
Integration Patterns and
Practices

Version 60.0, Spring ’24

 @salesforcedocs
Last updated: January 5, 2024

https://twitter.com/salesforcedocs

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

INTRODUCTION . 1

Chapter 1: Integration Patterns Overview . 1

Purpose and Scope . 1
Pattern Template . 1
Pattern Summary . 2
Pattern Approach . 3
Pattern Selection Guide . 3
Middleware Terms and Definitions . 5

DESIGN PATTERN CATALOG . 9

Chapter 2: Remote Process Invocation—Request and Reply . 9

Chapter 3: Remote Process Invocation—Fire and Forget . 16

Chapter 4: Batch Data Synchronization . 28

Chapter 5: Remote Call-In . 35

Chapter 6: UI Update Based on Data Changes . 48

Chapter 7: Data Virtualization . 51

APPENDICES . 59

Appendix A: Resources—External . 59

Appendix B: Resources—Salesforce . 60

Appendix C: Security Considerations . 61

Appendix D: Event Driven Architecture . 63

INTRODUCTION

CHAPTER 1 Integration Patterns Overview

When you implement Salesforce, you frequently need to integrate it with other applications. Although each integration scenario is
unique, there are common requirements and issues that developers must resolve.

This document describes strategies (in the form of patterns) for these common integration scenarios. Each pattern describes the design
and approach for a particular scenario rather than a specific implementation. In this document you’ll find:

• A number of patterns that address key “archetype” integration scenarios

• A selection matrix to help you determine which pattern best fits your scenario

• Integration tips and best practices

Purpose and Scope

This document is for designers and architects who need to integrate the Lightning Platform with other applications in their enterprise.
This content is a distillation of many successful implementations by Salesforce architects and partners.

Read the pattern summary and selection matrix if you’re considering large-scale adoption of Salesforce-based applications (or the
Lightning Platform) to become familiar with the integration capabilities and options available. Architects and developers should consider
these pattern details and best practices during the design and implementation phase of a Salesforce integration project.

If implemented properly, these patterns enable you to get to production as fast as possible and have the most stable, scalable, and
maintenance-free set of applications possible. Salesforce’s own consulting architects use these patterns as reference points during
architectural reviews and are actively engaged in maintaining and improving them.

As with all patterns, this content covers most integration scenarios, but not all. While Salesforce allows for user interface (UI)
integration—mashups, for example—such integration is outside the scope of this document. If you feel that your requirements are
outside the bounds of what these patterns describe, speak with your Salesforce representative.

Pattern Template

Each integration pattern follows a consistent structure. This provides consistency in the information provided in each pattern and also
makes it easier to compare patterns.

Name
The pattern identifier that also indicates the type of integration contained in the pattern.

Context
The overall integration scenario that the pattern addresses. Context provides information about what users are trying to accomplish and
how the application will behave to support the requirements.

1

Problem
The scenario or problem (expressed as a question) that the pattern is designed to solve. When reviewing the patterns, read this section
to quickly understand if the pattern is appropriate for your integration scenario.

Forces
The constraints and circumstances that make the stated scenario difficult to solve.

Solution
The recommended way to solve the integration scenario.

Sketch
A UML sequence diagram that shows you how the solution addresses the scenario.

Results
Explains the details of how to apply the solution to your integration scenario and how it resolves the forces associated with that scenario.
This section also contains new challenges that can arise as a result of applying the pattern.

Sidebars
Additional sections related to the pattern that contain key technical issues, variations of the pattern, pattern-specific concerns, and so
on.

Example
An end-to-end scenario that describes how the design pattern is used in a real-world Salesforce scenario. The example explains the
integration goals and how to implement the pattern to achieve those goals.

Pattern Summary

The following table lists the integration patterns contained in this document.

List of Patterns

ScenarioPattern

Salesforce invokes a process on a remote system, waits for completion of that process, and then
tracks state based on the response from the remote system.

Remote Process
Invocation—Request and Reply

Salesforce invokes a process in a remote system but doesn’t wait for completion of the process.
Instead, the remote process receives and acknowledges the request and then hands off control
back to Salesforce.

Remote Process Invocation—Fire
and Forget

2

Pattern SummaryIntegration Patterns Overview

ScenarioPattern

Data stored in Lightning Platform is created or refreshed to reflect updates from an external system,
and when changes from Lightning Platform are sent to an external system. Updates in either
direction are done in a batch manner.

Batch Data Synchronization

Data stored in Lightning Platform is created, retrieved, updated, or deleted by a remote system.Remote Call-In

The Salesforce user interface must be automatically updated as a result of changes to Salesforce
data.

UI Update Based on Data Changes

Salesforce accesses external data in real time. This removes the need to persist data in Salesforce
and then reconcile the data between Salesforce and the external system.

Data Virtualization

Pattern Approach

The integration patterns in this document are classified into three categories:

• Data Integration—These patterns address the requirement to synchronize data that resides in two or more systems so that both
systems always contain timely and meaningful data. Data integration is often the simplest type of integration to implement, but
requires proper information management techniques to make the solution sustainable and cost effective. Such techniques often
include aspects of master data management (MDM), data governance, mastering, de-duplication, data flow design, and others.

• Process Integration—The patterns in this category address the need for a business process to leverage two or more applications to
complete its task. When you implement a solution for this type of integration, the triggering application has to call across process
boundaries to other applications. Usually, these patterns also include both orchestration (where one application is the central
“controller”) and choreography (where applications are multi-participants and there is no central “controller”). These types of
integrations can often require complex design, testing, and exception handling requirements. Also, such composite applications
are typically more demanding on the underlying systems because they often support long-running transactions, and the ability to
report on and/or manage process state.

