExpressionReturn TypeResource

System.requestVersion()VersionApex

cmp.getVersion()StringJavaScript

{!Version}StringAura component markup

You can use the retrieved version to add logic to your code or markup to assign different functionality to different versions. Here’s an
example of using versioning in an <aura:if> statement.

<aura:component>
<aura:if isTrue="{!Version > 1.0}">
<c:newVersionFunctionality/>
</aura:if>
<c:oldVersionFunctionality/>
...
</aura:component>

SEE ALSO:

Base Components with Minimum API Version Requirements

Don’t Mix Component API Versions

Base Components with Minimum API Version Requirements

Some Lightning base components require the custom components that use them to be set to a minimum API version. A custom
component’s API version must be equal to or later than the latest API version required by any of the components it uses.

A custom component can become subject to another component’s minimum version requirement in several ways.

• The custom component can extend from the component with the minimum version requirement.

• The custom component can add another component as a child component in markup.

• The custom component can dynamically create and add a child component in JavaScript.

If the relationship between components can be determined by static analysis, the version dependency is checked when the component
is saved. If a custom component has an API version earlier than a minimum version required by any of the components it uses, an error
is reported, and the component isn’t saved. Depending on the tool you’re using, this error is presented in different ways.

If a component is created dynamically, the relationship between it and its parent component can’t be determined at save time. The
minimum version requirement is checked at run time, and if it fails a run-time error is reported to the current user.

Set the API version for your component in the Developer Console, the Salesforce Extensions for Visual Studio Code, or via API.

83

Base Components with Minimum API Version RequirementsCreating Components



Minimum API Version of Lightning Base Components
The minimum API version required to use a base component is listed on the component’s Specification page in the Component Library
on page 495. Components that don’t specify a minimum API version are usable with any API version supported for Lightning components.

For example, lightning:accordion  requires version 41.0 and later.

The minimum version for base components that are Generally Available (GA) won’t increase in future releases. (However, as with
Visualforce components, their behavior might change depending on the API version of the containing component.)

Note:  The base components are not versioned. Changing your custom component’s API version on the Bundle Version Settings
window to an earlier version does not impact the behavior of a base component you're using. So if you're using lightning:map
in a component set to API version 45.0, its behavior does not change if you set your component to 44.0 or 46.0. The latest behavior
is observed across all versions.

Deprecation of Lightning Base Components
When a component is deprecated, it’s no longer officially supported or tested. However, it’s still available for use with any version of the
API. The component’s behavior is undetermined and could change at any time. The same applies for the deprecation of components,
events and interfaces listed in the Component Library on page 495. For example, if a component is deprecated in API version 43.0
(Summer ’18), we no longer accept support cases after that release unless otherwise specified.

We recommend you use another component to replace the deprecated component, as described in the reference docs in the Component
Library. For example, the deprecated components in the ui  namespace have been superseded by components in the lightning
namespace. For more information, see Migrate Components from the ui Namespace on page 119.

84

Base Components with Minimum API Version RequirementsCreating Components



Deprecated components may be removed in a future release and should not be relied on. Salesforce does not currently intend to remove
deprecated components. However, if that position changes, customers will be given ample warning.

SEE ALSO:

Aura Component Versioning for Managed Packages

Don’t Mix Component API Versions

Disable Lightning Locker for a Component

Validations for Aura Component Code

Validate your Aura component code to ensure compatibility with Aura component APIs, best practices, and avoidance of anti-patterns.
There are several ways to validate your code. Minimal save-time validations catch the most significant issues only, while Salesforce DX
tools provide more comprehensive static code analysis.

IN THIS SECTION:

Validation When You Save Code Changes

Aura component JavaScript code is validated when you save it. Validation ensures that your components are written using best
practices and avoid common pitfalls that can make them incompatible with Lightning Locker. Validation happens automatically
when you save Aura component resources in the Developer Console, in your favorite IDE, and via API.

Validation During Development Using ESLint

Use ESLint to scan and improve your code during development. A linting tool doesn’t just help you avoid Lightning Locker conflicts
and anti-patterns. It’s a terrific practice for improving your code quality and consistency, and to uncover subtle bugs before you
commit them to your codebase.

Aura Component Validation Rules

Rules built into Aura component code validations cover restrictions under Lightning Locker, correct use of Lightning APIs, and a
number of best practices for writing Aura component code. Each rule, when triggered by your code, points to an area where your
code might have an issue.

Validation When You Save Code Changes
Aura component JavaScript code is validated when you save it. Validation ensures that your components are written using best practices
and avoid common pitfalls that can make them incompatible with Lightning Locker. Validation happens automatically when you save
Aura component resources in the Developer Console, in your favorite IDE, and via API.

Validation failures are treated as errors and block changes from being saved. Error messages explain the failures. Depending on the tool
you’re using, these errors are presented in different ways. For example, the Developer Console shows an alert for the first error it encounters
(1), and lists all of the validation errors discovered in the Problems tab (2).

85

Validations for Aura Component CodeCreating Components



Validations are applied only to components set to API version 41.0 and later. If the validation service prevents you from saving important
changes, set the component version to API 40.0 or earlier to disable validations temporarily. When you’ve corrected the coding errors,
return your component to API 41.0 or later to save it with passing validations.

Validation During Development Using ESLint
Use ESLint to scan and improve your code during development. A linting tool doesn’t just help you avoid Lightning Locker conflicts and
anti-patterns. It’s a terrific practice for improving your code quality and consistency, and to uncover subtle bugs before you commit
them to your codebase.

Validations using ESLint are done separately from saving your code to Salesforce. The results are informational only.

Salesforce DX used to include a force:lightning:lint command but the command was removed in February, 2022. Instead,
we recommend the Aura plugin for ESLint for linting.

To install the Aura plugin for ESLint, see this GitHub repo.

Validations performed using the Aura plugin for ESLint are different from validations performed at save time in the following important
ways.

86

Validation During Development Using ESLintCreating Components

https://github.com/forcedotcom/eslint-plugin-aura


• ESLint uses many more rules to analyze your component code. Save-time validations prevent you from making the most fundamental
mistakes only. Validation with ESLint errs on the side of giving you more information.

• Validation via ESLint ignores the API version of your components. Save-time validations are performed only for components set to
API 41.0 and later.

Aura Component Validation Rules
Rules built into Aura component code validations cover restrictions under Lightning Locker, correct use of Lightning APIs, and a number
of best practices for writing Aura component code. Each rule, when triggered by your code, points to an area where your code might
have an issue.

In addition to the Lightning-specific rules we’ve created, other rules are active in Lightning validations, included from ESLint basic rules.
Documentation for these rules is available on the ESLint project site. If you encounter an error or warning from a rule not described here,
search for it on the ESLint Rules page.

The set of rules used to validate your code varies depending on the tool you use, and the way you use it. Minimal save-time validations
catch the most significant issues only, while Salesforce DX tools provide more comprehensive static code analysis.

IN THIS SECTION:

Validation Rules Used at Save Time

The following rules are used for validations that are done when you save your Aura component code.

Validate JavaScript Intrinsic APIs (ecma-intrinsics)

This rule deals with the intrinsic APIs in JavaScript, more formally known as ECMAScript.

Validate Aura API (aura-api)

This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private
features is disallowed.

Validate Aura Component Public API (secure-component)

This rule validates that only public, supported framework API functions and properties are used.

Validate Secure Document Public API (secure-document)

This rule validates that only supported functions and properties of the document  global are accessed.

Validate Secure Window Public API (secure-window)

This rule validates that only supported functions and properties of the window  global are accessed.

Disallow Use of caller and callee (no-caller)

Prevent the use of arguments.caller  and arguments.callee. These are also forbidden in ECMAScript 5 and later when
in strict mode, which is enabled under Lightning Locker. This is a standard rule built into ESLint.

Disallow Script URLs (no-script-url)

Prevents the use of javascript: URLs. This is a standard rule built into ESLint.

Disallow Extending Native Objects (no-extend-native)

Prevent changing the behavior of built-in JavaScript objects, such as Object or Array, by modifying their prototypes. This is a standard
rule built into ESLint.

Disallow Calling Global Object Properties as Functions (no-obj-calls)

Prevents calling the Math, JSON, and Reflect  global objects as though they were functions. For example, Math()  is
disallowed. This follows the ECMAScript 5 specification. This is a standard rule built into ESLint.

87

Aura Component Validation RulesCreating Components

http://eslint.org/docs/rules/


Disallow Use of __iterator__ Property (no-iterator)

Prevents using the obsolete __iterator__  property. Use standard JavaScript iterators and generators instead. This is a standard
rule built into ESLint.

Disallow Use of __proto__ (no-proto)

Prevents using the obsolete __proto__  property, which was deprecated in ECMAScript 3.1. Use Object.getPrototypeOf()
instead. This is a standard rule built into ESLint.

Disallow with Statements (no-with)

Prevents using with statements, which adds members of an object to the current scope in a way that makes it hard to predict or
view impact or behavior. This is a standard rule built into ESLint.

Validation Rules Used at Save Time
The following rules are used for validations that are done when you save your Aura component code.

Validation failures for any of these rules prevents saving changes to your code.

Lightning Platform Rules
These rules are specific to Aura component JavaScript code. These custom rules are written and maintained by Salesforce.

Validate Aura API (aura-api)
This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private
features is disallowed.

Validate Secure Document Public API (secure-document)
This rule validates that only supported functions and properties of the document  global are accessed.

Validate Secure Window Public API (secure-window)
This rule validates that only supported functions and properties of the window  global are accessed.

Validate JavaScript Intrinsic APIs (ecma-intrinsics)
This rule deals with the intrinsic APIs in JavaScript, more formally known as ECMAScript.

When Lightning Locker is enabled, the framework prevents the use of unsupported API objects or calls. That means your Aura components
code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Aura Components programming model.

• Published, supported features built into Lightning Locker SecureObject objects

What exactly are these “intrinsic APIs”? They’re the APIs defined in the ECMAScript Language Specification. That is, things built into
JavaScript. This includes Annex B of the specification, which deals with legacy browser features that aren’t part of the “core” of JavaScript,
but are nevertheless still supported for JavaScript running inside a web browser.

Note that some features of JavaScript that you might consider intrinsic—for example, the window  and document  global variables—are
superceded by SecureObject objects, which offer a more constrained API.

Rule Details
This rule verifies that use of the intrinsic JavaScript APIs is according to the published specification. The use of non-standard, deprecated,
and removed language features is disallowed.

88

Aura Component Validation RulesCreating Components

https://tc39.github.io/ecma262/


Further Reading

• ECMAScript specification

• Annex B: Additional ECMAScript Features for Web Browsers

• Intrinsic Objects (JavaScript)

SEE ALSO:

Validate Aura API (aura-api)

Validate Aura Component Public API (secure-component)

Validate Secure Document Public API (secure-document)

Validate Secure Window Public API (secure-window)

Validate Aura API (aura-api)
This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private
features is disallowed.

When Lightning Locker is enabled, the framework prevents the use of unsupported API objects or calls. That means your Aura components
code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Aura Components programming model.

• Published, supported features built into Lightning Locker SecureObject objects

This rule deals with the supported, public framework APIs, for example, those available through the framework global $A.

Why is this rule called “Aura API”? Because the core of the Aura Components programming model is the open source Aura Framework.
And this rule verifies permitted uses of that framework, rather than anything specific to Lightning Components.

Rule Details
The following patterns are considered problematic:

Aura.something(); // Use $A instead
$A.util.fake(); // fake is not available in $A.util

Further Reading
For details of all of the methods available in the framework, including $A, see the JavaScript API documentation on page 504.

SEE ALSO:

Validate Aura Component Public API (secure-component)

Validate Secure Document Public API (secure-document)

Validate Secure Window Public API (secure-window)

Validate Aura Component Public API (secure-component)
This rule validates that only public, supported framework API functions and properties are used.

89

Aura Component Validation RulesCreating Components

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/#sec-additional-built-in-properties
https://msdn.microsoft.com/en-us/library/4zx5dkc9(v=vs.94).aspx


When Lightning Locker is enabled, the framework prevents the use of unsupported API objects or calls. That means your Aura components
code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Aura Components programming model.

• Published, supported features built into Lightning Locker SecureObject objects

Prior to Lightning Locker, when you created or obtained a reference to a component, you could call any function and access any property
available on that component, even if it wasn’t public. When Lightning Locker is enabled, components are “wrapped” by a new
SecureComponent object, which controls access to the component and its functions and properties. SecureComponent restricts you to
using only the published, supported Component API.

SEE ALSO:

Validate Aura API (aura-api)

Validate Secure Document Public API (secure-document)

Validate Secure Window Public API (secure-window)

Validate Secure Document Public API (secure-document)
This rule validates that only supported functions and properties of the document  global are accessed.

When Lightning Locker is enabled, the framework prevents the use of unsupported API objects or calls. That means your Aura components
code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Aura Components programming model.

• Published, supported features built into Lightning Locker SecureObject objects

Prior to Lightning Locker, when you accessed the document  global, you could call any function and access any property available.
When Lightning Locker is enabled, the document  global is “wrapped” by a new SecureDocument object, which controls access to
document  and its functions and properties. SecureDocument restricts you to using only “safe” features of the document  global.

SEE ALSO:

Validate Aura API (aura-api)

Validate Aura Component Public API (secure-component)

Validate Secure Window Public API (secure-window)

Validate Secure Window Public API (secure-window)
This rule validates that only supported functions and properties of the window  global are accessed.

When Lightning Locker is enabled, the framework prevents the use of unsupported API objects or calls. That means your Aura components
code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Aura Components programming model.

• Published, supported features built into Lightning Locker SecureObject objects

90

Aura Component Validation RulesCreating Components



Prior to Lightning Locker, when you accessed the window  global, you could call any function and access any property available. When
Lightning Locker is enabled, the window  global is “wrapped” by a new SecureWindow object, which controls access to window  and
its functions and properties. SecureWindow restricts you to using only “safe” features of the window  global.

SEE ALSO:

Validate Aura API (aura-api)

Validate Aura Component Public API (secure-component)

Validate Secure Document Public API (secure-document)

Disallow Use of caller  and callee  (no-caller)
Prevent the use of arguments.caller  and arguments.callee. These are also forbidden in ECMAScript 5 and later when
in strict mode, which is enabled under Lightning Locker. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Use of caller/callee
(no-caller).

Disallow Script URLs (no-script-url)
Prevents the use of javascript: URLs. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Script URLs (no-script-url).

Disallow Extending Native Objects (no-extend-native)
Prevent changing the behavior of built-in JavaScript objects, such as Object or Array, by modifying their prototypes. This is a standard
rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Extending of Native
Objects (no-extend-native).

Disallow Calling Global Object Properties as Functions (no-obj-calls)
Prevents calling the Math, JSON, and Reflect  global objects as though they were functions. For example, Math()  is disallowed.
This follows the ECMAScript 5 specification. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, disallow calling global object
properties as functions (no-obj-calls).

Disallow Use of __iterator__ Property (no-iterator)
Prevents using the obsolete __iterator__  property. Use standard JavaScript iterators and generators instead. This is a standard
rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Iterator (no-iterator).

Disallow Use of __proto__ (no-proto)
Prevents using the obsolete __proto__  property, which was deprecated in ECMAScript 3.1. Use Object.getPrototypeOf()
instead. This is a standard rule built into ESLint.

91

Aura Component Validation RulesCreating Components

https://eslint.org/docs/rules/no-caller
https://eslint.org/docs/rules/no-caller
https://eslint.org/docs/rules/no-script-url
https://eslint.org/docs/rules/no-extend-native
https://eslint.org/docs/rules/no-extend-native
https://eslint.org/docs/rules/no-obj-calls
https://eslint.org/docs/rules/no-obj-calls
https://eslint.org/docs/rules/no-iterator


For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Use of __proto__
(no-proto).

Disallow with  Statements (no-with)
Prevents using with statements, which adds members of an object to the current scope in a way that makes it hard to predict or view
impact or behavior. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, disallow with statements (no-with).

Using Labels

Labels are text that presents information about the user interface, such as in the header (1), input fields (2), or buttons (3). While you can
specify labels by providing text values in component markup, you can also access labels stored outside your code using the $Label
global value provider in expression syntax.

This section discusses how to use the $Label  global value provider in these contexts:

• The label  attribute in input components

• The format()  expression function for dynamically populating placeholder values in labels

IN THIS SECTION:

Using Custom Labels

Custom labels are custom text values that can be translated into any language that Salesforce supports. To access custom labels in
Aura components, use the $Label  global value provider.

Input Component Labels

A label describes the purpose of an input component. To set a label on an input component, use the label  attribute.

Dynamically Populating Label Parameters

Output and update labels using the format() expression function.

92

Using LabelsCreating Components

https://eslint.org/docs/rules/no-proto
https://eslint.org/docs/rules/no-proto
https://eslint.org/docs/rules/no-with


Getting Labels in JavaScript

You can retrieve labels in JavaScript code. Your code performs optimally if the labels are statically defined and sent to the client
when the component is loaded.

Getting Labels in Apex

You can retrieve label values in Apex code and set them on your component using JavaScript.

Setting Label Values via a Parent Attribute

Setting label values via a parent attribute is useful if you want control over labels in child components.

Using Custom Labels
Custom labels are custom text values that can be translated into any language that Salesforce supports. To access custom labels in Aura
components, use the $Label  global value provider.

Custom labels enable developers to create multilingual applications by automatically presenting information (for example, help text or
error messages) in a user's native language.

Note:  Label translations require the Translation Workbench is enabled.

To create custom labels, from Setup, enter Custom Labels  in the Quick Find  box, then select Custom Labels.

Use the following syntax to access custom labels in Aura components.

• $Label.c.labelName  for the default namespace

• $Label.namespace.labelName if your org has a namespace, or to access a label in a managed package

You can reference custom labels in component markup and in JavaScript code. Here are some examples.

Label in a markup expression using the default namespace
{!$Label.c.labelName}

Note:  Label expressions in markup are supported in .cmp  and .app resources only.

Label in JavaScript code if your org has a namespace
$A.get("$Label.namespace.labelName")

Note:  Updates to a label locale or translation are not immediately in the application. To verify the change immediately, log out
and in.

SEE ALSO:

Value Providers

Salesforce Help: Translate Custom Labels

Input Component Labels
A label describes the purpose of an input component. To set a label on an input component, use the label  attribute.

This example shows how to use labels using the label  attribute on an input component.

<lightning:input type="number" name="myNumber" label="Pick a Number:" value="54" />

The label is placed on the left of the input field and can be hidden by setting variant="label-hidden", which applies the
slds-assistive-text  class to the label to support accessibility.

93

Using Custom LabelsCreating Components

https://help.salesforce.com/articleView?id=cl_translate_edit.htm&language=en_US


Using $Label
Use the $Label  global value provider to access labels stored in an external source. For example:

<lightning:input type="number" name="myNumber" label="{!$Label.Number.PickOne}" />

To output a label and dynamically update it, use the format()  expression function. For example, if you have np.labelName  set
to Hello {0}, the following expression returns Hello World  if v.name  is set to World.

{!format($Label.np.labelName, v.name)}

SEE ALSO:

Supporting Accessibility

Dynamically Populating Label Parameters
Output and update labels using the format() expression function.

You can provide a string with placeholders, which are replaced by the substitution values at runtime.

Add as many parameters as you need. The parameters are numbered and are zero-based. For example, if you have three parameters,
they will be named {0}, {1}, and {2}, and they will be substituted in the order they're specified.

Let's look at a custom label, $Label.mySection.myLabel, with a value of Hello {0} and {1}, where $Label  is the
global value provider that accesses your labels.

This expression dynamically populates the placeholder parameters with the values of the supplied attributes.

{!format($Label.mySection.myLabel, v.attribute1, v.attribute2)}

The label is automatically refreshed if one of the attribute values changes.

Note:  Always use the $Label  global value provider to reference a label with placeholder parameters. You can't set a string
with placeholder parameters as the first argument for format(). For example, this syntax doesn't work:

{!format('Hello {0}', v.name)}

Use this expression instead.

{!format($Label.mySection.salutation, v.name)}

where $Label.mySection.salutation  is set to Hello {0}.

Getting Labels in JavaScript
You can retrieve labels in JavaScript code. Your code performs optimally if the labels are statically defined and sent to the client when
the component is loaded.

Static Labels
Static labels are defined in one string, such as "$Label.c.task_mode_today". The framework parses static labels in markup
or JavaScript code and sends the labels to the client when the component is loaded. A server trip isn’t required to resolve the label.

94

Dynamically Populating Label ParametersCreating Components



Use $A.get()  to retrieve static labels in JavaScript code. For example:

var staticLabel = $A.get("$Label.c.task_mode_today");
component.set("v.mylabel", staticLabel);

You can also retrieve label values using Apex code and send them to the component via JavaScript code. For more information, see
Getting Labels in Apex.

Dynamic Labels
$A.get(labelReference) must be able to resolve the label reference at compile time, so that the label values can be sent to
the client along with the component definition.

If you must defer label resolution until runtime, you can dynamically create labels in JavaScript code. This technique can be useful when
you need to use a label, but which specific label isn’t known until runtime.

// Assume the day variable is dynamically generated
// earlier in the code
// THIS CODE WON’T WORK
var dynamicLabel = $A.get("$Label.c." + day);

If the label is already known on the client, $A.get()  displays the label. If the value is not known, an empty string is displayed in
production mode, or a placeholder value showing the label key is displayed in debug mode.

Using $A.get()with a label that can't be determined at runtime means that dynamicLabel  is an empty string, and won’t be
updated to the retrieved value. Since the label, "$Label.c." + day, is dynamically generated, the framework can’t parse it or
send it to the client when the component is requested.

There are a few alternative approaches to using $A.get()  so that you can work with dynamically generated labels.

If your component uses a known set of dynamically constructed labels, you can avoid a server roundtrip for the labels by adding a
reference to the labels in a JavaScript resource. The framework sends these labels to the client when the component is requested. For
example, if your component dynamically generates $Label.c.task_mode_today  and $Label.c.task_mode_tomorrow
label keys, you can add references to the labels in a comment in a JavaScript resource, such as a client-side controller or helper.

// hints to ensure labels are preloaded
// $Label.c.task_mode_today
// $Label.c.task_mode_tomorrow

If your code dynamically generates many labels, this approach doesn’t scale well.

If you don’t want to add comment hints for all the potential labels, the alternative is to use $A.getReference(). This approach
comes with the added cost of a server trip to retrieve the label value.

This example dynamically constructs the label value by calling $A.getReference()  and updates a tempLabelAttr  component
attribute with the retrieved label.

var labelSubStr = "task_mode_today";
var labelReference = $A.getReference("$Label.c." + labelSubStr);
cmp.set("v.tempLabelAttr", labelReference);
var dynamicLabel = cmp.get("v.tempLabelAttr");

$A.getReference()  returns a reference to the label. This isn’t a string, and you shouldn’t treat it like one. You never get a string
label directly back from $A.getReference().

Instead, use the returned reference to set a component’s attribute value. Our code does this in cmp.set("v.tempLabelAttr",
labelReference);.

95

Getting Labels in JavaScriptCreating Components



When the label value is asynchronously returned from the server, the attribute value is automatically updated as it’s a reference. The
component is rerendered and the label value displays.

Note:  Our code sets dynamicLabel = cmp.get("v.tempLabelAttr")  immediately after getting the reference.
This code displays an empty string until the label value is returned from the server. If you don’t want that behavior, use a comment
hint to ensure that the label is sent to the client without requiring a later server trip.

SEE ALSO:

Using JavaScript

Input Component Labels

Dynamically Populating Label Parameters

Getting Labels in Apex
You can retrieve label values in Apex code and set them on your component using JavaScript.

Custom Labels
Custom labels have a limit of 1,000 characters and can be accessed from an Apex class. To define custom labels, from Setup, in the Quick
Find box, enter Custom Labels, and then select Custom Labels.

In your Apex class, reference the label with the syntax System.Label.MyLabelName.

public with sharing class LabelController {
@AuraEnabled
public static String getLabel() {

String s1 = 'Hello from Apex Controller, ' ;
String s2 = System.Label.MyLabelName;
return s1 + s2;

}
}

Note:  Return label values as plain text strings. You can’t return a label expression using the $Label  global value provider.

The component loads the labels by requesting it from the server, such as during initialization. For example, the label is retrieved in
JavaScript code.

({
doInit : function(component, event, helper) {

var action = component.get("c.getLabel");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

component.set("v.mylabel", response.getReturnValue());
}
// error handling when state is "INCOMPLETE" or "ERROR"

});
$A.enqueueAction(action);

}
})

96

Getting Labels in ApexCreating Components



Finally, make sure you wire up the Apex class to your component. The label is set on the component during initialization.

<aura:component controller="LabelController">
<aura:handler name="init" value="{!this}" action="{!c.doInit}" />
<aura:attribute name="mylabel" type="String"/>
{!v.mylabel}

</aura:component>

Passing in Label Values
Pass label values into components using the expression syntax {!v.mylabel}. You must provide a default value to the String
attribute. Depending on your use case, the default value might be the label in the default language or, if the specific label can’t be known
until runtime, perhaps just a single space.

<aura:component controller="LabelController">
<aura:attribute name="mylabel" type="String" default=" "/>
<lightning:input name="mytext" label="{!v.mylabel}"/>

</aura:component>

You can also retrieve labels in JavaScript code, including dynamically creating labels that are generated during runtime. For more
information, see Getting Labels in JavaScript.

Retrieving Custom Labels Using System.Label  Methods
You can use methods in the System.Label  class to check for and retrieve translated labels.

• To check if translation exists for a label and language in a namespace, use translationExists(namespace, label,
language).

• To retrieve the label for a default language setting or for a language and namespace, use get(namespace, label,
language).

Setting Label Values via a Parent Attribute
Setting label values via a parent attribute is useful if you want control over labels in child components.

Let’s say that you have a container component, which contains another component, inner.cmp. You want to set a label value in
inner.cmp  via an attribute on the container component. This can be done by specifying the attribute type and default value. You
must set a default value in the parent attribute if you are setting a label on an inner component, as shown in the following example.

This is the container component, which contains a default value My Label  for the _label  attribute .

<aura:component>
<aura:attribute name="_label"

type="String"
default="My Label"/>

<lightning:button label="Set Label" aura:id="button1" onclick="{!c.setLabel}"/>
<auradocs:inner aura:id="inner" label="{!v._label}"/>

</aura:component>

This inner  component contains a text area component and a label  attribute that’s set by the container component.

<aura:component>
<aura:attribute name="label" type="String"/>
<lightning:textarea aura:id="textarea"

97

Setting Label Values via a Parent AttributeCreating Components



name="myTextarea"
label="{!v.label}"/>

</aura:component>

This client-side controller action updates the label value.

({
setLabel:function(cmp) {

cmp.set("v._label", 'new label');
}

})

When the component is initialized, you’ll see a button and a text area with the label My Label. When the button in the container
component is clicked, the setLabel  action updates the label value in the inner  component. This action finds the label  attribute
and sets its value to new label.

SEE ALSO:

Input Component Labels

Component Attributes

Localization

The framework provides client-side localization support on input and output components.

You can use the global value provider, $Locale, to obtain the locale information. The locale setting in your organization overrides the
browser’s locale information. Base Lightning components adapt automatically to the language, locale, and time zone settings of the
Salesforce org they run in.

Working with Locale, Language, and Timezone
In a single currency organization, Salesforce administrators set the currency locale, default language, default locale, and default time
zone for their organizations. Users can set their individual language, locale, and time zone on their personal settings pages.

Note:  Single language organizations cannot change their language, although they can change their locale.

If you’re working with Salesforce data, we recommend using the base components built on Lightning Data Service. For example, the
lightning:recordForm  and lightning:recordViewForm  components can display a read-only value of your record
data. See Lightning Data Service on page 401.

Consider the lightning:formatted*  components only if the lightning:record*Form  components don’t meet your
requirements.

Let’s take a look at the lightning:formattedDateTime  component to display a date and time. Setting the time zone on the
Language & Time Zone page to (GMT+02:00)  returns the date and time like Sep 28, 2020, 11:13 AM  when you run the
following code.

<lightning:formattedDateTime value="2020-09-28T18:13:41Z"
year="numeric" month="short" day="2-digit"
hour="2-digit"
minute="2-digit"/>

Changing the user locale to French (France)  returns the date and time like 28 sept. 2020 à 11:13. Running
$A.get("$Locale.userLocaleCountry")  returns the user’s locale, for example, FR.

98

LocalizationCreating Components



For more information, see Supported Locales and ICU Formats.

To display a currency value, use lightning:formattedNumber. Setting the currency locale on the Company Information page
to Japanese (Japan) - JPY  returns ¥100,000  when you run the following code.

<lightning:formattedNumber value="100000" style="currency" />

Similarly, running $A.get("$Locale.currency")  returns "¥"  when your org’s currency locale is set to Japanese
(Japan) - JPY. For more information, see Supported Locales and ICU Formats" in the Salesforce Help.

Working with Address, Name, and Number Formats
The user’s locale determines the name and address formats. Numbers, including currency, decimal, and percentage are also formatted
according to the user’s locale. See Supported Locales and ICU Formats.

To get user input for an address, use lightning:inputAddress. For a read-only output of an address, use
lightning:formattedAddress. The default output displays an address that links to Google Maps.

To get user input for a person’s name, use lightning:inputName. For a read-only output of a name, use
lightning:formattedName.

To get user input for a number, including currency, decimal, and percentage, use lightning:input with number  type. For a
read-only output of a number, use lightning:formattedNumber.

Working with Date and Time Formats
To get user input for a date and time, use lightning:input with type date, datetime, or time. To customize the date and
time formats, we recommend using lightning:formattedDateTime or lightning:formattedTime.

This example sets the date and time from a Date object using the init  handler. The timeZone  attribute is optional and is used to
override the default timezone based on the user’s location.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<aura:attribute name="datetime" type="DateTime"/>
<lightning:formattedDateTime value="{!v.datetime}" timeZone="Europe/Berlin"

year="numeric" month="short" day="2-digit" hour="2-digit"
minute="2-digit" second="2-digit"/>

</aura:component>

({
doInit : function(component, event, helper) {

var date = new Date();
component.set("v.datetime", date);

}
})

This example renders the date in the format MMM DD, YYYY HH:MM:SS AM. Refer to the component reference for examples on
how you can display the date in a different format.

SEE ALSO:

Formatting Dates in JavaScript

99

LocalizationCreating Components

https://help.salesforce.com/articleView?id=admin_locales_icu.htm&language=en_US
https://help.salesforce.com/articleView?id=admin_locales_icu.htm&language=en_US
https://help.salesforce.com/articleView?id=admin_locales_icu.htm&language=en_US
https://developer.salesforce.com/docs/component-library/bundle/lightning:inputAddress
https://developer.salesforce.com/docs/component-library/bundle/lightning:formattedAddress
https://developer.salesforce.com/docs/component-library/bundle/lightning:inputName
https://developer.salesforce.com/docs/component-library/bundle/lightning:formattedName
https://developer.salesforce.com/docs/component-library/bundle/lightning:input
https://developer.salesforce.com/docs/component-library/bundle/lightning:formattedNumber
https://developer.salesforce.com/docs/component-library/bundle/lightning:input
https://developer.salesforce.com/docs/component-library/bundle/lightning:formattedDateTime
https://developer.salesforce.com/docs/component-library/bundle/lightning:formattedTime


Working with Base Lightning Components

Base Lightning components are the building blocks that make up the modern user interfaces in Lightning Experience, Salesforce app,
and Experience Builder sites.

Base Lightning components incorporate Lightning Design System markup and classes, providing improved performance and accessibility
with a minimum footprint.

These base components handle the details of HTML and CSS for you. Each component provides simple attributes that enable variations
in style. This means that you typically don’t need to use CSS at all. The simplicity of the base Lightning component attributes and their
clean and consistent definitions make them easy to use, enabling you to focus on your business logic.

You can find base Lightning components in the lightning  namespace to complement the existing ui  namespace components.
In instances where there are matching ui  and lightning  namespace components, we recommend that you use the lightning
namespace component. The lightning  namespace components are optimized for common use cases. Beyond being equipped
with the Lightning Design System styling, they handle accessibility, real-time interaction, and enhanced error messages.

Note:  Components in the lightning  namespace are available in two versions—as Aura components and Lightning web
components. We recommend using Lightning web components whenever possible. Lightning web components are custom
HTML elements built using HTML and modern JavaScript. Lightning web components and Aura components can coexist and
interoperate on a page. To admins and end users, they both appear as Lightning components. See the Lightning Web Components
Developer Guide for more information.

In subsequent releases, we intend to provide additional base Lightning components. We expect that in time the lightning  namespace
will have parity with the ui  namespace and go beyond it. In addition, the base Lightning components will evolve with the Lightning
Design System over time. This ensures that your customizations continue to match Lightning Experience and the Salesforce mobile app.

While the base components are visual building blocks and provides minimum functionality out-of-the-box, they can be combined
together to build “experience components” with richer capabilities and made accessible via the Lightning App Builder. Admins can
drag-and-drop these experience components to build and configure user interfaces easily. For example, the Chatter Feed component
in Lightning App Builder comprises a collection of tabs, a group of buttons, and a rich text editor.

The API version column denotes the minimum API version you must set to use the component in the Developer Console, the Salesforce
Extensions for Visual Studio Code, or via API. Components that don’t specify a minimum API version are usable with any API version 37.0
and later.

Note:  Interactive examples for the following components are available in the Component Library.

Buttons
These components provide different button flavors.

API
Version

Lightning Design
System

DescriptionLightning Component
Name

Type

ButtonsRepresents a button element.lightning:buttonButton

Button GroupsRepresents a group of buttons.lightning:buttonGroupButton
Group

Button IconsAn icon-only HTML button.lightning:buttonIconButton Icon

41.0Button IconsAn icon-only button that retains state.lightning:buttonIconStatefulButton Icon
(Stateful)

100

Working with Base Lightning ComponentsCreating Components

https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/lwc
https://www.lightningdesignsystem.com/components/buttons/
https://www.lightningdesignsystem.com/components/button-groups/
https://www.lightningdesignsystem.com/components/button-icons/
https://www.lightningdesignsystem.com/components/button-icons/


API
Version

Lightning Design
System

DescriptionLightning Component
Name

Type

MenusA dropdown menu with a list of actions or
functions.

lightning:buttonMenuButton
Menu

A list item in lightning:buttonMenu.lightning:menuItem

A horizontal line separating menu items in
lightning:buttonMenu.

lightning:menuDivider

A subheading for menu items in
lightning:buttonMenu.

lightning:menuSubheader

Button StatefulA button that toggles between states.lightning:buttonStatefulButton
Stateful

43.0Button IconsA button for inserting images in
lightning:inputRichText.

lightning:insertImageButtonInsert
Image
Button

Data Entry
Use these components for data entry.

API VersionLightning Design SystemDescriptionLightning Component
Name

Type

42.0Form LayoutRepresents an address compound
field.

lightning:inputAddressAddress

41.0CheckboxEnables single or multiple selection
on a group of options.

lightning:checkboxGroupCheckbox
Group

ComboboxAn input element that enables single
selection from a list of options.

lightning:comboboxCombobox

41.0Dueling PicklistProvides an input listbox
accompanied with a listbox of

lightning:dualListboxDual Listbox

selectable options. Options can be
moved between the two lists.

41.0File SelectorEnables file uploads to a record.lightning:fileUploadFile Uploader
and Preview

FilesDisplays a representation of
uploaded content.

lightning:fileCard

InputRepresents interactive controls that
accept user input depending on the
type attribute.

lightning:inputInput

42.0Form LayoutRepresents an editable input for a
field on a Salesforce object.

lightning:inputFieldInput Field

101

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/menus
https://lightningdesignsystem.com/components/buttons#flavor-stateful
https://www.lightningdesignsystem.com/components/button-icons/
https://www.lightningdesignsystem.com/components/form-layout/
https://www.lightningdesignsystem.com/components/checkbox/
https://www.lightningdesignsystem.com/components/combobox/
https://www.lightningdesignsystem.com/components/dueling-picklist/
https://www.lightningdesignsystem.com/components/file-selector/
https://www.lightningdesignsystem.com/components/files/
https://www.lightningdesignsystem.com/components/input/
https://www.lightningdesignsystem.com/components/form-layout/


API VersionLightning Design SystemDescriptionLightning Component
Name

Type

42.0Form LayoutRepresents a name compound field.lightning:inputNameInput Name

41.0Form LayoutA geolocation compound field that
accepts a latitude and longitude
value.

lightning:inputLocationInput Location
(Geolocation)

41.0Radio Button

Radio Button Group

Enables single selection on a group
of options.

lightning:radioGroupRadio Group

SelectCreates an HTML select  element.lightning:selectSelect

41.0SliderAn input range slider for specifying
a value between two specified
numbers.

lightning:sliderSlider

Rich Text EditorA WYSIWYG editor with a
customizable toolbar for entering
rich text.

lightning:inputRichTextRich Text Area

TextareaA multiline text input.lightning:textAreaText Area

Displaying Data
Use these components to display data.

API VersionLightning Design SystemDescriptionLightning Component
Name

Type

42.0N/ADisplays a formatted address that
provides a link to the given location
on Google Maps.

lightning:formattedAddressAddress

lightning:clickToDialClick-to-dial

Displays formatted date and time.lightning:formattedDateTimeDate/Time

41.0Displays an email as a hyperlink with
the mailto:  URL scheme.

lightning:formattedEmailEmail

41.0Displays a geolocation using the
format latitude,
longitude.

lightning:formattedLocationGeolocation

42.0Displays a formatted name that can
include a salutation and suffix.

lightning:formattedNameName

Displays formatted numbers.lightning:formattedNumberNumber

41.0Displays a label, help text, and value
for a field on a Salesforce object.

lightning:outputFieldOutput Field

102

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/form-layout/
https://www.lightningdesignsystem.com/components/form-layout/
https://www.lightningdesignsystem.com/components/radio-group/
https://www.lightningdesignsystem.com/components/radio-button-group/
https://www.lightningdesignsystem.com/components/forms/#flavor-select
https://lightningdesignsystem.com/components/slider
https://www.lightningdesignsystem.com/components/rich-text-editor
https://www.lightningdesignsystem.com/components/textarea/#site-main-content


API VersionLightning Design SystemDescriptionLightning Component
Name

Type

41.0Displays a phone number as a
hyperlink with the tel:  URL
scheme.

lightning:formattedPhonePhone

41.0Displays rich text that’s formatted
with allowed tags and attributes.

lightning:formattedRichTextRich Text

41.0Displays text, replaces newlines with
line breaks, and linkifies if requested.

lightning:formattedTextText

42.0Displays a formatted time based on
the user’s locale.

lightning:formattedTimeTime

41.0Displays a URL as a hyperlink.lightning:formattedUrlURL

Displays the relative time difference
between the source date-time and
the provided date-time.

lightning:relativeDateTimeRelative
Date/Time

Forms
use these components to edit and view records

API
Version

Lightning Design
System

DescriptionLightning Component
Name

Type

42.0Form LayoutA grouping of lightning:inputField
components of record fields to be edited in a
form.

lightning:recordEditFormRecord Edit
Form

43.0Form LayoutA container to simplify form creation for viewing
and editing record fields.

lightning:recordFormRecord
Form

42.0Form LayoutA grouping of lightning:outputField
components and other formatted display
components to display record fields in a form.

lightning:recordViewFormRecord
View Form

Layout
The following components group related information together.

API
Version

Lightning Design
System

DescriptionLightning Component
Name

Type

41.0AccordionA collection of vertically stacked sections with
multiple content areas.

lightning:accordionAccordion

A single section that is nested in a
llightning:accordion  component.

lightning:accordionSection

103

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/form-layout/
https://www.lightningdesignsystem.com/components/form-layout/
https://www.lightningdesignsystem.com/components/form-layout/
https://www.lightningdesignsystem.com/components/accordion/


API
Version

Lightning Design
System

DescriptionLightning Component
Name

Type

CardsApplies a container around a related grouping
of information.

lightning:cardCard

42.0CarouselA collection of images that are displayed
horizontally one at a time.

lightning:carouselCarousel

GridResponsive grid system for arranging containers
on a page.

lightning:layoutLayout

A container within a lightning:layout
component.

lightning:layoutItem

TabsA single tab that is nested in a
lightning:tabset  component.

lightning:tabTabs

Represents a list of tabs.lightning:tabset

TilesA grouping of related information associated
with a record.

lightning:tileTile

Navigation Components
The following components organize links and actions in a hierarchy or to visit other locations in an app.

API
Version

Lightning Design
System

DescriptionLightning Component
Name

Type

BreadcrumbsAn item in the hierarchy path of the page the
user is on.

lightning:breadcrumbBreadcrumb

A hierarchy path of the page you're currently
visiting within the website or app.

lightning:breadcrumbs

43.0N/AGenerates a URL for a page reference.lightning:navigationNavigation

44.0MapDisplays a map of one or more locationslightning:mapMap

41.0TreesDisplays a structural hierarchy with nested items.lightning:treeTree

41.0Vertical NavigationA vertical list of links that take you to another
page or parts of the page you’re in.

lightning:verticalNavigationVertical
Navigation

A text-only link within
lightning:verticalNavigationSection

lightning:verticalNavigationItem

or
lightning:verticalNavigationOverflow

A link and badge within
lightning:verticalNavigationSection

lightning:verticalNavigationItemBadge

or
lightning:verticalNavigationOverflow

104

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/cards/
https://www.lightningdesignsystem.com/components/carousel/
https://www.lightningdesignsystem.com/components/utilities/grid
https://www.lightningdesignsystem.com/components/tabs/
https://www.lightningdesignsystem.com/components/tiles/
https://www.lightningdesignsystem.com/components/breadcrumbs/
https://www.lightningdesignsystem.com/components/map/
https://www.lightningdesignsystem.com/components/trees/
https://www.lightningdesignsystem.com/components/vertical-navigation/


API
Version

Lightning Design
System

DescriptionLightning Component
Name

Type

A link and icon within
lightning:verticalNavigationSection

lightning:verticalNavigationItemIcon

or
lightning:verticalNavigationOverflow

An overflow of items in
lightning:verticalNavigation

lightning:verticalNavigationOverflow

A section within
lightning:verticalNavigation

lightning:verticalNavigationSection

Visual Components
The following components provide informative cues, for example, like icons and loading spinners.

API
Version

Lightning Design
System

DescriptionLightning Component NameType

AvatarsA visual representation of an object.lightning:avatarAvatar

BadgesA label that holds a small amount of
information.

lightning:badgeBadge

41.0Data TablesA table that displays columns of data,
formatted according to type.

lightning:datatableData Table

41.0Dynamic IconsA variety of animated icons.lightning:dynamicIconDynamic
Icon

TooltipsAn icon with a popover container a small
amount of text.

lightning:helptextHelp Text
(Tooltip)

IconsA visual element that provides context.lightning:iconIcon

42.0N/ADisplays a list view of the specified objectlightning:listViewList View

41.0MessagingDisplays messages via modals and popovers.lightning:overlayLibraryMessaging

41.0MessagingDisplays messages via notices and toasts.lightning:notificationsLibrary

41.0PathDisplays a path driven by a picklist field and
Path Setup metadata.

lightning:pathPath

Displays a path based on a specified picklist
field.

lightning:picklistPathPicklist Path

PillsA pill represents an existing item in a
database, as opposed to user-generated
freeform text.

lightning:pillPill

42.0PillsA list of pills grouped in a container.lightning:pillContainerPill
Container

105

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/images/#flavor-avatar
https://www.lightningdesignsystem.com/components/badges/
https://www.lightningdesignsystem.com/components/data-tables/
https://www.lightningdesignsystem.com/components/dynamic-icons/
https://www.lightningdesignsystem.com/components/tooltips/
https://www.lightningdesignsystem.com/components/icons/
https://www.lightningdesignsystem.com/guidelines/messaging/overview/
https://www.lightningdesignsystem.com/guidelines/messaging/overview/
https://www.lightningdesignsystem.com/components/path/
https://www.lightningdesignsystem.com/components/pills
https://www.lightningdesignsystem.com/components/pills


API
Version

Lightning Design
System

DescriptionLightning Component NameType

41.0Progress BarsA horizontal progress bar from left to right
to indicate the progress of an operation.

lightning:progressBarProgress
Bar

41.0Progress Indicators

Path

Displays steps in a process to indicate what
has been completed.

lightning:progressIndicatorProgress
Indicator
and Path

42.0TreesA hierarchical view of data presented in a
table.

lightning:treeGridTree Grid

SpinnersDisplays an animated spinner.lightning:spinnerSpinner

Feature-Specific Components
The following components are usable only in the context of specific Salesforce features.

API VersionLightning Design SystemDescriptionLightning Component
Name

Type

41.0N/AProvides Lightning page region
information to the component that
contains it.

lightning:flexipageRegionInfoLightning Page
Region

41.0Represents a flow interview in
Lightning runtime.

lightning:flowFlow Interview

41.0Provides API access to methods for
the Omni-channel toolkit.

lightning:omniToolkitAPIOmni-Channel
Toolkit

41.0Provides API access to methods for
the utility bar in Lightning Console.

lightning:utilityBarAPILightning
Console Utility
Bar

41.0Provides API access to methods for
the workspace in Lightning Console.

lightning:workspaceAPILightning
Console
Workspace

42.0Enables customization of the user
interface for the pre-chat page.

lightningsnapin:prechatAPIEmbedded
Chat

43.0Provides API access to Embedded
Service settings within your custom
Embedded Service components.

lightningsnapin:settingsAPIEmbedded
Chat

43.0Enables customization of the user
interface for the minimized chat
window for Embedded Chat.

lightningsnapin:minimizedAPIEmbedded
Chat

44.0Provides access to methods for
subscribing to a streaming channel
and listening to event messages

lightning:empApiEmpJs
Streaming API
library

106

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/progress-bar/
https://www.lightningdesignsystem.com/components/progress-indicator/
https://www.lightningdesignsystem.com/components/path/
https://www.lightningdesignsystem.com/components/trees/
https://www.lightningdesignsystem.com/components/spinners/


Base Lightning Components Considerations
Learn about the guidelines on using the base Lightning components.

Warning:  Don’t depend on the markup of a Lightning component as its internals can change in future releases. Reaching into
the component internals can also cause unrecoverable errors in the app. For example, using cmp.get("v.body")  and
examining the DOM elements can cause issues in your code if the component markup changes down the road.

With Lightning Locker enforced, you can’t traverse the DOM for components you don't own. Instead of accessing the DOM tree, take
advantage of value binding with component attributes and use component methods that are available to you. For example, to get an
attribute on a component, use cmp.find("myInput").get("v.name")  instead of
cmp.find("myInput").getElement().name. The latter doesn’t work if you don’t have access to the component, such as
a component in another namespace.

Many of the base Lightning components are still evolving and the following considerations can help you while you’re building your
apps.

lightning:buttonMenu
This component contains menu items that are created only if the button is triggered. You can’t reference the menu items during
initialization or if the button isn’t triggered yet.

lightning:input
Fields for percentage and currency input must specify a step increment of 0.01 as required by the native implementation.

<lightning:input type="number" name="percentVal" label="Enter a percentage value"
formatter="percent" step="0.01" />
<lightning:input type="number" name="currencyVal" label="Enter a dollar amount"
formatter="currency" step="0.01" />

When working with checkboxes, radio buttons, and toggle switches, use aura:id  to group and traverse the array of components.
Grouping them enables you to use get("v.checked")  to determine which elements are checked or unchecked without
reaching into the DOM. You can also use the name  and value  attributes to identify each component during the iteration. The
following example groups three checkboxes together using aura:id.

<aura:component>
<form>
<fieldset>
<legend>Select your favorite color:</legend>
<lightning:input type="checkbox" label="Red"

name="color1" value="1" aura:id="colors"/>
<lightning:input type="checkbox" label="Blue"

name="color2" value="2" aura:id="colors"/>
<lightning:input type="checkbox" label="Green"

name="color3" value="3" aura:id="colors"/>
</fieldset>

<lightning:button label="Submit" onclick="{!c.submitForm}"/>
</form>

</aura:component>

In your client-side controller, you can retrieve the array using cmp.find("colors")  and inspect the checked  values.

When working with type="file", you must provide your own server-side logic for uploading files to Salesforce. Read the file
using the FileReader HTML object, and then encode the file contents before sending them to your Apex controller. In your Apex
controller, you can use the EncodingUtil  methods to decode the file data. For example, you can use the Attachment object
to upload files to a parent object. In this case, you pass in the base64 encoded file to the Body  field to save the file as an attachment
in your Apex controller.

107

Base Lightning Components ConsiderationsCreating Components



Uploading files using this component is subject to regular Apex controller limits, which is 1 MB. To accommodate file size increase
due to base64 encoding, we recommend that you set the maximum file size to 750 KB. You must implement chunking for file size
larger than 1 MB. Files uploaded via chunking are subject to a size limit of 4 MB. For more information, see the Apex Developer Guide.
Alternatively, you can use lightning:fileUpload  to upload files directly to records.

lightning:tab
This component creates its body during runtime. You can’t reference the component during initialization. Referencing the component
using aura:id  can return unexpected results, such as the component returning an undefined value when implementing
cmp.find("myComponent").

lightning:tabset
When you load more tabs than can fit the width of the viewport, the tabset provides navigation buttons that scrolls horizontally to
display the overflow tabs.

Methods with Limited Support on Some Components
Some methods have limited support or no support on these components:

• lightning:avatar

• lightning:badge

• lightning:breadcrumb

• lightning:formattedDateTime

• lightning:formattedNumber

• lightning:icon

• lightning:input

• lightning:inputField

• lightning:outputField

• lightning:relativeDateTime

• lightning:textarea

getDef()
getDef()  can’t get API methods or attach change handlers in the specified components. The correct way to work with base
Lightning components is to work with the instances, and not attempt to access the component or its definition.

getReference()
getReference()  method support is limited. You can’t use it with controllers with these components. For example,
getReference('v.value')  works but getReference('c.myFunc')  doesn’t work.

afterRender()
afterRender()  isn’t supported by the specified components. You shouldn’t call afterRender()  on Lightning base
components directly. For example, component.find('lightning:input').afterRender() doesn’t work.

No nested component access
You can’t access sub-components inside a base Lightning component. You can only use the exposed API. For example,
cmp.find('mylightning:inputField').find('innercomponent')  doesn’t work.

Event Handling in Base Lightning Components
Base components are lightweight and closely resemble HTML markup. They follow standard HTML practices by providing event handlers
as attributes, such as onfocus, instead of registering and firing Lightning component events, like components in the ui  namespace.

108

Event Handling in Base Lightning ComponentsCreating Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/


Because of their markup, you might expect to access DOM elements for base components via event.target  or
event.currentTarget. However, this type of access breaks encapsulation because it provides access to another component’s
DOM elements, which are subject to change.

Lightning Locker enforces encapsulation. Use the methods described here to make your code compliant with Lightning Locker.

We recommend binding your value to an attribute. For example, bind the value for lightning:input  to a textvalue  attribute.

<aura:component>
<aura:attribute name="textvalue" type="String" default="Initial value"/>
<lightning:input value="{!v.textvalue}" onchange="{!c.handleInputChange}"/>

</aura:component>

In your client-side controller, use the event handler to get the textvalue  attribute value.

({
handleInputChange : function(component, event) {

let val = component.get("v.textvalue");
}

})

Alternatively, to retrieve the component that fired the event, use event.getSource().

<aura:component>
<lightning:button name="myButton" onclick="{!c.doSomething}"/>

</aura:component>

({
doSomething: function(cmp, event, helper) {

var button = event.getSource();

//The following patterns are not supported
//when you’re trying to access another component’s
//DOM elements.
var el = event.target;
var currentEl = event.currentTarget;

}
})

Note:  For events fired by standard HTML elements, you can use event.currentTarget  and event.target. For events
fired by base Lightning components, use event.getSource() instead.

Retrieve a component attribute that’s passed to the event by using this syntax.

event.getSource().get("v.name")

Reusing Event Handlers
event.getSource()  helps you determine which component fired an event. Let’s say you have several buttons that reuse the
same onclick  handler. To retrieve the name of the button that fired the event, use event.getSource().get("v.name").

<aura:component>
<lightning:button label="New Record" name="new" onclick="{!c.handleClick}"/>
<lightning:button label="Edit" name="edit" onclick="{!c.handleClick}"/>

109

Event Handling in Base Lightning ComponentsCreating Components



<lightning:button label="Delete" name="delete" onclick="{!c.handleClick}"/>
</aura:component>

({
handleClick: function(cmp, event, helper) {

//returns "new", "edit", or "delete"
var buttonName = event.getSource().get("v.name");

}
})

Retrieving the Active Component Using the onactive  Handler
When working with tabs, you want to know which one is active. The lightning:tab  component enables you to obtain a reference
to the target component when it becomes active using the onactive  handler. Clicking the component multiple times invokes the
handler once only.

<aura:component>
<lightning:tabset>
<lightning:tab onactive="{! c.handleActive }" label="Tab 1" id="tab1" />
<lightning:tab onactive="{! c.handleActive }" label="Tab 2" id="tab2" />

</lightning:tabset>
</aura:component>

({
handleActive: function (cmp, event) {

var tab = event.getSource();
switch (tab.get('v.id')) {

case 'tab1':
//do something when tab1 is clicked
break;

case 'tab2':
//do something when tab2 is clicked
break;

}
}

})

Retrieving the ID and Value Using the onselect  Handler
Some components provide event handlers to pass in events to child components, such as the onselect  event handler on the
following components.

• lightning:buttonMenu

• lightning:tabset

Although the event.detail  syntax continues to be supported, we recommend that you update your JavaScript code to use the
following patterns for the onselect  handler as we plan to deprecate event.detail  in a future release.

• event.getParam("id")

• event.getParam("value")

110

Event Handling in Base Lightning ComponentsCreating Components



For example, you want to retrieve the value of a selected menu item in a lightning:buttonMenu  component from a client-side
controller.

//Before
var menuItem = event.detail.menuItem;
var itemValue = menuItem.get("v.value");
//After
var itemValue = event.getParam("value");

Similarly, to retrieve the ID of a selected tab in a lightning:tabset component:

//Before
var tab = event.detail.selectedTab;
var tabId = tab.get("v.id");
//After
var tabId = event.getParam("id");

Note:  If you need a reference to the target component, use the onactive  event handler instead.

Base Components Limitations for Native HTML Events
All supported event handlers on a base component are listed in the Specification tab of the component reference. The event handler
names start with on, for example, onchange.

Base components generally don’t support native HTML events, unlike their Lightning web component counterparts. You might encounter
unexpected behavior if you try to handle an HTML event on a base component. Let’s say you want to handle the onkeydown  HTML
event on lightning:input.

<aura:component>
<aura:attribute name="value" type="String" default="Initial value"/>

<!–- Don’t use event handlers that are not supported -->
<lightning:input value="{!v.value}" onkeydown="{!c.handleKeyDown}"/>

</aura:component>

Since onkeydown  is not a supported event handler based on the lightning:input  specifications,
event.getParam("value")  and event.detail  return undefined.

Creating a Form
Work with user input for server-side use, such as creating or updating a record. Or get user input to update the user interface, such as
displaying or hiding components.

If you’re creating a form to work with Salesforce data, use the lightning:recordForm, lightning:recordEditForm,
lightning:recordViewForm, or force:recordData  base components as they are built on Lightning Data Service.
Otherwise, you must wire up the fields to the Salesforce object yourself and use Apex to process the user input as shown in the next
section.

Example:  The Aura Components Basics Trailhead module walks you through building a form for creating an expense record.

Implement a Basic Form
Before proceeding, we recommend that you have working knowledge of web forms, as the rest of the topic builds on that concept.

111

Creating a FormCreating Components

https://developer.salesforce.com/docs/component-library/bundle/lightning-input/specification
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.migrate_base_components
https://developer.salesforce.com/docs/component-library/bundle/lightning-input/specification
https://trailhead.salesforce.com/content/learn/modules/lex_dev_lc_basics
https://developer.mozilla.org/en-US/docs/Learn/Forms


You can collect data in fields that accept different types of user input, such as a checkbox, date, email, file, password, number, phone,
radio, or text. Most user input can be collected by using lightning:input.

Here’s a list of form controls for option selection and their corresponding base components.

• Button: lightning:button  (and lightning:buttonIcon  and so on)

• Checkbox: lightning:checkboxGroup

• Dropdown menu for single selection: lightning:combobox

• Dropdown menu for single selection using the HTML <select>: lightning:select

• Dual listbox for multiple selection: lightning:dualListbox

• Radio button: lightning:radioGroup

Here’s a list of form controls for entering an input value and their corresponding base components.

• Input field: lightning:input

• Address compound field: lightning:inputAddress

• Geolocation compound field: lightning:inputLocation

• Name compound field: lightning:inputName

• Rich text field: lightning:inputRichText

• Input range for number selection: lightning:slider

• Text input (multi-line): lightning:textarea

When you use the base components, the <label> and <input>  elements are automatically configured for you. For form styling,
you get the Salesforce Lightning Design System (SLDS) styling. You can also use SLDS utility classes to customize the layout of your form.

Let’s say we want a form that collects a contact’s name, email address, and comments.

In this example, we are using lightning:inputName, lightning:input, and lightning:textarea  in a standalone
app. To create a grid layout for the fields, use lightning:layout.

<aura:application access="GLOBAL" extends="force:slds" controller="ContactController">
<aura:attribute name="salutationOptions" type="List" default="[

{'label': 'Mr.', 'value': 'Mr.'},
{'label': 'Ms.', 'value': 'Ms.'},
{'label': 'Mrs.', 'value': 'Mrs.'},
{'label': 'Dr.', 'value': 'Dr.'},
{'label': 'Prof.', 'value': 'Prof.'},

]"/>
<aura:attribute name="newContact" type="Contact"

default="{ 'sobjectType': 'Contact',
'Title': '',
'FirstName': '',
'LastName': '',
'Email': '',
'Description': '' }" />

<aura:attribute name="message" type="String" default=""/>

<lightning:card iconName="standard:contact" title="Add a Contact">
<div class="slds-p-around_medium">

<lightning:layout>
<lightning:layoutItem size="4" padding="around-small">

<lightning:inputName aura:id="contact"
label="Contact Name"
firstName="{!v.newContact.FirstName}"

112

Creating a FormCreating Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:input
https://developer.salesforce.com/docs/component-library/bundle/lightning:button
https://developer.salesforce.com/docs/component-library/bundle/lightning:checkboxGroup
https://developer.salesforce.com/docs/component-library/bundle/lightning:combobox
https://developer.salesforce.com/docs/component-library/bundle/lightning:select
https://developer.salesforce.com/docs/component-library/bundle/lightning:dualListbox
https://developer.salesforce.com/docs/component-library/bundle/lightning:radioGroup
https://developer.salesforce.com/docs/component-library/bundle/lightning:input
https://developer.salesforce.com/docs/component-library/bundle/lightning:inputAddress
https://developer.salesforce.com/docs/component-library/bundle/lightning:inputLocation
https://developer.salesforce.com/docs/component-library/bundle/lightning:inputName
https://developer.salesforce.com/docs/component-library/bundle/lightning:inputRichText
https://developer.salesforce.com/docs/component-library/bundle/lightning:slider
https://developer.salesforce.com/docs/component-library/bundle/lightning:textarea


lastName="{!v.newContact.LastName}"
salutation="{!v.newContact.Title}"
options="{!v.salutationOptions}"
required="true"/>

</lightning:layoutItem>
<lightning:layoutItem size="8" padding="around-small">

<lightning:input aura:id="contact" label="Email" type="email"
value="{!v.newContact.Email}"/>

<lightning:textarea aura:id="contact" label="Comments"
value="{!v.newContact.Description}"/>

<lightning:button label="Create Contact"
onclick="{!c.handleCreateContact}" variant="brand" class="slds-m-top_medium"/>

</lightning:layoutItem>
</lightning:layout>
<p>{!v.message}</p>

</div>
</lightning:card>

</aura:application>

The client-side controller submits the user data to the Apex controller and updates the v.message  attribute when the contact is
created successfully.

({
handleCreateContact: function(component, event) {

var saveContactAction = component.get("c.createContact");
saveContactAction.setParams({

"contact": component.get("v.newContact")
});

// Configure the response handler for the action
saveContactAction.setCallback(this, function(response) {

var state = response.getState();
if(state === "SUCCESS") {

component.set("v.message", "Contact created successfully");
}
else if (state === "ERROR") {

console.log('Problem saving contact, response state: ' + state);
}
else {

console.log('Unknown problem, response state: ' + state);
}

});

// Send the request to create the new contact
$A.enqueueAction(saveContactAction);

},
})

The Apex controller uses the upsert  DML operation to create a contact record.

public with sharing class ContactController {

@AuraEnabled
public static Contact createContact(Contact contact){

upsert contact;

113

Creating a FormCreating Components



return contact;
}

}

Notice that the form allows you to submit empty fields without any user interaction. The field-level errors for required fields that you
leave empty are displayed only after you interact with the fields. Also, if you enter an invalid email format, the email field displays an
error.

Customize the submission behavior to prevent invalid fields from getting submitted. For more information, see Validating Fields on page
114.

Validating Fields
Validate user input, handle errors, and display error messages on input fields.

Built-in field validation is available for the base components discussed in Creating a Form on page 111.

Base components simplify input validation by providing attributes to define error conditions, enabling you to handle errors by checking
the component’s validity state. For example, you can set a minimum length for a field, display an error message when the condition is
not met, and handle the error based on the given validity state.

Most of the base components provide attributes and methods to enable different ways to validate input.

Note:  Refer to the Component Library for component examples, specification, and documentation.

Require a field
When you set required="true", the field is invalid when a user interacts with it but does not make a selection or enter an
input.

Specify a type
A lightning:input  field that expects a certain data type is invalid if an incorrect data format is entered. For example, the
email  type on lightning:input  expects an email address and the number  type expects a number.

Specify a criteria
A lightning:input  field that specifies a certain criteria or attribute, max, min, pattern, and so on, is invalid if the criteria
isn’t met. You can provide a custom error message using attributes like messageWhenValueMissing, when it’s available on
the component.

Check field validity
The validity  attribute on the base components returns the validity states of an input. This attribute is based on the ValidityState
object from the Web API. For example, you want to check if a field is valid when a user removes focus from the field.

<lightning:input name="input" aura:id="myinput" label="Enter some text" onblur="{!
c.handleBlur }" />

If all constraint validations are met, the field returns true .

handleBlur: function (cmp, event) {
var validity = cmp.find("myinput").get("v.validity");
console.log(validity.valid); //returns true

}

Report field validity
To programmatically set and display an error message on a field, use the setCustomValidity()  and reportValidity()
methods available on the base components. For more information, see the lightning:input documentation.

114

Validating FieldsCreating Components

https://developer.salesforce.com/docs/component-library/
https://developer.salesforce.com/docs/component-library/bundle/lightning:input/documentation


Prevent Invalid Fields from Getting Submitted
In Creating a Form on page 111 we implemented a basic form with built-in validation for required fields and specific types. Let’s customize
the submission behavior such that the form displays errors on invalid fields. Customized behavior is useful if a user tries to submit an
empty form and to identify errors in a field.

({
handleCreateContact: function(component, event) {

var allValid = component.find('contact').reduce(function (validSoFar, inputCmp) {

inputCmp.reportValidity();
return validSoFar && inputCmp.checkValidity();

}, true);

if (allValid) {
/******** Insert code from "Creating a Form" topic ********/
var saveContactAction = component.get("c.createContact");

saveContactAction.setParams({
"contact": component.get("v.newContact")

});

// Configure the response handler for the action
saveContactAction.setCallback(this, function(response) {

var state = response.getState();
if(state === "SUCCESS") {

component.set("v.message", "Contact created successfully");
}
else if (state === "ERROR") {

console.log('Problem saving contact, response state: ' + state);
}
else {

console.log('Unknown problem, response state: ' + state);
}

});

// Send the request to create the new contact
$A.enqueueAction(saveContactAction);
/******** End code from "Creating a Form" topic ********/

} else {
alert('Please update the invalid form entries and try again.');

}

},
})

Example:  The Aura Components Basics Trailhead module walks you through building a form for creating an expense record.

Field Validation Considerations
Client-side field validation provides an initial check for user data before submitting it to the server. Implement your own server-side
validation to ensure that user data is saved in the expected format. Consider the following guidelines.

115

Validating FieldsCreating Components

https://trailhead.salesforce.com/content/learn/modules/lex_dev_lc_basics


Start with Lightning Data Service
When working with Salesforce data, we recommend that you use the lightning:recordForm,
lightning:recordEditForm, lightning:recordViewForm, or force:recordData  base components. They
are built on Lightning Data Service, which ensures data consistency, while handling sharing rules and field-level security for you.
The components also provide field validation and error handling.

Enforce data integrity
For data integrity, enforce it at the lowest level possible. For example, specifying required="true"  on the base components
is only cosmetic. Enforce the field as required in the field definition. See Require Field Input to Ensure Data Quality.

Consider validation rules
Define validation rules to verify that the data a user enters in a record meets the standards you specify before the user can save the
record. You can retrieve the error that’s returned by a validation rule using response.getError(). If you don’t handle the
error, the form submission fails silently.

Alternatively, use a base component built on Lightning Data Service to automatically display the validation rule error on a field. For
example, you can define a validation rule that enforces an email address to contain @example.com. The field displays the error
message if the validation rule fails.

Lightning Design System Considerations
Although the base Lightning components provide Salesforce Lightning Design System styling out-of-the-box, you may still want to
write some CSS depending on your requirements.

If you're using the components outside of the Salesforce mobile app and Lightning Experience, such as in standalone apps and Lightning
Out, extend force:slds  to apply Lightning Design System styling to your components. Here are several guidelines for using Lightning
Design System in base components.

Using Utility Classes in Base Components
Lightning Design System utility classes are the fundamentals of your component's visual design and promote reusability, such as for
alignments, grid, spacing, and typography. Most base components inherits a class  attribute, so you can add a utility class or custom
class to the outer element of the components. For example, you can apply a spacing utility class to lightning:button.

<lightning:button name="submit" label="Submit" class="slds-m-around_medium"/>

The class you add is appended to the base classes that the component includes automatically, resulting in the following rendered
element.

<button class="slds-button slds-button_neutral slds-m-around_medium"
type="button" name="submit">Submit</button>

Similarly, you can create a custom class by adding it to the CSS resource in the component bundle and pass it into the class attribute.

<lightning:badge label="My badge" class="myCustomClass"/>

You have the flexibility to customize the components at a granular level beyond the CSS scaffolding we provide. Let’s look at the
lightning:card  component, where you can create your own body markup. You can apply the slds-p-horizontal_small
or slds-card__body_inner  class in the body markup to add padding around the body.

<!-- lightning:card example using slds-p-horizontal_small class -->
<lightning:card>
<aura:set attribute="title">My Account</aura:set>
<aura:set attribute="footer">Footer</aura:set>

116

Lightning Design System ConsiderationsCreating Components

https://help.salesforce.com/articleView?id=fields_about_universally_required_fields.htm&language=en_US
https://help.salesforce.com/articleView?id=fields_about_field_validation.htm&language=en_US


<aura:set attribute="actions">
<lightning:button label="New"/>

</aura:set>
<p class="slds-p-horizontal_small">
Card Body

</p>
</lightning:card>

<!-- lightning:card example using slds-card__body_inner -->
<lightning:card>

<aura:set attribute="title">My Account</aura:set>
<aura:set attribute="footer">Footer</aura:set>
<aura:set attribute="actions">
<lightning:button label="New"/>

</aura:set>
<div class="slds-card__body_inner">
Card Body

</div>
</lightning:card>

Block-Element-Modifier (BEM) Notation
CSS class names used by Lightning base components match the Block-Element-Modifier (BEM) notation that Salesforce Lightning Design
System uses. Class names that previously contained a double dash now use a single underscore in place of the double dash. A CSS class
that used to be slds-p-around--small  is now slds-p-around_small, for example. If you have created custom CSS in
your components that reference an SLDS class that contains a double dash, update your selectors to use a single underscore. For more
information, see Lightning Design System FAQ.

Applying Custom Component Styling
Sometimes the utility classes aren’t enough and you want to add custom styling in your component bundle. You saw earlier that you
can create a custom class and pass it into the class  attribute. We recommend that you create a class instead of targeting a class name
you don’t own, since those classes might change anytime. For example, don’t try to target .slds-input  or .lightningInput,
as they are CSS classes that are available by default in base components. You can also consider using tokens to ensure that your design
is consistent across your components. Specify values in the token bundle and reuse them in your components’ CSS resources.

Showing and Hiding with Visibility Classes
Lightning Design System utility classes include visibility classes that enable you to show and hide elements. These classes are designed
as show/hide pairs that you add and remove, or toggle, with JavaScript. Apply only one class at a time. See Lightning Design System:
Utilities: Visibility for descriptions of the classes. For information about using JavaScript to toggle markup see Dynamically Showing or
Hiding Markup.

Using the Grid for Layout
lightning:layout  is your answer for a flexible grid system. You can achieve a simple layout by enclosing
lightning:layoutItem  components within lightning:layout, which creates a div container with the slds-grid
class. To apply additional Lightning Design System grid classes, specify any combination of the lightning:layout  attributes. For
example, specify verticalAlign="stretch"  to append the slds-grid_vertical-stretch  class. You can apply
Lightning Design System grid classes to the component using the horizontalAlign, verticalAlign, and pullToBoundary

117

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/faq/#what-css-syntax-does-the-salesforce-lightning-design-system-use-where-did-the-double-hyphenations-go-why-are-their-underscores-in-your-css-classes
https://www.lightningdesignsystem.com/utilities/visibility/
https://www.lightningdesignsystem.com/utilities/visibility/


attributes. However, not all grid classes are available through these attributes. To provide additional grid classes, use the class  attribute.
The following grid classes can be added using the class  attribute.

• .slds-grid_frame

• .slds-grid_vertical

• .slds-grid_reverse

• .slds-grid_vertical-reverse

• .slds-grid_pull-padded-x-small

• .slds-grid_pull-padded-xx-small

• .slds-grid_pull-padded-xxx-small

This example adds the slds-grid_reverse  class to the slds-grid  class to reverse the horizontal visual flow of the grid
columns.

<lightning:layout horizontalAlign="space" class="slds-grid_reverse">
<lightning:layoutItem padding="around-small">
<!-- more markup here -->

</lightning:layoutItem>
<!-- more lightning:layoutItem components here -->

</lightning:layout>

For more information, see Lightning Design System: Utilities: Grid.

SEE ALSO:

Styling Apps

Styling with Design Tokens

Working with Lightning Design System Variants
Base component variants correspond to blueprint variations in Lightning Design System. Variants change the appearance of a component
and are controlled by the variant  attribute.

Applying Variants to Base Components
Variants on a component refer to design variations for that component, which enable you to change the appearance of the component
easily. We try to create variants for each component to apply the design of variations and examples from the SLDS component blueprint.
However, not all variants are implemented yet. Most base components provide a variant  attribute that accepts two or more variants.
For example, lightning:button  supports many variants to apply different text and background colors on the buttons.

This example creates a button with the brand variant.

<lightning:button variant="brand" label="Brand" onclick="{! c.handleClick }" />

If you don’t specify a variant or you pass in a variant that’s not supported, the default variant is used instead. For button, the neutral
variant is used by default.

Some components don’t support a variant  attribute, but you can use Lightning Design System classes to achieve the styling you
want.

This example uses a Lightning Design System class to apply a padding to a paragraph in the lightning:card  component.

<lightning:card footer="Card Footer" title="Hello">
<aura:set attribute="actions">

118

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/utilities/grid/


<lightning:button label="New"/>
</aura:set>
<p class="slds-p-horizontal_small">

Card Body with a Lightning Design System class
</p>

</lightning:card>

If you don’t find a variant you need, see if you can pass in a Lightning Design System class to the base component before creating your
own custom CSS class. Don’t be afraid to experiment with Lightning Design System classes and variants in base components. For more
information, see Lightning Design System.

Note:  Interactive examples for base components are available in the Component Library.

Migrate Components from the ui Namespace
If you’re using components in the ui  namespace, replace them with their lightning  namespace counterparts.

Note:  Components in the ui  namespace are deprecated as of API version 47.0, the Winter ’20 release. We recommend that you
use components in the lightning  namespace instead or use the Lightning web component equivalent. You can continue to
use the ui  components beyond Summer ’21 but Salesforce plans to cease support for them in Summer ’21. For more information,
see Working with Base Lightning Components on page 100.

For migration recommendations for each ui  component, refer to the Component Library. For example, the ui:button specification
notes that you can use lightning:button, lightning:buttonIcon, or lightning:buttonIconStateful
instead, depending on your use case. To view examples and usage guidelines for lightning  namespace components, refer to the
Component Library.

The following tables list ui  components and their recommended counterparts in the lightning  namespace.

Complex, Interactive Components
The following components contain one or more subcomponents and are interactive.

lightning
Component

Descriptionui  Component (Deprecated)Type

lightning:notificationsLibraryA message notification of varying severity
levels

ui:messageMessage

lightning:buttonMenuA dropdown list with a trigger that controls
its visibility

ui:menuMenu

A list of menu itemsui:menuList

lightning:menuItemA menu item that triggers an actionui:actionMenuItem

A menu item that supports multiple selection
and can be used to trigger an action

ui:checkboxMenuItem

A menu item that supports single selection
and can be used to trigger an action

ui:radioMenuItem

lightning:menuDividerA visual separator for menu itemsui:menuItemSeparator

119

Migrate Components from the ui NamespaceCreating Components

https://www.lightningdesignsystem.com/components/overview
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.migrate_map_aura_lwc_components
https://developer.salesforce.com/docs/component-library
https://developer.salesforce.com/docs/component-library/bundle/ui:button/specification


lightning
Component

Descriptionui  Component (Deprecated)Type

lightning:menuItemAn abstract and extensible component for
menu items in a ui:menuList  component

ui:menuItem

lightning:buttonMenuA trigger that expands and collapses a menuui:menuTrigger

A link that triggers a dropdown menu. This
component extends ui:menuTrigger

ui:menuTriggerLink

Input Control Components
The following components are interactive, for example, like buttons and checkboxes.

lightning
Component

DescriptionKey Components (Deprecated)Type

lightning:button,
lightning:buttonIcon,

An actionable button that can be pressed or
clicked

ui:buttonButton

or
lightning:buttonIconStateful

lightning:input
with checkbox,

A selectable option that supports multiple
selections

ui:inputCheckboxCheckbox

toggle, or
checkbox-button
type

lightning:input
with checkbox  type and
readonly  attribute

Displays a read-only value of the checkboxui:outputCheckbox

lightning:input
with radio  type or
lightning:radioGroup

A selectable option that supports only a single
selection

ui:inputRadioRadio button

lightning:comboboxA dropdown list with optionsui:inputSelectDropdown List

An option in a ui:inputSelect
component

ui:inputSelectOption

Visual Components
The following components provide informative cues, for example, like error messages and loading spinners.

lightning
Component

DescriptionKey Components
(Deprecated)

Type

lightning:input
with field validation

An error message that is displayed when an error
occurs

ui:inputDefaultErrorField-level error

120

Migrate Components from the ui NamespaceCreating Components



lightning
Component

DescriptionKey Components
(Deprecated)

Type

lightning:spinnerA loading spinnerui:spinnerSpinner

Field Components
The following components enable you to enter or display values.

lightning  ComponentDescriptionKey Components
(Deprecated)

Type

lightning:input  with
number  type and
currency  formatter

An input field for entering currencyui:inputCurrencyCurrency

lightning:formattedNumber
with currency  style

Displays currency in a default or specified formatui:outputCurrency

lightning:input  with
email  type

An input field for entering an email addressui:inputEmailEmail

lightning:formattedEmailDisplays a clickable email addressui:outputEmail

lightning:input  with
date  type

An input field for entering a dateui:inputDateDate and time

lightning:input  with
datetime  type

An input field for entering a date and timeui:inputDateTime

lightning:formattedDateTimeDisplays a date in the default or specified formatui:outputDate

lightning:formattedDateTime
or
lightning:formattedTime

Displays a date and time in the default or specified
format

ui:outputDateTime

lightning:input  with
password  type

An input field for entering secret textui:inputSecretPassword

lightning:input  with
phone  type

An input field for entering a phone numberui:inputPhonePhone Number

lightning:formattedPhoneDisplays a phone numberui:outputPhone

lightning:input  with
number  type

An input field for entering a numerical valueui:inputNumberNumber

lightning:formattedNumberDisplays a numberui:outputNumber

lightning:sliderAn input field for entering a value within a rangeui:inputRangeRange

lightning:inputRichTextAn input field for entering rich textui:inputRichTextRich Text

lightning:formattedRichTextDisplays rich textui:outputRichText

lightning:inputAn input field for entering a single line of textui:inputTextText

121

Migrate Components from the ui NamespaceCreating Components



lightning  ComponentDescriptionKey Components
(Deprecated)

Type

lightning:formattedTextDisplays textui:outputText

lightning:textareaAn input field for entering multiple lines of textui:inputTextAreaText Area

lightning:formattedTextDisplays a read-only text areaui:outputTextArea

lightning:input  with
url  type

An input field for entering a URLui:inputURLURL

lightning:formattedUrlDisplays a clickable URLui:outputURL

Supporting Accessibility

When customizing components, be careful to preserve code that ensures accessibility, such as the aria  attributes.

Accessible software and assistive technology enable users with disabilities to use and interact with the products you build. Aura
components are created according to W3C specifications so that they work with common assistive technologies. We recommend that
you follow the WCAG Guidelines for accessibility when developing with the Lightning Component framework.

IN THIS SECTION:

Accessibility for Base Lightning Components

This section explains the accessibility features on components in the lightning  namespace, which are also known as base
Lightning components.

Write Aura Component Accessibility Tests

When you develop with Aura components, you can use Salesforce’s test tools to check for common accessibility issues.

Accessibility for Base Lightning Components
This section explains the accessibility features on components in the lightning  namespace, which are also known as base Lightning
components.

IN THIS SECTION:

Button Labels

Audio Messages

Forms, Fields, and Labels

Using Images and Icons

Events

Menus

Button Labels
Buttons can appear with text only, an icon and text, or an icon only. To create an accessible button, use the lightning:button
or lightning:buttonIcon  base components and set a textual label using the label  attribute.

122

Supporting AccessibilityCreating Components

http://www.w3.org/TR/WCAG/


Button with text only:

<lightning:button label="Search"
onclick="{!c.doSomething}"/>

Button with icon and text:

<lightning:button label="Download" iconName="utility:download"
onclick="{!c.doSomething}"/>

lightning:button  implements the button blueprint in the Salesforce Lightning Design System (SLDS) and follows its accessibility
guidelines.

Button with icon only:

<lightning:buttonIcon iconName="utility:settings"
onclick="{!c.doSomething}
alternativeText="Settings"/>

The alternativeText  attribute provides a text label that’s hidden from view and available to assistive technology.

lightning:buttonIcon  implements the button icon blueprint in the SLDS and follows its accessibility guidelines.

This example shows the HTML generated by lightning:buttonIcon:

<!-- Use assistive text to hide the label visually, but show it to screen readers -->
<button>

::before
<span class="slds-assistive-text">Settings</span>

</button>

To support tooltip on desktop, include the title attribute in addition to the label  or alternativeText  attribute. The title
attribute can be problematic for touch-only devices, keyboard navigation, and assistive technologies. Therefore, it must be used together
with label  or alternativeText.

Note:  Most ARIA states and properties are supported on these base components. For more information, see the reference
documentation in the Component Library.

Other button-based components include:

lightning:buttonGroup
A group of buttons. This component implements the button group blueprint in the SLDS and follows its accessibility guidelines.

lightning:buttonIconStateful
A button with an icon only that retains state. This component implements the button icon blueprint in the SLDS and follows its
accessibility guidelines.

lightning:buttonMenu
A dropdown menu with a list of actions or items. This component implements the menu blueprint in the SLDS and follows its
accessibility guidelines.

lightning:buttonStateful
A button that retains state. This component implements the button blueprint in the SLDS and follows its accessibility guidelines.

SEE ALSO:

Using Images and Icons

Creating a Form

Component Library: lightning:button documentation

123

Accessibility for Base Lightning ComponentsCreating Components

https://lightningdesignsystem.com/components/buttons/
https://lightningdesignsystem.com/components/button-icons/
https://developer.salesforce.com/docs/component-library/bundle/lightning-button/documentation
https://lightningdesignsystem.com/components/button-groups/
https://lightningdesignsystem.com/components/button-icons/
https://lightningdesignsystem.com/components/menus/
https://lightningdesignsystem.com/components/buttons/
https://developer.salesforce.com/docs/component-library/bundle/lightning:button


Audio Messages
To convey audio notifications, create a toast using lightning:notificationsLibrary. The toast is rendered with
role="alert", which enables screen readers to announce the text inside the toast without any additional action by the user.

If you’re creating your own feedback mechanism and work with multiple toasts, consider using role="status"  to persist the toast
in the queue. This role reduces the risk of a user missing a toast message. Contrastingly, role="alert"  overrides previous toasts in
the screen reader’s speech queue. For more information, see the toast accessibility guideline.

<lightning:notificationsLibrary aura:id="notifLib"/>
<lightning:button name="toast" label="Show Toast" onclick="{!c.handleShowToast}"/>

({
handleShowToast : function(component, event, helper) {

component.find('notifLib').showToast({
"title": "Success!",
"message": "The record has been updated successfully."

});
}

})

Alternatively, create a prompt notice to alert a user of system-related issues or updates. The notice is rendered as a modal dialog with
role="dialog", and must be dismissed before you can return to the rest of the page.

<lightning:notificationsLibrary aura:id="notifLib"/>
<lightning:button name="notice" label="Show Notice" onclick="{!c.handleShowNotice}"/>

({
handleShowNotice : function(component, event, helper) {

component.find('notifLib').showNotice({
"variant": "error",
"header": "Something has gone wrong!",
"message": "Unfortunately, there was a problem updating the record.",
closeCallback: function() {

alert('You closed the alert!');
}

});
}

})

lightning:notificationsLibrary  implements the prompt and toast blueprint in the Salesforce Lightning Design System
and follows its accessibility guidelines.

SEE ALSO:

Component Library: lightning:notificationsLibrary documentation

Forms, Fields, and Labels
Input components are designed to make it easy to assign labels to form fields. Labels build a programmatic relationship between a form
field and its textual label. When using a placeholder in an input component, set the label  attribute for accessibility.

124

Accessibility for Base Lightning ComponentsCreating Components

https://lightningdesignsystem.com/components/toast/
https://www.lightningdesignsystem.com/components/prompt
https://lightningdesignsystem.com/components/toast/
https://developer.salesforce.com/docs/component-library/bundle/lightning:notificationsLibrary


Use lightning:input  to create accessible input fields and forms. You can use lightning:textarea  in preference to the
<textarea>  tag for multi-line text input or lightning:select  instead of the <select>  tag.

<lightning:input name="myInput" label="Search" />

If your code fails, check the label element during component rendering. The label element’s for  attribute must match the value of the
input control’s id  attribute. Alternatively, wrap the label around an input. Input controls include <input>, <textarea>, and
<select>.

Here’s an example of the HTML generated by lightning:input.

<!-- Use label/for -->
<label for="fullname">Enter your full name:</label>
<input type="text" id="fullname" />

<!-- Use an implicit label -->
<label>Enter your full name:

<input type="text" id="fullname"/>
</label>

SEE ALSO:

Using Labels

Creating a Form

Component Library: lightning:input documentation

Component Library: lightning:textarea documentation

Using Images and Icons
To display images, use the HTML <img>  element. Include an image in your component by uploading it as a static resource on page
56 or content asset on page 53.To display an icon, use the lightning:icon  component, which gives you access to Salesforce
Lightning Design System icons or your own custom icon. To display an avatar, use lightning:avatar.Consider
lightning:buttonIcon  or lightning:buttonIconStateful  to display an actionable image such as a Like or Follow
image.

Follow these accessibility guidelines when using images and icons in your component.

Informational Images and Icons
Informational images and icons can provide information that’s not available in the text, such as an image that represents an approved
step. Include alternative text for images and icons to help users without access to the images and icons. Use the alt  attribute with the
<img>  element and alternativeText  attribute with the base Lightning components.

Image with Alternative Text:

<img src="{!$Resource.profile_pic}" alt="User avatar"/>

Icon with Alternative Text:

<lightning:icon iconName="action:approval" size="large" alternativeText="Indicates
approval"/>

Avatar with Alternative Text:

<lightning:avatar src="{!$Resource.profile_pic}" alternativeText="John Smith"/>

125

Accessibility for Base Lightning ComponentsCreating Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:input
https://developer.salesforce.com/docs/component-library/bundle/lightning:textarea


Stateful Button Icon with Alternative Text:

An informational image or icon, such as a Like icon, is actionable and can stand alone in a button or hyperlink.

<lightning:buttonIconStateful
iconName="utility:like"
selected="{! v.liked }"
onclick="{! c.handleLikeButtonClick }"
alternativeText="Like" />

CSS with Alternative Text:

If you use CSS to display an informational image, you must provide assistive text.

<div class="Following">
<span class="slds-assistive-text">Following</span>

</div>

Decorative Images and Icons
Decorative images are images that can be removed without affecting the logic or content of the page. Assistive text is optional for
decorative images.

For example, placing an add icon or checkmark icon next to a text label reinforces the text’s meaning but adds no new information.
Consider this Follow button with an add icon next to it. When clicked, the button label changes to “Following” and its icon updates to
a checkmark. The icons don’t require assistive text.

<lightning:buttonStateful
labelWhenOff="Follow"
labelWhenOn="Following"
iconNameWhenOff="utility:add"
iconNameWhenOn="utility:check"
state="{! v.buttonstate }"
onclick="{! c.handleClick }"

/>

The base Lightning components discussed in this topic implement the iconography design and accessibility guidelines in the Salesforce
Lightning Design System.

SEE ALSO:

Component Library: lightning:avatar documentation

Component Library: lightning:buttonIcon documentation

Component Library: lightning:buttonIconStateful documentation

Component Library: lightning:buttonStateful documentation

Component Library: lightning:icon documentation

Events
Although you can attach an onclick  event to any type of element, for accessibility, consider only applying this event to elements
that are actionable in HTML by default, such as <a>, <button>, or <input>  tags in component markup. You can use an onclick
event on a <div>  tag to prevent event bubbling of a click.

126

Accessibility for Base Lightning ComponentsCreating Components

https://lightningdesignsystem.com/guidelines/iconography/
https://developer.salesforce.com/docs/component-library/bundle/lightning:avatar
https://developer.salesforce.com/docs/component-library/bundle/lightning:buttonIcon
https://developer.salesforce.com/docs/component-library/bundle/lightning:buttonIconStateful
https://developer.salesforce.com/docs/component-library/bundle/lightning:buttonStateful
https://developer.salesforce.com/docs/component-library/bundle/lightning:icon


Menus
A menu is a dropdown list with a trigger that controls the visibility of the list items. To create an accessible menu, use
lightning:buttonMenu. Provide a text label or assistive text, and specify a list of menu items using lightning:menuItem.
The dropdown menu items are hidden by default.

This example creates a menu with several items:

<lightning:buttonMenu iconName="utility:settings"
alternativeText="Settings"
onselect="{! c.handleMenuSelect }">

<lightning:menuItem label="Font" value="font" />
<lightning:menuItem label="Size" value="size"/>
<lightning:menuItem label="Format" value="format" />

</lightning:buttonMenu>

The alternativeText  attribute provides a text label that’s hidden from view and available to assistive technology.

lightning:buttonMenu  implements the menu blueprint in the Salesforce Lightning Design System and follows its accessibility
guidelines.

SEE ALSO:

Component Library: lightning:buttonMenu documentation

Write Aura Component Accessibility Tests
When you develop with Aura components, you can use Salesforce’s test tools to check for common accessibility issues.

You can call Aura accessibility tests in two environments.

• For JavaScript tests, use $A.test.assertAccessible().

• For WebDriver tests, use auraTestingUtil.assertAccessible().

These functions check the rendered DOM elements to make sure they pass Salesforce’s accessibility validation.

When you use these tools, there are two outcomes: pass or fail. If the tool doesn’t find any accessibility exceptions, it returns an empty
string. If the tool does find accessibility exceptions, it returns the accessibility rule that failed, the erroneous tag, and a stack trace of
where it was found in the code.

Since Aura components and pages are dynamic, make sure to retest your components’ accessibility every time something changes in
the DOM. Otherwise you aren’t checking every UI state your users encounter.

The Aura accessibility tests look for these issues:

• Images without alt  attributes

• Anchor elements without textual content

• input  elements without associated labels

• Radio button groups not in fieldset  tags

• iframe  or frame elements with empty title  attributes

• fieldset  elements without legend  tags

• th  element without a scope  attribute

• head  element with an empty title  attribute

• Headings (H1, H2, and so forth) increasing by more than one level at a time

• CSS color contrast ratio between text and background less than 4.5:1

127

Write Aura Component Accessibility TestsCreating Components

https://lightningdesignsystem.com/components/menus/
https://developer.salesforce.com/docs/component-library/bundle/lightning:buttonMenu


These tests aren’t all-encompassing. If your code passes every test, it’s not a guarantee that your product is fully accessible. However,
these tests do surface major accessibility issues, and ensure that your code remains accessible.

IN THIS SECTION:

Accessibility Tests Example

If you’ve made a component accessible, write tests to make sure it stays that way. You can write automated tests for a variety of
accessibility concerns, including expected keyboard functionality and that the role, state, and property ARIA values for HTML elements
are correct.

Other Accessibility Automation Tools

There are a number of robust open-source tools and mobile test frameworks for testing for accessibility.

Accessibility Tests Example
If you’ve made a component accessible, write tests to make sure it stays that way. You can write automated tests for a variety of accessibility
concerns, including expected keyboard functionality and that the role, state, and property ARIA values for HTML elements are correct.

Let’s look at an example that tests an expandable section. When you click Codey’s name, the section expands to tell you more about
him, and when you click his name again, the section collapses.

Here’s some pseudocode for an Aura component test that toggles the collapsed and expanded state of an expandable section.

testToggleExpandCollapse : {
test : [
function(cmp) {
// Default: collapsed
this.assertCollapsed(cmp);
// Toggle to expanded
this.clickToggleButton(cmp);
this.assertExpanded(cmp);
// Toggle back to collapsed
this.clickToggleButton(cmp);
this.assertCollapsed(cmp);

}
]

}

128

Write Aura Component Accessibility TestsCreating Components



First, we assert the element is collapsed by default, then we click the toggle button, verify it’s expanded, click the toggle button again,
and verify it’s collapsed.

How can we embed accessibility checks into this test? Let’s explore the two helper functions assertCollapsed  and
assertExpanded.

assertCollapsed : (cmp) {
var button = this.getButton(cmp);
var section = this.getSection(cmp);
// Button indicates section is collapsed
aura.test.assertEquals(
button.getAttribute('aria-expanded'),
"false",
"Button should indicate it's collapsed"

);
// Section is visually closed
aura.test.assertFalse(
section.classname.indexOf('slds-is-open') > -1,
"Section should be collapsed"

);
}

For an expandable section to be accessible, it must communicate its expanded or collapsed state to assistive technology users, such as
screen reader users. The best way to make the section accessible is with an ARIA state attribute, aria-expanded, on the button,
which is true  when the section is expanded and false  otherwise. To make sure that this attribute is always properly set, we can
assert it has the correct value. In assertCollapsed, we assert that aria-expanded  has a value of false. Now, in
assertExpanded, we can assert that aria-expanded has a value of true.

assertExpanded : (cmp) {
var button = this.getButton(cmp);
var section = this.getSection(cmp);
// Button indicates section is expanded
aura.test.assertEquals(
button.getAttribute('aria-expanded'),
"true",
"Button should indicate it's expanded"

);
// Section is visually open
aura.test.assertTrue(
section.classname.indexOf('slds-is-open') > -1,
"Section should be open"

);
}

If the code that’s setting aria-expanded  regresses, we catch the bug before it reaches screen reader users. Now let’s go back to
our testToggleExpandCollapse  test case. Let’s add $A.test.assertAccessible()  in two strategic places so that
we run Salesforce’s default set of accessibility checks against the section’s expanded and collapsed states. Remember, we want to test
every state, not just one. If we test only the collapsed state, we might miss accessibility bugs in the expanded section.

testToggleExpandCollapse : {
test : [
function(cmp) {
// Default: collapsed
this.assertCollapsed(cmp);
// Toggle to expanded

129

Write Aura Component Accessibility TestsCreating Components



this.clickToggleButton(cmp);
this.assertExpanded(cmp);
$A.test.assertAccessible();
// Toggle back to collapsed
this.clickToggleButton(cmp);
this.assertCollapsed(cmp);
$A.test.assertAccessible();

}
]

}

Now we have accessibility checks running automatically in our custom tests.

Other Accessibility Automation Tools
There are a number of robust open-source tools and mobile test frameworks for testing for accessibility.

Open-Source Tools

• axe

• Linters (es-lint and others)

– https://github.com/evcohen/eslint-plugin-jsx-a11y

– https://github.com/reactjs/react-a11y

Mobile Test Frameworks

• iOS Documentation: About Accessibility Verification on iOS

• Android Documentation: Test Your App's Accessibility

Writing Documentation for the Component Library

Documentation helps developers use your components to develop their apps more effectively. You can provide interactive examples,
documentation, and specification descriptions for a component, event, or interface.

Each component, event, or interface has a root definition that defines the element’s metadata, as well as attributes, events, or methods.

Component
A component’s root definition is specified in the <aura:component>  tag contained in componentName.cmp, as described
in Component Markup.

Event
An event’s root definition is specified in the <aura:event>  tag contained in componentEvent.evt, as described in Create
Custom Component Events.

Interface
An interface’s root definition is specified in the <aura:interface>  tag contained in the interfaceName.intf, as
described in Interfaces.

The root definition tag determines whether the element is exposed in the Component Library. You provide the documentation for each
element in an .auradoc  file that accompanies the other files that define the component, event, or interface.

130

Writing Documentation for the Component LibraryCreating Components

https://www.deque.com/axe/
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/reactjs/react-a11y
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestingtheAccessibilityofiOSApps/TestingtheAccessibilityofiOSApps.html#//apple_ref/doc/uid/TP40012619
https://developer.android.com/guide/topics/ui/accessibility/testing


Viewing the Documentation
View the Component Library through your org at
https://MyDomainName.my.salesforce.com/docs/component-library. Alternatively, view the unauthenticated
Component Library at https://developer.salesforce.com/docs/component-library/.

For namespaces that you own, elements with either access="global"  or access="public"(default) are surfaced in the
Component Library when it’s accessed through your org.

In the unauthenticated Component Library, only the elements with access="global"  are visible.

For managed package namespaces, only elements with access="global"  are surfaced in the Component Library. Elements with
access="public"  can be used only by components in the same namespace in the same org. They aren’t available to other orgs
that install the package, so they aren’t surfaced in the Component Library. Only global components in managed packages are visible
because they are intended for use in any namespace in any org.

Each element can display up to three tabs in the following order.

Example
Displays interactive examples denoted by the <aura:example>  tag in the .auradoc file. This tab is hidden if no examples
are wired up in your .auradoc  file. This tab is not supported if your component has dependency on org data, such as with
lightning:recordForm.

Documentation
Displays the content of the .auradoc  file. This tab is hidden if an .auradoc  file is not available for your component, event, or
interface.

Specification
Displays the description of the root definition, attributes, and methods. For namespaces you own, attributes and methods with either
access="global"  or access="public"(default) are surfaced in the Component Library when it’s accessed through your
org. For managed package namespaces, only access="global"  attributes and methods are visible.

IN THIS SECTION:

Creating Examples

Examples are interactive and help others learn about a component, event, or interface.

Creating Documentation Content

Documentation provides usage guidelines and code samples about a component, event, or interface.

Providing Specification Information and Descriptions

Descriptions on the Specification tab describes a root definition and its attributes and methods.

SEE ALSO:

Controlling Access

Creating Examples
Examples are interactive and help others learn about a component, event, or interface.

Note:  You must create an .auradoc  file before creating an example. For more information, see Creating Documentation
Content.

131

Creating ExamplesCreating Components



In the Component Library, the Example tab renders your example with its code. For instance, see the lightning:avatar  example
at https://developer.salesforce.com/docs/component-library/bundle/lightning:avatar/. Each component, event, or interface can have
multiple examples to demonstrate different use cases.

The following is an example component that demonstrates how to use lightning:avatar. The example uses a component in
the lightningcomponentdemo  namespace. You can create an example component in your own namespace, such as the default
c  namespace.

The example component is rendered as an interactive demo in the Example tab when it’s wired up using the <aura:example>
tag in the .auradoc  file.

<aura:documentation>
<aura:description>

<!-- Your content here -->
</aura:description>

<aura:example name="exampleAvatarBasic" ref="lightningcomponentdemo:exampleAvatarBasic"
label="Basic Avatar">

The following example creates an avatar with the default size and variant.
The initials "BW" is displayed if the image path denoted by the src attribute
is invalid or fails to load for any reason, such as when the user is offline.

</aura:example>
</aura:documentation>

The text content within the <aura:example>  tag is rendered as a tooltip and as a subtitle below the label text. Any HTML markup
is removed.