• Virtual Integration—The patterns in this category address the need for a user to view, search, and modify data that’s stored in an
external system. When you implement a solution for this type of integration, the triggering application has to call out to other
applications and interact with their data in real time. This type of integration removes the need for data replication across systems,
and means that users always interact with the most current data.

Choosing the best integration strategy for your system isn’t trivial. There are many aspects to consider and many tools that can be used,
with some tools being more appropriate than others for certain tasks. Each pattern addresses specific critical areas including the capabilities
of each of the systems, volume of data, failure handling, and transactionality.

Pattern Selection Guide

The selection matrix tables list the patterns and their key aspects to help you determine which pattern best fits your integration
requirements. The patterns are categorized using these dimensions.

DescriptionAspect

Specifies the style of integration: Process, Data, or Virtual.Type

• Process—Process-based integrations are ways to integrate the processing of functional flow
across two or more applications. These integrations typically involve a higher level of abstraction
and complexity, especially for transactionality and rollback.

3

Pattern ApproachIntegration Patterns Overview

DescriptionAspect

• Data—Data integrations are the integration of the information used by applications. These
integrations can range from a simple table insert or upsert to complex data updates requiring
referential integrity and complex translations.

• Virtual—Virtual integrations are where Salesforce interacts with data that resides in an external
system without the need to replicate the data that’s within Salesforce. This type of integration
is always triggered via an event from the Salesforce platform such as a user action, workflow,
search, or record update, resulting in data integration with an external source in real time.

Specifies the blocking (or non-blocking) nature of the integration.

• Synchronous—Blocking or near-real-time requests are request/response operations. The result
is returned to the caller immediately via this operation.1

• Asynchronous—Nonblocking, queue, or message-based requests are invoked by a one-way
operation. The results and any faults are returned by invoking other one-way operations.2 The
caller therefore makes the request and continues without waiting for a response.

Timing

Note: An integration can require an external middleware or integration solution (for example, Enterprise Service Bus) depending
on which aspects apply to your integration scenario.

Integrating Salesforce with Another System
This table lists the patterns and their key aspects to help you determine which pattern best fits your requirements when your integration
scenario goes from Salesforce to another system.

Key Pattern to ConsiderTimingType

Remote Process Invocation—Request and
Reply

SynchronousProcess Integration

Remote Process Invocation—Fire and
Forget

AsynchronousProcess Integration

Remote Process Invocation—Request and
Reply

SynchronousData Integration

UI Update Based on Data ChangesAsynchronousData Integration

Data VirtualizationSynchronousVirtual Integration

Integrating Another System with Salesforce
This table lists the patterns and their key aspects to help you determine the pattern that best fits your requirements when your integration
scenario goes from another system to Salesforce.

1 “Synchronous vs. Asynchronous Communication in Applications Integration,” MuleSoft, last accessed October 13, 2021,
https://www.mulesoft.com/resources/esb/applications-integration.

2 Ibid.

4

Pattern Selection GuideIntegration Patterns Overview

https://www.mulesoft.com/resources/esb/applications-integration

Key Pattern to ConsiderTimingType

Remote Call-InSynchronousProcess Integration

Remote Call-InAsynchronousProcess Integration

Remote Call-InSynchronousData Integration

Batch Data SynchronizationAsynchronousData Integration

Middleware Terms and Definitions

This table lists some key terms related to middleware and their definitions with regards to these patterns.

DefinitionTerm

Event handling is the receipt of an identifiable occurrence at a designated receiver (“handler”). The
key processes involved in event handling include:

Event handling

• Identifying where to forward an event

• Executing that forwarding action

• Receiving a forwarded event

• Taking some kind of appropriate action in response, such as writing to a log, sending an error
or recovery process, or sending an extra message

Keep in mind that the event handler can ultimately forward the event to an event consumer.

Common uses of this feature with middleware can be extended to include the popular
“publish/subscribe” or “pub/sub” capability. In a publish/subscribe scenario, the middleware routes
requests or messages to active data-event subscribers from active data-event publishers. These
consumers with active listeners can then retrieve the events as they’re published.

In Salesforce integrations using middleware, the middleware layer assumes control of event handling.
It collects all relevant events, synchronous or asynchronous, and manages distribution to all
endpoints, including Salesforce.

Alternatively, this capability can be achieved with the Salesforce enterprise messaging platform by
using the event bus with platform events.

See http://searchsoa.techtarget.com/definition/event-handler.

5

Middleware Terms and DefinitionsIntegration Patterns Overview

http://searchsoa.techtarget.com/definition/event-handler

DefinitionTerm

Protocol conversion “is typically a software application that converts the standard or proprietary
protocol of one device to the protocol suitable for another device to achieve interoperability.

In the context of middleware, connectivity to a particular target system may be constrained by
protocol. In such cases, the message format needs to be converted to or encapsulated within the
format of the target system, where the payload can be extracted. This is also known as tunneling.
” 3

Salesforce doesn’t support native protocol conversion, so it’s assumed that any such requirements
are met by the middleware layer or the endpoint.

See https://www.techopedia.com/definition/30653/protocol-conversion.

Protocol conversion

Transformation is the ability to map one data format to another to ensure interoperability between
the various systems being integrated. Typically, the process entails reformatting messages en route

Translation and transformation

to match the requirements of the sender or recipient. In more complex cases, one application can
send a message in its own native format, and two or more other applications can each receive a
copy of the message in their own native format.