Examples are not supported for components with dependency on org data, such as with lightning:recordEditForm,
lightning:recordForm, and lightning:recordViewForm. Examples are also not supported for components that
import internal JavaScript libraries, which include:

• lightning:formattedAddress

• lightning:formattedRichText

• lightning:inputAddress

• lightning:inputName

• lightning:inputRichText

Creating Documentation Content
Documentation provides usage guidelines and code samples about a component, event, or interface.

In the Component Library, the Documentation tab renders content from your .auradoc  file. For an example, see the
lightning:avatar  Documentation tab at
https://developer.salesforce.com/docs/component-library/bundle/lightning:avatar/documentation. Each component, event, or interface
element can have one .auradoc  file.

Writing the Documentation
Provide your content in HTML markup. Add usage guidelines and code samples to help developers use your component, event, or
interface easily.

To provide documentation, click DOCUMENTATION in the component sidebar of the Developer Console, which creates a .auradoc
file for your component.

132

Creating Documentation ContentCreating Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:avatar/
https://developer.salesforce.com/docs/component-library/bundle/lightning:avatar/documentation


A .auradoc  file contains these tags.

DescriptionTag

Required. Creates documentation for a component, event, or interface.<aura:documentation>

Required. Describes the component using HTML markup.<aura:description>

References an example that demonstrates how the component is used. Supports HTML markup,
which displays as text preceding the visual output and example component source. Use the
example to create an interactive experience that demonstrates features of your component.

<aura:example>

• name: The API name of the example

• ref: The reference to the example component in the format
<namespace:exampleComponent>

• label: The title that describes the example

Each .auradoc  file can contain multiple <aura:example>  tags.

Basic Formatting
We recommend that you use only the tags listed here and in the following sections. The Component Library strips out or escapes
unexpected tags and attributes for security reasons.

Make sure to include closing tags.

Heading
Only <h4> headings are supported for headings.

<h4>Usage Considerations</h4>

Paragraph

<p>Some cool paragraph about a component</p>

Code Formatting

<p>Here’s a paragraph on the <code>c:myComponentName</code> component.</p>

Code Blocks
Create a code block using the <pre>  tag and an embedded <code>  tag for code highlighting. Code markup must be escaped. For
example, replace <  characters with &lt;.

<pre><code class="language-markup">&lt;aura:component>
&lt;lightning:accordion activeSectionName="B">
&lt;lightning:accordionSection name="A" label="Accordion Title A">This is the content

area for section A&lt;/lightning:accordionSection>
&lt;lightning:accordionSection name="B" label="Accordion Title B">This is the content

area for section B&lt;/lightning:accordionSection>
&lt;/lightning:accordion>

&lt;/aura:component></code></pre>

To enable code highlighting in the Component Library, add the class  attribute to the <code>  tag. Code samples with Aura markup
use the class language-markup. JavaScript controllers use language-js, and CSS use language-css.

133

Creating Documentation ContentCreating Components



Links
The Component Library supports links to other component reference pages, external links, and cross-tab linking from the component
reference to the Lightning Web Components Developer Guide.

Anchor links are currently not supported.

Create a link to another component reference page

<a href="/docs/component-library/bundle/lightning:input/documentation">
lightning:input</a>

Create an external link

<p>
For more information, see the
<a

href=""https://developer.salesforce.com/docs/atlas.en-us.api_console.meta/api_console/"

target="_blank">Console Developer Guide</a>.
</p>

Create a link to a topic in the Lightning Web Components Developer Guide

<a href="/docs/component-library/documentation/lwc/lwc.use_navigate">
Navigate to Pages

</a>

Lists
Lists present related items and can be bulleted or numbered.

Create a bulleted list

<p><code>lightning:listView</code> supports the following features.</p>
<ul>

<li>Inline editing</li>
<li>Mass inline editing for single record types</li>
<li>Resizing and sorting of columns</li>
<li>Search</li>
<li>Text wrapping</li>
<li>Loading of additional rows</li>

</ul>

Create a numbered list

<p>The toolbar provides menus and buttons that are ordered within the following
categories.</p>
<ol>

<li><code>FORMAT_FONT</code>: Font family and size menus. The font menu provides
the following font selection: Arial, Courier, Garamond, Salesforce Sans, Tahoma, Times
New Roman, and Verdana. The font selection defaults to Salesforce Sans with a size of
12px. Supported font sizes are: 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 36,
48, and 72. When you copy and paste text in the editor, the font is preserved only if
the font is available in the font menu.</li>

<li><code>FORMAT_TEXT</code>: Bold, Italic, Underline, and Strikethrough buttons.</li>

134

Creating Documentation ContentCreating Components



<li><code>FORMAT_BODY</code>: Bulleted List, Numbered List, Indent, and Outdent
buttons.</li>

<li><code>ALIGN_TEXT</code>: Left Align Text, Center Align Text, and Right Align
Text buttons.</li>

<li><code>INSERT_CONTENT</code>: Image button. The Image button displays if you
include the <code>lighting:insertImageButton</code> component in
<code>lightning:inputRichText</code>.</li>

<li><code>REMOVE_FORMATTING</code>: Remove formatting button, which stands alone at
the end of the toolbar.</li>
</ol>

Tables
Tables are useful for presenting a list of items with several accompanying descriptions. Nesting a bulleted list in a table is currently not
supported.

<table>
<tr>

<th>Property</th>
<th>Type</th>
<th>Description</th>

</tr>
<tr>

<td>label</td>
<td>string</td>
<td>The text that displays next to a radio button.</td>

</tr>
<tr>

<td>value</td>
<td>string</td>
<td>The string that's used to identify which radio button is selected.</td>

</tr>
</table>

Providing Specification Information and Descriptions
Descriptions on the Specification tab describes a root definition and its attributes and methods.

In the Component Library, the Specification tab renders descriptions from your .cmp, .evt, or .intf  file. For instance, see the
Specification tab for lightning:avatar  at
https://developer.salesforce.com/docs/component-library/bundle/lightning:avatar/specification.

HTML markup is not supported in inline descriptions.

The specification information is generated based on the root-level tag, which looks like this.

<aura:component
access="global"
implements="lightning:myInterface"
minVersion="41.0"
description="A collection of vertically stacked sections with multiple content areas.

This component requires version 41.0 and later.">

The specification information includes:

135

Providing Specification Information and DescriptionsCreating Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:avatar/specification


Access Level
Only root definitions, attributes, and methods marked with access="global" are surfaced in the Component Library.

Abstract
A root definition with abstract="true"  denotes that it’s abstract. An abstract component can’t be used directly in markup.
The default is false.

Extensible
A root definition with extensible="true"  denotes that it’s extensible, which makes it a super component. A sub component
that extends a super component inherits the attributes of the super component. The default is false.

These tags support inline descriptions via the description  attribute.

<aura:component>

The root definition tag in a component .cmp  file.

<aura:component description="Represents a button element.">

<aura:event>

The root definition tag in an event .evt  file.

<aura:event type="COMPONENT"
description="Indicates that a key has been pressed.">

<aura:interface>

The root definition tag in an interface .intf  file.

<aura:interface name="label"
type="String"
description="A common interface for date components.">

<aura:attribute>

An attribute tag in a component, event, or interface file.

<aura:attribute name="label"
type="String"
description="The text to be displayed on the button.">

<aura:method>

A method tag in a component , event, or interface file. Each method tag can contain multiple attribute tags.

<aura:method name="setCustomValidity" description="Sets a custom error message.">
<aura:attribute name="message" type="String"

description="The string that describes the error. If message is an empty string,
the error message is reset."/>
</aura:method>

136

Providing Specification Information and DescriptionsCreating Components



CHAPTER 4 Using Components

You can use components in many different contexts. This section shows you how.In this chapter ...

• Aura Component
Bundle Design
Resources

• Use Aura
Components in
Lightning Experience
and the Salesforce
Mobile App

• Navigate Across Your
Apps with Page
References

• Get Your Aura
Components Ready
to Use on Lightning
Pages

• Use Aura
Components in
Experience Builder

• Use Aura
Components with
Flows

• Add Components to
Apps

• Integrate Your
Custom Apps into the
Chatter Publisher

• Using Background
Utility Items

• Use Lightning
Components in
Visualforce Pages

• Use Aura and
Lightning Web
Components Outside
of Salesforce with
Lightning Out (Beta)

• Lightning Container

137



Aura Component Bundle Design Resources

Use a design resource to control which attributes are exposed to builder tools like the Lightning App Builder, Experience Builder, or Flow
Builder. A design resource lives in the same folder as your .cmp resource, and describes the design-time behavior of the Aura
component—information that visual tools need to display the component in a page or app.

For example, here’s a simple design resource that goes in a bundle with a “Hello World” component. We’ll build on this example as we
move through the supported tags and attributes.

<design:component label="Hello World">
<design:attribute name="subject" label="Subject" description="Name of the person you

want to greet" />
<design:attribute name="greeting" label="Greeting" />

</design:component>

design:component
This is the root element for the design resource. It contains the component’s design-time configuration for tools such as the App Builder
to use.

DescriptionAttribute

Sets the label of the component when it displays in tools such as App Builder.

When creating a custom Lightning page template component, this text displays as the name of the
template in the Lightning App Builder new page wizard.

label

Note:  Label expressions in markup are supported in .cmp  and .app resources only.

design:attribute
To make an Aura component attribute available for admins to edit in tools such as the App Builder, add a design:attribute
node for the attribute into the design resource. An attribute marked as required in the component definition automatically appears,
unless it has a default value assigned to it.

For Lightning page interfaces, the design resource supports only attributes of type Integer, String, or Boolean. To see which
attribute types the lightning:availableForFlowScreens  interface supports, go to Which Custom Lightning Component
Attribute Types Are Supported in Flows?.

Note: In a design:attribute  node, Flow Builder supports only the name, label, description, and default
attributes. The other attributes, like min  and max, are ignored.

DescriptionAttribute

Renders a field as a picklist, with static values. Only supported for String attributes.

<design:attribute name="Name" datasource="value1,value2,value3" />

datasource

You can also set the picklist values dynamically using an Apex class. See Create Dynamic Picklists for
Your Custom Components on page 186 for more information.

138

Aura Component Bundle Design ResourcesUsing Components



DescriptionAttribute

Any String attribute with a datasource  in a design resource is treated as a picklist.

Sets a default value on an attribute in a design resource.

<design:attribute name="Name" datasource="value1,value2,value3"
default="value1" />

default

Displays as an i-bubble for the attribute in the tool.description

Attribute label that displays in the tool.label

If the attribute is an Integer, this sets its maximum allowed value. If the attribute is a String,
this is the maximum length allowed.

max

If the attribute is an Integer, this sets its minimum allowed value. If the attribute is a String,
this is the minimum length allowed.

min

Required attribute. Its value must match the aura:attribute  name value in the .cmp resource.name

Input placeholder text for the attribute when it displays in the tool.placeholder

Denotes whether the attribute is required. If omitted, defaults to false.required

The design attribute’s data type. Color  is the only valid value.

The Color  type displays a color picker in Experience Builder. Applies only to components that
implement the forceCommunity:availableForAllPageTypes  interface.

type

Supported only for aura:attribute  elements of type String  in the .cmp resource.

Use the default  attribute to specify RGBA, RGB, or hex strings. For example:

<design:attribute type="Color" name="buttonColor" default="rgba(0,
255, 255, 1)" />

Note:  Label expressions in markup are supported in .cmp  and .app resources only.

<design:suppportedFormFactors> and
<design:suppportedFormFactor>
Use these tag sets to designate which devices your component supports. The design:suppportedFormFactor  subtag supports
the type  attribute. Valid type values are Large  (desktop) and Small  (phone).

If you don’t declare form factor support for a component, then by default, it supports the same form factors as the page types that it’s
assigned to. App and record pages support the Large  and Small  form factors. Home pages support only the Large  form factor.

Components on app and record pages can render on both mobile and desktop because those pages support both phone and desktop.
Components on Home pages can render only on desktop because Home pages are supported only for desktop.

If you have an app or record page—which support both desktop and phone—you can use design:suppportedFormFactor
to configure a component to render only when the page is viewed on a particular device. For example, if you restrict form factor support

139

Aura Component Bundle Design ResourcesUsing Components



for your app page component to Small, the app page drops the component when the page is viewed on desktop. The app page
displays the component when the page is viewed on a phone.

Here’s the “Hello World” component design resource, with both desktop and phone support added.

<design:component label="Hello World">
<design:attribute name="subject" label="Subject" description="Name of the person you

want to greet" />
<design:attribute name="greeting" label="Greeting" />
<design:supportedFormFactors>

<design:supportedFormFactor type="Large"/>
<design:supportedFormFactor type="Small"/>

</design:supportedFormFactors>
</design:component>

You can add this tag set to your component design file to create custom page templates that support only desktop, only phone, or both.

<sfdc:objects> and <sfdc:object>
Use these tag sets to restrict your component to one or more objects.

Note: <sfdc:objects>  and <sfdc:object>  aren’t supported in Experience Builder or the Flow Builder. They’re also
ignored when setting a component to use as an object-specific action or to override a standard action.

Here’s the same “Hello World” component’s design resource restricted to two objects.

<design:component label="Hello World">
<design:attribute name="subject" label="Subject" description="Name of the person you

want to greet" />
<design:attribute name="greeting" label="Greeting" />
<design:supportedFormFactors>

<design:supportedFormFactor type="Large"/>
<design:supportedFormFactor type="Small"/>

</design:supportedFormFactors>
<sfdc:objects>

<sfdc:object>Custom__c</sfdc:object>
<sfdc:object>Opportunity</sfdc:object>

</sfdc:objects>
</design:component>

If an object is installed from a package, add the namespace__  string to the beginning of the object name when including it in the
<sfdc:object>  tag set. For example: objectNamespace__ObjectApiName__c.

See the User Interface API Developer Guide for the list of supported objects.

SEE ALSO:

Configure Components for Lightning Pages and the Lightning App Builder

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

140

Aura Component Bundle Design ResourcesUsing Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.uiapi.meta/uiapi/ui_api_get_started_supported_objects.htm


Use Aura Components in Lightning Experience and the Salesforce
Mobile App

Customize and extend Lightning Experience and the Salesforce mobile app with Aura components. Launch components from tabs,
apps, and actions.

IN THIS SECTION:

Configure Components for Custom Tabs

Add the force:appHostable interface to an Aura component to allow it to be used as a custom tab in Lightning Experience,
the Salesforce mobile app, and Salesforce mobile web.

Add Aura Components as Custom Tabs in a Lightning Experience App

Make your Aura components available for Lightning Experience users on desktop and in the Salesforce mobile app by displaying
them in a custom tab in a Lightning Experience app.

Lightning Component Actions

Lightning component actions are custom actions that invoke a Lightning component. They support Apex and JavaScript and provide
a secure way to build client-side custom functionality. Lightning component actions are supported only in the Salesforce mobile
app and Lightning Experience.

Override Standard Actions with Aura Components

Add the lightning:actionOverride  interface to an Aura component to enable the component to be used to override a
standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom
components. Overriding standard actions allows you to customize your org using Lightning components, including completely
customizing the way you view, create, and edit records.

Configure Components for Custom Tabs
Add the force:appHostable interface to an Aura component to allow it to be used as a custom tab in Lightning Experience, the
Salesforce mobile app, and Salesforce mobile web.

Components that implement this interface can be used to create tabs in both Lightning Experience, the Salesforce mobile app, and the
Salesforce mobile web.

Example: Example Component

<!--simpleTab.cmp-->
<aura:component implements="force:appHostable">

<!-- Simple tab content -->

<h1>Lightning Component Tab</h1>

</aura:component>

The appHostable  interface makes the component available for use as a custom tab. It doesn’t require you to add anything
else to the component.

SEE ALSO:

Add Aura Components as Custom Tabs in a Lightning Experience App

141

Use Aura Components in Lightning Experience and the
Salesforce Mobile App

Using Components



Add Aura Components as Custom Tabs in a Lightning Experience App
Make your Aura components available for Lightning Experience users on desktop and in the Salesforce mobile app by displaying them
in a custom tab in a Lightning Experience app.

Before you begin, ensure that your component is configured for custom tab usage. See Configure Components for Custom Tabs.

Follow these steps to include your component in a Lightning Experience app and make it available to desktop and mobile users in your
org.

1. Create a custom tab for the component.

a. From Setup, enter Tabs  in the Quick Find box, then select Tabs.

b. Click New in the Lightning Component Tabs related list.

c. Select the Lightning component that you want to make available to users.

d. Enter a label to display on the tab.

e. Select the tab style and click Next.

f. When prompted to add the tab to profiles, accept the default and click Save.

Your Lightning component is now available from the All Items section of the App Launcher on desktop, and the All Items
navigation menu item in the Salesforce mobile app.

2. Add your Lightning components to a Lightning app’s navigation.

a. From Setup, enter Apps  in the Quick Find box, then select App Manager.

b. Edit an existing app or create a new app.

c. On the Navigation Items screen, select your Lightning component tab from the Available Items list and move it to the Selected
Items list.

d. Save the app.

3. To check your output, navigate to the App Launcher in Lightning Experience on desktop or in the Salesforce mobile app. Select the
custom app to see the components that you added.

Lightning Component Actions

EDITIONS

Available in: both the
Salesforce mobile app and
Lightning Experience

Available in: Essentials,
Group, Professional,
Enterprise, Performance,
Unlimited, Contact
Manager, and Developer
Editions

Lightning component actions are custom actions that invoke a Lightning component. They support
Apex and JavaScript and provide a secure way to build client-side custom functionality. Lightning
component actions are supported only in the Salesforce mobile app and Lightning Experience.

You can add Lightning component actions to an object’s page layout using the page layout editor.
If you have Lightning component actions in your org, you can find them in the Mobile & Lightning
Actions category in the page layout editor’s palette.

Lightning component actions can’t call just any Lightning component in your org. For a component
to work as a Lightning component action, it must be configured for that purpose and implement
either the force:LightningQuickAction  or
force:LightningQuickActionWithoutHeader  interfaces. You must also set a default
value for each component attribute marked as required.

If you plan on packaging a Lightning component action, the component the action invokes must
be marked as access=global.

142

Add Aura Components as Custom Tabs in a Lightning
Experience App

Using Components



IN THIS SECTION:

Configure Components for Custom Actions

Add the force:lightningQuickAction  or force:lightningQuickActionWithoutHeader  interface to an
Aura component to enable it to be used as a custom action in Lightning Experience or the Salesforce mobile app. You can use
components that implement one of these interfaces as object-specific or global actions in both Lightning Experience and the
Salesforce mobile app.

Configure Components for Record-Specific Actions

Add the force:hasRecordId  interface to an Aura component to enable the component to be assigned the ID of the current
record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or
action override in Lightning Experience or the Salesforce app, and so on.

Create an Email as a Quick Action

In a custom component, create a button to launch the email composer with pre-populated content. To launch a record create a
page with pre-populated field values, use the lightning:pageReferenceUtils  and lightning:navigation
components together.

Configure Components for Custom Actions
Add the force:lightningQuickAction  or force:lightningQuickActionWithoutHeader  interface to an Aura
component to enable it to be used as a custom action in Lightning Experience or the Salesforce mobile app. You can use components
that implement one of these interfaces as object-specific or global actions in both Lightning Experience and the Salesforce mobile app.

When used as actions, components that implement the force:lightningQuickAction  interface display in a panel with
standard action controls, such as a Cancel button. These components can display and implement their own controls in the body of the
panel, but can’t affect the standard controls. It should nevertheless be prepared to handle events from the standard controls.

If instead you want complete control over the user interface, use the force:lightningQuickActionWithoutHeader
interface. Components that implement force:lightningQuickActionWithoutHeader display in a panel without additional
controls and are expected to provide a complete user interface for the action.

These interfaces are mutually exclusive. That is, components can implement either the force:lightningQuickAction  interface
or the force:lightningQuickActionWithoutHeader interface, but not both. This should make sense; a component can’t
both present standard user interface elements and not present standard user interface elements.

Note:  For your Aura component to work as a custom action, you must set a default value for each component attribute marked
as required.

Example: Example Component

Here’s an example of a component that can be used for a custom action, which you can name whatever you want—perhaps
“Quick Add”. (A component and an action that uses it don’t need to have matching names.) This component quickly adds two
numbers together.

<!--quickAdd.cmp-->
<aura:component implements="force:lightningQuickAction">

<!-- Very simple addition -->

<lightning:input type="number" name="myNumber" aura:id="num1" label="Number 1"/>
+

<lightning:input type="number" name="myNumber" aura:id="num2" label="Number 2"/>

<br/>

143

Lightning Component ActionsUsing Components



<lightning:button label="Add" onclick="{!c.clickAdd}"/>

</aura:component>

The component markup simply presents two input fields, and an Add button.

The component’s controller does all the real work.

/*quickAddController.js*/
({

clickAdd: function(component, event, helper) {

// Get the values from the form
var n1 = component.find("num1").get("v.value");
var n2 = component.find("num2").get("v.value");

// Display the total in a "toast" status message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Quick Add: " + n1 + " + " + n2,
"message": "The total is: " + (n1 + n2) + "."

});
resultsToast.fire();

// Close the action panel
var dismissActionPanel = $A.get("e.force:closeQuickAction");
dismissActionPanel.fire();

}

})

Retrieving the two numbers entered by the user is straightforward, though a more robust component would check for valid inputs,
and so on. The interesting part of this example is what happens to the numbers and how the custom action resolves.

The results of the add calculation are displayed in a “toast,” which is a status message that appears at the top of the page. The
toast is created by firing the force:showToast  event. A toast isn’t the only way you could display the results, nor are actions
the only use for toasts. It’s just a handy way to show a message at the top of the screen in Lightning Experience or the Salesforce
mobile app.

What’s interesting about using a toast here, though, is what happens afterward. The clickAdd  controller action fires the
force:closeQuickAction  event, which dismisses the action panel. But, even though the action panel is closed, the toast
still displays. The force:closeQuickAction event is handled by the action panel, which closes. The force:showToast
event is handled by the one.app container, so it doesn’t need the panel to work.

SEE ALSO:

Configure Components for Record-Specific Actions

Configure Components for Record-Specific Actions
Add the force:hasRecordId  interface to an Aura component to enable the component to be assigned the ID of the current
record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or action
override in Lightning Experience or the Salesforce app, and so on.

144

Lightning Component ActionsUsing Components



force:hasRecordId  is a marker interface. A marker interface is a signal to the component’s container to add the interface’s behavior
to the component.

The recordId  attribute is set only when you place or invoke the component in an explicit record context. For example, when you
place the component directly on a record page layout, or invoke it as an object-specific action from a record page or object home. In all
other cases, such as when you invoke the component as a global action, or create the component programmatically inside another
component, recordId  isn’t set, and your component shouldn’t depend on it.

Example: Example of a Component for a Record-Specific Action

This extended example shows a component designed to be invoked as a custom object-specific action from the detail page of
an account record. After creating the component, you need to create the custom action on the account object, and then add the
action to an account page layout. When opened using an action, the component appears in an action panel that looks like this:

The component definition begins by implementing both the force:lightningQuickActionWithoutHeader  and
the force:hasRecordId  interfaces. The first makes it available for use as an action and prevents the standard controls from
displaying. The second adds the interface’s automatic record ID attribute and value assignment behavior, when the component
is invoked in a record context.

quickContact.cmp

<aura:component controller="QuickContactController"
implements="force:lightningQuickActionWithoutHeader,force:hasRecordId">

<aura:attribute name="account" type="Account" />
<aura:attribute name="newContact" type="Contact"

default="{ 'sobjectType': 'Contact' }" /> <!-- default to empty record -->

145

Lightning Component ActionsUsing Components



<aura:handler name="init" value="{!this}" action="{!c.doInit}" />

<!-- Display a header with details about the account -->
<div class="slds-page-header" role="banner">

<p class="slds-text-heading_label">{!v.account.Name}</p>
<h1 class="slds-page-header__title slds-m-right_small

slds-truncate slds-align-left">Create New Contact</h1>
</div>

<!-- Display the new contact form -->
<lightning:input aura:id="contactField" name="firstName" label="First Name"

value="{!v.newContact.FirstName}" required="true"/>

<lightning:input aura:id="contactField" name="lastname" label="Last Name"
value="{!v.newContact.LastName}" required="true"/>

<lightning:input aura:id="contactField" name="title" label="Title"
value="{!v.newContact.Title}" />

<lightning:input aura:id="contactField" type="phone" name="phone" label="Phone
Number"

pattern="^(1?(-?\d{3})-?)?(\d{3})(-?\d{4})$"
messageWhenPatternMismatch="The phone number must contain 7, 10,

or 11 digits. Hyphens are optional."
value="{!v.newContact.Phone}" required="true"/>

<lightning:input aura:id="contactField" type="email" name="email" label="Email"
value="{!v.newContact.Email}" />

<lightning:button label="Cancel" onclick="{!c.handleCancel}"
class="slds-m-top_medium" />

<lightning:button label="Save Contact" onclick="{!c.handleSaveContact}"
variant="brand" class="slds-m-top_medium"/>

</aura:component>

The component defines the following attributes, which are used as member variables.

• account—holds the full account record, after it’s loaded in the init handler

• newContact—an empty contact, used to capture the form field values

The rest of the component definition is a standard form that displays an error on the field if the required fields are empty or the
phone field doesn’t match the specified pattern.

The component’s controller has all of the interesting code, in three action handlers.

quickContactController.js

({
doInit : function(component, event, helper) {

// Prepare the action to load account record
var action = component.get("c.getAccount");
action.setParams({"accountId": component.get("v.recordId")});

// Configure response handler

146

Lightning Component ActionsUsing Components



action.setCallback(this, function(response) {
var state = response.getState();
if(state === "SUCCESS") {

component.set("v.account", response.getReturnValue());
} else {

console.log('Problem getting account, response state: ' + state);
}

});
$A.enqueueAction(action);

},

handleSaveContact: function(component, event, helper) {
if(helper.validateContactForm(component)) {

// Prepare the action to create the new contact
var saveContactAction = component.get("c.saveContactWithAccount");
saveContactAction.setParams({

"contact": component.get("v.newContact"),
"accountId": component.get("v.recordId")

});

// Configure the response handler for the action
saveContactAction.setCallback(this, function(response) {

var state = response.getState();
if(state === "SUCCESS") {

// Prepare a toast UI message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Contact Saved",
"message": "The new contact was created."

});

// Update the UI: close panel, show toast, refresh account page
$A.get("e.force:closeQuickAction").fire();
resultsToast.fire();
$A.get("e.force:refreshView").fire();

}
else if (state === "ERROR") {

console.log('Problem saving contact, response state: ' + state);
}
else {

console.log('Unknown problem, response state: ' + state);
}

});

// Send the request to create the new contact
$A.enqueueAction(saveContactAction);

}

},

handleCancel: function(component, event, helper) {
$A.get("e.force:closeQuickAction").fire();

147

Lightning Component ActionsUsing Components



}
})

The first action handler, doInit, is an init handler. Its job is to use the record ID that’s provided via the force:hasRecordId
interface and load the full account record. Note that there’s nothing to stop this component from being used in an action on
another object, like a lead, opportunity, or custom object. In that case, doInit  will fail to load a record, but the form will still
display.

The handleSaveContact  action handler validates the form by calling a helper function. If the form isn’t valid, the field-level
errors are displayed. If the form is valid, then the action handler:

• Prepares the server action to save the new contact.

• Defines a callback function, called the response handler, for when the server completes the action. The response handler is
discussed in a moment.

• Enqueues the server action.

The server action’s response handler does very little itself. If the server action was successful, the response handler:

• Closes the action panel by firing the force:closeQuickAction  event.

• Displays a “toast” message that the contact was created by firing the force:showToast  event.

• Updates the record page by firing the force:refreshView  event, which tells the record page to update itself.

This last item displays the new record in the list of contacts, once that list updates itself in response to the refresh event.

The handleCancel  action handler closes the action panel by firing the force:closeQuickAction  event.

The component helper provided here is minimal, sufficient to illustrate its use. You’ll likely have more work to do in any production
quality form validation code.

quickContactHelper.js

({
validateContactForm: function(component) {

var validContact = true;

// Show error messages if required fields are blank
var allValid = component.find('contactField').reduce(function (validFields,

inputCmp) {
inputCmp.showHelpMessageIfInvalid();
return validFields && inputCmp.get('v.validity').valid;

}, true);

if (allValid) {
// Verify we have an account to attach it to
var account = component.get("v.account");
if($A.util.isEmpty(account)) {

validContact = false;
console.log("Quick action context doesn't have a valid account.");

}
}

return(validContact);
}

})

Finally, the Apex class used as the server-side controller for this component is deliberately simple to the point of being obvious.

148

Lightning Component ActionsUsing Components



QuickContactController.apxc

public with sharing class QuickContactController {

@AuraEnabled
public static Account getAccount(Id accountId) {

// Perform isAccessible() checks here
return [SELECT Name, BillingCity, BillingState FROM Account WHERE Id =

:accountId];
}

@AuraEnabled
public static Contact saveContactWithAccount(Contact contact, Id accountId) {

// Perform isAccessible() and isUpdateable() checks here
contact.AccountId = accountId;
upsert contact;
return contact;

}

}

One method retrieves an account based on the record ID. The other associates a new contact record with an account, and then
saves it to the database.

SEE ALSO:

Configure Components for Custom Actions

Create an Email as a Quick Action
In a custom component, create a button to launch the email composer with pre-populated content. To launch a record create a page
with pre-populated field values, use the lightning:pageReferenceUtils  and lightning:navigation  components
together.

These examples show you how to do this using standard actions and override actions.

Launch the QuickAction (Global) Send Email action from a custom component. Quick/Standard Actions can be called using page
references and the navigation service API in any custom Aura component.

Define Navigation Services, pageReference Utils, and Action Button
Define the navigation services, the pageReference utils, and the action button in component markup.

<lightning:navigation aura:id="navService"/>
<lightning:pageReferenceUtils aura:id="pageRefUtil"/>
<div>

<lightning:button label="Send an " value="Global.SendEmail" onclick="{!
c.openPageRefModal}"/>
</div>

149

Lightning Component ActionsUsing Components



Pass Attributes in pageReference  to navService

Pass in the appropriate attributes in pageReference  to navService.

openPageRefModal: function (cmp, event, helper) {

var navService = cmp.find("navService");
var actionApiName = event.getSource().get('v.value');
var pageRef = {

type: "standard__quickAction",
attributes: {

apiName : actionApiName
},
state: {

recordId : '003xx000004WhEiAAK',
}

};

navService.navigate(pageRef);
}

Add Predefined Fields Info
Allow the user to pass action field data as part of the pageReference  attributes with the fieldOverride  payload.

This code is an example of what a pageReference request could look like:

openPageRefModal: function (cmp, event, helper) {
var navService = cmp.find("navService");
var actionApiName = event.getSource().get('v.value');
var pageRef = {

type: "standard__quickAction",
attributes: {

apiName : actionApiName
},
state: {

recordId : '003xx000004WhTJAA0'
}

};
var defaultFieldValues = {

HtmlBody: "Monthly Review",
Subject : "Monthly Review"

}
pageRef.state.defaultFieldValues =

cmp.find("pageRefUtil").encodeDefaultFieldValues(defaultFieldValues);

navService.navigate(pageRef);
}

150

Lightning Component ActionsUsing Components



Override Standard Actions with Aura Components
Add the lightning:actionOverride  interface to an Aura component to enable the component to be used to override a
standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom components.
Overriding standard actions allows you to customize your org using Lightning components, including completely customizing the way
you view, create, and edit records.

Overriding an action with an Aura component closely parallels overriding an action with a Visualforce page. Choose a Lightning component
instead of a Visualforce page in the Override Properties for an action.

However, there are important differences from Visualforce in how you create Lightning components that can be used as action overrides,
and significant differences in how Salesforce uses them. You’ll want to read the details thoroughly before you get started, and test
carefully in your sandbox or Developer Edition org before deploying to production.

IN THIS SECTION:

Standard Actions and Overrides Basics

There are six standard actions available on most standard and all custom objects: Tab, List, View, Edit, New, and Delete. In Salesforce
Classic, these are all distinct actions.

Override a Standard Action with an Aura Component

You can override a standard action with an Aura component in both Lightning Experience and mobile.

151

Override Standard Actions with Aura ComponentsUsing Components



Creating an Aura Component for Use as an Action Override

Add the lightning:actionOverride  interface to an Aura component to allow it to be used as an action override in
Lightning Experience or the Salesforce mobile app. Only components that implement this interface appear in the Lightning
component menu of an object action Override Properties panel.

Packaging Action Overrides

Action overrides for custom objects are automatically packaged with the custom object. Action overrides for standard objects can’t
be packaged.

Standard Actions and Overrides Basics
There are six standard actions available on most standard and all custom objects: Tab, List, View, Edit, New, and Delete. In Salesforce
Classic, these are all distinct actions.

Lightning Experience and the Salesforce mobile app combine the Tab and List actions into one action, Object Home. However, Object
Home is reached via the Tab action in Lightning Experience, and the List action in the Salesforce mobile app. Finally, the Salesforce
mobile app has a unique Search action (reached via Tab). (Yes, it’s a bit awkward and complicated.)

This table lists the standard actions you can override for an object as the actions are named in Setup, and the resulting action that’s
overridden in the three different user experiences.

MobileLightning ExperienceSalesforce ClassicOverride in Setup

searchobject homeobject tabTab

object homen/aobject listList

record homerecord homerecord viewView

record editrecord editrecord editEdit

record createrecord createrecord createNew

record deleterecord deleterecord deleteDelete

Note:

• “n/a” doesn’t mean you can’t access the standard behavior, and it doesn’t mean you can’t override the standard behavior. It
means you can’t access the override. It’s the override’s functionality that’s not available.

• There are two additional standard actions, Accept and Clone. These actions are more complex, and overriding them is an
advanced project. Overriding them isn’t supported.

How and Where You Can Use Action Overrides
Aura components can be used to override the View, New, New Event, Edit, and Tab standard actions in Lightning Experience and the
Salesforce mobile app. You can use an Aura component as an override in Lightning Experience and mobile, but not Salesforce Classic.

Override a Standard Action with an Aura Component
You can override a standard action with an Aura component in both Lightning Experience and mobile.

You need at least one Aura component in your org that implements the lightning:actionOverride  interface. You can use
a custom component of your own, or a component from a managed package.

152

Override Standard Actions with Aura ComponentsUsing Components



Go to the object management settings for the object with the action you plan to override.

1. Select Buttons, Links, and Actions.

2. Select Edit for the action you want to override.

3. Select Lightning component for the area you want to set the override.

4. From the drop-down menu, select the name of the Lightning component to use as the action override.

5. Select Save.

Note:  Users won’t see changes to action overrides until they reload Lightning Experience or the Salesforce mobile app.

SEE ALSO:

Salesforce Help: Find Object Management Settings

Salesforce Help: Override Standard Buttons and Tab Home Pages

Creating an Aura Component for Use as an Action Override
Add the lightning:actionOverride  interface to an Aura component to allow it to be used as an action override in Lightning
Experience or the Salesforce mobile app. Only components that implement this interface appear in the Lightning component menu
of an object action Override Properties panel.

<aura:component
implements="lightning:actionOverride,force:hasRecordId,force:hasSObjectName">

<article class="slds-card">
<div class="slds-card__header slds-grid">
<header class="slds-media slds-media_center slds-has-flexi-truncate">
<div class="slds-media__body">
<h2><span class="slds-text-heading_small">Expense Details</span></h2>

</div>
</header>
<div class="slds-no-flex">

<lightning:button label="Edit" onclick="{!c.handleEdit}"/>
</div>

</div>
<div class="slds-card__body">(expense details go here)</div>

</article>
</aura:component>

In Lightning Experience, the standard Tab and View actions display as a page, while the standard New and Edit actions display in an
overlaid panel. When used as action overrides, Aura components that implement the lightning:actionOverride  interface
replace the standard behavior completely. However, overridden actions always display as a page, not as a panel. Your component displays
without controls, except for the main Lightning Experience navigation bar. Your component is expected to provide a complete user
interface for the action, including navigation or actions beyond the navigation bar.

One important difference from Visualforce that’s worth noting is how components are added to the Lightning component menu. The
Visualforce page menu lists pages that either use the standard controller for the specific object, or that don’t use a standard controller

153

Override Standard Actions with Aura ComponentsUsing Components

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=links_customize_override.htm&language=en_US


at all. This filtering means that the menu options vary from object to object, and offer only pages that are specific to the object, or
completely generic.

The Lightning component menu includes every component that implements the lightning:actionOverride  interface. A
component that implements lightning:actionOverride  can’t restrict an admin to overriding only certain actions, or only
for certain objects. We recommend that your organization adopt processes and component naming conventions to ensure that
components are used to override only the intended actions on intended objects. Even so, it’s your responsibility as the component
developer to ensure that components that implement the lightning:actionOverride  interface gracefully respond to being
used with any action on any object.

Access Current Record Details
Components you plan to use as action overrides usually need details about the object type they’re working with, and often the ID of the
current record. Your component can implement the following interfaces to access those object and record details.

force:hasRecordId

Add the force:hasRecordId  interface to an Aura component to enable the component to be assigned the ID of the current
record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or
action override in Lightning Experience or the Salesforce mobile app, and so on.

force:hasSObjectName

Add the force:hasSObjectName interface to an Aura component to enable the component to be assigned the API name of
current record’s sObject type. The sObject name is useful if the component can be used with records of different sObject types, and
needs to adapt to the specific type of the current record.

Note: As of Spring ’19 (API version 45.0), you can build Lightning components using two programming models: the Lightning
Web Components model, and the original Aura Components model. Lightning web components are custom HTML elements built
using HTML and modern JavaScript. Lightning web components and Aura components can coexist and interoperate on a page.
As of API version 45.0, when we say Lightning components, we mean both Aura components and Lightning web components.

Packaging Action Overrides
Action overrides for custom objects are automatically packaged with the custom object. Action overrides for standard objects can’t be
packaged.

When you package a custom object, overrides on that object’s standard actions are packaged with it. This includes any Lightning
components used by the overrides. Your experience should be “it just works.”

However, standard objects can’t be packaged. As a consequence, there’s no way to package overrides on the object’s standard actions.

To override standard actions on standard objects in a package, do the following:

• Manually package any Lightning components that are used by the overrides.

• Provide instructions for subscribing orgs to manually override the relevant standard actions on the affected standard objects.

SEE ALSO:

Override a Standard Action with an Aura Component

Metadata API Developer Guide : ActionOverride

154

Override Standard Actions with Aura ComponentsUsing Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/actionoverride.htm


Navigate Across Your Apps with Page References

The pageReference  JavaScript object represents a URL for a page. You can use a pageReference  instead of parsing or creating
a URL directly. This approach helps you avoid broken navigation if Salesforce changes URL formats in the future.

These navigation resources are supported only in Lightning Experience, Experience Builder sites, and the Salesforce mobile app. They’re
not supported in other containers, such as Lightning Components for Visualforce, or Lightning Out. This is true even if you access these
containers inside Lightning Experience or the Salesforce mobile app.

IN THIS SECTION:

Basic Navigation

The pageReference  JavaScript object represents a URL for a page. You can use a pageReference  instead of parsing or
creating a URL directly. This approach helps you avoid broken navigation if Salesforce changes URL formats in the future.

Add Links to Lightning Pages from Your Custom Components

To link to Lightning Experience pages, use lightning:formattedUrl  in your custom component. The
lightning:formattedUrl  component displays a URL as a hyperlink.

Add Query Parameters

To add query parameters to the URL, update the PageReference state  property. The key-value pairs of the state  property are
serialized to URL query parameters. The query parameters describe the page and form a more specific URL that the user can save or
bookmark.

Navigate to a Record Create Page with Default Field Values

The lightning:pageReferenceUtils  component provides utilities for encoding default field values into a string. Pass
this string into the pageReference.state.defaultFieldValues attribute on standard__objectPage  page
reference types.

Navigate to a Web Page

The navigation service supports different kinds of pages in Lightning. Each page reference type supports a different set of attributes
and state properties.

Migrate to lightning:isUrlAddressable from force:navigateToComponent

The pageReference  JavaScript object represents a URL for a page. You can use a pageReference  instead of parsing or
creating a URL directly. This approach helps you avoid broken navigation if Salesforce changes URL formats in the future.

pageReference Types

To navigate in Lightning Experience, Experience Builder sites, or the Salesforce mobile app, define a PageReference  object.
The pageReference  type generates a unique URL format and defines attributes that apply to all pages of that type. For Experience
Builder sites, depending on the page type, the pageReference  property requirements can differ between LWR sites and Aura
sites.

Basic Navigation
The pageReference  JavaScript object represents a URL for a page. You can use a pageReference  instead of parsing or creating
a URL directly. This approach helps you avoid broken navigation if Salesforce changes URL formats in the future.

Use the following resources to simplify navigation across your apps. URLs for components using these resources are case-sensitive. For
examples, see the Component Library.

Important:  Navigation isn’t supported for inactive pages. A page is considered inactive if it’s not currently visible in the DOM,
such as a minimized page.

155

Navigate Across Your Apps with Page ReferencesUsing Components



lightning:navigation

To navigate to a page or component, use the navigate(pageReference, replace)  method from
lightning:navigation. This approach is a substitute for a navigateTo*  event, and both are supported.

When you navigate to a page reference from a modal, such as from a component that’s enabled for quick actions, the modal isn’t
automatically closed by default. To automatically close the modal when navigating to another page reference, set replace  to
true.

To generate a URL in your component, use the generateUrl()  method in lightning:navigation  to resolve the URL.

Note: generateUrl()  returns a promise, which calls back with the resulting URL.

lightning:isUrlAddressable
To enable a component to navigate directly via a URL, add the lightning:isUrlAddressable  interface to your component.

Tip: pageReference  and lightning:isUrlAddressable  replace the force:navigateToComponent
event for navigating directly to a component. Unlike the force:navigateToComponent  event information-mapping
protocol, the only attribute populated through the navigation dispatching system is the pageReference  attribute.
Information is passed to the addressed component through the state  properties on the target page reference.
lightning:isUrlAddressable  doesn’t automatically set attributes on the target component. Get parameters from
v.pageReference.state  and manually set them using the target component’s init  handler.

pageReference  provides a well-defined structure that describes the page type and its corresponding attributes. pageReference
supports the following properties.

Required?DescriptionTypeProperty

YThe API name of the pageReference  type, for example,
standard__objectPage.

Stringtype

YValues for each attribute specified by the page definition, for example,
objectAPIName  or actionName.

Objectattributes

Parameters that are tied to the query string of the URL in Lightning
Experience, such as filterName. The routing framework doesn’t depend

Objectstate

on state  to render a page. Some page reference types support a standard
set of state  properties. You can also pass non-standard properties into
state  as long as they’re namespaced.

Note: Experience Builder sites don’t support the state property.

SEE ALSO:

pageReference Types

Add Links to Lightning Pages from Your Custom Components
To link to Lightning Experience pages, use lightning:formattedUrl  in your custom component. The
lightning:formattedUrl  component displays a URL as a hyperlink.

If you use raw anchor tags or the ui:outputUrl (deprecated) component for links, the page does a full reload each time you click
the link. To avoid full page reloads, replace your link components with lightning:formattedUrl.

156

Add Links to Lightning Pages from Your Custom ComponentsUsing Components



For examples, see the Component Library.

Migrate from ui:outputUrl  to lightning:formattedUrl
Copy the attributes from the ui:outputUrl component.

<aura:component>
<ui:outputURL value="https://my/path" label="Contact ID" />

</aura:component>

Paste the same attributes into the lightning:formattedUrl  component. lightning:formattedUrl  supports more
attributes, like tooltip.

<aura:component>
<div aura:id="container">

<p><lightning:formattedUrl value="https://my/path" label="Contact ID" tooltip="Go
to Contact's recordId" /></p>

</div>
</aura:component>

SEE ALSO:

Component Library: lightning:formattedUrl Reference

Add Query Parameters
To add query parameters to the URL, update the PageReference state  property. The key-value pairs of the state  property are
serialized to URL query parameters. The query parameters describe the page and form a more specific URL that the user can save or
bookmark.

Keep these behaviors in mind when working with the state  property.

• You can’t directly change the pageReference object. To update the state, create a new pageReference  object, and
copy the values using Object.assign({}, pageReference).

• state  parameters must be namespaced. For example, a managed package with the namespace abc  with a parameter
accountId  is represented as abc__accountId. The namespace for custom components is c__.Parameters without a
namespace are reserved for Salesforce use. This namespace restriction is introduced under a critical update in Winter ’19 and enforced
in Summer ’19.

• Since the key-value pairs of PageReference.state  are serialized to URL query parameters, all the values must be strings.

• Code that consumes values from state  must parse the value into its proper format.

• To delete a value from the state  object, define it as undefined.

If your component uses the lightning:hasPageReference or lightning:isUrlAddressable  interfaces, always
implement a change handler. When the target of a navigation action maps to the same component, the routing container might simply
update the pageReference  attribute value instead of recreating the component. In this scenario, a change handler ensures that
your component reacts correctly.

Navigate to a Record Create Page with Default Field Values
The lightning:pageReferenceUtils  component provides utilities for encoding default field values into a string. Pass this
string into the pageReference.state.defaultFieldValues attribute on standard__objectPage  page reference
types.

157

Add Query ParametersUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:formattedUrl/example
https://developer.salesforce.com/docs/component-library/bundle/lightning:formattedUrl/documentation


To launch a record create page with prepopulated field values, use the lightning:pageReferenceUtils  and
lightning:navigation  components together. The examples on this page show you how to do this using standard actions and
override actions.

Launch an Account Record with Default Field Values Using a Standard Action
This example adds two standard action links that navigate to a record create page with default field values. The first link uses a URL that
you generate using generateUrl(pageRef), and the second link navigates directly to the record create page using
navigate(pageRef).

<!-- auraNavigator.cmp -->
<aura:component implements="force:appHostable,flexipage:availableForAllPageTypes">

<aura:attribute name="url" type="String"/>

<!-- Specify the pageReference type. Only object is supported. -->
<aura:attribute name="pageReference" type="Object"/>
<aura:handler name="init" value="{! this }" action="{! c.init }"/>

<!-- Implement the navigation service. -->
<lightning:navigation aura:id="navService"/>

<!-- pageReferenceUtil component -->
<lightning:pageReferenceUtils aura:id="pageRefUtils"/>

<!-- Generate a link to launch an account record create page. -->
<a href="{!v.url}">New Account (Aura Link)</a> <br/>

<!-- Launch an account record create page -->
<a href="#" onclick="{!c.handleClick}">New Account (Aura PageRef)</a> <br/>

</aura:component>

In your client-side controller, get defaultFieldValues  from pageRef and pass them into
encodeDefaultFieldValues(). When you click a link to create an account, encodeDefaultFieldValues()  reads
and encodes the values and passes them into a new standard__objectPage.

// auraNavigatorController.js
({

init : function(cmp, event, helper) {
var navService = cmp.find("navService");
var pageRef = {

type: "standard__objectPage",
attributes: {

objectApiName: "Account",
actionName: "new"

},
state: {
}

}
// Replace with your own field values
var defaultFieldValues = {

Name: "Salesforce, #1=CRM",
OwnerId: "005XXXXXXXXXXXXXXX",
AccountNumber: "ACXXXX",
NumberOfEmployees: 35000,

158

Navigate to a Record Create Page with Default Field ValuesUsing Components



CustomCheckbox__c: true
};
pageRef.state.defaultFieldValues =

cmp.find("pageRefUtils").encodeDefaultFieldValues(defaultFieldValues);
cmp.set("v.pageReference", pageRef);
var defaultUrl = "#";

// Generate a Link for the Aura Link example
navService.generateUrl(pageRef)
.then($A.getCallback(function(url) {

cmp.set("v.url", url ? url : defaultUrl);
}), $A.getCallback(function(error) {

cmp.set("v.url", defaultUrl);
}));

},

// Navigate to the record create page for the Aura PageRef example
handleClick : function(cmp, event, helper) {

var navService = cmp.find("navService");
var pageRef = cmp.get("v.pageReference");
event.preventDefault();
navService.navigate(pageRef);

}
})

Handle Default Field Values Using an Override Action
With standard actions, the default field values pass through the URL to the object as a string, and the redirect and replace is handled for
you. With override actions, the encoding is handled for you, but you are responsible for decoding the string of default field values from
the URL and handling the redirect and replace.

Important:  We recommend that you always redirect and replace to remove the default field values from the URL and browser
history.

This example uses hasPageReference  to launch an account create page via an override action.

<!-- auraNewAccountOverride.cmp -->
<aura:component implements="lightning:actionOverride,lightning:hasPageReference">

<lightning:pageReferenceUtils aura:id="pageRefUtils"/>
<lightning:recordEditForm

objectApiName="Account"
onload="{!c.handleCreateLoad}">

<lightning:messages />
<lightning:inputField aura:id="nameField" fieldName="Name"/>
<lightning:inputField aura:id="numOfEmpField" fieldName="NumberOfEmployees"/>
<lightning:inputField aura:id="ownerIdField" fieldName="OwnerId"/>
<lightning:inputField aura:id="customCheckField" fieldName="CustomCheckbox__c"/>
<lightning:button class="slds-m-top_small" type="submit" label="Create new" />

</lightning:recordEditForm>
</aura:component>

The client-side controller reads the default field values from the state  key and gets the encoded string. It then passes the string into
decodeDefaultFieldValues()  to decode it and retrieve the object.

159

Navigate to a Record Create Page with Default Field ValuesUsing Components



Important:  All default field values are passed into the record create page as strings, regardless of field type. For example,
NumberOfEmployees: 35000  is passed into the page as the string 35000  instead of a number field type. Boolean values
are passed into the page as true  or false strings.

This example is similar to prepopulating field values using lightning:recordEditForm, except that here the
defaultFieldValues  are dynamically generated when navigating to the form.

// auraNewAccountOverrideController.js
({

handleCreateLoad: function (cmp, event, helper) {
var pageRef = cmp.get("v.pageReference");
var defaultFieldValues =

cmp.find("pageRefUtils").decodeDefaultFieldValues(pageRef.state.defaultFieldValues);

var nameFieldValue = cmp.find("nameField").set("v.value", defaultFieldValues.Name);

var numOfEmpFieldValue = cmp.find("numOfEmpField").set("v.value",
defaultFieldValues.NumberOfEmployees);

var ownerIdFieldValue = cmp.find("ownerIdField").set("v.value",
defaultFieldValues.OwnerId);

var customCheckFieldValue = cmp.find("customCheckField").set("v.value",
defaultFieldValues.CustomCheckbox__c === 'true');

}
})

SEE ALSO:

Component Library: lightning:pageReferenceUtils Reference

Navigate to a Web Page
The navigation service supports different kinds of pages in Lightning. Each page reference type supports a different set of attributes and
state properties.

Instead of using force:navigateToURL, we recommend navigating to web pages using the lightning:navigate
component with the standard__webPage  page type.

This code shows examples of navigating to a web page using the old force:navigateToURL  event.

// Old way to navigate to a web page
$A.get("markup://force:navigateToURL").setParams({

url: 'https://salesforce.com',
}).fire();

Replace the previous code that uses force:navigateToURL  with the following code. This example shows how to navigate to a
web page using the standard__webPage  page type. It assumes that you added <lightning:navigation
aura:id="navigationService" />  in your component markup.

cmp.find("navigationService").navigate({
type: "standard__webPage",
attributes: {

url: 'https://salesforce.com'
}

});

160

Navigate to a Web PageUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:pageReferenceUtils/documentation


Migrate to lightning:isUrlAddressable from
force:navigateToComponent
The pageReference  JavaScript object represents a URL for a page. You can use a pageReference  instead of parsing or creating
a URL directly. This approach helps you avoid broken navigation if Salesforce changes URL formats in the future.

If you’re currently using the force:navigateToComponent  event, you can provide backward compatibility for bookmarked
links by redirecting requests to a component that uses lightning:isUrlAddressable.

First, copy your original component, including its definition, controller, helper, renderer, and CSS. Make the new component implement
the lightning:isUrlAddressable  interface.

Change the new component to read the values passed through the navigation request from
cmp.get("v.pageReference").state.

Note: You can’t use two-way binding to map values from pageReference.state  to a subcomponent that sets those
values. You can’t modify the state  object. As a workaround, copy the values from pageReference.state  into your own
component’s attribute using a handler.

// Add a handler to your component

<aura:handler name="init" value="{!this}" action="{!c.init}" />

// Controller example

({

init: function(cmp, event, helper) {

var pageReference = cmp.get("v.pageReference");

cmp.set("v.myAttr", pageReference.state.c__myAttr);

// myAttr can be modified, but isn’t reflected in the URL

}

})

In the new component, remove the attributes mapped from the URL that aren’t used to copy values from the page state in the component’s
init handler.

Change the instances that navigate to your old component to the new API and address of your new component. For example, remove
instances of force:navigateToComponent, like
$A.get("e.force:navigateToComponent").setParams({componentDef: "c:oldCmp", attributes:
{"myAttr": "foo"}}).fire();.

Add <lightning:navigation aura:id="navigationService" />  to your component markup, and update it to
use navigationService. Pass in a pageReference.

cmp.find("navigationService").navigate({
type: "standard__component",
attributes: {

componentName: "c__myCmpCopy"
},
state: {

"c__myAttr": "foo"
}

});

161

Migrate to lightning:isUrlAddressable from
force:navigateToComponent

Using Components



In the original component’s init  handler, send a navigation redirect request to navigate to the new component. Pass the third
argument in the navigate API call as true. This argument indicates that the request replaces the current entry in the browser history
and avoids an extra entry when using a browser’s navigation buttons.

({
init: function(cmp, event, helper) {

cmp.find("navigation").navigate({
type: "standard__component",
attributes: {

componentName: "c__componentB" },
state: {

c__myAttr: cmp.get("v.myAttr")
}

}, true); // replace = true
}

})

Remove all other code from the original component’s definition, controller, helper, renderer, and CSS. Leave only the navigation redirect
call.

pageReference Types
To navigate in Lightning Experience, Experience Builder sites, or the Salesforce mobile app, define a PageReference  object. The
pageReference  type generates a unique URL format and defines attributes that apply to all pages of that type. For Experience
Builder sites, depending on the page type, the pageReference  property requirements can differ between LWR sites and Aura sites.

The following types are supported.

• App

• External Record Page

• External Record Relationship Page

• Knowledge Article

• Lightning Component (must implement lightning:isUrlAddressable)

• Login Page

• Managed Content Page (Salesforce CMS)

• Named Page (Experience Cloud)

• Named Page (Standard)

• Navigation Item Page

• Object Page

• Record Page

• Record Relationship Page

• Web Page

Note: PageReference  objects are supported on a limited basis for Experience Builder sites, as noted for each type.

App Type
A standard or custom app available from the App Launcher in an org. Use this pageReference  type to create custom navigation
components that take users to a specific app or page within the app. Connected apps aren’t supported.

162

pageReference TypesUsing Components



Note:  If you’re navigating users to a different app using a pageRef, the app opens in the same window by default. To open a
link in a new tab, see the navigation service documentation.

Type

standard__app

Experience
Lightning Experience

Type Attributes

Required?DescriptionTypeProperty

YesApp that you’re navigating to. Pass either the appId  or
appDeveloperName  to the appTarget.

StringappTarget

The appId  is the DurableId  field on the AppDefinition
sObject.

The appDeveloperName  value is formed by concatenating the app’s
namespace with the developer name. To find the app’s developer name,
navigate to the App Manager in Setup and look in the Developer Name
column.

For standard apps, the namespace is standard__. For custom apps,
it’s c__. For managed packages, it’s the namespace registered for the
package.

NoIdentifies a specific location in the app you’re navigating to. Pass in the
pageRef  and applicable attributes for that pageRef  type.

PageReferencepageRef

Example Navigating to an App

{
type: "standard__app",
attributes: {

appTarget: "standard__Sales",
}

}

Example Navigating to a Record in an App

{
type: "standard__app",
attributes: {

appTarget: "standard__LightningSales",
pageRef: {

type: "standard__recordPage",
attributes: {

recordId: "001xx000003DGg0AAG",
objectApiName: "Account",
actionName: "view"

}
}

163

pageReference TypesUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:navigation/documentation


}
}

URL Format

/lightning/app/{appTarget}{...pageRef}

URL Format Examples

Navigate to the app’s homepage using the appId

/lightning/app/06mRM0000008dNrYAI

Navigate to an object record’s page in the app using the appId

/lightning/app/06mRM0000008dNrYAI/o/Case/home

Navigate to the app’s homepage using the appDeveloperName

/lightning/app/standard__LightningSales

Navigate to an object record’s page in the app using the appDeveloperName

/lightning/app/standard__LightningSales/o/Case/home

External Record Page
A page that interacts with an external record. Currently supports CMS Connect pages.

Type

comm__externalRecordPage

Experience
Experience Builder Aura Sites

Type Attributes

Required?DescriptionTypeProperty

External record ID.StringrecordId

External record type. Currently only supports cms  for CMS Connect.StringobjectType

Additional information used to identify the record for the objectType.ObjectobjectInfo

Example

{
type: "comm__externalRecordPage",
attributes: {

recordId: "26",
objectType: "cms",
objectInfo: {

cmsSourceName: "blog",
cmsTypeName: "feed",

}

164

pageReference TypesUsing Components



},
state: {

recordName: "coffee-on-the-world-map",
}

}

URL Format

/{baseUrl}/{recordId}/{recordName}

External Record Relationship Page
A page that interacts with an external relationship on a particular record in the org. Currently only supports Quip Related List page.

Type

comm__externalRecordRelationshipPage

Experience
Experience Builder Aura Sites

Type Attributes

Required?DescriptionTypeProperty

The 18 character record ID.StringrecordId

External record type. Currently only supports quip  for Quip docs.StringobjectType

Example

{
type: "comm__externalRecordRelationshipPage",
attributes: {

recordId: "001xx000003DGg0AAG",
objectType: "quip",

URL Format

/{baseUrl}/{recordId}

Lightning Component Type
A Lightning component that implements the lightning:isUrlAddressable  interface, which enables the component to be
navigated directly via URL.

Type

standard__component

Experience
Lightning Experience, Salesforce Mobile App

165

pageReference TypesUsing Components



Type Attributes

Required?DescriptionTypeProperty

YesThe Lightning component name in the format
namespace__componentName.

StringcomponentName

Example

{
"type": "standard__component",
"attributes": {

"componentName": "c__MyLightningComponent"
},
"state": {

"c__myAttr": "attrValue"
}

}

You can pass any key and value in the state  object. The key must include a namespace, and the value must be a string. If you
don’t have a registered namespace, add the default namespace of c__.

URL Format

/cmp/{componentName}?c__myAttr=attrValue

Login Page Type
An authentication for an Experience Builder site.

Type

comm__loginPage

Experience
Experience Builder sites

Type Attributes

RequiredDescriptionTypeProperty

YesA login-related action to be performed. Possible values are:StringactionName

• login

• logout

Note:  You can only navigate to the following

comm__namedPages

when you're calling navigate from them: Login, Check Password, Forgot Password, Login Error, and Register. Other page
references don't work from these pages.

166

pageReference TypesUsing Components



Example

{
type: "comm__loginPage",
attributes: {

actionName: "login"
}

}

Knowledge Article Page Type
A page that interacts with a Knowledge Article record.

Type

standard__knowledgeArticlePage

Experience
Lightning Experience, Experience Builder sites, Salesforce Mobile App

Type Attributes

Required?DescriptionTypeProperty

YesThe ArticleType  API name of the Knowledge Article record.

In Experience Builder sites, articleType  is ignored.

StringarticleType

YesThe value of the urlName  field on the target KnowledgeArticleVersion
record. The urlName  is the article's URL.

StringurlName

Example

{
"type": "standard__knowledgeArticlePage",
"attributes": {

"articleType": "Briefings",
"urlName": "February-2017"

}
}

URL Format

/articles/{articleType}/{urlName}

URL Format (Experience Cloud)

/article/{urlName}

Managed Content Page (Salesforce CMS)
A CMS content page in an Experience Builder site with a unique name.

167

pageReference TypesUsing Components



Type

standard__managedContentPage

Experience
Experience Builder sites

Type Attributes

Required?DescriptionTypeProperty

YesThe name of the Salesforce CMS content type.StringcontentTypeName

YesThe unique content key that identifies CMS content.contentKey

Example

{
type: 'standard__managedContentPage',
attributes : {

'contentTypeName': 'news',
'contentKey': 'MCOMALJDRAYFFSFPNBQONYXVFHOA'

}
}

URL Format

/:urlAlias

Named Page Type (Experience Cloud)
A standard page in an Experience Builder site with a unique name. If an error occurs, the error view loads and the URL isn’t updated.

Type

comm__namedPage

Experience
Experience Builder sites

Type Attributes

Required?DescriptionTypeProperty

YesThe unique name of the Experience Builder site page. The value for name
is the API Name value for a supported page. The API Name field can only

Stringname

be defined when a new page is being created, and must be unique. If the
API Name isn’t defined upon page creation, it’s automatically generated.
The value of home  is reserved for the landing page of any Experience
Builder site in your org.

Supported pages are:

• Home

• Account Management

168

pageReference TypesUsing Components



Required?DescriptionTypeProperty

• Contact Support

• Error

• Login

• My Account

• Top Articles

• Topic Catalog

• Custom pages

Example

{
type: "comm__namedPage",
attributes: {

name: "Home"
}

}

URL Format

/{URL as defined on the page’s properties}

Named Page Type (Standard)
A standard page with a unique name. If an error occurs, the error view loads and the URL isn’t updated.

Type

standard__namedPage

Experience
Lightning Experience, Salesforce Mobile App

Type Attributes

Required?DescriptionTypeProperty

YesThe unique name of the page.

Possible values are:

StringpageName

• home

• chatter

• today

• dataAssessment

• filePreview

169

pageReference TypesUsing Components



Example

{
"type": "standard__namedPage",
"attributes": {

"pageName": "home"
}

}

URL Format

/page/{pageName}

Navigation Item Page Type
A page that displays the content mapped to a CustomTab. Visualforce tabs, web tabs, Lightning Pages, and Lightning Component tabs
are supported.

Type

standard__navItemPage

Experience
Lightning Experience, Salesforce Mobile App

Type Attributes

Required?DescriptionTypeProperty

YesThe unique name of the CustomTab.StringapiName

Example

{
"type": "standard__navItemPage",
"attributes": {

"apiName": "MyCustomTabName"
}

}

URL Format

/n/{apiName}

Object Page Type
A page that interacts with a standard or custom object in the org and supports standard actions for that object.

Note:  The standard__objectPage  type replaces the force:navigateToObjectHome  and the
force:navigateToList  events.

Type

standard__objectPage

170

pageReference TypesUsing Components



Experience
Lightning Experience, Experience Builder sites, Salesforce Mobile App

Type Attributes

Required?DescriptionTypeProperty

YesThe action name to invoke. Valid values include home, list, and new.

In Experience Builder sites, list  and home  are the same.

StringactionName

YesThe API name of the standard or custom object. For custom objects that
are part of a managed package, prefix the custom object with ns__.

StringobjectApiName

State

Required?Supported
Actions

DescriptionTypeProperty

NolistID or developer name of the object page. Default is Recent.StringfilterName

NonewList of key-value pairs for the default field values that you’re
passing. This list is generated by the

StringdefaultFieldValues

lightning:pageReferenceUtils component. See
lightning:pageReferenceUtils for details.

Nohome, list,
new

To use a standard action, assign this property any value, such as
1. To use an override action, don’t include this property at all.

Stringnooverride

Standard Object Example

// Opens the case home page.
{

"type": "standard__objectPage",
"attributes": {

"objectApiName": "Case",
"actionName": "home"

}
}

Navigate to a Specific List View Example

// Navigates to account list with the filter set to RecentlyViewedAccounts.
{

"type": "standard__objectPage",
"attributes": {

"objectApiName": "ns__Widget__c",
"actionName": "list"

},
"state": {

"filterName": "RecentlyViewedAccounts"
}

}

171

pageReference TypesUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:pageReferenceUtils/documentation


Navigate to a Record Create Page with Default Field Values

// Navigates to a new account object using these default field values.
//{
// Name: "Salesforce, #1=CRM",
// OwnerId: "005XXXXXXXXXXXXXXX",
// AccountNumber: "ACXXXX",
// NumberOfEmployees: 35000,
// CustomCheckbox__c: true
//}
{

type: "standard__objectPage",
attributes: {

objectApiName: "Account",
actionName: "new"

},
state: {

defaultFieldValues =
"AccountNumber=ACXXXX,CustomCheckbox__c=true,Name=Salesforce%2C%20%231%3DCRM,NumberOfEmployees=35000,OwnerId=005XXXXXXXXXXXXXXX",

nooverride: "1"
}

}

URL Format

/o/{objectApiName}/{actionName}
/o/{objectApiName}/{actionName}?filterName=Recent

URL Format (Experience Cloud)

/recordlist/{objectApiName}
/{baseUrl}/{objectApiName}

Record Page Type
A page that interacts with a record in the org and supports standard actions for that record.

Note:  The standard__recordPage  type replaces the force:navigateToSObject  event.

Type

standard__recordPage

Experience
Lightning Experience, Experience Builder sites, Salesforce Mobile App

Type Attributes

Required?DescriptionTypeProperty

YesThe action name to invoke. Valid values include clone, edit, and
view.

Experience Builder sites don’t support the values clone  or edit.

StringactionName

172

pageReference TypesUsing Components



Required?DescriptionTypeProperty

Yes, for
Experience

The API name of the record’s object. Optional for lookups.StringobjectApiName

Builder LWR sites
only

No, for all other
experiences

YesThe 18 character record ID.StringrecordId

State

Required?DescriptionTypeProperty

NoTo use a standard action, assign this property any value, such as 1. To use
an override action, don’t include this property at all.

Stringnooverride

Example

{
"type": "standard__recordPage",
"attributes": {

"recordId": "001xx000003DGg0AAG",
"objectApiName": "PersonAccount",
"actionName": "view"

}
}

URL Format

/r/{objectApiName}/{recordId}/{actionName}
/r/{recordId}/{actionName}

URL Format (Experience Cloud)

/detail/{recordId}
/{baseUrl}/{recordId}

Record Relationship Page Type
A page that interacts with a relationship on a particular record in the org. Only related lists are supported.

Note:  The standard__recordRelationshipPage  type replaces the force:navigateToRelatedList  event.

Type

standard__recordRelationshipPage

Experience
Lightning Experience, Experience Builder sites, Salesforce Mobile App

173

pageReference TypesUsing Components



Type Attributes

Required?DescriptionTypeProperty

YesThe action name to invoke. Only view  is supported.StringactionName

Yes, for
Experience

The API name of the object that defines the relationship. Optional for
lookups.

StringobjectApiName

Builder LWR sites
only

No, for all other
experiences

YesThe 18 character record ID of the record that defines the relationship.StringrecordId

YesThe API name of the object’s relationship field.StringrelationshipApiName

Example

{
"type": "standard__recordRelationshipPage",
"attributes": {

"recordId": "500xx000000Ykt4AAC",
"objectApiName": "Case",
"relationshipApiName": "CaseComments",
"actionName": "view"

}
}

URL Format

/r/{objectApiName}/{recordId}/related/{relationshipApiName}/{actionName}
/r/{recordId}/related/{relationshipApiName}/{actionName}

URL Format (Experience Cloud)

/relatedlist/{recordId}/{relationshipApiName}
/{baseUrl}/related/{recordId}/{relationshipApiName}

Web Page
An external URL. Navigate to web pages using the lightning:navigate  component with the standard__webPage  page
type instead of using force:navigateToURL. In Aura sites, certain internal Salesforce URLs have site-specific processing. For
example, /apex/  URLs are translated to /sfdcpage/. The Visualforce page is embedded within the site in an iFrame, which is the
same behavior as with force:navigateToURL. Use window.open  if you want to go straight to the URL, such as opening
/apex/  directly in a new tab.

Type

standard__webPage

Experience
Lightning Experience, Salesforce Mobile App

174

pageReference TypesUsing Components



Attributes

RequiredDescriptionTypeProperty

YesThe URL of the page you’re navigating to.Stringurl

Example

{
"type": "standard__webPage",
"attributes": {

"url": "https://salesforce.com"
}

}

URL Format
A web page opens as is in a new tab, so it doesn’t have a URL format.

SEE ALSO:

LWR Sites for Experience Cloud: Lightning Navigation

Get Your Aura Components Ready to Use on Lightning Pages

Custom Aura components don’t work on Lightning pages or in the Lightning App Builder right out of the box. To use a custom component
in either of these places, configure the component and its component bundle so that they’re compatible.

IN THIS SECTION:

Configure Components for Lightning Pages and the Lightning App Builder

There are a few steps to take before you can use your custom Aura components in either Lightning pages or the Lightning App
Builder.

Configure Components for Lightning Experience Record Pages

After your component is set up to work on Lightning pages and in the Lightning App Builder, use these guidelines to configure the
component so it works on record pages in Lightning Experience.

Create Components for the Outlook and Gmail Integrations

Create custom Aura components that are available to add to the email application pane for the Outlook and Gmail integrations.

Create Components for Forecast Pages

Create custom Aura components that are available to add to Lightning forecasts pages.

Create Dynamic Picklists for Your Custom Components

You can expose a component property as a picklist when the component is configured in the Lightning App Builder. The picklist’s
values are provided by an Apex class that you create.

Create a Custom Lightning Page Template Component

Every standard Lightning page is associated with a default template component, which defines the page’s regions and what
components the page includes. Custom Lightning page template components let you create page templates to fit your business
needs with the structure and components that you define. Once implemented, your custom template is available in the Lightning
App Builder’s new page wizard for your page creators to use.

175

Get Your Aura Components Ready to Use on Lightning PagesUsing Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.exp_cloud_lwr.meta/exp_cloud_lwr/get_started_comp_navigation.htm


Lightning Page Template Component Best Practices

Keep these best practices and limitations in mind when creating Lightning page template components.

Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo

When you add a component to a region on a page in the Lightning App Builder, the lightning:flexipageRegionInfo
sub-component passes the width of that region to its parent component. With lightning:flexipageRegionInfo  and
some strategic CSS, you can tell the parent component to render in different ways in different regions at runtime.

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Keep these guidelines in mind when creating components and component bundles for Lightning pages and the Lightning App
Builder.

Configure Components for Lightning Pages and the Lightning App Builder
There are a few steps to take before you can use your custom Aura components in either Lightning pages or the Lightning App Builder.

1. Add a New Interface to Your Component
To appear in the Lightning App Builder or on a Lightning page, a component must implement one of these interfaces.

DescriptionInterface

Makes your component available for record pages and any other
type of page, including a Lightning app’s utility bar.

flexipage:availableForAllPageTypes

If your component is designed for record pages only, implement
this interface instead of
flexipage:availableForAllPageTypes.

flexipage:availableForRecordHome

Enables your component to appear on a Mail App Lightning page
in the Lightning App Builder and in the Outlook and Gmail
integrations.

clients:availableForMailAppAppPage

Makes your component available for the forecasts page in
Lightning.

lightning:availableForForecastingPage

Here’s the sample code for a simple “Hello World” component.

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<aura:attribute name="greeting" type="String" default="Hello" access="global" />
<aura:attribute name="subject" type="String" default="World" access="global" />

<div style="box">
<span class="greeting">{!v.greeting}</span>, {!v.subject}!

</div>
</aura:component>

Note:  Mark your resources, such as a component, with access="global"  to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or an Experience
Builder user in another org.

176

Configure Components for Lightning Pages and the Lightning
App Builder

Using Components



2. Add a Design Resource to Your Component Bundle
Use a design resource to control which attributes are exposed to builder tools like the Lightning App Builder, Experience Builder, or Flow
Builder. A design resource lives in the same folder as your .cmp  resource, and describes the design-time behavior of the Aura
component—information that visual tools need to display the component in a page or app.

For example, if you want to restrict a component to one or more objects, set a default value on an attribute, or make an Aura component
attribute available for administrators to edit in the Lightning App Builder, you need a design resource in your component bundle.

Here’s the design resource that goes in the bundle with the “Hello World” component.

<design:component label="Hello World">
<design:attribute name="subject" label="Subject" description="Name of the person you

want to greet" />
<design:attribute name="greeting" label="Greeting" />

</design:component>

Design resources must be named componentName.design.

Optional: Add an SVG Resource to Your Component Bundle
You can use an SVG resource to define a custom icon for your component when it appears in the Lightning App Builder’s component
pane. Include it in the component bundle.

Here’s a simple red circle SVG resource to go with the “Hello World” component.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg"
width="400" height="400">

<circle cx="100" cy="100" r="50" stroke="black"
stroke-width="5" fill="red" />

</svg>

SVG resources must be named componentName.svg.

SEE ALSO:

Aura Component Bundle Design Resources

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Component Bundles

Configure Components for Lightning Experience Record Pages
After your component is set up to work on Lightning pages and in the Lightning App Builder, use these guidelines to configure the
component so it works on record pages in Lightning Experience.

Record pages are different from app pages in a key way: they have the context of a record. To make your components display content
that is based on the current record, use a combination of an interface and an attribute.

• If your component is available for both record pages and any other type of page, implement
flexipage:availableForAllPageTypes.

177

Configure Components for Lightning Experience Record PagesUsing Components



• If your component is designed only for record pages, implement the flexipage:availableForRecordHome  interface
instead of flexipage:availableForAllPageTypes.

• If your component needs the record ID, also implement the force:hasRecordId  interface.

Note:  Don’t expose the recordId  attribute to the Lightning App Builder—don’t put it in the component’s design resource.
You don’t want admins supplying a record ID.

• If your component needs the object’s API name, also implement the force:hasSObjectName  interface.

• When a component is generated on the server from metadata, the page loads from a client-side cache of the indexed database. The
client-side cache timeout is 8 hours, with a refresh interval of 15 minutes. This long timeout allows for faster page loads for users
who bootstrap the application frequently or click links from outside the application to open a new browser window or tab to Lightning
Experience.

Note:  If your managed component implements the flexipage or forceCommunity  interfaces, its upload is blocked if
the component and its attributes aren’t set to access="global". For more information on access checks, see Controlling
Access.

Note:  When you use the Lightning App Builder, there is a known limitation when you edit a group page. Your changes appear
when you visit the group from the Groups tab. Your changes don’t appear when you visit the group from the Recent Groups list
on the Chatter tab.

SEE ALSO:

Configure Components for Lightning Pages and the Lightning App Builder

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Using Apex to Work with Salesforce Records

Create Components for the Outlook and Gmail Integrations
Create custom Aura components that are available to add to the email application pane for the Outlook and Gmail integrations.

To add a component to email application panes in the Outlook or Gmail integration, implement the
clients:availableForMailAppAppPage  interface.

To allow the component access to email or calendar events, implement the clients:hasItemContext  interface.

The clients:hasItemContext  interface adds attributes to your component that it can use to implement record- or context-specific
logic. The attributes included are:

• The source  attribute, which indicates the email or appointment source. Possible values include email  and event.

<aura:attribute name="source" type="String" />

• The mode  attribute, which indicates viewing or composing an email or event. Possible values include view  and edit.

<aura:attribute name="mode" type="String" />

• The people  attribute indicates recipients’ email addresses on the current email or appointment.

<aura:attribute name="people" type="Object" />

The shape of the people  attribute changes according to the value of the source  attribute.

178

Create Components for the Outlook and Gmail IntegrationsUsing Components



When the source attribute is set to email, the people object contains the following elements.

{
to: [ { name: nameString, email: emailString }, ... ],
cc: [ ... ],
from: { name: senderName, email: senderEmail },

}

When the source attribute is set to event, the people object contains the following elements.

{
requiredAttendees: [ { name: attendeenameString, email: emailString }, ... ],
optionalAttendees: [ { name: optattendeenameString, email: emailString }, ... ],
organizer: { name: organizerName, email: senderEmail },

}

• The subject  indicates the subject on the current email.

<aura:attribute name="subject" type="String" />

• The messageBody  indicates the email message on the current email.

<aura:attribute name="messageBody" type="String" />

To provide the component with an event’s date or location, implement the clients:hasEventContext  interface.

dates: {
"start": value (String),
"end": value (String),

}

The Outlook and Gmail integrations don’t support the following events:

• force:navigateToList

• force:navigateToRelatedList

• force:navigateToObjectHome

• force:refreshView

Note:  To ensure that custom components appear correctly, enable them to adjust to variable widths.

IN THIS SECTION:

Sample Custom Components for Outlook and Gmail Integration

Review samples of custom Aura components that you can implement in the email application pane for Outlook integration and
Gmail Integration.

Sample Custom Components for Outlook and Gmail Integration
Review samples of custom Aura components that you can implement in the email application pane for Outlook integration and Gmail
Integration.

179

Create Components for the Outlook and Gmail IntegrationsUsing Components



Here’s an example of a custom Aura component you can include in your email application pane for the Outlook or Gmail integration.
This component applies the context of the selected email or appointment.

<aura:component implements="clients:availableForMailAppAppPage,clients:hasItemContext">

<!--
Add these handlers to customize what happens when the attributes change
<aura:handler name="change" value="{!v.subject}" action="{!c.handleSubjectChange}" />

<aura:handler name="change" value="{!v.people}" action="{!c.handlePeopleChange}" />
-->

<div id="content">
<aura:if isTrue="{!v.mode == 'edit'}">
You are composing the following Item: <br/>
<aura:set attribute="else">

You are reading the following Item: <br/>
</aura:set>

</aura:if>

<h1><b>Email subject</b></h1>
<span id="subject">{!v.subject}</span>

<h1>To:</h1>
<aura:iteration items="{!v.people.to}" var="to">

{!to.name} - {!to.email} <br/>
</aura:iteration>

<h1>From:</h1>
{!v.people.from.name} - {!v.people.from.email}

<h1>CC:</h1>
<aura:iteration items="{!v.people.cc}" var="cc">

{!cc.name} - {!cc.email} <br/>
</aura:iteration>

<span class="greeting">New Email Arrived</span>, {!v.subject}!
</div>

</aura:component>

In this example, the custom component displays account and opportunity information based on the email recipients’ email addresses.
The component calls a JavaScript controller function, handlePeopleChange(), on initialization. The JavaScript controller calls
methods on an Apex server-side controller to query the information and compute the accounts ages and opportunities days until closing.
The Apex controller, JavaScript controller, and helper are listed next.

<!--
This component handles the email context on initialization.
It retrieves accounts and opportunities based on the email addresses included
in the email recipients list.
It then calculates the account and opportunity ages based on when the accounts
were created and when the opportunities will close.
-->

<aura:component

180

Create Components for the Outlook and Gmail IntegrationsUsing Components



implements="clients:availableForMailAppAppPage,clients:hasItemContext"
controller="ComponentController">

<aura:handler name="init" value="{!this}" action="{!c.handlePeopleChange}" />
<aura:attribute name="accounts" type="List" />
<aura:attribute name="opportunities" type="List" />
<aura:iteration items="{!v.accounts}" var="acc">

{!acc.name} => {!acc.age}
</aura:iteration>
<aura:iteration items="{!v.opportunities}" var="opp">

{!opp.name} => {!opp.closesIn} Days till closing
</aura:iteration>

</aura:component>

/*
On the server side, the Apex controller includes
Aura-enabled methods that accept a list of emails as parameters.
*/

public class ComponentController {
/*
This method searches for Contacts with matching emails in the email list,
and includes Account information in the fields. Then, it filters the
information to return a list of objects to use on the client side.
*/
@AuraEnabled
public static List<Map<String, Object>> findAccountAges(List<String> emails) {
List<Map<String, Object>> ret = new List<Map<String, Object>>();
List<Contact> contacts = [SELECT Name, Account.Name, Account.CreatedDate

FROM Contact
WHERE Contact.Email IN :emails];

for (Contact c: contacts) {
Map<String, Object> item = new Map<String, Object>();
item.put('name', c.Account.Name);
item.put('age',

Date.valueOf(c.Account.CreatedDate).daysBetween(
System.Date.today()));

ret.add(item);
}
return ret;

}

/*
This method searches for OpportunityContactRoles with matching emails
in the email list.
Then, it calculates the number of days until closing to return a list
of objects to use on the client side.
*/
@AuraEnabled
public static List<Map<String, Object>> findOpportunityCloseDateTime(List<String>

emails) {
List<Map<String, Object>> ret = new List<Map<String, Object>>();

181

Create Components for the Outlook and Gmail IntegrationsUsing Components



List<OpportunityContactRole> contacts =
[SELECT Opportunity.Name, Opportunity.CloseDate
FROM OpportunityContactRole
WHERE isPrimary=true AND Contact.Email IN :emails];

for (OpportunityContactRole c: contacts) {
Map<String, Object> item = new Map<String, Object>();
item.put('name', c.Opportunity.Name);
item.put('closesIn',

System.Date.today().daysBetween(
Date.valueOf(c.Opportunity.CloseDate)));

ret.add(item);
}
return ret;

}
}

({
/*
This JavaScript controller is called on component initialization and relies
on the helper functionality to build a list of email addresses from the
available people. It then makes a caller to the server to run the actions to
display information.
Once the server returns the values, it sets the appropriate values to display
on the client side.
*/

handlePeopleChange: function(component, event, helper){
var people = component.get("v.people");
var peopleEmails = helper.filterEmails(people);
var action = component.get("c.findOpportunityCloseDateTime");
action.setParam("emails", peopleEmails);

action.setCallback(this, function(response){
var state = response.getState();
if(state === "SUCCESS"){

component.set("v.opportunities", response.getReturnValue());
} else{

component.set("v.opportunities",[]);
}

});
$A.enqueueAction(action);
var action = component.get("c.findAccountAges");
action.setParam("emails", peopleEmails);

action.setCallback(this, function(response){
var state = response.getState();
if(state === "SUCCESS"){

component.set("v.accounts", response.getReturnValue());
} else{

component.set("v.accounts",[]);
}

});
$A.enqueueAction(action);

182

Create Components for the Outlook and Gmail IntegrationsUsing Components



}
})

({
/*
This helper function filters emails from objects.
*/
filterEmails : function(people){

return this.getEmailsFromList(people.to).concat(
this.getEmailsFromList(people.cc));

},

getEmailsFromList : function(list){
var ret = [];
for (var i in list) {
ret.push(list[i].email);

}
return ret;

}
})

Create Components for Forecast Pages
Create custom Aura components that are available to add to Lightning forecasts pages.

To add a custom template to a Lightning forecasts page, implement the lightning:forecastingTemplate  interface.

To allow the component access to a Lightning forecasts page, implement the lightning:availableForForecastingPage
interface.

Upon initialization, the component attempts to populate the following attributes to provide some forecast context. The attributes include:

• contextPeriodIds—The time period IDs from the user context.

<aura:attribute name="contextPeriodIds" type="String[]" />

• currencyIsoCode—The ISO code of the unit of currency that the user views.

<aura:attribute name="currencyIsoCode" type="String" />

• forecastingOwnerId—The forecast owner's user ID.

<aura:attribute name="forecastingOwnerId" type="String" />

• forecastingTerritoryId—The forecast territory's ID.

<aura:attribute name="forecastingTerritoryId" type="String" />

• forecastingTypeId—The user’s selected forecast type.

<aura:attribute name="forecastingTypeId" type="String" />

183

Create Components for Forecast PagesUsing Components



• scope—The supported scope type. If scope  is undefined or null, a single territory or role page is loaded.

<aura:attribute name="scope" type="String" />

SupportedScopeType : {'my_territory'}

Lightning forecasts pages don’t support any standard or custom events published from custom components.

When the Lightning forecasts page changes, such as owner or forecast type, the page header publishes a Lightning message. You can
subscribe to the lightning__forecasting_flexipageUpdated  LightningMessageChannel to update your custom
components based on Lightning forecasts page header changes.

Note:  To ensure that custom components appear correctly, enable them to adjust to variable widths.

IN THIS SECTION:

Sample Custom Components for Forecasts Pages

Review samples of custom Aura components that you can implement in Lightning forecasts pages. Lightning forecasts pages don’t
support any standard or custom events published from custom components.

SEE ALSO:

Communicating Across the DOM with Lightning Message Service

Lightning Web Components Dev Guide: Subscribe and Unsubscribe from a Message Channel

Aura Component Reference: Message Channel

Sample Custom Components for Forecasts Pages
Review samples of custom Aura components that you can implement in Lightning forecasts pages. Lightning forecasts pages don’t
support any standard or custom events published from custom components.

Here’s an example of a custom Aura component you can include in your Lightning forecasts page. To appear on the page, custom Aura
components implement lightning:availableForForecastingPage. This component applies the context of the selected
forecast.

<aura:component implements="lightning:availableForForecastingPage">
<lightning:messageChannel type="lightning__forecasting_flexipageUpdated"

onMessage="{!c.handleMessage}" scope="APPLICATION"/>

<aura:attribute name="ownerId" type="string" default="owner"/>
<aura:attribute name="forecastingTypeId" type="string" />
<aura:attribute name="user" type="Object"/>
<aura:attribute name="forecast" type="Object"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<force:recordData aura:id="recordLoader"
recordId="{!v.ownerId}"
fields="Name, Email, Phone, Title"
targetFields="{!v.user}"
/>

<force:recordData aura:id="recordLoader2"
recordId="{!v.forecastingTypeId}"

184

Create Components for Forecast PagesUsing Components

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_message_channel_subscribe
https://developer.salesforce.com/docs/component-library/bundle/lightning:messageChannel/documentation


fields="DateType, RoleType, MasterLabel, IsAmount, IsActive"
targetFields="{!v.forecast}"
/>

<div>
<lightning:card iconName="standard:user" title="{!v.user.Name}" >

<div class="slds-p-horizontal--small">
<p class="slds-truncate">Email : <lightning:formattedText title="Email"

value="{!v.user.Email}" /></p>
<p class="slds-truncate">Phone : <lightning:formattedText title="Phone"

value="{!v.user.Phone}" /></p>
<p class="slds-truncate">Title : <lightning:formattedText title="Title"

value="{!v.user.Title}" /></p>
</div>

</lightning:card>
</div>

<div>
<lightning:card iconName="standard:forecasts" title="{!v.forecast.MasterLabel}" >

<div class="slds-p-horizontal--small">
<p class="slds-truncate">Role Type : <lightning:formattedText

aura:id="roleType" title="RoleType" value="{!v.forecast.RoleType}" /></p>
<p class="slds-truncate">Date Type : <lightning:formattedText

title="DateType" value="{!v.forecast.DateType}" /></p>
</div>

</lightning:card>
</div>

</aura:component>

The component calls a JavaScript controller function, handleMessage(), on initialization.

({
/*
This JavaScript controller is called on component initialization.
It makes a call to the server to run the actions to display information.
After the server returns the values, it sets the appropriate values to display
on the client side.
*/

handleMessage : function(cmp, message, helper) {
// Read the message argument to get the values in the message payload
cmp.set("v.ownerId", message.getParam("forecastingOwnerId"));
cmp.set("v.forecastingTypeId", message.getParam("forecastingTypeId"));
var record = cmp.find("recordLoader");
record.set("v.recordId", cmp.get("v.ownerId"));
record.reloadRecord();
var record2 = cmp.find("recordLoader2");
record2.set("v.recordId", cmp.get("v.forecastingTypeId"));
record2.reloadRecord();

185

Create Components for Forecast PagesUsing Components



}
})

SEE ALSO:

Lightning Web Components Dev Guide: Use Components in Salesforce Targets

Create Dynamic Picklists for Your Custom Components
You can expose a component property as a picklist when the component is configured in the Lightning App Builder. The picklist’s values
are provided by an Apex class that you create.

For example, let’s say you’re creating a component for the Home page to display a custom Company Announcement record. You can
use an Apex class to put the titles of all Company Announcement records in a picklist in the component’s properties in the Lightning
App Builder. Then, when admins add the component to a Home page, they can easily select the appropriate announcement to place
on the page.

First, create a custom Apex class to use as a datasource for the picklist. The Apex class must extend the
VisualEditor.DynamicPickList  abstract class. Then add an attribute to your design file that specifies your custom Apex
class as the datasource.

Here’s a simple example.

Create an Apex Class
global class MyCustomPickList extends VisualEditor.DynamicPickList{

global override VisualEditor.DataRow getDefaultValue(){
VisualEditor.DataRow defaultValue = new VisualEditor.DataRow('red', 'RED');
return defaultValue;

}
global override VisualEditor.DynamicPickListRows getValues() {

VisualEditor.DataRow value1 = new VisualEditor.DataRow('red', 'RED');
VisualEditor.DataRow value2 = new VisualEditor.DataRow('yellow', 'YELLOW');

VisualEditor.DynamicPickListRows myValues = new VisualEditor.DynamicPickListRows();

myValues.addRow(value1);
myValues.addRow(value2);
return myValues;

}
}

Note:  Although VisualEditor.DataRow  allows you to specify any Object as its value, you can specify a datasource only
for String attributes. The default implementation for isValid()  and getLabel()  assumes that the object passed in the
parameter is a String for comparison.

For more information on the VisualEditor.DynamicPickList  abstract class, see the Apex Reference Guide.

186

Create Dynamic Picklists for Your Custom ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_class_VisualEditor_DynamicPickList.htm


Add the Apex Class to Your Design File
To specify an Apex class as a datasource in an existing component, add the datasource property to the attribute with a value consisting
of the Apex namespace and Apex class name.

<design:component>
<design:attribute name="property1" datasource="apex://MyCustomPickList"/>

</design:component>

Dynamic Picklist Tips and Considerations

Important:  If you make an Apex datasource private using WITH SECURITY_ENFORCED  in the object query, use the
component only on pages that users with appropriate object access permission can view. Otherwise, the component can still be
visible to users who lack appropriate permission, thereby exposing a private data string.

Let’s look at some scenarios. If a user doesn’t have appropriate object access permission:

• Both Aura components and Lightning web components are still visible on Lightning pages

• In LWR sites in Experience Cloud, Lightning web components are still visible on private pages and to guest users on public
pages

• In Aura sites in Experience Cloud, Aura components and Lightning web components aren’t visible

See Securing Data in Apex Controllers.

• You can use VisualEditor.DesignTimePageContext  to give your picklist the context of the page that the component
resides on.

• Specifying the Apex datasource as public isn’t respected in managed packages. If an Apex class is public and part of a managed
package, it can be used as a datasource for custom components in the subscriber org.

• Profile access on the Apex class isn’t respected when the Apex class is used as a datasource. If an admin’s profile doesn’t have access
to the Apex class but does have access to the custom component, the admin sees values provided by the Apex class on the component
in the Lightning App Builder.

• isValid()  runs in Experience Cloud sites when the page loads. If you did not implement the method, the default implementation
runs getValues(). Running getValues()  causes performance degradations. Implement a non-operational isValid()
method to avoid potential performance degradations.

public boolean isValid(String attr) {
return true;

}

SEE ALSO:

Apex Developer Guide: DesignTimePageContext Class

Create a Custom Lightning Page Template Component
Every standard Lightning page is associated with a default template component, which defines the page’s regions and what components
the page includes. Custom Lightning page template components let you create page templates to fit your business needs with the
structure and components that you define. Once implemented, your custom template is available in the Lightning App Builder’s new
page wizard for your page creators to use.

187

Create a Custom Lightning Page Template ComponentUsing Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_class_VisualEditor_DesignTimePageContext.htm#apex_class_VisualEditor_DesignTimePageContext


Custom Lightning page template components are supported for record pages, app pages, and Home pages. Each page type has a
different interface that the template component must implement.

• lightning:appHomeTemplate

• lightning:homeTemplate

• lightning:recordHomeTemplate

Important:  Each template component should implement only one template interface. Template components shouldn’t implement
any other type of interface, such as flexipage:availableForAllPageTypes  or force:hasRecordId. A template
component can’t multi-task as a regular component. It’s either a template, or it’s not.

1. Build the Template Component Structure
A custom template is an Aura component bundle that should include at least a .cmp resource and a design resource. The .cmp resource
must implement a template interface, and declare an attribute of type Aura.Component[]  for each template region. The
Aura.Component[]  type defines the attribute as a collection of components.

Note:  The Aura.Component[]  attribute is interpreted as a region only if it’s also specified as a region in the design resource.

Here’s an example of a two-column app page template .cmp resource that uses the lightning:layout  component and the
Salesforce Lightning Design System (SLDS) for styling.

When the template is viewed on a desktop, its right column takes up 30% (4 SLDS columns). The left column takes up the remaining
70% of the page width. On non-desktop form factors, the columns display as 50/50.

<aura:component implements="lightning:appHomeTemplate" description="Main column
and right sidebar. On a phone, the regions are of equal width">

<aura:attribute name="left" type="Aura.Component[]" />
<aura:attribute name="right" type="Aura.Component[]" />

<div>
<lightning:layout>

<lightning:layoutItem flexibility="grow"
class="slds-m-right_small">

{!v.left}
</lightning:layoutItem>
<lightning:layoutItem size="{! $Browser.isDesktop ? '4' : '6' }"

class="slds-m-left_small">
{!v.right}

</lightning:layoutItem>
</lightning:layout>

</div>

</aura:component>

The description  attribute on the aura:component  tag is optional, but recommended. If you define a description, it displays
as the template description beneath the template image in the Lightning App Builder new page wizard.

2. Configure Template Regions and Components in the Design Resource
The design resource controls what kind of page can be built on the template. The design resource specifies:

• What regions a page that uses the template must have.

• What kinds of components can be put into the page’s regions.

188

Create a Custom Lightning Page Template ComponentUsing Components



• How much space the component takes on the page based on the type of device that it renders on.

• What device form factors the component supports.

Regions inherit the interface assignments that you set for the overall page, as set in the .cmp resource.

Specify regions and components using these tags:

flexipage:template
This tag has no attributes and acts as a wrapper for the flexipage:region  tag. Text literals are not allowed.

flexipage:region
This tag defines a region on the template and has these attributes. Text literals are not allowed.

DescriptionAttribute

The name of an attribute in the .cmp resource marked type Aura.Component[]. Flags the
attribute as a region.

name

The label of your region. This label appears in the template switching wizard in the Lightning App
Builder when users map region content to a new template.

label

Specifies the default width of the region. This attribute is required for all regions. Valid values are:
Small, Medium, Large, and Xlarge.

defaultWidth

flexipage:formFactor
Use this tag to specify how much space the component takes on the page based on the type of device that it renders on. Add this
tag as a child of the flexipage:region  tag. Use multiple flexipage:formFactor  tags per flexipage:region
to define flexible behavior across form factors.

DescriptionAttribute

The type of form factor or device the template renders on, such as a desktop or tablet. Valid values
are: Medium  (tablet), and Large (desktop). Because the only reasonable width value for a

type

Small  form factor (phone) is Small, you don’t have to specify a Small  type. Salesforce
takes care of that association automatically.

The available size of the area that the component in this region has to render in. Valid values are:
Small, Medium, Large, and Xlarge.

width

For example, in this code snippet, the region has a large width to render in when the template is rendered on a large form factor.
The region has a small width to render in when the template is rendered on a medium form factor.

<flexipage:region name="right" label="Right Region" defaultWidth="Large">
<flexipage:formFactor type="Large" width="Large" />
<flexipage:formFactor type="Medium" width="Small" />

</flexipage:region>

Tip:  You can use the lightning:flexipageRegionInfo  subcomponent to pass region width information to a
component. Doing so lets you configure your page components to render differently based on what size region they display in.

189

Create a Custom Lightning Page Template ComponentUsing Components



Here’s the design file that goes with the sample .cmp resource. The label text in the design file displays as the name of the template in
the new page wizard.

<design:component label="Two Region Custom App Page Template">
<flexipage:template >

<!-- The default width for the "left" region is "MEDIUM". In tablets,
the width is "SMALL" -->

<flexipage:region name="left" label="Left Region" defaultWidth="MEDIUM">
<flexipage:formfactor type="MEDIUM" width="SMALL" />

</flexipage:region>
<flexipage:region name="right" label="Right Region" defaultWidth="SMALL" />

</flexipage:template>
</design:component>

Specify supported devices for an app or record page template component with the <design:suppportedFormFactors>  tag
set. When you create a custom template component for an app page, you must assign it both the Large  (desktop) and Small
(phone) form factors.

Note:  Home pages support the Large form factor only.

Here’s the same app page template design file, with support configured for both desktop and phone.

<design:component label="Two Region Custom App Page Template">
<flexipage:template >

<!-- The default width for the "left" region is "MEDIUM". In tablets,
the width is "SMALL" -->

<flexipage:region name="left" label="Left Region" defaultWidth="MEDIUM">
<flexipage:formfactor type="MEDIUM" width="SMALL" />

</flexipage:region>
<flexipage:region name="right" label="Right Region" defaultWidth="SMALL" />

</flexipage:template>
<design:supportedFormFactors>
<design:supportedFormFactor type="Small"/>
<design:supportedFormFactor type="Large"/>

</design:supportedFormFactors>
</design:component>

3. (Optional) Add a Template Image
If you added a description to your .cmp resource, both it and the template image display when a user selects your template in the
Lightning App Builder new page wizard.

You can use an SVG resource to define the custom template image.

190

Create a Custom Lightning Page Template ComponentUsing Components



We recommend that your SVG resource is no larger than 150 KB, and no more than 160 px high and 560 px wide.