Middleware translation and transformation tools often include the ability to create service facades
for legacy or other non-standard endpoints. These service facades allows those endpoints to appear
to be service-addressable.

With Salesforce integrations, it’s assumed that any such requirements are met by the middleware
layer or the endpoint. Transformation of data can be coded in Apex, but we don’t recommend it
due to maintenance and performance considerations.

See http://en.wikipedia.org/wiki/Message-oriented_middleware.

Queuing and buffering generally rely on asynchronous message passing, as opposed to a
request-response architecture. In asynchronous systems, message queues provide temporary

Queuing and buffering

storage when the destination program is busy or connectivity is compromised. In addition, most
asynchronous middleware systems provide persistent storage to back up the message queue.

The key benefit of an asynchronous message process is that if the receiver application fails for any
reason, the senders can continue unaffected. The sent messages simply accumulate in the message
queue for later processing when the receiver restarts.

Salesforce provides only explicit queuing capability in the form of workflow-based outbound
messaging. To provide true message queueing for other integration scenarios, including
orchestration, process choreography, and quality of service, a middleware solution is required.

See http://en.wikipedia.org/wiki/Message-oriented_middleware.

Synchronous transport protocols refer to protocols that support activities wherein a “single thread
in the caller sends the request message, blocks to wait for the reply message, and then processes
the reply....The request thread awaiting the response implies that there is only one outstanding
request or that the reply channel for this request is private for this thread.”4

Synchronous transport protocols

3 Gregor Hohpe, and Bobby Woolf, Enterprise Integration Patterns (Boston: Addison-Wesley Professional, 2003).
4 Gregor Hohpe, and Bobby Woolf, Enterprise Integration Patterns (Boston: Addison-Wesley Professional, 2003).

6

Middleware Terms and DefinitionsIntegration Patterns Overview

https://www.techopedia.com/definition/30653/protocol-conversion
http://en.wikipedia.org/wiki/Message-oriented_middleware
http://en.wikipedia.org/wiki/Message-oriented_middleware

DefinitionTerm

Asynchronous transport protocols refer to protocols supporting activities wherein “one thread in
the caller sends the request message and sets up a callback for the reply. A separate thread listens
for reply messages. When a reply message arrives, the reply thread invokes the appropriate callback,
which reestablishes the caller’s context and processes the reply. This approach enables multiple
outstanding requests to share a single reply thread.”5

Asynchronous transport protocols

Mediation routing is the specification of a complex “flow” of messages from component to
component. For example, many middleware-based solutions depend on a message queue system.
While some implementations permit routing logic to be provided by the messaging layer itself,
others depend on client applications to provide routing information or allow for a mix of both
paradigms. In such complex cases, mediation on the part of middleware simplifies development,
integration, and validation.

“Specifically, Mediators coordinate a group of objects so that they [do not] need to know how to
coordinate with each other….Then, each consumer could focus on processing a particular kind of
message, and the coordinator [Mediator] could make sure that the right message gets to the right
consumer.”6

Mediation routing

Process choreography and service orchestration are each forms of “service composition” where
any number of endpoints and capabilities are being coordinated.

The difference between choreography and service orchestration is:

• Choreography can be defined as an “asynchronous approach that enables processes to work
autonomously, removing any issues caused by dependencies,”7 which is behavior resulting
from a group of interacting individual entities with no central authority.

• Orchestration can be defined as a “synchronous approach that enables the execution of a query
or process by allowing each microservice to implement tasks assigned by the orchestrator,”8

which is behavior resulting from a central conductor coordinating the behaviors of individual
entities performing tasks independent of each other.

In addition, “an orchestration shows the complete behavior of each service whereas the
choreography combines the interface behavior descriptions of each service.”9

Portions of business process choreographies can be built in Salesforce workflows or using Apex.
We recommend that all complex orchestrations be implemented in the middleware layer because
of Salesforce timeout values and governor limits, especially in solutions requiring true transaction
handling.

Process choreography and service
orchestration

Transactionality can be defined as the ability to support global transactions that encompass all
necessary operations against each required resource. Transactionality implies the support of all

Transactionality (encryption,
signing, reliable delivery,
transaction management) four ACID properties, atomicity, consistency, isolation, durabilit, where atomicity guarantees

all-or-nothing outcomes for the unit of work (transaction).

5 Ibid.
6 Ibid.
7 “Microservice orchestration or choreography?” architect.io, last accessed Sep 20, 2023,

https://www.architect.io/blog/2022-06-30/microservices-orchestration-primer/.
8 Ibid.
9 “Orchestration vs. Choreography,” Stack Overflow, last accessed Sep 27, 2023,

http://stackoverflow.com/questions/4127241/orchestration-vs-choreography.

7

Middleware Terms and DefinitionsIntegration Patterns Overview

https://www.architect.io/blog/2022-06-30/microservices-orchestration-primer/
http://stackoverflow.com/questions/4127241/orchestration-vs-choreography

DefinitionTerm

While Salesforce is transactional within itself, it’s not able to participate in distributed transactions
or transactions initiated outside of Salesforce. Therefore, it’s assumed that for solutions requiring
complex, multi-system transactions, transactionality and associated roll-back/compensation
mechanisms are implemented at the middleware layer.

See http://en.wikipedia.org/wiki/Distributed_transaction.

Routing can be defined as specifying the complex flow of messages from component to component.
In modern services-based solutions, such message flows can be based on a number of criteria,
including header, content type, rule, and priority.

With Salesforce integrations, it’s assumed that any such requirements are met by the middleware
layer or the endpoint. Message routing can be coded in Apex, but we don’t recommend it due to
maintenance and performance considerations.

Routing

Extract, transform, and load (ETL) refers to a process that involves:Extract, transform, and load

• Extracting data from the source systems. This process typically involves data from several source
systems, and both relational and non-relational structures.

• Transforming the data to fit operational needs, which can include data quality levels. The
transform stage usually applies a series of rules or functions to the extracted data from the
source to derive the data for loading into the end target(s).

• Loading the data into the target system. The target system can vary widely from database,
operational data store, data mart, data warehouse, or other operational systems.

While not strictly necessary, most mature ETL tools provide a change data capture capability. This
capability is where the tool identifies records in the source system that have changed since the
last extract, which reduces the amount of record processing.

Salesforce now also supports Change Data Capture, which is the publishing of change events that
represent changes to Salesforce records. With Change Data Capture, the client or external system
receives near-real-time changes of Salesforce records. With this information, the client or external
system can synchronize corresponding records in an external data store.

See http://en.wikipedia.org/wiki/Extract,_transform,_load and Change Data Capture Developer Guide.

Long polling, also called Comet programming, emulates an information push from a server to a
client. Similar to a normal poll, the client connects and requests information from the server.

Long polling

However, instead of sending an empty response if information isn’t available, the server holds the
request and waits until information is available (an event occurs). The server then sends a complete
response to the client. The client then immediately re-requests information. The client continually
maintains a connection to the server, so it’s always waiting to receive a response. If the server times
out, the client connects again and starts over.

The Salesforce Streaming API uses the Bayeux protocol and CometD for long polling.

• Bayeux is a protocol for transporting asynchronous messages, primarily over HTTP.

• CometD is a scalable HTTP-based event routing bus that uses an AJAX push technology pattern
known as Comet. It implements the Bayeux protocol.

8

Middleware Terms and DefinitionsIntegration Patterns Overview

http://en.wikipedia.org/wiki/Distributed_transaction
http://en.wikipedia.org/wiki/Extract,_transform,_load
https://developer.salesforce.com/docs/atlas.en-us.248.0.change_data_capture.meta/change_data_capture/cdc_intro.htm

DESIGN PATTERN CATALOG

CHAPTER 2 Remote Process Invocation—Request and Reply

Context

You use Salesforce to track leads, manage your pipeline, create opportunities, and capture order details that convert leads to customers.
But, the Salesforce system doesn’t contain or process orders. After the order details are captured in Salesforce, the order is created in the
remote system, which manages the order to conclusion.

When you implement this pattern, Salesforce calls the remote system to create the order and then waits for successful completion. If
successful, the remote system synchronously replies with the order status and order number. As part of the same transaction, Salesforce
updates the order number and status internally. The order number is used as a foreign key for subsequent updates to the remote system.

Problem

When an event occurs in Salesforce, how do you initiate a process in a remote system, pass the required information to that process,
receive a response from the remote system, and then use that response data to make updates within Salesforce?

Forces

Consider the following forces when applying solutions based on this pattern.

• Does the call to the remote system require Salesforce to wait for a response before continuing processing? Is the call to the remote
system a synchronous request-reply or an asynchronous request?

• If the call to the remote system is synchronous, does Salesforce have to process the response as part of the same transaction as the
initial call?

• Is the message size small or large?

• Is the integration based on the occurrence of a specific event, such as a button click in the Salesforce user interface, or DML-based
events?

• Is the remote endpoint able to respond to the request with low latency? How many users are likely to be executing this transaction
during a peak period?

Solution

This table contains solutions to this integration problem.

9

CommentsFitSolution

Enhanced External Services allows you to invoke an externally
hosted service in a declarative manner (no code required). This
feature is best used when the following conditions are met:

BestEnhanced External Services invokes a REST API
call

• The externally hosted service is a RESTful service and the
definitions are available in an OpenAPI 2.0 JSON schema
format.

• The request and response definitions contain primitive
data types such as boolean, datetime, double, integer,
string, or an array of primitive data types. Nested object
types, and send parameters such as headers within the
HTTP requests are supported.

• The transaction can be invoked from a flow.

Salesforce enables you to consume a WSDL and generate a
resulting proxy Apex class. This class provides the necessary
logic to call the remote service.

Salesforce also enables you to invoke HTTP (REST) services
using standard GET, POST, PUT, and DELETE methods.

BestSalesforce Lightning—Lightning component
or page initiates a synchronous Apex SOAP or
REST callout.

Salesforce Classic—A custom Visualforce page
or button initiates a synchronous Apex SOAP
callout. A user-initiated action on a Visualforce page or Lightning page

then calls an Apex controller action that then executes thisIf the remote endpoint poses a risk of high
latency response (refer to latest limits proxy Apex class to perform the remote call. Visualforce pages

and Lightning pages require customization of the Salesforce
application.

documentation for the applicable limits here),
then an asynchronous callout, also called a
continuation, is recommended to avoid hitting
synchronous Apex transaction governor limits.

Salesforce enables you to invoke HTTP services using standard
GET, POST, PUT, and DELETE methods. You can use several

BestA custom Visualforce page or button initiates
a synchronous Apex HTTP callout.

HTTP classes to integrate with RESTful services. It’s also possible
to integrate to SOAP-based services by manually constructing
the SOAP message. The latter isn’t recommended because it’s
possible for Salesforce to consume WSDLs to generate proxy
classes.