SEE ALSO:

Aura Component Bundle Design Resources

Lightning Page Template Component Best Practices

Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo

Lightning Page Template Component Best Practices
Keep these best practices and limitations in mind when creating Lightning page template components.

• Don’t add custom background styling to a template component. It interferes with Salesforce’s Lightning Experience page themes.

• We strongly recommend including supported form factor information in the design file of all of your components. If you don’t, the
component might behave in unexpected ways.

• Template component supported form factors must be equal to, or a subset of, the supported form factors of its page type.

• Once a component is in use on a Lightning page, you can only increase the supported form factors for the component, not decrease
them.

• Including scrolling regions in your template component can cause problems when you try to view it in the Lightning App Builder.

• Custom templates can’t be extensible nor extended—you can’t extend a template from anything else, nor can you extend other
things from a template.

• Using getters to get the regions as variables works at design time but not at run time. Here’s an example of what we mean.

<aura:component implements="lightning:appHomeTemplate">
<aura:attribute name="region" type="Aura.Component[]" />
<aura:handler name="init" value="{!this}" action="{!c.init}" />

<div>
{!v.region}

</div>

191

Lightning Page Template Component Best PracticesUsing Components



</aura:component>

{
init : function(component, event, helper) {

var region = cmp.get('v.region'); // This will fail at run time.
...

}
}

• You can remove regions from a template if it’s not being used by a Lightning page, and if it’s not set to access=global. You can add
regions at any time.

• A region can be used more than once in the code, but only one instance of the region should render at run time.

• A template component can contain up to 25 regions.

• The order that you list the regions in a page template is the order that the regions appear in when admins migrate region content
using the template switching wizard in the Lightning App Builder. We recommend that you label the regions and list them in a
logical order in your template, such as top to bottom or left to right.

Make Your Lightning Page Components Width-Aware with
lightning:flexipageRegionInfo
When you add a component to a region on a page in the Lightning App Builder, the lightning:flexipageRegionInfo
sub-component passes the width of that region to its parent component. With lightning:flexipageRegionInfo  and some
strategic CSS, you can tell the parent component to render in different ways in different regions at runtime.

For example, the List View component renders differently in a large region than it does in a small region as it’s a width-aware component.

Valid region width values are: Small, Medium, Large, and Xlarge.

You can use CSS to style your component and to help determine how your component renders. Here’s an example.

192

Make Your Lightning Page Components Width-Aware with
lightning:flexipageRegionInfo

Using Components



This simple component has two fields, field1 and field2. The component renders with the fields side by side, filling 50% of the region’s
available width when not in a small region. When the component is in a small region, the fields render as a list, using 100% of the region’s
width.

<aura:component implements="flexipage:availableForAllPageTypes">
<aura:attribute name="width" type="String"/>
<lightning:flexipageRegionInfo width="{!v.width}"/>
<div class="{! 'container' + (v.width=='SMALL'?' narrowRegion':'')}">

<div class="{! 'eachField f1' + (v.width=='SMALL'?' narrowRegion':'')}">
<lightning:input name="field1" label="First Name"/>

</div>
<div class="{! 'eachField f2' + (v.width=='SMALL'?' narrowRegion':'')}">

<lightning:input name="field2" label="Last Name"/>
</div>

</div>
</aura:component>

Here’s the CSS file that goes with the component.

.THIS .eachField.narrowRegion{
width:100%;

}
.THIS .eachField{

width:50%;
display:inline-block;

}

Tips and Considerations for Configuring Components for Lightning Pages
and the Lightning App Builder
Keep these guidelines in mind when creating components and component bundles for Lightning pages and the Lightning App Builder.

Note: Mark your resources, such as a component, with access="global"  to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Experience
Builder user in another org.

You can also create documentation for a component, event, or interface marked access="global". This documentation is
automatically displayed in the Component Library of an org that uses or installs your package.

Components
• Set a friendly name for the component using the label  attribute in the element in the design file, such as <design:component

label="foo">.

• Make your components fill 100% of the width (including margins) of the region that they display in.

• Don’t set absolute width values on your components.

• If components require interaction, they must provide an appropriate placeholder behavior in declarative tools.

• A component must never display a blank box. Think of how other sites work. For example, Facebook displays an outline of the feed
before the actual feed items come back from the server. The outline improves the user’s perception of UI responsiveness.

• If the component depends on a fired event, then give it a default state that displays before the event fires.

• Style components in a manner consistent with the styling of Lightning Experience and consistent with the Salesforce Design System.

193

Tips and Considerations for Configuring Components for
Lightning Pages and the Lightning App Builder

Using Components



• The Lightning App Builder manages spacing between components automatically. Don't add margins to your component CSS, and
avoid adding padding.

• Don’t use float  or position: absolute  in your CSS properties. These properties break the component out of the page
structure and, as a result, break the page.

Attributes
• Use the design file to control which attributes are exposed to the Lightning App Builder.

• Make your attributes easy to use and understandable to an administrator. Don’t expose SOQL queries, JSON objects, or Apex class
names.

• Give your required attributes default values. When a component that has required attributes with no default values is added to the
App Builder, it appears invalid, which is a poor user experience.

• Use basic supported types (string, integer, boolean) for any exposed attributes.

• Specify a min and max attribute for integer attributes in the <design:attribute>  element to control the range of accepted
values.

• String attributes can provide a data source with a set of predefined values allowing the attribute to expose its configuration as a
picklist.

• Give all attributes a label with a friendly display name.

• Provide descriptions to explain the expected data and any guidelines, such as data format or expected range of values. Description
text appears as a tooltip in the Property Editor.

• To delete a design attribute for a component that implements the flexipage:availableForAllPageTypes  or
forceCommunity:availableForAllPageTypes  interface, first remove the interface from the component before
deleting the design attribute. Then reimplement the interface. If the component is referenced in a Lightning page, you must remove
the component from the page before you can change it.

Limitations
• The Lightning App Builder doesn’t support the Map, Object, or java:// complex types.

• When you use the Lightning App Builder, there’s a known limitation when you edit a group page. Your changes appear when you
visit the group from the Groups tab. Your changes don’t appear when you visit the group from the Recent Groups list on the Chatter
tab.

• Custom components that serve as containers, such as custom Tabs or Accordion components, aren’t supported in Lightning App
Builder. They display on the canvas, but you can’t interact with them or put any components inside them.

SEE ALSO:

Configure Components for Lightning Pages and the Lightning App Builder

Configure Components for Lightning Experience Record Pages

Use Aura Components in Experience Builder

To use a custom Aura component in Experience Builder, you must configure the component and its component bundle so that they’re
compatible.

Note:  As of Spring ’21, you can build Experience Builder sites using two programming models: the Lightning Web Components
model, and the original Aura Components model. The Marketing Website template is based on LWC and can only be used with

194

Use Aura Components in Experience BuilderUsing Components



Lightning web components, not Aura components. Other templates are based on the Aura Components model and can use both
Lightning web components and Aura components. See the Experience Builder Developer Guide for more information.

IN THIS SECTION:

Configure Components for Experience Builder

Make your custom Aura components available to drag to the Lightning Components pane in Experience Builder.

Create Custom Theme Layout Components for Experience Builder

Create a custom theme layout to transform the appearance and overall structure of the pages in the Customer Service template.

Create Custom Component for Guest User Flows

Allow flows for your Experience Cloud guest users to provide alternative user registration screens, complex decision trees, and
conditional forms to gather user information. The following example uses the Site Class API. For more information, see “Site Class”
in the Salesforce Apex Developer Guide.

Create Custom Search and Profile Menu Components for Experience Builder

Create custom components to replace the Customer Service template’s standard Profile Header and Search & Post Publisher
components in Experience Builder.

Create Custom Content Layout Components for Experience Builder

Experience Builder includes several ready-to-use layouts that define the content regions of your page, such as a two-column layout
with a 2:1 ratio. However, if you need a layout that’s customized for your site, create a custom content layout component to use
when building new pages in Experience Builder. You can also update the content layout of the default pages that come with your
site template.

Configure Components for Experience Builder
Make your custom Aura components available to drag to the Lightning Components pane in Experience Builder.

Note:  As of Spring ’21, you can build Experience Builder sites using two programming models: the Lightning Web Components
model, and the original Aura Components model. The Marketing Website template is based on LWC and can only be used with
Lightning web components, not Aura components. Other templates are based on the Aura Components model and can use both
Lightning web components and Aura components. See the Experience Builder Developer Guide for more information.

Add a New Interface to Your Component
To appear in Experience Builder, a component must implement the forceCommunity:availableForAllPageTypes
interface.

Here’s the sample code for a simple “Hello World” component.

<aura:component implements="forceCommunity:availableForAllPageTypes" access="global">
<aura:attribute name="greeting" type="String" default="Hello" access="global" />
<aura:attribute name="subject" type="String" default="World" access="global" />

<div style="box">
<span class="greeting">{!v.greeting}</span>, {!v.subject}!

</div>
</aura:component>

195

Configure Components for Experience BuilderUsing Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.communities_dev.meta/communities_dev/
https://developer.salesforce.com/docs/atlas.en-us.248.0.communities_dev.meta/communities_dev/


Note: Mark your resources, such as a component, with access="global"  to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Experience
Builder user in another org.

You can also create documentation for a component, event, or interface marked access="global". This documentation is
automatically displayed in the Component Library of an org that uses or installs your package.

Next, add a design resource to your component bundle. A design resource describes the design-time behavior of an Aura
component—information that visual tools need to allow adding the component to a page or app. It contains attributes that are available
for administrators to edit in Experience Builder.

Adding this resource is similar to adding it for the Lightning App Builder. For more information, see Configure Components for Lightning
Pages and the Lightning App Builder.

Important:  When you add custom components to your Experience Builder site, they can bypass the object- and field-level security
(FLS) you set for the guest user profile. Lightning components don’t automatically enforce CRUD and FLS when referencing objects
or retrieving the objects from an Apex controller. This means that the framework continues to display records and fields for which
users don’t have CRUD permissions and FLS visibility. You must manually enforce CRUD and FLS in your Apex controllers. Alternatively,
use a base component that implements Lightning Data Service on page 401.

SEE ALSO:

Component Bundles

Standard Design Tokens for Experience Builder Sites

Create Custom Theme Layout Components for Experience Builder
Create a custom theme layout to transform the appearance and overall structure of the pages in the Customer Service template.

A theme layout component is the top-level layout (1) for the template pages in your site. Theme layout components are organized and
applied to your pages through theme layouts. A theme layout component includes the common header and footer (2), and often
includes navigation, search, and the user profile menu. In contrast, the content layout (3) defines the content regions of your pages. The
next image shows a two-column content layout.

A theme layout type categorizes the pages in your Experience Builder site that share the same theme layout.

196

Create Custom Theme Layout Components for Experience
Builder

Using Components

https://developer.salesforce.com/page/Enforcing_CRUD_and_FLS


When you create a custom theme layout component in the Developer Console, it appears in Experience Builder in the Settings > Theme
area. Here you can assign it to new or existing theme layout types. Then you apply the theme layout type—and then the theme layout—in
the page’s properties.

1. Add an Interface to Your Theme Layout Component
A theme layout component must implement the forceCommunity:themeLayout  interface to appear in Experience Builder in
the Settings > Theme area.

Explicitly declare {!v.body}  in your code to ensure that your theme layout includes the content layout. Add {!v.body}  wherever
you want the page’s contents to appear within the theme layout.

You can add components to the regions in your markup or leave regions open for users to drag-and-drop components into. Attributes
declared as Aura.Component[]  and included in your markup are rendered as open regions in the theme layout that users can
add components to.

In Customer Service, the Template Header consists of these locked regions:

• search, which contains the Search Publisher component

• profileMenu, which contains the User Profile Menu component

• navBar, which contains the Navigation Menu component

To create a custom theme layout that reuses the existing components in the Template Header region, declare search, profileMenu,
or navBar  as the attribute name value, as appropriate. For example:

<aura:attribute name="navBar" type="Aura.Component[]" required="false" />

Tip:  If you create a custom profile menu or a search component, declaring the attribute name value also lets users select the
custom component when using your theme layout.

Here’s the sample code for a simple theme layout.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Sample
Custom Theme Layout">

<aura:attribute name="search" type="Aura.Component[]" required="false"/>
<aura:attribute name="profileMenu" type="Aura.Component[]" required="false"/>
<aura:attribute name="navBar" type="Aura.Component[]" required="false"/>
<aura:attribute name="newHeader" type="Aura.Component[]" required="false"/>
<div>

<div class="searchRegion">
{!v.search}

</div>
<div class="profileMenuRegion">

{!v.profileMenu}
</div>
<div class="navigation">

{!v.navBar}
</div>
<div class="newHeader">

{!v.newHeader}
</div>
<div class="mainContentArea">

{!v.body}
</div>

</div>
</aura:component>

197

Create Custom Theme Layout Components for Experience
Builder

Using Components



Note: Mark your resources, such as a component, with access="global"  to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Experience
Builder user in another org.

You can also create documentation for a component, event, or interface marked access="global". This documentation is
automatically displayed in the Component Library of an org that uses or installs your package.

Note:  If you want to use a new, customizable profile menu instead of a self-service profile menu, you must declare the
themeHeaderProfileMenu attribute instead of profileMenu in the theme layout component. This only works in a B2B store or where
an out-of-box theme has been applied.

2. Add a Design Resource to Include Theme Properties
You can expose theme layout properties in Experience Builder by adding a design resource to your bundle.

This example adds two checkboxes to a theme layout called Small Header.

<design:component label="Small Header">
<design:attribute name="blueBackground" label="Blue Background"/>
<design:attribute name="smallLogo" label="Small Logo"/>

</design:component>

The design resource only exposes the properties. Implement the properties in the component.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Small
Header">

<aura:attribute name="blueBackground" type="Boolean" default="false"/>
<aura:attribute name="smallLogo" type="Boolean" default="false" />
...

Design resources must be named componentName.design.

3. Add a CSS Resource to Avoid Overlapping Issues
Add a CSS resource to your bundle to style the theme layout as needed.

To avoid overlapping issues with positioned elements, such as dialog boxes or hovers:

• Apply CSS styles.

.THIS {
position: relative;
z-index: 1;

}

• Wrap the elements in your custom theme layout in a div tag.

<div class="mainContentArea">
{!v.body}

</div>

Note:  For custom theme layouts, SLDS is loaded by default.

198

Create Custom Theme Layout Components for Experience
Builder

Using Components



CSS resources must be named componentName.css.

SEE ALSO:

Create Custom Search and Profile Menu Components for Experience Builder

Salesforce Help: Custom Theme Layouts and Theme Layout Types

Create Custom Component for Guest User Flows
Allow flows for your Experience Cloud guest users to provide alternative user registration screens, complex decision trees, and conditional
forms to gather user information. The following example uses the Site Class API. For more information, see “Site Class” in the Salesforce
Apex Developer Guide.

1. Create a Custom Aura Component
Using Guest User Flows for login or self registration requires a custom component that implements
lightning:availableForFlowScreens.

Here’s the sample code for a simple data collection preferences flow.

<aura:component implements="lightning:availableForFlowScreens"
controller="CommunitySelfRegController">

<aura:attribute name="email" type="String" default=""/>
<aura:attribute name="fname" type="String" default=""/>
<aura:attribute name="lname" type="String" default=""/>
<aura:attribute name="starturl" type="String" default=""/>
<aura:attribute name="password" type="String" default=""/>
<aura:attribute name="hasOptedTracking" type="Boolean" default="false"/>
<aura:attribute name="hasOptedSolicit" type="Boolean" default="false"/>
<aura:attribute name="op_url" type="String" default="" description="login url after

user is created. "/>

<aura:handler name="init" value="{!this}" action="{!c.init}" />

<aura:if isTrue="{! (empty(v.op_url))}">
<!-- empty url, the user is not yet created -->
<h3> Registering user. Please wait. </h3>

<aura:set attribute="else">
<!-- User created, show link to login -->
<h3> Success! Your account has been created. </h3>

<button class="slds-button slds-button_neutral"
onclick="{!c.login}">Login</button>

</aura:set>
</aura:if>

</aura:component>

Controller file:

({
init : function(cmp) {

let email = cmp.get("v.email"),
fname = cmp.get("v.fname"),

199

Create Custom Component for Guest User FlowsUsing Components

https://help.salesforce.com/HTViewHelpDoc?id=community_builder_theme.htm&language=en_US


lname = cmp.get("v.lname"),
pass = cmp.get("v.password"),
startUrl = cmp.get("v.starturl"),
hasOptedSolicit = cmp.get("v.hasOptedSolicit"),
hasOptedTracking = cmp.get("v.hasOptedTracking");

let action = cmp.get("c.createExternalUser");
action.setParams(

{
username: email,
password: pass,
startUrl: startUrl,
fname: fname,
lname: lname,
hasOptedTracking: hasOptedTracking,
hasOptedSolicit: hasOptedSolicit

});

action.setCallback(this, function(res) {
if (action.getState() === "SUCCESS") {

cmp.set("v.op_url", res.getReturnValue());
}

});
$A.enqueueAction(action);

},

login: function(cmp){
let url = cmp.get("v.op_url");
window.location.href = url;

}
})

Design file:

<design:component>
<design:attribute name="email" />
<design:attribute name="fname" />
<design:attribute name="lname" />
<design:attribute name="password" />
<design:attribute name="hasOptedTracking" />
<design:attribute name="hasOptedSolicit" />

</design:component>

2. Create an Apex Class
The following example creates a class, CommunitySelfRegController, which is used with your Aura component to register
new Experience Cloud site users.

Note:  Adding self registration with a flow requires the following:

• The UserPreferencesHideS1BrowserUI preference should be set to True. This prevents the mobile UI from
defaulting to the Salesforce Mobile App interface rather than your Experience Builder site.

• CommunityNickname  is required and must be a unique value.

200

Create Custom Component for Guest User FlowsUsing Components



• The self registration preference should be enabled in your site with a valid profile and account.

public class CommunitySelfRegController {
@AuraEnabled
public static String createExternalUser(

String username, String password, String startUrl, String fname,
String lname, Boolean hasOptedTracking, Boolean hasOptedSolicit) {

Savepoint sp = null;
try {

sp = Database.setsavepoint();
system.debug(sp);

// Creating a user object.
User u = new User();
u.Username = username;
u.Email = username;
u.FirstName = fname;
u.LastName = lname;

// Default UI for mobile is set to S1 for user created using site object.

// Enable this perm to change it to community (Experience Cloud).
u.UserPreferencesHideS1BrowserUI = true;

// Generating unique value for Experience Cloud nickname.
String nickname = ((fname != null && fname.length() > 0) ? fname.substring(0,1) : ''

) + lname.substring(0,1);
nickname += String.valueOf(Crypto.getRandomInteger()).substring(1,7);

u.CommunityNickname = nickname;

System.debug('creating user');

// Creating portal user.
// Passing in null account ID forces the system to read this from the

network setting (set using Experience Workspaces).
String userId = Site.createPortalUser(u, null, password);

// Setting consent selection values.
// For this, GDPR (Individual and Consent Management) needs to be enabled

in the org.
Individual ind = new Individual();
ind.LastName = lname;
ind.HasOptedOutSolicit = !hasOptedSolicit;
ind.HasOptedOutTracking = !hasOptedTracking;
insert(ind);

// Other contact information can be updated here.
Contact contact = new Contact();
contact.Id = u.ContactId;
contact.IndividualId = ind.Id;
update(contact);

// return login url.
if (userId != null && password != null && password.length() > 1) {

201

Create Custom Component for Guest User FlowsUsing Components



ApexPages.PageReference lgn = Site.login(username, password, startUrl);

return lgn.getUrl();
}

}
catch (Exception ex) {

Database.rollback(sp);
System.debug(ex.getMessage());
return null;

}
return null;

}
}
Collapse

}

SEE ALSO:

Salesforce Help: Allow Guest Users to Access Flows

Create Custom Search and Profile Menu Components for Experience Builder
Create custom components to replace the Customer Service template’s standard Profile Header and Search & Post Publisher components
in Experience Builder.

forceCommunity:profileMenuInterface

Add the forceCommunity:profileMenuInterface  interface to an Aura component to allow it to be used as a custom
profile menu component for the Customer Service site template. After you create a custom profile menu component, admins can select
it in Experience Builder in Settings > Theme to replace the template’s standard Profile Header component.

Here’s the sample code for a simple profile menu component.

<aura:component implements="forceCommunity:profileMenuInterface" access="global">
<aura:attribute name="options" type="String[]" default="['Option 1', 'Option 2']"/>
<lightning:avatar variant="circle" src="" fallbackIconName="standard:person_account"

alternativeText="Account User"/>
<lightning:buttonMenu alternativeText="Profile Menu" variant="container"

iconName="utility:connected_apps">
<aura:iteration items="{!v.options}" var="itemLabel">

<lightning:menuItem label="{!itemLabel}" />
</aura:iteration>

</lightning:buttonMenu>
</aura:component>

forceCommunity:searchInterface

Add the forceCommunity:searchInterface  interface to an Aura component to allow it to be used as a custom search
component for the Customer Service site template. After you create a custom search component, admins can select it in Experience
Builder in Settings > Theme to replace the template’s standard Search & Post Publisher component.

202

Create Custom Search and Profile Menu Components for
Experience Builder

Using Components

https://help.salesforce.com/HTViewHelpDoc?id=rss_flow_guestuser.htm&language=en_US


Here’s the sample code for a simple search component.

<aura:component implements="forceCommunity:searchInterface" access="global">
<div onkeyup="{! c.handleKeyUp }">
<lightning:input

aura:id="search-input"
label="Search"
type="search"
variant="label-hidden"

/>
</div>

</aura:component>

({
handleKeyUp: function (cmp, evt) {

var isEnterKey = evt.keyCode === 13;
if (isEnterKey) {

var queryTerm = cmp.find('search-input').get('v.value');
//do something with user input

}
}

})

SEE ALSO:

Create Custom Theme Layout Components for Experience Builder

Salesforce Help: Custom Theme Layouts and Theme Layout Types

Create Custom Content Layout Components for Experience Builder
Experience Builder includes several ready-to-use layouts that define the content regions of your page, such as a two-column layout with
a 2:1 ratio. However, if you need a layout that’s customized for your site, create a custom content layout component to use when building
new pages in Experience Builder. You can also update the content layout of the default pages that come with your site template.

When you create a custom content layout component in the Developer Console, it appears in Experience Builder in the New Page and
the Change Layout dialog boxes.

203

Create Custom Content Layout Components for Experience
Builder

Using Components

https://help.salesforce.com/HTViewHelpDoc?id=community_builder_theme.htm&language=en_US


1. Add a New Interface to Your Content Layout Component
To appear in the New Page and the Change Layout dialog boxes in Experience Builder, a content layout component must implement
the forceCommunity:layout  interface.

Here’s the sample code for a simple two-column content layout.

<aura:component implements="forceCommunity:layout" description=”Custom Content Layout”
access="global">

<aura:attribute name="column1" type="Aura.Component[]" required="false"></aura:attribute>

<aura:attribute name="column2" type="Aura.Component[]" required="false"></aura:attribute>

<div class="container">
<div class="contentPanel">

<div class="left">
{!v.column1}

</div>
<div class="right">

{!v.column2}
</div>

</div>
</div>

</aura:component>

Note: Mark your resources, such as a component, with access="global"  to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Experience
Builder user in another org.

You can also create documentation for a component, event, or interface marked access="global". This documentation is
automatically displayed in the Component Library of an org that uses or installs your package.

204

Create Custom Content Layout Components for Experience
Builder

Using Components



2. Add a CSS Resource to Your Component Bundle
Next, add a CSS resource to style the content layout as needed.

Here’s the sample CSS for our simple two-column content layout.

.THIS .contentPanel:before,

.THIS .contentPanel:after {
content: " ";
display: table;

}
.THIS .contentPanel:after {

clear: both;
}
.THIS .left {

float: left;
width: 50%;

}
.THIS .right {

float: right;
width: 50%;

}

CSS resources must be named componentName.css.

3. Optional: Add an SVG Resource to Your Component Bundle
You can include an SVG resource in your component bundle to define a custom icon for the content layout component when it appears
in the Experience Builder.

The recommended image size for a content layout component in Experience Builder is 170px by 170px. However, if the image has
different dimensions, Experience Builder scales the image to fit.

SVG resources must be named componentName.svg.

SEE ALSO:

Component Bundles

Standard Design Tokens for Experience Builder Sites

Use Aura Components with Flows

Customize the look-and-feel and functionality of your flows by adding Lightning components to them. Or wrap a flow in an Aura
component to configure the flow at runtime, such as to control how a paused flow is resumed.

IN THIS SECTION:

Considerations for Configuring Components for Flows

Before you configure an Aura component for a flow, determine whether it should be available in flow screens or as flow actions and
understand how to map data types between a flow and an Aura component. Then review some considerations for defining attributes
and how components behave in flows at runtime.

205

Use Aura Components with FlowsUsing Components



Customize Flow Screens Using Aura Components

To customize the look and feel of your flow screen, build a custom Aura component. Configure the component and its design
resource so that they’re compatible with flow screens. Then in Flow Builder, add a screen component to the screen.

Create Flow Local Actions Using Aura Components

To execute client-side logic in your flow, build or modify custom Aura components to use as local actions in flows. For example, get
data from third-party systems without going through the Salesforce server, or open a URL in another browser tab. Once you configure
the Aura component’s markup, client-side controller, and design resource, it’s available in Flow Builder as a Core Action element.

Embed a Flow in a Custom Aura Component

Once you embed a flow in an Aura component, use JavaScript and Apex code to configure the flow at run time. For example, pass
values into the flow or to control what happens when the flow finishes. lightning:flow  supports only screen flows and
autolaunched flows.

Display Flow Stages with an Aura Component

If you’ve added stages to your flow, display them to flow users with an Aura component, such as
lightning:progressindicator.

Considerations for Configuring Components for Flows
Before you configure an Aura component for a flow, determine whether it should be available in flow screens or as flow actions and
understand how to map data types between a flow and an Aura component. Then review some considerations for defining attributes
and how components behave in flows at runtime.

Note:

• Lightning components in flows must comply with Lightning Locker restrictions.

• Flows that include Lightning components are supported only in Lightning runtime.

IN THIS SECTION:

Flow Screen Components vs. Flow Action Components

You can make your Aura component available in flow screens or as a flow action. When choosing between the flow interfaces,
consider what purpose the component serves in the flow.

Which Custom Lightning Component Attribute Types Are Supported in Flows?

Not all custom Lightning component data types are supported in flows. You can map only these types and their associated collection
types between flows and custom Lightning components.

Design Attribute Considerations for Flow Screen Components and Local Actions

To expose an attribute in Flow Builder, define a corresponding design:attribute  in the component bundle's design resource.
Keep these guidelines in mind when defining design attributes for flows.

206

Considerations for Configuring Components for FlowsUsing Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/security_code.htm
https://help.salesforce.com/articleView?id=flow_distribute_runtime.htm&language=en_US


Runtime Considerations for Flows That Include Aura Components

Depending on where you run your flow, Aura components may look or behave differently than expected. The flow runtime app
that's used for some distribution methods doesn't include all the necessary resources from the Lightning Component framework.
When a flow is run from Flow Builder or a direct flow URL (https://yourDomain.my.salesforce.com/flow/MyFlowName), force
and lightning  events aren’t handled.

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Component Library: lightning:availableForFlowActions Interface

Lightning Locker

Flow Screen Components vs. Flow Action Components
You can make your Aura component available in flow screens or as a flow action. When choosing between the flow interfaces, consider
what purpose the component serves in the flow.

Create a...For this use case...

Flow screen componentProvide UI for the user to interact with

Flow screen componentUpdate the screen in real time

Flow action componentPrevent the flow from continuing until the component is done

Flow action componentMake direct data queries to on-premise or private cloud data

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Component Library: lightning:availableForFlowActions Interface

Which Custom Lightning Component Attribute Types Are Supported in Flows?
Not all custom Lightning component data types are supported in flows. You can map only these types and their associated collection
types between flows and custom Lightning components.

Valid ValuesLightning
Component
Attribute Type

Flow Data Type

Apex classes that define @AuraEnabled  fields. Supported data types in an Apex class
are Boolean, Integer, Long, Decimal, Double, Date, DateTime, and String. Single values as
well as Lists are supported for each data type.

Custom Apex ClassApex

BooleanBoolean • True values: true, 1, or equivalent expression

• False values: false, 0, or equivalent expression

Numeric value or equivalent expressionNumberCurrency

"YYYY-MM-DD"  or equivalent expressionDateDate

207

Considerations for Configuring Components for FlowsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation


Valid ValuesLightning
Component
Attribute Type

Flow Data Type

"YYYY-MM-DDThh:mm:ssZ"  or equivalent expressionDateTimeDate/Time (API
name is DateTime)

Numeric value or equivalent expressionNumberNumber

String value or equivalent expression using this format:

"Blue; Green; Yellow"

StringMulti-Select Picklist

(API name is
Multi-Select Picklist.)

String value or equivalent expressionStringPicklist

Map of key-value pairs or equivalent expression.

Flow record values map only to attributes whose type is the specific object. For example,
an account record variable can be mapped only to an attribute whose type is Account.
Flow data types aren’t compatible with attributes whose type is Object.

The API name of the
specified object,
such as Account or
Case

Record, with a
specified object

(API name is
SObject.)

String value or equivalent expressionStringText

(API name is Text.)

SEE ALSO:

Component Library: lightning:flow Component

Component Library: lightning:availableForFlowScreens Interface

Component Library: lightning:availableForFlowActions Interface

Design Attribute Considerations for Flow Screen Components and Local Actions
To expose an attribute in Flow Builder, define a corresponding design:attribute  in the component bundle's design resource.
Keep these guidelines in mind when defining design attributes for flows.

Supported Attributes on design:attribute Nodes
In a design:attribute  node, Flow Builder supports only the name, label, description, and default  attributes.
The other attributes, like min  and max, are ignored.

For example, for this design attribute definition, Flow Builder ignores required and placeholder.

<design:attribute name="greeting" label="Greeting" placeholder="Hello" required="true"/>

Calculating Minimum and Maximum Values for an Attribute
To validate min and max lengths for a component attribute, use a flow formula or the component's client-side controller.

208

Considerations for Configuring Components for FlowsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:flow/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation


Modifying or Deleting design:attribute Nodes
If a component’s attribute is referenced in a flow, you can’t change the attribute’s type or remove it from the design resource. This
limitation applies to all flow versions, not just active ones. Remove references to the attribute in all flow versions, and then edit or
delete the attribute in the design resource.

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Component Library: lightning:availableForFlowActions Interface

Runtime Considerations for Flows That Include Aura Components
Depending on where you run your flow, Aura components may look or behave differently than expected. The flow runtime app that's
used for some distribution methods doesn't include all the necessary resources from the Lightning Component framework. When a flow
is run from Flow Builder or a direct flow URL (https://yourDomain.my.salesforce.com/flow/MyFlowName), force  and lightning
events aren’t handled.

To verify the behavior of your Aura components, test your flow in a way that handles force  and lightning  events, such as
force:showToast. You can also add the appropriate event handlers directly to your component.

Handles force  and lightning
Events

Distribution Method

Direct flow URL

Run and Debug buttons in Flow Builder

Run links on flow detail pages and list views

Web tab

Custom button or link

Lightning page

Experience Builder site page

Flow action

Utility bar

flow:interview  Visualforce component

Depends on where you embed the
component or whether your component
includes the appropriate event handlers

lightning:flow  Aura component

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Component Library: lightning:availableForFlowActions Interface

Events Handled in the Salesforce Mobile App and Lightning Experience

209

Considerations for Configuring Components for FlowsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation


Customize Flow Screens Using Aura Components
To customize the look and feel of your flow screen, build a custom Aura component. Configure the component and its design resource
so that they’re compatible with flow screens. Then in Flow Builder, add a screen component to the screen.

IN THIS SECTION:

Configure Components for Flow Screens

Make your custom Aura components available to flow screens in Flow Builder by implementing the
lightning:availableForFlowScreens interface.

Control Flow Navigation from an Aura Component

By default, users navigate a flow by clicking standard buttons at the bottom of each screen. The
lightning:availableForFlowScreens  interface provides two attributes to help you fully customize your screen's
navigation. To figure out which navigation actions are available for the screen, loop through the availableActions  attribute.
To programmatically trigger one of those actions, call the navigateFlow  action from your JavaScript controller.

Customize the Flow Header with an Aura Component

To replace the flow header with an Aura component, use the screenHelpText  parameter from the
lightning:availableForFlowScreens interface.

Dynamically Update a Flow Screen with an Aura Component

To conditionally display a field on your screen, build an Aura component that uses aura:if  to check when parts of the component
should appear.

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Create Flow Local Actions Using Aura Components

Configure Components for Flow Screens
Make your custom Aura components available to flow screens in Flow Builder by implementing the
lightning:availableForFlowScreens interface.

Here’s the sample code for a simple “Hello World” component.

<aura:component implements="lightning:availableForFlowScreens" access="global">
<aura:attribute name="greeting" type="String" access="global" />
<aura:attribute name="subject" type="String" access="global" />

<div style="box">
<span class="greeting">{!v.greeting}</span>, {!v.subject}!

</div>
</aura:component>

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, you want a component to be usable in an installed package or by a Lightning App Builder user or an Experience
Builder user in another org.

To make an attribute’s value customizable in Flow Builder, add it to the component's design resource.  That way, flow admins can pass
values between that attribute and the flow when they configure the screen component.

210

Customize Flow Screens Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation


With this sample design resource, flow admins can customize the values for the “Hello World” component’s attributes.

<design:component label="Hello World">
<design:attribute name="greeting" label="Greeting" />
<design:attribute name="subject" label="Subject" />

</design:component>

A design resource describes the design-time behavior of a Lightning component—information that visual tools require to allow adding
the component to a page or app. Adding this resource is similar to adding it for the Lightning App Builder.

When admins reference this component in a flow, they can set each attribute using values from the flow. And they can store each
attribute’s output value in a flow variable.

SEE ALSO:

Control Flow Navigation from an Aura Component

Component Library: lightning:availableForFlowScreens Interface

Lightning Locker

Control Flow Navigation from an Aura Component
By default, users navigate a flow by clicking standard buttons at the bottom of each screen. The
lightning:availableForFlowScreens  interface provides two attributes to help you fully customize your screen's navigation.
To figure out which navigation actions are available for the screen, loop through the availableActions  attribute. To
programmatically trigger one of those actions, call the navigateFlow  action from your JavaScript controller.

When you override the screen's navigation with an Aura component, remember to hide the footer so that the screen has only one
navigation model.

IN THIS SECTION:

Flow Navigation Actions

The availableActions  attribute lists the valid navigation actions for that screen.

Customize the Flow Footer with an Aura Component

To replace the flow footer with an Aura component, use the parameters that the lightning:availableForFlowScreens
interface provides. The availableActions  array lists which actions are available for the screen, and the navigateFlow
action lets you invoke one of the available actions.

Build a Custom Navigation Model for Your Flow Screens

Since Aura components have access to a flow screen’s navigation actions, you can fully customize how the user moves between
screens. For example, hide the default navigation buttons and have the flow move to the next screen when the user selects a choice.

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Flow Navigation Actions
The availableActions  attribute lists the valid navigation actions for that screen.

A screen’s available actions are determined by:

211

Customize Flow Screens Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation


• Where in the flow the screen is. For example, Previous isn't supported on the first screen in a flow, Finish is supported for only the
last screen in a flow, and you can never have both Next and Finish.

• Whether the flow creator opted to hide any of the actions in the screen's Control Navigation settings. For example, if Pause  is
de-selected, the Pause action isn't included in availableActions.

Here are the possible actions, their default button label, and what's required for that action to be valid.

DescriptionButton LabelAction

Navigates to the next screenNextNEXT

Navigates to the previous screenPreviousBACK

Saves the interview in its current state to the database, so that the user can resume it laterPausePAUSE

Resumes a paused interviewResumeRESUME

Finishes the interview. This action is available only before the final screen in the flow.FinishFINISH

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Customize the Flow Footer with an Aura Component
To replace the flow footer with an Aura component, use the parameters that the lightning:availableForFlowScreens
interface provides. The availableActions  array lists which actions are available for the screen, and the navigateFlow  action
lets you invoke one of the available actions.

By default, the flow footer displays the available actions as standard buttons. Next and Finish use the brand variant style, and Previous
and Pause use the neutral variant. Also, Pause floats left, while the rest of the buttons float right.

Example: This component (c:flowFooter) customizes the default flow footer in two ways.

• It swaps the Pause and Previous buttons, so that Previous floats to the left and Pause floats to the right with Next or Finish.

• It changes the label for the Finish button to Done.

c:flowFooter  Component

Since the component implements lightning:availableForFlowScreens, it has access to the availableActions
attribute, which contains the valid actions for the screen. The declared attributes, like canPause  and canBack, determine
which buttons to display. Those attributes are set by the JavaScript controller when the component initializes.

<aura:component access="global" implements="lightning:availableForFlowScreens">

<!-- Determine which actions are available -->
<aura:attribute name="canPause" type="Boolean" />
<aura:attribute name="canBack" type="Boolean" />
<aura:attribute name="canNext" type="Boolean" />
<aura:attribute name="canFinish" type="Boolean" />
<aura:handler name="init" value="{!this}" action="{!c.init}" />

212

Customize Flow Screens Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation


<div aura:id="actionButtonBar" class="slds-clearfix slds-p-top_medium">
<!-- If Previous is available, display to the left -->
<div class="slds-float_left">

<aura:if isTrue="{!v.canBack}">
<lightning:button aura:id="BACK" label="Previous"

variant="neutral" onclick="{!c.onButtonPressed}" />
</aura:if>

</div>
<div class="slds-float_right">

<!-- If Pause, Next, or Finish are available, display to the right -->
<aura:if isTrue="{!v.canPause}">

<lightning:button aura:id="PAUSE" label="Pause"
variant="neutral" onclick="{!c.onButtonPressed}" />

</aura:if>
<aura:if isTrue="{!v.canNext}">

<lightning:button aura:id="NEXT" label="Next"
variant="brand" onclick="{!c.onButtonPressed}" />

</aura:if>
<aura:if isTrue="{!v.canFinish}">

<lightning:button aura:id="FINISH" label="Done"
variant="brand" onclick="{!c.onButtonPressed}" />

</aura:if>
</div>

</div>
</aura:component>

c:flowFooter  Controller

The init  function loops through the screen's available actions and determines which buttons the component should show.
When the user clicks one of the buttons in the footer, the onButtonPressed  function calls the navigateFlow  action to
perform that action.

({
init : function(cmp, event, helper) {

// Figure out which buttons to display
var availableActions = cmp.get('v.availableActions');
for (var i = 0; i < availableActions.length; i++) {

if (availableActions[i] == "PAUSE") {
cmp.set("v.canPause", true);

} else if (availableActions[i] == "BACK") {
cmp.set("v.canBack", true);

} else if (availableActions[i] == "NEXT") {
cmp.set("v.canNext", true);

} else if (availableActions[i] == "FINISH") {
cmp.set("v.canFinish", true);

}
}

},

onButtonPressed: function(cmp, event, helper) {
// Figure out which action was called
var actionClicked = event.getSource().getLocalId();
// Fire that action
var navigate = cmp.get('v.navigateFlow');

213

Customize Flow Screens Using Aura ComponentsUsing Components



navigate(actionClicked);
}

})

Control Screen Navigation from a Child Component

If you're using a child component to handle the screen's navigation, pass the availableActions  attribute down from the parent
component – the one that implements lightning:availableForFlowScreens. You can pass the available actions by
setting the child component's attributes, but you can’t pass the action. Instead, use a custom event to send the selected action up to
the parent component.

Example: c:navigateFlow  Event

Create an event with an action attribute, so that you can pass the selected action into the event.

<aura:event type="APPLICATION" >
<aura:attribute name="action" type="String"/>

</aura:event>

c:flowFooter  Component

In your component, before the handler:

• Define an attribute to pass the screen's available actions from the parent component

• Register an event to pass the navigateFlow action to the parent component

<aura:attribute name="availableActions" type="String[]" />
<aura:registerEvent name="navigateFlowEvent" type="c:navigateFlow"/>

c:flowFooter  Controller

Since navigateFlow  is only available in the parent component, the onButtonPressed  function fails. Update the
onButtonPressed  function so that it fires navigateFlowEvent  instead.

onButtonPressed: function(cmp, event, helper) {
// Figure out which action was called
var actionClicked = event.getSource().getLocalId();

// Call that action
var navigate = cmp.getEvent("navigateFlowEvent");
navigate.setParam("action", actionClicked);
navigate.fire();

}

c:flowParent  Component

In the parent component's markup, pass availableActions  into the child component's availableActions  attribute
and the handleNavigate  function into the child component's navigateFlowEvent  event.

<c:flowFooter availableActions="{!v.availableActions}"
navigateFlowEvent="{!c.handleNavigate}"/>

c:flowParent  Controller

214

Customize Flow Screens Using Aura ComponentsUsing Components



When navigateFlowEvent  fires in the child component, the handleNavigate  function calls the parent component’s
navigateFlow  action, using the action selected in the child component.

handleNavigate: function(cmp, event) {
var navigate = cmp.get("v.navigateFlow");
navigate(event.getParam("action"));

}

SEE ALSO:

Customize the Flow Header with an Aura Component

Dynamically Update a Flow Screen with an Aura Component

Component Library: lightning:availableForFlowScreens Interface

Build a Custom Navigation Model for Your Flow Screens
Since Aura components have access to a flow screen’s navigation actions, you can fully customize how the user moves between screens.
For example, hide the default navigation buttons and have the flow move to the next screen when the user selects a choice.

Example: This component (c:choiceNavigation) displays a script and a choice in the form of buttons.

c:choiceNavigation Component

<aura:component implements="lightning:availableForFlowScreens" access="global" >
<!-- Get the script text from the flow -->
<aura:attribute name="scriptText" type="String" required="true" />
<!-- Pass the value of the selected option back to the flow -->
<aura:attribute name="value" type="String" />

<!-- Display the script to guide the agent's call -->
<div class="script-container">

<div class="slds-card__header slds-grid slds-p-bottom_small slds-m-bottom_none">

<div class="slds-media slds-media_center slds-has-flexi-truncate" >
<div class="slds-media__figure slds-align-top">

<h2><lightning:icon iconName="utility:quotation_marks"
title="Suggested script" /></h2>

215

Customize Flow Screens Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation


</div>
<div class="slds-media__body">

<ui:outputRichText class="script" value="{!v.scriptText}"/>
</div>

</div>
</div>

</div>
<!-- Buttons for the agent to click, according to the customer’s response -->
<div class="slds-p-top_large slds-p-bottom_large">

<p><lightning:formattedText value="Customer Response"
class="slds-text-body_small" /></p>

<lightning:buttongroup >
<lightning:button label="Yes" aura:id="Participate_Yes"

variant="neutral" onclick="{!c.handleChange}"/>
<lightning:button label="No" aura:id="Participate_No"

variant="neutral" onclick="{!c.handleChange}"/>
</lightning:buttongroup>

</div>
</aura:component>

c:choiceNavigation  Design

The design resource includes the scriptText  attribute, so you can set the script from the flow.

<design:component>
<design:attribute name="scriptText" label="Script Text"

description="What the agent should say to the customer" />
</design:component>

c:choiceNavigation Style

.THIS.script-container {
border: t(borderWidthThick) solid t(colorBorderBrand);
border-radius: t(borderRadiusMedium);

}

.THIS .script {
font-size: 1.125rem; /*t(fontSizeTextLarge)*/
font-weight: t(fontWeightRegular);
line-height: t(lineHeightHeading);

}

c:choiceNavigation Controller

When the user clicks either of the buttons, the JavaScript controller calls navigateFlow(“NEXT”), which is the equivalent
of the user clicking Next.

({
handleChange : function(component, event, helper) {

// When an option is selected, navigate to the next screen
var response = event.getSource().getLocalId();
component.set("v.value", response);
var navigate = component.get("v.navigateFlow");
navigate("NEXT");

}
})

216

Customize Flow Screens Using Aura ComponentsUsing Components



defaultTokens.tokens

The script in c:choiceNavigation uses tokens to stay in sync with the Salesforce Lightning Design System styles.

<aura:tokens extends="force:base" >
</aura:tokens>

SEE ALSO:

Component Library: lightning:availableForFlowScreens Interface

Customize the Flow Header with an Aura Component
To replace the flow header with an Aura component, use the screenHelpText  parameter from the
lightning:availableForFlowScreens interface.

By default, the flow header includes the title of the flow that's running and a button, where users can access screen-level help.

Example: Instead of displaying the flow title and the help button, this component (c:flowHeader) displays the company
logo and the help button. The help text appears in a tooltip when the user hovers, instead of in a modal when the user clicks.

c:flowHeader Component

Since the component implements lightning:availableForFlowScreens, it has access to the screenHelpText
attribute, which contains the screen's help text if it has any.

<aura:component access="global" implements="lightning:availableForFlowScreens">

<div class="slds-p-top_medium slds-clearfix">
<div class="slds-float_left">

<!-- Display company logo -->
<h2><img src="{!$Resource.Logo}" alt="A.W. Computing logo"/></h2>

</div>
<div class="slds-float_right" style="position:relative;">

<aura:if isTrue="{!v.screenHelpText ne null}">
<!-- If the screen has help text, display an info icon in the header.

On hover, display the screen's help text -->
<lightning:helptext content="{!v.screenHelpText}" />

</aura:if>
</div>

217

Customize Flow Screens Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation


</div>
</aura:component>

SEE ALSO:

Customize the Flow Footer with an Aura Component

Dynamically Update a Flow Screen with an Aura Component

Component Library: lightning:availableForFlowScreens Interface

Dynamically Update a Flow Screen with an Aura Component
To conditionally display a field on your screen, build an Aura component that uses aura:if  to check when parts of the component
should appear.

Example: This component (c:flowDynamicScreen) displays a custom script component and a group of radio buttons.
The component gets the contact's existing phone number from the flow, and uses that value to fill in the script.

If the user selects the No radio button, the component displays an input, where the user can enter the new phone number.

c:flowDynamicScreen Component

<aura:component access="global" implements="lightning:availableForFlowScreens">
<aura:attribute name="oldPhone" type="String" />
<aura:attribute name="newPhone" type="String" />
<aura:attribute name="radioOptions" type="List" default="[

{'label': 'Yes', 'value': 'false'},
{'label': 'No', 'value': 'true'} ]"/>

<aura:attribute name="radioValue" type="Boolean" />

218

Customize Flow Screens Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation


<!-- Displays script to guide the agent's call -->
<div class="script-container">

<div class="slds-card__header slds-grid slds-p-bottom_small slds-m-bottom_none">

<div class="slds-media slds-media_center slds-has-flexi-truncate" >
<div class="slds-media__figure slds-align-top">

<h2><lightning:icon iconName="utility:quotation_marks"
title="Suggested script" /></h2>

</div>
<div class="slds-media__body">

<!-- Inserts the user’s current number, pulled from the flow, into the
script -->

<ui:outputRichText class="script" value="{!'Let me verify your phone
number.

Is ' + v.oldPhone + ' still a good phone number to reach you?'}"/>
</div>

</div>
</div>

</div>
<!-- Displays a radio button group to enter the customer’s response -->
<div class="slds-p-top_medium slds-p-bottom_medium">

<lightning:radioGroup aura:id="rbg_correct" name="rbg_correct"
label="Is the phone number correct?"
options="{! v.radioOptions }" value="{! v.radioValue }" />

<!-- If the current number is wrong,
displays a field to enter the correct number -->

<aura:if isTrue="{!v.radioValue}">
<lightning:input type="tel" aura:id="phone_updated" label="Phone"

onblur="{!c.handleNewPhone}" class="slds-p-top_small"/>
</aura:if>

</div>
</aura:component>

c:flowDynamicScreen Style

.THIS.script-container {
border: t(borderWidthThick) solid t(colorBorderBrand);
border-radius: t(borderRadiusMedium);

}

.THIS .script {
font-size: 1.125rem; /*t(fontSizeTextLarge)*/
font-weight: t(fontWeightRegular);
line-height: t(lineHeightHeading);

}

c:flowDynamicScreen Controller

When the user tabs out, or otherwise removes focus from the Phone input, the controller sets the newPhone  attribute to the
input value, so that you can reference the new number in the flow.

({
handleNewPhone: function(cmp, event, helper) {

cmp.set("v.newPhone", cmp.find('phone_updated').get('v.value'));

219

Customize Flow Screens Using Aura ComponentsUsing Components



}
})

defaultTokens.tokens

The script in c:flowDynamicScreen uses tokens to stay in sync with the Salesforce Lightning Design System styles.

<aura:tokens extends="force:base" >
</aura:tokens>

SEE ALSO:

Customize the Flow Header with an Aura Component

Customize the Flow Footer with an Aura Component

Component Library: lightning:availableForFlowScreens Interface

Create Flow Local Actions Using Aura Components
To execute client-side logic in your flow, build or modify custom Aura components to use as local actions in flows. For example, get data
from third-party systems without going through the Salesforce server, or open a URL in another browser tab. Once you configure the
Aura component’s markup, client-side controller, and design resource, it’s available in Flow Builder as a Core Action element.

Note:

• Lightning components in flows must comply with Lightning Locker restrictions.

• Flows that include Lightning components are supported only in Lightning runtime.

• Lightning components require a browser context to run, so flow action components are supported only in screen flows.

Example: Here’s a sample “c:helloWorld” component and its client-side controller, which triggers a JavaScript alert that says
Hello, World. In Flow Builder, local actions are available from the Core Action element.

<aura:component implements="lightning:availableForFlowActions" access="global">
<aura:attribute name="greeting" type="String" default="Hello" access="global" />
<aura:attribute name="subject" type="String" default="World" access="global" />

</aura:component>

({
// When a flow executes this component, it calls the invoke method
invoke : function(component, event, helper) {

alert(component.get("v.greeting") + ", " + component.get("v.subject"));
}

})

IN THIS SECTION:

Configure the Component Markup and Design Resource for a Flow Action

Make your custom Aura components available as flow local actions by implementing the
lightning:availableForFlowActions  interface.

220

Create Flow Local Actions Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/security_code.htm
https://help.salesforce.com/articleView?id=flow_distribute_runtime.htm&language=en_US


Configure the Client-Side Controller for a Flow Local Action

When a component is executed as a flow local action, the flow calls the invoke  method in the client-side controller. To run the
code asynchronously in your client-side controller, such as when you're making an XML HTTP request (XHR), return a Promise. When
the method finishes or the Promise is fulfilled, control is returned back to the flow.

Cancel an Asynchronous Request in a Flow Local Action

If an asynchronous request times out, the flow executes the local action's fault connector and sets $Flow.FaultMessage  to
the error message. However, the original request isn't automatically canceled. To abort an asynchronous request, use the
cancelToken  parameter available in the invoke  method.

SEE ALSO:

Component Library: lightning:availableForFlowActions Interface

Lightning Locker

Customize Flow Screens Using Aura Components

Configure the Component Markup and Design Resource for a Flow Action
Make your custom Aura components available as flow local actions by implementing the
lightning:availableForFlowActions  interface.

Tip:  We recommend that you omit markup from local actions. Local actions tend to execute quickly, and any markup you add to
them will likely disappear before the user can make sense of it. If you want to display something to users, check out Customize
Flow Screens Using Aura Components instead.

Here’s sample code for a simple “Hello World” component that sets a couple of attributes.

<aura:component implements="lightning:availableForFlowActions" access="global">
<aura:attribute name="greeting" type="String" access="global" />
<aura:attribute name="subject" type="String" access="global" />

</aura:component>

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, you want a component to be usable in an installed package or by a Lightning App Builder user or an Experience
Builder user in another org.

To make an attribute’s value customizable in Flow Builder, add it to the component's design resource.  That way, flow admins can pass
values between that attribute and the flow when they configure the corresponding Core Action element.

With this sample design resource, flow admins can customize the values for the “Hello World” component’s attributes.

<design:component>
<design:attribute name="greeting" label="Greeting" />
<design:attribute name="subject" label="Subject" />

</design:component>

A design resource describes the design-time behavior of a Lightning component—information that visual tools require to allow adding
the component to a page or app. Adding this resource is similar to adding it for the Lightning App Builder.

221

Create Flow Local Actions Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation


When admins reference this component in a flow, they can pass data between the flow and the Aura component. Use the Set Input
Values tab to set an attribute using values from the flow. Use the Store Output Values tab to store an attribute’s value in a flow variable.

SEE ALSO:

Component Library: lightning:availableForFlowActions Interface

Configure the Client-Side Controller for a Flow Local Action

Configure the Client-Side Controller for a Flow Local Action
When a component is executed as a flow local action, the flow calls the invoke  method in the client-side controller. To run the code
asynchronously in your client-side controller, such as when you're making an XML HTTP request (XHR), return a Promise. When the
method finishes or the Promise is fulfilled, control is returned back to the flow.

Asynchronous Code
When a Promise is resolved, the next element in the flow is executed. When a Promise is rejected or hits the timeout, the flow takes the
local action's fault connector and sets $Flow.FaultMessage  to the error message.

By default, the error message is “An error occurred when the elementName element tried to execute the c:myComponent component.”
To customize the error message in $Flow.FaultMessage, return it as a new Error object in the reject()  call.

({
invoke : function(component, event, helper) {

return new Promise(function(resolve, reject) {
// Do something asynchronously, like get data from
// an on-premise database

// Complete the call and return to the flow
if (/* request was successful */) {

// Set output values for the appropriate attributes
resolve();

} else {
reject(new Error("My error message")); }

});
}

})

Note:  If you’re making callouts to an external server, add the external server to the allowlist in your org and enable or configure
CORS in the external server.

Synchronous Code
When the method finishes, the next element in the flow is executed.

({
invoke : function(component, event, helper) {

// Do something synchronously, like open another browser tab
// with a specified URL

// Set output values for the appropriate attributes

222

Create Flow Local Actions Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation


}
})

SEE ALSO:

Component Library: lightning:availableForFlowActions Interface

Cancel an Asynchronous Request in a Flow Local Action

Using External JavaScript Libraries

Manage Trusted URLs

Cancel an Asynchronous Request in a Flow Local Action
If an asynchronous request times out, the flow executes the local action's fault connector and sets $Flow.FaultMessage  to the
error message. However, the original request isn't automatically canceled. To abort an asynchronous request, use the cancelToken
parameter available in the invoke  method.

Note:  By default, requests time out after 120 seconds. To override the default, assign a different Integer to the component's
timeout  attribute.

Example: In this client-side controller, the invoke  method returns a Promise. When the method has done all it needs to do,
it completes the call and control returns to the flow.

• If the request is successful, the method uses resolve()  to execute the next element in the flow after this action.

• If the request isn't successful, it uses reject() to execute the local action’s fault connector and sets
$Flow.FaultMessage  to “My error message”.

• If the request takes too long, it uses cancelToken.promise.then  to abort the request.

({
invoke : function(component, event, helper) {

var cancelToken = event.getParam("arguments").cancelToken;

return new Promise(function(resolve, reject) {
var xhttp = new XMLHttpRequest();

// Do something, like get data from
// a database behind your firewall
xhttp.onreadystatechange = $A.getCallback(function() {

if (/* request was successful */) {
// Complete the call and return to the flow
resolve();

} else {
reject(new Error("My error message"));

}
});

// If the Promise times out, abort the request and
// pass set $Flow.FaultMessage to "Request timed out"
cancelToken.promise.then(function(error) {

xhttp.abort();
reject(new Error("Request timed out."));

});

223

Create Flow Local Actions Using Aura ComponentsUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation


});
}

})

SEE ALSO:

Component Library: lightning:availableForFlowActions Interface

Configure the Client-Side Controller for a Flow Local Action

Embed a Flow in a Custom Aura Component
Once you embed a flow in an Aura component, use JavaScript and Apex code to configure the flow at run time. For example, pass values
into the flow or to control what happens when the flow finishes. lightning:flow  supports only screen flows and autolaunched
flows.

A flow is an application, built with Flow Builder, that collects, updates, edits, and creates Salesforce information.

To embed a flow in your Aura component, add the <lightning:flow>  component to it.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.init}" />
<lightning:flow aura:id="flowData" />

</aura:component>

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
// In that component, start your flow. Reference the flow's API Name.
flow.startFlow("myFlow");

},
})

Note:  When a page loads that includes a flow component, such as Lightning App Builder or an active Lightning page, the flow
runs. Make sure that the flow doesn’t perform any actions – such as create or delete records – before the first screen.

IN THIS SECTION:

Reference Flow Output Variable Values in a Wrapper Aura Component

When you embed a flow in an Aura component, you can display or reference the flow’s variable values. Use the onstatuschange
action to get values from the flow's output variables. Output variables are returned as an array.

Set Flow Input Variable Values from a Wrapper Aura Component

When you embed a flow in a custom Aura component, give the flow more context by initializing its variables. In the component's
controller, create a list of maps, then pass that list to the startFlow method.

Control a Flow’s Finish Behavior by Wrapping the Flow in a Custom Aura Component

By default, when a flow user clicks Finish, a new interview starts and the user sees the first screen of the flow again. By embedding
a flow in a custom Aura component, you can shape what happens when the flow finishes by using the onstatuschange  action.
To redirect to another page, use one of the force:navigateTo* events such as force:navigateToObjectHome  or
force:navigateToUrl.

224

Embed a Flow in a Custom Aura ComponentUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowActions/documentation


Resume a Flow Interview from an Aura Component

By default, users can resume interviews that they paused from the Paused Interviews component on their home page. To customize
how and where users can resume their interviews, embed the lightning:flow component in a custom Aura component. In
your client-side controller, pass the interview ID into the resumeFlow  method.

SEE ALSO:

Component Library: lightning:flow Component

Reference Flow Output Variable Values in a Wrapper Aura Component
When you embed a flow in an Aura component, you can display or reference the flow’s variable values. Use the onstatuschange
action to get values from the flow's output variables. Output variables are returned as an array.

Note:  The variable must allow output access. If you reference a variable that doesn’t allow output access, attempts to get the
variable are ignored.

Example: This example uses the JavaScript controller to pass the flow's accountName and numberOfEmployees variables into
attributes on the component. Then, the component displays those values in output components.

<aura:component>
<aura:attribute name="accountName" type="String" />
<aura:attribute name="numberOfEmployees" type="Decimal" />

<p><lightning:formattedText value="{!v.accountName}" /></p>
<p><lightning:formattedNumber style="decimal" value="{!v.numberOfEmployees}" /></p>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>
<lightning:flow aura:id="flowData" onstatuschange="{!c.handleStatusChange}" />

</aura:component>

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
// In that component, start your flow. Reference the flow's API Name.
flow.startFlow("myFlow");

},

handleStatusChange : function (component, event) {
if(event.getParam("status") === "FINISHED") {

// Get the output variables and iterate over them
var outputVariables = event.getParam("outputVariables");
var outputVar;
for(var i = 0; i < outputVariables.length; i++) {

outputVar = outputVariables[i];
// Pass the values to the component's attributes
if(outputVar.name === "accountName") {

component.set("v.accountName", outputVar.value);
} else {

component.set("v.numberOfEmployees", outputVar.value);
}

}

225

Embed a Flow in a Custom Aura ComponentUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:flow/documentation


}
},

})

SEE ALSO:

Component Library: lightning:flow Component

Set Flow Input Variable Values from a Wrapper Aura Component
When you embed a flow in a custom Aura component, give the flow more context by initializing its variables. In the component's
controller, create a list of maps, then pass that list to the startFlow method.

Note:  You can set variables only at the beginning of an interview, and the variables you set must allow input access. If you
reference a variable that doesn’t allow input access, attempts to set the variable are ignored.

For each variable you set, provide the variable's name, type, and value. For type, use the API name for the flow data type. For
example, for a record variable use SObject, and for a text variable use String.

{
name : "varName",
type : "flowDataType",
value : valueToSet

},
{

name : "varName",
type : "flowDataType",
value : [ value1, value2]

}, ...

Example: This JavaScript controller sets values for a number variable, a date collection variable, and a couple of record variables.
The Record data type in Flow Builder corresponds to SObject here.

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
var inputVariables = [

{ name : "numVar", type : "Number", value: 30 },
{ name : "dateColl", type : "String", value: [ "2016-10-27", "2017-08-01" ]

},
// Sets values for fields in the account record (sObject) variable. Id uses

the
// value of the component's accountId attribute. Rating uses a string.
{ name : "account", type : "SObject", value: {

"Id" : component.get("v.accountId"),
"Rating" : "Warm"
}

},
// Set the contact record (sObject) variable to the value of the component's

contact
// attribute. We're assuming the attribute contains the entire sObject for
// a contact record.

226

Embed a Flow in a Custom Aura ComponentUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:flow/documentation


{ name : "contact", type : "SObject", value: component.get("v.contact") }
},

];
flow.startFlow("myFlow", inputVariables);

}
})

Example: Here's an example of a component that gets an account via an Apex controller. The Apex controller passes the data
to the flow's record variable through the JavaScript controller.

<aura:component controller="AccountController" >
<aura:attribute name="account" type="Account" />
<aura:handler name="init" value="{!this}" action="{!c.init}"/>
<lightning:flow aura:id="flowData"/>

</aura:component>

public with sharing class AccountController {
@AuraEnabled
public static Account getAccount() {

return [SELECT Id, Name, LastModifiedDate FROM Account LIMIT 1];
}

}

({
init : function (component) {

// Create action to find an account
var action = component.get("c.getAccount");

// Add callback behavior for when response is received
action.setCallback(this, function(response) {

if (state === "SUCCESS") {
// Pass the account data into the component's account attribute
component.set("v.account", response.getReturnValue());
// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");

// Set the account record (sObject) variable to the value of the component's

// account attribute.
var inputVariables = [

{
name : "account",
type : "SObject",
value: component.get("v.account")

}
];

// In the component whose aura:id is "flowData, start your flow
// and initialize the account record (sObject) variable. Reference the

flow's
// API name.
flow.startFlow("myFlow", inputVariables);

}
else {

console.log("Failed to get account date.");

227

Embed a Flow in a Custom Aura ComponentUsing Components



}
});

// Send action to be executed
$A.enqueueAction(action);

}
})

SEE ALSO:

Component Library: lightning:flow Component

Which Custom Lightning Component Attribute Types Are Supported in Flows?

Control a Flow’s Finish Behavior by Wrapping the Flow in a Custom Aura Component
By default, when a flow user clicks Finish, a new interview starts and the user sees the first screen of the flow again. By embedding a
flow in a custom Aura component, you can shape what happens when the flow finishes by using the onstatuschange  action. To
redirect to another page, use one of the force:navigateTo* events such as force:navigateToObjectHome  or
force:navigateToUrl.

Tip:  To control a flow’s finish behavior at design time, make your custom Aura component available as a flow action by using the
lightning:availableForFlowActions interface. To control what happens when an autolaunched flow finishes,
check for the FINISHED_SCREEN  status.

<aura:component access="global">
<aura:handler name="init" value="{!this}" action="{!c.init}" />
<lightning:flow aura:id="flowData" onstatuschange="{!c.handleStatusChange}" />

</aura:component>

// init function here
handleStatusChange : function (component, event) {

if(event.getParam("status") === "FINISHED") {
// Redirect to another page in Salesforce, or
// Redirect to a page outside of Salesforce, or
// Show a toast, or...

}
}

Example: This function redirects the user to a case created in the flow by using the force:navigateToSObject event.

handleStatusChange : function (component, event) {
if(event.getParam("status") === "FINISHED") {

var outputVariables = event.getParam("outputVariables");
var outputVar;
for(var i = 0; i < outputVariables.length; i++) {

outputVar = outputVariables[i];
if(outputVar.name === "redirect") {

var urlEvent = $A.get("e.force:navigateToSObject");
urlEvent.setParams({

"recordId": outputVar.value,
"isredirect": "true"

});
urlEvent.fire();

228

Embed a Flow in a Custom Aura ComponentUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:flow/documentation


}
}

}
}

SEE ALSO:

Component Library: lightning:flow Component

Create Flow Local Actions Using Aura Components

Resume a Flow Interview from an Aura Component
By default, users can resume interviews that they paused from the Paused Interviews component on their home page. To customize
how and where users can resume their interviews, embed the lightning:flow component in a custom Aura component. In your
client-side controller, pass the interview ID into the resumeFlow  method.

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");

// In that component, resume a paused interview. Provide the method with
// the ID of the interview that you want to resume.
flow.resumeFlow("pausedInterviewId");

},
})

Example: This example shows how you can resume an interview—or start a new one. When users click Survey Customer from
a contact record, the Aura component does one of two things.

• If the user has any paused interviews for the Survey Customers flow, it resumes the first one.

• If the user doesn’t have any paused interviews for the Survey Customers flow, it starts a new one.

<aura:component controller="InterviewsController">
<aura:handler name="init" value="{!this}" action="{!c.init}" />
<lightning:flow aura:id="flowData" />

</aura:component>

This Apex controller gets a list of paused interviews by performing a SOQL query. If nothing is returned from the query,
getPausedId()  returns a null value, and the component starts a new interview. If at least one interview is returned from the
query, the component resumes the first interview in that list.

public class InterviewsController {
@AuraEnabled
public static String getPausedId() {

// Get the ID of the running user
String currentUser = UserInfo.getUserId();
// Find all of that user's paused interviews for the Survey customers flow
List<FlowInterview> interviews =

[ SELECT Id FROM FlowInterview
WHERE CreatedById = :currentUser AND InterviewLabel LIKE '%Survey

customers%'];

229

Embed a Flow in a Custom Aura ComponentUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:flow/documentation


if (interviews == null || interviews.isEmpty()) {
return null; // early out

}
// Return the ID for the first interview in the list
return interviews.get(0).Id;

}
}

If the Apex controller returned an interview ID, the client-side controller resumes that interview. If the Apex controller returned a
null interview ID, the component starts a new interview.

({
init : function (component) {

//Create request for interview ID
var action = component.get("c.getPausedId");
action.setCallback(this, function(response) {

var interviewId = response.getReturnValue();
// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
// If an interview ID was returned, resume it in the component
// whose aura:id is "flowData".
if ( interviewId !== null ) {

flow.resumeFlow(interviewID);
}
// Otherwise, start a new interview in that component. Reference
// the flow's API Name.
else {

flow.startFlow("Survey_customers");
}

});
//Send request to be enqueued
$A.enqueueAction(action);

},
})

SEE ALSO:

Component Library: lightning:flow Component

Display Flow Stages with an Aura Component
If you’ve added stages to your flow, display them to flow users with an Aura component, such as lightning:progressindicator.

To add a progress indicator component to your flow, you have two options:

• Wrap the progress indicator with a lightning:flow  component in a parent component.

<aura:component>
<lightning:progressindicator/>
<lightning:flow/>

</aura:component>

• Add the progress indicator to your flow screen directly, by using a screen component.

230

Display Flow Stages with an Aura ComponentUsing Components

https://developer.salesforce.com/docs/component-library/bundle/lightning:flow/documentation


IN THIS SECTION:

Display Flow Stages by Wrapping a Progress Indicator

If you’re tracking stages in your flow, display them at runtime by creating a custom component that wraps a progress indicator with
the lightning:flow  component. Use the progress indicator to display the flow’s active stages and current stage, and use the
lightning:flow  component to display the flow’s screens. To pass the flow’s active stages and current stage to the progress
indicator, use the lightning:flow  component's onstatuschange  action.

Display Flow Stages By Adding a Progress Indicator to a Flow Screen

If you’re tracking stages in your flow, display them at runtime by adding a custom component to the flow’s screens. Create a progress
indicator component that displays the flow’s active stages and current stage, and make sure that it’s available as for flow screens.
When you add the component to each flow screen, pass the $Flow.ActiveStages  and $Flow.CurrentStage  global
variables into the component’s attributes.

SEE ALSO:

Salesforce Help: Show Users Progress Through a Flow with Stages

Display Flow Stages By Adding a Progress Indicator to a Flow Screen

Display Flow Stages by Wrapping a Progress Indicator
If you’re tracking stages in your flow, display them at runtime by creating a custom component that wraps a progress indicator with the
lightning:flow  component. Use the progress indicator to display the flow’s active stages and current stage, and use the
lightning:flow  component to display the flow’s screens. To pass the flow’s active stages and current stage to the progress
indicator, use the lightning:flow  component's onstatuschange  action.

Example: This c:flowStages_global  component uses lightning:progressindicator  to display the flow’s
stages and lightning:flow  to display the flow.

Note:  This example only applies to flows that have active stages.

c:flowStages_global  Component

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<aura:attribute name="currentStage" type="Object"/>
<aura:attribute name="activeStages" type="Object[]"/>
<!-- Get flow name from the Lightning App Builder -->
<aura:attribute name="flowName" type="String"/>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>
<article class="slds-card">

<lightning:progressIndicator aura:id="progressIndicator"
currentStep="{!v.currentStage.name}" type="path"/>
<lightning:flow aura:id="flow" onstatuschange="{!c.statusChange}"/>

</article>
</aura:component>

231

Display Flow Stages with an Aura ComponentUsing Components

https://help.salesforce.com/articleView?id=flow_build_stages.htm&language=en_US


c:flowStages_global  Design

The design resource includes the flowName  attribute, so you can specify which flow to start from Lightning App Builder.

<design:component>
<design:attribute name="flowName" label="Flow Name"/>

</design:component>

c:flowStages_global  Style

.THIS .slds-path__nav { margin-right: 0; }

.THIS .slds-path__item:only-child { border-radius: 15rem; }

c:flowStages_global  Controller

The controller uses the flowName attribute to determine which flow to start.

Each time a new screen loads, the onstatuschange  action fires, giving the controller access to a handful of parameters about
the flow. The currentStage  and activeStages  parameters return the labels and names of the relevant stages.

When onstatuschange  fires in this component, it calls the controller's statusChange  method. That method passes the
flow's currentStage  and activeStages  parameters into the component's attributes. For each item in the
activeStages  attribute, the method adds a lightning:progressStep  component to the component markup.

({
init : function(component, event, helper) {

var flow = component.find("flow");
flow.startFlow(component.get("v.flowName"));

},

// When each screen loads ...
statusChange : function(component, event, helper) {

// don't do anything if the flow doesn't have active stages
if (!event.getParam("currentStage") || !event.getParam("activeStages")) {

return;
}
// Pass $Flow.ActiveStages into the activeStages attribute
// and $Flow.CurrentStage into the currentStage attribute
component.set("v.currentStage", event.getParam("currentStage"));
component.set("v.activeStages", event.getParam("activeStages"));

var progressIndicator = component.find("progressIndicator");
var body = [];

for(let stage of component.get("v.activeStages")) {
// For each stage in activeStages...
$A.createComponent(

"lightning:progressStep",
{

// Create a progress step where label is the
// stage label and value is the stage name
"aura:id": "step_" + stage.name,
"label": stage.label,
"value": stage.name

},
function(newProgressStep, status, errorMessage) {

//Add the new step to the progress array

232

Display Flow Stages with an Aura ComponentUsing Components



if (status === "SUCCESS") {
body.push(newProgressStep);
}
else if (status === "INCOMPLETE") {

// Show offline error
console.log("No response from server or client is offline.")

}
else if (status === "ERROR") {

// Show error message
console.log("Error: " + errorMessage);

}
}

);
}
progressIndicator.set("v.body", body);

}
})

SEE ALSO:

Salesforce Help: Show Users Progress Through a Flow with Stages

Display Flow Stages with an Aura Component

Aura Component Reference: Progress Indicator

Component Library: lightning:flow Component

Display Flow Stages By Adding a Progress Indicator to a Flow Screen
If you’re tracking stages in your flow, display them at runtime by adding a custom component to the flow’s screens. Create a progress
indicator component that displays the flow’s active stages and current stage, and make sure that it’s available as for flow screens. When
you add the component to each flow screen, pass the $Flow.ActiveStages  and $Flow.CurrentStage  global variables
into the component’s attributes.

Pass the $Flow.ActiveStages  and $Flow.CurrentStage  global variables to the component’s attributes. Then use those
attributes to display the flow’s active stages and select the current one.

Example: The c:flowStages_field  component uses lightning:progressindicator  to display the flow’s
stages.

c:flowStages_field Component

<aura:component implements="lightning:availableForFlowScreens">
<!-- Attributes that store $Flow.ActiveStages and $Flow.CurrentStage -->
<aura:attribute name="stages" type="String[]"/>
<aura:attribute name="currentStage" type="String"/>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>

233

Display Flow Stages with an Aura ComponentUsing Components

https://help.salesforce.com/articleView?id=flow_build_stages.htm&language=en_US
https://developer.salesforce.com/docs/component-library/bundle/lightning:progressIndicator/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:flow/documentation


<lightning:progressIndicator aura:id="progressIndicator"
currentStep="{!v.currentStage}"

type="path"/>
</aura:component>

c:flowStages_field  Design

The design resource includes the stages  and currentStage  attributes so that they’re available in Flow Builder. In the flow
screen, pass $Flow.ActiveStages  into the stages  attribute, and pass $Flow.CurrentStage  into the
currentStage  attribute.

<design:component>
<design:attribute name="stages" label="Stages" description="What stages are active"/>

<design:attribute name="currentStage" label="Current Stage" description="What is
the current stage?"/>
</design:component>

c:flowStages_field Style

.THIS .slds-path__nav { margin-right: 0; }

.THIS .slds-path__item:only-child { border-radius: 15rem; }

c:flowStages_field Controller

When you add this component to a flow screen, you pass $Flow.ActiveStages  into the stages  attribute and
$Flow.CurrentStage  into the currentStage  attribute. As a result, the component's attributes contain the relevant
stages' labels but not the associated names. Each step in the progress indicator requires a label and a value, so this example sets
both label  and value  to the stage label.

Tip:  Make sure that none of your flow’s stages have the same label.

For each item in the stages attribute, the init  method adds a lightning:progressStep  component to the
c:flowStages_field  component markup.

({
init : function(component, event, helper) {

var progressIndicator = component.find('progressIndicator');
for (let step of component.get('v.stages')) {

$A.createComponent(
"lightning:progressStep",
{

"aura:id": "step_" + step,
"label": step,
"value": step

},
function(newProgressStep, status, errorMessage){

// Add the new step to the progress array
if (status === "SUCCESS") {

var body = progressIndicator.get("v.body");
body.push(newProgressStep);
progressIndicator.set("v.body", body);

}
else if (status === "INCOMPLETE") {

// Show offline error
console.log("No response from server, or client is offline.")

234

Display Flow Stages with an Aura ComponentUsing Components



}
else if (status === "ERROR") {

// Show error message
console.log("Error: " + errorMessage);

}
}

);
}

}
})

SEE ALSO:

Salesforce Help: Show Users Progress Through a Flow with Stages

Display Flow Stages with an Aura Component

Display Flow Stages with an Aura Component

Component Library: lightning:availableForFlowScreens Interface

Add Components to Apps

When you’re ready to add components to your app, first look at the built-in base components that Salesforce provides with the framework.
You can also use these components by extending them or using composition to add them to custom components that you’re building.

Note:  For all the base components, see the Component Library on page 495. The lightning  namespace includes many base
components that implement visual elements common on web pages.

If you can’t find a base component that meets your requirements, consider these options.

• Use  design variations on page 118 on base components.

• Apply utility classes or custom CSS classes.

• Combine smaller base components into a more complex, custom component.

• Create your custom component from Lightning Design System blueprints.

Components are encapsulated and their internals stay private, while their public shape is visible to consumers of the component. This
strong separation gives component authors freedom to change the internal implementation details and insulates component consumers
from those changes.

The public shape of a component is defined by the attributes that can be set and the events that interact with the component. The
shape is essentially the API for developers to interact with the component. To design a new component, think about the attributes that
you want to expose and the events that the component can initiate or respond to.

After you’ve defined the shape of any new components, developers can work on the components in parallel. This approach is useful if
you have a team working on an app.

235

Add Components to AppsUsing Components

https://help.salesforce.com/articleView?id=flow_build_stages.htm&language=en_US
https://developer.salesforce.com/docs/component-library/bundle/lightning:availableForFlowScreens/documentation
https://www.lightningdesignsystem.com/utilities/alignment/
https://www.lightningdesignsystem.com/components/overview/


To add a custom component to your app, see Using the Developer Console on page 4.

SEE ALSO:

Component Composition

Using Object-Oriented Development

Component Attributes

Communicating with Events

Integrate Your Custom Apps into the Chatter Publisher

Use the Chatter Rich Publisher Apps API to integrate your custom apps into the Chatter publisher. The Rich Publisher Apps API enables
developers to attach any custom payload to a feed item. Rich Publisher Apps uses Lightning components for composition and rendering.
We provide two Lightning interfaces and a Lightning event to assist with integration. You can package your apps and upload them to
AppExchange. An Experience Builder site admin page provides a selector for choosing which five of your apps to add to the Chatter
publisher for that site.

Note:  Rich Publisher Apps are available to Experience Builder sites in topics, group, and profile feeds and in direct messages.

Use the lightning:availableForChatterExtensionComposer  and
lightning:availableForChatterExtensionRenderer interfaces with the
lightning:sendChatterExtensionPayload  event to integrate your custom apps into the Chatter publisher and carry
your apps’ payload into a Chatter feed.

Note:  The payload must be an object.

Example: Example of a Custom App Integrated into a Chatter Publisher

This example shows a Chatter publisher with three custom app integrations. There are icons for a video meeting app (1), an emoji
app (2), and an app for selecting a daily quotation (3).

236

Integrate Your Custom Apps into the Chatter PublisherUsing Components

https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/ref_attr_types_object.htm


Example: Example of a Custom App Payload in a Chatter Feed Post

This example shows the custom app’s payload included in a Chatter feed.

The next sections describe how we integrated the custom quotation app with the Chatter publisher.

237

Integrate Your Custom Apps into the Chatter PublisherUsing Components



1. Set Up the Composer Component
For the composer component, we created component, controller, helper, and style files.

Here’s the component markup in quotesCompose.cmp. In this file, we implement the
lightning:availableForChatterExtensionComposer  interface.

<aura:component implements="lightning:availableForChatterExtensionComposer">
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<div class="container">
<span class="quote" aura:id="quote"></span>

<span class="author" aura:id="author"></span>
<lightning:button label="Get next Quote" onclick="{!c.getQuote}"/>

</div>

</aura:component>

Use your controller and helper to initialize the composer component and to get the quote from a source. When you get the quote, fire
the event sendChatterExtensionPayload. Firing the event enables the Add button so the platform can associate the app’s
payload with the feed item. You can also add a title and description as metadata for the payload. The title and description are shown in
a non-Lightning context, like Salesforce Classic.

getQuote: function(cmp, event, helper) {
// get quote from the source
var compEvent = cmp.getEvent("sendChatterExtensionPayload");
compEvent.setParams({

"payload" : "<payload object>",
"extensionTitle" : "<title to use when extension is rendered>",
"extensionDescription" : "<description to use when extension is rendered>"

});
compEvent.fire();

}

Add a CSS resource to your component bundle to style your composition component.

2. Set Up the Renderer Component
For the renderer component, we created component, controller, and style files.

Here’s the component markup in quotesRender.cmp. In this file, we implement the
lightning:availableForChatterExtensionRenderer  interface, which provides the payload as an attribute in the
component.

<aura:component implements="lightning:availableForChatterExtensionRenderer">
<aura:attribute name="_quote" type="String"/>
<aura:attribute name="_author" type="String"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<div class="container">
<span class="quote" aura:id="quote">{!v._quote}</span>

<span class="author" aura:id="author">--- {!v._author} ---</span>
</div>

</aura:component>

238

Integrate Your Custom Apps into the Chatter PublisherUsing Components



You have a couple of ways of dealing with the payload. You can use the payload directly in the component {!v.payload}. You can
use your controller to parse the payload provided by the lightning:availableForChatterExtensionRenderer
interface and set its attributes yourself. Add a CSS resource to your renderer bundle to style your renderer component.

3. Set Up a New ChatterExtension Entity
After you create these components, open Postman or any tool that can make SOAP and REST API calls. Make sure that you’re using at
least API version 41.0. Log in to your org, and create a ChatterExtension entity using the Salesforce SOAP API.

Provide values for ChatterExtension fields (see ChatterExtension for values and descriptions).

Get the IconId  for the file asset. Go to Postman, or your preferred tool, and make a new POST request for creating a file asset with a
fileId  from your org. The filepath is /services/data/v41.0/connect/files/<fileid>/asset. Replace the
version number with the current version.

Note:  Rich Publisher Apps information is cached, so there can be a 5-minute wait before your app appears in the publisher.

4. Package Your App and Upload It to AppExchange
The Second-Generation Managed Packaging Developer Guide provides useful information about packaging your apps and publishing
them on AppExchange.

5. Select the Apps to Embed in the Chatter Publisher
An admin page is available in each Experience Builder site for selecting and arranging the apps to show in the Chatter publisher. Select
up to five apps, and arrange them in the order you like. The order you set here controls the order the app icons appear in the publisher.

In your site, go to Experience Workspaces and open the Administration page. Click Rich Publisher Apps to open the page.

239

Integrate Your Custom Apps into the Chatter PublisherUsing Components

https://www.postman.com/downloads/
https://developer.salesforce.com/docs/atlas.en-us.248.0.api.meta/api/sforce_api_calls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_chatterextension.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_files_asset.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm


After you move apps to the Selected Items column and click Save, the selected apps appear in the Chatter Publisher.

Using Background Utility Items

Implement the lightning:backgroundUtilityItem interface to create a component that fires and responds to events
without rendering in the utility bar.

Note:  Lightning Web Components (LWC) doesn’t currently support working with background utility items.

This component implements lightning:backgroundUtilityItem  and listens for lightning:tabCreated  events
when the app loads. The component prevents more than 5 tabs from opening.

<aura:component implements="lightning:backgroundUtilityItem">
<aura:attribute name="limit" default="5" type="Integer" />
<aura:handler event="lightning:tabCreated" action="{!c.onTabCreated}" />
<lightning:workspaceAPI aura:id="workspace" />

</aura:component>

When a tab is created, the event handler calls onTabCreated  in the component’s controller and checks how many tabs are open.
If the number of tabs is more than 5, the leftmost tab automatically closes.

({
onTabCreated: function(cmp) {

var workspace = cmp.find("workspace");
var limit = cmp.get("v.limit");
workspace.getAllTabInfo().then(function (tabInfo) {

if (tabInfo.length > limit) {
workspace.closeTab({

tabId: tabInfo[0].tabId
});

}
});

}
})

240

Using Background Utility ItemsUsing Components



Background utility items are added to an app the same way normal utility items are, but they don’t appear in the utility bar. The  icon
appears next to background utility items on the utility item list. If you have only background utility items in your utility bar, the utility
bar doesn’t appear in your app. You need at least one non-background utility item in your utility bar for it to appear.

Use Lightning Components in Visualforce Pages

Add Aura components to your Visualforce pages to combine features that use both solutions. Implement new functionality using Aura
components and then use it with existing Visualforce pages.

Important:  Lightning Components for Visualforce is based on Lightning Out, a powerful and flexible feature you can use to
embed Aura and Lightning web components into almost any web page. When used with Visualforce, some of the details become
simpler. For example, you don’t need to deal with authentication, and you don’t need to configure a Connected App.

In other ways, using Lightning Components for Visualforce is identical to using Lightning Out. See Use Components Outside
Salesforce with Lightning Out (Beta) in the Lightning Web Components Developer Guide.

There are three steps to add Aura components to a Visualforce page.

1. Add the Lightning Components for Visualforce JavaScript library to your Visualforce page using the
<apex:includeLightning/>  component.

2. Create and reference a Lightning Out app that declares your component dependencies.

3. Write a JavaScript function that creates the component on the page using $Lightning.createComponent().

Add the Lightning Components for Visualforce JavaScript Library
Add <apex:includeLightning/>  at the beginning of your page. This component loads the JavaScript file used by Lightning
Components for Visualforce.

Create and Reference a Lightning Out App
To use Lightning Components for Visualforce, define component dependencies by referencing a Lightning Out app. This app is globally
accessible and extends ltng:outApp. The app declares dependencies on any Lightning component that it uses.

Here’s an example of a Lightning Out app named lcvfTest.app. The app uses the <aura:dependency>  tag to indicate that
it uses the standard Lightning component lightning:button.

<aura:application access="GLOBAL" extends="ltng:outApp">
<aura:dependency resource="lightning:button"/>

</aura:application>

Note:  Extending from ltng:outApp  adds SLDS resources to the page so that your Lightning components can be styled with
the Salesforce Lightning Design System (SLDS). If you don’t want SLDS resources added to the page, extend from
ltng:outAppUnstyled  instead.

To reference this app on your page, use this JavaScript code, where theNamespace  is the namespace prefix for the app. That is,
either your org’s namespace or the namespace of the managed package that provides the app.

$Lightning.use("theNamespace:lcvfTest", function() {});

If the app is defined in your org (that is, not in a managed package), you can use the default “c” namespace instead, as shown in the
next example. If your org doesn’t have a namespace defined, you must use the default namespace.

For details about creating a Lightning Out app, see Lightning Out Dependencies in the Lightning Web Components Developer Guide.

241

Use Lightning Components in Visualforce PagesUsing Components

https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out.html
https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out.html
https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out-dependencies.html


Creating a Component on a Page
Finally, add your top-level component to a page using $Lightning.createComponent(String type, Object
attributes, String domLocator, function callback). This function is similar to $A.createComponent(),
but it includes an additional parameter, domLocator, that specifies the DOM element where you want the component inserted.

Let’s look at a sample Visualforce page that creates a lightning:button  using the lcvfTest.app  from the previous example.

<apex:page>
<apex:includeLightning />
<div id="lightning" />
<script>

$Lightning.use("c:lcvfTest", function() {
$Lightning.createComponent("lightning:button",

{ label : "Press Me!" },
"lightning",
function(cmp) {

console.log("button was created");
// do some stuff

}
);

});
</script>

</apex:page>

The $Lightning.createComponent()  call creates a button with a “Press Me!” label. The button is inserted in a DOM element
with the ID “lightning”. After the button is added and active on the page, the callback function is invoked and executes a
console.log()  statement. The callback receives the component created as its only argument. In this simple example, the button
isn't configured to do anything.

Important:  You can call $Lightning.use() multiple times on a page, but all calls must reference the same Lightning
dependency app.

For details about using $Lightning.use()  and $Lightning.createComponent(), see Lightning Out Markup in the
Lightning Web Components Developer Guide.

Limitations
If a Visualforce page contains an Aura component, you can’t render the Visualforce page as a PDF.

Browser Third-Party Cookies
Lightning components set cookies in a user’s browser. Because Lightning components and Visualforce are served from different domains,
these cookies are “third-party” cookies.

You can use several approaches for enabling Lightning components in Visualforce to work with third-party cookies. See Enable Browser
Third-Party Cookies for Lightning Out in the Lightning Web Components Developer Guide.

242

Use Lightning Components in Visualforce PagesUsing Components

https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out-markup.html
https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out-third-party-cookies.html
https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out-third-party-cookies.html


Use Aura and Lightning Web Components Outside of Salesforce with
Lightning Out (Beta)

To run components outside of Salesforce servers, use Lightning Out, a special type of standalone Aura app. Whether it’s a Node.js app
running on Heroku or a department server inside the firewall, add your components as dependencies to a Lightning Out app. Then run
the Lightning Out app wherever your users are.

Important:  This feature is a Beta Service. Customer may opt to try such Beta Service in its sole discretion. Any use of the Beta
Service is subject to the applicable Beta Services Terms provided at Agreements and Terms.

Lightning Out supports both Aura components and Lightning web components. The setup process is the same for both component
frameworks. We recommend using Lightning web components for the most modern, performant, and responsive functionality. 

See Use Components Outside Salesforce with Lightning Out (Beta) in the Lightning Web Components Developer Guide.

SEE ALSO:

Use Lightning Web Components instead of Aura Components

Lightning Web Components Developer Guide: Use Components Outside Salesforce with Lightning Out (Beta)

Lightning Container

Upload an app developed with a third-party framework as a static resource, and host the content in an Aura component using
lightning:container. Use lightning:container  to use third-party frameworks like AngularJS or React within your
Lightning pages.

The lightning:container  component hosts content in an iframe. You can implement communication to and from the framed
application, allowing it to interact with the Lightning component. lightning:container  provides the message()  method,
which you can use in the JavaScript controller to send messages to the application. In the component, specify a method for handling
messages with the onmessage  attribute.

IN THIS SECTION:

Lightning Container Component Limits

Understand the limits of lightning:container.

The Lightning Realty App

The Lightning Realty App is a more robust example of messaging between the Lightning Container Component and Salesforce.

lightning:container NPM Module Reference

Use methods included in the lightning:container NPM module in your JavaScript code to send and receive messages to and from
your custom Aura component.

Using a Third-Party Framework
lightning:container  allows you to use an app developed with a third-party framework, such as AngularJS or React, in an Aura
component. Upload the app as a static resource.

Your application must have a launch page, which is specified with the lightning:container src  attribute. By convention, the
launch page is index.html, but you can specify another launch page by adding a manifest file to your static resource. The following

243

Use Aura and Lightning Web Components Outside of
Salesforce with Lightning Out (Beta)

Using Components

https://www.salesforce.com/company/legal/agreements/
https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out.html
https://developer.salesforce.com/docs/platform/lwc/guide/lightning-out.html


example shows a simple Aura component that references myApp, an app uploaded as a static resource, with a launch page of
index.html.

<aura:component>
<lightning:container src="{!$Resource.myApp + '/index.html'}" />

</aura:component>

The contents of the static resource are up to you. It should include the JavaScript that makes up your app, any associated assets, and a
launch page.

As in other Aura components, you can specify custom attributes. This example references the same static resource, myApp, and has
three attributes, messageToSend, messageReceived, and error. Because this component includes
implements="flexipage:availableForAllPageTypes", it can be used in the Lightning App Builder and added to
Lightning pages.

Note:  The examples in this section are accessible on the Developerforce Github Repository.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >
<aura:attribute access="private" name="messageToSend" type="String" default=""/>
<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message

to send to React app: "/>
<lightning:button label="Send" onclick="{!c.sendMessage}"/>
<br/>

<lightning:textarea value="{!v.messageReceived}" label="Message received from React
app: "/>

<br/>
<aura:if isTrue="{! !empty(v.error)}">

<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.SendReceiveMessages + '/index.html'}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>
</aura:component>

The component includes a lightning:input  element, allowing users to enter a value for messageToSend. When a user hits
Send, the component calls the controller method sendMessage. This component also provides methods for handling messages
and errors.

This snippet doesn’t include the component’s controller or other code, but don’t worry. We’ll dive in, break it down, and explain how to
implement message and error handling as we go in Sending Messages from the Lightning Container Component and Handling Errors
in Your Container.

SEE ALSO:

Lightning Container

Sending Messages from the Lightning Container Component

Handling Errors in Your Container

244

Using a Third-Party FrameworkUsing Components

https://github.com/developerforce/LightningContainerExamples


Sending Messages from the Lightning Container Component
Use the onmessage  attribute of lightning:container  to specify a method for handling messages to and from the contents
of the component—that is, the embedded app. The contents of lightning:container  are wrapped within an iframe, and this
method allows you to communicate across the frame boundary.

This example shows an Aura component that includes lightning:container  and has three attributes, messageToSend,
messageReceived, and error.

This example uses the same code as the one in Using a Third-Party Framework. You can download the complete version of this example
from the Developerforce Github Repository.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >
<aura:attribute access="private" name="messageToSend" type="String" default=""/>
<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message

to send to React app: "/>
<lightning:button label="Send" onclick="{!c.sendMessage}"/>
<br/>

<lightning:textarea value="{!v.messageReceived}" label="Message received from React
app: "/>

<br/>
<aura:if isTrue="{! !empty(v.error)}">

<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.SendReceiveMessages + '/index.html'}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>
</aura:component>

messageToSend  represents a message sent from Salesforce to the framed app, while messageReceived  represents a message
sent by the app to the Aura component. lightning:container  includes the required src  attribute, an aura:id, and the
onmessage  attribute. The onmessage  attribute specifies the message-handling method in your JavaScript controller, and the
aura:id  allows that method to reference the component.

This example shows the component’s JavaScript controller.

({
sendMessage : function(component, event, helper) {

var msg = {
name: "General",
value: component.get("v.messageToSend")

};
component.find("ReactApp").message(msg);

},

handleMessage: function(component, message, helper) {
var payload = message.getParams().payload;

245

Using a Third-Party FrameworkUsing Components

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/metadata/aura/SendReceiveMessages/SendReceiveMessages.cmp


var name = payload.name;
if (name === "General") {

var value = payload.value;
component.set("v.messageReceived", value);

}
else if (name === "Foo") {

// A different response
}

},

handleError: function(component, error, helper) {
var e = error;

}
})

This code does a couple of different things. The sendMessage  action sends a message from the enclosing Aura component to the
embedded app. It creates a variable, msg, that has a JSON definition including a name  and a value. This definition of the message
is user-defined—the message’s payload can be a value, a structured JSON response, or something else. The messageToSend  attribute
of the Aura component populates the value  of the message. The method then uses the component’s aura:id  and the message()
function to send the message back to the Aura component.

The handleMessage  method receives a message from the embedded app and handles it appropriately. It takes a component, a
message, and a helper as arguments. The method uses conditional logic to parse the message. If this is the message with the name
and value  we’re expecting, the method sets the Aura component’s messageReceived  attribute to the value  of the message.
Although this code only defines one message, the conditional statement allows you to handle different types of message, which are
defined in the sendMessage  method.

The handler code for sending and receiving messages can be complicated. It helps to understand the flow of a message between the
Aura component, its controller, and the app. The process begins when user enters a message as the messageToSend  attribute.
When the user clicks Send, the component calls sendMessage. sendMessage defines the message payload and uses the
message()  method to send it to the app. Within the static resource that defines the app, the specified message handler function
receives the message. Specify the message handling function within your JavaScript code using the lightning-container module’s
addMessageHandler()  method. See the lightning:container NPM Module Reference for more information.

When lightning:container  receives a message from the framed app, it calls the component controller’s handleMessage
method, as set in the onmessage  attribute of lightning:container. The handleMessage  method takes the message,
and sets its value as the messageReceived  attribute. Finally, the component displays messageReceived  in a
lightning:textarea.

This is a simple example of message handling across the container. Because you implement the controller-side code and the functionality
of the app, you can use this functionality for any kind of communication between Salesforce and the app embedded in
lightning:container.

Important:  Don't send cryptographic secrets like an API key in a message. It's important to keep your API key secure.

SEE ALSO:

Lightning Container

Using a Third-Party Framework

Handling Errors in Your Container

246

Using a Third-Party FrameworkUsing Components



Sending Messages to the Lightning Container Component
Use the methods in the lightning-container NPM module to send messages from the JavaScript code framed by
lightning:container.

The Lightning-container NPM module provides methods to send and receive messages between your JavaScript app and the Lightning
container component. You can see the lightning-container module on the NPM website.

Add the lightning-container module as a dependency in your code to implement the messaging framework in your app.

import LCC from 'lightning-container';

lightning-container  must also be listed as a dependency in your app’s package.json  file.

The code to send a message to lightning:container from the app is simple. This code corresponds to the code samples in
Sending Messages from the Lightning Container Component and Handling Errors in Your Container, and can be downloaded from the
Developerforce Github Repository.

sendMessage() {
LCC.sendMessage({name: "General", value: this.state.messageToSend});

}

This code, part of the static resource, sends a message as an object containing a name and a value, which is user-defined.

When the app receives a message, it’s handled by the function mounted by the addMessageHandler()  method. In a React app,
functions must be mounted to be part of the document-object model and rendered in the output.

The lightning-container module provides similar methods for defining a function to handle errors in the messaging framework. For more
information, see lightning:container NPM Module Reference

Important:  Don't send cryptographic secrets like an API key in a message. It's important to keep your API key secure.

Handling Errors in Your Container
Handle errors in Lightning container with a method in your component’s controller.

This example uses the same code as the examples in Using a Third-Party Framework and Sending Messages from the Lightning Container
Component.

In this component, the onerror  attribute of lightning:container  specifies handleError  as the error handling method.
To display the error, the component markup uses a conditional statement, and another attribute, error, for holding an error message.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >

<aura:attribute access="private" name="messageToSend" type="String" default=""/>
<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message

to send to React app: "/><lightning:button label="Send" onclick="{!c.sendMessage}"/>

<br/>

<lightning:textarea name="messageReceived" value="{!v.messageReceived}"
label="Message received from React app: "/>

<br/>

247

Using a Third-Party FrameworkUsing Components

https://www.npmjs.com/package/lightning-container
https://github.com/developerforce/LightningContainerExamples/tree/master/ReactJS/Javascript/send-receive-messages/src


<aura:if isTrue="{! !empty(v.error)}">
<lightning:textarea name="errorMessage" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.SendReceiveMessages + '/index.html'}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>

</aura:component>

This is the component’s controller.

({
sendMessage : function(component, event, helper) {

var msg = {
name: "General",
value: component.get("v.messageToSend")

};
component.find("ReactApp").message(msg);

},

handleMessage: function(component, message, helper) {
var payload = message.getParams().payload;
var name = payload.name;
if (name === "General") {

var value = payload.value;
component.set("v.messageReceived", value);

}
else if (name === "Foo") {

// A different response
}

},

handleError: function(component, error, helper) {
var description = error.getParams().description;
component.set("v.error", description);

}
})

If the Lightning container application throws an error, the error handling function sets the error  attribute. Then, in the component
markup, the conditional expression checks if the error attribute is empty. If it isn’t, the component populates a lightning:textarea
element with the error message stored in error.