A user-initiated action on a Visualforce page then calls an Apex
controller action that then executes this proxy Apex class to
perform the remote call. Visualforce pages require
customization of the Salesforce application.

You can use Apex triggers to perform automation based on
record data changes.

An Apex proxy class can be executed as the result of a DML
operation by using an Apex trigger. However, all calls made

SuboptimalA synchronous trigger that’s invoked from
Salesforce data changes performs an
asynchronous Apex SOAP or HTTP callout.

from within the trigger context must execute asynchronously
from the initiating event. Therefore, this solution isn’t
recommended for this integration problem. This solution is

10

Remote Process Invocation—Request and Reply

CommentsFitSolution

better suited for the Remote Process Invocation—Fire and
Forget pattern.

You can make calls to a remote system from a batch job. This
solution allows batch remote process execution and processing

SuboptimalA batch Apex job performs a synchronous Apex
SOAP or HTTP callout.

of the response from the remote system in Salesforce. However,
a given batch has limits to the number of calls. For more
information, see Governor Limits.

A given batch run can execute multiple transaction contexts
(usually in intervals of 200 records). The governor limits are
reset per transaction context.

Sketch

This diagram illustrates a synchronous remote process invocation using Apex calls.

Salesforce Calling Out to a Remote System

In this scenario:

1. An action is initiated on the Visualforce or Lightning page (for example, a button click).

2. The browser (via a client-side controller in the case of a Lightning component) performs an HTTP POST that in turn performs an
action on the corresponding Apex controller.

11

Remote Process Invocation—Request and Reply

3. The controller invokes the actual call to the remote web service.

4. The response from the remote system is returned to the Apex controller. The controller processes the response, updates data in
Salesforce as required, and re-renders the page.

In cases where the subsequent state must be tracked, the remote system returns a unique identifier that’s stored in the Salesforce record.

Results

The application of the solutions related to this pattern allows for event-initiated remote process invocations in which Salesforce handles
the processing.

Calling Mechanisms

The calling mechanism depends on the solution chosen to implement this pattern.

DescriptionCalling Mechanism

Used when the remote process is triggered as part of an end-to-end process involving the user
interface, and the result must be displayed or updated in a Salesforce record. For example, the

Enhanced External service
embedded in a flow or

submission of a credit card payment to an external payment gateway and the payment results are
immediately returned and displayed to the user.Lightning component or

Visualforce and Apex controllers

Used primarily for invocation of remote processes using Apex callouts from DML-initiated events.
For more information about this calling mechanism, see pattern Remote Process Invocation—Fire
and Forget.

Apex triggers

Used for invocation of remote processes in batch. For more information about this calling
mechanism, see pattern Remote Process Invocation—Fire and Forget.

Apex batch classes

Error Handling and Recovery

It’s important to include an error handling and recovery strategy as part of the overall solution.

• Error handling—When an error occurs (exceptions or error codes are returned to the caller), the caller manages error handling. For
example, an error message displayed on the end user’s page or logged to a table requiring further action.

• Recovery—Changes aren’t committed to Salesforce until the caller receives a successful response. For example, the order status
isn’t updated in the database until a response that indicates success is received. If necessary, the caller can retry the operation.

Idempotent Design Considerations

Idempotent capabilities guarantee that repeated invocations are safe. If idempotency isn’t implemented, repeated invocations of the
same message can have different results, potentially resulting in data integrity issues. Potential issues include the creation of duplicate
records or duplicate processing of transactions.

It’s important to ensure that the remote procedure being called is idempotent. It’s almost impossible to guarantee that Salesforce only
calls one time, especially if the call is triggered from a user interface event. Even if Salesforce makes a single call, there’s no guarantee
that other processes (for example, middleware) do the same.

The most typical method of building an idempotent receiver is for it to track duplicates based on unique message identifiers sent by the
consumer. Apex web service or REST calls must be customized to send a unique message ID.

In addition, operations that create records in the remote system must check for duplicates before inserting. Check by passing a unique
record ID from Salesforce. If the record exists in the remote system, update the record. In most systems, this operation is termed as an
upsert operation.

12

Remote Process Invocation—Request and Reply

Security Considerations

Any call to a remote system must maintain the confidentiality, integrity, and availability of the request. The following security considerations
are specific to using Apex SOAP and HTTP calls in this pattern.

• One-way SSL is enabled by default, but two-way SSL is supported with both self-signed and CA-signed certificates to maintain
authenticity of both the client and server.

• Salesforce currently doesn’t support WS-Security.

• Where necessary, consider using one-way hashes or digital signatures using the Apex Crypto class methods to ensure request
integrity.

• The remote system must be protected by implementing the appropriate firewall mechanisms.

See Security Considerations.

Sidebars

Timeliness

Timeliness is of significant importance in this pattern. Usually:

• The request is typically invoked from the user interface, so the process must not keep the user waiting.

• Salesforce has a configurable timeout of up to 120 seconds for calls from Apex.

• Completion of the remote process is executed in a timely manner to conclude within the Salesforce timeout limit and within user
expectations.

• External calls are subject to Apex synchronous transaction governor limits, so make sure to mitigate the risk of instantiating more
than 10 transactions that run for more than five seconds each. In addition to ensuring the external endpoint is performant, options
to mitigate the risk of a timeout include:

– Setting the timeout of the external callout to five seconds

– Using a continuation in Visualforce or Lightning Components to handle long-running transactions

Data Volumes

This pattern is used primarily for small volume, real-time activities, due to the small timeout values and maximum size of the request or
response for the Apex call solution. Don’t use this pattern in batch processing activities in which the data payload is contained in the
message.

Endpoint Capability and Standards Support

The capability and standards support for the endpoint depends on the solution that you choose.

Endpoint ConsiderationsSolution

The endpoint must be able to receive a web service call via HTTP. Salesforce must be able to access
the endpoint over the public Internet.

Apex SOAP callouts

This solution requires that the remote system is compatible with the standards supported by
Salesforce. At the time of writing, the web service standards supported by Salesforce for Apex SOAP
callouts are:

• WSDL 1.1

• SOAP 1.1

• WSI-Basic Profile 1.1

13

Remote Process Invocation—Request and Reply

Endpoint ConsiderationsSolution

• HTTP

The endpoint must be able to receive HTTP calls. Salesforce must be able to access the endpoint
over the public Internet.

You can use Apex HTTP callouts to call REST services using the standard GET, POST, PUT, and DELETE
methods.

Apex HTTP callouts

State Management

When integrating systems, keys are important for ongoing state tracking. There are two options.

• Salesforce stores the remote system’s primary or unique surrogate key for the remote record.

• The remote system stores the Salesforce unique record ID or some other unique surrogate key.

There are specific considerations for handling integration keys, depending on which system contains the master record, as shown in the
following table.

DescriptionMaster System

The remote system stores either the Salesforce RecordId or some other unique surrogate key from
the record.

Salesforce

The call to the remote process returns the unique key from the application, and Salesforce stores
that key value in a unique record field.

Remote system

Complex Integration Scenarios

In certain cases, the solution prescribed by this pattern can require the implementation of several complex integration scenarios. This is
best served by using middleware or having Salesforce call a composite service. These scenarios include:

• Orchestration of business processes and rules involving complex flow logic

• Aggregation of calls and their results across calls to multiple systems

• Transformation of both inbound and outbound messages

• Maintaining transactional integrity across calls to multiple systems

Governor Limits

For information about Apex limits, see Execution Governors and Limits in the Apex Developer Guide.

Middleware Capabilities

The following table highlights the desirable properties of a middleware system that participates in this pattern.

Not RequiredDesirableMandatoryProperty

XEvent handling

XProtocol conversion

XTranslation and transformation

XQueuing and buffering

14

Remote Process Invocation—Request and Reply

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_gov_limits.htm

Not RequiredDesirableMandatoryProperty

XSynchronous transport protocols

XAsynchronous transport protocols

XMediation routing

XProcess choreography and service orchestration

XTransactionality (encryption, signing, reliable
delivery, transaction management)

XRouting

XExtract, transform, and load

XLong polling

Example

A utility company uses Salesforce and has a separate system that contains customer billing information. They want to display the billing
history for a customer account without storing that data in Salesforce. They have an existing web service that returns a list of bills and
the details for a given account, but can’t display this data in a browser.

This requirement can be accomplished with the following approach.

1. Salesforce consumes the billing history service WSDL from an Apex proxy class.

2. Execute the Apex proxy class with the account number as the unique identifier by creating a Lightning component and a custom
controller or a Visualforce page and custom controller.

3. The custom controller then parses the return values from the Apex callout and the Lightning component or Visualforce page, and
then renders the customer billing data to the user.

This example demonstrates that:

• The state of the customer is tracked with an account number stored on the Salesforce account object

• Subsequent processing of the reply message by the caller

15

Remote Process Invocation—Request and Reply

CHAPTER 3 Remote Process Invocation—Fire and Forget

Context

You use Salesforce to track leads, manage your pipeline, create opportunities, and capture order details that convert leads to customers.
However, Salesforce isn’t the system that holds or processes orders. After the order details are captured in Salesforce, an order must be
created in the remote system, which manages the order through to its conclusion.

When you implement this pattern, Salesforce calls the remote system to create the order, but doesn’t wait for the call’s successful
completion. The remote system can optionally update Salesforce with the new order number and status in a separate transaction.

Problem

When an event occurs in Salesforce, how do you initiate a process in a remote system and pass the required information to that process
without waiting for a response from the remote system?

Forces

Consider the following forces when applying solutions based on this pattern.

• Does the call to the remote system require Salesforce to wait for a response before continuing processing? Is the call to the remote
system synchronous or asynchronous?

• If the call to the remote system is synchronous, does the response need to be processed by Salesforce as part of the same transaction
as the call?

• Is the message size small?

• Is the integration based on the occurrence of a specific event, such as a button click in the Salesforce user interface, or DML-based
events?

• Is guaranteed message delivery from Salesforce to the remote system a requirement?

• Is the remote system able to participate in a contract-first integration in which Salesforce specifies the contract? In some solution
variants (for example, outbound messaging), Salesforce specifies a contract that the remote system endpoint implements.

• Does the endpoint or the Enterprise Service Bus (ESB) support long polling?

• Are declarative configuration methods preferred over custom Apex development? In this case, solutions such as platform events
are preferred over Apex callouts.

Solution

The following table contains solutions to this integration problem.

16

CommentsFitSolution

No customization is required in Salesforce to implement
platform events. The recommended solution is when the
remote process is invoked from an insert or update event.

Platform events are event messages (or notifications) that your
apps send and receive to take further action. Platform events

BestProcess-driven platform events

simplify the process of communicating changes and
responding to them without writing complex logic. One or
more subscribers can listen to the same event and carry out
actions.

For example, a software system can send events containing
information about printer ink cartridges. Subscribers can
subscribe to the events to monitor printer ink levels and place
orders to replace cartridges with low ink levels.