SEE ALSO:

Lightning Container

Using a Third-Party Framework

Sending Messages from the Lightning Container Component

248

Using a Third-Party FrameworkUsing Components



Using Apex Services from Your Container
Use the lightning-container  NPM module to call Apex methods from your Lightning container component.

To call Apex methods from lightning:container, you must set the CSP level to low  in the manifest.json  file. A CSP
level of low  allows the Lightning container component load resources from outside of the Lightning domain.

This is an Aura component that includes a Lightning container component that uses Apex services:

<aura:component access="global" implements="flexipage:availableForAllPageTypes">

<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<aura:if isTrue="{! !empty(v.error)}">

<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="/ApexController/index.html"
onerror="{!c.handleError}"/>

</div>

</aura:component>

This is the component’s controller:

({
handleError: function(component, error, helper) {

var description = error.getParams().description;
component.set("v.error", description);

}
})

Note:  You can download the complete version of this example from the Developerforce Github Repository.

There’s not a lot going on in the component’s JavaScript controller—the real action is in the JavaScript app, uploaded as a static resource,
that the Lightning container references.

import React, { Component } from 'react';
import LCC from "lightning-container";
import logo from './logo.svg';
import './App.css';

class App extends Component {

callApex() {
LCC.callApex("lcc1.ApexController.getAccount",

this.state.name,
this.handleAccountQueryResponse,
{escape: true});

}

handleAccountQueryResponse(result, event) {
if (event.status) {
this.setState({account: result});

249

Using a Third-Party FrameworkUsing Components

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/metadata/aura/SendReceiveMessages/SendReceiveMessages.cmp


}
else if (event.type === "exception") {
console.log(event.message + " : " + event.where);

}
}

render() {
var account = this.state.account;

return (
<div className="App">
<div className="App-header">
<img src={logo} className="App-logo" alt="logo" />
<h2>Welcome to LCC</h2>

</div>
<p className="App-intro">
Account Name: <input type="text" id="accountName" value={this.state.name}

onChange={e => this.onAccountNameChange(e)}/><br/>
<input type="submit" value="Call Apex Controller" onClick={this.callApex}/><br/>

Id: {account.Id}<br/>
Phone: {account.Phone}<br/>
Type: {account.Type}<br/>
Number of Employees: {account.NumberOfEmployees}<br/>

</p>
</div>

);
}

constructor(props) {
super(props);
this.state = {
name: "",
account: {}

};

this.handleAccountQueryResponse = this.handleAccountQueryResponse.bind(this);
this.onAccountNameChange = this.onAccountNameChange.bind(this);
this.callApex = this.callApex.bind(this);

}

onAccountNameChange(e) {
this.setState({name: e.target.value});

}
}

export default App;

The first function, callApex(), uses the LCC.callApex  method to call getAccount, an Apex method that gets and displays
an account’s information.

Lightning Container Component Limits
Understand the limits of lightning:container.

250

Lightning Container Component LimitsUsing Components



lightning:container  has known limitations. You might observe performance and scrolling issues associated with the use of
iframes. This component isn’t designed for the multi-page model, and it doesn’t integrate with browser navigation history.

If you navigate away from the page and a lightning:container  component is on, the component doesn’t automatically
remember its state. The content within the iframe doesn’t use the same offline and caching schemes as the rest of Lightning Experience.

Creating a Lightning app that loads a Lightning container static resource from another namespace is not supported. If you install a
package, your apps should use the custom Lightning components published by that package, not their static resources directly. Any
static resource you use as the lightning:container src  attribute should have your own namespace.

Previous versions of lightning:container  allowed developers to specify the Content Security Policy (CSP) of the iframed content.
We removed this functionality for security reasons. The CSP level of all pages is now set to the highest level to provide the greatest
security. Content can only be loaded from secure, approved domains. When lightning:container  is used in Experience Cloud,
the CSP setting in that Experience Builder site will be respected.

Apps that use lightning:container  should work with data, not metadata. Don’t use the session key for your app to manage
custom objects or fields. You can use the session key to create and update object records.

Content in lightning:container  is served from the Lightning container domain and is available in Lightning Experience,
Experience Builder sites, and the Salesforce mobile app. lightning:container  can’t be used in Lightning pages that aren’t
served from the Lightning domain, such as Visualforce pages or in external apps through Lightning Out.

Important:  You can’t access the Salesforce REST API from the app inside of lightning:container. See the Spring ’18
Release Notes for details.

IN THIS SECTION:

Lightning Container Component Security Requirements

Ensure that your Lightning container components meet security requirements.

SEE ALSO:

Lightning Container

Salesforce Help: Content Security Policy in Experience Builder Sites

Lightning Container Component Security Requirements
Ensure that your Lightning container components meet security requirements.

Namespace Validity
The Lightning container component’s security measures check the validity of its namespaces. Suppose that you develop a
<lightning:container> component with the namespace “vendor1.” The static resource’s namespace must also be “vendor1.”
If they don’t match, an error message appears.

<aura:component>
<lightning:container
src="{!$Resource.vendor1__resource + '/code_belonging_to_vendor1'}"
onmessage="{!c.vendor1__handles}"/>

<aura:component>

251

Lightning Container Component LimitsUsing Components

https://help.salesforce.com/articleView?id=release-notes.rn_lc_api_revert_cruc.htm&release=212&type=5&language=en_US
https://help.salesforce.com/articleView?id=release-notes.rn_lc_api_revert_cruc.htm&release=212&type=5&language=en_US
https://help.salesforce.com/articleView?id=networks_security_csp_overview.htm&type=5&language=en_US


Static Resource Content Access
You can’t use raw <iframe>  elements to access a Lightning container component. The <lightning:container>  component
enforces this requirement with the query parameter _CONFIRMATIONTOKEN, which generates a unique ID for each user session.
The following code isn’t permitted, because the <iframe>  src attribute doesn’t contain a _CONFIRMATIONTOKEN  query parameter.

<aura:component>
<iframe

src="https://domain--vendor2.container.lightning.com/lcc/123456/vendor2__resource/index.html"/>
</aura:component>

Instead, use the $Resource  global value provider to build the resource URL for the <lightning:container> component.

<aura:component>
<lightning:container
src="{!$Resource.vendor2__resource + '/index.html' }"/>

</aura:component>

Distribution Requirements
To upload a package to AppExchange, you must supply all the Lightning container component’s original sources and dependencies.
When you provide minified or transpiled code, you must also include the source files for that code and the source map (.js.map) files for
the minified code.

The Lightning Realty App
The Lightning Realty App is a more robust example of messaging between the Lightning Container Component and Salesforce.

The Lightning realty app’s messaging framework relies on code in an Aura component, the component’s handler, and the static resource
referenced by lightning:container. The Lightning container component points to the message handling function in the Aura
component’s JavaScript controller. The message handling function takes in a message sent by the source JavaScript, which uses a method
provided by the lightning-container NPM module.

See Install the Example Lightning Realty App for instructions to install this example in your development org.

Let’s look at the Aura component first. Although the code that defines the Realty component is simple, it allows the JavaScript of the
realty app to communicate with Salesforce and load sample data.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >

<aura:attribute access="global" name="mainTitle" type="String" required="true"
default="My Properties"/>

<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<aura:if isTrue="{! !empty(v.messageReceived)}">

<lightning:textarea name="messageReceivedTextArea" value="{!v.messageReceived}"
label=" "/>

</aura:if>

<aura:if isTrue="{! !empty(v.error)}">
<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

252

The Lightning Realty AppUsing Components



</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.Realty + '/index.html?mainTitle=' +

v.mainTitle}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>

</aura:component>

This code is similar to the example code in Sending Messages from the Lightning Container Component and Handling Errors in Your
Container.

There’s also code in the Aura component’s controller and in the source JavaScript that allows the iframed app to communicate with
Salesforce. In PropertyHome.js, part of the source, the realty app calls LCC.sendMessage. This segment of code filters the
list of properties, then creates a message to send back to the container that includes the selected property’s address, price, city, state,
zip code, and description.

saveHandler(property) {
let filteredProperty = propertyService.filterProperty(property);
propertyService.createItem(filteredProperty).then(() => {

propertyService.findAll(this.state.sort).then(properties => {
let filteredProperties = propertyService.filterFoundProperties(properties);
this.setState({addingProperty: false, properties:filteredProperties});

});
let message = {};
message.address = property.address;
message.price = property.price;
message.city = property.city;
message.state = property.state;
message.zip = property.zip;
message.description = property.description;
LCC.sendMessage({name: "PropertyCreated", value: message});

});
},

Then, the JavaScript calls LCC.sendMessage  with a name-value pair. This code uses the sendMessage method, which is part
of the messaging API provided by the lightning-container NPM module. For more information, see Sending Messages to the Lightning
Container Component.

The last bit of action happens in the component’s controller, in the handleMessage()  function.

handleMessage: function(component, message, helper) {
var payload = message.getParams().payload;
var name = payload.name;
if (name === "PropertyCreated") {

var value = payload.value;
var messageToUser;
if (value.price > 1000000) {

messageToUser = "Big Real Estate Opportunity in " + value.city + ", " +
value.state + " : $" + value.price;

}
else {

messageToUser = "Small Real Estate Opportunity in " + value.city + ", " +
value.state + " : $" + value.price;

253

The Lightning Realty AppUsing Components



}
var log = component.get("v.log");
log.push(messageToUser);
component.set("v.log", log);

}
},

This function takes a message as an argument, and checks that the name is "PropertyCreated". This is the same name  set by
LCC.sendMessage  in the app’s JavaScript.

This function takes the message payload—in this case, a JSON array describing a property—and checks the value of the property. If the
value is over $1 million, it sends a message to the user telling him or her that there’s a big real estate opportunity. Otherwise, it returns
a message telling the user that there’s a smaller real estate opportunity.

IN THIS SECTION:

Install the Example Lightning Realty App

See further examples of lightning:container  in the Developerforce Git repository.

Install the Example Lightning Realty App
See further examples of lightning:container  in the Developerforce Git repository.

Implement a more in-depth example of lightning:container  with the code included in
https://github.com/developerforce/LightningContainerExamples. This example uses React and lightning:container  to show
a real estate listing app in a Lightning page.

To implement this example, use npm. The easiest way to install npm is by installing node.js. Once you’ve installed npm, install the latest
version by running npm install --save latest-version  from the command line.

1. Clone the Git repository. From the command line, enter git clone
https://github.com/developerforce/LightningContainerExamples

2. From the command line, navigate to LightningContainerExamples/ReactJS/Javascript/Realty  and build
the project’s dependencies by entering npm install.

3. From the command line, build the app by entering npm run build.

4. Edit package.json  and add your Salesforce login credentials where indicated.

5. From the command line, enter npm run deploy.

6. Log in to Salesforce and activate the new Realty Lightning page in the Lightning App Builder by adding it to a Lightning app.

7. To upload sample data to your org, enter npm run load  from the command line.

See the Lightning realty app in action in your org. The app uses lightning:container  to embed a React app in a Lightning
page, displaying sample real estate listing data.

254

The Lightning Realty AppUsing Components

https://github.com/developerforce/LightningContainerExamples
https://nodejs.org/en/


The component and handler code are similar to the examples in Sending Messages from the Lightning Container Component and
Handling Errors in Your Container.

lightning:container NPM Module Reference
Use methods included in the lightning:container NPM module in your JavaScript code to send and receive messages to and from your
custom Aura component.

IN THIS SECTION:

addErrorHandler()

Mounts an error handling function, to be called when the messaging framework encounters an error.

addMessageHandler()

Mounts a message handling function, used to handle messages sent from the Aura component to the framed JavaScript app.

callApex()

Makes an Apex call.

removeErrorHandler()

Unmounts the error handling function.

removeMessageHandler()

Unmounts the message-handling function.

sendMessage()

Sends a message from the framed JavaScript code to the Aura component.

255

lightning:container NPM Module ReferenceUsing Components



addErrorHandler()

Mounts an error handling function, to be called when the messaging framework encounters an error.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example mounts a
message error handling function. In a React app, functions must be mounted to be part of the document-object model and rendered
in the output.

componentDidMount() {
LCC.addErrorHandler(this.onMessageError);

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles error messages encountered in
the messaging framework.

functionhandler: (errorMsg:
string) => void)

Response
None.

addMessageHandler()

Mounts a message handling function, used to handle messages sent from the Aura component to the framed JavaScript app.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example mounts a
message handling function. In a React app, functions must be mounted to be part of the document-object model and rendered in the
output.

componentDidMount() {
LCC.addMessageHandler(this.onMessage);

}

onMessage(msg) {
let name = msg.name;
if (name === "General") {
let value = msg.value;
this.setState({messageReceived: value});

}
else if (name === "Foo") {
// A different response

}
}

256

lightning:container NPM Module ReferenceUsing Components

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js


You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles messages sent from the Aura
component.

functionhandler: (userMsg: any)
=> void

Response
None.

callApex()

Makes an Apex call.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example calls the Apex
method getAccount.

callApex() {
LCC.callApex("lcc1.ApexController.getAccount",

this.state.name,
this.handleAccountQueryResponse,
{escape: true});

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The name of the Apex method.stringfullyQualifiedApexMethodName

A JSON array of arguments for the Apex method.arrayapexMethodParameters

A callback function.functioncallbackFunction

Configuration parameters for the Apex call.arrayapexCallConfiguration

Response
None.

removeErrorHandler()

Unmounts the error handling function.

257

lightning:container NPM Module ReferenceUsing Components

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js
https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js


When using React, it’s necessary to unmount functions to remove them from the DOM and perform necessary cleanup.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example unmounts a
message error handling function. In a React app, functions must be mounted to be part of the document-object model and rendered
in the output.

componentWillUnmount() {
LCC.removeErrorHandler(this.onMessageError);

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles error messages encountered in
the messaging framework.

functionhandler: (errorMsg:
string) => void)

Response
None.

removeMessageHandler()

Unmounts the message-handling function.

When using React, it’s necessary to unmount functions to remove them from the DOM and perform necessary cleanup.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example unmounts a
message handling function.

componentWillUnmount() {
LCC.removeMessageHandler(this.onMessage);

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles messages sent from the Aura
component.

functionhandler: (userMsg: any)
=> void

258

lightning:container NPM Module ReferenceUsing Components

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js
https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js


Response
None.

sendMessage()

Sends a message from the framed JavaScript code to the Aura component.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example sends a
message from the app to lightning:container.

sendMessage() {
LCC.sendMessage({name: "General", value: this.state.messageToSend});

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

While the data sent in the message is entirely under your
control, by convention it’s an object with name and value
fields.

anyuserMsg

Response
None.

259

lightning:container NPM Module ReferenceUsing Components

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js


CHAPTER 5 Communicating with Events

The framework uses event-driven programming. You write handlers that respond to interface events as
they occur. The events may or may not have been triggered by user interaction.

In this chapter ...

• Actions and Events
In the Aura Components programming model, events are fired from JavaScript controller actions. Events
can contain attributes that can be set before the event is fired and read when the event is handled.• Handling Events with

Client-Side
Controllers Events are declared by the aura:event  tag in a .evt resource, and they can have one of two types:

component or application.• Component Events
Component Events

A component event is fired from an instance of a component. A component event can be handled
by the component that fired the event or by a component in the containment hierarchy that receives
the event.

• Application Events

• Event Handler
Behavior for Active
Components

Application Events
Application events follow a traditional publish-subscribe model. An application event is fired from
an instance of a component. All components that provide a handler for the event are notified.

• Event Handling
Lifecycle

• Advanced Events
Example Note: Always try to use a component event instead of an application event, if possible. Component

events can only be handled by components above them in the containment hierarchy so their• Firing Events from
Non-Aura Code usage is more localized to the components that need to know about them. Application events

• Events Best Practices are best used for something that should be handled at the application level, such as navigating
to a specific record. Application events allow communication between components that are in
separate parts of the application and have no direct containment relationship.

• Events Fired During
the Rendering
Lifecycle

• Events Handled in
the Salesforce Mobile
App and Lightning
Experience

• System Events

260



Actions and Events

The framework uses events to communicate data between components. Events are usually triggered by a user action.

Actions
User interaction with an element on a component or app. User actions trigger events, but events aren’t always explicitly triggered
by user actions. This type of action is not the same as a client-side JavaScript controller, which is sometimes known as a controller
action. The following button is wired up to a browser onclick  event in response to a button click.

<lightning:button label = "Click Me" onclick = "{!c.handleClick}" />

Clicking the button invokes the handleClick  method in the component’s client-side controller.

Events
A notification by the browser regarding an action. Browser events are handled by client-side JavaScript controllers, as shown in the
previous example. A browser event is not the same as a framework component event or application event, which you can create and
fire in a JavaScript controller to communicate data between components. For example, you can wire up the click event of a checkbox
to a client-side controller, which fires a component event to communicate relevant data to a parent component.

Another type of event, known as a system event, is fired automatically by the framework during its lifecycle, such as during component
initialization, change of an attribute value, and rendering. Components can handle a system event by registering the event in the
component markup.

The following diagram describes what happens when a user clicks a button that requires the component to retrieve data from the server.

1. User clicks a button or interacts with a component, triggering a browser event. For example, you want to save data from the server
when the button is clicked.

2. The button click invokes a client-side JavaScript controller, which provides some custom logic before invoking a helper function.

3. The JavaScript controller invokes a helper function. A helper function improves code reuse but it’s optional for this example.

4. The helper function calls an Apex controller method and queues the action.

5. The Apex method is invoked and data is returned.

6. A JavaScript callback function is invoked when the Apex method completes.

7. The JavaScript callback function evaluates logic and updates the component’s UI.

261

Actions and EventsCommunicating with Events



8. User sees the updated component.

SEE ALSO:

Handling Events with Client-Side Controllers

Detecting Data Changes with Change Handlers

Calling a Server-Side Action

Events Fired During the Rendering Lifecycle

Handling Events with Client-Side Controllers

A client-side controller handles events within a component. It’s a JavaScript resource that defines the functions for all of the component’s
actions.

A client-side controller is a JavaScript object in object-literal notation containing a map of name-value pairs. Each name corresponds to
a client-side action. Its value is the function code associated with the action. Client-side controllers are surrounded by parentheses and
curly braces. Separate action handlers with commas (as you would with any JavaScript map).

({
myAction : function(cmp, event, helper) {

// add code for the action
},

anotherAction : function(cmp, event, helper) {
// add code for the action

}
})

Each action function takes in three parameters:

1. cmp—The component to which the controller belongs.

2. event—The event that the action is handling.

3. helper—The component’s helper, which is optional. A helper contains functions that can be reused by any JavaScript code in
the component bundle.

Creating a Client-Side Controller
A client-side controller is part of the component bundle. It is auto-wired via the naming convention,
componentNameController.js.

To create a client-side controller using the Developer Console, click CONTROLLER in the sidebar of the component.

Calling Client-Side Controller Actions
The following example component creates two buttons to contrast an HTML button with <lightning:button>, which is a
standard Lightning component. Clicking on these buttons updates the text component attribute with the specified values.
target.get("v.label")  refers to the label  attribute value on the button.

262

Handling Events with Client-Side ControllersCommunicating with Events



Component source

<aura:component>
<aura:attribute name="text" type="String" default="Just a string. Waiting for change."/>

<input type="button" value="Flawed HTML Button"
onclick="alert('this will not work')"/>

<br/>
<lightning:button label="Framework Button" onclick="{!c.handleClick}"/>
<br/>
{!v.text}

</aura:component>

If you know some JavaScript, you might be tempted to write something like the first "Flawed" button because you know that HTML tags
are first-class citizens in the framework. However, the "Flawed" button won't work because arbitrary JavaScript, such as the alert()
call, in the component is ignored.

The framework has its own event system. DOM events are mapped to Lightning events, since HTML tags are mapped to Lightning
components.

Any browser DOM element event starting with on, such as onclick  or onkeypress, can be wired to a controller action. You can
only wire browser events to controller actions.

The "Framework" button wires the onclick attribute in the <lightning:button> component to the handleClick  action
in the controller.

Client-side controller source

({
handleClick : function(cmp, event) {

var attributeValue = cmp.get("v.text");
console.log("current text: " + attributeValue);

var target = event.getSource();
cmp.set("v.text", target.get("v.label"));

}
})

The handleClick  action uses event.getSource()  to get the source component that fired this component event. In this
case, the source component is the <lightning:button>  in the markup.

The code then sets the value of the text component attribute to the value of the button’s label  attribute. The text component
attribute is defined in the <aura:attribute>  tag in the markup.

Tip: Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the
same name as an Apex method (server-side action ) can lead to hard-to-debug issues. In debug mode, the framework logs a
browser console warning about the clashing client-side and server-side action names.

Handling Framework Events
Handle framework events using actions in client-side component controllers. Framework events for common mouse and keyboard
interactions are available with out-of-the-box components.

263

Handling Events with Client-Side ControllersCommunicating with Events



Accessing Component Attributes
In the handleClick  function, notice that the first argument to every action is the component to which the controller belongs. One
of the most common things you'll want to do with this component is look at and change its attribute values.

cmp.get("v.attributeName")  returns the value of the attributeName attribute.

cmp.set("v.attributeName", "attribute value")  sets the value of the attributeName  attribute.

Invoking Another Action in the Controller
To call an action method from another method, put the common code in a helper function and invoke it using
helper.someFunction(cmp).

SEE ALSO:

Sharing JavaScript Code in a Component Bundle

Event Handling Lifecycle

Creating Server-Side Logic with Controllers

Component Events

A component event is fired from an instance of a component. A component event can be handled by the component that fired the
event or by a component in the containment hierarchy that receives the event.

IN THIS SECTION:

Component Event Propagation

The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM
handling patterns and provide an opportunity for interested components to interact with an event and potentially control the
behavior for subsequent handlers.

Create Custom Component Events

Create a custom component event using the <aura:event>  tag in a .evt  resource. Events can contain attributes that can
be set before the event is fired and read when the event is handled.

Fire Component Events

Fire a component event to communicate data to another component. A component event can be handled by the component that
fired the event or by a component in the containment hierarchy that receives the event.

264

Component EventsCommunicating with Events



Handling Component Events

A component event can be handled by the component that fired the event or by a component in the containment hierarchy that
receives the event.

SEE ALSO:

aura:method

Application Events

Handling Events with Client-Side Controllers

Advanced Events Example

What is Inherited?

Component Event Propagation
The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM handling
patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for
subsequent handlers.

The component that fires an event is known as the source component. The framework allows you to handle the event in different phases.
These phases give you flexibility for how to best process the event for your application.

The phases are:

Capture
The event is captured and trickles down from the application root to the source component. The event can be handled by a component
in the containment hierarchy that receives the captured event.

Event handlers are invoked in order from the application root down to the source component that fired the event.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase
or the bubble phase.

Bubble
The component that fired the event can handle it. The event then bubbles up from the source component to the application root.
The event can be handled by a component in the containment hierarchy that receives the bubbled event.

Event handlers are invoked in order from the source component that fired the event up to the application root.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase.

Here’s the sequence of component event propagation.

1. Event fired—A component event is fired.

2. Capture phase—The framework executes the capture phase from the application root to the source component until all components
are traversed. Any handling event can stop propagation by calling stopPropagation()  on the event.

3. Bubble phase—The framework executes the bubble phase from the source component to the application root until all components
are traversed or stopPropagation()  is called.

Create Custom Component Events
Create a custom component event using the <aura:event>  tag in a .evt  resource. Events can contain attributes that can be set
before the event is fired and read when the event is handled.

265

Component Event PropagationCommunicating with Events



Use type="COMPONENT"  in the <aura:event>  tag for a component event. For example, this c:compEvent  component
event has one attribute with a name of message.

<!--c:compEvent-->
<aura:event type="COMPONENT">

<!-- Add aura:attribute tags to define event shape.
One sample attribute here. -->

<aura:attribute name="message" type="String"/>
</aura:event>

The component that fires an event can set the event’s data. To set the attribute values, call event.setParam()  or
event.setParams(). A parameter name set in the event must match the name  attribute of an <aura:attribute>  in the
event. For example, if you fire c:compEvent, you could use:

event.setParam("message", "event message here");

The component that handles an event can retrieve the event data. To retrieve the attribute value in this event, call
event.getParam("message")  in the handler’s client-side controller.

Fire Component Events
Fire a component event to communicate data to another component. A component event can be handled by the component that fired
the event or by a component in the containment hierarchy that receives the event.

Register an Event
A component registers that it may fire an event by using <aura:registerEvent>  in its markup. For example:

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>

We’ll see how the value of the name  attribute is used for firing and handling events.

Fire an Event
To get a reference to a component event in JavaScript, use cmp.getEvent("evtName")  where evtName matches the name
attribute in <aura:registerEvent>.

Use fire()  to fire the event from an instance of a component. For example, in an action function in a client-side controller:

var compEvent = cmp.getEvent("sampleComponentEvent");
// Optional: set some data for the event (also known as event shape)
// A parameter’s name must match the name attribute
// of one of the event’s <aura:attribute> tags
// compEvent.setParams({"myParam" : myValue });
compEvent.fire();

SEE ALSO:

Fire Application Events

266

Fire Component EventsCommunicating with Events



Handling Component Events
A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives
the event.

Use <aura:handler>  in the markup of the handler component. For example:

<aura:handler name="sampleComponentEvent" event="c:compEvent"
action="{!c.handleComponentEvent}"/>

The name  attribute in <aura:handler>  must match the name attribute in the <aura:registerEvent>  tag in the
component that fires the event.

The action  attribute of <aura:handler>  sets the client-side controller action to handle the event.

The event  attribute specifies the event being handled. The format is namespace:eventName.

In this example, when the event is fired, the handleComponentEvent  client-side controller action is called.

Event Handling Phases
Component event handlers are associated with the bubble phase by default. To add a handler for the capture phase instead, use the
phase attribute.

<aura:handler name="sampleComponentEvent" event="ns:eventName"
action="{!c.handleComponentEvent}" phase="capture" />

Get the Source of an Event
In the client-side controller action for an <aura:handler>  tag, use evt.getSource()  to find out which component fired the
event, where evt  is a reference to the event. To retrieve the source element, use evt.getSource().getElement().

IN THIS SECTION:

Component Handling Its Own Event

A component can handle its own event by using the <aura:handler>  tag in its markup.

Handle Component Event of Instantiated Component

A parent component can set a handler action when it instantiates a child component in its markup.

Handling Bubbled or Captured Component Events

Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

Handling Component Events Dynamically

A component can have its handler bound dynamically via JavaScript. This is useful if a component is created in JavaScript on the
client-side.

SEE ALSO:

Component Event Propagation

Handling Application Events

267

Handling Component EventsCommunicating with Events



Component Handling Its Own Event
A component can handle its own event by using the <aura:handler>  tag in its markup.

The action  attribute of <aura:handler>  sets the client-side controller action to handle the event. For example:

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
<aura:handler name="sampleComponentEvent" event="c:compEvent"

action="{!c.handleSampleEvent}"/>

Note:  The name  attributes in <aura:registerEvent>  and <aura:handler>  must match, since each event is
defined by its name.

SEE ALSO:

Handle Component Event of Instantiated Component

Handle Component Event of Instantiated Component
A parent component can set a handler action when it instantiates a child component in its markup.

Let’s a look at an example. c:child  registers that it may fire a sampleComponentEvent  event by using
<aura:registerEvent>  in its markup.

<!-- c:child -->
<aura:component>

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
</aura:component>

c:parent  sets a handler for this event when it instantiates c:child  in its markup.

<!-- parent.cmp -->
<aura:component>

<c:child sampleComponentEvent="{!c.handleChildEvent}"/>
</aura:component>

Note how c:parent  uses the following syntax to set a handler for the sampleComponentEvent  event fired by c:child.

<c:child sampleComponentEvent="{!c.handleChildEvent}"/>

The syntax looks similar to how you set an attribute called sampleComponentEvent. However, in this case,
sampleComponentEvent  isn’t an attribute. sampleComponentEvent  matches the event name declared in c:child.

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>

The preceding syntax is a convenient shortcut for the normal way that a component declares a handler for an event. The parent component
can only use this syntax to handle events from a direct descendent. If you want to be more explicit in c:parent  that you’re handling
an event, or if the event might be fired by a component further down the component hierarchy, use an <aura:handler>  tag
instead of declaring the handler within the <c:child>  tag.

<!-- parent.cmp -->
<aura:component>

<aura:handler name="sampleComponentEvent" event="c:compEvent"
action="{!c.handleSampleEvent}"/>

<c:child />
</aura:component>

268

Handling Component EventsCommunicating with Events



The two versions of c:parent  markup behave the same. However, using <aura:handler>  makes it more obvious that you’re
handling a sampleComponentEvent  event.

SEE ALSO:

Component Handling Its Own Event

Handling Bubbled or Captured Component Events

Handling Bubbled or Captured Component Events
Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM handling
patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for
subsequent handlers. The capture phase executes before the bubble phase.

Default Event Propagation Rules
By default, every parent in the containment hierarchy can’t handle an event during the capture and bubble phases. Instead, the event
propagates to every owner in the containment hierarchy.

A component’s owner is the component that is responsible for its creation. For declaratively created components, the owner is the
outermost component containing the markup that references the component firing the event. For programmatically created components,
the owner component is the component that invoked $A.createComponent  to create it.

The same rules apply for the capture phase, although the direction of event propagation (down) is the opposite of the bubble phase
(up).

Confused? It makes more sense when you look at an example in the bubbling phase.

c:owner  contains c:container, which in turn contains c:eventSource.

<!--c:owner-->
<aura:component>

<c:container>
<c:eventSource />

</c:container>
</aura:component>

If c:eventSource  fires an event, it can handle the event itself. The event then bubbles up the containment hierarchy.

c:container  contains c:eventSource  but it’s not the owner because it’s not the outermost component in the markup, so it
can’t handle the bubbled event.

c:owner  is the owner because c:container  is in its markup. c:owner  can handle the event.

Propagation to All Container Components
The default behavior doesn’t allow an event to be handled by every parent in the containment hierarchy. Some components contain
other components but aren’t the owner of those components. These components are known as container components. In the example,
c:container  is a container component because it’s not the owner for c:eventSource. By default, c:container  can’t
handle events fired by c:eventSource.

269

Handling Component EventsCommunicating with Events



A container component has a facet attribute whose type is Aura.Component[], such as the default body  attribute. The container
component includes those components in its definition using an expression, such as {!v.body}. The container component isn’t the
owner of the components rendered with that expression.

To allow a container component to handle the event, add includeFacets="true"  to the <aura:handler>  tag of the
container component. For example, adding includeFacets="true"  to the handler in the container component, c:container,
enables it to handle the component event bubbled from c:eventSource.

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"
includeFacets="true" />

Handle Bubbled Event
A component that fires a component event registers that it fires the event by using the <aura:registerEvent>  tag.

<aura:component>
<aura:registerEvent name="compEvent" type="c:compEvent" />

</aura:component>

A component handling the event in the bubble phase uses the <aura:handler>  tag to assign a handling action in its client-side
controller.

<aura:component>
<aura:handler name="compEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

</aura:component>

Note:  The name  attribute in <aura:handler>  must match the name  attribute in the <aura:registerEvent>  tag
in the component that fires the event.

Handle Captured Event
A component handling the event in the capture phase uses the <aura:handler>  tag to assign a handling action in its client-side
controller.

<aura:component>
<aura:handler name="compEvent" event="c:compEvent" action="{!c.handleCapture}"

phase="capture" />
</aura:component>

The default handling phase for component events is bubble if no phase  attribute is set.

Stop Event Propagation
Use the stopPropagation()  method in the Event  object to stop the event propagating to other components.

Pausing Event Propagation for Asynchronous Code Execution
Use event.pause()  to pause event handling and propagation until event.resume()  is called. This flow-control mechanism
is useful for any decision that depends on the response from the execution of asynchronous code. For example, you might make a
decision about event propagation based on the response from an asynchronous call to native mobile code.

You can call pause()  or resume()  in the capture or bubble phases.

270

Handling Component EventsCommunicating with Events



Event Bubbling Example
Let’s look at an example so you can play around with it yourself.

<!--c:eventBubblingParent-->
<aura:component>

<c:eventBubblingChild>
<c:eventBubblingGrandchild />

</c:eventBubblingChild>
</aura:component>

Note:  This sample code uses the default c  namespace. If your org has a namespace, use that namespace instead.

First, we define a simple component event.

<!--c:compEvent-->
<aura:event type="COMPONENT">

<!--simple event with no attributes-->
</aura:event>

c:eventBubblingEmitter  is the component that fires c:compEvent.

<!--c:eventBubblingEmitter-->
<aura:component>

<aura:registerEvent name="bubblingEvent" type="c:compEvent" />
<lightning:button onclick="{!c.fireEvent}" label="Start Bubbling"/>

</aura:component>

Here’s the controller for c:eventBubblingEmitter. When you press the button, it fires the bubblingEvent  event registered
in the markup.

/*eventBubblingEmitterController.js*/
{

fireEvent : function(cmp) {
var cmpEvent = cmp.getEvent("bubblingEvent");
cmpEvent.fire();

}
}

c:eventBubblingGrandchild  contains c:eventBubblingEmitter  and uses <aura:handler>  to assign a handler
for the event.

<!--c:eventBubblingGrandchild-->
<aura:component>

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

<div class="grandchild">
<c:eventBubblingEmitter />

</div>
</aura:component>

Here’s the controller for c:eventBubblingGrandchild.

/*eventBubblingGrandchildController.js*/
{

handleBubbling : function(component, event) {

271

Handling Component EventsCommunicating with Events



console.log("Grandchild handler for " + event.getName());
}

}

The controller logs the event name when the handler is called.

Here’s the markup for c:eventBubblingChild. We will pass c:eventBubblingGrandchild  in as the body of
c:eventBubblingChild  when we create c:eventBubblingParent  later in this example.

<!--c:eventBubblingChild-->
<aura:component>

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

<div class="child">
{!v.body}

</div>
</aura:component>

Here’s the controller for c:eventBubblingChild.

/*eventBubblingChildController.js*/
{

handleBubbling : function(component, event) {
console.log("Child handler for " + event.getName());

}
}

c:eventBubblingParent  contains c:eventBubblingChild, which in turn contains c:eventBubblingGrandchild.

<!--c:eventBubblingParent-->
<aura:component>

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

<div class="parent">
<c:eventBubblingChild>

<c:eventBubblingGrandchild />
</c:eventBubblingChild>

</div>
</aura:component>

Here’s the controller for c:eventBubblingParent.

/*eventBubblingParentController.js*/
{

handleBubbling : function(component, event) {
console.log("Parent handler for " + event.getName());

}
}

Now, let’s see what happens when you run the code.

1. In your browser, navigate to c:eventBubblingParent. Create a .app  resource that contains
<c:eventBubblingParent />.

2. Click the Start Bubbling button that is part of the markup in c:eventBubblingEmitter.

272

Handling Component EventsCommunicating with Events



3. Note the output in your browser’s console:

Grandchild handler for bubblingEvent
Parent handler for bubblingEvent

The c:compEvent  event is bubbled to c:eventBubblingGrandchild  and c:eventBubblingParent  as they are
owners in the containment hierarchy. The event is not handled by c:eventBubblingChild  as c:eventBubblingChild
is in the markup for c:eventBubblingParent  but it’s not an owner as it’s not the outermost component in that markup.

Now, let’s see how to stop event propagation. Edit the controller for c:eventBubblingGrandchild  to stop propagation.

/*eventBubblingGrandchildController.js*/
{

handleBubbling : function(component, event) {
console.log("Grandchild handler for " + event.getName());
event.stopPropagation();

}
}

Now, navigate to c:eventBubblingParent  and click the Start Bubbling button.

Note the output in your browser’s console:

Grandchild handler for bubblingEvent

The event no longer bubbles up to the c:eventBubblingParent component.

SEE ALSO:

Component Event Propagation

Handle Component Event of Instantiated Component

Handling Component Events Dynamically
A component can have its handler bound dynamically via JavaScript. This is useful if a component is created in JavaScript on the client-side.

For more information, see Dynamically Adding Event Handlers To a Component on page 385.

Component Event Example
Here’s a simple use case of using a component event to update an attribute in another component.

1. A user clicks a button in the notifier component, ceNotifier.cmp.

2. The client-side controller for ceNotifier.cmp  sets a message in a component event and fires the event.

3. The handler component, ceHandler.cmp, contains the notifier component, and handles the fired event.

4. The client-side controller for ceHandler.cmp  sets an attribute in ceHandler.cmp  based on the data sent in the event.

Note:  The event and components in this example use the default c  namespace. If your org has a namespace, use that namespace
instead.

273

Component Event ExampleCommunicating with Events



Component Event
The ceEvent.evt  component event has one attribute. We’ll use this attribute to pass some data in the event when it’s fired.

<!--c:ceEvent-->
<aura:event type="COMPONENT">

<aura:attribute name="message" type="String"/>
</aura:event>

Notifier Component
The c:ceNotifier  component uses aura:registerEvent  to declare that it may fire the component event.

The button in the component contains an onclick browser event that is wired to the fireComponentEvent  action in the
client-side controller. The action is invoked when you click the button.

<!--c:ceNotifier-->
<aura:component>

<aura:registerEvent name="cmpEvent" type="c:ceEvent"/>

<h1>Simple Component Event Sample</h1>
<p><lightning:button

label="Click here to fire a component event"
onclick="{!c.fireComponentEvent}" />

</p>
</aura:component>

The client-side controller gets an instance of the event by calling cmp.getEvent("cmpEvent"), where cmpEvent  matches
the value of the name attribute in the <aura:registerEvent> tag in the component markup. The controller sets the message
attribute of the event and fires the event.

/* ceNotifierController.js */
{

fireComponentEvent : function(cmp, event) {
// Get the component event by using the
// name value from aura:registerEvent
var cmpEvent = cmp.getEvent("cmpEvent");
cmpEvent.setParams({

"message" : "A component event fired me. " +
"It all happened so fast. Now, I'm here!" });

cmpEvent.fire();
}

}

Handler Component
The c:ceHandler  handler component contains the c:ceNotifier  component. The <aura:handler>  tag uses the same
value of the name  attribute, cmpEvent, from the <aura:registerEvent>  tag in c:ceNotifier. This wires up
c:ceHandler  to handle the event bubbled up from c:ceNotifier.

When the event is fired, the handleComponentEvent  action in the client-side controller of the handler component is invoked.

<!--c:ceHandler-->
<aura:component>

<aura:attribute name="messageFromEvent" type="String"/>

274

Component Event ExampleCommunicating with Events



<aura:attribute name="numEvents" type="Integer" default="0"/>

<!-- Note that name="cmpEvent" in aura:registerEvent
in ceNotifier.cmp -->
<aura:handler name="cmpEvent" event="c:ceEvent" action="{!c.handleComponentEvent}"/>

<!-- handler contains the notifier component -->
<c:ceNotifier />

<p>{!v.messageFromEvent}</p>
<p>Number of events: {!v.numEvents}</p>

</aura:component>

The controller retrieves the data sent in the event and uses it to update the messageFromEvent  attribute in the handler component.

/* ceHandlerController.js */
{

handleComponentEvent : function(cmp, event) {
var message = event.getParam("message");

// set the handler attributes based on event data
cmp.set("v.messageFromEvent", message);
var numEventsHandled = parseInt(cmp.get("v.numEvents")) + 1;
cmp.set("v.numEvents", numEventsHandled);

}
}

Put It All Together
Add the c:ceHandler  component to a c:ceHandlerApp  application. Navigate to the application and click the button to fire
the component event.

https://MyDomainName.lightning.force.com/c/ceHandlerApp.app.

If you want to access data on the server, you could extend this example to call a server-side controller from the handler’s client-side
controller.

SEE ALSO:

Component Events

Creating Server-Side Logic with Controllers

Application Event Example

Application Events

Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All
components that provide a handler for the event are notified.

275

Application EventsCommunicating with Events



IN THIS SECTION:

Application Event Propagation

The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble
phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and
potentially control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

Create Custom Application Events

Create a custom application event using the <aura:event>  tag in a .evt  resource. Events can contain attributes that can be
set before the event is fired and read when the event is handled.

Fire Application Events

Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All
components that provide a handler for the event are notified.

Handling Application Events

Use <aura:handler>  in the markup of the handler component.

SEE ALSO:

Component Events

Handling Events with Client-Side Controllers

Application Event Propagation

Advanced Events Example

Application Event Propagation
The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble phases
are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially
control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

The component that fires an event is known as the source component. The framework allows you to handle the event in different phases.
These phases give you flexibility for how to best process the event for your application.

The phases are:

276

Application Event PropagationCommunicating with Events



Capture
The event is captured and trickles down from the application root to the source component. The event can be handled by a component
in the containment hierarchy that receives the captured event.

Event handlers are invoked in order from the application root down to the source component that fired the event.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase
or the bubble phase. If a component stops the event propagation using event.stopPropagation(), the component
becomes the root node used in the default phase.

Any registered handler in this phase can cancel the default behavior of the event by calling event.preventDefault(). This
call prevents execution of any of the handlers in the default phase.

Bubble
The component that fired the event can handle it. The event then bubbles up from the source component to the application root.
The event can be handled by a component in the containment hierarchy that receives the bubbled event.

Event handlers are invoked in order from the source component that fired the event up to the application root.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers will be called in this
phase. If a component stops the event propagation using event.stopPropagation(), the component becomes the root
node used in the default phase.

Any registered handler in this phase can cancel the default behavior of the event by calling event.preventDefault(). This
call prevents execution of any of the handlers in the default phase.

Default
Event handlers are invoked in a non-deterministic order from the root node through its subtree. The default phase doesn’t have the
same propagation rules related to component hierarchy as the capture and bubble phases. The default phase can be useful for
handling application events that affect components in different sub-trees of your app.

If the event’s propagation wasn’t stopped in a previous phase, the root node defaults to the application root. If the event’s propagation
was stopped in a previous phase, the root node is set to the component whose handler invoked event.stopPropagation().

Here is the sequence of application event propagation.

1. Event fired—An application event is fired. The component that fires the event is known as the source component.

2. Capture phase—The framework executes the capture phase from the application root to the source component until all components
are traversed. Any handling event can stop propagation by calling stopPropagation()  on the event.

3. Bubble phase—The framework executes the bubble phase from the source component to the application root until all components
are traversed or stopPropagation()  is called.

4. Default phase—The framework executes the default phase from the root node unless preventDefault()  was called in the
capture or bubble phases. If the event’s propagation wasn’t stopped in a previous phase, the root node defaults to the application
root. If the event’s propagation was stopped in a previous phase, the root node is set to the component whose handler invoked
event.stopPropagation().

Create Custom Application Events
Create a custom application event using the <aura:event>  tag in a .evt  resource. Events can contain attributes that can be set
before the event is fired and read when the event is handled.

Use type="APPLICATION"  in the <aura:event>  tag for an application event. For example, this c:appEvent  application
event has one attribute with a name of message.

<!--c:appEvent-->
<aura:event type="APPLICATION">

277

Create Custom Application EventsCommunicating with Events



<!-- Add aura:attribute tags to define event shape.
One sample attribute here. -->

<aura:attribute name="message" type="String"/>
</aura:event>

The component that fires an event can set the event’s data. To set the attribute values, call event.setParam()  or
event.setParams(). A parameter name set in the event must match the name  attribute of an <aura:attribute>  in the
event. For example, if you fire c:appEvent, you could use:

event.setParam("message", "event message here");

The component that handles an event can retrieve the event data. To retrieve the attribute in this event, call
event.getParam("message")  in the handler’s client-side controller.

Fire Application Events
Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All
components that provide a handler for the event are notified.

Register an Event
A component registers that it may fire an application event by using <aura:registerEvent>  in its markup. The name  attribute
is required but not used for application events. The name  attribute is only relevant for component events. This example uses
name="appEvent"  but the value isn’t used anywhere.

<aura:registerEvent name="appEvent" type="c:appEvent"/>

Fire an Event
Use $A.get("e.myNamespace:myAppEvent")  in JavaScript to get an instance of the myAppEvent  event in the
myNamespace  namespace.

Note:  The syntax to get an instance of an application event is different than the syntax to get a component event, which is
cmp.getEvent("evtName").

Use fire()  to fire the event.

var appEvent = $A.get("e.c:appEvent");
// Optional: set some data for the event (also known as event shape)
// A parameter’s name must match the name attribute
// of one of the event’s <aura:attribute> tags
//appEvent.setParams({ "myParam" : myValue });
appEvent.fire();

Events Fired on App Rendering
Some events are automatically fired when an app is rendering. For more information, see Events Fired During the Rendering Lifecycle
on page 292.

SEE ALSO:

Fire Component Events

278

Fire Application EventsCommunicating with Events



Handling Application Events
Use <aura:handler>  in the markup of the handler component.

For example:

<aura:handler event="c:appEvent" action="{!c.handleApplicationEvent}"/>

The event  attribute specifies the event being handled. The format is namespace:eventName.

The action  attribute of <aura:handler>  sets the client-side controller action to handle the event.

Note: The handler for an application event won’t work if you set the name  attribute in <aura:handler>. Use the name
attribute only when you’re handling component events.

In this example, when the event is fired, the handleApplicationEvent  client-side controller action is called.

Event Handling Phases
The framework allows you to handle the event in different phases. These phases give you flexibility for how to best process the event
for your application.

Application event handlers are associated with the default phase. To add a handler for the capture or bubble phases instead, use the
phase attribute.

Get the Source of an Event
In the client-side controller action for an <aura:handler>  tag, use evt.getSource()  to find out which component fired the
event, where evt  is a reference to the event. To retrieve the source element, use evt.getSource().getElement().

IN THIS SECTION:

Handling Bubbled or Captured Application Events

Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

SEE ALSO:

Handling Component Events

Handling Bubbled or Captured Application Events
Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble phases
are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially
control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

Default Event Propagation Rules
By default, every parent in the containment hierarchy can’t handle an event during the capture and bubble phases. Instead, the event
propagates to every owner in the containment hierarchy.

279

Handling Application EventsCommunicating with Events



A component’s owner is the component that is responsible for its creation. For declaratively created components, the owner is the
outermost component containing the markup that references the component firing the event. For programmatically created components,
the owner component is the component that invoked $A.createComponent  to create it.

The same rules apply for the capture phase, although the direction of event propagation (down) is the opposite of the bubble phase
(up).

Confused? It makes more sense when you look at an example in the bubbling phase.

c:owner  contains c:container, which in turn contains c:eventSource.

<!--c:owner-->
<aura:component>

<c:container>
<c:eventSource />

</c:container>
</aura:component>

If c:eventSource  fires an event, it can handle the event itself. The event then bubbles up the containment hierarchy.

c:container  contains c:eventSource  but it’s not the owner because it’s not the outermost component in the markup, so it
can’t handle the bubbled event.

c:owner  is the owner because c:container  is in its markup. c:owner  can handle the event.

Propagation to All Container Components
The default behavior doesn’t allow an event to be handled by every parent in the containment hierarchy. Some components contain
other components but aren’t the owner of those components. These components are known as container components. In the example,
c:container  is a container component because it’s not the owner for c:eventSource. By default, c:container  can’t
handle events fired by c:eventSource.

A container component has a facet attribute whose type is Aura.Component[], such as the default body  attribute. The container
component includes those components in its definition using an expression, such as {!v.body}. The container component isn’t the
owner of the components rendered with that expression.

To allow a container component to handle the event, add includeFacets="true"  to the <aura:handler>  tag of the
container component. For example, adding includeFacets="true"  to the handler in the container component, c:container,
enables it to handle the component event bubbled from c:eventSource.

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"
includeFacets="true" />

Handle Bubbled Event
To add a handler for the bubble phase, set phase="bubble".

<aura:handler event="c:appEvent" action="{!c.handleBubbledEvent}"
phase="bubble" />

The event  attribute specifies the event being handled. The format is namespace:eventName.

The action  attribute of <aura:handler>  sets the client-side controller action to handle the event.

280

Handling Application EventsCommunicating with Events



Handle Captured Event
To add a handler for the capture phase, set phase="capture".

<aura:handler event="c:appEvent" action="{!c.handleCapturedEvent}"
phase="capture" />

Stop Event Propagation
Use the stopPropagation()  method in the Event  object to stop the event propagating to other components.

Pausing Event Propagation for Asynchronous Code Execution
Use event.pause()  to pause event handling and propagation until event.resume()  is called. This flow-control mechanism
is useful for any decision that depends on the response from the execution of asynchronous code. For example, you might make a
decision about event propagation based on the response from an asynchronous call to native mobile code.

You can call pause()  or resume()  in the capture or bubble phases.

Application Event Example
Here’s a simple use case of using an application event to update an attribute in another component.

1. A user clicks a button in the notifier component, aeNotifier.cmp.

2. The client-side controller for aeNotifier.cmp  sets a message in a component event and fires the event.

3. The handler component, aeHandler.cmp, handles the fired event.

4. The client-side controller for aeHandler.cmp  sets an attribute in aeHandler.cmp  based on the data sent in the event.

Note:  The event and components in this example use the default c  namespace. If your org has a namespace, use that namespace
instead.

Application Event
The aeEvent.evt  application event has one attribute. We’ll use this attribute to pass some data in the event when it’s fired.

<!--c:aeEvent-->
<aura:event type="APPLICATION">

<aura:attribute name="message" type="String"/>
</aura:event>

Notifier Component
The aeNotifier.cmp  notifier component uses aura:registerEvent  to declare that it may fire the application event. The
name  attribute is required but not used for application events. The name  attribute is only relevant for component events.

The button in the component contains a onclick  browser event that is wired to the fireApplicationEvent action in the
client-side controller. Clicking this button invokes the action.

<!--c:aeNotifier-->
<aura:component>

<aura:registerEvent name="appEvent" type="c:aeEvent"/>

281

Application Event ExampleCommunicating with Events



<h1>Simple Application Event Sample</h1>
<p><lightning:button

label="Click here to fire an application event"
onclick="{!c.fireApplicationEvent}" />

</p>
</aura:component>

The client-side controller gets an instance of the event by calling $A.get("e.c:aeEvent"). The controller sets the message
attribute of the event and fires the event.

/* aeNotifierController.js */
{

fireApplicationEvent : function(cmp, event) {
// Get the application event by using the
// e.<namespace>.<event> syntax
var appEvent = $A.get("e.c:aeEvent");
appEvent.setParams({

"message" : "An application event fired me. " +
"It all happened so fast. Now, I'm everywhere!" });

appEvent.fire();
}

}

Handler Component
The aeHandler.cmp  handler component uses the <aura:handler>  tag to register that it handles the application event.

Note: The handler for an application event won’t work if you set the name  attribute in <aura:handler>. Use the name
attribute only when you’re handling component events.

When the event is fired, the handleApplicationEvent  action in the client-side controller of the handler component is invoked.

<!--c:aeHandler-->
<aura:component>

<aura:attribute name="messageFromEvent" type="String"/>
<aura:attribute name="numEvents" type="Integer" default="0"/>

<aura:handler event="c:aeEvent" action="{!c.handleApplicationEvent}"/>

<p>{!v.messageFromEvent}</p>
<p>Number of events: {!v.numEvents}</p>

</aura:component>

The controller retrieves the data sent in the event and uses it to update the messageFromEvent  attribute in the handler component.

/* aeHandlerController.js */
{

handleApplicationEvent : function(cmp, event) {
var message = event.getParam("message");

// set the handler attributes based on event data
cmp.set("v.messageFromEvent", message);
var numEventsHandled = parseInt(cmp.get("v.numEvents")) + 1;
cmp.set("v.numEvents", numEventsHandled);

282

Application Event ExampleCommunicating with Events



}
}

Container Component
The aeContainer.cmp  container component contains the notifier and handler components. This is different from the component
event example where the handler contains the notifier component.

<!--c:aeContainer-->
<aura:component>

<c:aeNotifier/>
<c:aeHandler/>

</aura:component>

Put It All Together
You can test this code by adding <c:aeContainer> to a sample aeWrapper.app  application and navigating to the application.

https://MyDomainName.lightning.force.com/c/aeWrapper.app.

If you want to access data on the server, you could extend this example to call a server-side controller from the handler’s client-side
controller.

SEE ALSO:

Application Events

Creating Server-Side Logic with Controllers

Component Event Example

Event Handler Behavior for Active Components

To prevent active event handlers on cached pages from causing problems, add a workaround to your code to check if the component
is still visible. To avoid this scenario and the workaround, use Lightning message service instead to communicate across the DOM within
a Lightning page. The default scope used by Lightning message service channels publishes only to active components.

When navigating away from a page in Lightning Experience, the framework caches the components in the page so that they remain
active, along with their event handlers. This caching speeds up navigation, but it can cause the cached component to respond to events
that are not intended for it, such as force:refreshView  or force:recordSaveSuccess.

This workaround uses the offsetParent  property for the component to get its handlers while they’re visible. The workaround is
good only if the component definition has an HTML element in it.

This component includes an event handler and some HTML.

<!--myComponent.cmp-->
<aura:component>
<aura:handler event="c:appEvent" action="{!c.onEvent}>
<h1>This component has a handler</h1>

</aura:component>

283

Event Handler Behavior for Active ComponentsCommunicating with Events



Here’s the client-side controller that uses the offsetParent  property to get the component’s handlers while they’re still visible.

/* myComponentController.js */
({
onEvent: function(component, event, helper) {
var elem = component.getElement();
if (elem && elem.offsetParent !== null) {
// event handling logic here

}
}

})

SEE ALSO:

Communicating Across the DOM with Lightning Message Service

Component Library: Message Service

Event Handling Lifecycle

The following chart summarizes how the framework handles events.

284

Event Handling LifecycleCommunicating with Events

https://developer.salesforce.com/docs/component-library/bundle/lightning-message-service/documentation


1 Detect Firing of Event

The framework detects the firing of an event. For example, the event could be triggered by a button click in a notifier component.

2 Determine the Event Type

2.1 Component Event

The parent or container component instance that fired the event is identified. This container component locates all relevant event
handlers for further processing.

2.2 Application Event

Any component can have an event handler for this event. All relevant event handlers are located.

3 Execute each Handler

3.1 Executing a Component Event Handler

Each of the event handlers defined in the container component for the event are executed by the handler controller, which can also:

285

Event Handling LifecycleCommunicating with Events



• Set attributes or modify data on the component (causing a re-rendering of the component).

• Fire another event or invoke a client-side or server-side action.

3.2 Executing an Application Event Handler

All event handlers are executed. When the event handler is executed, the event instance is passed into the event handler.

4 Re-render Component (optional)

After the event handlers and any callback actions are executed, a component might be automatically re-rendered if it was modified
during the event handling process.

SEE ALSO:

Create a Custom Renderer

Advanced Events Example

This example builds on the simpler component and application event examples. It uses one notifier component and one handler
component that work with both component and application events. Before we see a component wired up to events, let's look at the
individual resources involved.

This table summarizes the roles of the various resources used in the example. The source code for these resources is included after the
table.

UsageResource NameResource

Defines the component and application events in
separate resources. eventsContainer.cmp

Component event (compEvent.evt)
and application event (appEvent.evt)

Event files

shows how to use both component and application
events.

The notifier contains an onclick  browser event to
initiate the event. The controller fires the event.

Component (eventsNotifier.cmp)
and its controller
(eventsNotifierController.js)

Notifier

The handler component contains the notifier
component (or a <aura:handler>  tag for

Component (eventsHandler.cmp)
and its controller
(eventsHandlerController.js)

Handler

application events), and calls the controller action that
is executed after the event is fired.

Displays the event handlers on the UI for the complete
demo.

eventsContainer.cmpContainer Component

The definitions of component and application events are stored in separate .evt  resources, but individual notifier and handler
component bundles can contain code to work with both types of events.

The component and application events both contain a context  attribute that defines the shape of the event. This is the data that is
passed to handlers of the event.

286

Advanced Events ExampleCommunicating with Events



Component Event
Here is the markup for compEvent.evt.

<!--c:compEvent-->
<aura:event type="COMPONENT">

<!-- pass context of where the event was fired to the handler. -->
<aura:attribute name="context" type="String"/>

</aura:event>

Application Event
Here is the markup for appEvent.evt.

<!--c:appEvent-->
<aura:event type="APPLICATION">

<!-- pass context of where the event was fired to the handler. -->
<aura:attribute name="context" type="String"/>

</aura:event>

Notifier Component
The eventsNotifier.cmp  notifier component contains buttons to initiate a component or application event.

The notifier uses aura:registerEvent  tags to declare that it may fire the component and application events. Note that the
name  attribute is required but the value is only relevant for the component event; the value is not used anywhere else for the application
event.

The parentName  attribute is not set yet. We will see how this attribute is set and surfaced in eventsContainer.cmp.

<!--c:eventsNotifier-->
<aura:component>
<aura:attribute name="parentName" type="String"/>
<aura:registerEvent name="componentEventFired" type="c:compEvent"/>
<aura:registerEvent name="appEvent" type="c:appEvent"/>

<div>
<h3>This is {!v.parentName}'s eventsNotifier.cmp instance</h3>
<p><lightning:button

label="Click here to fire a component event"
onclick="{!c.fireComponentEvent}" />

</p>
<p><lightning:button

label="Click here to fire an application event"
onclick="{!c.fireApplicationEvent}" />

</p>
</div>

</aura:component>

CSS source

The CSS is in eventsNotifier.css.

/* eventsNotifier.css */
.cEventsNotifier {

287

Advanced Events ExampleCommunicating with Events



display: block;
margin: 10px;
padding: 10px;
border: 1px solid black;

}

Client-side controller source

The eventsNotifierController.js  controller fires the event.

/* eventsNotifierController.js */
{

fireComponentEvent : function(cmp, event) {
var parentName = cmp.get("v.parentName");

// Look up event by name, not by type
var compEvents = cmp.getEvent("componentEventFired");

compEvents.setParams({ "context" : parentName });
compEvents.fire();

},

fireApplicationEvent : function(cmp, event) {
var parentName = cmp.get("v.parentName");

// note different syntax for getting application event
var appEvent = $A.get("e.c:appEvent");

appEvent.setParams({ "context" : parentName });
appEvent.fire();

}
}

You can click the buttons to fire component and application events but there is no change to the output because we haven't wired up
the handler component to react to the events yet.

The controller sets the context  attribute of the component or application event to the parentName  of the notifier component
before firing the event. We will see how this affects the output when we look at the handler component.

Handler Component
The eventsHandler.cmp  handler component contains the c:eventsNotifier  notifier component and <aura:handler>
tags for the application and component events.

<!--c:eventsHandler-->
<aura:component>
<aura:attribute name="name" type="String"/>
<aura:attribute name="mostRecentEvent" type="String" default="Most recent event handled:"/>

<aura:attribute name="numComponentEventsHandled" type="Integer" default="0"/>
<aura:attribute name="numApplicationEventsHandled" type="Integer" default="0"/>

<aura:handler event="c:appEvent" action="{!c.handleApplicationEventFired}"/>
<aura:handler name="componentEventFired" event="c:compEvent"

action="{!c.handleComponentEventFired}"/>

288

Advanced Events ExampleCommunicating with Events



<div>
<h3>This is {!v.name}</h3>
<p>{!v.mostRecentEvent}</p>
<p># component events handled: {!v.numComponentEventsHandled}</p>
<p># application events handled: {!v.numApplicationEventsHandled}</p>
<c:eventsNotifier parentName="{#v.name}" />

</div>
</aura:component>

Note: {#v.name}  is an unbound expression. This means that any change to the value of the parentName  attribute in
c:eventsNotifier  doesn’t propagate back to affect the value of the name attribute in c:eventsHandler. For more
information, see Data Binding Between Components on page 46.

CSS source

The CSS is in eventsHandler.css.

/* eventsHandler.css */
.cEventsHandler {
display: block;
margin: 10px;
padding: 10px;
border: 1px solid black;

}

Client-side controller source

The client-side controller is in eventsHandlerController.js.

/* eventsHandlerController.js */
{

handleComponentEventFired : function(cmp, event) {
var context = event.getParam("context");
cmp.set("v.mostRecentEvent",

"Most recent event handled: COMPONENT event, from " + context);

var numComponentEventsHandled =
parseInt(cmp.get("v.numComponentEventsHandled")) + 1;

cmp.set("v.numComponentEventsHandled", numComponentEventsHandled);
},

handleApplicationEventFired : function(cmp, event) {
var context = event.getParam("context");
cmp.set("v.mostRecentEvent",

"Most recent event handled: APPLICATION event, from " + context);

var numApplicationEventsHandled =
parseInt(cmp.get("v.numApplicationEventsHandled")) + 1;

cmp.set("v.numApplicationEventsHandled", numApplicationEventsHandled);
}

}

The name  attribute is not set yet. We will see how this attribute is set and surfaced in eventsContainer.cmp.

289

Advanced Events ExampleCommunicating with Events



You can click buttons and the UI now changes to indicate the type of event. The click count increments to indicate whether it's a
component or application event. We aren't finished yet though. Notice that the source of the event is undefined as the event context
attribute hasn't been set .

Container Component
Here is the markup for eventsContainer.cmp.

<!--c:eventsContainer-->
<aura:component>

<c:eventsHandler name="eventsHandler1"/>
<c:eventsHandler name="eventsHandler2"/>

</aura:component>

The container component contains two handler components. It sets the name  attribute of both handler components, which is passed
through to set the parentName  attribute of the notifier components. This fills in the gaps in the UI text that we saw when we looked
at the notifier or handler components directly.

Add the c:eventsContainer  component to a c:eventsContainerApp  application. Navigate to the application.

https://MyDomainName.lightning.force.com/c/eventsContainerApp.app.

Click the Click here to fire a component event button for either of the event handlers. Notice that the # component events handled
counter only increments for that component because only the firing component's handler is notified.

Click the Click here to fire an application event button for either of the event handlers. Notice that the # application events handled
counter increments for both the components this time because all the handling components are notified.

SEE ALSO:

Component Event Example

Application Event Example

Event Handling Lifecycle

Firing Events from Non-Aura Code

You can fire Aura events from JavaScript code outside an Aura app. For example, your Aura app might need to call out to some non-Aura
code, and then have that code communicate back to your Aura app once it's done.

For example, you could call external code that needs to log into another system and return some data to your Aura app by firing an Aura
event. Let's call this event mynamespace:externalEvent. The external code fires this event when it’s ready to communicate
with an Aura app.

var myExternalEvent;
if(window.$A &&
(myExternalEvent = window.$A.get("e.mynamespace:externalEvent"))) {
myExternalEvent.setParams({isOauthed:true});

290

Firing Events from Non-Aura CodeCommunicating with Events



myExternalEvent.fire();
}

SEE ALSO:

Application Events

Modifying Components Outside the Framework Lifecycle

Events Best Practices

Here are some best practices for working with events.

Use Component Events Whenever Possible
Always try to use a component event instead of an application event, if possible. Component events can only be handled by components
above them in the containment hierarchy so their usage is more localized to the components that need to know about them. Application
events are best used for something that should be handled at the application level, such as navigating to a specific record. Application
events allow communication between components that are in separate parts of the application and have no direct containment
relationship.

Separate Low-Level Events from Business Logic Events
Handle low-level events, such as a click, in your event handler and refire them as higher-level events, such as an approvalChange
event or whatever is appropriate for your business logic.

Dynamic Actions Based on Component State
To invoke a different action on a click event depending on the state of the component, try this approach:

1. Store the component state as a discrete value, such as New or Pending, in a component attribute.

2. Put logic in your client-side controller that determines the next action to take.

3. Put logic in the helper if you want to reuse it in the component bundle.

For example:

1. Your component markup contains <lightning:button label="do something"
onclick="{!c.handleClick}" />.

2. In your controller, define the handleClick function, which delegates to the appropriate helper function or potentially fires the
correct event.

291

Events Best PracticesCommunicating with Events



Using a Dispatcher Component to Listen and Relay Events
If you have a large number of handler component instances listening for an event, identify a dispatcher component to listen for the
event. The dispatcher component can perform some logic to decide which component instances receive further information, and fire
another component or application event targeted at those component instances.

SEE ALSO:

Handling Events with Client-Side Controllers

Events Anti-Patterns

Events Anti-Patterns
These are some anti-patterns that you should avoid when using events.

Don't Fire an Event in a Renderer
Firing an event in a renderer can cause an infinite rendering loop.

Don’t do this!

afterRender: function(cmp, helper) {
this.superAfterRender();
$A.get("e.myns:mycmp").fire();

}

Instead, use the init  hook to run a controller action after component construction but before rendering. Add this code to your
component:

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

For more details, see .Invoking Actions on Component Initialization on page 354.

Don’t Use onclick  and ontouchend  Events
You can’t use different actions for onclick  and ontouchend  events in a component. The framework translates touch-tap events
into clicks and activates any onclick  handlers that are present.

SEE ALSO:

Create a Custom Renderer

Events Best Practices

Events Fired During the Rendering Lifecycle

A component is instantiated, rendered, and rerendered during its lifecycle. A component rerenders only when there’s a programmatic
or value change that requires a rerender. For example, if a browser event triggers an action that updates the component’s data, the
component rerenders.

292

Events Anti-PatternsCommunicating with Events



Component Creation
The component lifecycle starts when the client sends an HTTP request to the server and the component configuration data is returned
to the client. No server trip is made if the component definition is already on the client from a previous request and the component has
no server dependencies.

Let’s look at an app with several nested components. The framework instantiates the app and goes through the children of the v.body
facet to create each component. First, it creates the component definition, its entire parent hierarchy, and then creates the facets within
those components. The framework also creates any component dependencies on the server, including definitions for attributes, interfaces,
controllers, and actions.

The following image lists the order of component creation.

After creating a component instance, the framework sends the serialized component definitions and instances down to the client.
Definitions are cached but not the instance data. The client deserializes the response to create the JavaScript objects or maps, resulting
in an instance tree that’s used to render the component instance. When the component tree is ready, the init  event is fired for all
the components, starting from the child components and finishing in the parent component.

Component Rendering
The rendering lifecycle happens once in the lifetime of a component unless the component gets explicitly unrendered. When you create
a component:

1. The component service that constructs the components fires the init  event to signal that initialization has completed.

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

You can customize the init  handler and add your own controller logic before the component starts rendering. For more information,
see Invoking Actions on Component Initialization on page 354.

2. For each component in the tree, the base implementation of render()  or your custom renderer is called to start component
rendering. For more information, see Create a Custom Renderer on page 372. Similar to the component creation process, rendering
starts at the root component, its child components and their super components, if any, and finally the subchild components.

293

Events Fired During the Rendering LifecycleCommunicating with Events



3. After your components are rendered to the DOM, afterRender()  is called to signal that rendering is completed for each of
these component definitions. It enables you to interact with the DOM tree after the framework rendering service has created the
DOM elements.

4. To indicate that the client is done waiting for a response to the server request XHR, the aura:doneWaiting  event is fired. You
can handle this event by adding a handler wired to a client-side controller action.

Note: The aura:doneWaiting  event is deprecated. The aura:doneWaiting  application event is fired for every
server response, even for responses from other components in your app. Unless your component is running in complete
isolation in a standalone app and not included in Lightning Experience or the Salesforce mobile app, the container app may
trigger your event handler multiple times. This behavior makes it difficult to handle each event appropriately.

5. The framework fires a render  event, enabling you to interact with the DOM tree after the framework’s rendering service has
inserted DOM elements. Handling the render  event is preferred to creating a custom renderer and overriding afterRender().
For more information, see Handle the render Event.

6. Finally, the aura:doneRendering  event is fired at the end of the rendering lifecycle.

Note: The aura:doneRendering  event is deprecated. Unless your component is running in complete isolation in a
standalone app and not included in complex apps, such as Lightning Experience or the Salesforce mobile app, the container
app may trigger your event handler multiple times. This behavior makes it difficult to handle each event appropriately.

Rendering Nested Components
Let’s say that you have an app myApp.app  that contains a component myCmp.cmp  with a nested component.

During initialization, the init()  event is fired in this order: the nested component, myCmp.cmp, and myApp.app.

SEE ALSO:

Create a Custom Renderer

Events Handled in the Salesforce Mobile App and Lightning Experience

The Salesforce mobile app and Lightning Experience handle some events, which you can fire in your Aura component.

If you fire one of these force  or lightning  events in your Lightning apps or components outside of the Salesforce mobile app
or Lightning Experience:

• You must handle the event by using the <aura:handler>  tag in the handling component.

• Use the <aura:registerEvent>  or <aura:dependency>  tags to ensure that the event is sent to the client, when
needed.

DescriptionEvent Name

Closes a quick action panel. Only one quick action panel can be open in the app
at a time.

force:closeQuickAction

Opens a page to create a record for the specified entityApiName, for example,
“Account” or “myNamespace__MyObject__c”.

force:createRecord

Opens the page to edit the record specified by recordId.force:editRecord

Navigates from one Aura component to another.force:navigateToComponent  (Beta)

294

Events Handled in the Salesforce Mobile App and Lightning
Experience

Communicating with Events



DescriptionEvent Name

Navigates to the list view specified by listViewId.force:navigateToList

Navigates to the object home specified by the scope  attribute.force:navigateToObjectHome

Navigates to the related list specified by parentRecordId.force:navigateToRelatedList

Navigates to an sObject record specified by recordId.force:navigateToSObject

Navigates to the specified URL.force:navigateToURL

Saves a record.force:recordSave

Indicates that the record has been successfully saved.force:recordSaveSuccess

Reloads the view.force:refreshView

Displays a toast notification with a message. (Not available on login pages.)force:showToast

Opens one or more file records from the ContentDocument and ContentHubItem
objects.

lightning:openFiles

Customizing Client-Side Logic for the Salesforce Mobile App, Lightning
Experience, and Standalone Apps
Since the Salesforce mobile app and Lightning Experience automatically handle many events, you have to do extra work if your component
runs in a standalone app. Instantiating the event using $A.get()  can help you determine if your component is running within the
Salesforce mobile app and Lightning Experience or a standalone app. For example, you want to display a toast when a component loads
in the Salesforce mobile app and Lightning Experience. You can fire the force:showToast  event and set its parameters for the
Salesforce mobile app and Lightning Experience, but you have to create your own implementation for a standalone app.

displayToast : function (component, event, helper) {
var toast = $A.get("e.force:showToast");
if (toast){

//fire the toast event in Salesforce app and Lightning Experience
toast.setParams({

"title": "Success!",
"message": "The component loaded successfully."

});
toast.fire();

} else {
//your toast implementation for a standalone app here

}
}

SEE ALSO:

aura:dependency

Fire Component Events

Fire Application Events

295

Events Handled in the Salesforce Mobile App and Lightning
Experience

Communicating with Events



System Events

The framework fires several system events during its lifecycle.

You can handle these events in your Lightning apps or components, and within the Salesforce mobile app.

For examples, see the Component Library.

DescriptionEvent Name

Indicates that the initial rendering of the root application has completed.aura:doneRendering  (deprecated)

Note: The aura:doneRendering  event is deprecated. Unless your
component is running in complete isolation in a standalone app and not
included in complex apps, such as Lightning Experience or the Salesforce
mobile app, the container app may trigger your event handler multiple
times. This behavior makes it difficult to handle each event appropriately.

Indicates that the app is done waiting for a response to a server request. This
event is preceded by an aura:waiting  event.

aura:doneWaiting  (deprecated)

Note: The aura:doneWaiting  event is deprecated. The
aura:doneWaiting  application event is fired for every server
response, even for responses from other components in your app. Unless
your component is running in complete isolation in a standalone app and
not included in Lightning Experience or the Salesforce mobile app, the
container app may trigger your event handler multiple times. This behavior
makes it difficult to handle each event appropriately.

Indicates that the hash part of the URL has changed.aura:locationChange

Indicates that a requested resource is not accessible due to security constraints
on that resource.

aura:noAccess

Indicates that an error has occurred.aura:systemError

Indicates that an attribute value has changed.aura:valueChange

Indicates that a component has been destroyed.aura:valueDestroy

Indicates that an app or component has been initialized.aura:valueInit

Indicates that an app or component has been rendered or rerendered.aura:valueRender

Indicates that the app is waiting for a response to a server request.aura:waiting  (deprecated)

Note: The aura:waiting  event is deprecated. The
aura:waiting  application event is fired for every server request, even
for requests from other components in your app. Unless your component
is running in complete isolation in a standalone app and not included in
Lightning Experience or the Salesforce mobile app, the container app may
trigger your event handler multiple times. This behavior makes it difficult
to handle each event appropriately.

296

System EventsCommunicating with Events



CHAPTER 6 Communicating Across the DOM with Lightning
Message Service

Use Lightning message service to communicate across the DOM within a Lightning page. Communicate
between Visualforce pages embedded in the same Lightning page, Aura components, and Lightning
web components, including components in a utility bar and pop-out utilities. Choose whether a
component subscribes to messages from the entire application, or from only the active area.

In this chapter ...

• Create a Message
Channel

• Publish on a
Message Channel

If you're switching from Salesforce Classic to Lightning Experience, you can build Lightning web
components that can communicate with existing Visualforce pages or Aura components. You can also
use Lightning message service to communicate with softphones via Open CTI.• Subscribe to a

Message Channel
Important:  Lightning message service is available in Lightning Experience and as a beta feature
for Lightning components used in Experience Builder sites.

• Lightning Message
Service Limitations

To access Lightning message service in Aura, use the lightning:messageChannel  component.
A message is a serializable JSON object. Examples of data that you can pass in a message include strings,
numbers, booleans, and objects. A message can’t contain functions and symbols. The
lightning:messageChannel  component is only available in Lightning Experience.

SEE ALSO:

Blog: Lightning Message Service

Lightning Web Components Developer Guide: Communicating Across the DOM with Lightning Message
Service

Visualforce Developer Guide: Communicating Across the DOM with Lightning Message Service

Open CTI Developer Guide: Lightning Message Service Methods for Lightning Experience

297

https://developer.salesforce.com/blogs/2019/10/lightning-message-service-developer-preview.html
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/message_channel_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/message_channel_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.pages.meta/pages/message_channel_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_cti.meta/api_cti/sforce_api_cti_methods_lms.htm


Create a Message Channel

To create a lightning:messageChannel  component in your org, use the LightningMessageChannel metadata type and append
it with __c. The message channel isn’t a custom object, it just uses the same suffix.

Note:  See LightningMessageChannel in the Metadata API Developer Guide (can be outdated or unavailable during release
preview).

To deploy a LightningMessageChannel into your org, create a Salesforce DX project. Include the XML definition in the
force-app/main/default/messageChannels/  directory. The LightningMessageChannel file name follows the format
messageChannelName.messageChannel-meta.xml. To deploy it to your scratch org, sandbox, or Developer Edition org, run the
sf project deploy start  Salesforce CLI command.

SEE ALSO:

Trailhead: Set Up Salesforce DX

Salesforce DX Developer Guide

Publish on a Message Channel

To publish a message on a message channel, include a lightning:messageChannel  component in your Aura component and
use the publish()  method in your Aura component's controller file.

Example:  The lmsPublisherAuraComponent  from the github.com/trailheadapps/lwc-recipes repo shows how to
publish a message to notify subscribers on a Lightning page when a contact is selected.

To reference a message channel, add the lightning:messageChannel  component to your Aura component. The component
has a required type  attribute, which is the name of the message channel.

<!-- myComponent.cmp -->
<aura:component>

<lightning:messageChannel type="SampleMessageChannel__c"/>
</aura:component>

To reference a message channel from an org that has a namespace, prefix the message channel name with the namespace:
<lightning:messageChannel type="Namespace__MessageChannelName__c"/>.

This example shows how to publish a message on the SampleMessageChannel__c  channel when a button is clicked.

In myComponent.cmp, we create two components, lightning:button  and lightning:messageChannel. On
lightning:button, the onclick  handler calls the handleClick()  JavaScript function in the controller. We assign the
aura:id  attribute to lightning:messageChannel  to access the publish()  method.

<!-- myComponent.cmp -->
<aura:component>

<lightning:button onclick="{! c.handleClick }"/>
<lightning:messageChannel type="SampleMessageChannel__c"

aura:id="sampleMessageChannel"/>
</aura:component>

// myComponentController.js
({

handleClick: function(cmp, event, helper) {
var payload = {

298

Create a Message ChannelCommunicating Across the DOM with Lightning Message
Service

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_lightningmessagechannel.htm
https://trailhead.salesforce.com/en/content/learn/modules/sfdx_app_dev/sfdx_app_dev_setup_dx
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_intro.htm
https://github.com/trailheadapps/lwc-recipes


recordId: "some string",
recordData: {

value: "some value"
}

};
cmp.find("sampleMessageChannel").publish(payload);

}
})

In the controller, handleClick()  contains the payload  object. This object holds the message that gets sent on the
SampleMessageChannel__c  message channel. Here, the message is a recordId  with the value "some string" and
recordData, whose value is the key-value pair value: "some value". Then, the controller finds the
lightning:messageChannel  component referenced in myComponent.cmp  and calls publish()  with the payload.

Note:  Lightning message service publishes messages to any subscribed component until the destroy phase of the component's
lifecycle, even if the component isn't visible. Sometimes when you navigate away from a Lightning page, components are cached
and not destroyed. These components still receive messages. For more information, see lifecycle on page 292 and related system
events on page 296

Subscribe to a Message Channel

To subscribe to a message channel, create a handler method to run when it receives a message.

Example:  The lmsSubscriberAuraComponent  from the github.com/trailheadapps/lwc-recipes repo shows how to
subscribe and unsubscribe from a message channel.

In this example, we define an Aura component called myNewComponent  that contains the custom message channel,
SampleMessageChannel__c. The lightning:messageChannel  component's onMessage  attribute calls the
handleChanged  method in the client-side controller.

By default, communication over a message channel can occur only between components in an active navigation tab, an active navigation
item, or a utility item. Utility items are always active. A navigation tab or item is active when it’s selected. Navigation tabs and items
include:

• Standard navigation tabs

• Console navigation workspace tabs

• Console navigations subtabs

• Console navigation items

To receive messages on a message channel from anywhere in the application, use lightning:messageChannel's optional
parameter, scope. Set scope  to the value "APPLICATION".

<lightning:messageChannel type="messageChannel" onMessage="{!listener}"
scope="APPLICATION"/>

The component myNewComponent  detects a new message and updates the display value.

<!-- myNewComponent.cmp -->
<aura:component>

<aura:attribute name="recordValue" type="String"/>
<lightning:formattedText value="{!v.recordValue}" />
<lightning:messageChannel type="SampleMessageChannel__c"

299

Subscribe to a Message ChannelCommunicating Across the DOM with Lightning Message
Service

https://github.com/trailheadapps/lwc-recipes


onMessage="{!c.handleChanged}"/>
</aura:component>

// myNewComponentController.js
({

handleChanged: function(cmp, message, helper) {
// Read the message argument to get the values in the message payload
if (message != null && message.getParam("recordData") != null) {

cmp.set("v.recordValue", message.getParam("recordData").value);
}

}
})

Write the handler in your component's client-side controller. The handleChanged  method fires when there is a new message. It
checks whether there is a payload in the message, and if so, assigns the new data to the v.recordValue  attribute. The
lightning:formattedText  element updates to display the new value.

Lightning Message Service Limitations

Keep the following in mind when working with Lightning message service.

Supported Experiences
Lightning message service supports only the following experiences:

• Lightning Experience standard navigation

• Lightning Experience console navigation

• Salesforce mobile app for Aura and Lightning Web Components, but not for Visualforce pages

• Lightning components used in Experience Builder sites.

Note:  Lightning Message Service doesn't work with Salesforce Tabs + Visualforce sites or with Visualforce pages in
Experience Builder sites.

Aura Components That Don’t Render Aren’t Supported
Lightning message service only supports Aura components that render. You can’t use lightning:messageChannel  in an
Aura component that uses the background utility item interface. Similarly, Aura components that use
lightning:messageChannel  can’t call Lightning Message Service methods in the init  lifecycle handler because the
component hasn’t rendered.

lightning:messageChannel  Must Be a Child of aura:component
In a custom Aura component, lightning:messageChannel  must be an immediate child of the aura:component  tag.
It can’t be nested in an HTML tag or another component.

For example, the following code renders without a problem.

<aura:component>
<lightning:messageChannel type="myMessageChannel__c" />
<lightning:card>...</lightning:card>

</aura:component>

This code throws an error when the Aura component tries to render.

<aura:component>
<lightning:card>
<lightning:messageChannel type="myMessageChannel__c" />

300

Lightning Message Service LimitationsCommunicating Across the DOM with Lightning Message
Service



</lightning:card>
</aura:component>

SEE ALSO:

Invoking Actions on Component Initialization

Component Reference: lightning:backgroundUtilityItem

301

Lightning Message Service LimitationsCommunicating Across the DOM with Lightning Message
Service

https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/js_cb_init_handler.htm
https://developer.salesforce.com/docs/component-library/bundle/lightning:backgroundUtilityItem/documentation


CHAPTER 7 Creating Apps

Components are the building blocks of an app. This section shows you a typical workflow to put the
pieces together to create a new app.

In this chapter ...

• App Overview
First, you should decide whether you’re creating a component for a standalone app or for Salesforce
apps, such as Lightning Experience or Salesforce for Android, iOS, and mobile web. Both components• Designing App UI

• Creating App
Templates

can access your Salesforce data, but only a component created for Lightning Experience or Salesforce
for Android, iOS, and mobile web can automatically handle Salesforce events that take advantage of
record create and edit pages, among other benefits.• Using the AppCache

• Distributing
Applications and
Components

The Quick Start on page 6 walks you through creating components for a standalone app and
components for Salesforce for Android, iOS, and mobile web to help you determine which one you need.

302



App Overview

An app is a special top-level component whose markup is in a .app resource.

On a production server, the .app  resource is the only addressable unit in a browser URL. Access an app using the URL:

https://MyDomainName.lightning.force.com/<namespace>/<appName>.app.

SEE ALSO:

aura:application

Supported HTML Tags

Designing App UI

Design your app's UI by including markup in the .app  resource. Each part of your UI corresponds to a component, which can in turn
contain nested components. Compose components to create a sophisticated app.

An app’s markup starts with the <aura:application>  tag.

Note:  Creating a standalone app enables you to host your components outside of Salesforce for Android, iOS, and mobile web
or Lightning Experience, such as with Lightning Out or Lightning components in Visualforce pages. To learn more about the
<aura:application>  tag, see aura:application.

Let's look at a sample.app  file, which starts with the <aura:application>  tag.

<aura:application extends="force:slds">
<lightning:layout>

<lightning:layoutItem padding="around-large">
<h1 class="slds-text-heading_large">Sample App</h1>

</lightning:layoutItem>
</lightning:layout>
<lightning:layout>

<lightning:layoutItem padding="around-small">
Sidebar
<!-- Other component markup here -->

</lightning:layoutItem>
<lightning:layoutItem padding="around-small">

Content
<!-- Other component markup here -->

</lightning:layoutItem>
</lightning:layout>

</aura:application>

The sample.app  file contains HTML tags, such as <h1>, as well as components, such as <lightning:layout>. We won't go
into the details for all the components here but note how simple the markup is. The <lightning:layoutItem>  component
can contain other components or HTML markup.

SEE ALSO:

aura:application

303

App OverviewCreating Apps



Creating App Templates

An app template bootstraps the loading of the framework and the app. Customize an app’s template by creating a component that
extends the default aura:template  template.

A template must have the isTemplate  system attribute in the <aura:component>  tag set to true. This informs the framework
to allow restricted items, such as <script>  tags, which aren't allowed in regular components.

A component with the isTemplate  system attribute set to true  can’t be used on a site page. To use a component on a site page,
the isTemplate  system attribute can’t be set to true.

For example, a sample app has a np:template  template that extends aura:template. np:template  looks like:

<aura:component isTemplate="true" extends="aura:template">
<aura:set attribute="title" value="My App"/>
...

</aura:component>

Note how the component extends aura:template  and sets the title  attribute using aura:set.

The app points at the custom template by setting the template  system attribute in <aura:application>.

<aura:application template="np:template">
...

</aura:application>

A template can only extend a component or another template. A component or an application can't extend a template.

Using the AppCache

AppCache support is deprecated. Browser vendors have deprecated AppCache, so we followed their lead. Remove the useAppcache
attribute in the <aura:application>  tag of your standalone apps (.app resources) to avoid cross-browser support issues due
to deprecation by browser vendors.

If you don’t currently set useAppcache  in an <aura:application>  tag, you don’t have to do anything because the default
value of useAppcache  is false.

Note:  See an introduction to AppCache for more information.

SEE ALSO:

aura:application

Distributing Applications and Components

As an ISV or Salesforce partner, you can package and distribute applications and components to other Salesforce users and organizations,
including those outside your company.

Publish applications and components to and install them from AppExchange.

A managed package ensures that your application and other resources are fully upgradeable. To create and work with managed packages,
you must register a namespace prefix. A managed package includes your namespace prefix in the component names and prevents
naming conflicts in an installer’s organization. After a managed package is released, the application or component names are locked,
but the package developer can still edit these attributes.

304

Creating App TemplatesCreating Apps

http://www.html5rocks.com/en/tutorials/appcache/beginner/


• API Version

• Description

• Label

• Language

• Markup

IN THIS SECTION:

Apex Class Considerations for Packages

Keep these considerations in mind when you develop Apex classes for packages.

Adding Aura Components to Managed Packages

Add an Aura component to a managed package from a package detail page in Setup.

Deleting Aura Components from Managed Packages

After you’ve released a managed package, you may decide to refactor the package and delete an Aura component. It’s your
responsibility to educate your customers about the potential impact from any components you delete. In the Release Notes for your
upgraded package, list all custom components you’ve deleted and notify customers of any necessary actions.

SEE ALSO:

Second-Generation Managed Packaging Developer Guide

First-Generation Managed Packaging Developer Guide

Testing Your Apex Code

Apex Class Considerations for Packages
Keep these considerations in mind when you develop Apex classes for packages.

Test Coverage
Any Apex that is included as part of your definition bundle must have at least 75% cumulative test coverage. When you upload your
package to AppExchange, all tests are run to ensure that they run without errors. The tests are also run when the package is installed.

Grant User Access for Apex Classes
An authenticated or guest user can access an @AuraEnabled  Apex method only when the user’s profile or an assigned permission
set allows access to the Apex class.

• To enable access to a public  Apex controller that’s part of a managed package, a subscriber org must use a permission set. You
can’t enable access to a public  Apex controller from a managed package using a user profile.

• To enable access to a global  Apex controller that’s part of a managed package, a subscriber org can use a permission set or a
user profile.

Apex Class Usage in Subscriber Orgs
Only methods marked with the global  access modifier are accessible by Aura components from outside the managed package’s
namespace. Methods marked with the public  access modifier are accessible only to Aura components included in the managed
package’s namespace.

305

Apex Class Considerations for PackagesCreating Apps

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/sharing_apps.htm


If you declare an Apex method as global, you must also declare the Apex class that contains it as global.

An Aura component outside the package can access a public Apex method installed from a non-namespaced unlocked package. The
Aura component can be installed from another package or created in the org. For accessing Apex methods, a non-namespaced unlocked
package is treated the same as an unmanaged package.

SEE ALSO:

Granting User Access for Apex Classes

Apex Server-Side Controller Overview

Apex Developer Guide: Access Modifiers

Adding Aura Components to Managed Packages
Add an Aura component to a managed package from a package detail page in Setup.

When you add an application or component to a package, all definition bundles referenced by the application or component are
automatically included, such as other components, events, and interfaces. Custom fields, custom objects, list views, page layouts, and
Apex classes referenced by the application or component are also included.

However, when you add a custom object to a package, you must explicitly add the application and other definition bundles that reference
that custom object to the package. Other dependencies that you must add to a package explicitly include the following.

• Trusted URLs

• Remote Site Settings

SEE ALSO:

Second-Generation Managed Packaging Developer Guide

First-Generation Managed Packaging Developer Guide

Deleting Aura Components from Managed Packages
After you’ve released a managed package, you may decide to refactor the package and delete an Aura component. It’s your responsibility
to educate your customers about the potential impact from any components you delete. In the Release Notes for your upgraded package,
list all custom components you’ve deleted and notify customers of any necessary actions.

Note:  To enable component deletion in your packaging org, log a case in the Partner Community.

To delete an Aura component from a managed package:

1. From Setup, enter Lightning Components  in the Quick Find box.

2. Select Lightning Components.

3. Click Del for the component that you want to delete.

306

Adding Aura Components to Managed PackagesCreating Apps

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_access_modifiers.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/sharing_apps.htm
https://partners.salesforce.com/


You can delete an Aura component from the Developer Console also.

Note:  When a developer removes an Aura component from a package, the component remains in a subscriber’s org after they
install the upgraded package. The administrator of the subscriber’s org can delete the component, if desired. This behavior is the
same for an Aura component with a public  or global access value.

The access  attribute on the aura:component  tag can be set to public  or global  to control whether the component can
be used outside of the component’s namespace.

We recommend a two-stage process to package developers when you delete an Aura component with global  access. This process
ensures that a global component that you delete from the package has no dependencies on the other items in the package.

1. Stage one: Remove references

a. Edit the global component that you want to delete to remove all references to other Lightning components.

b. Upload your new package version.

c. Push the stage-one upgrade to your subscribers.

2. Stage two: Delete your obsolete component

a. Delete the global Lightning component from the package.

b. Optionally, delete other related components and classes.

c. Upload your new package version.

d. Push the stage-two upgrade to your subscribers.

SEE ALSO:

Component Access Control

Second-Generation Managed Packaging Developer Guide: Remove Metadata Components from Second-Generation Managed Packages

First-Generation Managed Packaging Developer Guide: Delete Components from First-Generation Managed Packages

307

Deleting Aura Components from Managed PackagesCreating Apps

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_managed_component_deletion.htm


CHAPTER 8 Styling Apps

An app is a special top-level component whose markup is in a .app resource. Just like any other
component, you can put CSS in its bundle in a resource called <appName>.css.

In this chapter ...

• Using the Salesforce
Lightning Design
System in Apps

For example, if the app markup is in notes.app, its CSS is in notes.css.

When viewed in Salesforce for Android, iOS, and Lightning Experience, the components include styling
that matches those visual themes. For example, the lightning:button  includes the
slds-button_neutral  class to display a neutral style.

• Using External CSS

• More Readable
Styling Markup with
the join Expression

Note:  Styles added to Lightning components in Salesforce for Android, iOS, and Lightning
Experience don’t apply to components in standalone apps.

• Tips for CSS in
Components

SEE ALSO:

CSS in Components
• CSS for RTL

Languages

• Vendor Prefixes

• Styling with Design
Tokens

308



Using the Salesforce Lightning Design System in Apps

The Salesforce Lightning Design System (SLDS) provides a look and feel that’s consistent with Lightning Experience. Use Lightning
Design System styles to give your custom stand-alone Lightning applications a UI that is consistent with Salesforce, without having to
reverse-engineer our styles.

Your application automatically gets Lightning Design System styles and design tokens if it extends force:slds. This method is the
easiest way to stay up to date and consistent with Lightning Design System enhancements.

To extend force:slds:

<aura:application extends="force:slds">
<!-- customize your application here -->

</aura:application>

Using a Static Resource
When you extend force:slds, the version of Lightning Design System styles is automatically updated whenever the CSS changes.
If you want to use a specific Lightning Design System version, download the version and add it to your org as a static resource.

Note:  We recommend extending force:slds instead so that you automatically get the latest Lightning Design System styles.
If you stick to a specific Lightning Design System version, your app’s styles will gradually start to drift from later versions in Lightning
Experience or incur the cost of duplicate CSS downloads.

To download a version of Lightning Design System that doesn’t exceed the maximum size for a static resource, go to the Lightning
Design System downloads page.

Salesforce recommends that you name the Lightning Design System archive static resource using the name format SLDS###, where
###  is the Lightning Design System version number (for example, SLDS252). This lets you have multiple versions of the Lightning
Design System installed, and manage version usage in your components.

To use the static version of the Lightning Design System in a component, include it using <ltng:require/>. For example:

<aura:component>
<ltng:require

styles="{!$Resource.SLDS252 +
'/styles/salesforce-lightning-design-system.min.css'}" />

</aura:component>

SEE ALSO:

Styling with Design Tokens

Using External CSS

To reference an external CSS resource, upload it as a static resource and use a <ltng:require>  tag in your .cmp  or .app  markup.

ltng:require  enables you to load external CSS and JavaScript libraries for your component or app.

Important:  You can’t load JavaScript resources from a third-party site, even if it’s a CSP Trusted Site. To use a JavaScript library
from a third-party site, add it to a static resource, and then add the static resource to your component. After the library is loaded
from the static resource, you can use it as normal.

309

Using the Salesforce Lightning Design System in AppsStyling Apps

https://www.lightningdesignsystem.com/downloads/


Here’s an example of using ltng:require:

<ltng:require styles="{!$Resource.resourceName}" />

resourceName  is the Name  of the static resource. In a managed package, the resource name must include the package namespace
prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic
or script, you only need the name of the resource. For example, if you uploaded myScript.js  and set the Name  to myScript,
reference it as $Resource.myScript. To reference an item within an archive static resource, add the rest of the path to the item
using string concatenation.

Here are some considerations for loading styles:

Loading Sets of CSS
Specify a comma-separated list of resources in the styles  attribute to load a set of CSS.

Note: Due to a quirk in the way $Resource  is parsed in expressions, use the join  operator to include multiple
$Resource  references in a single attribute. For example, if you have more than one style sheet to include into a component
the styles  attribute should be something like the following.

styles="{!join(',',
$Resource.myStyles + '/stylesheetOne.css',
$Resource.myStyles + '/moreStyles.css')}"

Loading Order
The styles are loaded in the order that they are listed.

One-Time Loading
The styles load only once, even if they’re specified in multiple <ltng:require>  tags in the same component or across different
components.

Encapsulation
To ensure encapsulation and reusability, add the <ltng:require>  tag to every .cmp  or .app  resource that uses the CSS
resource.

ltng:require  also has a scripts  attribute to load a list of JavaScript libraries. The afterScriptsLoaded  event enables
you to call a controller action after the scripts  are loaded. It's only triggered by loading of the scripts  and is never triggered
when the CSS in styles  is loaded.

Styling Components for Lightning Experience or Salesforce for Android, iOS,
and mobile web
To prevent styling conflicts in Lightning Experience or Salesforce for Android, iOS, and mobile web, prefix your external CSS with a unique
namespace. For example, if you prefix your external CSS declarations with .myBootstrap, wrap your component markup with a
<div>  tag that specifies the myBootstrap class.

<ltng:require styles="{!$Resource.bootstrap}"/>
<div class="myBootstrap">

<c:myComponent />
<!-- Other component markup -->

</div>

310

Using External CSSStyling Apps



Note:  Prefixing your CSS with a unique namespace only applies to external CSS. If you’re using CSS within a component bundle,
the .THIS  keyword becomes .namespaceComponentName  during runtime.

SEE ALSO:

Using External JavaScript Libraries

CSS in Components

$Resource

More Readable Styling Markup with the join Expression

Markup can get messy when you specify the class names to apply based on the component attribute values. Try using a join expression
for easier-to-read markup.

This example sets the class names based on the component attribute values. It’s readable, but the spaces between class names are easy
to forget.

<li class="{! 'calendarEvent ' +
v.zoomDirection + ' ' +
(v.past ? 'pastEvent ' : '') +
(v.zoomed ? 'zoom ' : '') +
(v.multiDayFragment ? 'multiDayFragment ' : '')}">
<!-- content here -->

</li>

Sometimes, if the markup is not broken into multiple lines, it can hurt your eyes or make you mutter profanities under your breath.

<li class="{! 'calendarEvent ' + v.zoomDirection + ' ' + (v.past ? 'pastEvent ' : '') +
(v.zoomed ? 'zoom ' : '') + (v.multiDayFragment ? 'multiDayFragment ' : '')}">

<!-- content here -->
</li>

Try using a join  expression instead for easier-to-read markup. This example join  expression sets ' '  as the first argument so that
you don’t have to specify it for each subsequent argument in the expression.

<li
class="{! join(' ',

'calendarEvent',
v.zoomDirection,
v.past ? 'pastEvent' : '',
v.zoomed ? 'zoom' : '',
v.multiDayFragment ? 'multiDayFragment' : ''

)}">
<!-- content here -->

</li>

You can also use a join  expression for dynamic styling.

<div style="{! join(';',
'top:' + v.timeOffsetTop + '%',
'left:' + v.timeOffsetLeft + '%',
'width:' + v.timeOffsetWidth + '%'

)}">

311

More Readable Styling Markup with the join ExpressionStyling Apps



<!-- content here -->
</div>

SEE ALSO:

Expression Functions Reference

Tips for CSS in Components

Here are some tips for configuring the CSS for components that you plan to use in Lightning pages, the Lightning App Builder, or the
Experience Builder.

Components must be set to 100% width
Because they can be moved to different locations on a Lightning page, components must not have a specific width nor a left or
right margin. Components should take up 100% of whatever container they display in. Adding a left or right margin changes the
width of a component and can break the layout of the page.

Don’t remove HTML elements from the flow of the document
Some CSS rules remove the HTML element from the flow of the document. For example:

float: left;
float: right;
position: absolute;
position: fixed;

Because they can be moved to different locations on the page as well as used on different pages entirely, components must rely on
the normal document flow. Using floats and absolute or fixed positions breaks the layout of the page the component is on. Even if
they don’t break the layout of the page you’re looking at, they will break the layout of some page the component can be put on.

Child elements shouldn’t be styled to be larger than the root element
The Lightning page maintains consistent spacing between components, and can’t do that if child elements are larger than the root
element.

For example, avoid these patterns:

<div style="height: 100px">
<div style="height: 200px">
<!--Other markup here-->

</div>
</div>

<!--Margin increases the element’s effective size-->
<div style="height: 100px">
<div style="height: 100px margin: 10px">
<!--Other markup here-->

</div>
</div>

CSS for RTL Languages

When your Language setting in Salesforce is set to a right-to-left (RTL) language, the framework automatically flips property names,
such as left  and border-left  to right  and border-right  respectively. The framework also rearranges certain values
like padding, margin, and border-radius  so that the right  and left  units are swapped.

312

Tips for CSS in ComponentsStyling Apps



Flipped CSS Properties
These properties are automatically flipped for RTL languages.

Flipped PropertyProperty

rightleft

leftright

border-rightborder-left

border-right-colorborder-left-color

border-right-styleborder-left-style

border-right-widthborder-left-width

border-leftborder-right

border-left-colorborder-right-color

border-left-styleborder-right-style

border-left-widthborder-right-width

border-top-right-radiusborder-top-left-radius

border-top-left-radiusborder-top-right-radius

border-bottom-right-radiusborder-bottom-left-radius

border-bottom-left-radiusborder-bottom-right-radius

padding-rightpadding-left

padding-leftpadding-right

margin-rightmargin-left

margin-leftmargin-right

nav-rightnav-left

nav-leftnav-right

Flipped CSS Keywords
These keywords are automatically flipped for RTL languages.

Flipped KeywordKeyword

rtlltr

ltrrtl

rightleft

313

CSS for RTL LanguagesStyling Apps



Flipped KeywordKeyword

leftright

w-resizee-resize

e-resizew-resize

nw-resizene-resize

ne-resizenw-resize

nwse-resizenesw-resize

nesw-resizenwse-resize

sw-resizese-resize

se-resizesw-resize

Flipped CSS Percentage Values
If the value is a percentage for these properties, the flipped value is set to 100 minus the value.

• background

• background-position

• background-position-x

Flipped Property Arguments
For these properties that can take four values, the second and fourth values are swapped. For example, property: A B C D
becomes property: A D C B.

• padding

• margin

• border-color

• border-style

• border-width

Flipped border-radius Arguments
The arguments for the border-radius  property are flipped with these patterns.

Flipped ArgumentsArguments

border-radius: B Aborder-radius: A B

border-radius: B A Cborder-radius: A B C

border-radius: B A D Cborder-radius: A B C D

314

CSS for RTL LanguagesStyling Apps



Override Flipping With @noflip
To override the automatic flipping, add a /*@noflip*/ annotation in a comment directly before the property. For example:

.THIS.mycontainer {
/*@noflip*/ direction : rtl;

}

Use Conditional CSS
Use the @if(isRTL)  conditional statement to manually provide the appropriately oriented CSS for each direction.

.THIS {
transform: skew(28deg) translate3d(0, 0 , 0);

}

@if(isRTL) {
.THIS {

transform: skew(-28deg) translate3d(0, 0 , 0);
}

}

SEE ALSO:

Salesforce Help: Right-to-Left (RTL) Language Support

Vendor Prefixes

Vendor prefixes, such as —moz-  and —webkit-  among many others, are automatically added in Lightning.

You only need to write the unprefixed version, and the framework automatically adds any prefixes that are necessary when generating
the CSS output. If you choose to add them, they are used as-is. This enables you to specify alternative values for certain prefixes.

Example: For example, this is an unprefixed version of border-radius.

.class {
border-radius: 2px;

}

The previous declaration results in the following declarations.

.class {
-webkit-border-radius: 2px;
-moz-border-radius: 2px;
border-radius: 2px;

}

315

Vendor PrefixesStyling Apps

https://help.salesforce.com/articleView?id=faq_getstart_rtl.htm&language=en_US


Styling with Design Tokens

Capture the essential values of your visual design into named tokens. Define the token values once and reuse them throughout your
Lightning components CSS resources. Tokens make it easy to ensure that your design is consistent, and even easier to update it as your
design evolves.

Design tokens are visual design “atoms” for building a design for your components or apps. Specifically, they’re named entities that store
visual design attributes, such as pixel values for margins and spacing, font sizes and families, or hex values for colors. Tokens are a terrific
way to centralize the low-level values, which you then use to compose the styles that make up the design of your component or app.

IN THIS SECTION:

Tokens Bundles

Tokens are a type of bundle, just like components, events, and interfaces.

Create a Tokens Bundle

Create a tokens bundle in your org using the Developer Console.

Defining and Using Tokens

A token is a name-value pair that you specify using the <aura:token>  component. Define tokens in a tokens bundle, and then
use tokens in your components’ CSS styles resources.

Using Expressions in Tokens

Tokens support a restricted set of expressions. Use expressions to reuse one token value in another token, or to combine tokens to
form a more complex style property.

Extending Tokens Bundles

Use the extends  attribute to extend one tokens bundle from another.

Using Standard Design Tokens

Salesforce exposes a set of “base” tokens that you can access in your component style resources. Use these standard tokens to mimic
the look-and-feel of the Salesforce Lightning Design System (SLDS) in your own custom components. As the SLDS evolves, components
that are styled using the standard design tokens will evolve along with it.

Tokens Bundles
Tokens are a type of bundle, just like components, events, and interfaces.

A tokens bundle contains only one resource, a tokens collection definition.

UsageResource NameResource

The only required resource in a tokens bundle. Contains markup
for one or more tokens. Each tokens bundle contains only one
tokens resource.

defaultTokens.tokensTokens Collection

Note: You can’t edit the tokens bundle name or description in the Developer Console after you create it. The bundle’s
AuraBundleDefinition  can be modified using the Metadata API.

A tokens collection starts with the <aura:tokens> tag. It can only contain <aura:token>  tags to define tokens.

316

Styling with Design TokensStyling Apps



Tokens collections have restricted support for expressions; see Using Expressions in Tokens. You can’t use other markup, renderers,
controllers, or anything else in a tokens collection.

SEE ALSO:

Using Expressions in Tokens

Create a Tokens Bundle
Create a tokens bundle in your org using the Developer Console.

To create a tokens bundle:

1. In the Developer Console, select File > New > Lightning Tokens.

2. Enter a name for the tokens bundle.

Your first tokens bundle should be named defaultTokens. The tokens defined within defaultTokens  are automatically
accessible in your Lightning components. Tokens defined in any other bundle won’t be accessible in your components unless you
import them into the defaultTokens  bundle.

You have an empty tokens bundle, ready to edit.

<aura:tokens>

</aura:tokens>

Note: You can’t edit the tokens bundle name or description in the Developer Console after you create it. The bundle’s
AuraBundleDefinition  can be modified using the Metadata API. Although you can set a version on a tokens bundle,
doing so has no effect.

Defining and Using Tokens
A token is a name-value pair that you specify using the <aura:token>  component. Define tokens in a tokens bundle, and then use
tokens in your components’ CSS styles resources.

Defining Tokens
Add new tokens as child components of the bundle’s <aura:tokens>  component. For example:

<aura:tokens>
<aura:token name="myBodyTextFontFace"

value="'Salesforce Sans', Helvetica, Arial, sans-serif"/>
<aura:token name="myBodyTextFontWeight" value="normal"/>
<aura:token name="myBackgroundColor" value="#f4f6f9"/>
<aura:token name="myDefaultMargin" value="6px"/>

</aura:tokens>

The only allowed attributes for the <aura:token> tag are name  and value.

317

Create a Tokens BundleStyling Apps



Using Tokens
Tokens created in the defaultTokens  bundle are automatically available in components in your namespace. To use a design token,
reference it using the token()  function and the token name in the CSS resource of a component bundle. For example:

.THIS p {
font-family: token(myBodyTextFontFace);
font-weight: token(myBodyTextFontWeight);

}

If you prefer a more concise function name for referencing tokens, you can use the t()  function instead of token(). The two are
equivalent. If your token names follow a naming convention or are sufficiently descriptive, the use of the more terse function name
won’t affect the clarity of your CSS styles.

Using Expressions in Tokens
Tokens support a restricted set of expressions. Use expressions to reuse one token value in another token, or to combine tokens to form
a more complex style property.

Cross-Referencing Tokens
To reference one token’s value in another token’s definition, wrap the token to be referenced in standard expression syntax.

In the following example, we reference tokens provided by Salesforce in our custom tokens. Although you can’t see the standard tokens
directly, imagine that they look something like the following.

<!-- force:base tokens (SLDS standard tokens) -->
<aura:tokens>
...
<aura:token name="colorBackground" value="rgb(244, 246, 249)" />
<aura:token name="fontFamily" value="'Salesforce Sans', Arial, sans-serif" />
...

</aura:tokens>

With the preceding in mind, you can reference the standard tokens in your custom tokens, as in the following.

<!-- defaultTokens.tokens (your tokens) -->
<aura:tokens extends="force:base">
<aura:token name="mainColor" value="{! colorBackground }" />
<aura:token name="btnColor" value="{! mainColor }" />
<aura:token name="myFont" value="{! fontFamily }" />

</aura:tokens>

You can only cross-reference tokens defined in the same file or a parent.

Expression syntax in tokens resources is restricted to references to other tokens.

Combining Tokens
To support combining individual token values into more complex CSS style properties, the token()  function supports string
concatenation. For example, if you have the following tokens defined:

<!-- defaultTokens.tokens (your tokens) -->
<aura:tokens>
<aura:token name="defaultHorizonalSpacing" value="12px" />

318

Using Expressions in TokensStyling Apps



<aura:token name="defaultVerticalSpacing" value="6px" />
</aura:tokens>

You can combine these two tokens in a CSS style definition. For example:

/* myComponent.css */
.THIS div.notification {
margin: token(defaultVerticalSpacing + ' ' + defaultHorizonalSpacing);
/* more styles here */

}

You can mix tokens with strings as much as necessary to create the right style definition. For example, use margin:
token(defaultVerticalSpacing + ' ' + defaultHorizonalSpacing + ' 3px');  to hard code the bottom
spacing in the preceding definition.

The only operator supported within the token() function is “+” for string concatenation.

Note:  Since Winter ’21, we convert Aura tokens to CSS custom properties under the covers. CSS custom properties are a web
standard that wasn’t supported when we initially created Aura tokens. Concatenating an Aura token with another token that
defines a CSS unit isn’t supported due to how we convert the Aura tokens. The tokens are statically converted to custom properties
and can result in incorrect CSS syntax, which is then discarded by the CSS parser.

For example, don’t separate the size and unit into separate tokens.

<!-- DO NOT DO THIS! -->
<aura:token name="v24" value="24" />
<aura:token name="px" value="px" />

If you concatenate the tokens, the CSS doesn’t work as you expect.

.THIS { font-size: token(v24+px); }

The result is font-size: 24, though you might expect it to be font-size: 24px.

Instead, define a size and unit in one token for this use case.

<aura:token name="v24" value="24px" />

SEE ALSO:

Defining and Using Tokens

Extending Tokens Bundles
Use the extends  attribute to extend one tokens bundle from another.

To add tokens from one bundle to another, extend the “child” tokens bundle from the “parent” tokens, like this.

<aura:tokens extends="yourNamespace:parentTokens">
<!-- additional tokens here -->

</aura:tokens>

Overriding tokens values works mostly as you’d expect: tokens in a child tokens bundle override tokens with the same name from a
parent bundle. The exception is if you’re using standard tokens. You can’t override standard tokens in Lightning Experience or the
Salesforce mobile app.

319

Extending Tokens BundlesStyling Apps



Important: Overriding standard token values is undefined behavior and unsupported. If you create a token with the same name
as a standard token, it overrides the standard token’s value in some contexts, and has no effect in others. This behavior will change
in a future release. Don’t use it.

SEE ALSO:

Using Standard Design Tokens

Using Standard Design Tokens
Salesforce exposes a set of “base” tokens that you can access in your component style resources. Use these standard tokens to mimic
the look-and-feel of the Salesforce Lightning Design System (SLDS) in your own custom components. As the SLDS evolves, components
that are styled using the standard design tokens will evolve along with it.

To add the standard tokens to your org, extend a tokens bundle from the base tokens, like so.

<aura:tokens extends="force:base">
<!-- your own tokens here -->

</aura:tokens>

Once added to defaultTokens  (or another tokens bundle that defaultTokens  extends) you can reference tokens from
force:base  just like your own tokens, using the token()  function and token name. For example:

.THIS p {
font-family: token(fontFamily);
font-weight: token(fontWeightRegular);

}

You can mix-and-match your tokens with the standard tokens. It’s a best practice to develop a naming system for your own tokens to
make them easily distinguishable from standard tokens. Consider prefixing your token names with “my”, or something else easily
identifiable.

IN THIS SECTION:

Overriding Standard Tokens (Developer Preview)

Standard tokens provide the look-and-feel of the Lightning Design System in your custom components. You can override standard
tokens to customize and apply branding to your Lightning apps.

Standard Design Tokens—force:base

The standard tokens available are a subset of the design tokens offered in the Salesforce Lightning Design System (SLDS). The
following tokens are available when extending from force:base.

Standard Design Tokens for Experience Builder Sites

Use a subset of the standard design tokens to make your components compatible with the Theme panel in Experience Builder. The
Theme panel enables administrators to quickly style an entire site using these properties. Each property in the Theme panel maps
to one or more standard design tokens. When an administrator updates a property in the Theme panel, the system automatically
updates any Lightning components that use the tokens associated with that branding property.

SEE ALSO:

Extending Tokens Bundles

320

Using Standard Design TokensStyling Apps



Overriding Standard Tokens (Developer Preview)
Standard tokens provide the look-and-feel of the Lightning Design System in your custom components. You can override standard
tokens to customize and apply branding to your Lightning apps.

Note:  Overriding standard tokens is available as a developer preview. This feature isn’t generally available unless or until Salesforce
announces its general availability in documentation or in press releases or public statements. You can provide feedback and
suggestions for this feature on the IdeaExchange.

To override a standard token for your Lightning app, create a tokens bundle with a unique name, for example myOverrides. In the
tokens resource, redefine the value for a standard token:

<aura:tokens>
<aura:token name="colorTextBrand" value="#8d7d74"/>

</aura:tokens>

In your Lightning app, specify the tokens bundle in the tokens attribute:

<aura:application tokens="c:myOverrides">
<!-- Your app markup here -->

</aura:application>

Token overrides apply across your app, including resources and components provided by Salesforce and components of your own that
use tokens.

Packaging apps that use the tokens attribute is unsupported.

Important:  Overriding standard token values within defaultTokens.tokens, a required resource in a tokens bundle, is
unsupported. If you create a token with the same name as a standard token, it overrides the standard token’s value in some contexts,
and has no effect in others. Overrides should only be done in a separate resource as described above.

SEE ALSO:

Standard Design Tokens—force:base

Standard Design Tokens—force:base

The standard tokens available are a subset of the design tokens offered in the Salesforce Lightning Design System (SLDS). The following
tokens are available when extending from force:base.

Available Tokens

Important:  The standard token values evolve along with SLDS. Available tokens and their values can change without notice.
Token values presented here are for example only.

Example ValueToken Name

1pxborderWidthThin

2pxborderWidthThick

0.125remspacingXxxSmall

0.25remspacingXxSmall

0.5remspacingXSmall

321

Using Standard Design TokensStyling Apps

https://success.salesforce.com/


Example ValueToken Name

0.75remspacingSmall

1remspacingMedium

1.5remspacingLarge

2remspacingXLarge

0.25remvarSpacingXxSmall

0.5remvarSpacingXSmall

0.75remvarSpacingSmall

1remvarSpacingMedium

1.5remvarSpacingLarge

2remvarSpacingXLarge

3remvarSpacingXxLarge

0.25remvarSpacingVerticalXxSmall

0.5remvarSpacingVerticalXSmall

0.75remvarSpacingVerticalSmall

1remvarSpacingVerticalMedium

1.5remvarSpacingVerticalLarge

2remvarSpacingVerticalXLarge

3remvarSpacingVerticalXxLarge

0.25remvarSpacingHorizontalXxSmall

0.5remvarSpacingHorizontalXSmall

0.75remvarSpacingHorizontalSmall

1remvarSpacingHorizontalMedium

1.5remvarSpacingHorizontalLarge

2remvarSpacingHorizontalXLarge

3remvarSpacingHorizontalXxLarge

6remsizeXxSmall

12remsizeXSmall

15remsizeSmall

20remsizeMedium

25remsizeLarge

322

Using Standard Design TokensStyling Apps



Example ValueToken Name

40remsizeXLarge

60remsizeXxLarge

1remsquareIconUtilitySmall

1.25remsquareIconUtilityMedium

1.5remsquareIconUtilityLarge

3remsquareIconLargeBoundary

5remsquareIconLargeBoundaryAlt

2remsquareIconLargeContent

2remsquareIconMediumBoundary

2.25remsquareIconMediumBoundaryAlt

1remsquareIconMediumContent

1.5remsquareIconSmallBoundary

.75remsquareIconSmallContent

1.25remsquareIconXSmallBoundary

.5remsquareIconXSmallContent

300fontWeightLight

400fontWeightRegular

700fontWeightBold

1.25lineHeightHeading

1.375lineHeightText

1lineHeightReset

2.5remlineHeightTab

'Salesforce Sans', Arial, sans-seriffontFamily

.125remborderRadiusSmall

.25remborderRadiusMedium

.5remborderRadiusLarge

15remborderRadiusPill

50%borderRadiusCircle

rgb(216, 221, 230)colorBorder

rgb(21, 137, 238)colorBorderBrand

323

Using Standard Design TokensStyling Apps



Example ValueToken Name

rgb(194, 57, 52)colorBorderError

rgb(75, 202, 129)colorBorderSuccess

rgb(255, 183, 93)colorBorderWarning

rgb(0, 112, 210)colorBorderTabSelected

rgb(244, 246, 249)colorBorderSeparator

rgb(216, 221, 230)colorBorderSeparatorAlt

rgb(42, 66, 108)colorBorderSeparatorInverse

rgb(0, 112, 210)colorBorderRowSelected

rgb(21, 137, 238)colorBorderRowSelectedHover

rgb(0, 112, 210)colorBorderButtonBrand

rgba(0, 0, 0, 0)colorBorderButtonBrandDisabled

rgb(216, 221, 230)colorBorderButtonDefault

rgba(255, 255, 255, 0.15)colorBorderButtonInverseDisabled

rgb(216, 221, 230)colorBorderInput

rgb(21, 137, 238)colorBorderInputActive

rgb(168, 183, 199)colorBorderInputDisabled

rgb(255, 255, 255)colorBorderInputCheckboxSelectedCheckmark

rgb(244, 246, 249)colorBackground

rgb(255, 255, 255)colorBackgroundAlt

rgb(22, 50, 92)colorBackgroundAltInverse

rgb(244, 246, 249)colorBackgroundRowHover

rgb(238, 241, 246)colorBackgroundRowActive

rgb(240, 248, 252)colorBackgroundRowSelected

rgb(217, 255, 223)colorBackgroundRowNew

rgb(6, 28, 63)colorBackgroundInverse

rgb(84, 105, 141)colorBackgroundBrowser

rgb(0, 112, 210)colorBackgroundChromeMobile

rgb(255, 255, 255)colorBackgroundChromeDesktop

rgb(250, 255, 189)colorBackgroundHighlight

rgb(255, 255, 255)colorBackgroundModal

324

Using Standard Design TokensStyling Apps



Example ValueToken Name

rgb(0, 112, 210)colorBackgroundModalBrand

rgb(194, 57, 52)colorBackgroundNotificationBadge

rgb(0, 95, 178)colorBackgroundNotificationBadgeHover

rgb(0, 95, 178)colorBackgroundNotificationBadgeFocus

rgb(0, 57, 107)colorBackgroundNotificationBadgeActive

rgb(240, 248, 252)colorBackgroundNotificationNew

rgb(244, 246, 249)colorBackgroundPayload

rgb(224, 229, 238)colorBackgroundShade

rgb(238, 241, 246)colorBackgroundStencil

rgb(224, 229, 238)colorBackgroundStencilAlt

rgb(224, 229, 238)colorBackgroundScrollbar

rgb(168, 183, 199)colorBackgroundScrollbarTrack

rgb(21, 137, 238)colorBrand

rgb(0, 112, 210)colorBrandDark

rgba(0, 0, 0, 0.07)colorBackgroundModalButton

rgba(0, 0, 0, 0.16)colorBackgroundModalButtonActive

rgb(255, 255, 255)colorBackgroundInput

rgb(255, 255, 255)colorBackgroundInputActive

rgb(255, 255, 255)colorBackgroundInputCheckbox

rgb(216, 221, 230)colorBackgroundInputCheckboxDisabled

rgb(21, 137, 238)colorBackgroundInputCheckboxSelected

rgb(224, 229, 238)colorBackgroundInputDisabled

rgb(255, 221, 225)colorBackgroundInputError

rgb(255, 255, 255)colorBackgroundPill

rgba(84, 105, 141, 0.95)colorBackgroundToast

rgb(4, 132, 75)colorBackgroundToastSuccess

rgba(194, 57, 52, 0.95)colorBackgroundToastError

0 2px 4px 0 rgba(0, 0, 0, 0.40)shadowDrag

0 2px 3px 0 rgba(0, 0, 0, 0.16)shadowDropDown

0 2px 4px rgba(0, 0, 0, 0.07)shadowHeader

325

Using Standard Design TokensStyling Apps



Example ValueToken Name

0 0 3px #0070D2shadowButtonFocus

0 0 3px #E0E5EEshadowButtonFocusInverse

rgb(84, 105, 141)colorTextActionLabel

rgb(22, 50, 92)colorTextActionLabelActive

rgb(21, 137, 238)colorTextBrand

rgb(255, 255, 255)colorTextBrowser

rgba(0, 0, 0, 0.4)colorTextBrowserActive

rgb(22, 50, 92)colorTextDefault

rgb(194, 57, 52)colorTextError

rgb(84, 105, 141)colorTextInputDisabled

rgb(22, 50, 92)colorTextInputFocusInverse

rgb(159, 170, 181)colorTextInputIcon

rgb(255, 255, 255)colorTextInverse

rgb(159, 170, 181)colorTextInverseWeak

rgb(94, 180, 255)colorTextInverseActive

rgb(159, 170, 181)colorTextInverseHover

rgb(0, 112, 210)colorTextLink

rgb(0, 57, 107)colorTextLinkActive

rgb(22, 50, 92)colorTextLinkDisabled

rgb(0, 95, 178)colorTextLinkFocus

rgb(0, 95, 178)colorTextLinkHover

rgb(255, 255, 255)colorTextLinkInverse

rgba(255, 255, 255, 0.75)colorTextLinkInverseHover

rgba(255, 255, 255, 0.5)colorTextLinkInverseActive

rgba(255, 255, 255, 0.15)colorTextLinkInverseDisabled

rgb(255, 255, 255)colorTextModal

rgb(84, 105, 141)colorTextModalButton

rgb(224, 229, 238)colorTextStageLeft

rgb(22, 50, 92)colorTextTabLabel

rgb(0, 112, 210)colorTextTabLabelSelected

326

Using Standard Design TokensStyling Apps



Example ValueToken Name

rgb(0, 95, 178)colorTextTabLabelHover

rgb(0, 95, 178)colorTextTabLabelFocus

rgb(0, 57, 107)colorTextTabLabelActive

rgb(224, 229, 238)colorTextTabLabelDisabled

rgb(224, 229, 238)colorTextToast

rgb(84, 105, 141)colorTextWeak

rgb(0, 112, 210)colorTextIconBrand

rgb(255, 255, 255)colorTextButtonBrand

rgb(255, 255, 255)colorTextButtonBrandHover

rgb(255, 255, 255)colorTextButtonBrandActive

rgb(255, 255, 255)colorTextButtonBrandDisabled

rgb(0, 112, 210)colorTextButtonDefault

rgb(0, 112, 210)colorTextButtonDefaultHover

rgb(0, 112, 210)colorTextButtonDefaultActive

rgb(216, 221, 230)colorTextButtonDefaultDisabled

rgb(159, 170, 181)colorTextButtonDefaultHint

rgb(224, 229, 238)colorTextButtonInverse

rgba(255, 255, 255, 0.15)colorTextButtonInverseDisabled

rgb(84, 105, 141)colorTextIconDefault

rgb(159, 170, 181)colorTextIconDefaultHint

rgb(0, 112, 210)colorTextIconDefaultHover

rgb(0, 57, 107)colorTextIconDefaultActive

rgb(216, 221, 230)colorTextIconDefaultDisabled

rgb(255, 255, 255)colorTextIconInverse

rgb(255, 255, 255)colorTextIconInverseHover

rgb(255, 255, 255)colorTextIconInverseActive

rgba(255, 255, 255, 0.15)colorTextIconInverseDisabled

rgb(84, 105, 141)colorTextLabel

rgb(84, 105, 141)colorTextPlaceholder

rgb(224, 229, 238)colorTextPlaceholderInverse

327

Using Standard Design TokensStyling Apps



Example ValueToken Name

rgb(194, 57, 52)colorTextRequired

rgb(0, 112, 210)colorTextPill

0sdurationInstantly

0.05sdurationImmediately

0.1sdurationQuickly

0.2sdurationPromptly

0.4sdurationSlowly

3.2sdurationPaused

rgb(0, 112, 210)colorBackgroundButtonBrand

rgb(0, 57, 107)colorBackgroundButtonBrandActive

rgb(0, 95, 178)colorBackgroundButtonBrandHover

rgb(224, 229, 238)colorBackgroundButtonBrandDisabled

rgb(255, 255, 255)colorBackgroundButtonDefault

rgb(244, 246, 249)colorBackgroundButtonDefaultHover

rgb(244, 246, 249)colorBackgroundButtonDefaultFocus

rgb(238, 241, 246)colorBackgroundButtonDefaultActive

rgb(255, 255, 255)colorBackgroundButtonDefaultDisabled

rgba(0, 0, 0, 0)colorBackgroundButtonIcon

rgb(244, 246, 249)colorBackgroundButtonIconHover

rgb(244, 246, 249)colorBackgroundButtonIconFocus

rgb(238, 241, 246)colorBackgroundButtonIconActive

rgb(255, 255, 255)colorBackgroundButtonIconDisabled

rgba(0, 0, 0, 0)colorBackgroundButtonInverse

rgba(0, 0, 0, 0.24)colorBackgroundButtonInverseActive

rgba(0, 0, 0, 0)colorBackgroundButtonInverseDisabled

1.875remlineHeightButton

1.75remlineHeightButtonSmall

rgb(244, 246, 249)colorBackgroundAnchor

328

Using Standard Design TokensStyling Apps



For a complete list of the design tokens available in the SLDS, see Design Tokens on the Lightning Design System site.

SEE ALSO:

Extending Tokens Bundles

Standard Design Tokens for Experience Builder Sites
Use a subset of the standard design tokens to make your components compatible with the Theme panel in Experience Builder. The
Theme panel enables administrators to quickly style an entire site using these properties. Each property in the Theme panel maps to
one or more standard design tokens. When an administrator updates a property in the Theme panel, the system automatically updates
any Lightning components that use the tokens associated with that branding property.

Available Tokens for Experience Builder Sites
For Experience Builder sites, these standard tokens are available when extending from forceCommunity:base.

329

Using Standard Design TokensStyling Apps

http://www.lightningdesignsystem.com/resources/tokens/


Important:  The standard token values evolve along with SLDS. Available tokens and their values can change without notice.

Important:  Design tokens are not available for navigation branding properties. To add branding to navigation properties, override
the navigation bar within the custom components. See CSS Overrides Migration for the Navigation Menu.

...map to these standard design tokensThese Branding panel properties...

colorTextDefaultText Color

Detail Text Color • colorTextActionLabel

• colorTextLabel

• colorTextPlaceholder

• colorTextWeak

Action Color • colorBackgroundButtonBrand

• colorBorderBrand

• colorBorderButtonBrand

• colorBrand

• colorTextBrand

• colorTextTabLabelSelected

• colorTextActionLabelActive

Note:  As of Summer ’18 colorBackgroundHighlight  is no longer
mapped to Action Color.

colorTextLinkLink Color

Overlay Text Color • colorTextButtonBrand

• colorTextButtonBrandHover

• colorTextInverse

Border Color • colorBorder

• colorBorderButtonDefault

• colorBorderInput

• colorBorderSeparatorAlt

brandLogoImageCompany Logo

headerImageUrlHeader Image

LoginBackgroundImageLogin Pages Background Image

fontFamilyPrimary Font

textTransformText Case

330

Using Standard Design TokensStyling Apps

https://developer.salesforce.com/docs/atlas.en-us.248.0.communities_dev.meta/communities_dev/communities_dev_nav_menu_css.htm


In addition, the following standard tokens are available for derived theme properties in the template. You can indirectly access derived
properties when you update the properties in the Theme panel. For example, if you change the Action Color property in the Theme
panel, the system automatically recalculates the Action Color Darker value based on the new value.

...map to these standard design tokensThese derived branding properties...

Action Color Darker

(Derived from Action Color)
• colorBackgroundButtonBrandActive

• colorBackgroundButtonBrandHover

Hover Color

(Derived from Action Color)
• colorBackgroundButtonDefaultHover

• colorBackgroundRowHover

• colorBackgroundRowSelected

• colorBackgroundShade

Link Color Darker

(Derived from Link Color)
• colorTextLinkActive

• colorTextLinkHover

For a complete list of the design tokens available in the SLDS, see Design Tokens on the Lightning Design System site.

SEE ALSO:

Configure Components for Experience Builder

331

Using Standard Design TokensStyling Apps

http://www.lightningdesignsystem.com/resources/tokens/


CHAPTER 9 Developing Secure Code

The Lightning Locker architectural layer enhances security by isolating individual Lightning namespaces
in their own containers and enforcing coding best practices. Lightning Web Security is designed to make
it easier for your components to use secure coding practices and aims to replace Lightning Locker over
time. In Setup, you can switch between using Lightning Web Security or Lightning Locker.

In this chapter ...

• Lightning Locker

• Lightning Web
Security

The framework also uses JavaScript Strict mode to turn on native security features in the browser, and
Content Security Policy (CSP) rules to control the source of content that can be loaded on a page.• Content Security

Policy Overview

332



Lightning Locker

Lightning Locker is a security architecture for Lightning components. Lightning Locker enhances security by isolating Lightning
components that belong to one namespace from components in a different namespace. Lightning Locker also promotes best practices
that improve the supportability of your code by only allowing access to supported APIs and eliminating access to non-published
framework internals.

IN THIS SECTION:

JavaScript Strict Mode Enforcement

Lightning Locker implicitly enables JavaScript strict mode. You don’t need to specify "use strict"  in your code. JavaScript
strict mode makes code more secure, robust and supportable.

DOM Access Containment

A component can only traverse the DOM and access elements created by a component in the same namespace. This behavior
prevents the anti-pattern of reaching into DOM elements owned by components in another namespace.

Secure Wrappers

For security, Lightning Locker restricts the use of global objects by hiding an object or by wrapping it in a secure version of the object.
For example, the secure version of window  is SecureWindow. Locker intercepts calls to window  and uses SecureWindow
instead. Some methods and properties have different behavior or aren’t available on the secure objects.

eval() Function is Limited by Lightning Locker

In Lightning Locker, use of the eval()  function is supported to enable use of third-party libraries that evaluate code dynamically.
However, it is limited to work only in the global scope of the namespace. The eval()  function can’t access the local variables
within the scope in which it’s called.

MIME Types Permitted

Lightning Locker analyzes the MIME types used in Blob objects. Locker permits some MIME types, sanitizes some MIME types, and
blocks the rest.

Access to Supported JavaScript API Framework Methods Only

You can access published, supported JavaScript API framework methods only. Previously, unsupported methods were accessible,
which exposed your code to the risk of breaking when unsupported methods were changed or removed.

What Does Lightning Locker Affect?

Find out what’s affected and what’s not affected by Lightning Locker.

Lightning Locker Tools

Lightning Locker tools help you develop more secure code that is compatible and runs efficiently with Lightning Locker.

Select the Locker API Version for an Org

Select the API version used by Lightning Locker across your org. The default is the current API version, which includes the latest
Locker security enhancements. Select an earlier API version when custom components only comply with Locker in an older version.
When components become compliant with the current security enhancements, you can change the setting to the current API
version.

Disable Lightning Locker for a Component

Disable Lightning Locker for an Aura component by setting the Salesforce API version to 39.0 or lower for the component. If a
component is set to at least API version 40.0, Lightning Locker is enabled.

Don’t Mix Component API Versions

For consistency and ease of debugging, we recommend that you set the same Salesforce API version for all custom components in
your app, containment hierarchy (component within component), or extension hierarchy (component extending component).

333

Lightning LockerDeveloping Secure Code



Lightning Locker Disabled for Unsupported Browsers

Lightning Locker relies on some JavaScript features in the browser: support for strict mode, the Map  object, and the Proxy  object.
If a browser doesn’t meet the requirements, Lightning Locker can’t enforce all its security features and is disabled.

SEE ALSO:

Content Security Policy Overview

Modifying the DOM

Component Library

Salesforce Help: Supported Browsers and Devices for Lightning Experience

JavaScript Strict Mode Enforcement
Lightning Locker implicitly enables JavaScript strict mode. You don’t need to specify "use strict"  in your code. JavaScript strict
mode makes code more secure, robust and supportable.

When strict mode is enabled and unsafe actions are taken, JavaScript throws errors that would otherwise be suppressed. Examples of
unsafe actions include assigning values to non-writable properties and using a variable that hasn’t been declared. Reporting these actions
can catch situations when a variable name has been mistyped.

A few common stumbling points when using strict mode are:

• You must declare variables with the var keyword.

• You must explicitly attach a variable to the window  object to create a global variable that’s available across components or libraries.
For more information, see Sharing JavaScript Code Across Components.

• The libraries that your components use must also work in strict mode.

For more information about JavaScript strict mode, see the Mozilla Developer Network.

DOM Access Containment
A component can only traverse the DOM and access elements created by a component in the same namespace. This behavior prevents
the anti-pattern of reaching into DOM elements owned by components in another namespace.

Note: It’s an anti-pattern for any component to “reach into” another component, regardless of namespace, because it breaks
encapsulation. Lightning Locker only prevents cross-namespace access. Your good judgment should prevent cross-component
access within your own namespace as it makes components tightly coupled and more likely to break.

Let’s look at a sample component that demonstrates DOM containment.

<!--c:domLocker-->
<aura:component>

<div id="myDiv" aura:id="div1">
<p>See how Lightning Locker restricts DOM access</p>

</div>
<lightning:button name="myButton" label="Peek in DOM"

aura:id="button1" onclick="{!c.peekInDom}"/>
</aura:component>

The c:domLocker  component creates a <div>  element and a lightning:button  component.

334

JavaScript Strict Mode EnforcementDeveloping Secure Code

https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode


Here’s the client-side controller that peeks around in the DOM.

({ /* domLockerController.js */
peekInDom : function(cmp, event, helper) {

console.log("cmp.getElements(): ", cmp.getElements());
// access the DOM in c:domLocker
console.log("div1: ", cmp.find("div1").getElement());
console.log("button1: ", cmp.find("button1"));
console.log("button name: ", event.getSource().get("v.name"));

// returns an error
//console.log("button1 element: ", cmp.find("button1").getElement());

}
})

Valid DOM Access
The following methods are valid DOM access because the elements are created by c:domLocker.

cmp.getElements()
Returns the elements in the DOM rendered by the component.

cmp.find()
Returns the div and button components, identified by their aura:id  attributes.

cmp.find("div1").getElement()
Returns the DOM element for the div as c:domLocker  created the div.

event.getSource().get("v.name")
Returns the name of the button that dispatched the event; in this case, myButton.

Invalid DOM Access
You can’t use cmp.find("button1").getElement()  to access the DOM element created by lightning:button.
Lightning Locker doesn’t allow c:domLocker  to access the DOM for lightning:button  because the button is in the
lightning  namespace and c:domLocker  is in the c  namespace.

If you uncomment the code for cmp.find("button1").getElement(), you’ll see an error:

c:domLocker$controller$peekInDom [cmp.find(...).getElement is not a function]

IN THIS SECTION:

How Lightning Locker Uses the Proxy Object

Lightning Locker uses the standard JavaScript Proxy  object to filter a component’s access to underlying JavaScript objects. The
Proxy  object ensures that a component only sees DOM elements created by a component in the same namespace.

SEE ALSO:

Lightning Locker

Using JavaScript

335

DOM Access ContainmentDeveloping Secure Code



How Lightning Locker Uses the Proxy  Object
Lightning Locker uses the standard JavaScript Proxy  object to filter a component’s access to underlying JavaScript objects. The Proxy
object ensures that a component only sees DOM elements created by a component in the same namespace.

You can interact with a Proxy  object in the same way as you interact with the raw JavaScript object, but the object shows up in the
browser’s console as a Proxy. It’s useful to understand Lightning Locker’s usage of Proxy  if you drop into your browser’s debugger
and start poking around.

When a component creates a JavaScript object, Lightning Locker returns the raw JavaScript object. When Lightning Locker filters the
object, it returns a Proxy  object. Some scenarios where Lightning Locker filters an object and returns a Proxy  object are:

• Passing an object to a component in a different namespace.

• Passing an object from a component on API version less than 40.0 to the method of a component on API version greater than or
equal to 40.0.

• Calling cmp.get()  to retrieve an attribute value that you set with the value of a native JavaScript object or array. The object or
array isn’t filtered when it’s originally created.

When you access these objects, Lightning Locker returns a Proxy  object.

• Any object that implements the HTMLCollection interface

• A SecureElement  object, which represents an HTML element.

For more information about standard JavaScript Proxy object, see the Mozilla Developer Network.

SEE ALSO:

DOM Access Containment

Secure Wrappers

Don’t Mix Component API Versions

Secure Wrappers
For security, Lightning Locker restricts the use of global objects by hiding an object or by wrapping it in a secure version of the object.
For example, the secure version of window  is SecureWindow. Locker intercepts calls to window  and uses SecureWindow
instead. Some methods and properties have different behavior or aren’t available on the secure objects.

Lightning Locker also replaces instances of other objects, such as components and events, with secure wrapped versions. Here’s a list
of the most common wrappers that you encounter.

SecureAura
Secure wrapper for $A, which is the entry point for using the framework in JavaScript code.

SecureComponent
Secure wrapper for the Component  object inside the same namespace.

SecureComponentRef
SecureComponentRef  is a subset of SecureComponent  that provides the external API for a component in a different
namespace.

When you’re in a controller or helper, you have access to a SecureComponent, essentially the this  object. If you reference a
component in a different namespace, you get a SecureComponentRef instead. For example, if your markup includes a
lightning:button  and you call cmp.find("buttonAuraId"), you get a SecureComponentRef  as
lightning:button  is in a different namespace from the component containing the button markup.

336

Secure WrappersDeveloping Secure Code

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy


SecureDocument
Secure wrapper for the document  object, which represents the root node of the HTML document or page. The document
object is the entry point into the page’s content, which is the DOM tree.

SecureElement
Secure wrapper for the Element  object, which represents various HTML elements. SecureElement is wrapped in a Proxy
object as a performance optimization so that its data can be lazily filtered when it’s accessed. Therefore, a Proxy  object represents
the HTML element if you’re debugging in the browser console.

SecureObject
Secure wrapper for an object that is wrapped by Lightning Locker. When you see a SecureObject, it typically means that you
don’t have access to the underlying object and its properties aren’t available.

SecureWindow
Secure wrapper for the window  object, which represents a window containing a DOM document.

Use the Locker API Viewer to quickly see the difference between the DOM APIs exposed by Lightning Locker versus the standard DOM
APIs for the most complex wrappers: SecureDocument, SecureElement, and SecureWindow.

Example
Let’s look at a sample component that demonstrates some of the secure wrappers.

<!--c:secureWrappers-->
<aura:component >

<div id="myDiv" aura:id="div1">
<p>See how Lightning Locker uses secure wrappers</p>

</div>
<lightning:button name="myButton" label="Peek in DOM"

aura:id="button1" onclick="{!c.peekInDom}"/>
</aura:component>

The c:secureWrappers  component creates a <div>  HTML element and a lightning:button  component.

Here’s the client-side controller that peeks around in the DOM.

({ /* secureWrappersController.js */
peekInDom : function(cmp, event, helper) {

console.log("div1: ", cmp.find("div1").getElement());

console.log("button1: ", cmp.find("button1"));
console.log("button name: ", event.getSource().get("v.name"));
// add debugger statement for inspection
// always remove this from production code
debugger;

}
})

We use console.log()  to look at the <div>  element and the button. The <div> SecureElement  is wrapped in a Proxy
object as a performance optimization so that its data can be lazily filtered when it’s accessed.

We put a debugger statement in the code so that we could inspect the elements in the browser console.

Type these expressions into the browser console and look at the results.

cmp
cmp+""

337

Secure WrappersDeveloping Secure Code



cmp.find("button1")
cmp.find("button1")+""
window
window+""
$A
$A+""

We add an empty string to some expressions so that the object is converted to a String. You could also use the toString()
method.

Here’s the output.

Let’s examine some of the output.

cmp+""
Returns a SecureComponent  object for cmp, which represents the c:secureWrappers  component.

cmp.find("button1")+""
Returns a SecureComponentRef, which represents the external API for a component in a different namespace. In this example,
the component is lightning:button.

window+""
Returns a SecureWindow  object.

$A+""
Returns a SecureAura  object.

SEE ALSO:

Lightning Locker API Viewer

How Lightning Locker Uses the Proxy Object

eval() Function is Limited by Lightning Locker
In Lightning Locker, use of the eval()  function is supported to enable use of third-party libraries that evaluate code dynamically.
However, it is limited to work only in the global scope of the namespace. The eval()  function can’t access the local variables within
the scope in which it’s called.

338

eval() Function is Limited by Lightning LockerDeveloping Secure Code



Normally, eval()  has two modes of execution. When you invoke eval()  directly, it works in the local scope. When you invoke it
via a reference, it works in the global scope. Lightning Locker only supports the latter.

For example, suppose that you execute the following code:

window.foo = 1;
function bar() {
var foo = 2;
return eval("foo");

}

A call to bar()  returns 2 when evaluation is performed in the local scope, and returns 1 when it’s performed in the global scope. If
you must use variables from the local scope, refactor your code. Use a Function(), declare the local variables as parameters, pass
them as arguments, and add a return statement:

window.foo = 1;
function bar() {
var foo = 2;
return Function("foo","return foo")(foo);

}

MIME Types Permitted
Lightning Locker analyzes the MIME types used in Blob objects. Locker permits some MIME types, sanitizes some MIME types, and blocks
the rest.

Lightning Locker allows these MIME types.

• application/octet-stream  — Default value for binary files

• application/json  — JSON format

• application/pdf  — Portable Document Format (.pdf)

• video/  — All video/*  mime types

• audio/  — All audio/*  mime types

• image/  — All image/*  mime types

• font/  — All font/*  mime types

• text/plain  — Text (.txt)

• text/markdown  — Markdown (.md)

• application/zip  — Zip archive (.zip)

• application/x-bzip  — Bzip archive (.bz)

• application/x-rar-compressed  — RAR archive (.rar)

• application/x-tar  — Tape archive (.tar)

Locker sanitizes text/html, image/svg+xml, and text/xml  MIME types. These types are permitted but Locker removes
potentially malicious code.

Any other types are blocked with the error message Unsupported MIME type.

To send binary files that are not explicitly permitted, specify the MIME type as application/octet-stream.

339

MIME Types PermittedDeveloping Secure Code



Access to Supported JavaScript API Framework Methods Only
You can access published, supported JavaScript API framework methods only. Previously, unsupported methods were accessible, which
exposed your code to the risk of breaking when unsupported methods were changed or removed.

SEE ALSO:

JavaScript API

What Does Lightning Locker Affect?
Find out what’s affected and what’s not affected by Lightning Locker.

Lightning Locker enforces security and best practices for custom Lightning components you use in:

• Lightning Experience

• Salesforce mobile app

• Experience Builder sites

• Flows

• Standalone apps that you create (for example, myApp.app) to run in Salesforce Classic or Lightning Experience

• Any other app where you can add a custom Lightning component, such as Salesforce Console in Lightning Experience

• Lightning Out

• Visualforce pages in Salesforce Classic

• Visualforce-based sites

Lightning Locker doesn’t affect environments where you don’t use custom Lightning components.

Lightning Locker Tools
Lightning Locker tools help you develop more secure code that is compatible and runs efficiently with Lightning Locker.

IN THIS SECTION:

Lightning Locker API Viewer

Locker API Viewer shows Lightning Locker’s support of the standard DOM APIs in the Window, Document, and Element
objects. The SecureWindow, SecureDocument, and SecureElement wrappers prevent use of APIs that are labeled Not
Supported.

Locker Console Overview

Use Locker Console to check your JavaScript code’s compatibility with Lightning Locker, and compare how it runs with Lightning
Locker enabled and disabled.

Lightning Locker API Viewer
Locker API Viewer shows Lightning Locker’s support of the standard DOM APIs in the Window, Document, and Element  objects.
The SecureWindow, SecureDocument, and SecureElement wrappers prevent use of APIs that are labeled Not Supported.

Locker API Viewer is available in the Lightning Component Library.

340

Access to Supported JavaScript API Framework Methods OnlyDeveloping Secure Code

https://developer.salesforce.com/docs/component-library/tools/locker-service-viewer


Locker API Viewer lets you quickly see which standard DOM APIs are supported by Lightning Locker.

There are several ways to validate your code to ensure compatibility with Aura component APIs. For more information, see Validations
for Aura Component Code.

Use the Locker Console tool to check JavaScript code’s compatibility with Lightning Locker.

SEE ALSO:

Secure Wrappers

Locker Console Overview

Locker Console Overview
Use Locker Console to check your JavaScript code’s compatibility with Lightning Locker, and compare how it runs with Lightning Locker
enabled and disabled.

Access Locker Console in the Component Library.

Locker Console enables you to quickly evaluate JavaScript code for issues or benchmark code, without requiring you to create an app
to test your component. You can evaluate only JavaScript code in Locker Console. You can't evaluate a complete component bundle
or component markup.

Here's an overview of the user interface of the Locker Console tool.

Code Console (1)
Paste or type your JavaScript code here to evaluate or benchmark it.

Toggles (2)

• Enable or disable Locker.

• Enable or disable Strict CSP.

341

Lightning Locker ToolsDeveloping Secure Code

https://developer.salesforce.com/docs/component-library/tools/locker-service-console


Actions (3)

• Click Evaluate to run the code that’s displayed in the code console.

• Click Benchmark to run your code with and without Lightning Locker and view relative performance metrics.

• Click Clear Results to clear all the displayed results.

IN THIS SECTION:

Evaluate JavaScript Code Compatibility with Lightning Locker

Ensure that your code is compatible with Lightning Locker by running the code with Locker enabled. Run the code a second time
with Locker disabled to see if any errors are due to Lightning Locker restrictions.

Benchmark Lightning Locker Effect on JavaScript Code

Benchmark your JavaScript code with and without Lightning Locker and view relative performance metrics.

SEE ALSO:

Lightning Locker API Viewer

Component Library

Stricter CSP Restrictions

Evaluate JavaScript Code Compatibility with Lightning Locker
Ensure that your code is compatible with Lightning Locker by running the code with Locker enabled. Run the code a second time with
Locker disabled to see if any errors are due to Lightning Locker restrictions.

Let's look at an example that uses a prohibited DOM API.

1. Paste this code into the console.

var controller = new AbortController();
controller;

2. Click Evaluate.

Note the error in the LOCKER ON column of the results window.

Error: AbortController is not a constructor

You get this error because AbortController  is an experimental interface in the DOM API and is not allowed by Lightning
Locker.

The LOCKER OFF column shows N/A as this column isn't relevant when the Locker toggle is enabled.

3. Click the Locker toggle to disable Lightning Locker.

4. Click Evaluate to rerun the code sample with Lightning Locker disabled.

The second row of the results window shows there's no longer an error when Lightning Locker is disabled. The LOCKER OFF column
shows [object AbortController], which is the return value of the sample code.

342

Lightning Locker ToolsDeveloping Secure Code



Use the Locker API Viewer to see the DOM APIs exposed by Lightning Locker versus the standard DOM APIs for the most complex
wrappers: SecureDocument, SecureElement, and SecureWindow.

SEE ALSO:

Locker Console Overview

Lightning Locker API Viewer

Benchmark Lightning Locker Effect on JavaScript Code
Benchmark your JavaScript code with and without Lightning Locker and view relative performance metrics.

Benchmarking enables you to see the performance difference with Lightning Locker enabled and disabled, without requiring you to
create an app to test your component.

Example

Let’s look at an example where you study the performance of a series of nested loops.

1. Paste this code into the code console.

function build(count) {
var table = document.createElement("table");
for (var contact = 0; contact < count; contact++) {

for(var day = 0; day < 7; day++) {
var tr = document.createElement("tr");
var td = document.createElement("td");
td.textContent = contact;
tr.appendChild(td);
for(var hour = 6; hour < 22; hour++) {

td = document.createElement("td");
td.className = "officeDivider";
tr.appendChild(td);

td = document.createElement("td");
td.className = "officeHourIn";
tr.appendChild(td);

td = document.createElement("td");
td.className = "officeHourIn";
tr.appendChild(td);

td = document.createElement("td");
td.className = "officeHourIn";
tr.appendChild(td);

343

Lightning Locker ToolsDeveloping Secure Code



td = document.createElement("td");
td.className = "officeHourIn";
tr.appendChild(td);

}
table.appendChild(tr);

}
}
return table;

};

build(10);

2. Click Benchmark.

The FASTEST column in the results window shows that the code runs 6.56 times faster when Lightning Locker is disabled. This
difference in speed is the cost of security, and whether the performance loss is acceptable depends on each specific case.

The benchmark action allows you to tweak your code and see how the change affects running time. This rapid iterative process is useful
when you're optimizing computationally intensive sections of the code.

Example with Improved Performance

To show how to reduce the overhead of Lightning Locker, let's build the same table using a string of HTML and benchmark to evaluate
the difference.

1. Paste this code into the code console.

function build(count) {
var html = "<body>"
for (var contact = 0; contact < count; contact++) {

for (var day = 0; day < 7; day++) {
html += "<td>" + contact + "</td>";
for (var hour = 6; hour < 22; hour++) {

html += "<td class='officeDivider'></td>";
html += "<td class='officeHourIn'></td>";
html += "<td class='officeHourIn'></td>";
html += "<td class='officeHourIn'></td>";
html += "<td class='officeHourIn'></td>";

}
}

}

344

Lightning Locker ToolsDeveloping Secure Code



html += "</body>";
return html;

};

var div = document.createElement('div');
div.innerHTML = build(10);

2. Click Benchmark.

Because there are no DOM API calls, such as document.createElement(), inside the loops in this example, the performance
of the build()  function is similar whether Locker is on or off. The code runs 1.11 times faster when Lightning Locker is disabled, as
opposed to 6.56 times faster in the previous example that had multiple DOM API calls.

Plain JavaScript is generally much faster than the DOM API, and the more often a section of code connects to the DOM, the slower the
code runs. The DOM API causes most of the Locker overhead. Here, we accelerate the code by reducing the number of times we touch
the DOM, which also greatly reduces the overall Locker overhead.

SEE ALSO:

Locker Console Overview

Select the Locker API Version for an Org
Select the API version used by Lightning Locker across your org. The default is the current API version, which includes the latest Locker
security enhancements. Select an earlier API version when custom components only comply with Locker in an older version. When
components become compliant with the current security enhancements, you can change the setting to the current API version.

We recommend updating your custom components to comply with the latest version, but we know that it can take some time. Your
org could also depend on managed packages that third-party developers must update. Set Lightning Locker to use an older API version
to give developers time to update their custom Lightning components and comply with Locker’s latest security enhancements.

Note:  The Locker API version setting is first available in the Winter ’20 release. The earliest Locker API version you can select is
46.0, which enables the Locker features of the Summer ’19 release.

Verify in sandbox orgs that custom components perform correctly with the Locker API version set to the latest. Then you can change
the Locker API version to the latest in your production orgs to take advantage of the latest security enhancements.

345

Select the Locker API Version for an OrgDeveloping Secure Code



Where the Locker API Version Is Used
Changing the Locker API version for the org affects all Lightning components used in the areas listed in What Does Lightning Locker
Affect?. However, it doesn’t affect the Salesforce API version in components that set apiVersion  in their configuration files. The
Locker API version isn’t the same as the Salesforce API version. They use the same version number to indicate alignment with the same
Salesforce release. The org setting for Locker API version can’t override the component’s minimum required Salesforce API version.

Note: If a component’s apiVersion  is set to 39.0 to disable Locker, the component is not affected by the Locker API version
setting for the org. Locker is still disabled in the component.

Locker API Version Changes
View the security changes in the API versions to help determine compatibility of your custom components.

DescriptionSecurity ChangesLocker API
Version

Lightning Locker tightened the sanitizing of markup to improve
security. This change applies to all the API versions. You can’t roll
back this change by selecting an earlier API version.

Prevent several potential mutation-based
cross-site scripting (mXSS) vectors.

52.0

Lightning Locker changes in this release don’t impact custom
components.

None51.0

Lightning Locker changes in this release don’t impact custom
components.

None50.0

Lightning Locker wraps the $A.getCallback()  function.
JavaScript that is wrapped by $A.getCallback()  must

Restrict APIs used in $A.getCallback()49.0

adhere to Locker’s security restrictions. See the Locker API Viewer
for support status of JavaScript APIs in Lightning Locker.

Lightning Locker sanitizes HTML that’s inserted using
document.execCommand(insertHTML)  to remove
potentially malicious executable script content.

Sanitize HTML inserted with execCommand48.0

Lightning Locker doesn't allow the import()  expression
because importing third-party code is a potential security risk.

Reject import()  expressions47.0

Lightning Locker doesn't allow the name  or id  attribute to be
set to property names that are reserved for the DOM.

Restrict the name  and id  properties of a HTML
element

Supports all Lightning Locker features since its introduction, when
it was called LockerService. This includes all features in version
37.0 (Spring '16) through version 46.0 (Summer '19) releases.

All Locker security features46.0

Change the Locker API Version for Your Org
1. From Setup, enter Session  in the Quick Find box, and then select Session Settings.

2. In the Locker API Version section, for the Use security enhancements in API version field, select the API version.

346

Select the Locker API Version for an OrgDeveloping Secure Code

https://developer.salesforce.com/docs/component-library/tools/locker-service-viewer


3. Click Save.

SEE ALSO:

What Does Lightning Locker Affect?

Disable Lightning Locker for a Component

Disable Lightning Locker for a Component
Disable Lightning Locker for an Aura component by setting the Salesforce API version to 39.0 or lower for the component. If a component
is set to at least API version 40.0, Lightning Locker is enabled.

Salesforce API version 40.0 corresponds to Summer ’17, when Lightning Locker was enabled for all orgs. Lightning Locker is disabled for
any component created before Summer ’17 because these components have an API version less than 40.0.

Component versioning enables you to associate a component with a Salesforce API version. When you create a component, the default
version is the latest API version.

In previous releases, you could set the API version of a component to 39.0 using the Developer Console. However, you can’t use the
console for this purpose because the console supports only the six previous API versions.

Now, you set the API version in the component’s metadata file using Salesforce CLI. In the AuraDefinitionBundle  metadata of
your component, use the apiVersion  field to set the API version to 39.0.

In this example, the metadata file myComponent.cmp-meta.xml  for component myComponent.cmp  sets the API version
to 39.0.

<?xml version="1.0" encoding="UTF-8"?>
<AuraDefinitionBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>39.0</apiVersion>
<description>My Component</description>

</AuraDefinitionBundle>

For consistency and ease of debugging, we recommend that you set the same API version for all components in your app, when possible.

If your component uses a base component that has a minimum API version greater than 39.0, you can’t disable Locker on your component.
For example, the base component lightning:map  requires API version 44.0 or later, as shown in the Specification page in the
Component Reference. If you use lightning:map  and set apiVersion  to 39.0 in myComponent.cmp-meta.xml, you
see an error. For example, this error displays if you add the component to a page in Lightning App Builder.

Component API version is too old: 'markup://c:myComponent' must be set to API version '44'
or later to use component 'markup://lightning:map'

347

Disable Lightning Locker for a ComponentDeveloping Secure Code

https://developer.salesforce.com/docs/component-library/bundle/lightning:map/specification
https://developer.salesforce.com/docs/component-library/bundle/lightning:map/specification


Note: If a component’s apiVersion  is set to 39.0 to disable Locker, the component is not affected by the Locker API version
setting for the org. Locker is still disabled in the component.

SEE ALSO:

Tooling API: AuraDefinitionBundle

Salesforce DX Developer Guide

Don’t Mix Component API Versions

Aura Component Versioning for Managed Packages

Create Aura Components Using Salesforce CLI

Base Components with Minimum API Version Requirements

Select the Locker API Version for an Org

Don’t Mix Component API Versions
For consistency and ease of debugging, we recommend that you set the same Salesforce API version for all custom components in your
app, containment hierarchy (component within component), or extension hierarchy (component extending component).

If you mix API versions in your containment or extension hierarchy and Lightning Locker is enabled for some components and disabled
for other components, your app will be harder to debug.

Extension Hierarchy
Lightning Locker is enabled for a component or an application purely based on component API version. The extension hierarchy for a
component doesn’t factor into Lightning Locker enforcement.

Let’s look at an example where a Car  component extends a Vehicle  component. Car  has API version 39.0 so Lightning Locker is
disabled. Vehicle  has API version 40.0 so Lightning Locker is enabled.

Now, let’s say that Vehicle  adds an expando property, _counter, to the window  object by assigning a value to
window._counter. Since Lightning Locker is enabled for Vehicle, the _counter  property is added to SecureWindow,
the secure wrapper for window  for the component’s namespace. The property isn’t added to the native window  object.

Lightning Locker is disabled for Car  so the component has access to the native window  object. Car  can’t see the _counter
property as it’s only available in the SecureWindow  object.

This subtle behavior can cause much gnashing of teeth when your code doesn’t work as you expect. You’ll never get that debugging
time back! Save yourself some grief and use the same API version for all components in an extension hierarchy.

Containment Hierarchy
The containment hierarchy within an application or a component doesn’t factor into Lightning Locker enforcement.

Let’s look at an example where a Bicycle  component contains a Wheel  component. If Bicycle  has API version 40.0, Lightning
Locker is enabled. If Wheel  has API version 39.0, Lightning Locker is disabled for Wheel  even though it’s contained in a component,
Bicycle, that has Lightning Locker enabled.

348

Don’t Mix Component API VersionsDeveloping Secure Code

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_tooling.meta/api_tooling/tooling_api_objects_auradefinitionbundle.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_intro.htm


Due to the mix of component API versions, you’re likely to run into issues similar to those for the extension hierarchy. We recommend
that you set the same API version for all components in your app or component hierarchy, when possible.

SEE ALSO:

Aura Component Versioning for Managed Packages

Disable Lightning Locker for a Component

Select the Locker API Version for an Org

Secure Wrappers

Sharing JavaScript Code Across Components

Lightning Locker Disabled for Unsupported Browsers
Lightning Locker relies on some JavaScript features in the browser: support for strict mode, the Map  object, and the Proxy  object. If
a browser doesn’t meet the requirements, Lightning Locker can’t enforce all its security features and is disabled.

Lightning Locker is disabled for unsupported browsers. If you use an unsupported browser, you’re likely to encounter issues that won’t
be fixed. Make your life easier and your browsing experience more secure by using a supported browser.

Note:  The Lightning Locker requirements align with the supported browsers for Lightning Experience, except for IE11. Lightning
Locker is disabled for IE11. We recommend using supported browsers other than IE11 for enhanced security.

SEE ALSO:

Browser Support for Aura Components

Salesforce Help: Supported Browsers and Devices for Lightning Experience

Lightning Web Security

Lightning Web Security is designed to make it easier for your components to use secure coding practices. Lightning Locker has been
the default security architecture for all Lightning components. Lightning Web Security (LWS) is gradually replacing Lightning Locker for
Lightning web components and Aura components. LWS is based on web standards and has fewer restrictions and more functionality
than Lightning Locker.

For detailed information on Lightning Web Security, including how to enable Lightning Web Security instead of Lightning Locker, see
the Lightning Web Components Developer Guide.

Content Security Policy Overview

The Lightning Component framework uses Content Security Policy (CSP) to impose restrictions on content. The main objective is to help
prevent cross-site scripting (XSS) and other code injection attacks.

CSP is a W3C standard that defines rules to control the source of content that can be loaded on a page. All CSP rules work at the page
level, and apply to all components and libraries. Web browsers follow CSP rules specified in web page headers to block requests to
unknown servers for resources including scripts, images, and other data. CSP directives also apply to client-side JavaScript, for example
by restricting inline JavaScript in HTML.

The framework enables these specific CSP rules:

349

Lightning Locker Disabled for Unsupported BrowsersDeveloping Secure Code

https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.security_lwsec_intro
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP


DetailsRule

All external JavaScript libraries must be uploaded to your org as static resources. The script-src
'self'  directive requires script source be called from the same origin. For more information, see
Using External JavaScript Libraries on page 359.

JavaScript libraries can only be
referenced from your org

The font-src, img-src, media-src, frame-src, style-src, and connect-src
directives are set to 'self'. As a result, resources such as fonts, images, videos, frame content,
CSS, and scripts must be located in the org by default.

By default, resources must be
located in your org

You can change the CSP directives to permit access to third-party resources by adding Trusted URLs.
For more information, see Manage Trusted URLs.

All references to external fonts, images, frames, and CSS must use an HTTPS URL. This requirement
applies whether the resource is located in your org or accessed through a CSP Trusted Site.

HTTPS connections are required
for resources

Script tags can’t be used to load JavaScript, and event handlers can’t use inline JavaScript. The
unsafe-inline  source for the script-src  directive is disallowed. For example, this attempt
to use an event handler to run an inline script is prevented:

<button onclick="doSomething()"></button>

Inline JavaScript isn’t permitted

Browser Support
CSP isn’t enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

Note: IE11 doesn’t support CSP, so we recommend using other supported browsers for enhanced security.

Finding CSP Violations
CSP policy violations are logged in the browser’s developer console. The violations look like the following message.

Refused to load the script 'https://externaljs.docsample.com/externalLib.js'
because it violates the following Content Security Policy directive: ...

If your app’s functionality isn’t affected, you can ignore the CSP violation.

350

Content Security Policy OverviewDeveloping Secure Code

http://caniuse.com/contentsecuritypolicy


IN THIS SECTION:

Stricter CSP Restrictions

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content
that can be loaded on a page. The CSP rules work at the page level, and apply to all components and libraries, whether Lightning
Locker is enabled or not. The “Enable Stricter Content Security Policy” org setting was added in the Winter ’19 release to further
mitigate the risk of cross-site scripting attacks. This setting was enabled by default.

SEE ALSO:

Browser Support for Aura Components

Making API Calls from Components

Specify CSP Directives for a Trusted URL

Salesforce Help: Supported Browsers and Devices for Lightning Experience

Salesforce Help: Script Level Security in Communities

Stricter CSP Restrictions
The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that
can be loaded on a page. The CSP rules work at the page level, and apply to all components and libraries, whether Lightning Locker is
enabled or not. The “Enable Stricter Content Security Policy” org setting was added in the Winter ’19 release to further mitigate the risk
of cross-site scripting attacks. This setting was enabled by default.

The Enable Stricter Content Security Policy setting disallows the unsafe-inline  source for the script-src directive. Script
tags can’t be used to load JavaScript, and event handlers can’t use inline JavaScript.

You must ensure that all your code, including third-party libraries, respects all CSP restrictions.

What Does Stricter CSP Affect?
Stricter CSP affects:

• Lightning Experience

• Salesforce app

• Standalone apps that you create (for example, myApp.app)

Stricter CSP doesn’t affect:

• Salesforce Classic

• Any apps for Salesforce Classic, such as Salesforce Console in Salesforce Classic

• Experience Builder sites, which have their own CSP settings

• Lightning Out, which allows you to run Lightning components in a container outside of Lightning apps, such as Lightning components
in Visualforce and Salesforce Tabs + Visualforce sites. The container defines the CSP rules.

Note:  CSP in Experience Builder sites is controlled separately through each site’s settings.

351

Stricter CSP RestrictionsDeveloping Secure Code

https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US
https://help.salesforce.com/articleView?id=networks_security_csp_scriptlevel.htm&language=en_US


CHAPTER 10 Using JavaScript

Use JavaScript for client-side code. The $A namespace is the entry point for using the framework in
JavaScript code.

In this chapter ...

• Supported JavaScript
For all the methods available in $A, see the JavaScript API.

• Invoking Actions on
Component
Initialization

A component bundle can contain JavaScript code in a client-side controller, helper, or renderer. Client-side
controllers are the most commonly used of these JavaScript resources.

Expressions in JavaScript Code

In JavaScript, use string syntax to evaluate an expression. For example, this expression retrieves the
label  attribute in a component.

var theLabel = cmp.get("v.label");

• Sharing JavaScript
Code in a
Component Bundle

• Sharing JavaScript
Code Across
Components

• Using External
JavaScript Libraries

Note:  Only use the {! }  expression syntax in markup in .app  or .cmp  resources.• Dynamically Creating
Components

SEE ALSO:

Handling Events with Client-Side Controllers

• Detecting Data
Changes with
Change Handlers

• Finding Components
by ID

• Working with
Attribute Values in
JavaScript

• Working with a
Component Body in
JavaScript

• Working with Events
in JavaScript

• Modifying the DOM

• Checking
Component Validity

• Modifying
Components Outside
the Framework
Lifecycle

• Throwing and
Handling Errors

352



• Calling Component
Methods

• Dynamically Adding
Event Handlers To a
Component

• Dynamically Showing
or Hiding Markup

• Adding and
Removing Styles

• Which Button Was
Pressed?

• Formatting Dates in
JavaScript

• Using JavaScript
Promises

• Making API Calls
from Components

• Control Access to
Browser Features

• Manage Trusted
URLs

353

Using JavaScript



Supported JavaScript

The Aura Components programming model supports ES5 syntax and ES6 Promises.

For the most reliable experience, use ES5 to develop Aura components because the pipeline from authoring to serialization to execution
was built for ES5. Promises from ES6 are also available. Using any other syntax or feature is not supported.

This developer guide explains how to develop Aura components and documents the JavaScript usage that's unique to the Aura
Components programming model.

If you want to use ES6 or later for development, use the Lightning Web Components programming model, which has been architected
for modern JavaScript development.

SEE ALSO:

Browser Support for Aura Components

Invoking Actions on Component Initialization

Use the init  event to initialize a component or fire an event after component construction but before rendering.

Note:  The init  event is fired only once per lifecycle of the component. The init  event doesn’t get fired if the component
is served from cache. To execute JavaScript code every time a component is rendered, use the render  event instead.

Let’s look at an example.

<!--initCmp.cmp-->
<aura:component>

<aura:attribute name="setMeOnInit" type="String" default="default value" />
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<p>This value is set in the controller after the component initializes and before
rendering.</p>

<p><b>{!v.setMeOnInit}</b></p>

</aura:component>

The magic happens in this line.

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

This code registers an init  event handler for the component. init  is a predefined event sent to every component. Setting
value="{!this}"  marks this as a value event. You should always use this setting for an init  event.

After the component is initialized, the doInit action is called in the component’s controller.

// initCmp.js
({

doInit: function(cmp) {
// Set the attribute value.
// You could also fire an event here instead.
cmp.set("v.setMeOnInit", "controller init magic!");

}
})

The doInit  action sets an attribute value, but it could do something more interesting, such as firing an event.

354

Supported JavaScriptUsing JavaScript

https://developer.salesforce.com/docs/component-library/documentation/lwc


If a component is contained in another component or app, the inner component is initialized first.

SEE ALSO:

Handling Events with Client-Side Controllers

Handle the render Event

Component Attributes

Detecting Data Changes with Change Handlers

Sharing JavaScript Code in a Component Bundle

Put functions that you want to reuse in the component’s helper. Helper functions also enable specialization of tasks, such as processing
data and queueing server-side actions. Helper functions are local to a component, improve code reuse, and move the heavy lifting of
JavaScript logic away from the client-side controller, where possible.

A helper function can be called from any JavaScript code in a component’s bundle, such as from a client-side controller or renderer.

Helper functions are similar to client-side controller functions in shape, surrounded by parentheses and curly braces to denote a JavaScript
object in object-literal notation containing a map of name-value pairs. A helper function can pass in any arguments required by the
function, such as the component it belongs to, a callback, or any other objects.

({
helperMethod1 : function() {

// logic here
},

helperMethod2 : function(component) {
// logic here
this.helperMethod3(var1, var2);

},

helperMethod3 : function(var1, var2) {
// do something with var1 and var2 here

}
})

To call another function in the same helper, use the syntax: this.methodName, where this  is a reference to the helper itself. For
example, helperMethod2  calls helperMethod3  with this code.

this.helperMethod3(var1, var2);

Creating a Helper
A helper resource is part of the component bundle and is auto-wired via the naming convention, <componentName>Helper.js.

To create a helper using the Developer Console, click HELPER in the sidebar of the component. This helper file is valid for the scope of
the component to which it’s auto-wired.

Using a Helper in a Controller
Add a helper  argument to a controller function to enable the function to use the helper. Specify (component, event,
helper)  in the controller. These are standard parameters and you don't have to access them in the function.

355

Sharing JavaScript Code in a Component BundleUsing JavaScript



This controller code calls an updateItem helper function.

/* controller */
({

newItemEvent: function(component, event, helper) {
helper.updateItem(component, event.getParam("item"));

}
})

Here’s the helper that contains the updateItem  function called by the controller.

/* helper */
({

updateItem : function(component, item, callback) {
// Update the items via a server-side action
var action = component.get("c.saveItem");
action.setParams({"item" : item});
// Set any optional callback and enqueue the action
if (callback) {

action.setCallback(this, callback);
}
$A.enqueueAction(action);

}
})

The updateItem  function accepts three parameters.

1. component—The component to which the helper belongs.

2. item—An item that’s set as an item  parameter for the saveItem  Apex action.

3. callback—An optional callback to call after the saveItem  Apex action returns. In our example, the newItemEvent
controller method passes in only two arguments so there’s no callback.

Using a Helper in a Renderer
Add a helper argument to a renderer function to enable the function to use the helper. In the renderer, specify (component,
helper)  as parameters in a function signature to enable the function to access the component's helper. These are standard parameters
and you don't have to access them in the function. The following code shows an example on how you can override the afterRender()
function in the renderer and call open  in the helper method.

detailsRenderer.js

({
afterRender : function(component, helper){

helper.open(component, null, "new");
}

})

detailsHelper.js

({
open : function(component, note, mode, sort){

if(mode === "new") {
//do something

}
// do something else, such as firing an event

356

Sharing JavaScript Code in a Component BundleUsing JavaScript



}
})

SEE ALSO:

Create a Custom Renderer

Component Bundles

Handling Events with Client-Side Controllers

Sharing JavaScript Code Across Components

You can build simple Lightning components that are entirely self-contained. However, if you build more complex applications, you
probably want to share code, or even client-side data, between components.

The <ltng:require>  tag enables you to load external JavaScript libraries after you upload them as static resources. You can also
use <ltng:require>  to import your own JavaScript libraries of utility methods.

Let’s look at a simple counter library that provides a getValue()  method, which returns the current value of the counter, and an
increment()  method, which increments the value of that counter.

Create the JavaScript Library
1. In the Developer Console, click File > New > Static Resource.

2. Enter counter  in the Name  field.

3. Select text/javascript  in the MIME Type field.

4. Click Submit.

5. Enter this code and click File > Save.

window._counter = (function() {
var value = 0; // private

return { //public API
increment: function() {

value = value + 1;
return value;

},

getValue: function() {
return value;

}
};

}());

This code uses the JavaScript module pattern. Using this closure-based pattern, the value  variable remains private to your library.
Components using the library can’t access value directly.

The most important line of the code to note is:

window._counter = (function() {

357

Sharing JavaScript Code Across ComponentsUsing JavaScript



You must attach _counter  to the window  object as a requirement of JavaScript strict mode, which is implicitly enabled in Lightning
Locker. Even though window._counter  looks like a global declaration, _counter  is attached to the Lightning Locker secure
window object and therefore is a namespace variable, not a global variable.

If you use _counter  instead of window._counter, _counter  isn’t available. When you try to access it, you get an error similar
to:

Action failed: ... [_counter is not defined]

Use the JavaScript Library
Let’s use the library in a MyCounter  component that has a simple UI to exercise the counter methods.

<!--c:MyCounter-->
<aura:component access="global">

<ltng:require scripts="{!$Resource.counter}"
afterScriptsLoaded="{!c.getValue}"/>

<aura:attribute name="value" type="Integer"/>

<h1>MyCounter</h1>
<p>{!v.value}</p>
<lightning:button label="Get Value" onclick="{!c.getValue}"/>
<lightning:button label="Increment" onclick="{!c.increment}"/>

</aura:component>

The <ltng:require>  tag loads the counter library and calls the getValue  action in the component’s client-side controller after
the library is loaded.

Here’s the client-side controller.

/* MyCounterController.js */
({

getValue : function(component, event, helper) {
component.set("v.value", _counter.getValue());

},

increment : function(component, event, helper) {
component.set("v.value", _counter.increment());

}
})

You can access properties of the window  object without having to type the window.  prefix. Therefore, you can use
_counter.getValue()  as shorthand for window._counter.getValue().

Click the buttons to get the value or increment it.

Our counter library shares the counter value between any components that use the library. If you need each component to have a
separate counter, you could modify the counter implementation. To see the per-component code and for more details, see this blog
post about Modularizing Code in Lightning Components.

SEE ALSO:

Using External JavaScript Libraries

JavaScript Strict Mode Enforcement

358

Sharing JavaScript Code Across ComponentsUsing JavaScript

https://developer.salesforce.com/blogs/developer-relations/2016/12/lightning-components-code-sharing.html


Using External JavaScript Libraries

To reference a JavaScript library, upload it as a static resource and use a <ltng:require>  tag in your .cmp  or .app  markup.

Note:  Before you use a third-party JavaScript library, we recommend that you check AppExchange for components or apps from
Salesforce partners that match your requirements. Alternatively, check if a base component provides your desired functionality.

The framework’s content security policy mandates that external JavaScript libraries must be uploaded to Salesforce static resources.

You can’t use a <script>  tag in a component. This restriction mitigates the risk of cross-site scripting attacks. You can add a
<script>  tag to an application’s template, which is a special type of component that extends aura:template.

Note:  Only third-party JavaScript libraries that are loaded via ltng:require  are supported. Documentation and examples
that demonstrate using a third-party JavaScript library don't constitute an endorsement of that library. We recommend that you
check the third-party JavaScript library documentation for usage information.

Here’s an example of using ltng:require.

<ltng:require scripts="{!$Resource.resourceName}"
afterScriptsLoaded="{!c.afterScriptsLoaded}" />

resourceName  is the Name  of the static resource. In a managed package, the resource name must include the package namespace
prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic
or script, you only need the name of the resource. For example, if you uploaded myScript.js  and set the Name  to myScript,
reference it as $Resource.myScript. To reference an item within an archive static resource, add the rest of the path to the item
using string concatenation.

The afterScriptsLoaded  action in the client-side controller is called after the scripts are loaded and the component is rendered.
Don’t use the init  event to access scripts loaded by ltng:require. These scripts load asynchronously and are most likely not
available when the init  event handler is called.

Here are some considerations for loading scripts:

Loading Sets of Scripts
Specify a comma-separated list of resources in the scripts  attribute to load a set of resources.

Note: Due to a quirk in the way $Resource  is parsed in expressions, use the join  operator to include multiple
$Resource  references in a single attribute. For example, if you have more than one JavaScript library to include into a
component the scripts  attribute should be something like the following.

scripts="{!join(',',
$Resource.jsLibraries + '/jsLibOne.js',
$Resource.jsLibraries + '/jsLibTwo.js')}"

Loading Order
The scripts are loaded in the order that they are listed.

One-Time Loading
Scripts load only once, even if they’re specified in multiple <ltng:require>  tags in the same component or across different
components.

Parallel Loading
Use separate <ltng:require>  tags for parallel loading if you have multiple sets of scripts that are not dependent on each
other.

359

Using External JavaScript LibrariesUsing JavaScript

https://appexchange.salesforce.com/
https://developer.salesforce.com/docs/component-library
https://help.salesforce.com/apex/HTViewHelpDoc?id=pages_static_resources.htm&language=en_US#pages_static_resources


Encapsulation
To ensure encapsulation and reusability, add the <ltng:require>  tag to every .cmp  or .app  resource that uses the JavaScript
library.

ltng:require  also has a styles  attribute to load a list of CSS resources. You can set the scripts  and styles attributes in
one <ltng:require>  tag.

Using a Client-Side Controller with External JavaScript Libraries
If you’re using an external library to work with your HTML elements after rendering, use afterScriptsLoaded  to wire up a
client-side controller. The following example sets up a chart using the Chart.js  library, which is uploaded as a static resource.

<ltng:require scripts="{!$Resource.chart}"
afterScriptsLoaded="{!c.setup}"/>

<canvas aura:id="chart" id="myChart" width="400" height="400"/>

The component’s client-side controller sets up the chart after component initialization and rendering.

setup : function(component, event, helper) {
var data = {

labels: ["January", "February", "March"],
datasets: [{

data: [65, 59, 80, 81, 56, 55, 40]
}]

};
var el = component.find("chart").getElement();
var ctx = el.getContext("2d");
var myNewChart = new Chart(ctx).Line(data);

}

Troubleshooting Errors from ltng:require
Let’s say your component references a custom JavaScript library with ltng:require. When you try to load the component, a modal
dialog interrupts and displays information about an error.

For example, the dialog could show a message like the following.

Custom Script Eval error in 'ltng:require' [SecureDOMEvent: [object Event] {key:
{namespace":"c"}}]

The dialog could also include a stack trace. If it doesn’t, check the browser’s JavaScript console for more information. If the component
didn't load, the console doesn’t show much and the problem is likely in the library you referenced.

Use the Locker Console to evaluate the JavaScript from the library to see if it’s affected by Locker restrictions.

If ltng:require  encounters errors in your script, you see an error in the JavaScript console that includes details about the problem.
The JavaScript console could show a message such as the following.

WARNING: Failed to load script at
/resource/156768268766/MyHeader/static/myLib.js:
Cannot assign to read only property 'someProp' of object '[object Object]'

360

Using External JavaScript LibrariesUsing JavaScript

https://developer.salesforce.com/docs/component-library/tools/locker-service-console


This also indicates the problem is in the static resource, myLib.js  in this case. If the Locker Console gives you the same message
when you evaluate the JavaScript from myLib.js, this confirms that the script is attempting to perform an action that is not allowed
by Locker.

SEE ALSO:

Salesforce Help: Static Resources

$Resource

Using External CSS

Component Library

Content Security Policy Overview

Creating App Templates

Dynamically Creating Components

Create a component dynamically in your client-side JavaScript code by using the $A.createComponent()  method. To create
multiple components, use $A.createComponents().

Note:  Use $A.createComponent() instead of the deprecated $A.newCmp()  and $A.newCmpAsync()  methods.

Client-Side Versus Server-Side Component Creation
The $A.createComponent()  and $A.createComponents()  methods support both client-side (synchronous) and
server-side (asynchronous) component creation. For performance and other reasons, client-side creation is preferred.

To use $A.createComponent(), we need the component definition. If we don’t have the definition already on the client, the
framework makes a server trip to get it. You can avoid this server trip by adding an <aura:dependency>  tag for the component
you’re creating in the markup of the component that calls $A.createComponent(). The tag ensures that the component definition
is always available on the client. The tradeoff is that the definition is always downloaded instead of only when it’s needed. This performance
tradeoff decision depends on your use case.

If no server-side dependencies are found, the methods are executed synchronously on the client-side. The top-level component
determines whether a server request is necessary for component creation. A component with server-side dependencies must be created
on the server. Server-side dependencies include component definitions or dynamically loaded labels that aren’t already on the client,
and other elements that can’t be predetermined by static markup analysis.

Note:  A server-side controller isn’t a server-side dependency for component creation because controller actions are only called
after the component has been created.

A single call to createComponent()  or createComponents()  can result in many components being created. The call creates
the requested component and all its child components. In addition to performance considerations, server-side component creation has
a limit of 10,000 components that can be created in a single request. If you hit this limit, explicitly declare component dependencies
with the <aura:dependency>  tag or otherwise pre-load dependent elements. The components are then created on the client
side instead.

There’s no limit on component creation on the client side.

Note:  Creating components where the top-level components don’t have server dependencies but nested inner components do
have dependencies isn’t currently supported.

361

Dynamically Creating ComponentsUsing JavaScript

https://help.salesforce.com/apex/HTViewHelpDoc?id=pages_static_resources.htm&language=en_US


Syntax
The syntax is:

$A.createComponent(String type, Object attributes, function callback)

1. type—The type of component to create; for example, "lightning:button".

2. attributes—A map of attributes for the component, including the local Id (aura:id).

3. callback(cmp, status, errorMessage)—The callback to invoke after the component is created.

Tip:  Component creation is asynchronous if it requires a server trip. Follow good asynchronous practices, such as only using
the new component in the callback.

The callback has three parameters.

a. cmp—The component that was created. This parameter enables you to do something with the new component, such as add
it to the body of the component that creates it. If there’s an error, cmp  is null.

b. status—The status of the call. The possible values are SUCCESS, INCOMPLETE, or ERROR. Always check that the status
is SUCCESS  before you try to use the component.

c. errorMessage—The error message if the status is ERROR.

Example
Let’s add a dynamically created button to this sample component.

<!--c:createComponent-->
<aura:component>

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<p>Dynamically created button</p>
{!v.body}

</aura:component>

The client-side controller calls $A.createComponent()  to create a lightning:button  with a local ID (aura:id) and a
handler for the onclick  attribute. The function(newButton, ...)  callback appends the button to the body  of
c:createComponent. The newButton  that’s dynamically created by $A.createComponent()  is passed as the first
argument to the callback.

/*createComponentController.js*/
({

doInit : function(cmp) {
$A.createComponent(

"lightning:button",
{

"aura:id": "findableAuraId",
"label": "Press Me",
"onclick": cmp.getReference("c.handlePress")

},
function(newButton, status, errorMessage){

//Add the new button to the body array
if (status === "SUCCESS") {

var body = cmp.get("v.body");
body.push(newButton);

362

Dynamically Creating ComponentsUsing JavaScript



cmp.set("v.body", body);
}
else if (status === "INCOMPLETE") {

console.log("No response from server or client is offline.")
// Show offline error

}
else if (status === "ERROR") {

console.log("Error: " + errorMessage);
// Show error message

}
}

);
},

handlePress : function(cmp) {
// Find the button by the aura:id value
console.log("button: " + cmp.find("findableAuraId"));
console.log("button pressed");

}
})

Note: c:createComponent  contains a {!v.body}  expression. When you use cmp.set("v.body", ...)  to set
the component body, you must explicitly include {!v.body}  in your component markup.

Creating Nested Components
To dynamically create a component in the body of another component, use $A.createComponents()  to create the components.
In the function callback, nest the components by setting the inner component in the body  of the outer component. This example
creates a lightning:icon  component in the body  of a lightning:card  component.

$A.createComponents([
["lightning:card",{

"title" : "Dynamic Components"
}],
["lightning:icon",{

"iconName" : "utility:success",
"alternativeText": "Icon that represents a successful step",
"variant": "success",
"class": "slds-m-around_small"

}]
],
function(components, status, errorMessages){

if (status === "SUCCESS") {
var card = components[0];
var icon = components[1];
// set lightning:icon as the body of lightning:card
card.set("v.body", icon);
cmp.set("v.body", card);

}
else if (status === "INCOMPLETE") {

console.log("No response from server or client is offline.")
// Show offline error

}

363

Dynamically Creating ComponentsUsing JavaScript



else if (status === "ERROR") {
console.log("Error message: " + errorMessages[0].message);

}
}

);

Destroying Dynamically Created Components
After a component that is declared in markup is no longer in use, the framework automatically destroys it and frees up its memory.

If you create a component dynamically in JavaScript and don’t add it to a facet like v.body  or another attribute of type
Aura.Component[], you have to destroy it manually. Use Component.destroy()  to destroy the component and free up
its memory to avoid memory leaks.

Important:  When a user navigates to a different page, components on the previous page remain in the cache and are hidden,
not destroyed. See Event Handler Behavior for Active Components on page 283.

SEE ALSO:

aura:dependency

Invoking Actions on Component Initialization

Dynamically Adding Event Handlers To a Component

Detecting Data Changes with Change Handlers

Configure a component to automatically invoke a change handler, which is a client-side controller action, when a value in one of the
component's attributes changes.

When the value changes, the valueChange.evt  event is automatically fired. The event has type="VALUE".

In the component, define a handler with name="change".

<aura:handler name="change" value="{!v.numItems}" action="{!c.itemsChange}"/>

The value  attribute sets the component attribute that the change handler tracks.

The action  attribute sets the client-side controller action to invoke when the attribute value changes.

A component can have multiple <aura:handler name="change">  tags to detect changes to different attributes.

In the controller, define the action for the handler.

({
itemsChange: function(cmp, evt) {

console.log("numItems has changed");
console.log("old value: " + evt.getParam("oldValue"));
console.log("current value: " + evt.getParam("value"));

}
})

The valueChange  event gives you access to the previous value (oldValue) and the current value (value) in the handler action.

364

Detecting Data Changes with Change HandlersUsing JavaScript



When a change occurs to a value that is represented by the change  handler, the framework handles the firing of the event and
rerendering of the component.

SEE ALSO:

Invoking Actions on Component Initialization

Finding Components by ID

Retrieve a component by its ID in JavaScript code.

Use aura:id  to add a local ID of button1  to the lightning:button  component.

<lightning:button aura:id="button1" label="button1"/>

You can find the component by calling cmp.find("button1"), where cmp  is a reference to the component containing the
button. The find()  function has one parameter, which is the local ID of a component within the markup.

find()  returns different types depending on the result.

• If the local ID is unique, find() returns the component.

• If there are multiple components with the same local ID, find()  returns an array of the components.

• If there is no matching local ID, find()  returns undefined.

SEE ALSO:

Component IDs

Value Providers

Working with Attribute Values in JavaScript

These common patterns are useful for working with attribute values in JavaScript.

component.get(String key)  and component.set(String key, Object value)  retrieves and assigns values
associated with the specified key on the component. Keys are passed in as an expression, which represents an attribute value.

To retrieve an attribute value of a component reference, use component.find("cmpId").get("v.value").

Similarly, to set the attribute value of a component reference, use component.find("cmpId").set("v.value", myValue).

This example shows how you can retrieve and set attribute values on a component reference, represented by the button with an ID of
button1.

<aura:component>
<aura:attribute name="buttonLabel" type="String"/>
<lightning:button aura:id="button1" label="Button 1"/>
{!v.buttonLabel}
<lightning:button label="Get Label" onclick="{!c.getLabel}"/>

</aura:component>

This controller action retrieves the label  attribute value of a button in a component and sets its value on the buttonLabel
attribute.

({
getLabel : function(component, event, helper) {

365

Finding Components by IDUsing JavaScript



var myLabel = component.find("button1").get("v.label");
component.set("v.buttonLabel", myLabel);

}
})

In the following examples, cmp  is a reference to a component in your JavaScript code.

Get an Attribute Value
To get the value of a component’s label attribute:

var label = cmp.get("v.label");

Set an Attribute Value
To set the value of a component’s label attribute:

cmp.set("v.label","This is a label");

Deep Set an Attribute Value
If an attribute has an object or collection type, such as Map, you can deep set properties in the attribute value using the dot notation
for expressions. For example, this code sets a value for the firstName  property in the user  attribute.

component.set("v.user.firstName", "Nina");

For deeply nested objects and attributes, continue adding dots to traverse the structure and access the nested values.

Let’s look at a component with a user  attribute of type Map.

<aura:component >
<aura:attribute name="user" type="Map"
default="{
'id': 99,
'firstName': 'Eunice',
'lastName': 'Gomez'}" />

<p>First Name: {!v.user.firstName}</p>

<lightning:button onclick="{!c.deepSet}" label="Deep Set" />
</aura:component>

When you click the button in the component, you call the deepSet  action in the client-side controller.

({
deepSet : function(component, event, helper) {

console.log(component.get("v.user.firstName"));
component.set("v.user.firstName", "Nina");
console.log(component.get("v.user.firstName"));

}
})

The component.set("v.user.firstName", "Nina")  line sets a value for the firstName  property in the user
attribute.

366

Working with Attribute Values in JavaScriptUsing JavaScript



Validate That an Attribute Value Is Defined
To determine if a component’s label  attribute is defined:

var isDefined = !$A.util.isUndefined(cmp.get("v.label"));

Validate That an Attribute Value Is Empty
To determine if a component’s label  attribute is empty:

var isEmpty = $A.util.isEmpty(cmp.get("v.label"));

SEE ALSO:

Working with a Component Body in JavaScript

Working with a Component Body in JavaScript

These are useful and common patterns for working with a component’s body in JavaScript.

In these examples, cmp  is a reference to a component in your JavaScript code. It’s usually easy to get a reference to a component in
JavaScript code. Remember that the body  attribute is an array of components, so you can use the JavaScript Array  methods on it.

Note: When you use cmp.set("v.body", ...)  to set the component body, you must explicitly include {!v.body}
in your component markup.

Replace a Component's Body
To replace the current value of a component’s body with another component:

// newCmp is a reference to another component
cmp.set("v.body", newCmp);

Clear a Component's Body
To clear or empty the current value of a component’s body:

cmp.set("v.body", []);

Append a Component to a Component's Body
To append a newCmp  component to a component’s body:

var body = cmp.get("v.body");
// newCmp is a reference to another component
body.push(newCmp);
cmp.set("v.body", body);

367

Working with a Component Body in JavaScriptUsing JavaScript



Prepend a Component to a Component's Body
To prepend a newCmp  component to a component’s body:

var body = cmp.get("v.body");
body.unshift(newCmp);
cmp.set("v.body", body);

Remove a Component from a Component's Body
To remove an indexed entry from a component’s body:

var body = cmp.get("v.body");
// Index (3) is zero-based so remove the fourth component in the body
body.splice(3, 1);
cmp.set("v.body", body);

SEE ALSO:

Component Body

Working with Attribute Values in JavaScript

Working with Events in JavaScript

These are useful and common patterns for working with events in JavaScript.

Events communicate data across components. Events can contain attributes with values set before the event is fired and read when the
event is handled.

Fire an Event
Fire a component event or an application event that’s registered on a component.

//Fire a component event
var compEvent = cmp.getEvent("sampleComponentEvent");
compEvent.fire();

//Fire an application event
var appEvent = $A.get("e.c:appEvent");
appEvent.fire();

For more information, see:

• Fire Component Events

• Fire Application Events

Get an Event Name
To get the name of the event that’s fired:

event.getSource().getName();

368

Working with Events in JavaScriptUsing JavaScript



Get an Event Parameter
To get an attribute that’s passed into an event:

event.getParam("value");

Get Parameters on an Event
To get all attributes that are passed into an event:

event.getParams();

event.getParams()  returns an object containing all event parameters.

Get the Current Phase of an Event
To get the current phase of an event:

event.getPhase();

If the event hasn’t been fired, event.getPhase() returns undefined. Possible return values for component and application
events are capture, bubble, and default. Value events return default. For more information, see:

• Component Event Propagation

• Application Event Propagation

Get the Source Component
To get the component that fired the event:

event.getSource();

To retrieve an attribute on the component that fired the event:

event.getSource().get("v.myName");

Pause the Event
To pause the fired event:

event.pause();

If paused, the event is not handled until event.resume()  is called. You can pause an event in the capture  or bubble  phase
only. For more information, see:

• Handling Bubbled or Captured Component Events

• Handling Bubbled or Captured Application Events

Prevent the Default Event Execution
To cancel the default action on the event:

event.preventDefault();

369

Working with Events in JavaScriptUsing JavaScript



For example, you can prevent a lightning:button component from submitting a form when it’s clicked.

Resume a Paused Event
To resume event handling for a paused event:

event.resume();

You can resume a paused event in the capture  or bubble  phase only. For more information, see:

• Handling Bubbled or Captured Component Events

• Handling Bubbled or Captured Application Events

Set a Value for an Event Parameter
To set a value for an event parameter:

event.setParam("name", cmp.get("v.myName"));

If the event has already been fired, setting a parameter value has no effect on the event.

Set Values for Event Parameters
To set values for parameters on an event:

event.setParams({
key : value

});

If the event has already been fired, setting the parameter values has no effect on the event.

Stop Event Propagation
To prevent further propagation of an event:

event.stopPropagation();

You can stop event propagation in the capture  or bubble  phase only.

Modifying the DOM

The Document Object Model (DOM) is the language-independent model for representing and interacting with objects in HTML and
XML documents. It’s important to know how to modify the DOM safely so that the framework’s rendering service doesn’t stomp on your
changes and give you unexpected results.

IN THIS SECTION:

Modifying DOM Elements Managed by the Aura Components Programming Model

The framework creates and manages the DOM elements owned by a component. If you want to modify these DOM elements created
by the framework, modify the DOM elements in the handler for the component’s render  event or in a custom renderer. Otherwise,
the framework will override your changes when the component is rerendered.

370

Modifying the DOMUsing JavaScript



Modifying DOM Elements Managed by External Libraries

You can use different libraries, such as a charting library, to create and manage DOM elements. You don’t have to modify these DOM
elements within the render  event handler or a renderer because they are managed by the external library.

Modifying DOM Elements Managed by the Aura Components Programming
Model
The framework creates and manages the DOM elements owned by a component. If you want to modify these DOM elements created
by the framework, modify the DOM elements in the handler for the component’s render  event or in a custom renderer. Otherwise,
the framework will override your changes when the component is rerendered.

For example, if you modify DOM elements directly from a client-side controller, the changes may be overwritten when the component
is rendered.

You can read from the DOM outside a render  event handler or a custom renderer.

The simplest approach is to leave DOM updates to the framework. Update a component’s attribute and use an expression in the markup.
The framework’s rendering service takes care of the DOM updates.

You can modify CSS classes for a component outside a renderer by using the $A.util.addClass(), $A.util.removeClass(),
and $A.util.toggleClass()  methods.

There are some use cases where you want to perform post-processing on the DOM or react to rendering or rerendering of a component.
For these use cases, there are a few options.

IN THIS SECTION:

Handle the render Event

When a component is rendered or rerendered, the aura:valueRender  event, also known as the render  event, is fired.
Handle this event to perform post-processing on the DOM or react to component rendering or rerendering. The event is preferred
and easier to use than the alternative of creating a custom renderer.

Create a Custom Renderer

The framework’s rendering service takes in-memory component state and creates and manages the DOM elements owned by the
component. If you want to modify DOM elements created by the framework for a component, you can modify the DOM elements
in the component’s renderer. Otherwise, the framework will override your changes when the component is rerendered.

SEE ALSO:

Modifying DOM Elements Managed by External Libraries

Using Expressions

Dynamically Showing or Hiding Markup

Handle the render Event
When a component is rendered or rerendered, the aura:valueRender  event, also known as the render  event, is fired. Handle
this event to perform post-processing on the DOM or react to component rendering or rerendering. The event is preferred and easier
to use than the alternative of creating a custom renderer.

The render  event is fired after all methods in a custom renderer are invoked. For more details on the sequence in the rendering or
rerendering lifecycles, see Create a Custom Renderer.

371

Modifying DOM Elements Managed by the Aura Components
Programming Model

Using JavaScript



Handling the aura:valueRender event is similar to handling the init  hook. Add a handler to your component's markup.

<aura:handler name="render" value="{!this}" action="{!c.onRender}"/>

In this example, the onRender  action in your client-side controller handles initial rendering and rerendering of the component. You
can choose any name for the action  attribute.

SEE ALSO:

Invoking Actions on Component Initialization

Create a Custom Renderer

Create a Custom Renderer
The framework’s rendering service takes in-memory component state and creates and manages the DOM elements owned by the
component. If you want to modify DOM elements created by the framework for a component, you can modify the DOM elements in
the component’s renderer. Otherwise, the framework will override your changes when the component is rerendered.

The DOM is the language-independent model for representing and interacting with objects in HTML and XML documents. The framework
automatically renders your components so you don’t have to know anything more about rendering unless you need to customize the
default rendering behavior for a component.

Note:  It’s preferred and easier to handle the render  event rather than the alternative of creating a custom renderer.

Base Component Rendering
The base component in the framework is aura:component. Every component extends this base component.

The renderer for aura:component  is in componentRenderer.js. This renderer has base implementations for the four phases
of the rendering and rerendering cycles:

• render()

• rerender()

• afterRender()

• unrender()

The framework calls these functions as part of the rendering and rerendering lifecycles and we will learn more about them soon. You
can override the base rendering functions in a custom renderer.