External apps can listen to event messages by subscribing to
a channel through CometD. Platform apps, such as Visualforce
pages and Lightning components, can subscribe to event
messages with CometD as well.

Similar to process-driven platform events, but the events are
created by Apex triggers or classes. You can publish and
consume platform events by using Apex or an API.

Platform events integrate with the Salesforce platform through
Apex triggers. Triggers are the event consumers on the
Salesforce platform that listen to event messages.

GoodCustomization-driven platform events

When an external app uses the API or a native Salesforce app
uses Apex to publish the event message, a trigger on that event
is fired. Triggers run the actions in response to the event
notifications.

No customization is required in Salesforce to implement
outbound messaging. The recommended solution for this type

GoodWorkflow-driven outbound messaging

of integration is when the remote process is invoked from an
insert or update event. Salesforce provides a workflow-driven
outbound messaging capability that allows sending SOAP
messages to remote systems triggered by an insert or update
operation in Salesforce. These messages are sent
asynchronously and are independent of the Salesforce user
interface.

The outbound message is sent to a specific remote endpoint.
The remote service must be able to participate in a contract-first
integration where Salesforce provides the contract.

On receipt of the message, if the remote service doesn’t
respond with a positive acknowledgment, Salesforce retries
sending the message, providing a form of guaranteed delivery.

17

Remote Process Invocation—Fire and Forget

CommentsFitSolution

When using middleware, this solution becomes a “first-mile”
guarantee of delivery.

Callbacks provide a way to mitigate the impacts of
out-of-sequence messaging. In addition, they handle these
scenarios.

GoodOutbound messaging and callbacks

• Idempotency— If an acknowledgment isn’t received in a
timely fashion, outbound messaging performs retries.
Multiple messages can be sent to the target system. Using
a callback ensures that the data retrieved is at a specific
point in time rather than when the message was sent.

• Retrieving more data—A single outbound message can
send data only for a single object. A callback can be used
to retrieve data from other related records, such as related
lists associated with the parent object.

The outbound message provides a unique SessionId that you
can use as an authentication token to authenticate and
authorize a callback with either the SOAP API or the REST API.
The system performing the callback isn’t required to separately
authenticate to Salesforce. The standard methods of either API
can then be used to perform the desired business functions.

A typical use of this variant is the scenario in which Salesforce
sends an outbound message to a remote system to create a
record. The callback updates the original Salesforce record with
the unique key of the record created in the remote system.

This solution is typically used in user interface-based scenarios,
but does require customization. In addition, the solution must
handle guaranteed delivery of the message in the code.

Similar to the solution for the Remote Process
Invocation—Request and Reply pattern solution that specifies

SuboptimalCustom Lightning component or Visualforce
page that initiates an Apex SOAP or HTTP
asynchronous callout

using a Visualforce page or Lightning component, together
with an Apex callout. The difference is that in this pattern,
Salesforce doesn’t wait for the request to complete before
handing off control to the user.

After receiving the message, the remote system responds and
indicates receipt of the message, then asynchronously
processes the message. The remote system hands control back
to Salesforce before it begins to process the message; therefore,
Salesforce doesn’t have to wait for processing to complete.

You can use Apex triggers to perform automation based on
record data changes.

An Apex proxy class can be executed as the result of a DML
operation by using an Apex trigger. However, all calls made

SuboptimalTrigger that’s invoked from Salesforce data
changes performs an Apex SOAP or HTTP
asynchronous callout

18

Remote Process Invocation—Fire and Forget

CommentsFitSolution

from within the trigger context must be executed
asynchronously.

Calls to a remote system can be performed from a batch job.
This solution allows for batch remote process execution and

SuboptimalBatch Apex job that performs an Apex SOAP
or HTTP asynchronous callout

for processing of the response from the remote system in
Salesforce. However, there are limits to the number of calls for
a given batch context. For more information, see the Salesforce
Developer Limits and Allocations Quick Reference.

Sketch

The following diagram illustrates a call from Salesforce to a remote system in which create or update operations on a record trigger the
call.

In this scenario:

1. A remote system subscribes to the platform event.

2. A update or insert occurs on a given set of records in Salesforce.

3. A Salesforce Process triggers when a set of conditions is met.

19

Remote Process Invocation—Fire and Forget

https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm

4. This process creates a platform event.

5. The remote listener receives the event message, and places the message on a local queue.

6. The queuing application forwards the message to the remote application for processing.

In the case where the remote system must perform operations against Salesforce, you can implement an optional callback operation.

Results

The application of the solutions related to this pattern allows for:

• User interface–initiated remote process invocations in which the result of the transaction can be displayed to the end user

• DML event-initiated remote process invocations in which the result of the transaction can be processed by the calling process

Calling Mechanisms

The calling mechanism depends on the solution chosen to implement this pattern.

DescriptionCalling Mechanism

Used by both the process-driven and customization-driven solutions. Events trigger the Salesforce
process, which can then publish a platform event for subscription by a remote system.

Process Builder

Used to invoke a remote process asynchronously using an Apex callout.Lightning component or
Visualforce and Apex controllers

Used only for the outbound messaging solution. Create and update DML events trigger the
Salesforce workflow rules, which can then send a message to a remote system.

Workflow rules

Used for trigger-driven platform events and invocation of remote processes, using Apex callouts
from DML-initiated events.

Apex triggers

Used for invocation of remote processes in batch mode.Apex batch classes

Error Handling and Recovery

An error handling and recovery strategy must be considered as part of the overall solution. The best method depends on the solution
you choose.