Rendering Lifecycle
The rendering lifecycle happens once in the lifetime of a component unless the component gets explicitly unrendered. When you create
a component:

1. The framework fires an init  event, enabling you to update a component or fire an event after component construction but before
rendering.

2. The render()  method is called to render the component’s body.

3. The afterRender()  method is called to enable you to interact with the DOM tree after the framework’s rendering service has
inserted DOM elements.

4. The framework fires a render  event, enabling you to interact with the DOM tree after the framework’s rendering service has
inserted DOM elements. Handling the render  event is preferred to creating a custom renderer and overriding afterRender().

372

Modifying DOM Elements Managed by the Aura Components
Programming Model

Using JavaScript



Rerendering Lifecycle
The rerendering lifecycle automatically handles rerendering of components whenever the underlying data changes. Here is a typical
sequence.

1. A browser event triggers one or more Lightning events.

2. Each Lightning event triggers one or more actions that can update data. The updated data can fire more events.

3. The rendering service tracks the stack of events that are fired.

4. The framework rerenders all the components that own modified data by calling each component’s rerender() method.

5. The framework fires a render  event, enabling you to interact with the DOM tree after the framework rerenders a component.
Handling the render  event is preferred to creating a custom renderer and overriding rerender().

The component rerendering lifecycle repeats whenever the underlying data changes as long as the component is valid and not explicitly
unrendered.

For more information, see Events Fired During the Rendering Lifecycle .

Custom Renderer
You don’t normally have to write a custom renderer, but it’s useful when you want to interact with the DOM tree after the framework’s
rendering service has inserted DOM elements. If you want to customize rendering behavior and you can’t do it in markup or by using
the init  event, you can create a client-side renderer.

A renderer file is part of the component bundle and is auto-wired if you follow the naming convention,
<componentName>Renderer.js. For example, the renderer for sample.cmp  would be in sampleRenderer.js.

Note:  These guidelines are important when you customize rendering.

• Only modify DOM elements that are part of the component. Never break component encapsulation by reaching in to another
component and changing its DOM elements, even if you are reaching in from the parent component.

• Never fire an event as it can trigger new rendering cycles. An alternative is to use an init  event instead.

• Don’t set attribute values on other components as these changes can trigger new rendering cycles.

• Move as much of the UI concerns, including positioning, to CSS.

Customize Component Rendering
Customize rendering by creating a render() function in your component’s renderer to override the base render()  function,
which updates the DOM.

The render()  function returns a DOM node, an array of DOM nodes, or nothing. The base HTML component expects DOM nodes
when it renders a component.

You generally want to extend default rendering by calling superRender()  from your render()  function before you add your
custom rendering code. Calling superRender() creates the DOM nodes specified in the markup.

This code outlines a custom render() function.

render : function(cmp, helper) {
var ret = this.superRender();
// do custom rendering here
return ret;

},

373

Modifying DOM Elements Managed by the Aura Components
Programming Model

Using JavaScript



Rerender Components
When an event is fired, it may trigger actions to change data and call rerender()  on affected components. The rerender()
function enables components to update themselves based on updates to other components since they were last rendered. This function
doesn’t return a value.

If you update data in a component, the framework automatically calls rerender().

You generally want to extend default rerendering by calling superRerender()  from your renderer()  function before you
add your custom rerendering code. Calling superRerender() chains the rerendering to the components in the body  attribute.

This code outlines a custom rerender() function.

rerender : function(cmp, helper){
this.superRerender();
// do custom rerendering here

}

Access the DOM After Rendering
The afterRender() function enables you to interact with the DOM tree after the framework’s rendering service has inserted DOM
elements. It’s not necessarily the final call in the rendering lifecycle; it’s simply called after render()  and it doesn’t return a value.

You generally want to extend default after rendering by calling superAfterRender()  function before you add your custom code.

This code outlines a custom afterRender() function.

afterRender: function (component, helper) {
this.superAfterRender();
// interact with the DOM here

},

Unrender Components
The base unrender()  function deletes all the DOM nodes rendered by a component’s render()  function. It is called by the
framework when a component is being destroyed. Customize this behavior by overriding unrender()  in your component’s renderer.
This method can be useful when you are working with third-party libraries that are not native to the framework.

You generally want to extend default unrendering by calling superUnrender()  from your unrender()  function before you
add your custom code.

This code outlines a custom unrender() function.

unrender: function () {
this.superUnrender();
// do custom unrendering here

}

SEE ALSO:

Modifying the DOM

Invoking Actions on Component Initialization

Component Bundles

Modifying Components Outside the Framework Lifecycle

Sharing JavaScript Code in a Component Bundle

374

Modifying DOM Elements Managed by the Aura Components
Programming Model

Using JavaScript



Modifying DOM Elements Managed by External Libraries
You can use different libraries, such as a charting library, to create and manage DOM elements. You don’t have to modify these DOM
elements within the render  event handler or a renderer because they are managed by the external library.

A render  event handler or a renderer are used only to customize DOM elements created and managed by the Aura Components
programming model.

To use external libraries, use <ltng:require>. The afterScriptsLoaded attribute enables you to interact with the DOM
after your libraries have loaded and the DOM is ready. <ltng:require>  tag orchestrates the loading of your library of choice with
the rendering cycle of the Aura Components programming model to ensure that everything works in concert.

SEE ALSO:

Using External JavaScript Libraries

Modifying DOM Elements Managed by the Aura Components Programming Model

Checking Component Validity

If you navigate elsewhere in the UI while asynchronous code is executing, the framework unrenders and destroys the component that
made the asynchronous request. You can still have a reference to that component, but it is no longer valid. The cmp.isValid()
call returns false  for an invalid component.

If you call cmp.get()  on an invalid component, cmp.get()  returns null.

If you call cmp.set()  on an invalid component, nothing happens and no error occurs. It’s essentially a no op.

In many scenarios, the cmp.isValid()  call isn’t necessary because a null  check on a value retrieved from cmp.get()  is
sufficient. The main reason to call cmp.isValid()  is if you’re making multiple calls against the component and you want to avoid
a null  check for each result.

Inside the Framework Lifecycle
You don’t need a cmp.isValid()  check in the callback in a client-side controller when you reference the component associated
with the client-side controller. The framework automatically checks that the component is valid. Similarly, you don’t need a
cmp.isValid()  check during event handling or in a framework lifecycle hook, such as the init  event.

Let’s look at a sample client-side controller.

({
"doSomething" : function(cmp) {

var action = cmp.get("c.serverEcho");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

if (cmp.get("v.displayResult)) {
alert("From server: " + response.getReturnValue());

}
}
// other state handling omitted for brevity

});

$A.enqueueAction(action);

375

Modifying DOM Elements Managed by External LibrariesUsing JavaScript



}
})

The component wired to the client-side controller is passed into the doSomething  action as the cmp  parameter. When
cmp.get("v.displayResult)  is called, we don’t need a cmp.isValid()  check.

However, if you hold a reference to another component that may not be valid despite your component being valid, you might need a
cmp.isValid()  check for the other component. Let’s look at another example of a component that has a reference to another
component with a local ID of child.

({
"doSomething" : function(cmp) {

var action = cmp.get("c.serverEcho");
var child = cmp.find("child");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

if (child.get("v.displayResult)) {
alert("From server: " + response.getReturnValue());

}
}
// other state handling omitted for brevity

});

$A.enqueueAction(action);
}

})

This line in the previous example without the child component:

if (cmp.get("v.displayResult)) {

changed to:

if (child.get("v.displayResult)) {

You don’t need a child.isValid()  call here as child.get("v.displayResult)  will return null  if the child component
is invalid. Add a child.isValid()  check only if you’re making multiple calls against the child component and you want to avoid
a null  check for each result.

Outside the Framework Lifecycle
If you reference a component in asynchronous code, such as setTimeout()  or setInterval(), or when you use Promises, a
cmp.isValid()  call checks that the component is still valid before processing the results of the asynchronous request. In many
scenarios, the cmp.isValid()  call isn’t necessary because a null  check on a value retrieved from cmp.get()  is sufficient.
The main reason to call cmp.isValid()  is if you’re making multiple calls against the component and you want to avoid a null
check for each result.

For example, you don’t need a cmp.isValid()  check within this setTimeout()  call as the cmp.set()  call doesn’t do
anything when the component is invalid.

window.setTimeout(
$A.getCallback(function() {

cmp.set("v.visible", true);

376

Checking Component ValidityUsing JavaScript



}), 5000
);

SEE ALSO:

Handling Events with Client-Side Controllers

Invoking Actions on Component Initialization

Modifying Components Outside the Framework Lifecycle

Modifying Components Outside the Framework Lifecycle

Use $A.getCallback()  to wrap any code that modifies a component outside the normal rerendering lifecycle, such as in a
setTimeout()  call. The $A.getCallback()  call ensures that the framework rerenders the modified component and processes
any enqueued actions.

Note: $A.run()  is deprecated. Use $A.getCallback()  instead.

You don't need to use $A.getCallback()  if your code is executed as part of the framework's call stack; for example, your code is
handling an event or in the callback for a server-side controller action. An exception is when you want to pass the callback to Lightning
Data Service, such as when you are creating a record using force:recordData. If the callback is passed in without being wrapped
in $A.getCallback(), any attempt to access private attributes of your component results in access check failures.

An example of where you need to use $A.getCallback()  is calling window.setTimeout()  in an event handler to execute
some logic after a time delay. This puts your code outside the framework's call stack.

This sample sets the visible  attribute on a component to true  after a five-second delay.

window.setTimeout(
$A.getCallback(function() {

cmp.set("v.visible", true);
}), 5000

);

Note how the code updating a component attribute is wrapped in $A.getCallback(), which ensures that the framework rerenders
the modified component.

Note:  You don't need a cmp.isValid()  check within this setTimeout()  call as the cmp.set()  call doesn't do
anything when the component is invalid.

Warning:  Don't save a reference to a function wrapped in $A.getCallback(). If you use the reference later to send actions,
the saved transaction state will cause the actions to be aborted.

SEE ALSO:

Creating a Record

Handling Events with Client-Side Controllers

Checking Component Validity

Firing Events from Non-Aura Code

Communicating with Events

377

Modifying Components Outside the Framework LifecycleUsing JavaScript



Throwing and Handling Errors

The framework gives you flexibility in handling unrecoverable and recoverable app errors in JavaScript code. For example, you can throw
these errors in a callback when handling an error in a server-side response.

Note:  Don’t depend on the internals of a Lightning base component for error handling as its internals can change in future
releases. Errors that are recoverable can change into unrecoverable errors and vice versa. If you encounter an unexpected error,
you can sometimes get more information by enabling debug mode.

Unrecoverable Errors
Use throw new Error("error message here") for unrecoverable errors, such as an error that prevents your app from
starting successfully. The error message is displayed.

Note: $A.error()  is deprecated. Throw the native JavaScript Error  object instead by using throw new Error().

This example shows you the basics of throwing an unrecoverable error in a JavaScript controller.

<!--c:unrecoverableError-->
<aura:component>

<lightning:button label="throw error" onclick="{!c.throwError}"/>
</aura:component>

Here is the client-side controller source.

/*unrecoverableErrorController.js*/
({

throwError : function(component, event){
throw new Error("I can’t go on. This is the end.");

}
})

Recoverable Errors
To handle recoverable errors, use a component, such as ui:message, to tell users about the problem.

This sample shows you the basics of throwing and catching a recoverable error in a JavaScript controller.

<!--c:recoverableError-->
<aura:component>

<p>Click the button to trigger the controller to throw an error.</p>
<div aura:id="div1"></div>

<lightning:button label="Throw an Error" onclick="{!c.throwErrorForKicks}"/>
</aura:component>

Here is the client-side controller source.

/*recoverableErrorController.js*/
({

throwErrorForKicks: function(cmp) {
// this sample always throws an error to demo try/catch
var hasPerm = false;
try {

378

Throwing and Handling ErrorsUsing JavaScript

https://help.salesforce.com/articleView?id=sf.aura_debug_mode.htm&language=en_US


if (!hasPerm) {
throw new Error("You don't have permission to edit this record.");

}
}
catch (e) {

$A.createComponents([
["ui:message",{

"title" : "Sample Thrown Error",
"severity" : "error",

}],
["lightning:formattedText",{

"value" : e.message
}]
],
function(components, status, errorMessage){

if (status === "SUCCESS") {
var message = components[0];
var outputText = components[1];
// set the body of the ui:message to be the ui:outputText
message.set("v.body", outputText);
var div1 = cmp.find("div1");
// Replace div body with the dynamic component
div1.set("v.body", message);

}
else if (status === "INCOMPLETE") {

console.log("No response from server or client is offline.")
// Show offline error

}
else if (status === "ERROR") {

console.log("Error: " + errorMessage);
// Show error message

}
}

);
}

}
})

The controller code always throws an error and catches it in this example. The message in the error is displayed to the user in a dynamically
created ui:message  component. The body of the ui:message  is a ui:outputText  component containing the error text.

SEE ALSO:

Dynamically Creating Components

Calling Component Methods

Use <aura:method>  to define a method as part of a component's API. This enables you to directly call a method in a component’s
client-side controller instead of firing and handling a component event. Using <aura:method>  simplifies the code needed for a
parent component to call a method on a child component that it contains.

379

Calling Component MethodsUsing JavaScript



Communicate Between Components
Use aura:method  to communicate down the containment hierarchy. For example, a parent component calls an aura:method
on a child component that it contains.

To communicate up the containment hierarchy, fire a component event in the child component and handle it in the parent component.

Syntax
Use this syntax to call a method in JavaScript code.

cmp.sampleMethod(arg1, … argN);

cmp  is a reference to the component.

sampleMethod  is the name of the aura:method.

arg1, … argN  is an optional comma-separated list of arguments passed to the method. Each argument corresponds to an
aura:attribute  defined in the aura:method  markup.

Using Inherited Methods
A sub component that extends a super component has access to any methods defined in the super component.

An interface can also include an <aura:method>  tag. A component that implements the interface can access the method.

Example
Let's look at an example app.

<!-- c:auraMethodCallerWrapper.app -->
<aura:application >

<c:auraMethodCaller />
</aura:application>

c:auraMethodCallerWrapper.app  contains a c:auraMethodCaller  component.

<!-- c:auraMethodCaller.cmp -->
<aura:component >

<p>Parent component calls aura:method in child component</p>
<c:auraMethod aura:id="child" />

...
</aura:component>

c:auraMethodCaller  is the parent component. c:auraMethodCaller  contains the child component, c:auraMethod.

We'll show how c:auraMethodCaller  calls an aura:method  defined in c:auraMethod.

We'll use c:auraMethodCallerWrapper.app  to see how to return results from synchronous and asynchronous code.

IN THIS SECTION:

Return Result for Synchronous Code

aura:method  executes synchronously. A synchronous method finishes executing before it returns. Use the return  statement
to return a value from synchronous JavaScript code.

380

Calling Component MethodsUsing JavaScript



Return Result for Asynchronous Code

aura:method  executes synchronously. Use the return  statement to return a value from synchronous JavaScript code. JavaScript
code that calls a server-side action is asynchronous. Asynchronous code can continue to execute after it returns. You can’t use the
return  statement to return the result of an asynchronous call because the aura:method  returns before the asynchronous
code completes. For asynchronous code, use a callback instead of a return  statement.

SEE ALSO:

aura:method

Component Events

Return Result for Synchronous Code
aura:method  executes synchronously. A synchronous method finishes executing before it returns. Use the return  statement to
return a value from synchronous JavaScript code.

An asynchronous method can continue to execute after it returns. JavaScript code often uses the callback pattern to return a result after
asynchronous code completes. We’ll describe later how to return a result for an asynchronous action.

Step 1: Define aura:method  in Markup
Let’s look at a logParam aura:method  that executes synchronous code. We’ll use the c:auraMethodCallerWrapper.app
and components outlined in Calling Component Methods. Here’s the markup that defines the aura:method.

<!-- c:auraMethod -->
<aura:component>

<aura:method name="logParam"
description="Sample method with parameter">
<aura:attribute name="message" type="String" default="default message" />

</aura:method>

<p>This component has an aura:method definition.</p>
</aura:component>

The logParam aura:method  has an aura:attribute  with a name of message. This attribute enables you to set a
message  parameter when you call the logParam  method.

The name attribute of logParam  configures the aura:method  to invoke logParam()  in the client-side controller.

An aura:method  can have multiple aura:attribute  tags. Each aura:attribute  corresponds to a parameter that you
can pass into the aura:method. For more details on the syntax, see aura:method.

You don’t explicitly declare a return value in the aura:method  markup. You just use a return  statement in the JavaScript controller.

Step 2: Implement aura:method  Logic in Controller
The logParam aura:method  invokes logParam()  in auraMethodController.js. Let’s look at that source.

/* auraMethodController.js */
({

logParam : function(cmp, event) {
var params = event.getParam('arguments');
if (params) {

var message = params.message;

381

Return Result for Synchronous CodeUsing JavaScript



console.log("message: " + message);
return message;

}
},

})

logParam()  simply logs the parameter passed in and returns the parameter value to demonstrate how to use the return  statement.
If your code is synchronous, you can use a return  statement; for example, you’re not making an asynchronous server-side action call.

Step 3: Call aura:method  from Parent Controller
callAuraMethod()  in the controller for c:auraMethodCaller  calls the logParam aura:method  defined in its child
component, c:auraMethod. Here’s the controller for c:auraMethodCaller.

/* auraMethodCallerController.js */
({

callAuraMethod : function(component, event, helper) {
var childCmp = component.find("child");
// call the aura:method in the child component
var auraMethodResult =
childCmp.logParam("message sent by parent component");

console.log("auraMethodResult: " + auraMethodResult);
},

})

callAuraMethod()  finds the child component, c:auraMethod, and calls its logParam aura:method  with an argument
for the message parameter of the aura:method.

childCmp.logParam("message sent by parent component");

auraMethodResult  is the value returned from logParam.

Step 4: Add Button to Initiate Call to aura:method
The c:auraMethodCaller  markup contains a lightning:button  that invokes callAuraMethod()  in
auraMethodCallerController.js. We use this button to initiate the call to aura:method  in the child component.

<!-- c:auraMethodCaller.cmp -->
<aura:component >

<p>Parent component calls aura:method in child component</p>
<c:auraMethod aura:id="child" />

<lightning:button label="Call aura:method in child component"
onclick="{! c.callAuraMethod}" />

</aura:component>

SEE ALSO:

Return Result for Asynchronous Code

Calling Component Methods

aura:method

382

Return Result for Synchronous CodeUsing JavaScript



Return Result for Asynchronous Code
aura:method  executes synchronously. Use the return  statement to return a value from synchronous JavaScript code. JavaScript
code that calls a server-side action is asynchronous. Asynchronous code can continue to execute after it returns. You can’t use the
return  statement to return the result of an asynchronous call because the aura:method  returns before the asynchronous code
completes. For asynchronous code, use a callback instead of a return  statement.

Step 1: Define aura:method  in Markup
Let’s look at an echo aura:method  that uses a callback. We’ll use the c:auraMethodCallerWrapper.app  and components
outlined in Calling Component Methods. Here’s the echo aura:method  in the c:auraMethod  component.

<!-- c:auraMethod -->
<aura:component controller="SimpleServerSideController">

<aura:method name="echo"
description="Sample method with server-side call">
<aura:attribute name="callback" type="Function" />

</aura:method>

<p>This component has an aura:method definition.</p>
</aura:component>

The echo aura:method  has an aura:attribute  with a name of callback. This attribute enables you to set a callback that’s
invoked by the aura:method  after execution of the server-side action in SimpleServerSideController.

Step 2: Implement aura:method  Logic in Controller
The echo aura:method  invokes echo()  in auraMethodController.js. Let’s look at the source.

/* auraMethodController.js */
({

echo : function(cmp, event) {
var params = event.getParam('arguments');
var callback;
if (params) {

callback = params.callback;
}

var action = cmp.get("c.serverEcho");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

console.log("From server: " + response.getReturnValue());
// return doesn't work for async server action call
//return response.getReturnValue();
// call the callback passed into aura:method
if (callback) callback(response.getReturnValue());

}
else if (state === "INCOMPLETE") {

// do something
}
else if (state === "ERROR") {

var errors = response.getError();

383

Return Result for Asynchronous CodeUsing JavaScript



if (errors) {
if (errors[0] && errors[0].message) {

console.log("Error message: " +
errors[0].message);

}
} else {

console.log("Unknown error");
}

}
});
$A.enqueueAction(action);

},
})

echo()  calls the serverEcho()  server-side controller action, which we’ll create next.

Note:  You can’t return the result with a return statement. The aura:method  returns before the asynchronous server-side
action call completes. Instead, we invoke the callback passed into the aura:method  and set the result as a parameter in the
callback.

Step 3: Create Apex Server-Side Controller
The echo aura:method  calls a server-side controller action called serverEcho. Here’s the source for the server-side controller.

public with sharing class SimpleServerSideController {
@AuraEnabled
public static String serverEcho() {

return ('Hello from the server');
}

}

The serverEcho()  method returns a String.

Step 4: Call aura:method  from Parent Controller
Here’s the controller for c:auraMethodCaller. It calls the echo aura:method  in its child component, c:auraMethod.

/* auraMethodCallerController.js */
({

callAuraMethodServerTrip : function(component, event, helper) {
var childCmp = component.find("child");
// call the aura:method in the child component
childCmp.echo(function(result) {

console.log("callback for aura:method was executed");
console.log("result: " + result);

});
},

})

callAuraMethodServerTrip()  finds the child component, c:auraMethod, and calls its echo aura:method. echo()
passes a callback function into the aura:method.

384

Return Result for Asynchronous CodeUsing JavaScript



The callback configured in auraMethodCallerController.js  logs the result.

function(result) {
console.log("callback for aura:method was executed");
console.log("result: " + result);

}

Step 5: Add Button to Initiate Call to aura:method
The c:auraMethodCaller  markup contains a lightning:button  that invokes callAuraMethodServerTrip()
in auraMethodCallerController.js. We use this button to initiate the call to the aura:method in the child component.

Here’s the markup for c:auraMethodCaller.

<!-- c:auraMethodCaller.cmp -->
<aura:component >

<p>Parent component calls aura:method in child component</p>
<c:auraMethod aura:id="child" />

<lightning:button label="Call aura:method (server trip) in child component"
onclick="{! c.callAuraMethodServerTrip}" />

</aura:component>

SEE ALSO:

Return Result for Synchronous Code

Calling Component Methods

aura:method

Dynamically Adding Event Handlers To a Component

You can dynamically add a handler for an event that a component fires.

The addEventHandler()  method in the Component  object replaces the deprecated addHandler()  method.

To add an event handler to a component dynamically, use the addEventHandler()  method.

addEventHandler(String event, Function handler, String phase, String includeFacets)

event
The first argument is the name of the event that triggers the handler. You can’t force a component to start firing events that it doesn’t
fire, so make sure that this argument corresponds to an event that the component fires. The <aura:registerEvent>  tag in
a component’s markup advertises an event that the component fires.

• For a component event, set this argument to match the name  attribute of the <aura:registerEvent>  tag.

• For an application event, set this argument to match the event descriptor in the format namespace:eventName.

handler
The second argument is the action that handles the event. The format is similar to the value you would put in the action attribute
in the <aura:handler>  tag if the handler was statically defined in the markup. There are two options for this argument.

• To use a controller action, use the format: cmp.getReference("c.actionName").

385

Dynamically Adding Event Handlers To a ComponentUsing JavaScript



• To use an anonymous function, use the format:

function(auraEvent) {
// handling logic here

}

For a description of the other arguments, see the JavaScript API in the Aura Reference app.

You can also add an event handler to a component that is created dynamically in the callback function of $A.createComponent().
For more information, see Dynamically Creating Components.

Example
This component has buttons to fire and handle a component event and an application event.

<!--c:dynamicHandler-->
<aura:component >

<aura:registerEvent name="compEvent" type="c:sampleEvent"/>
<aura:registerEvent name="appEvent" type="c:appEvent"/>
<h1>Add dynamic handler for event</h1>
<p>

<lightning:button label="Fire component event" onclick="{!c.fireEvent}" />
<lightning:button label="Add dynamic event handler for component event"

onclick="{!c.addEventHandler}" />
</p>
<p>

<lightning:button label="Fire application event" onclick="{!c.fireAppEvent}" />
<lightning:button label="Add dynamic event handler for application event"

onclick="{!c.addAppEventHandler}" />
</p>

</aura:component>

Here’s the client-side controller.

/* dynamicHandlerController.js */
({

fireEvent : function(cmp, event) {
// Get the component event by using the
// name value from <aura:registerEvent> tag
var compEvent = cmp.getEvent("compEvent");
compEvent.fire();
console.log("Fired a component event");

},

addEventHandler : function(cmp, event) {
// First param matches name attribute in <aura:registerEvent> tag
cmp.addEventHandler("compEvent", cmp.getReference("c.handleEvent"));
console.log("Added handler for component event");

},

handleEvent : function(cmp, event) {
alert("Handled the component event");

},

386

Dynamically Adding Event Handlers To a ComponentUsing JavaScript

http://documentation.auraframework.org/auradocs#reference


fireAppEvent : function(cmp, event) {
var appEvent = $A.get("e.c:appEvent");
appEvent.fire();
console.log("Fired an application event");

},

addAppEventHandler : function(cmp, event) {
// Can use cmp.getReference() or anonymous function for handler
// First param is event descriptor, "c:appEvent", for application events
cmp.addEventHandler("c:appEvent", cmp.getReference("c.handleAppEvent"));
// Can alternatively use anonymous function for handler
//cmp.addEventHandler("c:appEvent", function(auraEvent) {

// console.log("Handled the application event in anonymous function");
//});
console.log("Added handler for application event");

},

handleAppEvent : function(cmp, event) {
alert("Handled the application event");

}
})

Notice the first parameter of the addEventHandler()  calls. The syntax for a component event is:

cmp.addEventHandler("compEvent", cmp.getReference("c.handleEvent"));

The syntax for an application event is:

cmp.addEventHandler("c:appEvent", cmp.getReference("c.handleAppEvent"));

For either a component or application event, you can use an anonymous function as a handler instead of using cmp.getReference()
for a controller action.

For example, the application event handler could be:

cmp.addEventHandler("c:appEvent", function(auraEvent) {
// add handler logic here
console.log("Handled the application event in anonymous function");

});

SEE ALSO:

Handling Events with Client-Side Controllers

Handling Component Events

Component Library

Dynamically Showing or Hiding Markup

You can use CSS to toggle markup visibility. However, <aura:if>  is the preferred approach because it defers the creation and
rendering of the enclosed element tree until needed.

For an example using <aura:if>, see Best Practices for Conditional Markup.

387

Dynamically Showing or Hiding MarkupUsing JavaScript



This example uses $A.util.toggleClass(cmp, 'class')  to toggle visibility of markup.

<!--c:toggleCss-->
<aura:component>

<lightning:button label="Toggle" onclick="{!c.toggle}"/>
<p aura:id="text">Now you see me</p>

</aura:component>

/*toggleCssController.js*/
({

toggle : function(component, event, helper) {
var toggleText = component.find("text");
$A.util.toggleClass(toggleText, "toggle");

}
})

/*toggleCss.css*/
.THIS.toggle {

display: none;
}

Note:  There’s no space in the .THIS.toggle  selector because we’re using the rule to match a <p>  tag, which is a top-level
element. For more information, see CSS in Components.

Add the c:toggleCss  component to an app. To hide or show the text by toggling the CSS class, click the Toggle button.

SEE ALSO:

Handling Events with Client-Side Controllers

Component Attributes

Adding and Removing Styles

Adding and Removing Styles

You can add or remove a CSS style on a component or element during runtime.

To retrieve the class name on a component, use component.find('myCmp').get('v.class'), where myCmp  is the
aura:id  attribute value.

To append and remove CSS classes from a component or element, use the $A.util.addClass(cmpTarget, 'class')
and $A.util.removeClass(cmpTarget, 'class') methods.

Component source

<aura:component>
<div aura:id="changeIt">Change Me!</div><br />
<lightning:button onclick="{!c.applyCSS}" label="Add Style" />
<lightning:button onclick="{!c.removeCSS}" label="Remove Style" />

</aura:component>

CSS source

.THIS.changeMe {
background-color:yellow;

388

Adding and Removing StylesUsing JavaScript



width:200px;
}

Client-side controller source

{
applyCSS: function(cmp, event) {

var cmpTarget = cmp.find('changeIt');
$A.util.addClass(cmpTarget, 'changeMe');

},

removeCSS: function(cmp, event) {
var cmpTarget = cmp.find('changeIt');
$A.util.removeClass(cmpTarget, 'changeMe');

}
}

The buttons in this demo are wired to controller actions that append or remove the CSS styles. To append a CSS style to a component,
use $A.util.addClass(cmpTarget, 'class'). Similarly, remove the class by using
$A.util.removeClass(cmpTarget, 'class')  in your controller. cmp.find()  locates the component using the local
ID, denoted by aura:id="changeIt"  in this demo.

Toggling a Class
To toggle a class, use $A.util.toggleClass(cmp, 'class'), which adds or removes the class.

The cmp  parameter can be component or a DOM element.

Note:  We recommend using a component instead of a DOM element. If the utility function is not used inside afterRender()
or rerender(), passing in cmp.getElement()  might result in your class not being applied when the components are
rerendered. For more information, see Events Fired During the Rendering Lifecycle  on page 292.

To hide or show markup dynamically, see Dynamically Showing or Hiding Markup on page 387.

To conditionally set a class for an array of components, pass in the array to $A.util.toggleClass().

mapClasses: function(arr, cssClass) {
for(var cmp in arr) {

$A.util.toggleClass(arr[cmp], cssClass);
}

}

SEE ALSO:

Handling Events with Client-Side Controllers

CSS in Components

Component Bundles

Which Button Was Pressed?

To find out which button was pressed in a component containing multiple buttons, use Component.getLocalId().

389

Which Button Was Pressed?Using JavaScript



Let’s look at an example with multiple lightning:button  components. Each button has a unique local ID, set by an aura:id
attribute.

<!--c:buttonPressed-->
<aura:component>

<aura:attribute name="whichButton" type="String" />

<p>You clicked: {!v.whichButton}</p>

<lightning:button aura:id="button1" label="Click me" onclick="{!c.nameThatButton}"/>
<lightning:button aura:id="button2" label="Click me too" onclick="{!c.nameThatButton}"/>

</aura:component>

Use event.getSource()  in the client-side controller to get the button component that was clicked. Call getLocalId()  to
get the aura:id  of the clicked button.

/* buttonPressedController.js */
({

nameThatButton : function(cmp, event, helper) {
var whichOne = event.getSource().getLocalId();
console.log(whichOne);
cmp.set("v.whichButton", whichOne);

}
})

In the client-side controller, you can use one of the following methods to find out which button was clicked.

• event.getSource().getLocalId()  returns the aura:id  of the clicked button.

• event.getSource().get("v.name")  returns the name  of the clicked button.

SEE ALSO:

Component IDs

Finding Components by ID

Formatting Dates in JavaScript

The AuraLocalizationService  JavaScript API provides methods for formatting and localizing dates.

For example, the formatDate()  method formats a date based on the formatString  parameter set as the second argument.

formatDate (String | Number | Date date, String formatString)

The date  parameter can be a String, Number, or most typically a JavaScript Date. If you provide a String value, use ISO 8601 format to
avoid parsing warnings.

The formatString  parameter contains tokens to format a date and time. For example, "YYYY-MM-DD"  formats 15th
January, 2017  as "2017-01-15". The default format string comes from the $Locale  value provider.

This table shows the list of tokens supported in formatString.

OutputTokenDescription

1 … 31dDay of month

01 … 31ddDay of month

390

Formatting Dates in JavaScriptUsing JavaScript

https://www.iso.org/iso-8601-date-and-time-format.html


OutputTokenDescription

01 … 31DDDay of month. Deprecated. Use dd, which is
identical.

0 … 6EDay of week (number)

Sun … SatEEEDay of week (short name)

Sunday … SaturdayEEEEDay of week (long name)

1 ... 12MMonth

01 … 12MMMonth

Jan … DecMMMMonth (short name)

January … DecemberMMMMMonth (full name)

17yyYear (two digits)

2017yyyyYear (four digits)

2017yYear. Deprecated. Use yyyy, which is identical.

2017YYear. Deprecated. Use yyyy, which is identical.

17YYYear. Deprecated. Use yy, which is identical.

2017YYYYYear. Deprecated. Use yyyy, which is identical.

1 … 12hHour of day (1-12)

0 … 23HHour of day (0-23)

00 … 23HHHour of day (00-23)

1 … 24kHour of day (1-24)

01 … 24kkHour of day (01-24)

0 … 59mMinute

00 … 59mmMinute

0 … 59sSecond

00 … 59ssSecond

000 … 999SSSFraction of second

AM or PMaAM or PM

AM or PMAAM or PM. Deprecated. Use a, which is identical.

-12:00 … +14:00ZZone offset from UTC

1 … 4QQuarter of year

1 … 53wWeek of year

391

Formatting Dates in JavaScriptUsing JavaScript



OutputTokenDescription

01 … 53wwWeek of year

There are similar methods that differ in their default output values.

• formatDateTime()—The default formatString outputs datetime instead of date.

• formatDateTimeUTC()—Formats a datetime in UTC standard time.

• formatDateUTC()—Formats a date in UTC standard time.

For more information on all the methods in AuraLocalizationService, see JavaScript API.

Example: Use $A.localizationService  to use the methods in AuraLocalizationService.

var now = new Date();
var dateString = "2017-01-15";

// Returns date in the format "Jun 8, 2017"
console.log($A.localizationService.formatDate(now));

// Returns date in the format "Jan 15, 2017"
console.log($A.localizationService.formatDate(dateString));

// Returns date in the format "2017 01 15"
console.log($A.localizationService.formatDate(dateString, "yyyy MM dd"));

// Returns date in the format "June 08 2017, 01:45:49 PM"
console.log($A.localizationService.formatDate(now, "MMMM dd yyyy, hh:mm:ss a"));

// Returns date in the format "Jun 08 2017, 01:48:26 PM"
console.log($A.localizationService.formatDate(now, "MMM dd yyyy, hh:mm:ss a"));

SEE ALSO:

Localization

Using JavaScript Promises

You can use ES6 Promises in JavaScript code. Promises can simplify code that handles the success or failure of asynchronous calls, or
code that chains together multiple asynchronous calls.

If the browser doesn’t provide a native version, the framework uses a polyfill so that promises work in all browsers supported for Lightning
Experience.

We assume that you are familiar with the fundamentals of promises. For a great introduction to promises, see
https://web.dev/articles/promises.

Promises are an optional feature. Some people love them, some don’t. Use them if they make sense for your use case.

392

Using JavaScript PromisesUsing JavaScript

https://web.dev/articles/promises


Create a Promise
This firstPromise  function returns a Promise.

firstPromise : function() {
return new Promise($A.getCallback(function(resolve, reject) {
// do something

if (/* success */) {
resolve("Resolved");

}
else {
reject("Rejected");

}
}));

}

The promise constructor determines the conditions for calling resolve()  or reject()  on the promise.

Chaining Promises
When you need to coordinate or chain together multiple callbacks, promises can be useful. The generic pattern is:

firstPromise()
.then(

// resolve handler
$A.getCallback(function(result) {

return anotherPromise();
}),

// reject handler
$A.getCallback(function(error) {

console.log("Promise was rejected: ", error);
return errorRecoveryPromise();

})
)
.then(

// resolve handler
$A.getCallback(function() {

return yetAnotherPromise();
})

);

The then()  method chains multiple promises. In this example, each resolve handler returns another promise.

then()  is part of the Promises API. It takes two arguments:

1. A callback for a fulfilled promise (resolve handler)

2. A callback for a rejected promise (reject handler)

The first callback, function(result), is called when resolve()  is called in the promise constructor. The result  object in
the callback is the object passed as the argument to resolve().

The second callback, function(error), is called when reject()  is called in the promise constructor. The error  object in
the callback is the object passed as the argument to reject().

393

Using JavaScript PromisesUsing JavaScript



Note:  The two callbacks are wrapped by $A.getCallback()  in our example. What’s that all about? Promises execute their
resolve and reject functions asynchronously so the code is outside the Lightning event loop and normal rendering lifecycle. If the
resolve or reject code makes any calls to the Lightning Component framework, such as setting a component attribute, use
$A.getCallback()  to wrap the code. For more information, see Modifying Components Outside the Framework Lifecycle
on page 377.

Always Use catch() or a Reject Handler
The reject handler in the first then() method returns a promise with errorRecoveryPromise(). Reject handlers are often
used "midstream" in a promise chain to trigger an error recovery mechanism.

The Promises API includes a catch()  method to optionally catch unhandled errors. Always include a reject handler or a catch()
method in your promise chain.

Throwing an error in a promise doesn’t trigger window.onerror, which is where the framework configures its global error handler.
If you don't have a catch() method, keep an eye on your browser’s console during development for reports about uncaught errors
in a promise. To show an error message in a catch()  method, use $A.reportError(). The syntax for catch()  is:

promise.then(...)
.catch(function(error) {

$A.reportError("error message here", error);
});

For more information on catch(), see the Mozilla Developer Network.

Don’t Use Storable Actions in Promises
The framework stores the response for storable actions in client-side cache. This stored response can dramatically improve the performance
of your app and allow offline usage for devices that temporarily don’t have a network connection. Storable actions are only suitable for
read-only actions.

Storable actions might have their callbacks invoked more than once: first with cached data, then with updated data from the server. The
multiple invocations don't align well with promises, which are expected to resolve or reject only once.

SEE ALSO:

Storable Actions

Making API Calls from Components

By default, you can’t make calls to third-party APIs from client-side code. Add a remote site as a Trusted URL with Content Security Policy
(CSP) directives to allow client-side component code to load assets from and make API requests to that site’s domain.

The Lightning Component framework uses Content Security Policy (CSP) to impose restrictions on content. The main objective is to help
prevent cross-site scripting (XSS) and other code injection attacks. Lightning apps are served from a different domain than Salesforce
APIs, and the default CSP policy doesn’t allow API calls from JavaScript code. You change the policy, and the content of the CSP header,
by adding Trusted URLs. See the CspTrustedSite Tooling API or Manage Trusted URLs in Salesforce Help.

Important:  Otherwise, you can’t load JavaScript resources from a third party, even if it’s a trusted URL. To use a JavaScript library
from a third-party site, add that third-party site to a static resource, and then add the static resource to your component. After the
library is loaded from the static resource, you can use it as normal.

394

Making API Calls from ComponentsUsing JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)


Sometimes, you have to make API calls from server-side controllers rather than client-side code. In particular, you can’t make calls to
Salesforce APIs from client-side Aura component code. For information about making API calls from server-side controllers, see Making
API Calls from Apex on page 462.

SEE ALSO:

Content Security Policy Overview

Manage Trusted URLs

Control Access to Browser Features

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To modify session security
settings:
• Customize Application

To control whether requests to an external (non-Salesforce) server or URL can access the user’s
camera and microphone, enable the Permissions-Policy HTTP header. Then select when to allow
access to each of these browser features.

1. From Setup, in the Quick Find box, enter Session Settings, and then select Session
Settings.

2. In the Browser Feature Permissions section, select Include Permissions-Policy HTTP header.
When this setting is disabled, all external apps and websites loaded from Salesforce can access
the user’s camera and microphone.

3. For Camera and Microphone, select when requests from Salesforce can access the browser
feature.

a. For the most granular control over access to this browser feature, select Trusted URLs
Only.
After you select this recommended setting, specify trusted URLs and the browser features
that they can access from the Trusted URLs Setup page.

b. To grant access to this browser feature for all external apps and websites loaded from
Salesforce, select Always.

c. To block access to the browser feature for all external apps and websites loaded from
Salesforce, select Never.
If you select Never, even scripts from Salesforce domains can’t access the browser feature.

4. Save your changes.

SEE ALSO:

Manage Trusted URLs

395

Control Access to Browser FeaturesUsing JavaScript

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US


Manage Trusted URLs

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Developer,
and Unlimited Editions

USER PERMISSIONS

To create, read, update, and
delete trusted URLs:
• Customize Application

AND Modify All Data

Specify the URLs that you trust to interact with your users and network. Use Content Security Policy
(CSP) directives to control the types of resources that Lightning components, third-party APIs, and
WebSocket connections can load from each trusted URL. If you enabled the Permissions-Policy
HTTP header in Session Settings, you can also control which URLs can access browser features from
Salesforce.

For each trusted URL in Setup, you can specify CSP directives and Permissions-Policy directives. To
specify the external URLs to which users can be redirected from Salesforce, see Manage Redirections
to External URLs. To allow external sites to load your Visualforce pages or surveys in an inline frame
(iframe), see Specify Trusted Domains for Inline Frames.

Note:  To support integration across Salesforce products, Salesforce includes URLs in each
CSP directive, even though those URLs aren’t defined as trusted URLs. Salesforce regularly
updates those URLs based on the latest requirements.

Add or Edit a Trusted URL
For each trusted URL in Setup, you can specify Content Security Policy (CSP) directives and
Permissions-Policy directives.

1. From Setup, in the Quick Find box, enter Trusted URLs, and then select Trusted URLs.

2. To add a new trusted URL, click New Trusted URL.

3. To edit an existing trusted URL, click Edit.

4. If you’re adding a trusted URL, enter the API Name.

396

Manage Trusted URLsUsing JavaScript

https://help.salesforce.com/s/articleView?id=sf.security_external_redirects.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.security_external_redirects.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.security_clickjack_specify_iframe_trusted_domains.htm&language=en_US


Enter only underscores and alphanumeric characters. The name must be unique, begin with a letter, not include spaces, not end
with an underscore, and not contain two consecutive underscores.

If you edit the API name of an existing trusted URL, review your code and update references to the previous API name.

5. Edit or enter the URL.

The trusted URL must include a domain name and can include a port. For example, https://example.com or https://example.com:8080.

To reduce repetition, you can use the wildcard character * (asterisk). For example, *.example.com.

For a third-party API, the URL must begin with https://. For example, https://example.com.

For a WebSocket connection, the URL must begin with wss://. For example, wss://example.com.

6. Optionally, enter or edit a description for the trusted URL.

7. Optionally, to temporarily disable this trusted URL, deselect Active.

8. Specify at least one CSP directive or permissions policy directive for the trusted URL, and then save your changes.

Specify CSP Directives for a Trusted URL
To help prevent cross-site scripting (XSS) and other code injection attacks, the Lightning component framework uses Content Security
Policy (CSP) to impose restrictions on content. By default, the framework’s headers allow content to be loaded only from secure (HTTPS)
URLs and forbid XHR requests from JavaScript. To use third-party APIs that make requests to an external (non-Salesforce) server or to
use a WebSocket connection, add the server as a Trusted URL.

To enable the corresponding access for Apex, create a remote site.

Note:  Not every browser enforces CSP. For a list of browsers that enforce CSP, see caniuse.com

1. From Setup, in the Quick Find box, enter Trusted URLs, and then select Trusted URLs.

You define the CSP context and directives in the Content Security Policy (CSP) Settings section of the Trusted URL page.

2. To control which pages can load content from this trusted URL, select the CSP context.

a. To apply the CSP directives to all supported context types, select All. This context is the default.

397

Specify CSP Directives for a Trusted URLUsing JavaScript

http://caniuse.com/contentsecuritypolicy


b. To apply the CSP directives to Experience Cloud sites only, select Experience Builder Sites.

c. To apply the CSP directives to Lightning Experience pages only, select Lightning Experience pages.

d. To apply the CSP directives to your custom Visualforce pages only, select Visualforce Pages.

For custom Visualforce pages, content is restricted to CSP Trusted Sites only if the page’s cspHeader  attribute is set to true.

Tip:  To specify CSP directives for one URL with two of the three CSP contexts, create two trusted URL records with different
API names.

3. Select the CSP directives for this trusted URL. Each CSP directive controls access to a resource type. Lightning components can load
the resources within Lightning or within your CSP-secured Aura or LWR sites.

a. To allow Lightning components, third-party APIs, and WebSocket connections to load URLs that use script interfaces from this
trusted URL, select connect-src (scripts).

Note: To use the Salesforce Console Integration Toolkit from within a trusted URL, also add the trusted URL in the Security
settings of Experience Builder for your Visualforce sites. Otherwise, you can’t load JavaScript resources from a third party,
even if it’s a trusted URL.

To use a JavaScript library from a third party, add the library to a static resource, and then add the static resource to your
component.

b. To allow Lightning components, third-party APIs, and WebSocket connections to load fonts from this trusted URL, select font-src
(fonts).

c. To allow Lightning components, third-party APIs, and WebSocket connections to load resources contained in <iframe>
elements from this trusted URL, select frame-src (iframe content).

d. To allow Lightning components, third-party APIs, and WebSocket connections to load images from this trusted URL, select
img-src (images). This option is enabled by default.

e. To allow Lightning components, third-party APIs, and WebSocket connections to load audio and video from this trusted URL,
select media-src (audio and video).

f. To allow Lightning components, third-party APIs, and WebSocket connections to load style sheets from this trusted URL, select
style-src (stylesheets).

4. After you save your changes, validate the header size for your Aura sites.
For Aura sites in Experience Cloud, if the HTTP header size is greater than 8 KB, the directives are moved from the CSP header to the
<meta>  tag. To avoid errors from infrastructure limits, we recommend that the header size doesn’t exceed 3 KB per CSP context.

SEE ALSO:

Configure Remote Site Settings

Secure Coding Guide: Secure Coding WebSockets

Lightning Aura Components Developer Guide: Content Security Policy Overview

Grant a Trusted URL Access to Browser Features
Select the permissions policy directives for a trusted URL. Each directive grants the trusted URL access to a browser feature.

To use this feature, enable the Permissions-Policy header in Session Settings. You can control access to a browser feature at the trusted
URL level only when access for the corresponding feature is set to Trusted URLs Only in Session Settings.

1. Add or edit a trusted URL.

398

Grant a Trusted URL Access to Browser FeaturesUsing JavaScript

https://help.salesforce.com/s/articleView?id=sf.exp_cloud_basics_glossary.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.exp_cloud_basics_glossary.htm&language=en_US
https://developer.salesforce.com/docs/platform/lwc/guide/create-resources.html
https://help.salesforce.com/apex/HTViewHelpDoc?id=configuring_remoteproxy.htm&language=en_US#configuring_remoteproxy
https://developer.salesforce.com/docs/atlas.en-us.248.0.secure_coding_guide.meta/secure_coding_guide/secure_coding_websockets.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/security_csp.htm


You grant access to browser features in the Permissions Policy Directives section of the Trusted URL page.

2. To grant this trusted URL permission access to the user’s camera, select camera.

3. To grant this trusted URL permission access to the user’s camera, select microphone.

SEE ALSO:

Control Access to Browser Features

399

Grant a Trusted URL Access to Browser FeaturesUsing JavaScript



CHAPTER 11 Working with Salesforce Data

To create, read, and update Salesforce data from an Aura component, use Lightning Data Service via
force:recordData  or the form-based components. To delete Salesforce data, use
force:recordData.

In this chapter ...

• Lightning Data
Service

• Using Apex

400



Lightning Data Service

Use Lightning Data Service to load, create, edit, or delete a record in your component without requiring Apex code. Lightning Data
Service handles sharing rules and field-level security for you. In addition to simplifying access to Salesforce data, Lightning Data Service
improves performance and user interface consistency.

At the simplest level, you can think of Lightning Data Service as the Lightning components version of the Visualforce standard controller.
While this statement is an over-simplification, it serves to illustrate a point. Whenever possible, use Lightning Data Service to read and
modify Salesforce data in your components.

Data access with Lightning Data Service is simpler than the equivalent using a server-side Apex controller. Read-only access can be
entirely declarative in your component’s markup. For code that modifies data, your component’s JavaScript controller is roughly the
same amount of code, and you eliminate the Apex entirely. All your data access code is consolidated into your component, which
significantly reduces complexity.

Lightning Data Service provides other benefits aside from the code. It’s built on highly efficient local storage that’s shared across all
components that use it. Records loaded in Lightning Data Service are cached and shared across components.

Note:  Working with Lightning Data Service in Lightning Web Components? See the Lightning Web Components Developer
Guide.

Components accessing the same record see significant performance improvements, because a record is loaded only once, no matter
how many components are using it. Shared records also improve user interface consistency. When one component updates a record,
the other components using it are notified, and in most cases, refresh automatically.

Creating Components That Use Lightning Data Service
Lightning Data Service is available through force:recordData  and several base components. To return raw record data, for
example if you need to view or edit only a few fields, and don't need any UI elements or layout information, use force:recordData.
When using force:recordData, load the data once and pass it to child components as attributes. This approach reduces the
number of listeners and minimizes server calls, which improves performance and ensures that your components show consistent data.
For more information, see force:recordData documentation.

To create a form for working with records, use lightning:recordForm, lightning:recordEditForm, or
lightning:recordViewForm. One advantage of using the form-based components is that you can achieve many of your record
display needs entirely in markup without JavaScript. Another powerful feature of the form-based components is automatic field mapping
with field-level validation. The form-based components use a base component that’s appropriate for the field type to render the field
automatically.

force:recordData  doesn’t include any UI elements; it’s simply logic and a way to communicate to the server. Here are the
components that use Lightning Data Service.

lightning:recordForm
Display, create, or edit records

lightning:recordViewForm
Display records with lightning:outputField

lightning:recordEditForm
Create or edit records with lightning:inputField

force:recordData
Create, edit, or delete record data using your own custom UI components

401

Lightning Data ServiceWorking with Salesforce Data

https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.data_ui_api
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.data_ui_api
https://developer.salesforce.com/docs/component-library/bundle/force:recordData/documentation


IN THIS SECTION:

Loading a Record

Loading a record can be accomplished entirely in markup using lightning:recordForm. If you need a custom layout, use
lightning:recordViewForm. If you need more customization than the form-based components allow for viewing record
data, use force:recordData.

Editing a Record

The simplest way to create a form that enables you to edit a record is to use the lightning:recordForm  component. If you
want to customize the form layout or preload custom values, use lightning:recordEditForm. If you want to customize
a form more than the form-based components allow, use force:recordData.

Creating a Record

The simplest way to create a form that enables users create a record is to use lightning:recordForm. If you want to customize
the form layout or preload custom values, use lightning:recordEditForm. If you need more customization than the
form-based components allow, use force:recordData.

Deleting a Record

To delete a record using Lightning Data Service, call deleteRecord  on the force:recordData component, and pass in
a callback function to be invoked after the delete operation completes. The form-based components, such as
lightning:recordForm, don’t currently support deleting a record.

Record Changes

To perform more advanced tasks using force:recordData  when the record changes, handle the recordUpdated  event.
You can handle record loaded, updated, and deleted changes, applying different actions to each change type.

Handling Errors

Lightning Data Service returns an error when a resource, such as a record or an object, is inaccessible on the server.

Changing the Display Density

In Lightning Experience, the display density setting determines how densely content is displayed and where field labels are located.
Display density is controlled for the org in Setup, and users can also set display density to their liking from their profile menu.

Considerations

Lightning Data Service is powerful and simple to use. However, it’s not a complete replacement for writing your own data access
code. Here are some considerations to keep in mind when using it.

Lightning Action Examples

Here are some examples that use the base components to create a Quick Contact action panel.

SaveRecordResult

Represents the result of a Lightning Data Service operation that makes a persistent change to record data.

Displaying the Create and Edit Record Modals

You can take advantage of built-in events to display modals that let you create or edit records via an Aura component.

Loading a Record
Loading a record can be accomplished entirely in markup using lightning:recordForm. If you need a custom layout, use
lightning:recordViewForm. If you need more customization than the form-based components allow for viewing record data,
use force:recordData.

402

Loading a RecordWorking with Salesforce Data



Display a Record Using lightning:recordForm
To display a record using lightning:recordForm, provide the record ID and the object API name. Additionally, provide fields
using either the fields  or layoutType  attribute. You can display a record in two modes using the mode  attribute.

view
Loads the form using output fields with inline editing enabled. Editable fields have edit icons. If a user clicks an edit icon, editable
fields in the form become editable, and the form displays Cancel and Save buttons. This is the default mode when a record ID is
provided.

readonly
Loads the form with output fields only. The form doesn’t include edit icons or Cancel and Save buttons.

This example displays an account record in view mode using the compact layout, which includes fewer fields than the full layout. The
columns  attribute displays the record fields in two columns that are evenly sized. Update the record ID with your own.

<aura:component>
<lightning:recordForm

recordId="001XXXXXXXXXXXXXXX"
objectApiName="Account"
layoutType="Compact"
columns="2"/>

</aura:component>

To display the field values on a record page, implement the flexipage:availableForRecordHome  and
flexipage:hasRecordId. The component automatically inherits the record ID.

This example displays read-only values for the account’s Name and Industry  fields. Add this example to an account record page.

<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId">
<aura:attribute name="recordId" type="String" />
<aura:attribute name="fields" type="String[]" default="['Name','Industry']" />
<lightning:recordForm recordId="{!v.recordId}"

objectApiName="Account"
mode="readonly"
fields="{!v.fields}" />

If you provide both fields  and layoutType  attributes, the display order of the fields is not guaranteed. To specify the field order,
use fields  without the layoutType  attribute. Alternatively, use the lightning:recordViewForm  component as shown
in the next section.

Display a Record with a Custom Layout Using lightning:recordViewForm
To display a read-only record with a custom layout, use the lightning:recordViewForm  component. To compose a form field,
use lightning:outputField components, which maps to a Salesforce field by using the fieldName  attribute. Including
individual fields lets you style a custom layout using the Lightning Design System utility classes, such as the grid system.

<aura:component>
<lightning:recordViewForm recordId="001XXXXXXXXXXXXXXX"

objectApiName="Account">
<div class="slds-grid">

<div class="slds-col slds-size_2-of-3">
<lightning:outputField fieldName="Name" />
<lightning:outputField fieldName="Phone" />

</div>
<div class="slds-col slds-size_1-of-3">

403

Loading a RecordWorking with Salesforce Data



<lightning:outputField fieldName="Industry" />
<lightning:outputField fieldName="AnnualRevenue" />

</div>
</div>

</lightning:recordViewForm>
</aura:component>

If you require more customization when displaying a record than what lightning:recordForm  and
lightning:recordViewForm  allow, consider using force:recordData.

Display Record Data in a Custom User Interface Using force:recordData
force:recordData  enables granular customization, including providing your own component to load data. To load a record using
Lightning Data Service, add the force:recordData  tag to your component and specify:

• The ID of the record to load

• A component attribute to assign the loaded record

• A list of fields to load

To specify a list of fields to load, use the fields  attribute. For example, fields="Name,BillingCity,BillingState".

Alternatively, you can specify a layout using the layoutType  attribute. All fields on that layout are loaded for the record. The layout
depends on the page layout assignment for the profile. For example, if a user using the Marketing User profile is assigned the default
account layout, all fields on that layout are available to that user. Layouts are typically modified by administrators, so layoutType
isn’t as flexible as fields  when you want to request specific fields. Loading record data using layoutType  allows your component
to adapt to layout definitions. Valid values for layoutType  are FULL  and COMPACT.

Note:  We recommend that you use the fields attribute instead of layoutType. Use layoutType  only if you want the
administrator, not the component, to control the fields that are provisioned. The component must handle receiving every field
that is assigned to the layout for the context user.

To get a field from an object regardless of whether an admin has included it in a layout, use the fields  attribute and request the field
by name.

targetRecord  is populated with the current record, containing the fields relevant to the requested layoutType  or the fields
listed in the fields  attribute. targetFields  is populated with a simplified view of the loaded record. For example, for the Name
field, v.targetRecord.fields.Name.value  is equivalent to v.targetFields.Name.

Example: Loading a Record

The following example illustrates the essentials of loading a record using force:recordData. This component can be added
to a record home page in the Lightning App Builder, or as a custom action. The record ID is supplied by the implicit recordId
attribute added by the force:hasRecordId  interface.

ldsLoad.cmp

<aura:component implements="flexipage:availableForRecordHome,
force:lightningQuickActionWithoutHeader, force:hasRecordId">

<aura:attribute name="record" type="Object"/>
<aura:attribute name="simpleRecord" type="Object"/>
<aura:attribute name="recordError" type="String"/>

<force:recordData aura:id="recordLoader"
fields="Name,BillingCity,BillingState,Industry"
recordId="{!v.recordId}"

404

Loading a RecordWorking with Salesforce Data



targetFields="{!v.simpleRecord}"
targetError="{!v.recordError}"
recordUpdated="{!c.handleRecordUpdated}"
/>

<!-- Display a lightning card with details about the record -->
<div class="Record Details">
<lightning:card iconName="standard:account" title="{!v.simpleRecord.Name}" >

<div class="slds-p-horizontal--small">
<p class="slds-text-heading--small">

<lightning:formattedText title="Billing City"
value="{!v.simpleRecord.BillingCity}" /></p>

<p class="slds-text-heading--small">
<lightning:formattedText title="Billing State"

value="{!v.simpleRecord.BillingState}" /></p>
</div>

</lightning:card>
</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.recordError))}">

<div class="recordError">
{!v.recordError}</div>

</aura:if>
</aura:component>

When you use the fields  attribute, the targetFields  attribute returns the record’s Id  and SystemModstamp  fields,
in addition to the fields you requested. In this example, {!v.simpleRecord} returns:

{
"Id":"0011a0000000000000",
"Name":"Salesforce",
"SystemModstamp":"2020-06-14T23:44:43.000Z",
"BillingCity":"San Franscisco",
"BillingState":"CA",
"Industry":"Technology"

}

ldsLoadController.js

({
handleRecordUpdated: function(component, event, helper) {

var eventParams = event.getParams();
if(eventParams.changeType === "LOADED") {

// record is loaded (render other component which needs record data value)

console.log("Record is loaded successfully.");
console.log("You loaded a record in " +

component.get("v.simpleRecord.Industry"));
} else if(eventParams.changeType === "CHANGED") {

// record is changed
} else if(eventParams.changeType === "REMOVED") {

// record is deleted
} else if(eventParams.changeType === "ERROR") {

// there’s an error while loading, saving, or deleting the record

405

Loading a RecordWorking with Salesforce Data



}
}

})

When the record loads or updates, to access the record fields in the JavaScript controller, use the
component.get("v.simpleRecord.fieldName")  syntax.

force:recordData  loads data asynchronously by design since it may go to the server to retrieve data. To track when the
record is loaded or changed, use the recordUpdated  event as shown in the previous example. Alternatively, you can place
a change handler on the attribute provided to targetRecord  or targetFields.

SEE ALSO:

Component Library: lightning:recordForm

Component Library: lightning:recordViewForm

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

Editing a Record
The simplest way to create a form that enables you to edit a record is to use the lightning:recordForm  component. If you
want to customize the form layout or preload custom values, use lightning:recordEditForm. If you want to customize a form
more than the form-based components allow, use force:recordData.

Edit a Record using lightning:recordForm
To edit a record using lightning:recordForm, provide the record ID and object API name. When you provide a record ID, view
mode is the default mode of this component, which displays fields with edit icons. If you click an edit icon, all fields in the form become
editable.

This example creates a form that lets users update fields on an account record when an edit icon is clicked. It displays the fields from the
compact layout in two columns. Add this example component to an account record page. The component inherits the record ID via
the force:hasRecordId  interface.

<aura:component implements="flexipage:availableForRecordHome, force:hasRecordId">
<lightning:recordForm

recordId = "{!v.recordId}"
objectApiName="Account"
layoutType="Compact"
columns="2" />

</aura:component>

When the record is saved successfully, all components that contain the updated field values are refreshed automatically.

Add mode="edit"  to transform the form to one that displays input fields for editing. The form displays a Save button that updates
the record, and a Cancel button that reverts changes.

<aura:component implements="flexipage:availableForRecordHome, force:hasRecordId">
<lightning:recordForm

recordId = "{!v.recordId}"
objectApiName="Account"
layoutType="Compact"

406

Editing a RecordWorking with Salesforce Data

https://developer.salesforce.com/docs/component-library/bundle/lightning:recordForm/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:recordViewForm/documentation


mode="edit" />
</aura:component>

Customize Error Handling in lightning:recordForm
To customize the behavior when a record is saved successfully, use the onsuccess  event handler. Errors are automatically handled
and displayed. To customize them, use the onerror  event handler.

<aura:component implements="flexipage:availableForRecordHome, force:hasRecordId">

<!-- Displays a toast notification -->
<lightning:notificationsLibrary aura:id="notifLib" />
<lightning:recordForm

recordId = "{!v.recordId}"
objectApiName="Account"
layoutType="Compact"
mode="edit"
onsuccess="{!c.handleSuccess}"
onerror="{!c.handleError}"/>

</aura:component>

A toast notification is displayed when a record is saved successfully or when an error is encountered during save.

({
handleSuccess: function (cmp, event, helper) {

cmp.find('notifLib').showToast({
"title": "Record updated!",
"message": "The record "+ event.getParam("id") + " has been updated

successfully.",
"variant": "success"

});
},

handleError: function (cmp, event, helper) {
cmp.find('notifLib').showToast({

"title": "Something has gone wrong!",
"message": event.getParam("message"),
"variant": "error"

});
}

})

Note:  For more information, see lightning:recordForm.

Edit a Record with a Custom Layout Using lightning:recordEditForm
To provide a custom layout for your form fields, use the lightning:recordEditForm  component.

Pass in the fields to lightning:inputField, which displays an input control based on the record field type.

This example displays a form with two fields using a custom layout. Add this example component to an account record page.

<aura:component implements="flexipage:availableForRecordHome, force:hasRecordId">
<lightning:recordEditForm

407

Editing a RecordWorking with Salesforce Data

https://developer.salesforce.com/docs/component-library/bundle/lightning:recordForm/documentation


recordId="{!v.recordId}"
objectApiName="Account">
<lightning:messages />

<div class="slds-grid">
<div class="slds-col slds-size_1-of-2">

<lightning:inputField fieldName="Name"/>
</div>
<div class="slds-col slds-size_1-of-2">

<lightning:inputField fieldName="Industry"/>
</div>

</div>
<lightning:button class="slds-m-top_small" type="submit" label="Create new" />

</lightning:recordEditForm>
</aura:component>

When a server error is encountered, lightning:recordEditForm  displays an error message above the form fields using the
lightning:messages  component. Alternatively, provide your own error handling using the onerror  event handler.

Another feature that lightning:recordEditForm provides that’s not available with lightning:recordForm  is displaying
the form with custom field values, as shown in the next section.

Prepopulate Field Values
To provide a custom field value when the form displays, use the value  attribute on lightning:inputField. If you're providing
a record ID, the value returned by the record on load does not override this custom value.

Alternatively, set the field value using this syntax.

cmp.find("nameField").set("v.value", "My New Account Name");

Note:  For more information, see lightning:recordEditForm.

If you require more customization when creating a record than what lightning:recordForm  and
lightning:recordEditForm  allow, consider using force:recordData.

Edit a Record via a Custom User Interface Using force:recordData
To edit and save a record using force:recordData, call saveRecord  and pass in a callback function to be invoked after the
save operation completes. The save operation is used in two cases.

• To save changes to an existing record

• To create and save a new record

To save changes to an existing record, load the record in EDIT mode and call saveRecord  on the force:recordData  component.

To save a new record, and thus create it, create the record from a record template, as described in Creating a Record. Then call
saveRecord  on the force:recordData  component.

Load a Record in EDIT Mode
To load a record that might be updated, set the force:recordData  tag’s mode attribute to “EDIT”. Other than explicitly setting
the mode, loading a record for editing is the same as loading it for any other purpose.

Note:  Since Lightning Data Service records are shared across multiple components, loading records provides the component
with a copy of the record instead of a direct reference. If a component loads a record in VIEW mode, Lightning Data Service

408

Editing a RecordWorking with Salesforce Data

https://developer.salesforce.com/docs/component-library/bundle/lightning:recordEditForm/documentation


automatically overwrites that copy with a newer copy of the record when the record is changed. If a record is loaded in EDIT mode,
the record is not updated when the record is changed. This prevents unsaved changes from appearing in components that
reference the record while the record is being edited, and prevents any edits in progress from being overwritten. Notifications are
still sent in both modes.

Call saveRecord  to Save Record Changes
To perform the save operation, call saveRecord on the force:recordData  component from the appropriate controller action
handler. The saveRecord  method takes one argument—a callback function to be invoked when the operation completes. This
callback function receives a SaveRecordResult  as its only parameter. SaveRecordResult  includes a state  attribute that
indicates success or error, and other details you can use to handle the result of the operation.

Example: Saving a Record

The following example illustrates the essentials of saving a record using Lightning Data Service. It’s intended for use on a record
page. The record ID is supplied by the implicit recordId  attribute added by the force:hasRecordId  interface.

ldsSave.cmp

<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId">

<aura:attribute name="record" type="Object"/>
<aura:attribute name="simpleRecord" type="Object"/>
<aura:attribute name="recordError" type="String"/>

<force:recordData aura:id="recordHandler"
recordId="{!v.recordId}"
fields="Name,BillingState,BillingCity"
targetRecord="{!v.record}"
targetFields="{!v.simpleRecord}"
targetError="{!v.recordError}"
mode="EDIT"
recordUpdated="{!c.handleRecordUpdated}"
/>

<!-- Display a lightning card with details about the record -->
<div class="Record Details">

<lightning:card iconName="standard:account" title="{!v.simpleRecord.Name}" >
<div class="slds-p-horizontal--small">

<p class="slds-text-heading--small">
<lightning:formattedText title="Billing State"

value="{!v.simpleRecord.BillingState}" /></p>
<p class="slds-text-heading--small">

<lightning:formattedText title="Billing City"
value="{!v.simpleRecord.BillingCity}" /></p>

</div>
</lightning:card>

</div>

<!-- Display an editing form -->
<div class="Record Details">

<lightning:card iconName="action:edit" title="Edit Account">
<div class="slds-p-horizontal--small">

<lightning:input label="Account Name" value="{!v.simpleRecord.Name}"/>

409

Editing a RecordWorking with Salesforce Data



<br/>
<lightning:button label="Save Account" variant="brand"

onclick="{!c.handleSaveRecord}" />
</div>

</lightning:card>
</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.recordError))}">

<div class="recordError">
{!v.recordError}</div>

</aura:if>
</aura:component>

To improve performance, we recommend using the fields  attribute to query only the fields you need. Use layoutType
only if you expect to display or edit a large number of fields on the compact or full layout.

Note:  To edit the constituent fields on compound fields, such as the FirstName and LastName fields in the Name compound
field, create a separate lightning:input  component for {!v.simpleRecord.FirstName}  and
{!v.simpleRecord.LastName}.

This component loads a record using force:recordData  set to EDIT mode, and provides a form for editing record values.
(In this simple example, just the record name field.)

ldsSaveController.js

({
handleSaveRecord: function(component, event, helper) {

component.find("recordHandler").saveRecord($A.getCallback(function(saveResult)
{

// use the recordUpdated event handler to handle generic logic when record
is changed

if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {
// handle component related logic in event handler

} else if (saveResult.state === "INCOMPLETE") {
console.log("User is offline, device doesn't support drafts.");

} else if (saveResult.state === "ERROR") {
console.log('Problem saving record, error: ' +

JSON.stringify(saveResult.error));
} else {

console.log('Unknown problem, state: ' + saveResult.state + ', error:
' + JSON.stringify(saveResult.error));

}
}));

},

/**
* Control the component behavior here when record is changed (via any component)

*/
handleRecordUpdated: function(component, event, helper) {

var eventParams = event.getParams();
if(eventParams.changeType === "CHANGED") {

// get the fields that changed for this record

410

Editing a RecordWorking with Salesforce Data



var changedFields = eventParams.changedFields;
console.log('Fields that are changed: ' + JSON.stringify(changedFields));

// record is changed, so refresh the component (or other component logic)

var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Saved",
"message": "The record was updated."

});
resultsToast.fire();

} else if(eventParams.changeType === "LOADED") {
// record is loaded in the cache

} else if(eventParams.changeType === "REMOVED") {
// record is deleted and removed from the cache

} else if(eventParams.changeType === "ERROR") {
// there’s an error while loading, saving or deleting the record

}
}

})

The handleSaveRecord  action here is a minimal version. There’s no form validation or real error handling. Whatever is
entered in the form is attempted to be saved to the record.

If you are creating multiple instances of force:recordData  on a page, provide your saveRecord  and recordUpdated
handlers accordingly. For example, if you have two instances of force:recordData  that updates the same record, assign a
different aura:id  to each instance, such that saveRecord  is called uniquely, and subsequently the recordUpdated
handler.

SEE ALSO:

Component Library: lightning:recordForm

Component Library: lightning:recordEditForm

SaveRecordResult

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

Creating a Record
The simplest way to create a form that enables users create a record is to use lightning:recordForm. If you want to customize
the form layout or preload custom values, use lightning:recordEditForm. If you need more customization than the form-based
components allow, use force:recordData.

Create a Record using lightning:recordForm
To create a record using lightning:recordForm, leave out the recordId  attribute.

411

Creating a RecordWorking with Salesforce Data

https://developer.salesforce.com/docs/component-library/bundle/lightning:recordForm/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:recordEditForm/documentation


This example displays a form that creates an account record with a list of fields. The Cancel and Save buttons are displayed at the bottom
of the form.

<aura:component>
<aura:attribute name="fields"

type="String[]"
default="['Name', 'Industry']"/>

<lightning:recordForm objectApiName="Account"
fields="{!v.fields}"/>

</aura:component>

When the record saves successfully, the fields display pencil icons to denote that inline editing is available. This view is displayed until
you refresh or reload the page. Then the form redisplays the record fields without data, ready to create a new record.

Alternatively, use the Full  layout type, which loads all fields from the full layout to display a form that creates a record. The columns
attribute displays the record fields in two columns that are evenly sized.

<aura:component>
<lightning:recordForm objectApiName="Account"

layoutType="Full"
columns="2"/>

</aura:component>

Customize Error Handling in lightning:recordForm
When an error is encountered during save, lightning:recordForm  displays an error message at the top of the form. You can
provide additional error handling using the onerror  event handler.

This example displays a toast message when an error is returned.

<aura:component>
<aura:attribute name="fields"

type="String[]"
default="['Name', 'Industry']"/>

<!-- Displays toast notifications -->
<lightning:notificationsLibrary aura:id="notifLib" />
<lightning:recordForm

objectApiName="Account"
fields="{!v.fields}"
onerror="{!c.handleError}"/>

</aura:component>

To return the error message, use event.getParam("message").

({
handleError: function (cmp, event, helper) {

cmp.find('notifLib').showToast({
"title": "Something has gone wrong!",
"message": event.getParam("message"),
"variant": "error"

});
}

})

To customize the form behavior when a record saves successfully, use the onsuccess  event handler.

412

Creating a RecordWorking with Salesforce Data



If you want to provide a custom layout or load custom field values when the form displays, use the lightning:recordEditForm
component as shown in the next section.

Create a Record with a Custom Layout Using lightning:recordEditForm
To provide a custom layout for your form fields, use the lightning:recordEditForm  component.

Pass in the fields to lightning:inputField, which displays an input control based on the record field type.

This example creates a custom layout using the Grid utility classes in Lightning Design System.

<aura:component>
<lightning:recordEditForm objectApiName="Account">

<lightning:messages />
<div class="slds-grid">

<div class="slds-col slds-size_2-of-3">
<lightning:inputField fieldName="Name"/>

</div>
<div class="slds-col slds-size_1-of-3">

<lightning:inputField fieldName="Industry"/>
</div>

</div>
<lightning:button class="slds-m-top_small" type="submit" label="Create new" />

</lightning:recordEditForm>
</aura:component>

When a server error is encountered,lightning:recordEditForm  displays an error message above the form fields. To enable
automatic error handling, include the lightning:messages  component. Alternatively, provide your own error handling using
the onerror  event handler.

Another feature that lightning:recordEditForm provides that’s not available with lightning:recordForm  is preset
custom field values, as shown in the next section.

Prepopulate Field Values
To provide a custom field value when the form displays, use the value  attribute on lightning:inputField. If you're providing
a record ID, the value returned by the record on load does not override this custom value.

Alternatively, set the field value using this syntax.

cmp.find("nameField").set("v.value", "My New Account Name");

Note:  For more information, see lightning:recordEditForm.

If you require more customization when creating a record than what lightning:recordForm  and
lightning:recordEditForm  allow, consider using force:recordData.

Create a Record via a Custom User Interface Using force:recordData
To create a record using force:recordData, leave out the recordId  attribute. Load a record template by calling the
getNewRecord  function on force:recordData. Finally, apply values to the new record, and save the record by calling the
saveRecord  function on force:recordData.

1. Call getNewRecord  to create an empty record from a record template. You can use this record as the backing store for a form
or otherwise have its values set to data intended to be saved.

413

Creating a RecordWorking with Salesforce Data

https://developer.salesforce.com/docs/component-library/bundle/lightning:recordEditForm/documentation


2. Call saveRecord  to commit the record. This is described in Editing a Record.

Create an Empty Record from a Record Template
To create an empty record from a record template, you can’t set a recordId  on the force:recordData  tag. Without a
recordId, Lightning Data Service doesn’t load an existing record.

In your component’s init  or another handler, call the getNewRecord  on force:recordData. getNewRecord  takes the
following arguments.

DescriptionTypeAttribute Name

The object API name for the new record.StringobjectApiName

The 18 character ID of the record type for the new record.

If not specified, the default record type for the object is used, as defined in the
user’s profile.

StringrecordTypeId

Whether to load the record template from the server instead of the client-side
Lightning Data Service cache. Defaults to false.

BooleanskipCache

A function invoked after the empty record is created. This function receives no
arguments.

Functioncallback

getNewRecord  doesn’t return a result. It simply prepares an empty record and assigns it to the targetRecord  attribute.

Example: Creating a Record

The following example illustrates the essentials of creating a record using Lightning Data Service. This example is intended to be
added to an account record Lightning page.

ldsCreate.cmp

<aura:component implements="flexipage:availableForRecordHome, force:hasRecordId">

<aura:attribute name="newContact" type="Object"/>
<aura:attribute name="simpleNewContact" type="Object"/>
<aura:attribute name="newContactError" type="String"/>

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<force:recordData aura:id="contactRecordCreator"
fields="FirstName,LastName,Title"
targetRecord="{!v.newContact}"
targetFields="{!v.simpleNewContact}"
targetError="{!v.newContactError}" />

<!-- Display the new contact form -->
<div class="Create Contact">

<lightning:card iconName="action:new_contact" title="Create Contact">
<div class="slds-p-horizontal--small">

<lightning:input aura:id="contactField" label="First Name"
value="{!v.simpleNewContact.FirstName}"/>

<lightning:input aura:id="contactField" label="Last Name"

414

Creating a RecordWorking with Salesforce Data



value="{!v.simpleNewContact.LastName}"/>
<lightning:input aura:id="contactField" label="Title"

value="{!v.simpleNewContact.Title}"/>
<br/>
<lightning:button label="Save Contact" variant="brand"

onclick="{!c.handleSaveContact}"/>
</div>

</lightning:card>
</div>

<!-- Display Lightning Data Service errors -->
<aura:if isTrue="{!not(empty(v.newContactError))}">

<div class="recordError">
{!v.newContactError}</div>

</aura:if>

</aura:component>

Note:  To improve performance, we recommend using the fields  attribute to query only the fields you need. Use
layoutType  only if you want the administrator, not the component, to control the fields that are provisioned. The
component must handle receiving every field that is assigned to the layout for the context user.

This component doesn’t set the recordId  attribute of force:recordData. This tells Lightning Data Service to expect a
new record. Here, that’s created in the component’s init  handler.

ldsCreateController.js

({
doInit: function(component, event, helper) {

// Prepare a new record from template
component.find("contactRecordCreator").getNewRecord(

"Contact", // sObject type (objectApiName)
null, // recordTypeId
false, // skip cache?
$A.getCallback(function() {

var rec = component.get("v.newContact");
var error = component.get("v.newContactError");
if(error || (rec === null)) {

console.log("Error initializing record template: " + error);
return;

}
console.log("Record template initialized: " + rec.apiName);

})
);

},

handleSaveContact: function(component, event, helper) {
if(helper.validateContactForm(component)) {

component.set("v.simpleNewContact.AccountId", component.get("v.recordId"));

component.find("contactRecordCreator").saveRecord(function(saveResult) {
if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {

// record is saved successfully
var resultsToast = $A.get("e.force:showToast");

415

Creating a RecordWorking with Salesforce Data



resultsToast.setParams({
"title": "Saved",
"message": "The record was saved."

});
resultsToast.fire();

} else if (saveResult.state === "INCOMPLETE") {
// handle the incomplete state
console.log("User is offline, device doesn't support drafts.");

} else if (saveResult.state === "ERROR") {
// handle the error state
console.log('Problem saving contact, error: ' +

JSON.stringify(saveResult.error));
} else {

console.log('Unknown problem, state: ' + saveResult.state + ',
error: ' + JSON.stringify(saveResult.error));

}
});

}
}

})

The doInit  init handler calls getNewRecord()  on the force:recordData  component, passing in a simple callback
handler. This call returns a Record object to create an empty contact record, which is used by the contact form in the component’s
markup.

Note:  The callback passed to getNewRecord()  must be wrapped in $A.getCallback()  to ensure correct access
context when the callback is invoked. If the callback is passed in without being wrapped in $A.getCallback(), any
attempt to access private attributes of your component results in access check failures.

Even if you’re not accessing private attributes, it’s a best practice to always wrap the callback function for getNewRecord()
in $A.getCallback(). Never mix (contexts), never worry.

The handleSaveContact  handler is called when the Save Contact button is clicked. It’s a straightforward application of
saving the contact, as described in Editing a Record, and then updating the user interface.

Note:  The helper function, validateContactForm, isn’t shown. It simply validates the form values. For an example
of this validation, see Lightning Action Examples.

SEE ALSO:

Component Library: lightning:recordForm

Component Library: lightning:recordEditForm

Editing a Record

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

Controlling Access

416

Creating a RecordWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.uiapi.meta/uiapi/ui_api_responses_record.htm
https://developer.salesforce.com/docs/component-library/bundle/lightning:recordForm/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:recordEditForm/documentation


Deleting a Record
To delete a record using Lightning Data Service, call deleteRecord  on the force:recordData component, and pass in a
callback function to be invoked after the delete operation completes. The form-based components, such as lightning:recordForm,
don’t currently support deleting a record.

Delete operations with Lightning Data Service are straightforward. The force:recordData  tag can include minimal details. If you
don’t need any record data, set the fields  attribute to just Id. If you know that the only operation is a delete, any mode  can be
used.

To perform the delete operation, call deleteRecord  on the force:recordData  component from the appropriate controller
action handler. deleteRecord  takes one argument, a callback function to be invoked when the operation completes. This callback
function receives a SaveRecordResult  as its only parameter. SaveRecordResult  includes a state  attribute that indicates
success or error, and other details you can use to handle the result of the operation.

Example: Deleting a Record

The following example illustrates the essentials of deleting a record using Lightning Data Service. This component adds a Delete
Record button to a record page, which deletes the record being displayed. The record ID is supplied by the implicit recordId
attribute added by the force:hasRecordId  interface.

ldsDelete.cmp

<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId">

<aura:attribute name="recordError" type="String" access="private"/>

<force:recordData aura:id="recordHandler"
recordId="{!v.recordId}"
fields="Id"
targetError="{!v.recordError}"
recordUpdated="{!c.handleRecordUpdated}" />

<!-- Display the delete record form -->
<div class="Delete Record">

<lightning:card iconName="action:delete" title="Delete Record">
<div class="slds-p-horizontal--small">

<lightning:button label="Delete Record" variant="destructive"
onclick="{!c.handleDeleteRecord}"/>

</div>
</lightning:card>

</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.recordError))}">

<div class="recordError">
{!v.recordError}</div>

</aura:if>
</aura:component>

Notice that the force:recordData  tag includes only the recordId  and a nearly empty fields  list—the absolute
minimum required. If you want to display record values in the user interface, for example, as part of a confirmation message, define
the force:recordData  tag as you would for a load operation instead of this minimal delete example.

417

Deleting a RecordWorking with Salesforce Data



ldsDeleteController.js

({
handleDeleteRecord: function(component, event, helper) {

component.find("recordHandler").deleteRecord($A.getCallback(function(deleteResult) {
// NOTE: If you want a specific behavior(an action or UI behavior) when

this action is successful
// then handle that in a callback (generic logic when record is changed

should be handled in recordUpdated event handler)
if (deleteResult.state === "SUCCESS" || deleteResult.state === "DRAFT") {

// record is deleted
console.log("Record is deleted.");

} else if (deleteResult.state === "INCOMPLETE") {
console.log("User is offline, device doesn't support drafts.");

} else if (deleteResult.state === "ERROR") {
console.log('Problem deleting record, error: ' +

JSON.stringify(deleteResult.error));
} else {

console.log('Unknown problem, state: ' + deleteResult.state + ', error:
' + JSON.stringify(deleteResult.error));

}
}));

},

/**
* Control the component behavior here when record is changed (via any component)

*/
handleRecordUpdated: function(component, event, helper) {

var eventParams = event.getParams();
if(eventParams.changeType === "CHANGED") {

// record is changed
} else if(eventParams.changeType === "LOADED") {

// record is loaded in the cache
} else if(eventParams.changeType === "REMOVED") {

// record is deleted, show a toast UI message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Deleted",
"message": "The record was deleted."

});
resultsToast.fire();

} else if(eventParams.changeType === "ERROR") {
// there’s an error while loading, saving, or deleting the record

}
}

})

418

Deleting a RecordWorking with Salesforce Data



When the record is deleted, navigate away from the record page. Otherwise, you see a “record not found” error when the component
refreshes. Here the controller uses the objectApiName  property in the SaveRecordResult  provided to the callback
function, and navigates to the object home page.

SEE ALSO:

SaveRecordResult

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

Record Changes
To perform more advanced tasks using force:recordData  when the record changes, handle the recordUpdated  event.
You can handle record loaded, updated, and deleted changes, applying different actions to each change type.

If a component performs logic that’s specific to the record data, it must run that logic again when the record changes. A common
example is a business process in which the actions that apply to a record change depending on the record’s values. For example, different
actions apply to opportunities at different stages of the sales cycle.

Note:  Lightning Data Service notifies listeners about data changes only if the changed fields are the same as in the listener’s fields
or layout.

Example: Declare that your component handles the recordUpdated event. To improve performance, we recommend using
the fields  attribute to query only the fields you need. Use layoutType  only if you want the administrator, not the component,
to control the fields that are provisioned. The component must handle receiving every field that is assigned to the layout for the
context user.

<force:recordData aura:id="forceRecord"

recordId="{!v.recordId}"

fields="Name,Title,Email"

targetRecord="{!v._record}"

targetFields="{!v.simpleRecord}"

targetError="{!v._error}"

recordUpdated="{!c.recordUpdated}" />

Implement an action handler that handles the change.

({
recordUpdated: function(component, event, helper) {

var changeType = event.getParams().changeType;

if (changeType === "ERROR") { /* handle error; do this first! */ }
else if (changeType === "LOADED") { /* handle record load */ }
else if (changeType === "REMOVED") { /* handle record removal */ }
else if (changeType === "CHANGED") { /* handle record change */ }

})

419

Record ChangesWorking with Salesforce Data



When loading a record in edit mode, the record isn’t automatically updated to prevent edits currently in progress from being
overwritten. To update the record, use the reloadRecord  method in the action handler.

<force:recordData aura:id="forceRecord"
recordId="{!v.recordId}"
fields="Name,Title,Email"
targetRecord="{!v._record}"
targetFields="{!v.simpleRecord}"
targetError="{!v._error}"
mode="EDIT"
recordUpdated="{!c.recordUpdated}" />

({
recordUpdated : function(component, event, helper) {

var changeType = event.getParams().changeType;

if (changeType === "ERROR") { /* handle error; do this first! */ }
else if (changeType === "LOADED") { /* handle record load */ }
else if (changeType === "REMOVED") { /* handle record removal */ }
else if (changeType === "CHANGED") {
/* handle record change; reloadRecord will cause you to lose your current record,

including any changes you’ve made */
component.find("forceRecord").reloadRecord();}

}
})

Handling Errors
Lightning Data Service returns an error when a resource, such as a record or an object, is inaccessible on the server.

For example, an error occurs if you pass in an invalid input to the form-based components, such as an invalid record ID or missing required
fields. An error is also returned if the record isn’t in the cache and the server is offline. Also, a resource can become inaccessible on the
server when it’s deleted or has its sharing or visibility settings updated.

Handle Errors For Form-Based Components
Two types of errors—field-level errors and Lightning Data Service errors—are handled by lightning:recordForm,
lightning:recordEditForm, and lightning:recordViewForm. Field-validation errors display below a field and cannot
be customized. For example, an error is shown below a required field when it’s empty. Lightning Data Service errors are handled in the
following ways.

lightning:recordForm
Automatically displays an error message above the form fields. You can provide additional error handling using the onerror
event handler.

lightning:recordEditForm
To automatically display an error message above or below the form fields, include lightning:messages  before or after your
lightning:inputField  components.

You can provide additional error handling using the onerror  event handler.

420

Handling ErrorsWorking with Salesforce Data



lightning:recordViewForm
To automatically display an error message above or below the form fields, include lightning:messages  before or after your
lightning:outputField  components.

If a single field has multiple validation errors, the form shows only the first error on the field. Similarly, if a submitted form has multiple
errors, the form displays only the first error encountered. When you correct the displayed error, the next error is displayed.

The error object looks like this.

{
"message": "Disconnected or Canceled",
"detail": "",
"output": {

},
"error": {
"ok": false,
"status": 400,
"statusText": "Bad Request",
"body": {
"message": "Disconnected or Canceled"

}
}

}

Get the error object using this syntax.

handleError: function (cmp, event, helper) {
var error = event.getParams();

// Get the error message
var errorMessage = event.getParam("message");

}

Handle Errors For force:recordData
To act when an error occurs, handle the recordUpdated event and handle the case where the changeType  is “ERROR”.

Example: Declare that your component handles the recordUpdated event.

<force:recordData aura:id="forceRecord"

recordId="{!v.recordId}"

fields="Name,Title,Email"

targetRecord="{!v._record}"

targetFields="{!v.simpleRecord}"

targetError="{!v._error}"

recordUpdated="{!c.recordUpdated}" />

Implement an action handler that handles the error.

({
recordUpdated: function(component, event, helper) {

var changeType = event.getParams().changeType;

421

Handling ErrorsWorking with Salesforce Data



if (changeType === "ERROR") { /* handle error; do this first! */ }
else if (changeType === "LOADED") { /* handle record load */ }
else if (changeType === "REMOVED") { /* handle record removal */ }
else if (changeType === "CHANGED") { /* handle record change */ }

})

If an error occurs when the record begins to load, targetError  is set to a localized error message. An error occurs if:

• Input is invalid because of an invalid attribute value, or combination of attribute values. For example, an invalid recordId,
or omitting both the layoutType  and the fields  attributes.

• The record isn’t in the cache and the server is unreachable (offline).

If the record becomes inaccessible on the server, the recordUpdated  event is fired with changeType  set to "REMOVED."
No error is set on targetError, since records becoming inaccessible is sometimes the expected outcome of an operation.
For example, after lead convert the lead record becomes inaccessible.

Records can become inaccessible for the following reasons.

• Record or entity sharing or visibility settings restrict access.

• Record or entity is deleted.

When the record becomes inaccessible on the server, the record’s JavaScript object assigned to targetRecord  is unchanged.

Changing the Display Density
In Lightning Experience, the display density setting determines how densely content is displayed and where field labels are located.
Display density is controlled for the org in Setup, and users can also set display density to their liking from their profile menu.

An org’s comfy setting places the labels on the top of fields and adds more space between page elements. Contrastingly, compact is a
denser view with labels on the same line as the fields and less space between lines. The cozy setting resembles compact, but with more
space between lines.

You can design your form to respect the display density setting, or set the form density to override the display density setting. Overriding
display density gives you more control over the label location, but doesn’t affect spacing. In addition, you can set individual fields in your
form to use variants that change the label location for the field.

Use the Org’s Default Display Density in a Form
lightning:recordEditForm, lightning:recordViewForm, and lightning:recordForm  adapt to your org's
display density by default or when you set density="auto".

<lightning:card iconName="standard:contact" title="recordEditForm">
<div class="slds-p-horizontal_small">

<!-- Replace the recordId with your own -->
<lightning:recordEditForm recordId="003RM0000066Y82YAE"

objectApiName="Contact"
density="auto">

<lightning:messages />
<lightning:inputField fieldName="FirstName" />
<lightning:inputField fieldName="LastName" />
<lightning:inputField fieldName="Email" />
<lightning:inputField fieldName="Phone" />

422

Changing the Display DensityWorking with Salesforce Data



</lightning:recordEditForm>
</div>

</lightning:card>

Override the Org’s Display Density
To override the org's display density, specify density="compact"  or density="comfy". The cozy  value isn’t supported
on the density  attribute. If an org's display density is set to cozy, labels and fields are on the same line by default.

The following table lists the org’s display density settings and how they relate to the form density on lightning:recordEditForm,
lightning:recordViewForm, and lightning:recordForm.

Field Label AlignmentForm DensityOrg Display Density

Labels are above fieldsauto  (default) or comfyComfy

Labels and fields are on the same linecompact

Labels and fields are on the same lineauto  (default) or compactCozy

Labels are above fieldscomfy

Labels and fields are on the same lineauto  (default) or compactCompact

Labels are above fieldscomfy

Reduce Space Between the Label and Field
When the form density is compact, the labels and fields can appear too far apart for a single column form in a larger region. To reduce
the space between the label and field when the form uses compact density, use the slds-form-element_1-col  class on
lightning:inputField  or lightning:outputField.

<lightning:card iconName="standard:contact" title="recordEditForm">
<div class="slds-p-horizontal_small">

<!-- Replace the recordId with your own -->
<lightning:recordEditForm recordId="003RM0000066Y82YAE"

objectApiName="Contact"
density="compact">

<lightning:messages />
<lightning:inputField fieldName="FirstName" class="slds-form-element_1-col"/>

<lightning:inputField fieldName="LastName" class="slds-form-element_1-col"/>
<lightning:inputField fieldName="Email" class="slds-form-element_1-col"/>
<lightning:inputField fieldName="Phone" class="slds-form-element_1-col"/>

</lightning:recordEditForm>
</div>

</lightning:card>

Set Label Variants on Form Fields
You can set a variant on lightning:inputField  if you want specific fields to have a label and field alignment that’s different
than that used by the form. A variant overrides the display density for that field.

423

Changing the Display DensityWorking with Salesforce Data



lightning:inputField  supports these variants: standard  (default), label-hidden, label-inline, and
label-stacked.

This example displays two input fields with inline labels, while the rest of the fields have labels displayed on top of fields due to the
comfy form density.

<lightning:card iconName="standard:contact" title="recordEditForm">
<div class="slds-p-horizontal_small">

<!-- Replace the recordId with your own -->
<lightning:recordEditForm recordId="003RM0000066Y82YAE"

objectApiName="Contact"
density="comfy">

<lightning:messages/>
<lightning:inputField fieldName="FirstName" variant="label-inline"/>
<lightning:inputField fieldName="LastName" variant="label-inline"/>
<lightning:inputField fieldName="Email"/>
<lightning:inputField fieldName="Phone"/>

</lightning:recordEditForm>
</div>

</lightning:card>

lightning:outputField  supports these variants: standard  (default) and label-hidden.

This example displays output field values without labels when the form density is comfy. Hidden labels are available to assistive
technology.

<lightning:card iconName="standard:contact" title="recordViewForm">
<div class="slds-p-horizontal_small">

<!-- Replace the recordId with your own -->
<lightning:recordViewForm recordId="003RM0000066Y82YAE"

objectApiName="Contact"
density="comfy">

<lightning:messages />
<lightning:outputField fieldName="FirstName" variant="label-hidden"/>
<lightning:outputField fieldName="LastName" variant="label-hidden"/>
<lightning:outputField fieldName="Email" variant="label-hidden"/>
<lightning:outputField fieldName="Phone" variant="label-hidden"/>

</lightning:recordViewForm>
</div>

</lightning:card>

Additionally, to reduce the space between the label and field when the label variant is label-inline, use the
slds-form-element_1-col  class on lightning:inputField.

Usage Considerations
Admins can set the default display density for the org on the Density Settings setup page. Users can choose their own display density
at any time. Admins can’t override a user’s display density setting. The org’s default display setting depends on the Salesforce edition.
Density changes don’t apply to Salesforce Classic, Experience Builder sites, or the Salesforce mobile app. For more information, see
Configure User Interface Settings.

SEE ALSO:

Component Library: lightning:recordEditForm

Component Library: lightning:recordViewForm

424

Changing the Display DensityWorking with Salesforce Data

https://help.salesforce.com/articleView?id=customize_ui_settings.htm&language=en_US
https://developer.salesforce.com/docs/component-library/bundle/lightning:recordEditForm/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning:recordViewForm/documentation


Considerations
Lightning Data Service is powerful and simple to use. However, it’s not a complete replacement for writing your own data access code.
Here are some considerations to keep in mind when using it.

Lightning Data Service is available in the following containers:

• Lightning Experience

• Salesforce app

• Experience Builder sites

• Lightning Out

• Lightning Components for Visualforce

• Standalone Lightning apps

• Lightning for Gmail

• Lightning for Outlook

Lightning Data Service supports primitive DML operations—create, read, update, and delete. It operates on one record at a time, which
you retrieve or modify using the record ID. Lightning Data Service supports spanned fields with a maximum depth of five levels. Support
for working with collections of records or for querying for a record by anything other than the record ID isn’t available. If you must support
higher-level operations or multiple operations in one transaction, use standard @AuraEnabled  Apex methods.

Lightning Data Service shared data storage provides notifications to all components that use a record whenever a component changes
that record. It doesn’t notify components if that record is changed on the server, for example, if someone else modifies it. Records
changed on the server aren’t updated locally until they’re reloaded. Lightning Data Service notifies listeners about data changes only if
the changed fields are the same as in the listener’s fields or layout.

Lightning Data Service does a lot of work to make code perform well.

• Loads record data progressively.

• Caches results on the client.

• Invalidates cache entries when dependent Salesforce data and metadata changes.

• Optimizes server calls by bulkifying and deduping requests.

Use Base Components
To work with record data, use the following base components.

• lightning:recordForm

• lightning:recordEditForm

• lightning:recordViewForm

Use these base components to:

• Create a metadata-driven UI or form-based UI similar to the record detail page in Salesforce.

• Display record values based on the field metadata.

• Display or hide localized field labels.

• Display the help text on a custom field.

• Perform client-side validation and enforce validation rules.

Alternatively, use force:recordData  to:

• Create your own custom UI

425

ConsiderationsWorking with Salesforce Data



• Return raw record data for a small number of fields

• Create UI that’s not metadata-driven

When using force:recordData, load the data once and pass it to child components as attributes. This approach reduces the
number of listeners and minimizes server calls, which improves performance and ensures that your components show consistent data.
For more information, see the force:recordData documentation.

For examples of base components in action, see Lightning Action Examples on page 426.

The base components and force:recordData  are built on Lightning Data Service. If Lightning Data Service detects a change to
a record or any data or metadata it supports, the components receive the new value. The detection is triggered if:

• An Aura or Lightning web component mutates the record.

• The Lightning Data Service cache entry expires and then a component built on Lightning Data Service triggers a read. The cache
entry and the Lightning web component must be in the same browser and app (for example Lightning Experience) for the same
user.

Note:  To improve performance, we recommend specifying the fields you need instead of using a layout. Use a layout only if you
want the administrator, not the component, to control the fields that are provisioned. The component must handle receiving
every field that is assigned to the layout for the context user. For more information, see Page Layouts in Salesforce Help.

Supported Objects
Lightning Data Service supports custom objects and the standard objects that User Interface API supports.

Lightning Action Examples
Here are some examples that use the base components to create a Quick Contact action panel.

Let’s say you want to create a Lightning action that enables users to create contacts on an account record. You can do this easily using
lightning:recordViewForm  and lightning:recordEditForm. If you require granular customization, use
force:recordData.

The following examples can each be added as a Lightning action on the account object. Clicking the action’s button on the account
layout opens a panel to create a contact.

Example: Create a Lightning Action Using lightning:recordViewForm  and lightning:recordEditForm

The Quick Contact action panel includes a header with the account name and a form that creates a contact for that account record.
Display the account name using lightning:recordViewForm  and display the contact form using
lightning:recordEditForm.

426

Lightning Action ExamplesWorking with Salesforce Data

https://developer.salesforce.com/docs/component-library/bundle/force:recordData/documentation
https://help.salesforce.com/articleView?id=customize_layout.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.uiapi.meta/uiapi/ui_api_get_started_supported_objects.htm


formQuickContact.cmp

<aura:component implements="force:lightningQuickActionWithoutHeader,force:hasRecordId">

<div class="slds-page-header" role="banner">
<lightning:recordViewForm recordId="{!v.recordId}"

objectApiName="Account">

<div class="slds-text-heading_label">
<lightning:outputField fieldName="Name" variant="label-hidden"/>

</div>
<lightning:messages/>

</lightning:recordViewForm>
<h1 class="slds-page-header__title slds-m-right_small

slds-truncate slds-align-left">Create New Contact</h1>
</div>
<lightning:recordEditForm aura:id="myform"

objectApiName="Contact"
onsubmit="{!c.handleSubmit}"
onsuccess="{!c.handleSuccess}">

<lightning:messages/>
<lightning:inputField fieldName="FirstName"/>
<lightning:inputField fieldName="LastName"/>
<lightning:inputField fieldName="Title"/>

427

Lightning Action ExamplesWorking with Salesforce Data



<lightning:inputField fieldName="Phone"/>
<lightning:inputField fieldName="Email"/>
<div class="slds-m-top_medium">

<lightning:button label="Cancel" onclick="{!c.handleCancel}" />
<lightning:button type="submit" label="Save Contact" variant="brand"/>

</div>
</lightning:recordEditForm>

</aura:component>

formQuickContactController.js

({
handleCancel: function(cmp, event, helper) {

$A.get("e.force:closeQuickAction").fire();
},

handleSubmit: function(cmp, event, helper) {
event.preventDefault();
var fields = event.getParam('fields');
fields.AccountId = cmp.get("v.recordId");
cmp.find('myform').submit(fields);

},

handleSuccess: function(cmp, event, helper) {
// Success! Prepare a toast UI message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Contact Saved",
"message": "The new contact was created."

});

// Update the UI: close panel, show toast, refresh account page
$A.get("e.force:closeQuickAction").fire();
resultsToast.fire();

// Reload the view
$A.get("e.force:refreshView").fire();

}
})

Using lightning:recordEditForm, you can nest thelightning:inputField  components in <div>  containers
and add custom styling. You also need to provide your own cancel and submit buttons.

Consider the simpler lightning:recordForm component, which provides default Cancel and Save buttons. You can
achieve the same result by replacing the lightning:recordEditForm  component with the following.

<aura:attribute name="fields" type="String[]"
default="['FirstName','LastName','Title','Phone','Email']" />
<lightning:recordForm objectApiName="Contact"

fields="{!v.fields}"
onsubmit="{!c.handleSubmit}"
onsuccess="{!c.handleSuccess}" />

428

Lightning Action ExamplesWorking with Salesforce Data



Example: Create a Lightning Action Using force:recordData

The Quick Contact action panel includes a header with the account name and a form that creates a contact for that account record.
Display the account name and display the contact form using two separate instances of force:recordData.

This force:recordData  example is similar to the example provided in Configure Components for Record-Specific Actions.
Compare the two examples to better understand the differences between using @AuraEnabled  Apex controllers and using
Lightning Data Service.

ldsQuickContact.cmp

<aura:component implements="force:lightningQuickActionWithoutHeader,force:hasRecordId">

<aura:attribute name="account" type="Object"/>
<aura:attribute name="simpleAccount" type="Object"/>
<aura:attribute name="accountError" type="String"/>
<force:recordData aura:id="accountRecordLoader"

recordId="{!v.recordId}"
fields="Name,BillingCity,BillingState"
targetRecord="{!v.account}"
targetFields="{!v.simpleAccount}"
targetError="{!v.accountError}"

/>

429

Lightning Action ExamplesWorking with Salesforce Data



<aura:attribute name="newContact" type="Object" access="private"/>
<aura:attribute name="simpleNewContact" type="Object" access="private"/>
<aura:attribute name="newContactError" type="String" access="private"/>
<force:recordData aura:id="contactRecordCreator"

layoutType="FULL"
targetRecord="{!v.newContact}"
targetFields="{!v.simpleNewContact}"
targetError="{!v.newContactError}"
/>

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<!-- Display a header with details about the account -->
<div class="slds-page-header" role="banner">

<p class="slds-text-heading_label">{!v.simpleAccount.Name}</p>
<h1 class="slds-page-header__title slds-m-right_small

slds-truncate slds-align-left">Create New Contact</h1>
</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.accountError))}">

{!v.accountError}
</aura:if>
<aura:if isTrue="{!not(empty(v.newContactError))}">

{!v.newContactError}
</aura:if>

<!-- Display the new contact form -->
<lightning:input aura:id="contactField" name="firstName" label="First Name"

value="{!v.simpleNewContact.FirstName}" required="true"/>

<lightning:input aura:id="contactField" name="lastname" label="Last Name"
value="{!v.simpleNewContact.LastName}" required="true"/>

<lightning:input aura:id="contactField" name="title" label="Title"
value="{!v.simpleNewContact.Title}" />

<lightning:input aura:id="contactField" type="phone" name="phone" label="Phone
Number"

pattern="^(1?(-?\d{3})-?)?(\d{3})(-?\d{4})$"
messageWhenPatternMismatch="The phone number must contain 7, 10,

or 11 digits. Hyphens are optional."
value="{!v.simpleNewContact.Phone}" required="true"/>

<lightning:input aura:id="contactField" type="email" name="email" label="Email"
value="{!v.simpleNewContact.Email}" />

<lightning:button label="Cancel" onclick="{!c.handleCancel}"
class="slds-m-top_medium" />

<lightning:button label="Save Contact" onclick="{!c.handleSaveContact}"
variant="brand" class="slds-m-top_medium"/>

</aura:component>

430

Lightning Action ExamplesWorking with Salesforce Data



ldsQuickContactController.js

({
doInit: function(component, event, helper) {

component.find("contactRecordCreator").getNewRecord(
"Contact", // objectApiName
null, // recordTypeId
false, // skip cache?
$A.getCallback(function() {

var rec = component.get("v.newContact");
var error = component.get("v.newContactError");
if(error || (rec === null)) {

console.log("Error initializing record template: " + error);
}
else {

console.log("Record template initialized: " + rec.apiName);
}

})
);

},

handleSaveContact: function(component, event, helper) {
if(helper.validateContactForm(component)) {

component.set("v.simpleNewContact.AccountId", component.get("v.recordId"));

component.find("contactRecordCreator").saveRecord(function(saveResult) {
if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {

// Success! Prepare a toast UI message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Contact Saved",
"message": "The new contact was created."

});

// Update the UI: close panel, show toast, refresh account page
$A.get("e.force:closeQuickAction").fire();
resultsToast.fire();

// Reload the view so components not using force:recordData
// are updated
$A.get("e.force:refreshView").fire();

}
else if (saveResult.state === "INCOMPLETE") {

console.log("User is offline, device doesn't support drafts.");
}
else if (saveResult.state === "ERROR") {

console.log('Problem saving contact, error: ' +
JSON.stringify(saveResult.error));

}
else {

console.log('Unknown problem, state: ' + saveResult.state +
', error: ' + JSON.stringify(saveResult.error));

}

431

Lightning Action ExamplesWorking with Salesforce Data



});
}

},

handleCancel: function(component, event, helper) {
$A.get("e.force:closeQuickAction").fire();

},
})

Note:  The callback passed to getNewRecord()  must be wrapped in $A.getCallback()  to ensure correct access
context when the callback is invoked. If the callback is passed in without being wrapped in $A.getCallback(), any
attempt to access private attributes of your component results in access check failures.

Even if you’re not accessing private attributes, it’s a best practice to always wrap the callback function for getNewRecord()
in $A.getCallback(). Never mix (contexts), never worry.

ldsQuickContactHelper.js

({
validateContactForm: function(component) {

var validContact = true;

// Show error messages if required fields are blank
var allValid = component.find('contactField').reduce(function (validFields,

inputCmp) {
inputCmp.showHelpMessageIfInvalid();
return validFields && inputCmp.get('v.validity').valid;

}, true);

if (allValid) {
// Verify we have an account to attach it to
var account = component.get("v.account");
if($A.util.isEmpty(account)) {

validContact = false;
console.log("Quick action context doesn't have a valid account.");

}
return(validContact);

}
}

})

Usage Differences
Consider the following differences between the previous examples.

Field labels and values
lightning:recordViewForm  and lightning:recordEditForm  obtain labels and the requiredness properties
from the object schema. In the first example, the Last Name  field is a required field on the contact object. The component
provides field-level validation.

With force:recordData, you must provide your own labels and requiredness property for each field. You can also provide
your own field-level validation, as shown by the lightning:input  component with the pattern  and
messageWhenPatternMismatch  attributes.

432

Lightning Action ExamplesWorking with Salesforce Data



Saving the record
lightning:recordEditForm  saves the record automatically when you provide a lightning:button  component
with the submit  type.

With force:recordData, you must call the saveRecord  function.

Lightning Data Service errors
lightning:recordViewForm  and lightning:recordEditForm  display Lightning Data Service errors automatically
using lightning:messages, and provide custom error handling via the onerror  event handler.

With force:recordData, you must handle and display the errors on your own.

SEE ALSO:

Configure Components for Record-Specific Actions

Controlling Access

SaveRecordResult
Represents the result of a Lightning Data Service operation that makes a persistent change to record data.

SaveRecordResult  Object
Callback functions for the saveRecord  and deleteRecord  functions receive a SaveRecordResult  object as their only
argument.

DescriptionTypeAttribute Name

The object API name for the record.StringobjectApiName

The label for the name of the sObject of the record.StringentityLabel

Error is one of the following.Stringerror

• A localized message indicating what went wrong.

• An array of errors, including a localized message indicating what went wrong.
It might also include further data to help handle the error, such as field- or
page-level errors.

error  is undefined if the save state  is SUCCESS or DRAFT.

The 18-character ID of the record affected.StringrecordId

The result state of the operation. Possible values are:Stringstate

• SUCCESS—The operation completed on the server successfully.

• DRAFT—The server wasn’t reachable, so the operation was saved locally as
a draft. The change is applied to the server when it’s reachable.

• INCOMPLETE—The server wasn’t reachable, and the device doesn’t support
drafts. (Drafts are supported only in the Salesforce app.) Try this operation
again later.

• ERROR—The operation couldn’t be completed. Check the error  attribute
for more information.

433

SaveRecordResultWorking with Salesforce Data



Displaying the Create and Edit Record Modals
You can take advantage of built-in events to display modals that let you create or edit records via an Aura component.

The force:createRecord  and force:editRecord  events display a create record page and edit record page in a modal
based on the default custom layout type for that object.

The following example contains a button that calls a client-side controller to display the edit record page. Add this example component
to a record page to inherit the record ID via the force:hasRecordId interface.

<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId" >
<aura:attribute name="recordId" type="String" />
<lightning:button label="Edit Record" onclick="{!c.edit}"/>

</aura:component>

The client-side controller fires the force:editRecord  event, which displays the edit record page for a given record ID.

edit : function(component, event, helper) {
var editRecordEvent = $A.get("e.force:editRecord");
editRecordEvent.setParams({

"recordId": component.get("v.recordId")
});
editRecordEvent.fire();

}

Firing this event on a record page is similar to clicking the default Edit button on a record page’s header. Records updated using the
force:editRecord event are persisted automatically.

Note:  If you don’t need the edit record page to display in a modal or if you need to specify a subset of fields, consider using
Lightning Data Service via lightning:recordForm  or lightning:recordEditForm  instead.

Using Apex

Use Apex to write server-side code, such as controllers and test classes. Use Apex only if you need to customize your user interface to
do more than what Lightning Data Service allows, such as using a SOQL query to select certain records. Apex provisions data that’s not
managed and you must handle data refresh on your own.

Apex controllers handle requests from client-side controllers.  For example, a client-side controller might handle an event and call an
Apex controller action to persist a record. An Apex controller can also load your record data.

Use Apex in these scenarios:

• To work with objects that aren’t supported by User Interface API, such as Task and Event.

• To work with operations that User Interface API doesn’t support, like loading a list of records by criteria (for example, to load the first
200 Accounts with Amount > $1M).

• To perform a transactional operation. For example, to create an account and create an opportunity associated with the new account.
If either create fails, the entire transaction is rolled back.

• To call a method imperatively, such as in response to clicking a button, or to delay loading to outside the critical path.

434

Displaying the Create and Edit Record ModalsWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.uiapi.meta/uiapi/ui_api_get_started_supported_objects.htm


IN THIS SECTION:

Creating Server-Side Logic with Controllers

The framework supports client-side (JavaScript) and server-side (Apex) controllers. An event is always wired to a client-side controller
action, which can in turn call an Apex controller action. For example, a client-side controller might handle an event and call an Apex
controller action to persist a record.

Testing Your Apex Code

Before you can upload a managed package, you must write and execute tests for your Apex code to meet minimum code coverage
requirements. Also, all tests must run without errors when you upload your package to AppExchange.

Making API Calls from Apex

Make API calls from an Apex controller. You can’t make Salesforce API calls from JavaScript code.

Make Long-Running Callouts with Continuations

Use the Continuation  class in Apex to make a long-running request to an external web service. Process the response in a
callback method. Continuations are the preferred way to manage callouts because they can provide substantial improvements to
the user experience.

Creating Components in Apex

Creating components on the server side in Apex, using the Cmp.<myNamespace>.<myComponent>  syntax, is deprecated.
Use $A.createComponent()  in client-side JavaScript code instead.

Creating Server-Side Logic with Controllers
The framework supports client-side (JavaScript) and server-side (Apex) controllers. An event is always wired to a client-side controller
action, which can in turn call an Apex controller action. For example, a client-side controller might handle an event and call an Apex
controller action to persist a record.

Server-side actions need to make a round trip, from the client to the server and back again, so they usually complete more slowly than
client-side actions.

For more details on the process of calling a server-side action, see Calling a Server-Side Action on page 445.

IN THIS SECTION:

Apex Server-Side Controller Overview

Create a server-side controller in Apex and use the @AuraEnabled  annotation to enable access to the controller method.

AuraEnabled Annotation

The AuraEnabled  annotation enables Lightning components to access Apex methods and properties.

Creating an Apex Server-Side Controller

Use the Developer Console to create an Apex server-side controller.

Using Apex to Work with Salesforce Records

Use Apex only if you need to customize your user interface to do more than what Lightning Data Service allows, such as using a
SOQL query to select certain records. Apex provisions data that’s not managed and you must handle data refresh on your own.

Granting User Access for Apex Classes

An authenticated or guest user can access an @AuraEnabled  Apex method only when the user’s profile or an assigned permission
set allows access to the Apex class.

435

Creating Server-Side Logic with ControllersWorking with Salesforce Data



Securing Data in Apex Controllers

By default, Apex runs in system mode, which means that it runs with substantially elevated permissions, acting as if the user had
most permissions and all field- and object-level access granted. Because these security layers aren’t enforced like they are in the
Salesforce UI, you must write code to enforce them. Otherwise, your components may inadvertently expose sensitive data that
would normally be hidden from users in the Salesforce UI.

Calling a Server-Side Action

Call a server-side controller action from a client-side controller. In the client-side controller, you set a callback, which is called after
the server-side action is completed. A server-side action can return any object containing serializable JSON data.

Passing Data to an Apex Controller

Use action.setParams()  in JavaScript to set data to pass to an Apex controller.

Returning Data from an Apex Server-Side Controller

Return results from a server-side controller to a client-side controller using the return  statement. Results data must be serializable
into JSON format.

Returning Errors from an Apex Server-Side Controller

Create and throw a System.AuraHandledException  from your Apex controller to return a custom error message to a
JavaScript controller.

Queueing of Server-Side Actions

The framework queues up actions before sending them to the server. This mechanism is largely transparent to you when you’re
writing code but it enables the framework to minimize network traffic by batching multiple actions into one request (XHR).

Foreground and Background Actions

Foreground actions are the default. An action can be marked as a background action. This is useful when you want your app to
remain responsive to a user while it executes a low priority, long-running action. A rough guideline is to use a background action if
it takes more than five seconds for the response to return from the server.

Storable Actions

Enhance your component’s performance by marking actions as storable (cacheable) to quickly show cached data from client-side
storage without waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching
is especially beneficial for users on high latency, slow, or unreliable connections such as 3G networks.

Abortable Actions

Mark an action as abortable to make it potentially abortable while it's queued to be sent to the server. An abortable action in the
queue is not sent to the server if the component that created the action is no longer valid, that is cmp.isValid() == false.
A component is automatically destroyed and marked invalid by the framework when it is unrendered.

Apex Server-Side Controller Overview
Create a server-side controller in Apex and use the @AuraEnabled  annotation to enable access to the controller method.

Only methods that you have explicitly annotated with @AuraEnabled  are exposed. Calling server-side actions aren’t counted against
your org’s API limits. However, your server-side controller actions are written in Apex, and as such are subject to all the usual Apex limits.
Apex limits are applied per action.

This Apex controller contains a serverEcho  action that prepends a string to the value passed in.

public with sharing class SimpleServerSideController {

//Use @AuraEnabled to enable client- and server-side access to the method
@AuraEnabled
public static String serverEcho(String firstName) {

436

Creating Server-Side Logic with ControllersWorking with Salesforce Data



return ('Hello from the server, ' + firstName);
}

}

In addition to using the @AuraEnabled  annotation, your Apex controller must follow these requirements.

• Methods must be static  and marked public  or global. Non-static methods aren’t supported.

• If a method returns an object, instance methods that retrieve the value of the object’s instance field must be public.

• Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the same
name as an Apex method (server-side action ) can lead to hard-to-debug issues. In debug mode, the framework logs a browser
console warning about the clashing client-side and server-side action names.

Tip:  Don’t store component state in your controller (client-side or server-side). Store state in a component’s client-side attributes
instead.

For more information, see Classes in the Apex Developer Guide.

SEE ALSO:

Calling a Server-Side Action

Creating an Apex Server-Side Controller

AuraEnabled Annotation

Apex Class Considerations for Packages

AuraEnabled Annotation
The AuraEnabled  annotation enables Lightning components to access Apex methods and properties.

The AuraEnabled  annotation is overloaded, and is used for two separate and distinct purposes.

• Use @AuraEnabled  on Apex class static methods to make them accessible as remote controller actions in your Lightning
components.

• Use @AuraEnabled  on Apex instance methods and properties to make them serializable when an instance of the class is
returned as data from a server-side action.

Important:

• Don’t mix-and-match these different uses of @AuraEnabled  in the same Apex class.

• Only static @AuraEnabled  Apex methods can be called from client-side code. Visualforce-style instance properties and
getter/setter methods aren’t available. Use client-side component attributes instead.

• You can’t use an Apex inner class as a parameter or return value for an Apex method that's called by an Aura component.

• You can't use the @NamespaceAccessible  Apex annotation for an @AuraEnabled  Apex method referenced from
an Aura component.

Component Security
In Apex, every method that is annotated @AuraEnabled  should be treated as a web service interface. That is, the developer should
assume that an attacker can call this method with any parameter, even if the developer's client-side code does not invoke the method
or invokes it using only sanitized parameters. For more information, see the Secure Coding Guide.

437

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.248.0.secure_coding_guide.meta/secure_coding_guide/secure_coding_lightning_security.htm


Caching Method Results
To improve runtime performance, set @AuraEnabled(cacheable=true)  to cache the method results on the client. To set
cacheable=true, a method must only get data. It can’t mutate data.

Marking a method as storable (cacheable) improves your component’s performance by quickly showing cached data from client-side
storage without waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is
especially beneficial for users on high latency, slow, or unreliable connections such as 3G networks.

To cache data returned from an Apex method for any component with an API version of 44.0 or higher, you must annotate the Apex
method with @AuraEnabled(cacheable=true). For example:

@AuraEnabled(cacheable=true)
public static Account getAccount(Id accountId) {

// your code here
}

Prior to API version 44.0, to cache data returned from an Apex method, you had to call setStorable()  in JavaScript code on every
action that called the Apex method. For API version of 44.0 or higher, you must mark the Apex method as storable (cacheable) and you
can get rid of any setStorable()  calls in JavaScript code. The Apex annotation approach is better because it centralizes your
caching notation for a method in the Apex class.

Note: Client-side storage is automatically configured in Lightning Experience and the Salesforce mobile app. A component
shouldn’t assume a cache duration because it may change as we optimize the platform.

Using Continuations
Use the Continuation  class in Apex to make a long-running request to an external Web service.

Continuations use the @AuraEnabled  annotation. Here are the rules for usage.

@AuraEnabled(continuation=true)
An Apex controller method that returns a continuation must be annotated with @AuraEnabled(continuation=true).

@AuraEnabled(continuation=true cacheable=true)
To cache the result of a continuation action, set cacheable=true  on the annotation for the Apex callback method.

Note:  There’s a space, not a comma, between continuation=true cacheable=true.

SEE ALSO:

Returning Data from an Apex Server-Side Controller

Custom Apex Class Types

Storable Actions

Securing Data in Apex Controllers

@AuraEnabled Annotations for Continuations

Apex Developer Guide: NamespaceAccessible Annotation

Creating an Apex Server-Side Controller
Use the Developer Console to create an Apex server-side controller.

1. Open the Developer Console.

2. Click File > New > Apex Class.

438

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_annotation_NamespaceAccessible.htm


3. Enter a name for your server-side controller.

4. Click OK.

5. Enter a method for each server-side action in the body of the class.

Add the @AuraEnabled  annotation to a method to expose it as a server-side action. Additionally, server-side actions must be
static  methods, and either global  or public.

6. Click File > Save.

7. Open the component that you want to wire to the new controller class.

8. Add a controller  system attribute to the <aura:component>  tag to wire the component to the controller. For example:

<aura:component controller="SimpleServerSideController">

SEE ALSO:

Salesforce Help: Open the Developer Console

Returning Data from an Apex Server-Side Controller

AuraEnabled Annotation

Granting User Access for Apex Classes

Apex Class Considerations for Packages

Using Apex to Work with Salesforce Records
Use Apex only if you need to customize your user interface to do more than what Lightning Data Service allows, such as using a SOQL
query to select certain records. Apex provisions data that’s not managed and you must handle data refresh on your own.

The term sObject refers to any object that can be stored in Lightning Platform. This could be a standard object, such as Account, or
a custom object that you create, such as a Merchandise object.

An sObject  variable represents a row of data, also known as a record. To work with an object in Apex, declare it using the SOAP
API name of the object. For example:

Account a = new Account();
MyCustomObject__c co = new MyCustomObject__c();

For more information on working on records with Apex, see Working with Data in Apex.

This example controller persists an updated Account record. Note that the update  method has the @AuraEnabled  annotation,
which enables it to be called as a server-side controller action.

public with sharing class AccountController {

@AuraEnabled
public static void updateAnnualRevenue(String accountId, Decimal annualRevenue) {

Account acct = [SELECT Id, Name, BillingCity FROM Account WHERE Id = :accountId];

acct.AnnualRevenue = annualRevenue;

// Perform isAccessible() and isUpdateable() checks here
update acct;

}
}

439

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_data_intro.htm


Note:  When using Apex controllers, load the data once and pass it to child components as attributes. This approach reduces the
number of listeners and minimizes server calls, which improves performance and ensures that your components show consistent
data.

Differences Between Lightning Data Service and Apex
The lightning:record*Form on page 401 and force:recordData  components are the easiest way to work with records.
They are built on top of Lightning Data Service, which manages field-level security and sharing for you in addition to managing data
loading and refresh. You can use these components for objects that are supported by User Interface API

Use Apex only if you’re working with a scenario listed at Using Apex on page 434, You can call the Apex method imperatively, such as
in response to a button click, as shown in the Loading Record Data from a Standard Object section. Alternatively, to load record
data during component initialization, use the init  handler, as shown in the Loading Record Data By Criteria section. When using
Apex to load or provision data, you must handle data refresh on your own by invoking the Apex method again.

Loading Record Data from an Object
Load records from an object in an Apex controller. The following Apex controller has methods that return a list of tasks. Task is an object
that isn’t supported by Lightning Data Service and the User Interface API. Therefore, we recommend using Apex to load task record data.

public with sharing class TaskController {

@AuraEnabled(cacheable=true)
public static List<Task> getTasks() {

return [SELECT Subject, Priority, Status FROM Task]; }
}

This example component uses the previous Apex controller to display a list of task record data when you press a button. The
flexipage:availableForAllPageTypes  interface denotes that you can use this example on a Lightning page.

<!-- apexForTasks.cmp -->
<aura:component implements="flexipage:availableForAllPageTypes" controller="TaskController">

<aura:attribute name="tasks" type="Task[]"/>
<lightning:card iconName="standard:task">

<lightning:button label="Get Tasks" onclick="{!c.getMyTasks}"/>
<aura:iteration var="task" items="{!v.tasks}">

<p>{!task.Subject} : {!task.Priority}, {!task.Status}</p>
</aura:iteration>

</lightning:card>
</aura:component>

When you press the button, the following client-side controller calls the getTasks()  method and sets the tasks  attribute on the
component. For more information about calling server-side controller methods, see Calling a Server-Side Action on page 445.

// apexForTasksController.js
({

getMyTasks: function(cmp){
var action = cmp.get("c.getTasks");
action.setCallback(this, function(response){

var state = response.getState();
if (state === "SUCCESS") {

440

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.uiapi.meta/uiapi/ui_api_get_started_supported_objects.htm


cmp.set("v.tasks", response.getReturnValue());
}

});
$A.enqueueAction(action);
}

})

Loading Record Data By Criteria
As we’ve learned, to load a simple list of record data, you can use base components or force:recordData, as shown at Loading
a Record on page 402. But to use a SOQL query to select certain records, use an Apex controller.

Remember that the method must be static, and global  or public. The method must be decorated with
@AuraEnabled(cacheable=true).

For example, query related cases based on an account Id and limit the result to 10 records.

public with sharing class CaseController {
@AuraEnabled(cacheable=true)
public static List<Case> getCases(String accountId) {

return [SELECT AccountId, Id, Subject, Status, Priority, CaseNumber
FROM Case
WHERE AccountId = :accountId LIMIT 10];

}
}

The client-side controller loads related cases using the init  handler. The action.setParams()  method passes in the record
Id of the account record being viewed to the Apex controller,

// casesForAccountController.js
({

init : function(cmp, evt) {
var action = cmp.get("c.getCases");
action.setParams({

"accountId": cmp.get("v.recordId")
});
action.setCallback(this, function(response){

var state = response.getState();
if (state === "SUCCESS") {

cmp.set("v.cases", response.getReturnValue());
}

});
$A.enqueueAction(action);

}
})

In your custom component, load a form that enables editing and updating of cases on an account record using
lightning:recordEditForm, by performing these steps.

• Query the relevant cases and set the result to the component attribute v.cases.

• Iterate over the cases by passing in the case Id to the recordId  attribute on lightning:recordEditForm.

441

Creating Server-Side Logic with ControllersWorking with Salesforce Data



The example implements the flexipage:availableForRecordHome  and force:hasRecordId  interfaces so you can
use the example on an account record page.

<!-- casesForAccount.cmp -->
<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId"
controller="CaseController">

<aura:attribute name="cases" type="Case[]"/>
<aura:attribute name="recordId" type="Id" />
<aura:handler name="init" value="{! this }" action="{! c.init }"/>

<aura:iteration items="{!v.cases}" var="case">
<lightning:card title="{!case.Id}" iconName="standard:case">

<lightning:recordEditForm objectApiName="Case" recordId="{!case.Id}">
<lightning:inputField fieldName="Subject"/>
<lightning:inputField fieldName="Status"/>

<!– Read-only field -->
<lightning:outputField fieldName="Origin" variant="label-hidden"/>

<lightning:button label="Update case" type="submit"/>
</lightning:recordEditForm>

</lightning:card>
</aura:iteration>

</aura:component>

Note:  The case data on the account record is managed by Lightning Data Service since it uses lightning:recordEditForm;
therefore, the case data that’s referenced (subject, status, and origin) reflects the latest data. However, if a case on the account is
deleted or a new case is added to the account, you must invoke the Apex method again to query the new results.

For read-only data, use lightning:outputField. To work with read-only data only, use lightning:recordViewForm
or lightning:recordForm. For granular control of your UI, use force:recordData. For more information, see Lightning
Data Service on page 401.

SEE ALSO:

Securing Data in Apex Controllers

Granting User Access for Apex Classes
An authenticated or guest user can access an @AuraEnabled  Apex method only when the user’s profile or an assigned permission
set allows access to the Apex class.

For details on configuring user profile or permission set access to an Apex class, see Class Security in the Apex Developer Guide.

SEE ALSO:

Creating an Apex Server-Side Controller

AuraEnabled Annotation

Securing Data in Apex Controllers

442

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_security.htm


Securing Data in Apex Controllers
By default, Apex runs in system mode, which means that it runs with substantially elevated permissions, acting as if the user had most
permissions and all field- and object-level access granted. Because these security layers aren’t enforced like they are in the Salesforce UI,
you must write code to enforce them. Otherwise, your components may inadvertently expose sensitive data that would normally be
hidden from users in the Salesforce UI.

Note:  To work with Salesforce records, we recommend using Lightning Data Service, which handles sharing rules, CRUD, and
field-level security for you.

Enforce Sharing Rules
When you declare a class, it’s a best practice to specify with sharing  to enforce sharing rules when a component uses the Apex
controller.

public with sharing class SharingClass {
// Code here

}

An @AuraEnabled  Apex class that doesn’t explicitly set with sharing  or without sharing, or is defined with inherited
sharing, uses a default or implicit value of with sharing. However, an Apex class that doesn’t explicitly set with sharing
or without sharing  inherits the value from the context in which it runs. So when a class without explicit sharing behavior is called
by a class that sets one of the keywords, it operates with the sharing behavior of the calling class. To ensure that your class enforces
sharing rules, set with sharing.

The with sharing  keyword enforces record-level security. It doesn’t enforce object-level and field-level security. You must manually
enforce object-level and field-level security separately in your Apex classes.

Enforce Object and Field Permissions (CRUD and FLS)
There are a few alternatives to enforce object-level and field-level permissions in your Apex code.

Easiest enforcement using WITH SECURITY_ENFORCED
To enforce object-level and field-level permissions, use the WITH SECURITY_ENFORCED  clause for SOQL SELECT  queries
in Apex code, including subqueries and cross-object relationships.

The WITH SECURITY_ENFORCED  clause is ideal if you have minimal experience developing secure code and for applications
that don’t require graceful degradation on permissions errors.

This example queries fields on a custom expense object with an insecure method, get_UNSAFE_Expenses(). Don't use this
class!

// This class is an anti-pattern.
public with sharing class UnsafeExpenseController {

// ns refers to namespace; leave out ns__ if not needed
// This method is vulnerable because it doesn't enforce FLS.
@AuraEnabled
public static List<ns__Expense__c> get_UNSAFE_Expenses() {

return [SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,
ns__Reimbursed__c, CreatedDate FROM ns__Expense__c];

}
}

443

Creating Server-Side Logic with ControllersWorking with Salesforce Data



This next example uses a secure method, getExpenses(), which uses the WITH SECURITY_ENFORCED  clause to enforce
object-level and field-level permissions. Use this class instead of UnsafeExpenseController.

public with sharing class ExpenseController {
// This method is recommended because it enforces FLS.
@AuraEnabled
public static List<ns__Expense__c> getExpenses() {
// Query the object safely
return [SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,

ns__Reimbursed__c, CreatedDate
FROM ns__Expense__c WITH SECURITY_ENFORCED];

}
}

For more details, see the Apex Developer Guide.

Graceful degradation with stripInaccessible()
For more graceful degradation on permissions errors, use the stripInaccessible()  method to enforce field- and object-level
data protection. This method strips the fields and relationship fields from query and subquery results that the user can’t access. You
can find out if any fields were stripped and throw an AuraHandledException  with a custom error message, if desired.

You can also use the method to remove inaccessible sObject fields before DML operations to avoid exceptions and to sanitize
sObjects that have been deserialized from an untrusted source.

This example updates ExpenseController  to use stripInaccessible()  instead of the WITH
SECURITY_ENFORCED  SOQL clause. The results are the same but stripInaccessible()  gives you the opportunity to
gracefully degrade instead of failing on an access violation when using WITH SECURITY_ENFORCED.

public with sharing class ExpenseControllerStripped {

@AuraEnabled
public static List<ns__Expense__c> getExpenses() {

// Query the object but don't use WITH SECURITY_ENFORCED
List<ns__Expense__c> expenses =

[SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,
ns__Reimbursed__c, CreatedDate
FROM ns__Expense__c];

// Strip fields that are not readable
SObjectAccessDecision decision = Security.stripInaccessible(

AccessType.READABLE,
expenses);

// Throw an exception if any data was stripped
if (!decision.getModifiedIndexes().isEmpty()) {

throw new AuraHandledException('Data was stripped');
}

return expenses;
}

}

For more details and examples, see the Apex Developer Guide.

Legacy code using DescribeSObjectResult and DescribeFieldResult  methods
Before the WITH SECURITY_ENFORCED  clause and stripInaccessible()  method were available, the only way to
enforce object and field permissions was to check the current user’s access permission levels by calling the

444

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_with_security_enforced.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_with_security_stripInaccessible.htm


Schema.DescribeSObjectResult  and Schema.DescribeFieldResult  methods. Then, if a user has the necessary
permissions, perform a specific DML operation or a query.

For example, you can call the isAccessible, isCreateable, or isUpdateable  methods of
Schema.DescribeSObjectResult  to verify whether the current user has read, create, or update access to an sObject,
respectively. Similarly, Schema.DescribeFieldResult  exposes access control methods that you can call to check the
current user’s read, create, or update access for a field.

This example uses the describe result methods. This approach requires many more lines of boilerplate code so we recommend using
the WITH SECURITY_ENFORCED  clause or stripInaccessible()  method instead.

public with sharing class ExpenseControllerLegacy {
@AuraEnabled
public static List<ns__Expense__c> getExpenses() {

String [] expenseAccessFields = new String [] {'Id',
'Name',
'ns__Amount__c',
'ns__Client__c',
'ns__Date__c',
'ns__Reimbursed__c',
'CreatedDate'
};

// Obtain the field name/token map for the Expense object
Map<String,Schema.SObjectField> m = Schema.SObjectType.ns__Expense__c.fields.getMap();

for (String fieldToCheck : expenseAccessFields) {

// Call getDescribe to check if the user has access to view field
if (!m.get(fieldToCheck).getDescribe().isAccessible()) {

// Pass error to client
throw new System.NoAccessException();

}
}

// Query the object safely
return [SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,

ns__Reimbursed__c, CreatedDate FROM ns__Expense__c];
}

}

SEE ALSO:

Apex Developer Guide: Enforcing Sharing Rules

Apex Developer Guide: Enforcing Object and Field Permissions

Apex Developer Guide: Using the with sharing, without sharing, and inherited sharing Keywords

Calling a Server-Side Action
Call a server-side controller action from a client-side controller. In the client-side controller, you set a callback, which is called after the
server-side action is completed. A server-side action can return any object containing serializable JSON data.

445

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_security_sharing_rules.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_perms_enforcing.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_keywords_sharing.htm


A client-side controller is a JavaScript object in object-literal notation containing a map of name-value pairs.

Let’s say that you want to trigger a server-call from a component. The following component contains a button that’s wired to a client-side
controller echo  action. SimpleServerSideController  contains a method that returns a string passed in from the client-side
controller.

<aura:component controller="SimpleServerSideController">
<aura:attribute name="firstName" type="String" default="world"/>
<lightning:button label="Call server" onclick="{!c.echo}"/>

</aura:component>

This client-side controller includes an echo action that executes a serverEcho  method on a server-side controller.

Tip: Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the
same name as an Apex method (server-side action ) can lead to hard-to-debug issues. In debug mode, the framework logs a
browser console warning about the clashing client-side and server-side action names.

({
"echo" : function(cmp) {

// create a one-time use instance of the serverEcho action
// in the server-side controller
var action = cmp.get("c.serverEcho");
action.setParams({ firstName : cmp.get("v.firstName") });

// Create a callback that is executed after
// the server-side action returns
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

// Alert the user with the value returned
// from the server
alert("From server: " + response.getReturnValue());

// You would typically fire a event here to trigger
// client-side notification that the server-side
// action is complete

}
else if (state === "INCOMPLETE") {

// do something
}
else if (state === "ERROR") {

var errors = response.getError();
if (errors) {

if (errors[0] && errors[0].message) {
console.log("Error message: " +

errors[0].message);
}

} else {
console.log("Unknown error");

}
}

});

// optionally set storable, abortable, background flag here

// A client-side action could cause multiple events,

446

Creating Server-Side Logic with ControllersWorking with Salesforce Data



// which could trigger other events and
// other server-side action calls.
// $A.enqueueAction adds the server-side action to the queue.
$A.enqueueAction(action);

}
})

In the client-side controller, we use the value provider of c  to invoke a server-side controller action. We also use the c  syntax in markup
to invoke a client-side controller action.

The cmp.get("c.serverEcho")  call indicates that we’re calling the serverEcho  method in the server-side controller. The
method name in the server-side controller must match everything after the c.  in the client-side call. In this case, that’s serverEcho.

The implementation of the serverEcho  Apex method is shown in Apex Server-Side Controller Overview.

Use action.setParams()  to set data to be passed to the server-side controller. The following call sets the value of the firstName
argument on the server-side controller’s serverEcho  method based on the firstName  attribute value.

action.setParams({ firstName : cmp.get("v.firstName") });

action.setCallback()  sets a callback action that is invoked after the server-side action returns.

action.setCallback(this, function(response) { ... });

The server-side action results are available in the response  variable, which is the argument of the callback.

response.getState()  gets the state of the action returned from the server.

Note: You don’t need a cmp.isValid()  check in the callback in a client-side controller when you reference the component
associated with the client-side controller. The framework automatically checks that the component is valid.

response.getReturnValue()  gets the value returned from the server. In this example, the callback function alerts the user
with the value returned from the server.

$A.enqueueAction(action)  adds the server-side controller action to the queue of actions to be executed. All actions that are
enqueued will run at the end of the event loop. Rather than sending a separate request for each individual action, the framework
processes the event chain and batches the actions in the queue into one request. The actions are asynchronous and have callbacks.

Tip: If your action isn’t executing, make sure that you’re not executing code outside the framework’s normal rendering lifecycle.
For example, if you use window.setTimeout()  in an event handler to execute some logic after a time delay, wrap your
code in $A.getCallback(). You don't need to use $A.getCallback()  if your code is executed as part of the framework's
call stack; for example, your code is handling an event or in the callback for a server-side controller action.

Client Payload Data Limit
Use action.setParams()  to set data for an action to be passed to a server-side controller.

The framework batches the actions in the queue into one server request. The request payload includes all of the actions and their data
serialized into JSON. The request payload limit is 4 MB.

447

Creating Server-Side Logic with ControllersWorking with Salesforce Data



IN THIS SECTION:

Action States

Call a server-side controller action from a client-side controller. The action can have different states during processing.

SEE ALSO:

Handling Events with Client-Side Controllers

Passing Data to an Apex Controller

Queueing of Server-Side Actions

Action States

Checking Component Validity

Action States
Call a server-side controller action from a client-side controller. The action can have different states during processing.

The possible action states are:

NEW
The action was created but is not in progress yet

RUNNING
The action is in progress

SUCCESS
The action executed successfully

ERROR
The server returned an error

INCOMPLETE
The server didn’t return a response. The server might be down or the client might be offline. The framework guarantees that an
action’s callback is always invoked as long as the component is valid. If the socket to the server is never successfully opened, or closes
abruptly, or any other network error occurs, the XHR resolves and the callback is invoked with state equal to INCOMPLETE.

ABORTED
The action was aborted. This action state is deprecated. A callback for an aborted action is executed only if you explicitly add a handler
for it.

SEE ALSO:

Calling a Server-Side Action

Passing Data to an Apex Controller
Use action.setParams()  in JavaScript to set data to pass to an Apex controller.

This example sets the value of the firstName  argument on an Apex controller’s serverEcho  method based on the firstName
attribute value.

var action = cmp.get("c.serverEcho");
action.setParams({ firstName : "Jennifer" });

The request payload includes the action data serialized into JSON.

448

Creating Server-Side Logic with ControllersWorking with Salesforce Data



Here's the Apex controller method.

@AuraEnabled
public static String serverEcho(String firstName) {

return ('Hello from the server, ' + firstName);
}

The framework deserializes the action data into the appropriate Apex type. In this example, we have a String  parameter called
firstName.

Example with Different Data Types
Let's look at an application that sends data of various types to an Apex controller. Each button starts the sequence of passing data of a
different type.

<!-- actionParamTypes.app -->
<aura:application controller="ApexParamTypesController">

<lightning:button label="putboolean" onclick="{!c.putbooleanc}"/>
<lightning:button label="putint" onclick="{!c.putintc}"/>
<lightning:button label="putlong" onclick="{!c.putlongc}"/>
<lightning:button label="putdecimal" onclick="{!c.putdecimalc}"/>
<lightning:button label="putdouble" onclick="{!c.putdoublec}"/>
<lightning:button label="putstring" onclick="{!c.putstringc}"/>
<lightning:button label="putobject" onclick="{!c.putobjectc}"/>
<lightning:button label="putblob" onclick="{!c.putblobc}"/>
<lightning:button label="putdate" onclick="{!c.putdatec}"/>
<lightning:button label="putdatetime" onclick="{!c.putdatetimec}"/>
<lightning:button label="puttime" onclick="{!c.puttimec}"/>
<lightning:button label="putlistoflistoflistofstring"

onclick="{!c.putlistoflistoflistofstringc}"/>
<lightning:button label="putmapofstring" onclick="{!c.putmapofstringc}"/>
<lightning:button label="putcustomclass" onclick="{!c.putcustomclassc}"/>

</aura:application>

Here's the application's JavaScript controller. Each action calls the helper's putdatatype  method, which queues up the actions to
send to the Apex controller. The method has three parameters:

1. The component

2. The Apex method name

3. The data to pass to the Apex method

// actionParamTypesController.js
({

putbooleanc : function(component, event, helper) {
helper.putdatatype(component, "c.pboolean", true);

},
putintc : function(component, event, helper) {

helper.putdatatype(component, "c.pint", 10);
},
putlongc : function(component, event, helper) {

helper.putdatatype(component, "c.plong", 2147483648);
},
putdecimalc : function(component, event, helper) {

helper.putdatatype(component, "c.pdecimal", 10.80);
},

449

Creating Server-Side Logic with ControllersWorking with Salesforce Data



putdoublec : function(component, event, helper) {
helper.putdatatype(component, "c.pdouble", 10.80);

},
putstringc : function(component, event, helper) {

helper.putdatatype(component, "c.pstring", "hello!");
},
putobjectc : function(component, event, helper) {

helper.putdatatype(component, "c.pobject", true);
},
putblobc : function(component, event, helper) {

helper.putdatatype(component, "c.pblob", "some blob as string");
},
// Date value is in ISO 8601 date format
putdatec : function(component, event, helper) {

helper.putdatatype(component, "c.pdate", "2020-01-31");
},
// Datetime value is in ISO 8601 datetime format
putdatetimec : function(component, event, helper) {

helper.putdatatype(component, "c.pdatetime", "2020-01-31T15:08:16.000Z");
},
// Set time in milliseconds.
// You can use (new Date()).getTime() to set the milliseconds
puttimec : function(component, event, helper) {

helper.putdatatype(component, "c.ptime", 3723004);
//helper.putdatatype(component, "c.ptime", (new Date()).getTime());

},
putlistoflistoflistofstringc : function(component, event, helper) {

helper.putdatatype(component, "c.plistoflistoflistofstring",
[[['a','b'],['c','d']],[['e','f']]]);

},
putmapofstringc : function(component, event, helper) {

helper.putdatatype(component, "c.pmapofstring", {k1: 'v1'});
},
putcustomclassc : function(component, event, helper) {

helper.putdatatype(component, "c.pcustomclass", {
s: 'my string',
i: 10,
l: ['list value 1','list value 2'],
m: {k1: 'map value'},
os: {b: true}

});
},

})

The helper has a utility method to send the data to an Apex controller.

// actionParamTypesHelper.js
({

putdatatype : function(component, actionName, val) {
var action = component.get(actionName);
action.setParams({ v : val });
action.setCallback(this, function(response) {

console.log(response.getReturnValue());
});
$A.enqueueAction(action);

450

Creating Server-Side Logic with ControllersWorking with Salesforce Data



}
})

Here's the Apex controller.

public class ApexParamTypesController {
@AuraEnabled
public static Boolean pboolean(Boolean v){

System.debug(v);
return v;

}
@AuraEnabled
public static Integer pint(Integer v){

System.debug(v+v);
return v;

}
@AuraEnabled
public static Long plong(Long v){

System.debug(v);
return v;

}
@AuraEnabled
public static Decimal pdecimal(Decimal v){

System.debug(v);
return v;

}
@AuraEnabled
public static Double pdouble(Double v){

System.debug(v);
return v;

}
@AuraEnabled
public static String pstring(String v){

System.debug(v.capitalize());
return v;

}
@AuraEnabled
public static Object pobject(Object v){

System.debug(v);
return v;

}
@AuraEnabled
public static Blob pblob(Blob v){

System.debug(v.toString());
return v;

}
@AuraEnabled
public static Date pdate(Date v){

System.debug(v);
return v;

}
@AuraEnabled
public static DateTime pdatetime(DateTime v){

System.debug(v);
return v;

451

Creating Server-Side Logic with ControllersWorking with Salesforce Data



}
@AuraEnabled
public static Time ptime(Time v){

System.debug(v);
return v;

}
@AuraEnabled
public static List<List<List<String>>> plistoflistoflistofstring(List<List<List<String>>>

v){
System.debug(v);
return v;

}
@AuraEnabled
public static Map<String, String> pmapofstring(Map<String, String> v){

System.debug(v);
return v;

}
@AuraEnabled
public static MyCustomApexClass pcustomclass(MyCustomApexClass v){

System.debug(v);
return v;

}
}

The pcustomclass()  Apex method has a parameter that's a custom Apex type, MyCustomApexClass. Each property in the
Apex class must have an @AuraEnabled  annotation, as well as a getter and setter.

public class MyCustomApexClass {
@AuraEnabled
public String s {get; set;}
@AuraEnabled
public Integer i {get; set;}
@AuraEnabled
public List<String> l {get; set;}
@AuraEnabled
public Map <String, String> m {get; set;}
@AuraEnabled
public MyOtherCustomApexClass os {get; set;}

}

The MyCustomApexClass  Apex class has a property with a type of another custom Apex class, MyOtherCustomApexClass.

public class MyOtherCustomApexClass {
@AuraEnabled
public Boolean b {get; set;}

}

Note:  You can’t use an Apex inner class as a parameter or return value for an Apex method that's called by an Aura component.

SEE ALSO:

Queueing of Server-Side Actions

Apex Server-Side Controller Overview

452

Creating Server-Side Logic with ControllersWorking with Salesforce Data



Returning Data from an Apex Server-Side Controller
Return results from a server-side controller to a client-side controller using the return  statement. Results data must be serializable
into JSON format.

Return data types can be any of the following.

• Simple—String, Integer, and so on. See Basic Types for details.

• sObject—standard and custom sObjects are both supported. See Standard and Custom Object Types.

• Apex—an instance of an Apex class. (Most often a custom class.) See Custom Apex Class Types. You can’t use an Apex inner class
as a return value for an Apex method that's called by an Aura component.

• Collection—a collection of any of the other types. See Collection Types.

Returning Apex Objects
Here’s an example of a controller that returns a collection of custom Apex objects.

public with sharing class SimpleAccountController {

@AuraEnabled
public static List<SimpleAccount> getAccounts() {

// Perform isAccessible() check here

// SimpleAccount is a simple "wrapper" Apex class for transport
List<SimpleAccount> simpleAccounts = new List<SimpleAccount>();

List<Account> accounts = [SELECT Id, Name, Phone FROM Account LIMIT 5];
for (Account acct : accounts) {

simpleAccounts.add(new SimpleAccount(acct.Id, acct.Name, acct.Phone));
}

return simpleAccounts;
}

}

When an instance of an Apex class is returned from a server-side action, the instance is serialized to JSON by the framework. Only the
values of public  instance properties and methods annotated with @AuraEnabled  are serialized and returned.

For example, here’s a simple “wrapper” Apex class that contains a few details for an account record. This class is used to package a few
details of an account record in a serializable format.

public class SimpleAccount {

@AuraEnabled public String Id { get; set; }
@AuraEnabled public String Name { get; set; }
public String Phone { get; set; }

// Trivial constructor, for server-side Apex -> client-side JavaScript
public SimpleAccount(String id, String name, String phone) {

this.Id = id;
this.Name = name;
this.Phone = phone;

}

453

Creating Server-Side Logic with ControllersWorking with Salesforce Data



// Default, no-arg constructor, for client-side -> server-side
public SimpleAccount() {}

}

When returned from a remote Apex controller action, the Id and Name properties are defined on the client-side. However, because it
doesn’t have the @AuraEnabled  annotation, the Phone property isn’t serialized on the server side, and isn’t returned as part of the
result data.

SEE ALSO:

AuraEnabled Annotation

Custom Apex Class Types

Calling a Server-Side Action

Returning Errors from an Apex Server-Side Controller
Create and throw a System.AuraHandledException  from your Apex controller to return a custom error message to a JavaScript
controller.

Errors happen. Sometimes they’re expected, such as invalid input from a user, or a duplicate record in a database. Sometimes they’re
unexpected, such as... Well, if you’ve been programming for any length of time, you know that the range of unexpected errors is nearly
infinite.

When your Apex controller code experiences an error, two things can happen. You can use a catch block and handle the error in Apex.
Otherwise, the error is passed back in the controller’s response.

If you handle the error in Apex, you again have two ways you can go. You can process the error in a catch block, perhaps recovering
from it, and return a normal response to the client. Or, you can create and throw an AuraHandledException.

The benefit of throwing AuraHandledException, instead of letting a system exception be returned, is that you have a chance
to handle the exception more gracefully in your JavaScript controller code. System exceptions have important details stripped out for
security purposes, and result in the dreaded “An internal server error has occurred…” message. Nobody likes that. When you use an
AuraHandledException  you have an opportunity to add some detail back into the response returned to your client-side code.
More importantly, you can choose a better message to show your users.

Here’s an example of creating and throwing an AuraHandledException  in response to bad input. However, the real benefit of
using AuraHandledException  comes when you use it in response to a system exception. For example, throw an
AuraHandledException  in response to catching a DML exception, instead of allowing the DML exception to propagate to your
client component code.

public with sharing class SimpleErrorController {

static final List<String> BAD_WORDS = new List<String> {
'bad',
'words',
'here'

};

@AuraEnabled
public static String helloOrThrowAnError(String name) {

// Make sure we're not seeing something naughty
for(String badWordStem : BAD_WORDS) {

454

Creating Server-Side Logic with ControllersWorking with Salesforce Data



if(name.containsIgnoreCase(badWordStem)) {
// How rude! Gracefully return an error...
throw new AuraHandledException('NSFW name detected.');

}
}

// No bad word found, so...
return ('Hello ' + name + '!');

}

}

This JavaScript controller code handles the AuraHandledException  thrown by the Apex controller.

({
"callServer" : function(cmp) {

var action = cmp.get("c.helloOrThrowAnError");
action.setParams({ name : "bad" });

action.setCallback(this, function(response) {
var state = response.getState();
if (state === "SUCCESS") {

console.log("From server: " + response.getReturnValue());
}
else if (state === "INCOMPLETE") {

// do something
}
else if (state === "ERROR") {

var errors = response.getError();
if (errors) {

if (errors[0] && errors[0].message) {
// log the error passed in to AuraHandledException
console.log("Error message: " +

errors[0].message);
}

} else {
console.log("Unknown error");

}
}

});

$A.enqueueAction(action);
}

})

When an Apex controller throws an AuraHandledException, the response state in the JavaScript controller is set to ERROR  and
you can get the error message by processing response.getError().

This example simply logs the error to the console. To display an error prompt in the UI, use the
lightning:notificationsLibrary component.

SEE ALSO:

Salesforce Developers Blog: Error Handling Best Practices for Lightning and Apex

455

Creating Server-Side Logic with ControllersWorking with Salesforce Data

https://developer.salesforce.com/blogs/2017/09/error-handling-best-practices-lightning-apex.html


Queueing of Server-Side Actions
The framework queues up actions before sending them to the server. This mechanism is largely transparent to you when you’re writing
code but it enables the framework to minimize network traffic by batching multiple actions into one request (XHR).

The batching of actions is also known as boxcar’ing, similar to a train that couples boxcars together.

Multiple actions sent in the same boxcar are processed in one transaction.

The framework uses a stack to track the actions to send to the server. When the browser finishes processing events and JavaScript on
the client, the enqueued actions on the stack are sent to the server in a batch.

Tip: If your action isn’t executing, make sure that you’re not executing code outside the framework’s normal rendering lifecycle.
For example, if you use window.setTimeout()  in an event handler to execute some logic after a time delay, wrap your
code in $A.getCallback().

There are some properties that you can set on an action to influence how the framework manages the action while it’s in the queue
waiting to be sent to the server. For more information, see:

• Foreground and Background Actions on page 456

• Storable Actions on page 457

• Abortable Actions on page 461

Action Limit in a Boxcar Request
The framework returns a 413 HTTP response status code if there are more than 250 actions in a boxcar request. If a user sees this rare
error, consider redesigning your custom component to follow best practices and reduce the number of actions in a request.

SEE ALSO:

Modifying Components Outside the Framework Lifecycle

Foreground and Background Actions
Foreground actions are the default. An action can be marked as a background action. This is useful when you want your app to remain
responsive to a user while it executes a low priority, long-running action. A rough guideline is to use a background action if it takes more
than five seconds for the response to return from the server.

Batching of Actions
Multiple queued foreground actions are batched in a single request (XHR) to minimize network traffic. The batching of actions is also
known as boxcar’ing, similar to a train that couples boxcars together.

The server sends the XHR response to the client when all actions have been processed on the server. If a long-running action is in the
boxcar, the XHR response is held until that long-running action completes. Marking an action as background results in that action being
sent separately from any foreground actions. The separate transmission ensures that the background action doesn’t impact the response
time of the foreground actions.

When the server-side actions in the queue are executed, the foreground actions execute first and then the background actions execute.
Background actions run in parallel with foreground actions and responses of foreground and background actions may come back in
either order.

We don’t make any guarantees for the order of execution of action callbacks. XHR responses may return in a different order than the
order in which the XHR requests were sent due to server processing time.

456

Creating Server-Side Logic with ControllersWorking with Salesforce Data



Note:  Don’t rely on each background action being sent in its own request as that behavior isn’t guaranteed and it can lead to
performance issues. Remember that the motivation for background actions is to isolate long-running requests into a separate
request to avoid slowing the response for foreground actions.

Multiple actions sent in the same boxcar are processed in one transaction. If you see an error for “uncommitted work pending”, it’s
possible that a later action can’t be completed due to uncommitted work for an earlier action in the same transaction. For example, if
the first action updates a record, an Apex callout in a second action can’t be completed due to the uncommitted work from the first
action. If two actions must be executed sequentially, the component must orchestrate the ordering. The component can enqueue the
first action. In the first action’s callback, the component can then enqueue the second action.

Framework-Managed Request Throttling
The framework throttles foreground and background requests separately. This means that the framework can control the number of
foreground requests and the number of background actions running at any time. The framework automatically throttles requests and
it’s not user controlled. The framework manages the number of foreground and background XHRs, which varies depending on available
resources.

Even with separate throttling, background actions might affect performance in some conditions, such as an excessive number of requests
to the server.

Setting Background Actions
To set an action as a background action, call the setBackground()  method on the action object in JavaScript.

// set up the server-action action
var action = cmp.get("c.serverEcho");
// optionally set actions params
//action.setParams({ firstName : cmp.get("v.firstName") });
// set as a background action
action.setBackground();

Note:  A background action can’t be set back to a foreground action. In other words, calling setBackground  to set it to
false  will have no effect.

SEE ALSO:

Queueing of Server-Side Actions

Calling a Server-Side Action

Storable Actions
Enhance your component’s performance by marking actions as storable (cacheable) to quickly show cached data from client-side storage
without waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is especially
beneficial for users on high latency, slow, or unreliable connections such as 3G networks.

Warning:

• A storable action might result in no call to the server. Never mark as storable an action that updates or deletes data.

• For storable actions in the cache, the framework returns the cached response immediately and also refreshes the data if it’s
stale. Therefore, storable actions might have their callbacks invoked more than once: first with cached data, then with updated
data from the server.

457

Creating Server-Side Logic with ControllersWorking with Salesforce Data



Most server requests are read-only and idempotent, which means that a request can be repeated or retried as often as necessary without
causing data changes. The responses to idempotent actions can be cached and quickly reused for subsequent identical actions. For
storable actions, the key for determining an identical action is a combination of:

• Apex controller name

• Method name

• Method parameter values

Note: Client-side storage is automatically configured in Lightning Experience and the Salesforce mobile app. A component
shouldn’t assume a cache duration because it may change as we optimize the platform.

Marking an Action as Storable
To cache data returned from an Apex method for any component with an API version of 44.0 or higher, you must annotate the Apex
method with @AuraEnabled(cacheable=true). For example:

@AuraEnabled(cacheable=true)
public static Account getAccount(Id accountId) {

// your code here
}

Prior to API version 44.0, to cache data returned from an Apex method, you had to call setStorable()  in JavaScript code on every
action that called the Apex method. For API version of 44.0 or higher, you can mark the Apex method as storable (cacheable) and get
rid of any setStorable()  calls in JavaScript code. The Apex annotation approach is better because it centralizes your caching
notation for a method in the Apex class.

Call setStorable()  on an action in JavaScript code, as follows.

action.setStorable();

The setStorable  function takes an optional argument, which is a configuration map of key-value pairs representing the storage
options and values to set. You can only set the following property:

ignoreExisting
Set to true  to bypass the cache. The default value is false.

This property is useful when you know that any cached data is invalid, such as after a record modification. This property should be
used rarely because it explicitly defeats caching.

To set the storage options for the action response, pass this configuration map into setStorable(configObj).

IN THIS SECTION:

Lifecycle of Storable Actions

This image describes the sequence of callback execution for storable actions.

Enable Storable Actions in an Application

To use storable actions in a standalone app (.app  resource), you must configure client-side storage for cached action responses.

Storage Service Adapters

The Storage Service supports multiple implementations of storage and selects an adapter at runtime based on browser support and
specified characteristics of persistence and security. Storage can be persistent and secure. With persistent storage, cached data is
preserved between user sessions in the browser. With secure storage, cached data is encrypted.

458

Creating Server-Side Logic with ControllersWorking with Salesforce Data



Lifecycle of Storable Actions
This image describes the sequence of callback execution for storable actions.

Note:  An action might have its callback invoked more than once:

• First with the cached response, if it’s in storage.

• Second with updated data from the server, if the stored response has exceeded the time to refresh entries.

Cache Miss

If the action is not a cache hit as it doesn’t match a storage entry:

1. The action is sent to the server-side controller.

2. If the response is SUCCESS, the response is added to storage.

3. The callback in the client-side controller is executed.

Cache Hit

If the action is a cache hit as it matches a storage entry:

1. The callback in the client-side controller is executed with the cached action response.

2. If the response has been cached for longer than the refresh time, the storage entry is refreshed.

When an application enables storable actions, a refresh time is configured. The refresh time is the duration in seconds before an
entry is refreshed in storage. The refresh time is automatically configured in Lightning Experience and the Salesforce mobile app.

3. The action is sent to the server-side controller.

4. If the response is SUCCESS, the response is added to storage.

459

Creating Server-Side Logic with ControllersWorking with Salesforce Data



5. If the refreshed response is different from the cached response, the callback in the client-side controller is executed for a second
time.

SEE ALSO:

Storable Actions

Enable Storable Actions in an Application

Enable Storable Actions in an Application
To use storable actions in a standalone app (.app  resource), you must configure client-side storage for cached action responses.

Note: Client-side storage is automatically configured in Lightning Experience and the Salesforce mobile app. A component
shouldn’t assume a cache duration because it may change as we optimize the platform.

To configure client-side storage for your standalone app, use <auraStorage:init>  in the auraPreInitBlock attribute of
your application’s template. For example:

<aura:component isTemplate="true" extends="aura:template">
<aura:set attribute="auraPreInitBlock">

<auraStorage:init
name="actions"
persistent="false"
secure="true"
maxSize="1024"
defaultExpiration="900"
defaultAutoRefreshInterval="30" />

</aura:set>
</aura:component>

name
The storage name must be actions. Storable actions are the only currently supported type of storage.

persistent
Set to true  to preserve cached data between user sessions in the browser.

secure
Set to true  to encrypt cached data.

maxsize
The maximum size in KB of the storage.

defaultExpiration
The duration in seconds that an entry is retained in storage.

defaultAutoRefreshInterval
The duration in seconds before an entry is refreshed in storage.

Storable actions use the Storage Service. The Storage Service supports multiple implementations of storage and selects an adapter at
runtime based on browser support and specified characteristics of persistence and security.

SEE ALSO:

Storage Service Adapters

460

Creating Server-Side Logic with ControllersWorking with Salesforce Data



Storage Service Adapters
The Storage Service supports multiple implementations of storage and selects an adapter at runtime based on browser support and
specified characteristics of persistence and security. Storage can be persistent and secure. With persistent storage, cached data is preserved
between user sessions in the browser. With secure storage, cached data is encrypted.

SecurePersistentStorage Adapter Name

falsetrueIndexedDB

truefalseMemory

IndexedDB
(Persistent but not secure) Provides access to an API for client-side storage and search of structured data. For more information, see
the Indexed Database API.

Memory
(Not persistent but secure) Provides access to JavaScript memory for caching data. The stored cache persists only per browser page.
Browsing to a new page resets the cache.

The Storage Service selects a storage adapter on your behalf that matches the persistent and secure options you specify when initializing
the service. For example, if you request a persistent and insecure storage service, the Storage Service returns the IndexedDB storage if
the browser supports it.

Abortable Actions
Mark an action as abortable to make it potentially abortable while it's queued to be sent to the server. An abortable action in the queue
is not sent to the server if the component that created the action is no longer valid, that is cmp.isValid() == false. A component
is automatically destroyed and marked invalid by the framework when it is unrendered.

Note:  We recommend that you only use abortable actions for read-only operations as they are not guaranteed to be sent to the
server.

An abortable action is sent to the server and executed normally unless the component that created the action is invalid before the action
is sent to the server.

A non-abortable action is always sent to the server and can't be aborted in the queue.

If an action response returns from the server and the associated component is now invalid, the logic has been executed on the server
but the action callback isn’t executed. This is true whether or not the action is marked as abortable.

Marking an Action as Abortable
Mark a server-side action as abortable by using the setAbortable()  method on the Action  object in JavaScript. For example:

var action = cmp.get("c.serverEcho");
action.setAbortable();

SEE ALSO:

Creating Server-Side Logic with Controllers

Queueing of Server-Side Actions

Calling a Server-Side Action

461

Creating Server-Side Logic with ControllersWorking with Salesforce Data

http://www.w3.org/TR/IndexedDB/


Testing Your Apex Code
Before you can upload a managed package, you must write and execute tests for your Apex code to meet minimum code coverage
requirements. Also, all tests must run without errors when you upload your package to AppExchange.

To package your application and components that depend on Apex code, the following must be true.

• Unit tests must cover at least 75% of your Apex code, and all of those tests must complete successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.

– Calls to System.debug  aren’t counted as part of Apex code coverage.

– Test methods and test classes aren’t counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, don’t focus on the percentage of code that is covered. Instead,
make sure that every use case of your application is covered, including positive and negative cases, as well as bulk and single
records. This approach ensures that 75% or more of your code is covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

This sample shows an Apex test class for a custom object that’s wired up to a component.

@isTest
class TestExpenseController {

static testMethod void test() {
//Create new expense and insert it into the database
Expense__c exp = new Expense__c(name='My New Expense',

amount__c=20, client__c='ABC',
reimbursed__c=false, date__c=null);

ExpenseController.saveExpense(exp);

//Assert the name field and saved expense
System.assertEquals('My New Expense',

ExpenseController.getExpenses()[0].Name,
'Name does not match');

System.assertEquals(exp, ExpenseController.saveExpense(exp));
}

}

Note:  Apex classes must be manually added to your package.

For more information on distributing Apex code, see Debugging, Testing, and Deploying Apex  in the Apex Developer Guide.

SEE ALSO:

Distributing Applications and Components

Making API Calls from Apex
Make API calls from an Apex controller. You can’t make Salesforce API calls from JavaScript code.

For security reasons, the Lightning Component framework places restrictions on making API calls from JavaScript code. To call third-party
APIs from your component’s JavaScript code, add the API endpoint as a CSP Trusted Site.

To call Salesforce APIs, make the API calls from your component’s Apex controller. Use a named credential to authenticate to Salesforce.

462

Testing Your Apex CodeWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_debug_test_deploy.htm


Note:  By security policy, sessions created by Lightning components aren’t enabled for API access. This prevents even your Apex
code from making API calls to Salesforce. Using a named credential for specific API calls allows you to carefully and selectively
bypass this security restriction.

The restrictions on API-enabled sessions aren’t accidental. Carefully review any code that uses a named credential to ensure you’re
not creating a vulnerability.

For information about making API calls from Apex, see the Apex Developer Guide.

SEE ALSO:

Apex Developer Guide: Named Credentials as Callout Endpoints

Making API Calls from Components

Manage Trusted URLs

Content Security Policy Overview

Make Long-Running Callouts with Continuations
Use the Continuation  class in Apex to make a long-running request to an external web service. Process the response in a callback
method. Continuations are the preferred way to manage callouts because they can provide substantial improvements to the user
experience.

Using continuations has some advantages, including the capability to make callouts in parallel.

The framework queues up actions before sending them to the server. This mechanism is largely transparent to you when you’re writing
code but it enables the framework to minimize network traffic by batching multiple actions into one request (XHR). The batching of
actions is also known as boxcar’ing, similar to a train that couples boxcars together. Since continuations can be long-running requests,
the framework essentially treats continuations as background actions. Continuations aren't boxcar'ed with other requests so they don't
block other actions while they are running.

An asynchronous callout made with a continuation doesn’t count toward the Apex limit of synchronous requests that last longer than
five seconds. Since Winter ’20, all callouts are excluded from the long-running request limit so continuations no longer offer an advantage
for working with limits compared to regular callouts. However, we recommend using continuations to manage callouts due to the
improved user experience.

IN THIS SECTION:

Work with a Continuation in an Apex Class

To work with a continuation in an Apex class, use the Apex Continuation  object.

@AuraEnabled Annotations for Continuations

Continuations use the @AuraEnabled  annotation for Apex code. Here are the rules for usage.

Aura Component Continuations Example

Here’s the markup for a component with a button that starts the process of calling a continuation.

463

Make Long-Running Callouts with ContinuationsWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_callouts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_callouts_named_credentials.htm


Continuation-Specific Limits

Because continuations can lead to multiple long-running actions, there are some limits on their usage.

SEE ALSO:

Queueing of Server-Side Actions

Apex Reference Guide: Continuation Class

Apex Developer Guide: Named Credentials as Callout Endpoints

Work with a Continuation in an Apex Class
To work with a continuation in an Apex class, use the Apex Continuation  object.

1. Before you can call an external service, you must add the remote site to a list of authorized remote sites in the Salesforce user interface.
From Setup, in the Quick Find box, enter Remote Site Settings. Select Remote Site Settings, and then click New
Remote Site. Add the callout URL corresponding to LONG_RUNNING_SERVICE_URL  in the Apex Class Continuation example
below.

If the callout specifies a named credential as the endpoint, you don’t need to configure remote site settings. A named credential
specifies the URL of a callout endpoint and its required authentication parameters in one definition. In your code, specify the named
credential URL instead of the long-running service URL.

2. To make a long-running callout, define an Apex method that returns a Continuation  object. (Don’t worry about the attributes
of the @AuraEnabled  annotation yet. We explain that soon.)

@AuraEnabled(continuation=true cacheable=true)
public static Object startRequest() {

// Create continuation. Argument is timeout in seconds.
Continuation con = new Continuation(40);
// more to come here
return con;

}

3. Set an Apex callback method to be invoked after the callout completes in the continuationMethod  property of the
Continuation  object. In this example, the callback method is processResponse. The callback method must be in the
same Apex class.

con.continuationMethod='processResponse';

4. Set the endpoint for a callout by adding an HttpRequest  object to the Continuation object. A single Continuation
object can contain a maximum of three callouts. Each callout must have a remote site or named credential defined in Setup.

HttpRequest req = new HttpRequest();
req.setMethod('GET');
req.setEndpoint(LONG_RUNNING_SERVICE_URL);
con.addHttpRequest(req);

5. Set data to pass to the callback method in the state property of the Continuation  object. The state  property has an
Object  type so you can pass in any data type that’s supported in Apex.

con.state='Hello, World!';

464

Make Long-Running Callouts with ContinuationsWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_class_System_Continuation.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_callouts_named_credentials.htm


6. Code the logic in the Apex callback. When all the callouts set in the Continuation  object have completed, the Apex callback
method, processResponse, is invoked. The callback method has two parameters that you can access.

public static Object processResponse(List<String> labels, Object state)

a. labels—A list of labels, one for each request in the continuation. These labels are automatically created.

b. state—The state that you set in the state  property in your Continuation  object.

7. Get the response for each request in the continuation. For example:

HttpResponse response = Continuation.getResponse(labels[0]);

8. Return the results to the JavaScript controller.

Complete Apex Class Example with Continuation
Here’s a complete Apex class that ties together all the earlier steps.

public with sharing class SampleContinuationClass {
// Callout endpoint as a named credential URL
// or, as shown here, as the long-running service URL
private static final String LONG_RUNNING_SERVICE_URL =

'<insert your callout URL here>';

// Action method
@AuraEnabled(continuation=true cacheable=true)
public static Object startRequest() {
// Create continuation. Argument is timeout in seconds.
Continuation con = new Continuation(40);
// Set callback method
con.continuationMethod='processResponse';
// Set state
con.state='Hello, World!';
// Create callout request
HttpRequest req = new HttpRequest();
req.setMethod('GET');
req.setEndpoint(LONG_RUNNING_SERVICE_URL);
// Add callout request to continuation
con.addHttpRequest(req);
// Return the continuation
return con;

}

// Callback method
@AuraEnabled(cacheable=true)
public static Object processResponse(List<String> labels, Object state) {
// Get the response by using the unique label
HttpResponse response = Continuation.getResponse(labels[0]);
// Set the result variable
String result = response.getBody();
return result;

465

Make Long-Running Callouts with ContinuationsWorking with Salesforce Data



}
}

SEE ALSO:

Make Long-Running Callouts with Continuations

@AuraEnabled  Annotations for Continuations
Continuations use the @AuraEnabled  annotation for Apex code. Here are the rules for usage.

@AuraEnabled(continuation=true)
An Apex controller method that returns a continuation must be annotated with @AuraEnabled(continuation=true).

@AuraEnabled(continuation=true cacheable=true)
To cache the result of a continuation action, set cacheable=true  on the annotation for the Apex callback method.

Note:  There’s a space, not a comma, between continuation=true cacheable=true.

Caching Considerations
It's best practice to set cacheable=true  on all methods involved in the continuation chain, including the method that returns a
Continuation  object. The cacheable=true  setting is available for API version 44.0 and higher. Before API version 44.0, to
cache data returned from an Apex method, you had to call setStorable()  in JavaScript code on every action that called the Apex
method.

In this example, the Apex method that returns the continuation, startRequest(), and the callback, processResponse(),
both contain cacheable=true  in their @AuraEnabled annotation.

// Action method
@AuraEnabled(continuation=true cacheable=true)
public static Object startRequest() { }

// Callback method
@AuraEnabled(cacheable=true)
public static Object processResponse(List<String> labels,
Object state) { }

Here's a table that summarizes the behavior with different settings of the cacheable  attribute in @AuraEnabled.

Is Action Response
Cached on Client?

Action can use
setStorable()  in
JavaScript?

Valid?Callback Method
Annotated with
cacheable=true

Method Returning
Continuation Object
Annotated with
cacheable=true

YesYesYesYesYes

N/AN/ANo (throws an exception)NoYes

YesNo (all methods must
have
cacheable=true)

YesYesNo

466

Make Long-Running Callouts with ContinuationsWorking with Salesforce Data



Is Action Response
Cached on Client?

Action can use
setStorable()  in
JavaScript?

Valid?Callback Method
Annotated with
cacheable=true

Method Returning
Continuation Object
Annotated with
cacheable=true

YesNoNo • No (API version 44.0
and higher)

• No (API version 44.0
and higher)

• •Yes (43.0 and lower) Yes (43.0 and lower)

SEE ALSO:

Make Long-Running Callouts with Continuations

AuraEnabled Annotation

Aura Component Continuations Example
Here’s the markup for a component with a button that starts the process of calling a continuation.

The component is wired to the Apex class that uses a continuation by setting the controller attribute in the <aura:component>
tag.

<aura:component controller="SampleContinuationClass">
<lightning:button label="Call Continuation" onclick="{!c.callContinuation}"/>

</aura:component>

Here’s the component’s JavaScript controller. The code calls the startRequest  Apex method that uses a Continuation  object.
The response.getReturnValue()  value for a successful response in the JavScript controller corresponds to the value returned
by the Apex callback method defined in the Continuation  object.

({
callContinuation : function(cmp) {

var action = cmp.get("c.startRequest");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

console.log("From server: "
+ response.getReturnValue()
+ '\n' + JSON.stringify(response.getReturnValue()));

}
else if (state === "INCOMPLETE") {

alert("Continuation action is INCOMPLETE");
}
else if (state === "ERROR") {

var errors = response.getError();
if (errors) {

if (errors[0] && errors[0].message) {
console.log("Error message: " +

errors[0].message);
}

} else {
console.log("Unknown error");

}

467

Make Long-Running Callouts with ContinuationsWorking with Salesforce Data



}
});
// Enqueue action that returns a continuation
$A.enqueueAction(action);

}
})

This JavaScript controller code is similar to any other component that calls an Apex method.

SEE ALSO:

Make Long-Running Callouts with Continuations

Continuation-Specific Limits
Because continuations can lead to multiple long-running actions, there are some limits on their usage.

The limits for using continuations in Apex are listed in the Apex Reference Guide.

Here are a few more limits specific to usage in Aura components.

Up to three callouts per continuation
A single Continuation  object can contain a maximum of three callouts.

Serial processing for continuation actions
The framework processes actions containing a continuation serially from the client. The previous continuation action call must have
completed before the next continuation action call is made. At any time, you can have only one continuation in progress on the
client.

DML operation restrictions
An Apex method that returns a Continuation  object can’t perform Data Manipulation Language (DML) operations. DML
statements insert, update, merge, delete, and restore data in Salesforce. If a DML operation is performed within the continuation
method, the continuation execution doesn’t proceed, the transaction is rolled back, and an error is returned.

You can perform DML operations in the Apex callback method for the continuation.

SEE ALSO:

Make Long-Running Callouts with Continuations

Queueing of Server-Side Actions

Creating Components in Apex
Creating components on the server side in Apex, using the Cmp.<myNamespace>.<myComponent>  syntax, is deprecated. Use
$A.createComponent()  in client-side JavaScript code instead.

SEE ALSO:

Dynamically Creating Components

468

Creating Components in ApexWorking with Salesforce Data

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_class_System_Continuation.htm


CHAPTER 12 Testing Components

Automated tests are the best way to achieve predictable, repeatable assessments of the quality of your
custom code. Writing automated tests for your custom components gives you confidence that they
work as designed, and allows you to evaluate the impact of changes, such as refactoring, or of new
versions of Salesforce or third-party JavaScript libraries.

Use your testing framework of choice. Here are some popular testing tools.

• Jest

• UTAM

• Jasmine

• Mocha

• Selenium

• WebdriverIO

Note:  We used to recommend Lightning Testing Service (LTS) but it’s deprecated and no longer
supported.

469

https://jestjs.io/
https://utam.dev/guide/introduction
https://jasmine.github.io/
https://mochajs.org/
https://www.selenium.dev/
https://webdriver.io/


CHAPTER 13 Debugging

There are a few basic tools and techniques that can help you to debug applications.In this chapter ...
Use Chrome DevTools to debug your client-side code.• Enable Debug Mode

for Lightning
Components

• To open DevTools on Windows and Linux, press Control-Shift-I in your Google Chrome browser. On
Mac, press Option-Command-I.

• Disable Caching
Setting During
Development

• To quickly find which line of code is failing, enable the Pause on all exceptions option before
running your code.

To learn more about debugging JavaScript on Google Chrome, refer to the Google Chrome's DevTools
website.• Salesforce Lightning

Inspector Chrome
Extension

• Log Messages

470

https://developers.google.com/web/tools/chrome-devtools/


Enable Debug Mode for Lightning Components

EDITIONS

Available in: Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions, or a sandbox.

Enable debug mode to make it easier to debug JavaScript code from Lightning components. Only
enable debug mode for users who are actively debugging JavaScript. Salesforce is slower for users
who have debug mode enabled.

The Lightning Component framework executes in one of two modes: production and debug.

• Production Mode: By default, the framework runs in production mode. This mode is optimized
for performance. Framework code is optimized and “minified” to reduce the size of the JavaScript
code. As a result of this process, the JavaScript code served to the browser is obfuscated.
Optimization and minification are performed on framework code only. Custom component
code is not minified or obfuscated. Untouched custom component code includes both
components you create yourself, and components installed as part of a managed package.

Minification is a performance optimization, not intellectual property protection. Code that’s
minified is hard to read, but it’s not encrypted or otherwise prevented from being viewed.

• Debug Mode: When you enable debug mode, framework and component JavaScript code
isn’t minified and is easier to read and debug. Debug mode also adds more detailed output for
some warnings and errors.

Debug mode has a significant performance impact. Salesforce is slower for any user who has
debug mode enabled. For this reason, we recommend using it only when actively debugging
JavaScript code, and only for users involved in debugging activity. Don’t leave debug mode on permanently. Users who have debug
mode enabled see a banner notification once a week while it’s enabled.

To enable debug mode for users in your org:

1. From Setup, enter Debug Mode  in the Quick Find  box, then select Debug Mode Users.

Users with debug mode enabled have a check mark in the Debug Mode column.

2. In the user list, locate any users who need debug mode enabled. If necessary, use the standard list view controls to filter your org’s
users.

3. Enable the selection checkbox next to users for whom you want to enable debug mode.

4. Click Enable.

To disable debug mode for a user, follow the preceding steps and click Disable instead of Enable.

Disable Caching Setting During Development

Disable the secure and persistent browser caching setting during development in a sandbox or Developer Edition org to see the effect
of any code changes without needing to empty the cache.

The caching setting improves page reload performance by avoiding extra round trips to the server.

Warning:  Disabling secure and persistent browser caching has a significant negative performance impact on Lightning Experience.
Always enable the setting in production orgs.

1. From Setup, enter Session  in the Quick Find  box, and then select Session Settings.

2. Deselect the checkbox for “Enable secure and persistent browser caching to improve performance”.

471

Enable Debug Mode for Lightning ComponentsDebugging

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US


3. Click Save.

SEE ALSO:

Enable Secure Browser Caching

Salesforce Lightning Inspector Chrome Extension

The Salesforce Lightning Inspector is a Google Chrome DevTools extension that enables you to navigate the component tree, inspect
component attributes, and profile component performance. The extension also helps you to understand the sequence of event firing
and handling.

The extension helps you to:

• Navigate the component tree in your app, inspect components and their associated DOM elements.

• Identify performance bottlenecks by looking at a graph of component creation time.

• Debug server interactions faster by monitoring and modifying responses.

• Test the fault tolerance of your app by simulating error conditions or dropped action responses.

• Track the sequence of event firing and handling for one or more actions.

This documentation assumes that you are familiar with Google Chrome DevTools.

IN THIS SECTION:

Install Salesforce Lightning Inspector

Install the Google Chrome DevTools extension to help you debug and profile component performance.

Salesforce Lightning Inspector

The Chrome extension adds a Lightning tab to the DevTools menu. Use it to inspect different aspects of your app.

Install Salesforce Lightning Inspector
Install the Google Chrome DevTools extension to help you debug and profile component performance.

1. In Google Chrome, navigate to the Salesforce Lightning Inspector extension page on the Chrome Web Store.

2. Click the Add to Chrome button.

Salesforce Lightning Inspector
The Chrome extension adds a Lightning tab to the DevTools menu. Use it to inspect different aspects of your app.

1. Navigate to a page containing an Aura component, such as Lightning Experience (one.app).

2. Open the Chrome DevTools (More tools > Developer tools in the Chrome control menu).

You should see a Lightning tab in the DevTools menu.

To get information quickly about an element on a Lightning page, right-click the element and select Inspect Lightning Component.

472

Salesforce Lightning Inspector Chrome ExtensionDebugging

https://developer.chrome.com/devtools
https://chrome.google.com/webstore/detail/salesforce-lightning-insp/pcpmcffcomlcjgpcheokdfcjipanjdpc


You can also click an Aura component in the DevTools Elements tab or an element with a data-aura-rendered-by  attribute
to see a description and attributes.

Use the following subtabs to inspect different aspects of your app.

IN THIS SECTION:

Component Tree Tab

This tab shows the component markup including the tree of nested components.

Performance Tab

The Performance tab shows a flame graph of the creation time for your components. Look at longer and deeper portions of the
graph for potential performance bottlenecks.

Transactions Tab

Some apps delivered by Salesforce include transaction markers that enable you to see fine-grained metrics for actions within those
transactions. You can’t create your own transactions.

473

Salesforce Lightning InspectorDebugging



Event Log Tab

This tab shows all the events fired. The event graph helps you to understand the sequence of events and handlers for one or more
actions.

Actions Tab

This tab shows the server-side actions executed. The list automatically refreshes when the page updates.

Storage Tab

This tab shows the client-side storage for Lightning applications. Actions marked as storable are stored in the actions  store. Use
this tab to analyze storage in the Salesforce mobile app and Lightning Experience.

Component Tree Tab
This tab shows the component markup including the tree of nested components.

Collapse or Expand Markup
Expand or collapse the component hierarchy by clicking a triangle at the start of a line.

Refresh the Data
The component tree is expensive to serialize, and doesn't respond to component updates. You must manually update the tree when

necessary by scrolling to the top of the panel and clicking the Refresh  icon.

See More Details for a Component
Click a node to see a sidebar with more details for that selected component. While you must manually refresh the component tree, the
component details in the sidebar are automatically refreshed.

474

Salesforce Lightning InspectorDebugging



The sidebar contains these sections:

Top Panel

• Descriptor—Description of a component in a format of prefix://namespace:name

• Global ID—The unique identifier for the component for the lifetime of the application

• aura:id—The local ID for the component, if it’s defined

• IsRendered—A component can be present in the component tree but not rendered in the app. The component is rendered
when it's included in v.body  or in an expression, such as {!v.myCmp}.

• IsValid—When a component is destroyed, it becomes invalid. While you can still hold a reference to an invalid component, it
should not be used.

• HTML Elements—The count of HTML elements for the component (including children components)

• Rerendered—The number of times the component has been rerendered since you opened the Inspector. Changing properties
on a component makes it dirty, which triggers a rerender. Rerendering can be an expensive operation, and you generally want
to avoid it, if possible.

• Attribute & Facet Value Provider—The attribute value provider and facet value provider are usually the same component. If
so, they are consolidated into one entry.

The attribute value provider is the component that provides attribute values for expressions. In the following example, the name
attribute of <c:myComponent>  gets its value from the avpName  attribute of its attribute value provider.

<c:myComponent name="{!v.avpName}" />

The facet value provider is the value provider for facet attributes (attributes of type Aura.Component[]). The facet value
provider can be different than the attribute value provider for the component. We won't get into that here as it's complicated!
However, it's important to know that if you have expressions in facets, the expressions use the facet value provider instead of
the attribute value provider.

Attributes
Shows the attribute values for a component. Use v.attributeName  when you reference an attribute in an expression or code.

[[Super]]
When a component extends another component, the sub component creates an instance of the super component during its creation.
Each of these super components has their own set of properties. While a super component has its own attributes section, the super
component only has a body  attribute. All other attribute values are shared in the extension hierarchy.

Model
Some components you see might have a Model section. Models are a deprecated feature and they are included simply for debugging
purposes. Don't reference models or your code will break.

475

Salesforce Lightning InspectorDebugging



Get a Reference to a Component in the Console
Click a component reference anywhere in the Inspector to generate a $auraTemp  variable that points at that component. You can
explore the component further by referring to $auraTemp  in the Console tab.

These commands are useful to explore the component contents using the $auraTemp  variable.

$auraTemp+""
Returns the component descriptor.

$auraTemp.get("v.attributeName")
Returns the value for the attributeName  attribute.

$auraTemp.getElement()
Returns the corresponding DOM element.

inspect($auraTemp.getElement())
Opens the Elements tab and inspects the DOM element for the component.

Performance Tab
The Performance tab shows a flame graph of the creation time for your components. Look at longer and deeper portions of the graph
for potential performance bottlenecks.

Record Performance Data

Use the Record , Clear , and Show current collected  buttons to gather performance data about specific user actions or
collections of user actions.

1. To start gathering performance data, press .

476

Salesforce Lightning InspectorDebugging



2. Take one or more actions in the app.

3. To stop gathering performance data, press .

The flame graph for your actions displays. To see the graph before you stop recording, press the  button.

See More Performance Details for a Component
Hover over a component in the flame graph to see more detailed information about that component in the bottom-left corner. The
component complexity and timing information can help diagnose performance issues.

Is the time it took to complete...This measure...

The current function. It excludes the completion time for functions
it invoked.

Self time

All invocations of the function across the recorded timeline. It
excludes the completion time for functions it invoked.

Aggregated self time

The current function and all functions that it invoked.Total time

All invocations of the function across the recorded timeline,
including completion time for functions it invoked.

Aggregated total time

Narrow the Timeline
Drag the vertical handles on the timeline to select a time window to focus on. Zoom in on a smaller time window to inspect component
creation time for potential performance hot spots.

477

Salesforce Lightning InspectorDebugging



Transactions Tab
Some apps delivered by Salesforce include transaction markers that enable you to see fine-grained metrics for actions within those
transactions. You can’t create your own transactions.

DescriptionMeasure

The page duration since the page start time, in millisecondsDuration

The start time when the page was last loaded or refreshed, in millisecondsStart Time

The start and end times of a transaction, represented by a colored bar:Timeline

• Green — How long the action took on the server

• Yellow — XMLHttpRequest transaction

• Blue — Queued time until the XMLHttpRequest transaction was sent

• Purple — Custom transaction

478

Salesforce Lightning InspectorDebugging



Event Log Tab
This tab shows all the events fired. The event graph helps you to understand the sequence of events and handlers for one or more
actions.

Record Events

Use the Toggle recording  and Clear  buttons to capture specific user actions or collections of user actions.

1. To start gathering event data, press .

2. Take one or more actions in the app.

3. To stop gathering event data, press .

View Event Details
Expand an event to see more details. In the call stack, click an event handler (for example, c.handleDataChange) to see where
it’s defined in code. The handler in the yellow row is the most current.

Filter the List of Events
By default, both application and component events are shown. You can hide or show both types of events by toggling the App Events
and Cmp Events buttons.

Enter a search string in the Filter  field to match any substring.

479

Salesforce Lightning InspectorDebugging



Invert the filter by starting the search string with !. For example, !aura  returns all events that don’t contain the string aura.

Show Unhandled Events
Show events that are fired but are not handled. Unhandled events aren't listed by default but can be useful to see during development.

View Graph of Events
Expand an event to see more details. Click the Toggle Grid button to generate a network graph showing the events fired before and
after this event, and the components handling those events. Event-driven programming can be confusing when a cacophony of events
explode. The event graph helps you to join the dots and understand the sequence of events and handlers.

The graph is color coded.

• Black—The current event

• Maroon—A controller action

• Blue—Another event fired before or after the current event

SEE ALSO:

Communicating with Events

Actions Tab
This tab shows the server-side actions executed. The list automatically refreshes when the page updates.

480

Salesforce Lightning InspectorDebugging



Filter the List of Actions
To filter the list of actions, toggle the buttons related to the different action types or states.

• Storable—Storable actions whose responses can be cached.

• Cached—Storable actions whose responses are cached. Toggle this button off to show cache misses and non-storable actions. This
information can be valuable if you're investigating performance bottlenecks.

• Background—Not supported for Aura components.

• Success—Actions that were executed successfully.

• Incomplete—Actions with no server response. The server might be down or the client might be offline.

• Error—Actions that returned a server error.

• Aborted—Actions that were aborted.

Enter a search string in the Filter  field to match any substring.

Invert the filter by starting the search string with !. For example, !aura  returns all actions that don't contain the string aura  and
filters out many framework-level actions.

IN THIS SECTION:

Manually Override Server Responses

The Overrides panel on the right side of the Actions tab lets you manually tweak the server responses and investigate the fault
tolerance of your app.

SEE ALSO:

Calling a Server-Side Action

Manually Override Server Responses
The Overrides panel on the right side of the Actions tab lets you manually tweak the server responses and investigate the fault tolerance
of your app.

481

Salesforce Lightning InspectorDebugging



Drag an action from the list on the left side to the PENDING OVERRIDES section.

The next time the same action is enqueued to be sent to the server, the framework won't send it. Instead, the framework mocks the
response based on the override option that you choose. Here are the override options.

• Override the Result

• Error Response Next Time

• Drop the Action

Note:  The same action means an action with the same name. The action parameters don't have to be identical.

IN THIS SECTION:

Modify an Action Response

Modify an action response in the Salesforce Lightning Inspector by changing one of the JSON object values and see how the UI is
affected. The server returns a JSON object when you call a server-side action.

Set an Error Response

Your app should degrade gracefully when an error occurs so that users understand what happened or know how to proceed. Use
the Salesforce Lightning Inspector to simulate an error condition and see how the user experience is affected.

Drop an Action Response

Your app should degrade gracefully when a server-side action times out or the response is dropped. Use the Salesforce Lightning
Inspector to simulate a dropped action response and see how the user experience is affected.

Modify an Action Response

Modify an action response in the Salesforce Lightning Inspector by changing one of the JSON object values and see how the UI is affected.
The server returns a JSON object when you call a server-side action.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.

482

Salesforce Lightning InspectorDebugging



2. Select Override the Result in the drop-down list.

3. Select a response key to modify in the Key  field.

4. Enter a modified value for the key in the New Value field.

5. Click Save.

6. To trigger execution of the action, refresh the page.
The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.

7. Note the UI change, if any, related to your change.

Set an Error Response

Your app should degrade gracefully when an error occurs so that users understand what happened or know how to proceed. Use the
Salesforce Lightning Inspector to simulate an error condition and see how the user experience is affected.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.

2. Select Error Response Next Time in the drop-down list.

3. Add an Error Message.

4. Add some text in the Error Stack field.

483

Salesforce Lightning InspectorDebugging



5. Click Save.

6. To trigger execution of the action, refresh the page.

• The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.

• The action response displays in the COMPLETED section in the left panel with a State  equals ERROR.

7. Note the UI change, if any, related to your change. The UI should handle errors by alerting the user or allowing them to continue
using the app.

To degrade gracefully, make sure that your action response callback handles an error response (response.getState() ===
"ERROR").

SEE ALSO:

Calling a Server-Side Action

Drop an Action Response

Your app should degrade gracefully when a server-side action times out or the response is dropped. Use the Salesforce Lightning
Inspector to simulate a dropped action response and see how the user experience is affected.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.

484

Salesforce Lightning InspectorDebugging



2. Select Drop the Action in the drop-down list.

3. To trigger execution of the action, refresh the page.

• The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.

• The action response displays in the COMPLETED section in the left panel with a State  equals INCOMPLETE.

4. Note the UI change, if any, related to your change. The UI should handle the dropped action by alerting the user or allowing them
to continue using the app.

To degrade gracefully, make sure that your action response callback handles an incomplete response (response.getState()
=== "INCOMPLETE").

SEE ALSO:

Calling a Server-Side Action

Storage Tab
This tab shows the client-side storage for Lightning applications. Actions marked as storable are stored in the actions  store. Use this
tab to analyze storage in the Salesforce mobile app and Lightning Experience.

485

Salesforce Lightning InspectorDebugging



Log Messages

To help debug your client-side code, you can write output to the JavaScript console of a web browser using console.log()  if your
browser supports it..

For instructions on using the JavaScript console, refer to the instructions for your web browser.

486

Log MessagesDebugging



CHAPTER 14 Performance

There are a few settings and techniques that can help you to improve application performance.In this chapter ...
Only enable debug mode for users who are actively debugging JavaScript. Salesforce is slower for users
who have debug mode enabled.

SEE ALSO:

Enable Debug Mode for Lightning Components

• Performance Settings

• Fixing Performance
Warnings

487



Performance Settings

There are a few Setup settings that can help you to improve application performance.

IN THIS SECTION:

Enable Secure Browser Caching

Enable secure data caching in the browser to improve page reload performance by avoiding extra round trips to the server.

Enable CDN to Load Applications Faster

Make Lightning Experience and other apps faster by enabling Akamai’s content delivery network (CDN) to serve the static content
for the Lightning Component framework. A CDN generally speeds up page load time, but it also changes the source domain that
serves the files. If your company has IP range restrictions for content served from Salesforce, test thoroughly before enabling this
setting.

Enable Secure Browser Caching
Enable secure data caching in the browser to improve page reload performance by avoiding extra round trips to the server.

This setting is selected by default.

Warning:  Disabling secure and persistent browser caching has a significant negative performance impact on Lightning Experience.
Only disable in these scenarios.

• Your company’s policy doesn’t allow browser caching, even if the data is encrypted.

• During development in a sandbox or Developer Edition, you want to see the effect of any code changes without emptying
the secure cache.

To disable secure date caching:

1. From Setup, enter Session  in the Quick Find  box, and then select Session Settings.

2. Deselect the checkbox for “Enable secure and persistent browser caching to improve performance”.

3. Click Save.

Note:  Enabling secure and persistent data caching impacts record pages in Experience Cloud. Updates on fields aren’t observed
immediately. To see the latest changes immediately, log out and log back in. Other users don't see the change until the cache is
deleted or invalidated.

Enable CDN to Load Applications Faster
Make Lightning Experience and other apps faster by enabling Akamai’s content delivery network (CDN) to serve the static content for
the Lightning Component framework. A CDN generally speeds up page load time, but it also changes the source domain that serves
the files. If your company has IP range restrictions for content served from Salesforce, test thoroughly before enabling this setting.

CDNs improve the load time of static content by storing cached versions in multiple geographic locations. This setting turns on CDN
delivery for the static JavaScript and CSS in the Lightning Component framework. It doesn’t distribute your Salesforce data or metadata
in a CDN.

This setting is disabled by default for orgs created before the Winter ’19 release, and enabled by default for new orgs and all new and
existing Experience Builder sites. Lightning CDN for Experience Buildersites can’t be turned off and isn’t configurable.

To enable the CDN:

488

Performance SettingsPerformance



1. From Setup, enter Session  in the Quick Find  box, and then select Session Settings.

2. Select the checkbox for “Enable Content Delivery Network (CDN) for Lightning Component framework”.

3. Click Save.

If you experience any issues, ask your IT department if your company’s firewall blocks any Akamai CDN content. Your IT department
should ensure that https://static.lightning.force.com  is added to any allowlist or firewall that your company operates.
You can ping static.lightning.force.com  but you can’t browse directly to the root URL at
https://static.lightning.force.com.

Important:  Don’t use IP addresses for network filtering because that can cause connection issues with
https://static.lightning.force.com. IP addresses for https://static.lightning.force.com  are
dynamic and aren’t maintained in Salesforce’s list of allowed IP addresses.

SEE ALSO:

Salesforce Help: Options to Serve a Custom Domain

Knowledge Article: Salesforce IP Addresses and Domains to Allow

Fixing Performance Warnings

A few common performance anti-patterns in code prompt the framework to log warning messages to the browser console. Fix the
warning messages to speed up your components!

The warnings display in the browser console only if you enabled debug mode.

IN THIS SECTION:

<aura:if>—Clean Unrendered Body

This warning occurs when you change the isTrue  attribute of an <aura:if> tag from true  to false  in the same rendering
cycle. The unrendered body of the <aura:if>  must be destroyed, which is avoidable work for the framework that slows down
rendering time.

<aura:iteration>—Multiple Items Set

This warning occurs when you set the items  attribute of an <aura:iteration>  tag multiple times in the same rendering
cycle.

SEE ALSO:

Enable Debug Mode for Lightning Components

<aura:if>—Clean Unrendered Body
This warning occurs when you change the isTrue  attribute of an <aura:if> tag from true  to false  in the same rendering
cycle. The unrendered body of the <aura:if>  must be destroyed, which is avoidable work for the framework that slows down
rendering time.

489

Fixing Performance WarningsPerformance

https://help.salesforce.com/articleView?id=domain_mgmt_domain_config_options.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=000003652&type=1&language=en_US


Example
This component shows the anti-pattern.

<!--c:ifCleanUnrendered-->
<aura:component>

<aura:attribute name="isVisible" type="boolean" default="true"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:if isTrue="{!v.isVisible}">
<p>I am visible</p>

</aura:if>
</aura:component>

Here’s the component’s client-side controller.

/* c:ifCleanUnrenderedController.js */
({

init: function(cmp) {
/* Some logic */
cmp.set("v.isVisible", false); // Performance warning trigger

}
})

When the component is created, the isTrue  attribute of the <aura:if>  tag is evaluated. The value of the isVisible  attribute
is true  by default so the framework creates the body of the <aura:if>  tag. After the component is created but before rendering,
the init  event is triggered.

The init()  function in the client-side controller toggles the isVisible value from true  to false. The isTrue  attribute
of the <aura:if>  tag is now false  so the framework must destroy the body of the <aura:if>  tag. This warning displays in
the browser console only if you enabled debug mode.

WARNING: [Performance degradation] markup://aura:if ["5:0"] in c:ifCleanUnrendered ["3:0"]
needed to clear unrendered body.

Click the expand button beside the warning to see a stack trace for the warning.

Click the link for the ifCleanUnrendered  entry in the stack trace to see the offending line of code in the Sources pane of the
browser console.

How to Fix the Warning
Reverse the logic for the isTrue  expression. Instead of setting the isTrue  attribute to true  by default, set it to false. Set the
isTrue  expression to true in the init()  method, if needed.

490

<aura:if>—Clean Unrendered BodyPerformance



Here’s the fixed component:

<!--c:ifCleanUnrenderedFixed-->
<aura:component>

<!-- FIX: Change default to false.
Update isTrue expression in controller instead. -->

<aura:attribute name="isVisible" type="boolean" default="false"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:if isTrue="{!v.isVisible}">
<p>I am visible</p>

</aura:if>
</aura:component>

Here’s the fixed controller:

/* c:ifCleanUnrenderedFixedController.js */
({

init: function(cmp) {
// Some logic
// FIX: set isVisible to true if logic criteria met
cmp.set("v.isVisible", true);

}
})

SEE ALSO:

Enable Debug Mode for Lightning Components

<aura:iteration>—Multiple Items Set
This warning occurs when you set the items  attribute of an <aura:iteration>  tag multiple times in the same rendering cycle.

There’s no easy and performant way to check if two collections are the same in JavaScript. Even if the old value of items  is the same
as the new value, the framework deletes and replaces the previously created body of the <aura:iteration>  tag.

Example
This component shows the anti-pattern.

<!--c:iterationMultipleItemsSet-->
<aura:component>

<aura:attribute name="groceries" type="List"
default="[ 'Eggs', 'Bacon', 'Bread' ]"/>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:iteration items="{!v.groceries}" var="item">
<p>{!item}</p>

</aura:iteration>
</aura:component>

491

<aura:iteration>—Multiple Items SetPerformance



Here’s the component’s client-side controller.

/* c:iterationMultipleItemsSetController.js */
({

init: function(cmp) {
var list = cmp.get('v.groceries');
// Some logic
cmp.set('v.groceries', list); // Performance warning trigger

}
})

When the component is created, the items  attribute of the <aura:iteration>  tag is set to the default value of the groceries
attribute. After the component is created but before rendering, the init  event is triggered.

The init()  function in the client-side controller sets the groceries  attribute, which resets the items  attribute of the
<aura:iteration>  tag. This warning displays in the browser console only if you enabled debug mode.

WARNING: [Performance degradation] markup://aura:iteration [id:5:0] in
c:iterationMultipleItemsSet ["3:0"]
had multiple items set in the same Aura cycle.

Click the expand button beside the warning to see a stack trace for the warning.

Click the link for the iterationMultipleItemsSet  entry in the stack trace to see the offending line of code in the Sources
pane of the browser console.

How to Fix the Warning
Make sure that you don’t modify the items  attribute of an <aura:iteration>  tag multiple times. The easiest solution is to
remove the default value for the groceries attribute in the markup. Set the value for the groceries attribute in the controller
instead.

The alternate solution is to create a second attribute whose only purpose is to store the default value. When you’ve completed your
logic in the controller, set the groceries  attribute.

Here’s the fixed component:

<!--c:iterationMultipleItemsSetFixed-->
<aura:component>

<!-- FIX: Remove the default from the attribute -->
<aura:attribute name="groceries" type="List" />
<!-- FIX (ALTERNATE): Create a separate attribute containing the default -->
<aura:attribute name="groceriesDefault" type="List"

default="[ 'Eggs', 'Bacon', 'Bread' ]"/>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:iteration items="{!v.groceries}" var="item">

492

<aura:iteration>—Multiple Items SetPerformance



<p>{!item}</p>
</aura:iteration>

</aura:component>

Here’s the fixed controller:

/* c:iterationMultipleItemsSetFixedController.js */
({

init: function(cmp) {
// FIX (ALTERNATE) if need to set default in markup
// use a different attribute
// var list = cmp.get('v.groceriesDefault');
// FIX: Set the value in code
var list = ['Eggs', 'Bacon', 'Bread'];
// Some logic
cmp.set('v.groceries', list);

}
})

SEE ALSO:

Enable Debug Mode for Lightning Components

493

<aura:iteration>—Multiple Items SetPerformance



CHAPTER 15 Reference

This section contains links to reference documentation.In this chapter ...

• Component Library

• System Tag
Reference

• JavaScript API

494



Component Library

The Lightning Component Library is your hub for Lightning UI developer information, including the Component Reference with live
examples, the Lightning Web Components developer guide, and tools for Lightning Web Security and Lightning Locker.

You can find the Component Library in two places: a public site and an authenticated one that’s linked to your Salesforce org. In the
authenticated site, the Component Reference section of the Component Library has some additional features.

Public Component Library
View the public site https://developer.salesforce.com/docs/component-librarywithout logging in to Salesforce. The Component
Reference includes documentation and reference information for the base Lightning components.

Component Library for your org
View this site by logging in to your Salesforce org and navigating to
https://MyDomainName.my.salesforce.com/docs/component-library. Alternatively, click Link to your
org at the top right on the public site.

The authenticated site has additional features for the Component Reference.

• View Aura Lightning components that are unique to your org.

• View Aura Lightning components that are installed in a managed package. You can filter to view components owned by your
org or installed in packages. Find the filtering options at
https://MyDomainName.my.salesforce.com/docs/component-library/overview/components
and expand the Filters list to find the Owners filters.

See Lightning Component Library in the Lightning Web Components Developer Guide for more information and known issues in the
Component Reference.

JavaScript API Documentation
For JavaScript API documentation, see JavaScript API.

The legacy reference doc app, which used to contain the JavaScript API documentation, has been retired.

495

Component LibraryReference

https://developer.salesforce.com/docs/component-library
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.get_started_component_library


IN THIS SECTION:

Differences Between Documentation Sites

Here’s a breakdown of the differences between the Component Library and the reference section of this developer guide.

Differences Between Documentation Sites
Here’s a breakdown of the differences between the Component Library and the reference section of this developer guide.

The Component Library is the place to find reference information and interactive examples. The Reference section in this Developer
Guide provides information on system-level tags that are not available elsewhere, as well as the JavaScript API.

Reference Section in Lightning Aura Components
Developer Guide

Component Library

 (Documentation tab)Component documentation
and code samples

 (Example tab)Interactive examples

Lightning Design System
support

Components in custom
namespaces and packages

JavaScript API

 (aura:method, aura:set, etc.)System tags

Event documentation

System event documentation

Interface documentation

Components in custom namespaces display both global and non-global attributes and methods in the authenticated Component
Library displayed in an org. Components in managed and unmanaged packages display only global attributes and methods.

System Tag Reference

System tags represent framework definitions and are not available in the Component Library.

IN THIS SECTION:

aura:application

An app is a special top-level component whose markup is in a .app resource.

aura:dependency

The <aura:dependency>  tag enables you to declare dependencies, which improves their discoverability by the framework.

aura:event

An event is represented by the aura:event  tag, which has the following attributes.

496

Differences Between Documentation SitesReference



aura:interface

Interfaces determine a component's shape by defining its attributes. Implement an interface to allow a component to be used in
different contexts, such as on a record page or in Lightning App Builder.

aura:method

Use <aura:method>  to define a method as part of a component's API. This enables you to directly call a method in a component’s
client-side controller instead of firing and handling a component event. Using <aura:method>  simplifies the code needed for
a parent component to call a method on a child component that it contains.

aura:set

Use <aura:set>  in markup to set the value of an attribute inherited from a component or event.

aura:application
An app is a special top-level component whose markup is in a .app resource.

The markup looks similar to HTML and can contain components as well as a set of supported HTML tags. The .app resource is a
standalone entry point for the app and enables you to define the overall application layout, style sheets, and global JavaScript includes.
It starts with the top-level <aura:application>  tag, which contains optional system attributes. These system attributes tell the
framework how to configure the app.

DescriptionTypeSystem Attribute

Indicates whether the app can be extended by another app outside of a namespace.
Possible values are public  (default), and global.

Stringaccess

The Apex controller class for the app. The format is
namespace.myController.

Stringcontroller

A brief description of the app.Stringdescription

The app to be extended, if applicable. For example,
extends="namespace:yourApp".

Componentextends

Indicates whether the app is extensible by another app. Defaults to false.Booleanextensible

A comma-separated list of interfaces that the app implements.Stringimplements

The name of the template used to bootstrap the loading of the framework and
the app. The default value is aura:template. You can customize the template
by creating your own component that extends the default template. For example:

<aura:component extends="aura:template" ... >

Componenttemplate

A comma-separated list of tokens bundles for the application. For example,
tokens="ns:myAppTokens". Tokens make it easy to ensure that your

Stringtokens

design is consistent, and even easier to update it as your design evolves. Define
the token values once and reuse them throughout your application.

Deprecated. Browser vendors have deprecated AppCache, so we followed their
lead. Remove the useAppcache attribute in the <aura:application>

BooleanuseAppcache

tag of your standalone apps (.app resources) to avoid cross-browser support
issues due to deprecation by browser vendors.

497

aura:applicationReference



DescriptionTypeSystem Attribute

If you don’t currently set useAppcache  in an <aura:application>  tag,
you don’t have to do anything because the default value of useAppcache  is
false.

aura:application  also includes a body  attribute defined in a <aura:attribute>  tag. Attributes usually control the output
or behavior of a component, but not the configuration information in system attributes.

DescriptionTypeAttribute

The body of the app. In markup, this is
everything in the body of the tag.

Component[]body

SEE ALSO:

Creating Apps

Application Access Control

aura:dependency
The <aura:dependency>  tag enables you to declare dependencies, which improves their discoverability by the framework.

The framework automatically tracks dependencies between definitions, such as components, defined in markup. This enables the
framework to send the definitions to the browser. However, if a component’s JavaScript code dynamically instantiates another component
or fires an event that isn’t directly referenced in the component’s markup, use <aura:dependency>  in the component’s markup
to explicitly tell the framework about the dependency. Adding the <aura:dependency>  tag ensures that a definition, such as a
component, and its dependencies are sent to the client, when needed.

For example, adding this tag to a component marks the sampleNamespace:sampleComponent  component as a dependency.

<aura:dependency resource="markup://sampleNamespace:sampleComponent" />

Add this tag to component markup to mark the event as a dependency.

<aura:dependency resource="markup://force:navigateToComponent" type="EVENT"/>

Use the <aura:dependency>  tag if you fire an event in JavaScript code and you’re not registering the event in component markup
using <aura:registerEvent>. Using an <aura:registerEvent>  tag is the preferred approach.

The <aura:dependency>  tag includes these system attributes.

DescriptionSystem Attribute

The resource that the component depends on, such as a component or event. For example,
resource="markup://sampleNamespace:sampleComponent" refers to the
sampleComponent  in the sampleNamespace  namespace.

resource

Note: Using an asterisk (*) for wildcard matching is deprecated. Instead, add an
<aura:dependency>  tag for each resource that’s not directly referenced in the
component’s markup. Wildcard matching can cause save validation errors when no

498

aura:dependencyReference



DescriptionSystem Attribute

resources match. Wildcard matching can also slow page load time because it sends more
definitions than needed to the client.

The type of resource that the component depends on. The default value is COMPONENT.type

Note: Using an asterisk (*) for wildcard matching is deprecated. Instead, add an
<aura:dependency>  tag for each resource that’s not directly referenced in the
component’s markup. Be as selective as possible in the types of definitions that you send
to the client.

The most commonly used values are:

• COMPONENT

• EVENT

• INTERFACE

• APPLICATION

• MODULE—Use this type to add a dependency for a Lightning web component

Use a comma-separated list for multiple types; for example: COMPONENT,APPLICATION.

SEE ALSO:

Dynamically Creating Components

Fire Component Events

Fire Application Events

aura:event
An event is represented by the aura:event  tag, which has the following attributes.

DescriptionTypeAttribute

Indicates whether the event can be extended or used outside of its
own namespace. Possible values are public  (default), and
global.

Stringaccess

A description of the event.Stringdescription

The event to be extended. For example,
extends="namespace:myEvent".

Componentextends

Required. Possible values are COMPONENT  or APPLICATION.Stringtype

SEE ALSO:

Communicating with Events

Event Access Control

499

aura:eventReference



aura:interface
Interfaces determine a component's shape by defining its attributes. Implement an interface to allow a component to be used in different
contexts, such as on a record page or in Lightning App Builder.

The aura:interface  tag has the following optional attributes.

DescriptionTypeAttribute

Indicates whether the interface can be extended or used outside of
its own namespace. Possible values are public  (default), and
global.

Stringaccess

A description of the interface.Stringdescription

The comma-separated list of interfaces to be extended. For example,
extends="namespace:intfB".

Componentextends

SEE ALSO:

Interfaces

Interface Access Control

aura:method
Use <aura:method>  to define a method as part of a component's API. This enables you to directly call a method in a component’s
client-side controller instead of firing and handling a component event. Using <aura:method>  simplifies the code needed for a
parent component to call a method on a child component that it contains.

The <aura:method>  tag has these system attributes.

DescriptionTypeAttribute

The method name. Use the method name to call the method in
JavaScript code. For example:

cmp.sampleMethod(param1);

Stringname

The client-side controller action to execute. For example:

action="{!c.sampleAction}"

Expressionaction

sampleAction  is an action in the client-side controller. If you
don’t specify an action value, the controller action defaults to
the value of the method name.

The access control for the method. Valid values are:Stringaccess

• public—Any component in the same namespace can call the
method. This is the default access level.

• global—Any component in any namespace can call the
method.

500

aura:interfaceReference



DescriptionTypeAttribute

The method description.Stringdescription

Declaring Parameters
An <aura:method>  can optionally include parameters. Use an <aura:attribute>  tag within an <aura:method>  to
declare a parameter for the method. For example:

<aura:method name="sampleMethod" action="{!c.doAction}"
description="Sample method with parameters">
<aura:attribute name="param1" type="String" default="parameter 1"/>
<aura:attribute name="param2" type="Object" />

</aura:method>

For more information, see the Returning a Value section below.

Note:  You don’t need an access  system attribute in the <aura:attribute>  tag for a parameter.

Creating a Handler Action
This handler action shows how to access the arguments passed to the method.

({
doAction : function(cmp, event) {

var params = event.getParam('arguments');
if (params) {

var param1 = params.param1;
// add your code here

}
}

})

Retrieve the arguments using event.getParam('arguments'). It returns an object if there are arguments or an empty array
if there are no arguments.

Returning a Value
aura:method  executes synchronously.

• A synchronous method finishes executing before it returns. Use the return  statement to return a value from synchronous JavaScript
code. See Return Result for Synchronous Code.

• An asynchronous method may continue to execute after it returns. Use a callback to return a value from asynchronous JavaScript
code. See Return Result for Asynchronous Code.

SEE ALSO:

Calling Component Methods

Component Events

501

aura:methodReference



aura:set
Use <aura:set>  in markup to set the value of an attribute inherited from a component or event.

IN THIS SECTION:

Setting Attributes Inherited from a Super Component

Setting Attributes on a Component Reference

Setting Attributes Inherited from an Interface

Setting Attributes Inherited from a Super Component
Use <aura:set>  in the markup of a sub component to set the value of an inherited attribute.

Let's look at an example. Here is the c:setTagSuper component.

<!--c:setTagSuper-->
<aura:component extensible="true">

<aura:attribute name="address1" type="String" />
setTagSuper address1: {!v.address1}<br/>

</aura:component>

c:setTagSuper  outputs:

setTagSuper address1:

The address1  attribute doesn't output any value yet as it hasn't been set.

Here is the c:setTagSub  component that extends c:setTagSuper.

<!--c:setTagSub-->
<aura:component extends="c:setTagSuper">

<aura:set attribute="address1" value="808 State St" />
</aura:component>

c:setTagSub  outputs:

setTagSuper address1: 808 State St

sampleSetTagExc:setTagSub  sets a value for the address1  attribute inherited from the super component,
c:setTagSuper.

Warning:  This usage of <aura:set>  works for components and abstract components, but it doesn’t work for interfaces. For
more information, see Setting Attributes Inherited from an Interface on page 503.

If you’re using a component by making a reference to it in your component, you can set the attribute value directly in the markup. For
example, c:setTagSuperRef  makes a reference to c:setTagSuper  and sets the address1  attribute directly without using
aura:set.

<!--c:setTagSuperRef-->
<aura:component>

<c:setTagSuper address1="1 Sesame St" />
</aura:component>

502

aura:setReference



c:setTagSuperRef  outputs:

setTagSuper address1: 1 Sesame St

SEE ALSO:

Component Body

Inherited Component Attributes

Setting Attributes on a Component Reference

Setting Attributes on a Component Reference
When you include another component, such as <lightning:button>, in a component, we call that a component reference to
<lightning:button>. You can use <aura:set>  to set an attribute on the component reference. For example, if your component
includes a reference to <lightning:button>:

<lightning:button label="Save">
<aura:set attribute="variant" value="brand"/>

</lightning:button>

This is equivalent to:

<lightning:button label="Save" variant="brand" />

The latter syntax without aura:set  makes more sense in this simple example. You can also use this simpler syntax in component
references to set values for attributes that are inherited from parent components.

aura:set  is more useful when you want to set markup as the attribute value. For example, this sample specifies the markup for the
else  attribute in the aura:if  tag.

<aura:component>
<aura:attribute name="display" type="Boolean" default="true"/>
<aura:if isTrue="{!v.display}">

Show this if condition is true
<aura:set attribute="else">

<lightning:button label="Save" onclick="{!c.saveRecord}" />
</aura:set>

</aura:if>
</aura:component>

SEE ALSO:

Setting Attributes Inherited from a Super Component

Setting Attributes Inherited from an Interface
To set the value of an attribute inherited from an interface, redefine the attribute in the component and set its default value. Let’s look
at an example with the c:myIntf  interface.

<!--c:myIntf-->
<aura:interface>

<aura:attribute name="myBoolean" type="Boolean" default="true" />
</aura:interface>

503

aura:setReference



This component implements the interface and sets myBoolean  to false.

<!--c:myIntfImpl-->
<aura:component implements="c:myIntf">

<aura:attribute name="myBoolean" type="Boolean" default="false" />

<p>myBoolean: {!v.myBoolean}</p>
</aura:component>

JavaScript API

The JavaScript API lists the publicly accessible methods for each object that you can use in JavaScript code, such as a controller or helper.
The $A  namespace is the entry point for using the framework in JavaScript code.

IN THIS SECTION:

$A namespace

The $A  namespace is the entry point for using the framework in JavaScript code.

Action

Action  contains methods to work with JavaScript actions that you can use to communicate with Apex classes.

AuraLocalizationService

AuraLocalizationService  provides methods for formatting and localizing dates. Use $A.localizationService
to use the methods in AuraLocalizationService.

Component

Component  contains methods to work with components.

Event

Event  contains methods to work with events. Use an event to communicate between components.

Util

Util  contains utility methods.

$A namespace
The $A  namespace is the entry point for using the framework in JavaScript code.

Methods

IN THIS SECTION:

createComponent()

Create a component from a type and a set of attributes. This method accepts the name of a type of component, a map of attributes,
and a callback to notify the caller.

createComponents()

Create an array of components from a list of types and attributes. This method accepts a list of component names and attribute
maps, and a callback to notify the caller.

504

JavaScript APIReference



enqueueAction()

Queue a call to an Apex action . The framework queues up actions before sending them to the server. This mechanism is largely
transparent to you when you’re writing code but it enables the framework to minimize network traffic by batching multiple actions
into one request (XHR).

error()

Deprecated. For a serious error that has no recovery path, throw a standard JavaScript error instead by using throw new
Error(msg).

get()

Returns a value from the specified global value provider using property syntax.

getCallback()

Use $A.getCallback()  to wrap any code that modifies a component outside the normal rerendering lifecycle, such as in a
setTimeout()  call. The $A.getCallback()  call ensures that the framework rerenders the modified component and
processes any enqueued actions.

getComponent()

Gets an instance of a component from either a global ID or a DOM element that was created by a rendered component.

getReference()

Returns a live reference to the global value requested using property syntax.

getRoot()

Gets the root component or application. For example, $A.getRoot().get("v.attrName")  returns the value of the
attrName  attribute from the root component.

getToken()

Returns an application configuration token referenced by name. A tokens file is configured with the tokens  attribute in the
<aura:application>  tag.

log()

Deprecated. Logs to the browser's JavaScript console, if it is available. This method doesn't log in production or debug modes so it’s
only useful for internal usage by the framework.

reportError()

Report an error to the server after handling it. Note that the method should be used only if the try-catch mechanism of error handling
is not desired or not functional, such as in nested promises.

run()

Deprecated. Use getCallback()  instead.

set()

Sets a value on the specified global value provider using property syntax.

warning()

Deprecated. Logs a warning to the browser's JavaScript console, if it is available.

createComponent()

Create a component from a type and a set of attributes. This method accepts the name of a type of component, a map of attributes,
and a callback to notify the caller.

505

$A namespaceReference



Signature
createComponent(String type, Object attributes, function callback)

Parameters
type

Type: String

The type of component to create. For example, "lightning:button".

attributes
Type: Object

A map of attributes to send to the component. These attributes take the same form as in the markup, including events
{"press":component.getReference("c.handlePress")}, and id {"aura:id":"myComponentId"}.

callback(cmp, status, errorMessage)
Type: function

The callback to invoke after the component is created. The callback has three parameters.

1. cmp—The component that was created. This parameter enables you to do something with the new component, such as add
it to the body of the component that creates it. If there’s an error, cmp  is null.

2. status—The status of the call. The possible values are SUCCESS, INCOMPLETE, or ERROR. Always check that the status
is SUCCESS  before you try to use the component.

3. errorMessage—The error message if the status is ERROR.

SEE ALSO:

Dynamically Creating Components

createComponents()

Create an array of components from a list of types and attributes. This method accepts a list of component names and attribute maps,
and a callback to notify the caller.

Signature
createComponents(Array components, function callback)

Parameters
components

Type: Array

The list of components to create. For example, ["lightning:button",
{"onclick":component.getReference("c.handlePress")}]

callback(components, status, errorMessage)
Type: function

The callback to invoke after the components are created. The callback has three parameters.

1. components—The components that were created. This parameter enables you to do something with the new components,
such as add them to the body of the component that created them. If there’s an error, components  is null.

506

$A namespaceReference



2. status—The status of the call. The possible values are SUCCESS, INCOMPLETE, or ERROR. Always check that the status
is SUCCESS  before you try to use the components.

3. errorMessage—The error message if the status is ERROR.

SEE ALSO:

Dynamically Creating Components

enqueueAction()

Queue a call to an Apex action . The framework queues up actions before sending them to the server. This mechanism is largely transparent
to you when you’re writing code but it enables the framework to minimize network traffic by batching multiple actions into one request
(XHR).

The batching of actions is also known as boxcar’ing, similar to a train that couples boxcars together.

The framework uses a stack to keep track of the actions to send to the server. When the browser finishes processing events and JavaScript
on the client, the enqueued actions on the stack are sent to the server in a batch.

Signature
enqueueAction (Action action, Boolean background)

Parameters
action

Type: Action

The action to enqueue.

background
Type: Boolean

Deprecated. Do not use.

SEE ALSO:

Queueing of Server-Side Actions

Calling a Server-Side Action

error()

Deprecated. For a serious error that has no recovery path, throw a standard JavaScript error instead by using throw new Error(msg).

Signature
error (String msg, Error e)

Parameters
msg

Type: String

507

$A namespaceReference



The error message to display to the user.

e
Type: Error

The error message to display to the user.

get()

Returns a value from the specified global value provider using property syntax.

Signature
get (String key, function callback)

Parameters
key

Type: String

The data key to look up. For example, "$Label.c.labelName"  for a custom label.

callback
Type: function

The method to call with the result if a server trip occurs.

Returns
Type: String

The requested value.

SEE ALSO:

set()

getCallback()

Use $A.getCallback()  to wrap any code that modifies a component outside the normal rerendering lifecycle, such as in a
setTimeout()  call. The $A.getCallback()  call ensures that the framework rerenders the modified component and processes
any enqueued actions.

Don't use $A.getCallback()  if your code is executed as part of the framework's call stack. For example, your code is handling an
event or in the callback for an Apex controller action.

Signature
getCallback (function callback)

Parameters
callback

Type: function

508

$A namespaceReference



The method to call after establishing an Aura context.

Sample Code

window.setTimeout(
$A.getCallback(function() {

cmp.set("v.visible", true);
}), 5000

);

SEE ALSO:

Modifying Components Outside the Framework Lifecycle

getComponent()

Gets an instance of a component from either a global ID or a DOM element that was created by a rendered component.

Signature
getComponent (Object identifier)

Parameters
identifier

Type: Object

A globalId or an element.

getReference()

Returns a live reference to the global value requested using property syntax.

Signature
getReference (String key)

Parameters
key

Type: String

The data key for which to return a reference.

Returns
Type: PropertyReferenceValue

The reference to the global value requested.

509

$A namespaceReference



getRoot()

Gets the root component or application. For example, $A.getRoot().get("v.attrName")  returns the value of the attrName
attribute from the root component.

Signature
getRoot()

getToken()

Returns an application configuration token referenced by name. A tokens file is configured with the tokens  attribute in the
<aura:application>  tag.

Signature
getToken (String token)

Parameters
token

Type: String

The name of the application configuration token to retrieve.

Returns
Type: String

application configuration token.

log()

Deprecated. Logs to the browser's JavaScript console, if it is available. This method doesn't log in production or debug modes so it’s
only useful for internal usage by the framework.

Signature
log (Object value, Object error)

Parameters
value

Type: Object

The object to log.

error
Type: Object

The error message to log in the stack trace.

510

$A namespaceReference



Returns
Type: String

The requested value.

reportError()

Report an error to the server after handling it. Note that the method should be used only if the try-catch mechanism of error handling
is not desired or not functional, such as in nested promises.

Signature
reportError (String message, Error error)

Parameters
message

Type: String

The error message.

error
Type: Error

An error object to be included in handling and reporting.

run()

Deprecated. Use getCallback()  instead.

Signature
run (function func, String name)

Parameters
func

Type: function

The function to run.

name
Type: String

An optional name for the stack.

set()

Sets a value on the specified global value provider using property syntax.

Signature
set (String key, Object value)

511

$A namespaceReference



Parameters
key

Type: String

The data key to change on the global value provider.

value
Type: Object

The value to set for the key. If the global value provider doesn’t implement set(), this method throws an exception.

warning()

Deprecated. Logs a warning to the browser's JavaScript console, if it is available.

Signature
warning (String w, Error e)

Parameters
w

Type: String

The message to log.

error
Type: Object

The error message to log in the stack trace.

Returns
Type: String

The requested value.

Action
Action  contains methods to work with JavaScript actions that you can use to communicate with Apex classes.

Methods

IN THIS SECTION:

getError()

Returns an array of error objects for server-side actions only. Each error object has a message field. In any mode except PROD mode,
each object also has a stack field, which is a list describing the execution stack when the error occurred.

getName()

Returns the name of an action.

getParam()

Returns an action parameter value for a parameter name.

512

ActionReference



getParams()

Returns the collection of parameters for an action.

getReturnValue()

Gets the return value of an Apex action. An Apex action can return any object containing serializable JSON data.

getState()

Returns the current state of an action. Check the state of the action in the callback after an Apex action completes.

isBackground()

Returns true  if the action is enqueued in the background, false  if it’s enqueued in the foreground.

setAbortable()

Sets an action as abortable. If the component is not valid, abortable actions are not sent to the server. A component is automatically
destroyed and marked invalid by the framework when it is unrendered. Actions not marked abortable are always sent to the server
regardless of the validity of the component.

setBackground()

Sets the action to run as a background action. This cannot be unset. Background actions are usually long running and lower priority
actions. A background action is useful when you want your app to remain responsive to a user while it executes a low priority,
long-running action. A rough guideline is to use a background action if it takes more than five seconds for the response to return
from the server.

setCallback()

Sets the callback function that is executed after an Apex action returns.

setParam()

Sets a single parameter for an action. Use parameters to pass data to an Apex action.

setParams()

Sets parameters for an action. Use parameters to pass data to an Apex action.

setStorable()

Marks an Apex action as storable to have its response stored in the framework’s client-side cache . Enhance your component’s
performance by marking actions as storable (cacheable) to quickly show cached data from client-side storage without waiting for
a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is especially beneficial for
users on high latency, slow, or unreliable connections such as 3G networks.

getError()

Returns an array of error objects for server-side actions only. Each error object has a message field. In any mode except PROD mode,
each object also has a stack field, which is a list describing the execution stack when the error occurred.

Signature
getError()

Returns
Type: Object[]

An array of error objects. Each error object has a message field.

513

ActionReference



getName()

Returns the name of an action.

Signature
getName()

Returns
Type: String

The action name.

getParam()

Returns an action parameter value for a parameter name.

Signature
getParam (String name)

Parameters
name

Type: String

The parameter name.

Returns
Type: Object

The parameter value.

getParams()

Returns the collection of parameters for an action.

Signature
getParams

Returns
Type: Object

The key-value pairs for the action parameters.

getReturnValue()

Gets the return value of an Apex action. An Apex action can return any object containing serializable JSON data.

514

ActionReference



Signature
getReturnValue()

Returns
Type: Object

The return value of an Apex action.

SEE ALSO:

Calling a Server-Side Action

getState()

Returns the current state of an action. Check the state of the action in the callback after an Apex action completes.

Signature
getState()

Returns
Type: String

The action state.

SEE ALSO:

Action States

isBackground()

Returns true  if the action is enqueued in the background, false  if it’s enqueued in the foreground.

Signature
isBackground()

Returns
Type: Boolean

Returns true  if the action is enqueued in the background.

setAbortable()

Sets an action as abortable. If the component is not valid, abortable actions are not sent to the server. A component is automatically
destroyed and marked invalid by the framework when it is unrendered. Actions not marked abortable are always sent to the server
regardless of the validity of the component.

For example, a save or edit action should not be set as abortable to ensure that it’s always sent to the server even if the component is
deleted. Setting an action as abortable can’t be undone.

515

ActionReference



Signature
setAbortable()

SEE ALSO:

Abortable Actions

setBackground()

Sets the action to run as a background action. This cannot be unset. Background actions are usually long running and lower priority
actions. A background action is useful when you want your app to remain responsive to a user while it executes a low priority, long-running
action. A rough guideline is to use a background action if it takes more than five seconds for the response to return from the server.

Signature
setBackground()

setCallback()

Sets the callback function that is executed after an Apex action returns.

Signature
setCallback (Object scope, function callback, String name)

Parameters
scope

Type: Object

The scope in which the function is executed. Always set this parameter to the keyword this.

callback
Type: function

The callback to invoke after the Apex action returns.

name
Type: String

Defaults to "ALL" which registers callbacks for the "SUCCESS", "ERROR", and "INCOMPLETE" states.

SEE ALSO:

Calling a Server-Side Action

Action States

setParam()

Sets a single parameter for an action. Use parameters to pass data to an Apex action.

516

ActionReference



Signature
setParam (String key, Object value)

Parameters
key

Type: String

The parameter name.

value
Type: Object

The parameter value.

SEE ALSO:

Calling a Server-Side Action

setParams()

Sets parameters for an action. Use parameters to pass data to an Apex action.

Signature
setParams (Object config)

Parameters
config

Type: Object

The key-value pairs for action parameters. For example { "record": id, "name": name}.

SEE ALSO:

Calling a Server-Side Action

setStorable()

Marks an Apex action as storable to have its response stored in the framework’s client-side cache . Enhance your component’s performance
by marking actions as storable (cacheable) to quickly show cached data from client-side storage without waiting for a server trip. If the
cached data is stale, the framework retrieves the latest data from the server. Caching is especially beneficial for users on high latency,
slow, or unreliable connections such as 3G networks.

Note: Client-side storage is automatically configured in Lightning Experience and the Salesforce mobile app. A component
shouldn’t assume a cache duration because it may change as we optimize the platform.

Signature
setStorable (Object config)

517

ActionReference



Parameters
config

Type: Object

An optional configuration map of key-value pairs representing the storage options and values to set. You can only set the
ignoreExisting property. Set ignoreExisting  to true  to bypass the cache. The default value is false.

This property is useful when you know that any cached data is invalid, such as after a record modification. This property should be
used rarely because it explicitly defeats caching.

SEE ALSO:

Storable Actions

AuraLocalizationService
AuraLocalizationService  provides methods for formatting and localizing dates. Use $A.localizationService  to
use the methods in AuraLocalizationService.

Methods

IN THIS SECTION:

UTCToWallTime()

Converts a datetime from UTC to a specified timezone.

WallTimeToUTC

Converts a datetime from a specified timezone to UTC.

displayDuration()

Displays a length of time.

displayDurationInDays()

Displays a length of time in days.

displayDurationInHours()

Displays a length of time in hours.

displayDurationInMilliseconds()

Displays a length of time in milliseconds.

displayDurationInMinutes()

Displays a length of time in minutes.

displayDurationInMonths()

Displays a length of time in months.

displayDurationInSeconds()

Displays a length of time in seconds.

duration()

Returns an object representing a length of time.

endOf()

Returns a date that is the end of a unit of time for the given date.

518

AuraLocalizationServiceReference



formatCurrency()

Returns a currency number based on the default currency format.

formatDate()

Returns a formatted date.

formatDateTime()

Returns a formatted date time.

formatDateTimeUTC()

Returns a formatted date time in UTC.

formatDateUTC()

Returns a formatted date in UTC.

formatNumber()

Returns a formatted number with the default number format.

formatPercent()

Returns a formatted percentage number based on the default percentage format.

formatTime()

Returns a formatted time.

formatTimeUTC()

Returns a formatted time in UTC.

getDateStringBasedOnTimezone

Gets a date string based on a time zone.

getDaysInDuration()

Returns the number of days in a duration.

getDefaultCurrencyFormat()

Returns the default currency format.

getDefaultNumberFormat()

Returns the default NumberFormat  object.

getDefaultPercentFormat()

Returns the default percentage format.

getHoursInDuration()

Returns a length of time in hours.

getLocalizedDateTimeLabels()

Deprecated. Do not use. Returns date time labels, such as month name, weekday name.

getMillisecondsInDuration()

Returns the number of milliseconds in a duration.

getMinutesInDuration()

Returns the number of minutes in a duration.

getMonthsInDuration()

Returns the number of months in a duration.

getNumberFormat()

Returns a NumberFormat object.

519

AuraLocalizationServiceReference



getSecondsInDuration()

Returns the number of seconds in a duration.

getToday

Gets today’s date based on a time zone.

getYearsInDuration()

Returns the number of years in a duration.

isAfter()

Checks if date1  is after date2.

isBefore()

Checks if date1  is before date2.

isBetween()

Checks if date  is between fromDate  and toDate, where the match is inclusive.

isPeriodTimeView()

Deprecated. Do not use. Checks if a datetime pattern string uses a 24-hour or 12-hour time view.

isSame()

Checks if date1  is the same as date2.

parseDateTime()

Parses a string and returns a JavaScript Date.

parseDateTimeISO8601()

Parses a date time string in an ISO-8601 format and returns a JavaScript Date.

parseDateTimeUTC()

Parses a string and returns a JavaScript Date.

startOf()

Returns a date that is the start of a unit of time for the given date.

toISOString()

Deprecated. Use Date.toISOString()  instead.

translateFromLocalizedDigits()

Translate the localized digit string to a string with Arabic digits, if there is any.

translateFromOtherCalendar()

Translates the input date from another calendar system (for example, the Buddhist calendar) to the Gregorian calendar based on
the locale.

translateToLocalizedDigits()

Translate the input string to a string with localized digits, if there is any.

translateToOtherCalendar()

Translates the input date to a date in another calendar system (for example, the Buddhist calendar) based on the locale.

SEE ALSO:

Formatting Dates in JavaScript

520

AuraLocalizationServiceReference



UTCToWallTime()
Converts a datetime from UTC to a specified timezone.

Signature
UTCToWallTime (Date date, String timezone, function callback)

Parameters
date

Type: Date

A JavaScript Date  object.

timezone
Type: String

A time zone ID based on the  class, for example, "America/Los_Angeles".

callback
Type: function

A function to call after the conversion is done. Access the converted value in the first parameter of the callback.

Sample Code

var format = $A.get("$Locale.timeFormat");
format = format.replace(":ss", "");
var langLocale = $A.get("$Locale.langLocale");
var timezone = $A.get("$Locale.timezone");
var date = new Date();
$A.localizationService.UTCToWallTime(date, timezone, function(walltime) {

// Returns the local time without the seconds, for example, 9:00 PM
displayValue = $A.localizationService.formatDateTimeUTC(walltime, format, langLocale);

})

WallTimeToUTC

Converts a datetime from a specified timezone to UTC.

Signature
WallTimeToUTC (Date date, string timezone, function callback)

Parameters
date

Type: Date

A JavaScript Date  object.

timezone
Type: String

521

AuraLocalizationServiceReference



A time zone ID based on the  class, for example, "America/Los_Angeles".

callback
Type: function

A function to call after the conversion is done. Access the converted value in the first parameter of the callback.

displayDuration()

Displays a length of time.

Signature
displayDuration (Duration duration, boolean withSuffix)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

withSuffix
Type: boolean

If true, returns value with a suffix matching the unit of the duration  parameter.

Returns
Type: String

The length of time.

Sample Code

var dur = $A.localizationService.duration(1, 'day');
// Returns "a day"
var length = $A.localizationService.displayDuration(dur);

SEE ALSO:

duration()

displayDurationInDays()

Displays a length of time in days.

Signature
displayDurationInDays (Duration duration)

522

AuraLocalizationServiceReference



Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The length of time in days.

Sample Code

var dur = $A.localizationService.duration(24, 'hour');
// Returns 1
var length = $A.localizationService.displayDurationInDays(dur);

SEE ALSO:

duration()

displayDurationInHours()

Displays a length of time in hours.

Signature
displayDurationInHours (Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The length of time in hours.

Sample Code

var dur = $A.localizationService.duration(2, 'day');
// Returns 48
var length = $A.localizationService.displayDurationInHours(dur);

SEE ALSO:

duration()

523

AuraLocalizationServiceReference



displayDurationInMilliseconds()

Displays a length of time in milliseconds.

Signature
displayDurationInMilliseconds (Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The length of time in milliseconds.

Sample Code

var dur = $A.localizationService.duration(1, 'hour');
// Returns 3600000
var length = $A.localizationService.displayDurationInMilliseconds(dur);

SEE ALSO:

duration()

displayDurationInMinutes()

Displays a length of time in minutes.

Signature
displayDurationInMinutes (Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The length of time in minutes.

524

AuraLocalizationServiceReference



Sample Code

var dur = $A.localizationService.duration(1, 'hour');
// Returns 60
var length = $A.localizationService.displayDurationInMinutes(dur);

SEE ALSO:

duration()

displayDurationInMonths()

Displays a length of time in months.

Signature
displayDurationInMonths (Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The length of time in months.

Sample Code

var dur = $A.localizationService.duration(60, 'day');
// Returns 1.971293
var length = $A.localizationService.displayDurationInMonths(dur);

SEE ALSO:

duration()

displayDurationInSeconds()

Displays a length of time in seconds.

Signature
displayDurationInSeconds (Duration duration)

525

AuraLocalizationServiceReference



Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The length of time in seconds.

Sample Code

var dur = $A.localizationService.duration(60, 'minutes');
// Returns 3600
var length = $A.localizationService.displayDurationInSeconds(dur);

SEE ALSO:

duration()

duration()

Returns an object representing a length of time.

Signature
duration (number num, String unit)

Parameters
num

Type: number

The length of time in a given unit.

unit
Type: String

A datetime unit. The default is 'milliseconds'. The options are 'years, 'months', 'weeks', 'days', 'hour', 'minutes', 'seconds', 'milliseconds'.

Returns
Type: Object

A duration object.

Sample Code

var dur = $A.localizationService.duration(2, 'days');

526

AuraLocalizationServiceReference



endOf()

Returns a date that is the end of a unit of time for the given date.

Signature
endOf(string | number | Date date, string unit)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

unit
Type: string

A datetime unit. Options are 'year', 'month', 'week', 'day', 'hour', 'minute', or 'second'.

Returns
Type: Date

A JavaScript Date  object. If a unit is not provided, returns a parsed date.

Sample Code

var date = new Date();
// Returns the time at the end of the day
// in the format "Fri Oct 09 2015 23:59:59 GMT-0700 (PDT)"
var day = $A.localizationService.endOf(date, 'day');

formatCurrency()

Returns a currency number based on the default currency format.

Signature
formatCurrency (number number)

Parameters
number

Type: number

The currency number to format.

Returns
Type: number

The formatted currency.

527

AuraLocalizationServiceReference



Sample Code

var curr = 123.45;
// Returns $123.45
$A.localizationService.formatCurrency(curr);

formatDate()

Returns a formatted date.

Signature
formatDate (string | number | Date date, string formatString, string locale)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format , or a timestamp in milliseconds, or a Date  object. If you provide a String value, use ISO 8601
format to avoid parsing warnings. If no timezone is specified, defaults to the browser timezone offset.

formatString
Type: string

Optional. A string containing tokens to format the given date. For example, "yyyy-MM-dd"  formats 15th January, 2017 as
"2017-01-15". The default format string comes from the $Locale  value provider. For details on available tokens, see Formatting
Dates in JavaScript.

locale
Type: string

Optional. A locale to format the given date. The default value is $Locale.langLocale. We strongly recommended that you
use the locale value from $Locale. We fall back to the value in $Locale.langLocale  if you use an unavailable locale.

Returns
Type: string

A formatted and localized date string.

Sample Code

var date = new Date();
// Returns date in the format "Oct 9, 2015"
$A.localizationService.formatDate(date);

formatDateTime()

Returns a formatted date time.

528

AuraLocalizationServiceReference



Signature
formatDateTime (string | number | Date date, string formatString, string locale)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format , or a timestamp in milliseconds, or a Date  object. If you provide a String value, use ISO 8601
format to avoid parsing warnings. If no timezone is specified, defaults to the browser timezone offset.

formatString
Type: string

Optional. A string containing tokens to format the given date. For example, "yyyy-MM-dd"  formats 15th January, 2017 as
"2017-01-15". The default format string comes from the $Locale  value provider. For details on available tokens, see Formatting
Dates in JavaScript.

locale
Type: string

Optional. A locale to format the given date. The default value is $Locale.langLocale. We strongly recommended that you
use the locale value from $Locale. We fall back to the value in $Locale.langLocale  if you use an unavailable locale.

Returns
Type: string

A formatted and localized date time string.

Sample Code

var date = new Date();
// Returns datetime in the format "Oct 9, 2015 9:00:00 AM"
$A.localizationService.formatDateTime(date);

formatDateTimeUTC()

Returns a formatted date time in UTC.

Signature
formatDateTimeUTC (string | number | Date date, string formatString, string locale)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format , or a timestamp in milliseconds, or a Date  object. If you provide a String value, use ISO 8601
format to avoid parsing warnings. If no timezone is specified, defaults to the browser timezone offset.

formatString
Type: string

529

AuraLocalizationServiceReference



Optional. A string containing tokens to format the given date. For example, "yyyy-MM-dd"  formats 15th January, 2017 as
"2017-01-15". The default format string comes from the $Locale  value provider. For details on available tokens, see Formatting
Dates in JavaScript.

locale
Type: string

Optional. A locale to format the given date. The default value is $Locale.langLocale. We strongly recommended that you
use the locale value from $Locale. We fall back to the value in $Locale.langLocale  if you use an unavailable locale.

Returns
Type: string

A formatted and localized date time string.

Sample Code

var date = new Date();
// Returns datetime in UTC in the format "Oct 9, 2015 4:00:00 PM"
$A.localizationService.formatDateTimeUTC(date);

formatDateUTC()

Returns a formatted date in UTC.

Signature
formatDateUTC (string | number | Date date, string formatString, string locale)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format , or a timestamp in milliseconds, or a Date  object. If you provide a String value, use ISO 8601
format to avoid parsing warnings. If no timezone is specified, defaults to the browser timezone offset.

formatString
Type: string

Optional. A string containing tokens to format the given date. For example, "yyyy-MM-dd"  formats 15th January, 2017 as
"2017-01-15". The default format string comes from the $Locale  value provider. For details on available tokens, see Formatting
Dates in JavaScript.

locale
Type: string

Optional. A locale to format the given date. The default value is $Locale.langLocale. We strongly recommended that you
use the locale value from $Locale. We fall back to the value in $Locale.langLocale  if you use an unavailable locale.

Returns
Type: string

A formatted and localized date string.

530

AuraLocalizationServiceReference



Sample Code

var date = new Date();
// Returns date in UTC in the format "Oct 9, 2015"
$A.localizationService.formatDateUTC(date);

formatNumber()

Returns a formatted number with the default number format.

Signature
formatNumber (number number)

Parameters
number

Type: number

The number to format.

Returns
Type: number

The formatted number.

Sample Code

var num = 10000;
// Returns 10,000
var formatted = $A.localizationService.formatNumber(num);

formatPercent()

Returns a formatted percentage number based on the default percentage format.

Signature
formatPercent (number number)

Parameters
number

Type: number

The number to format.

Returns
Type: number

The formatted percentage.

531

AuraLocalizationServiceReference



Sample Code

var num = 0.54;
// Returns 54%
var formatted = $A.localizationService.formatPercent(num);

formatTime()

Returns a formatted time.

Signature
formatTime (string | number | Date date, string formatString, string locale)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format , or a timestamp in milliseconds, or a Date  object. If you provide a String value, use ISO 8601
format to avoid parsing warnings. If no timezone is specified, defaults to the browser timezone offset.

formatString
Type: string

Optional. A string containing tokens to format the given date. For example, "yyyy-MM-dd"  formats 15th January, 2017 as
"2017-01-15". The default format string comes from the $Locale  value provider. For details on available tokens, see Formatting
Dates in JavaScript.

locale
Type: string

Optional. A locale to format the given date. The default value is $Locale.langLocale. We strongly recommended that you
use the locale value from $Locale. We fall back to the value in $Locale.langLocale  if you use an unavailable locale.

Returns
Type: string

A formatted and localized time string.

Sample Code

var date = new Date();
// Returns a date in the format "9:00:00 AM"
var now = $A.localizationService.formatTime(date);

formatTimeUTC()

Returns a formatted time in UTC.

532

AuraLocalizationServiceReference



Signature
formatTime (string | number | Date date, string formatString, string locale)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format , or a timestamp in milliseconds, or a Date  object. If you provide a String value, use ISO 8601
format to avoid parsing warnings. If no timezone is specified, defaults to the browser timezone offset.

formatString
Type: string

Optional. A string containing tokens to format the given date. For example, "yyyy-MM-dd"  formats 15th January, 2017 as
"2017-01-15". The default format string comes from the $Locale  value provider. For details on available tokens, see Formatting
Dates in JavaScript.

locale
Type: string

Optional. A locale to format the given date. The default value is $Locale.langLocale. We strongly recommended that you
use the locale value from $Locale. We fall back to the value in $Locale.langLocale  if you use an unavailable locale.

Returns
Type: string

A formatted and localized time string.

Sample Code

var date = new Date();
// Returns time in UTC in the format "4:00:00 PM"
$A.localizationService.formatTimeUTC(date);

getDateStringBasedOnTimezone

Gets a date string based on a time zone.

Signature
getDateStringBasedOnTimezone (string timeZone, Date date, function callback)

Parameters
timezone

Type: String

A time zone ID based on the  class, for example, "America/Los_Angeles".

date
Type: Date

A JavaScript Date  object.

533

AuraLocalizationServiceReference



callback
Type: function

A function to call after the date string is returned. Access the date string in the first parameter of the callback.

Sample Code

var timezone = $A.get("$Locale.timezone");
var date = new Date();
// Returns the date string in the format "2015-10-9"
$A.localizationService.getDateStringBasedOnTimezone(timezone, date, function(today){

console.log(today);
});

getDaysInDuration()

Returns the number of days in a duration.

Signature
getDaysInDuration(Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The number of days in the duration.

Sample Code

var dur = $A.localizationService.duration(48, 'hour');
// Returns 2, the number of days for the given duration
$A.localizationService.getDaysInDuration(dur);

SEE ALSO:

duration()

getDefaultCurrencyFormat()

Returns the default currency format.

Signature
getDefaultCurrencyFormat()

534

AuraLocalizationServiceReference



Returns
Type: NumberFormat

The currency format returned by $Locale.currencyFormat.

Sample Code

// Returns $20,000.00
$A.localizationService.getDefaultCurrencyFormat().format(20000);

SEE ALSO:

$Locale

getDefaultNumberFormat()

Returns the default NumberFormat  object.

Signature
getDefaultNumberFormat()

Returns
Type: NumberFormat

The number format returned by $Locale.numberFormat.

Sample Code

// Returns 20,000.123
$A.localizationService.getDefaultNumberFormat().format(20000.123);

SEE ALSO:

$Locale

getDefaultPercentFormat()

Returns the default percentage format.

Signature
getDefaultPercentFormat()

Returns
Type: NumberFormat

The percentage format returned by $Locale.percentFormat.

535

AuraLocalizationServiceReference



Sample Code

// Returns 20%
$A.localizationService.getDefaultPercentFormat().format(0.20);

SEE ALSO:

$Locale

getHoursInDuration()

Returns a length of time in hours.

Signature
getHoursInDuration(Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The number of hours in the duration.

Sample Code

var dur = $A.localizationService.duration(60, 'minute');
// Returns 1, the number of hours in the given duration
$A.localizationService.getHoursInDuration(dur);

SEE ALSO:

duration()

getLocalizedDateTimeLabels()

Deprecated. Do not use. Returns date time labels, such as month name, weekday name.

Signature
getLocalizedDateTimeLabels()

Returns
Type: Object

The localized set of labels.

536

AuraLocalizationServiceReference



getMillisecondsInDuration()

Returns the number of milliseconds in a duration.

Signature
getMillisecondsInDuration(Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The number of milliseconds in the duration.

SEE ALSO:

duration()

getMinutesInDuration()

Returns the number of minutes in a duration.

Signature
getMinutesInDuration(Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The number of minutes in the duration.

537

AuraLocalizationServiceReference



Sample Code

var dur = $A.localizationService.duration(60, 'second');
// Returns 1, the number of minutes in the given duration
$A.localizationService.getMinutesInDuration(dur);

SEE ALSO:

duration()

getMonthsInDuration()

Returns the number of months in a duration.

Signature
getMonthsInDuration(Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The number of months in the duration.

Sample Code

var dur = $A.localizationService.duration(70, 'day');
// Returns 2, the number of months in the given duration
$A.localizationService.getMonthsInDuration(dur);

SEE ALSO:

duration()

getNumberFormat()

Returns a NumberFormat object.

Signature
getNumberFormat(string format, string symbols)

538

AuraLocalizationServiceReference



Parameters
format

Type: string

The number format. For example, format=".00" displays the number followed by two decimal places.

symbols
Type: string

An optional map of localized symbols. Otherwise, the current locale’s symbols are used.

Returns
Type: NumberFormat

The number format returned by $Locale.numberFormat.

Sample Code

var f = $A.get("$Locale.numberFormat");
var num = 10000
var nf = $A.localizationService.getNumberFormat(f);
var formatted = nf.format(num);
// Returns 10,000
var formatted = $A.localizationService.formatNumber(num);

getSecondsInDuration()

Returns the number of seconds in a duration.

Signature
getSecondsInDuration(Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

Returns
Type: number

The number of seconds in the duration.

539

AuraLocalizationServiceReference



Sample Code

var dur = $A.localizationService.duration(3000, 'millisecond');
// Returns 3
$A.localizationService.getSecondsInDuration(dur);

SEE ALSO:

duration()

getToday

Gets today’s date based on a time zone.

Signature
getToday(string timezone, function callback)

Parameters
timezone

Type: String

A time zone ID based on the  class, for example, "America/Los_Angeles".

callback
Type: function

A function to call after the date is returned. Access the date in the first parameter of the callback.

Sample Code

var timezone = $A.get("$Locale.timezone");
// Returns the date string in the format "2015-11-25"
$A.localizationService.getToday(timezone, function(today){

console.log(today);
});

getYearsInDuration()

Returns the number of years in a duration.

Signature
getYearsInDuration(Duration duration)

Parameters
duration

Type: Duration

The duration object returned by $A.localizationService.duration.

540

AuraLocalizationServiceReference



Returns
Type: number

The number of years in the duration.

Sample Code

var dur = $A.localizationService.duration(24, 'month');
// Returns 2
$A.localizationService.getYearsInDuration(dur);

SEE ALSO:

duration()

isAfter()

Checks if date1  is after date2.

Signature
isAfter(string | number | Date date1, string | number | Date date2, string unit)

Parameters
date1

Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

date2
Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

unit
Type: string

A datetime unit. Options are 'year', 'month', 'week', 'day', 'hour', 'minute', 'second', or 'millisecond'.

Returns
Type: boolean

Returns true  if date1  is after date2, or false  otherwise.

Sample Code

var date = new Date();
var day = $A.localizationService.endOf(date, 'day');
// Returns false, since date is before day
$A.localizationService.isAfter(date, day);

541

AuraLocalizationServiceReference



isBefore()

Checks if date1  is before date2.

Signature
isBefore(string | number | Date date1, string | number | Date date2, string unit)

Parameters
date1

Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

date2
Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

unit
Type: string

A datetime unit. Options are 'year', 'month', 'week', 'day', 'hour', 'minute', 'second', or 'millisecond'.

Returns
Type: boolean

Returns true  if date1  is before date2, or false  otherwise.

Sample Code

var date = new Date();
var day = $A.localizationService.endOf(date, 'day');
// Returns true, since date is before day
$A.localizationService.isBefore(date, day);

isBetween()

Checks if date  is between fromDate  and toDate, where the match is inclusive.

Signature
isBetween(string | number | Date date, string | number | Date fromDate, string | number
| Date toDate, string unit)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

542

AuraLocalizationServiceReference



fromDate
Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

toDate
Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

unit
Type: string

A datetime unit. Options are 'year', 'month', 'week', 'day', 'hour', 'minute', 'second', or 'millisecond'.

Returns
Type: boolean

Returns true  if date  is between fromDate  and toDate, or false otherwise.

Sample Code

// Returns true
$A.localizationService.isBetween("2017-03-07","March 7, 2017", "12/1/2017");
// Returns false
$A.localizationService.isBetween("2017-03-07 12:00", "March 7, 2017 15:00", "12/1/2017");
// Returns true because the unit is "day"
$A.localizationService.isBetween("2017-03-07 12:00", "March 7, 2017 15:00", "12/1/2017",
"day");

isPeriodTimeView()

Deprecated. Do not use. Checks if a datetime pattern string uses a 24-hour or 12-hour time view.

Signature
isPeriodTimeView(string pattern)

Parameters
pattern

Type: string

A datetime pattern.

Returns
Type: boolean

Returns true  if the pattern uses a 12-hour period time view.

isSame()

Checks if date1  is the same as date2.

543

AuraLocalizationServiceReference



Signature
isSame(string | number | Date date1, string | number | Date date2, string unit)

Parameters
date1

Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

date2
Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

unit
Type: string

A datetime unit. Options are 'year', 'month', 'week', 'day', 'hour', 'minute', 'second', or 'millisecond'.

Returns
Type: boolean

Returns true  if date1  is the same as date2, or false  otherwise.

Sample Code

var date = new Date();
var day = $A.localizationService.endOf(date, 'day');
// Returns false
$A.localizationService.isSame(date, day, 'hour');
// Returns true
$A.localizationService.isSame(date, day, 'day');

parseDateTime()

Parses a string and returns a JavaScript Date.

Signature
parseDateTime(string dateTimeString, string parseFormat, string | boolean locale,
boolean strictParsing)

Parameters
dateTimeString

Type: string

A datetime string.

parseFormat
Type: string

An optional Java format string used to parse the datetime. The default is from the $Locale  global value provider.

544

AuraLocalizationServiceReference



locale
Type: string | boolean

This parameter is deprecated.

strictParsing
Type: string

Set this optional parameter to true  to turn off forgiving parsing and use strict validation.

Returns
Type: Date

Returns a JavaScript Date  object, or null  if dateTimeString  is invalid.

parseDateTimeISO8601()

Parses a date time string in an ISO-8601 format and returns a JavaScript Date.

Signature
parseDateTimeISO8601(string dateTimeString)

Parameters
dateTimeString

Type: string

A datetime string in ISO8601 format.

Returns
Type: Date

Returns a JavaScript Date  object, or null  if dateTimeString  is invalid.

parseDateTimeUTC()

Parses a string and returns a JavaScript Date.

Signature
parseDateTime(string dateTimeString, string parseFormat, string | boolean locale,
boolean strictParsing)

Parameters
dateTimeString

Type: string

A datetime string.

parseFormat
Type: string

545

AuraLocalizationServiceReference



An optional Java format string used to parse the datetime. The default is from the $Locale  global value provider.

locale
Type: string | boolean

This parameter is deprecated.

strictParsing
Type: string

Set this optional parameter to true  to turn off forgiving parsing and use strict validation.

Returns
Type: Date

Returns a JavaScript Date  object, or null  if dateTimeString  is invalid.

Sample Code

var date = "2015-10-9";
// Returns "Thu Oct 08 2015 17:00:00 GMT-0700 (PDT)"
$A.localizationService.parseDateTimeUTC(date);

startOf()

Returns a date that is the start of a unit of time for the given date.

Signature
startOf(string | number | Date date, string unit)

Parameters
date

Type: string | number | Date

A datetime string in ISO8601 format, or a timestamp in milliseconds, or a Date  object.

unit
Type: string

A datetime unit. Options are 'year', 'month', 'week', 'day', 'hour', 'minute', or 'second'.

Returns
Type: Date

A JavaScript Date  object. If a unit is not provided, returns a parsed date.

Sample Code

var date = "2015-10-9";
// Returns "Thu Oct 01 2015 00:00:00 GMT-0700 (PDT)"
$A.localizationService.startOf(date, 'month');

546

AuraLocalizationServiceReference



toISOString()

Deprecated. Use Date.toISOString()  instead.

Signature
toISOString(Date | T date)

Parameters
date

Type: Date | T

A Date  object.

unit
Type: string

A datetime unit. Options are 'year', 'month', 'week', 'day', 'hour', 'minute', or 'second'.

Returns
Type: Date

An ISO8601 string.

translateFromLocalizedDigits()

Translate the localized digit string to a string with Arabic digits, if there is any.

Signature
translateFromLocalizedDigits(string input)

Parameters
input

Type: string

A string with localized digits.

Returns
Type: string

A string with Arabic digits.

translateFromOtherCalendar()

Translates the input date from another calendar system (for example, the Buddhist calendar) to the Gregorian calendar based on the
locale.

547

AuraLocalizationServiceReference



Signature
translateFromOtherCalendar(Date date)

Parameters
date

Type: Date

A Date  object.

Returns
Type: Date

Returns a translated Date  object.

translateToLocalizedDigits()

Translate the input string to a string with localized digits, if there is any.

Signature
translateToLocalizedDigits(string input)

Parameters
input

Type: string

A string with Arabic digits.

Returns
Type: string

A string with localized digits.

translateToOtherCalendar()

Translates the input date to a date in another calendar system (for example, the Buddhist calendar) based on the locale.

Signature
translateToOtherCalendar(Date date)

Parameters
date

Type: Date

A Date  object.

548

AuraLocalizationServiceReference



Returns
Type: Date

Returns a translated Date  object.

Component
Component  contains methods to work with components.

Methods

IN THIS SECTION:

addEventHandler()

Dynamically adds an event handler for a component or application event.

addHandler()

Deprecated. Use addEventHandler()  instead.

addValueHandler()

Adds handlers to values owned by the component.

addValueProvider()

Adds custom value providers to a component.

autoDestroy()

Sets a flag to tell the rendering service whether or not to destroy this component when it is removed from its rendering facet.

clearReference()

Clears a live reference for the value passed in using property syntax. For example, if you use aura:set  to set a value and later
want to reset the value using component.set(), clear the reference before resetting the value.

destroy()

Destroys the component and cleans up memory. After a component that is declared in markup is no longer in use, the framework
automatically destroys it and frees up its memory. If you create a component dynamically in JavaScript and that component isn't
added to a facet (v.body  or another attribute of type Aura.Component[]), you have to destroy it manually using destroy()
to avoid memory leaks.

find()

Locates a component using its local ID (aura:id).

get()

Returns the value referenced using property syntax. For example, cmp.get("v.attr")  returns the value of the attr  attribute.

getConcreteComponent()

Gets the concrete implementation of a component. If the component is concrete, the method returns the component itself. For
example, call this method to get the concrete component of a super component.

getElement()

If the component renders only a single element, return it. Otherwise, use getElements().

getElements()

Returns a map of the elements rendered by the component.

549

ComponentReference



getEvent()

Returns a new event instance of the named component event.

getGlobalId()

Gets the global ID, which is the generated globally unique id of the component. It can be used to locate the instance later, but will
change across page loads.

getLocalId()

Gets the ID set using the aura:id  attribute. Pass the local ID into find() on the parent component to locate this child
component.

getName()

Returns the component’s code-compatible camel case name, such as 'lightningButton'.

getReference()

Returns a live reference to the value indicated using property syntax. This method is useful when you dynamically create a component.

getSuper()

Returns the super component.

getType()

Returns the component’s canonical type; for example, 'lightning:button'.

getVersion()

Returns the component’s version number.

isConcrete()

Returns true  if the component is concrete, or false  otherwise. A concrete component is a sub-component in an inheritance
chain.

isInstanceOf()

Checks whether a component is an instance of the given component or interface name.

isValid()

Returns true  if the component has not been destroyed.

removeEventHandler()

Dynamically removes a component event handler for the specified event.

set()

Sets the value referenced using property syntax.

addEventHandler()

Dynamically adds an event handler for a component or application event.

Signature
addEventHandler(String event, function handler, String phase, Boolean includeFacets)

Parameters
event

Type: String

550

ComponentReference



The name of the event to handle. For a component event, set this argument to match the name attribute of the
aura:registerEvent  tag. For an application event, set this argument to match the event descriptor,
namespace:eventName.

handler
Type: function

The handler for the event. There are two format options for this argument.

• To use a controller action, use the format: cmp.getReference("c.actionName").

• To use an anonymous function, use the format: function(auraEvent) { // handling logic here }

phase
Type: String

Optional. The event bubbling phase for which to add the handler. The default value is "bubble".

includeFacets
Type: Boolean

If true, attempts to catch events generated by components transcluded by facets; for example v.body.

Sample Code

// For component event, first param matches name attribute in <aura:registerEvent> tag
cmp.addEventHandler("compEvent", cmp.getReference("c.handleEvent"));

// For application event, first param is event descriptor, "c:appEvent"
cmp.addEventHandler("c:appEvent", cmp.getReference("c.handleAppEvent"));

// Anonymous function handler for component event
cmp.addEventHandler("compEvent", function(auraEvent) {

// add handler logic here
console.log("Handled the component event in anonymous function");

});

SEE ALSO:

Dynamically Adding Event Handlers To a Component

removeEventHandler()

addHandler()

Deprecated. Use addEventHandler()  instead.

Signature
addHandler(String eventName, Object valueProvider, Object actionExpression, Boolean
insert, String phase, Boolean includeFacets)

Parameters
eventName

Type: String

551

ComponentReference



The name of the event to handle. For a component event, set this argument to match the name attribute of the
aura:registerEvent  tag. For an application event, set this argument to match the event descriptor,
namespace:eventName.

valueProvider
Type: Object

The value provider to use for resolving the actionExpression.

actionExpression
Type: Object

The expression to use for resolving the handler action against the given valueProvider.

insert
Type: Boolean

If true, put the handler at the beginning instead of the end of the handler array.

phase
Type: String

Optional. The event bubbling phase for which to add the handler. The default value is "bubble".

includeFacets
Type: Boolean

If true, attempts to catch events generated by components transcluded by facets; for example v.body.

SEE ALSO:

addEventHandler()

addValueHandler()

Adds handlers to values owned by the component.

Signature
addValueHandler(Object config)

Parameters
config

Type: Object

The value event, such as "change", and the action, such as "c.myAction".

addValueProvider()

Adds custom value providers to a component.

Signature
addValueProvider(String key, Object valueProvider)

552

ComponentReference



Parameters
key

Type: String

Key to identify the value provider. Used in expressions in markup.

valueProvider
Type: Object

The object to request data from. Must implement get(expression), can implement set(key,value).

SEE ALSO:

Value Providers

autoDestroy()

Sets a flag to tell the rendering service whether or not to destroy this component when it is removed from its rendering facet.

Signature
autoDestroy(Boolean destroy)

Parameters
destroy

Type: Boolean

Default is true, which marks the component to be destroyed when it’s orphaned. Set to false  to keep a reference to a component
after it has been unrendered or removed from a parent facet. We don't recommend setting the value to false. If you do, be careful
to avoid memory leaks.

clearReference()

Clears a live reference for the value passed in using property syntax. For example, if you use aura:set  to set a value and later want
to reset the value using component.set(), clear the reference before resetting the value.

Signature
clearReference(String key)

Parameters
key

Type: String

The data key for which to clear the reference. For example, "v.attributeName".

553

ComponentReference



destroy()

Destroys the component and cleans up memory. After a component that is declared in markup is no longer in use, the framework
automatically destroys it and frees up its memory. If you create a component dynamically in JavaScript and that component isn't added
to a facet (v.body  or another attribute of type Aura.Component[]), you have to destroy it manually using destroy()  to
avoid memory leaks.

Signature
destroy()

find()

Locates a component using its local ID (aura:id).

Returns different types depending on the result.

1. If the local ID is unique, returns the component.

2. If there are multiple components with the same local ID, returns an array of the components.

3. If there is no matching local ID, returns undefined.

Signature
find(String | Object name)

Parameters
name

Type: String | Object

If name is an object, return instances of it. Otherwise, finds a component using its aura:id.

SEE ALSO:

Finding Components by ID

get()

Returns the value referenced using property syntax. For example, cmp.get("v.attr")  returns the value of the attr  attribute.

Signature
get(String key)

Parameters
key

Type: String

The data key to look up on the component.

554

ComponentReference



getConcreteComponent()

Gets the concrete implementation of a component. If the component is concrete, the method returns the component itself. For example,
call this method to get the concrete component of a super component.

Signature
getConcreteComponent()

SEE ALSO:

Favor Composition Over Inheritance

getElement()

If the component renders only a single element, return it. Otherwise, use getElements().

Signature
getElement()

getElements()

Returns a map of the elements rendered by the component.

Signature
getElements()

getEvent()

Returns a new event instance of the named component event.

Signature
getEvent(String name)

Parameters
name

Type: String

The name of the event.

Sample Code

// evtName matches the name attribute in aura:registerEvent
cmp.getEvent("evtName");

555

ComponentReference



getGlobalId()

Gets the global ID, which is the generated globally unique id of the component. It can be used to locate the instance later, but will
change across page loads.

Signature
getGlobalId()

SEE ALSO:

Component IDs

getLocalId()

Gets the ID set using the aura:id  attribute. Pass the local ID into find() on the parent component to locate this child component.

Signature
getLocalId()

SEE ALSO:

find()

getName()

Returns the component’s code-compatible camel case name, such as 'lightningButton'.

Signature
getName()

Returns
Type: String

The component name.

getReference()

Returns a live reference to the value indicated using property syntax. This method is useful when you dynamically create a component.

Signature
getReference(String key)

Parameters
key

Type: String

556

ComponentReference



The data key for which to return a reference.

Returns
Type: PropertyReferenceValue

A property reference value.

getSuper()

Returns the super component.

Signature
getSuper()

Returns
Type: Component

The super component.

getType()

Returns the component’s canonical type; for example, 'lightning:button'.

Signature
getType()

Returns
Type: String

The component’s type.

getVersion()

Returns the component’s version number.

Signature
getVersion()

Returns
Type: String

The component name.

isConcrete()

Returns true  if the component is concrete, or false  otherwise. A concrete component is a sub-component in an inheritance chain.

557

ComponentReference



Signature
isConcrete()

Returns
Type: Boolean

Returns true  if the component is concrete, or false  otherwise.

SEE ALSO:

getConcreteComponent()

Favor Composition Over Inheritance

isInstanceOf()

Checks whether a component is an instance of the given component or interface name.

Signature
isInstanceOf(String name)

Parameters
name

Type: String

The name of the component or interface, with a format of namespace:componentName.

Returns
Type: Boolean

Returns true  if the component is an instance, or false  otherwise.

isValid()

Returns true  if the component has not been destroyed.

Signature
isValid()

Returns
Type: Boolean

Returns true  if the component has not been destroyed, or false  otherwise.

removeEventHandler()

Dynamically removes a component event handler for the specified event.

558

ComponentReference



Signature
removeEventHandler(String event, function handler, String phase)

Parameters
event

Type: String

The name of the event to remove; for example, 'c:myEvent'.

handler
Type: function

A reference to the function or action to remove; for example., 'cmp.getReference("c.handleMyEvent");'.

phase
Type: String

Optional. The event bubbling phase for which to remove the handler. The default value is "default".

SEE ALSO:

addEventHandler()

set()

Sets the value referenced using property syntax.

Signature
set(String key, Object value)

Parameters
key

Type: String

The data key to set on the component; for example, cmp.set("v.key","value").

value
Type: Object

The value to set.

SEE ALSO:

get()

Event
Event  contains methods to work with events. Use an event to communicate between components.

559

EventReference



Methods

IN THIS SECTION:

fire()

Fires an event.

getEventType()

Returns the type of the event. Possible values are 'COMPONENT'  or 'APPLICATION'.

getName()

Returns an event’s name.

getParam()

Returns the value of an event’s parameter.

getParams()

Returns the value of all an event’s parameters.

getPhase()

Returns the current phase of an event. Returns undefined  if the event hasn’t been fired yet. Possible return values for application
and component events are "capture", "bubble", and "default"  once fired. A value event returns "default"  once
it’s fired.

getSource()

Returns the source component that fired an event.

getSourceEvent()

Returns the source event that fired this event, if it was fired by an event binding, such as {!e.myEvent}.

getType()

Returns the type of the event’s definition, such as 'c:myEvent'.

pause()

Pauses an event. Event handlers aren’t processed until Event.resume()  is called. The handling process pauses in the current
position of the event handler processing sequence. If the event is already paused, this method does nothing. This method throws
an error if it’s called in the "default"  phase.

preventDefault()

Prevents the default phase execution for this event. This method throws an error if it’s called in the "default" phase.

resume()

Resumes event handling for this event from the same position in the event handler processing sequence from which it was previously
paused. If the event isn’t paused, this method does nothing. This method throws an error if it’s called in the "default"  phase.
Any remaining event handlers might execute in the current call stack or might be deferred and executed in a new call stack. Therefore,
the exact timing behavior is not predictable.

setParam()

Sets a parameter for an event. This method doesn’t modify an event that has already been fired.

setParams()

Sets parameters for an event. This method doesn’t modify an event that has already been fired.

stopPropagation()

Sets whether the event can bubble or not. This method throws an error if called in the "default"  phase.

560

EventReference



fire()

Fires an event.

Signature
fire(Object params)

Parameters
params

Type: Object

An optional set of parameters for the event. Any previous parameters of the same name are overwritten.

getEventType()

Returns the type of the event. Possible values are 'COMPONENT'  or 'APPLICATION'.

Signature
getEventType()

Returns
Type: String

The event type.

getName()

Returns an event’s name.

Signature
getName()

Returns
Type: String

The event name.

getParam()

Returns the value of an event’s parameter.

Signature
getParam(String name)

561

EventReference



Parameters
name

Type: String

The parameter name. For example, event.getParam("button")  returns the value of the pressed mouse button (0, 1, or
2).

Returns
Type: Object

The parameter value.

getParams()

Returns the value of all an event’s parameters.

Signature
getParams()

Returns
Type: Object

The collection of parameters.

getPhase()

Returns the current phase of an event. Returns undefined  if the event hasn’t been fired yet. Possible return values for application
and component events are "capture", "bubble", and "default"  once fired. A value event returns "default"  once it’s
fired.

Signature
getPhase()

Returns
Type: String

The current phase of the event.

getSource()

Returns the source component that fired an event.

Signature
getSource()

562

EventReference



Returns
Type: Object

The source component that fired the event.

getSourceEvent()

Returns the source event that fired this event, if it was fired by an event binding, such as {!e.myEvent}.

Signature
getSourceEvent()

Returns
Type: Object

The source event that fired the event.

getType()

Returns the type of the event’s definition, such as 'c:myEvent'.

Signature
getType()

Returns
Type: String

The event definition type.

pause()

Pauses an event. Event handlers aren’t processed until Event.resume()  is called. The handling process pauses in the current
position of the event handler processing sequence. If the event is already paused, this method does nothing. This method throws an
error if it’s called in the "default"  phase.

Signature
pause()

preventDefault()

Prevents the default phase execution for this event. This method throws an error if it’s called in the "default" phase.

Signature
preventDefault()

563

EventReference



resume()

Resumes event handling for this event from the same position in the event handler processing sequence from which it was previously
paused. If the event isn’t paused, this method does nothing. This method throws an error if it’s called in the "default"  phase. Any
remaining event handlers might execute in the current call stack or might be deferred and executed in a new call stack. Therefore, the
exact timing behavior is not predictable.

Signature
resume()

setParam()

Sets a parameter for an event. This method doesn’t modify an event that has already been fired.

Signature
setParam(String key, Object value)

Parameters
key

Type: String

The name of the parameter.

value
Type: Object

The value of the parameter.

setParams()

Sets parameters for an event. This method doesn’t modify an event that has already been fired.

Signature
setParams(Object config)

Parameters
config

Type: Object

The event’s parameter.

stopPropagation()

Sets whether the event can bubble or not. This method throws an error if called in the "default"  phase.

564

EventReference



Signature
stopPropagation()

Util
Util  contains utility methods.

Methods

IN THIS SECTION:

addClass()

Adds a CSS class to a component.

getBooleanValue()

Coerces truthy and falsy values into a native boolean.

hasClass()

Checks whether the component has the specified CSS class.

isArray()

Checks whether the specified object is an array.

isEmpty()

Checks if the object is empty. An empty object’s value is undefined, null, an empty array, or an empty string. An object with
no native properties is not considered empty.

isObject()

Checks whether the specified object is a valid object. A valid object is not a DOM element, is not a native browser class
(XMLHttpRequest) is not falsey, and is not an array, error, function string or a number.

isUndefined()

Checks if the object is undefined.

isUndefinedOrNull()

Checks if the object is undefined  or null.

removeClass()

Removes a CSS class from a component.

toggleClass()

Toggles (adds or removes) a CSS class from a component.

addClass()

Adds a CSS class to a component.

Signature
addClass(Object element, String newClass)

565

UtilReference



Parameters
element

Type: Object

The component to apply the class on.

newClass
Type: String

The CSS class to be applied.

Sample Code

// find a component with aura:id="myCmp" in markup
var myCmp = component.find("myCmp");
$A.util.addClass(myCmp, "myClass");

getBooleanValue()

Coerces truthy and falsy values into a native boolean.

Signature
getBooleanValue(Object val)

Parameters
val

Type: Object

The object to check.

Returns
Type: String

Returns true  if the object is truthy, or false  otherwise.

hasClass()

Checks whether the component has the specified CSS class.

Signature
hasClass(Object element, String className)

Parameters
element

Type: Object

The component to check.

566

UtilReference



className
Type: String

The CSS class name to check for.

Returns
Type: Boolean

Returns true  if the specified class is found for the component, or false  otherwise.

Sample Code

// find a component with aura:id="myCmp" in markup
var myCmp = component.find("myCmp");
$A.util.hasClass(myCmp, "myClass");

isArray()

Checks whether the specified object is an array.

Signature
isArray(Object obj)

Parameters
obj

Type: Object

The object to check.

Returns
Type: Boolean

Returns true  if the object is an array, or false  otherwise.

isEmpty()

Checks if the object is empty. An empty object’s value is undefined, null, an empty array, or an empty string. An object with no
native properties is not considered empty.

Signature
isEmpty(Object obj)

Parameters
obj

Type: Object

The object to check.

567

UtilReference



Returns
Type: Boolean

Returns true  if the object is empty, or false  otherwise.

isObject()

Checks whether the specified object is a valid object. A valid object is not a DOM element, is not a native browser class
(XMLHttpRequest) is not falsey, and is not an array, error, function string or a number.

Signature
isObject(Object obj)

Parameters
obj

Type: Object

The object to check.

Returns
Type: Boolean

Returns true  if the object is a valid object, or false  otherwise.

isUndefined()

Checks if the object is undefined.

Signature
isUndefined(Object obj)

Parameters
obj

Type: Object

The object to check.

Returns
Type: Boolean

Returns true  if the object is undefined, or false  otherwise.

isUndefinedOrNull()

Checks if the object is undefined  or null.

568

UtilReference



Signature
isUndefinedOrNull(Object obj)

Parameters
obj

Type: Object

The object to check.

Returns
Type: Boolean

Returns true  if the object is undefined  or null, or false  otherwise.

removeClass()

Removes a CSS class from a component.

Signature
removeClass(Object element, String newClass)

Parameters
element

Type: Object

The component to remove the class from.

newClass
Type: String

The CSS class to be removed.

Sample Code

//find a component with aura:id="myCmp" in markup
var myCmp = component.find("myCmp");
$A.util.removeClass(myCmp, "myClass");

toggleClass()

Toggles (adds or removes) a CSS class from a component.

Signature
toggleClass(Object element, String className)

569

UtilReference



Parameters
element

Type: Object

The component to add or remove the class from.

className
Type: String

The CSS class to be added or removed.

Sample Code

// find a component with aura:id="toggleMe" in markup
var toggleText = component.find("toggleMe");
$A.util.toggleClass(toggleText, "toggle");

570

UtilReference



INDEX

A
Apex

custom objects 439
Lightning components 468
records 439
saving records 434
standard objects 439

application, creating 7
Aura components

action override 151–154
interfaces 153
Lightning Experience 151–153
markup 153
packaging 154
Salesforce 151–153

Aura components interfaces
force:hasRecordId 153
force:hasSObjectName 153
lightning:actionOverride 153

C
CDN 488
change handling 419
Component bundles

configuring design resources for Lightning Pages 186
configuring for Experience Builder 195
configuring for Lightning App Builder 177, 193
configuring for Lightning Experience Record Home pages

193
configuring for Lightning Experience record pages 177
configuring for Lightning pages 177, 193
create dynamic picklists for components on Lightning Pages

186
tips for configuring for Lightning App Builder 193

Components
action override 151–154
actions 141, 143–144
custom app integration 236
flow, finish behavior 228
flow, resume 229
markup 153
packaging 154
tabs 141
using 137, 141, 143–144, 151, 205, 469

Custom Actions
components 143–144

custom content layouts
creating for Experience Builder 203

Custom Lightning page template component
best practices 191

custom profile menu
creating for Experience Builder 202

custom search
creating for Experience Builder 202

Custom Tabs
components 141

custom theme layouts
creating for Experience Builder 196

D
data access 401, 420, 425–426, 433
deleteRecord 417
Developer Edition organization, sign up 7

E
error handling 420
errors 247, 250, 252, 255, 420
eval() function limitations 338
Events

Salesforce mobile and Lightning Experience demo 7
Salesforce mobile demo 10, 14

example 426
Experience Builder

configuring custom components 195
content layouts 203
profile menu 202
search 202
theme layouts 196

G
getNewRecord 411
guest user flows 199

L
Lightning App Builder

configuring custom components 177, 193
configuring design resources 186
create dynamic picklists for components 186
creating a custom page template 191
creating a width-aware component 192

571



Lightning components
custom app integration 236
Lightning Experience 141, 143–144
overview 175
Salesforce 141, 143–144

Lightning components for Experience Builder
overview 194

Lightning Container
javascript 243
messaging 245, 249, 254

Lightning Data Service
create record 411
delete record 417
force:recordData 400
form display density 422
handling record changes 419
lightning:recordEditForm 400
lightning:recordForm 400
lightning:recordViewForm 400
load record 402
saveRecord 406

Lightning Out 241, 243
lightning:flexipageRegionInfo 192
lightning:formattedUrl 156
lightning:hasPageReference 155
lightning:isUrlAddressable 155, 161
lightning:navigation 155–156, 160–161

M
MIME types permitted 339

N
Navigation

Default Field Values 157

Navigation (continued)
Page Definitions 162

Node.js 243

P
Packaging

action override 154
Performance

caching 488
CDN 488
settings 488

Prerequisites 7

R
Rich Publisher Apps 236

S
SaveRecordResult 433
SharePoint 243
Standard Actions

Lightning components 151–154
override 151–154
packaging 154

standard controller 401, 420, 425–426, 433
supported objects 425

T
troubleshooting 247, 250, 252, 255

V
Visualforce 241

W
Width-aware Aura component 192

572

Index


	Introducing Aura Components
	What is Salesforce Lightning?
	Use Lightning Web Components instead of Aura Components
	Aura Components Release Notes
	Aura Components
	Events
	Browser Support for Aura Components
	Using the Developer Console
	Online Content

	Quick Start
	Before You Begin
	Trailhead: Explore Lightning Aura Components Resources
	Create a Component for Lightning Experience and the Salesforce Mobile App
	Load the Contacts
	Fire the Events


	Creating Components
	Component Names
	Create Aura Components in the Developer Console
	Lightning Bundle Configurations Available in the Developer Console

	Create Aura Components Using Salesforce CLI
	Component Markup
	Component Namespace
	Using the Default Namespace in Organizations with No Namespace Set
	Using Your Organization’s Namespace
	Using a Namespace in or from a Managed Package
	Creating a Namespace in Your Organization
	Namespace Usage Examples and Reference

	Component Bundles
	Component IDs
	HTML in Components
	Supported HTML Tags
	Anchor Tag: <a>


	CSS in Components
	Component Attributes
	Supported aura:attribute Types
	Basic Types
	Function Type
	Object Types
	Standard and Custom Object Types
	Collection Types
	Custom Apex Class Types
	Framework-Specific Types
	Using the Aura.Action Attribute Type


	Using Expressions
	Dynamic Output in Expressions
	Conditional Expressions
	Data Binding Between Components
	Value Providers
	$Browser
	$ContentAsset
	$Locale
	$Resource

	Expression Evaluation
	Expression Operators Reference
	Expression Functions Reference

	Component Composition
	Component Body
	Component Facets
	Controlling Access
	Application Access Control
	Interface Access Control
	Component Access Control
	Attribute Access Control
	Event Access Control

	Using Object-Oriented Development
	Favor Composition Over Inheritance
	What is Inherited?
	Inherited Component Attributes
	Abstract Components
	Interfaces
	Marker Interfaces

	Inheritance Rules

	Best Practices for Conditional Markup
	Aura Component Versioning for Managed Packages
	Base Components with Minimum API Version Requirements
	Validations for Aura Component Code
	Validation When You Save Code Changes
	Validation During Development Using ESLint
	Aura Component Validation Rules
	Validation Rules Used at Save Time
	Validate JavaScript Intrinsic APIs (ecma-intrinsics)
	Validate Aura API (aura-api)
	Validate Aura Component Public API (secure-component)
	Validate Secure Document Public API (secure-document)
	Validate Secure Window Public API (secure-window)
	Disallow Use of caller and callee (no-caller)
	Disallow Script URLs (no-script-url)
	Disallow Extending Native Objects (no-extend-native)
	Disallow Calling Global Object Properties as Functions (no-obj-calls)
	Disallow Use of __iterator__ Property (no-iterator)
	Disallow Use of __proto__ (no-proto)
	Disallow with Statements (no-with)


	Using Labels
	Using Custom Labels
	Input Component Labels
	Dynamically Populating Label Parameters
	Getting Labels in JavaScript
	Getting Labels in Apex
	Setting Label Values via a Parent Attribute

	Localization
	Working with Base Lightning Components
	Base Lightning Components Considerations
	Event Handling in Base Lightning Components
	Creating a Form
	Validating Fields
	Lightning Design System Considerations
	Working with Lightning Design System Variants

	Migrate Components from the ui Namespace

	Supporting Accessibility
	Accessibility for Base Lightning Components
	Button Labels
	Audio Messages
	Forms, Fields, and Labels
	Using Images and Icons
	Events
	Menus

	Write Aura Component Accessibility Tests
	Accessibility Tests Example
	Other Accessibility Automation Tools


	Writing Documentation for the Component Library
	Creating Examples
	Creating Documentation Content
	Providing Specification Information and Descriptions


	Using Components
	Aura Component Bundle Design Resources
	Use Aura Components in Lightning Experience and the Salesforce Mobile App
	Configure Components for Custom Tabs
	Add Aura Components as Custom Tabs in a Lightning Experience App
	Lightning Component Actions
	Configure Components for Custom Actions
	Configure Components for Record-Specific Actions
	Create an Email as a Quick Action

	Override Standard Actions with Aura Components
	Standard Actions and Overrides Basics
	Override a Standard Action with an Aura Component
	Creating an Aura Component for Use as an Action Override
	Packaging Action Overrides


	Navigate Across Your Apps with Page References
	Basic Navigation
	Add Links to Lightning Pages from Your Custom Components
	Add Query Parameters
	Navigate to a Record Create Page with Default Field Values
	Navigate to a Web Page
	Migrate to lightning:isUrlAddressable from force:navigateToComponent
	pageReference Types

	Get Your Aura Components Ready to Use on Lightning Pages
	Configure Components for Lightning Pages and the Lightning App Builder
	Configure Components for Lightning Experience Record Pages
	Create Components for the Outlook and Gmail Integrations
	Sample Custom Components for Outlook and Gmail Integration

	Create Components for Forecast Pages
	Sample Custom Components for Forecasts Pages

	Create Dynamic Picklists for Your Custom Components
	Create a Custom Lightning Page Template Component
	Lightning Page Template Component Best Practices
	Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo
	Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

	Use Aura Components in Experience Builder
	Configure Components for Experience Builder
	Create Custom Theme Layout Components for Experience Builder
	Create Custom Component for Guest User Flows
	Create Custom Search and Profile Menu Components for Experience Builder
	Create Custom Content Layout Components for Experience Builder

	Use Aura Components with Flows
	Considerations for Configuring Components for Flows
	Flow Screen Components vs. Flow Action Components
	Which Custom Lightning Component Attribute Types Are Supported in Flows?
	Design Attribute Considerations for Flow Screen Components and Local Actions
	Runtime Considerations for Flows That Include Aura Components

	Customize Flow Screens Using Aura Components
	Configure Components for Flow Screens
	Control Flow Navigation from an Aura Component
	Flow Navigation Actions
	Customize the Flow Footer with an Aura Component
	Build a Custom Navigation Model for Your Flow Screens

	Customize the Flow Header with an Aura Component
	Dynamically Update a Flow Screen with an Aura Component

	Create Flow Local Actions Using Aura Components
	Configure the Component Markup and Design Resource for a Flow Action
	Configure the Client-Side Controller for a Flow Local Action
	Cancel an Asynchronous Request in a Flow Local Action

	Embed a Flow in a Custom Aura Component
	Reference Flow Output Variable Values in a Wrapper Aura Component
	Set Flow Input Variable Values from a Wrapper Aura Component
	Control a Flow’s Finish Behavior by Wrapping the Flow in a Custom Aura Component
	Resume a Flow Interview from an Aura Component

	Display Flow Stages with an Aura Component
	Display Flow Stages by Wrapping a Progress Indicator
	Display Flow Stages By Adding a Progress Indicator to a Flow Screen


	Add Components to Apps
	Integrate Your Custom Apps into the Chatter Publisher
	Using Background Utility Items
	Use Lightning Components in Visualforce Pages
	Use Aura and Lightning Web Components Outside of Salesforce with Lightning Out (Beta)
	Lightning Container
	Using a Third-Party Framework
	Sending Messages from the Lightning Container Component
	Sending Messages to the Lightning Container Component
	Handling Errors in Your Container
	Using Apex Services from Your Container

	Lightning Container Component Limits
	Lightning Container Component Security Requirements

	The Lightning Realty App
	Install the Example Lightning Realty App

	lightning:container NPM Module Reference
	addErrorHandler()
	addMessageHandler()
	callApex()
	removeErrorHandler()
	removeMessageHandler()
	sendMessage()



	Communicating with Events
	Actions and Events
	Handling Events with Client-Side Controllers
	Component Events
	Component Event Propagation
	Create Custom Component Events
	Fire Component Events
	Handling Component Events
	Component Handling Its Own Event
	Handle Component Event of Instantiated Component
	Handling Bubbled or Captured Component Events
	Handling Component Events Dynamically

	Component Event Example

	Application Events
	Application Event Propagation
	Create Custom Application Events
	Fire Application Events
	Handling Application Events
	Handling Bubbled or Captured Application Events

	Application Event Example

	Event Handler Behavior for Active Components
	Event Handling Lifecycle
	Advanced Events Example
	Firing Events from Non-Aura Code
	Events Best Practices
	Events Anti-Patterns

	Events Fired During the Rendering Lifecycle
	Events Handled in the Salesforce Mobile App and Lightning Experience
	System Events

	Communicating Across the DOM with Lightning Message Service
	Create a Message Channel
	Publish on a Message Channel
	Subscribe to a Message Channel
	Lightning Message Service Limitations

	Creating Apps
	App Overview
	Designing App UI
	Creating App Templates
	Using the AppCache
	Distributing Applications and Components
	Apex Class Considerations for Packages
	Adding Aura Components to Managed Packages
	Deleting Aura Components from Managed Packages


	Styling Apps
	Using the Salesforce Lightning Design System in Apps
	Using External CSS
	More Readable Styling Markup with the join Expression
	Tips for CSS in Components
	CSS for RTL Languages
	Vendor Prefixes
	Styling with Design Tokens
	Tokens Bundles
	Create a Tokens Bundle
	Defining and Using Tokens
	Using Expressions in Tokens
	Extending Tokens Bundles
	Using Standard Design Tokens
	Overriding Standard Tokens (Developer Preview)
	Standard Design Tokens—force:base
	Standard Design Tokens for Experience Builder Sites



	Developing Secure Code
	Lightning Locker
	JavaScript Strict Mode Enforcement
	DOM Access Containment
	How Lightning Locker Uses the Proxy Object

	Secure Wrappers
	eval() Function is Limited by Lightning Locker
	MIME Types Permitted
	Access to Supported JavaScript API Framework Methods Only
	What Does Lightning Locker Affect?
	Lightning Locker Tools
	Lightning Locker API Viewer
	Locker Console Overview
	Evaluate JavaScript Code Compatibility with Lightning Locker
	Benchmark Lightning Locker Effect on JavaScript Code


	Select the Locker API Version for an Org
	Disable Lightning Locker for a Component
	Don’t Mix Component API Versions
	Lightning Locker Disabled for Unsupported Browsers

	Lightning Web Security
	Content Security Policy Overview
	Stricter CSP Restrictions


	Using JavaScript
	Supported JavaScript
	Invoking Actions on Component Initialization
	Sharing JavaScript Code in a Component Bundle
	Sharing JavaScript Code Across Components
	Using External JavaScript Libraries
	Dynamically Creating Components
	Detecting Data Changes with Change Handlers
	Finding Components by ID
	Working with Attribute Values in JavaScript
	Working with a Component Body in JavaScript
	Working with Events in JavaScript
	Modifying the DOM
	Modifying DOM Elements Managed by the Aura Components Programming Model
	Handle the render Event
	Create a Custom Renderer

	Modifying DOM Elements Managed by External Libraries

	Checking Component Validity
	Modifying Components Outside the Framework Lifecycle
	Throwing and Handling Errors
	Calling Component Methods
	Return Result for Synchronous Code
	Return Result for Asynchronous Code

	Dynamically Adding Event Handlers To a Component
	Dynamically Showing or Hiding Markup
	Adding and Removing Styles
	Which Button Was Pressed?
	Formatting Dates in JavaScript
	Using JavaScript Promises
	Making API Calls from Components
	Control Access to Browser Features
	Manage Trusted URLs

	Working with Salesforce Data
	Lightning Data Service
	Loading a Record
	Editing a Record
	Creating a Record
	Deleting a Record
	Record Changes
	Handling Errors
	Changing the Display Density
	Considerations
	Lightning Action Examples
	SaveRecordResult
	Displaying the Create and Edit Record Modals

	Using Apex
	Creating Server-Side Logic with Controllers
	Apex Server-Side Controller Overview
	AuraEnabled Annotation
	Creating an Apex Server-Side Controller
	Using Apex to Work with Salesforce Records
	Granting User Access for Apex Classes
	Securing Data in Apex Controllers
	Calling a Server-Side Action
	Action States

	Passing Data to an Apex Controller
	Returning Data from an Apex Server-Side Controller
	Returning Errors from an Apex Server-Side Controller
	Queueing of Server-Side Actions
	Foreground and Background Actions
	Storable Actions
	Lifecycle of Storable Actions
	Enable Storable Actions in an Application
	Storage Service Adapters

	Abortable Actions

	Testing Your Apex Code
	Making API Calls from Apex
	Make Long-Running Callouts with Continuations
	Work with a Continuation in an Apex Class
	@AuraEnabled Annotations for Continuations
	Aura Component Continuations Example
	Continuation-Specific Limits

	Creating Components in Apex


	Testing Components
	Debugging
	Enable Debug Mode for Lightning Components
	Disable Caching Setting During Development
	Salesforce Lightning Inspector Chrome Extension
	Install Salesforce Lightning Inspector
	Salesforce Lightning Inspector
	Component Tree Tab
	Performance Tab
	Transactions Tab
	Event Log Tab
	Actions Tab
	Manually Override Server Responses
	Modify an Action Response
	Set an Error Response
	Drop an Action Response


	Storage Tab


	Log Messages

	Performance
	Performance Settings
	Enable Secure Browser Caching
	Enable CDN to Load Applications Faster

	Fixing Performance Warnings
	<aura:if>—Clean Unrendered Body
	<aura:iteration>—Multiple Items Set


	Reference
	Component Library
	Differences Between Documentation Sites

	System Tag Reference
	aura:application
	aura:dependency
	aura:event
	aura:interface
	aura:method
	aura:set
	Setting Attributes Inherited from a Super Component
	Setting Attributes on a Component Reference
	Setting Attributes Inherited from an Interface


	JavaScript API
	$A namespace
	createComponent()
	createComponents()
	enqueueAction()
	error()
	get()
	getCallback()
	getComponent()
	getReference()
	getRoot()
	getToken()
	log()
	reportError()
	run()
	set()
	warning()

	Action
	getError()
	getName()
	getParam()
	getParams()
	getReturnValue()
	getState()
	isBackground()
	setAbortable()
	setBackground()
	setCallback()
	setParam()
	setParams()
	setStorable()

	AuraLocalizationService
	UTCToWallTime()
	WallTimeToUTC
	displayDuration()
	displayDurationInDays()
	displayDurationInHours()
	displayDurationInMilliseconds()
	displayDurationInMinutes()
	displayDurationInMonths()
	displayDurationInSeconds()
	duration()
	endOf()
	formatCurrency()
	formatDate()
	formatDateTime()
	formatDateTimeUTC()
	formatDateUTC()
	formatNumber()
	formatPercent()
	formatTime()
	formatTimeUTC()
	getDateStringBasedOnTimezone
	getDaysInDuration()
	getDefaultCurrencyFormat()
	getDefaultNumberFormat()
	getDefaultPercentFormat()
	getHoursInDuration()
	getLocalizedDateTimeLabels()
	getMillisecondsInDuration()
	getMinutesInDuration()
	getMonthsInDuration()
	getNumberFormat()
	getSecondsInDuration()
	getToday
	getYearsInDuration()
	isAfter()
	isBefore()
	isBetween()
	isPeriodTimeView()
	isSame()
	parseDateTime()
	parseDateTimeISO8601()
	parseDateTimeUTC()
	startOf()
	toISOString()
	translateFromLocalizedDigits()
	translateFromOtherCalendar()
	translateToLocalizedDigits()
	translateToOtherCalendar()

	Component
	addEventHandler()
	addHandler()
	addValueHandler()
	addValueProvider()
	autoDestroy()
	clearReference()
	destroy()
	find()
	get()
	getConcreteComponent()
	getElement()
	getElements()
	getEvent()
	getGlobalId()
	getLocalId()
	getName()
	getReference()
	getSuper()
	getType()
	getVersion()
	isConcrete()
	isInstanceOf()
	isValid()
	removeEventHandler()
	set()

	Event
	fire()
	getEventType()
	getName()
	getParam()
	getParams()
	getPhase()
	getSource()
	getSourceEvent()
	getType()
	pause()
	preventDefault()
	resume()
	setParam()
	setParams()
	stopPropagation()

	Util
	addClass()
	getBooleanValue()
	hasClass()
	isArray()
	isEmpty()
	isObject()
	isUndefined()
	isUndefinedOrNull()
	removeClass()
	toggleClass()



	Index