Error Handling and Recovery StrategySolution

Apex callouts • Error handling—The remote system hands off invocation of the end process, so the callout
only handles exceptions in the initial invocation of the remote service. For example, a timeout
event is triggered if no positive acknowledgment is received from the remote callout. The
remote system must handle subsequent errors when the initial invocation is handed off for
asynchronous processing.

• Recovery—Recovery is more complex in this scenario. A custom retry mechanism must be
created if quality-of-service requirements dictate it.

Outbound messaging • Error handling—Because this pattern is asynchronous, the remote system handles error handling.
For outbound messaging, Salesforce initiates a retry operation if no positive acknowledgment
is received within the timeout period, for up to 24 hours.

20

Remote Process Invocation—Fire and Forget

Error Handling and Recovery StrategySolution

Error handling must be performed in the remote service because the message is effectively
handed off to the remote system in a “fire-and-forget” manner.

• Recovery—Because this pattern is asynchronous, the system must initiate retries based on the
service’s quality-of-service requirements. For outbound messaging, Salesforce initiates retries
if no positive acknowledgment is received from the outbound listener within the timeout
period, up to 24 hours. The retry interval increases exponentially over time, starting with
15-second intervals and ending with 60-minute intervals. The timeout period can be extended
to seven days by request to Salesforce support, but automatic retries are limited to 24 hours.
All failed messages after 24 hours are placed in a queue and administrators must monitor this
queue for any messages exceeding the 24-hour delivery period and retry manually, if necessary.

Platform Events • Error handling—Error handling must be performed by the remote service because the event
is effectively handed off to the remote system for further processing. Because this pattern is
asynchronous, the remote system handles message queuing, processing, and error handling.
Additionally, platform events aren’t processed within database transactions. As a result, published
platform events can’t be rolled back within a transaction.

• Recovery—Because this pattern is asynchronous, the remote system must initiate retries based
on the service’s quality-of-service requirements. The replay ID associated with each event is
atomic and increases with every published event. This ID can be used replay the stream from
a specific event (for example, based upon the last successfully captured event). High-volume
platform event messages are stored for 72 hours (three days). You can retrieve past event
messages when using CometD clients to subscribe to a channel.

Idempotent Design Considerations

Platform events are only published to the bus once. There is no retry on the Salesforce side. It is up to the ESB to request that the events
be replayed. In a replay, the platform event’s replay ID remains the same and the ESB can try duplicate messages based on the replay
ID.

Idempotency is important for outbound messaging because it’s asynchronous and retries are initiated when no positive acknowledgment
is received. Therefore, the remote service must be able to handle messages from Salesforce in an idempotent fashion.

Outbound messaging sends a unique ID per message and this ID remains the same for any retries. The remote system can track duplicate
messages based on this unique ID. The unique record ID for each record being updated is also sent, and can be used to prevent duplicate
record creation.

The idempotent design considerations in the Remote Process Invocation—Request and Reply pattern also apply to this pattern.

Security Considerations

Any call to a remote system must maintain the confidentiality, integrity, and availability of the request. Different security considerations
apply, depending on the solution you choose.

Security ConsiderationsSolution

A call to a remote system must maintain the confidentiality, integrity, and availability of the request.
The following are security considerations specific to using Apex SOAP and HTTP calls in this pattern.

Apex callouts

• One-way SSL is enabled by default, but two-way SSL is supported with both self-signed and
CA-signed certificates to maintain authenticity of both the client and server.

21

Remote Process Invocation—Fire and Forget

Security ConsiderationsSolution

• Salesforce does not support WS-Security when generating the Apex proxy class.

• Where necessary, consider using one-way hashes or digital signatures using the Apex Crypto
class methods to ensure the integrity of the request.

• The remote system must be protected by implementing the appropriate firewall mechanisms.

For outbound messaging, one-way SSL is enabled by default. However, two-way SSL can be used
together with the Salesforce outbound messaging certificate.

The following are some additional security considerations.

Outbound Messaging

• Whitelist Salesforce server IP ranges for remote integration servers.

• Protect the remote system by implementing the appropriate firewall mechanisms.

For platform events the subscribing external system must be able to authenticate to the Salesforce
Streaming API.

Platform events conform to the existing security model configured in the Salesforce org. To subscribe
to an event, the user needs read access to the event entity. To publish an event, the user needs
create permission on the event entity.

Platform Events

See Security Considerations.

Sidebars

Timeliness

Timeliness is less of a factor with the fire-and-forget pattern. Control is handed back to the client either immediately or after positive
acknowledgment of a successful hand-off to the remote system. With Salesforce outbound messaging, the acknowledgment must occur
within 24 hours (this can be extended to seven days); otherwise, the message expires. For platform events, Salesforce sends the events
to the event bus and doesn’t wait for a confirmation or acknowledgment from the subscriber. If the subscriber doesn’t pick up the
message, the subscriber can request to replay the event using the event reply ID. High-volume event messages are stored for 72 hours
(three days). To retrieve past event messages, use CometD clients to subscribe to a channel.

Data Volumes

Data volume considerations depend on which solution you choose. For the limits of each solution, see the Salesforce Limits Quick Reference
Guide.

Endpoint Capability and Standards Support

The capability and standards support for the endpoint depends on the solution that you choose.

22

Remote Process Invocation—Fire and Forget

https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm

Endpoint ConsiderationsSolution

The endpoint must be able to process a web service call via HTTP. Salesforce must be able to access
the endpoint over the public Internet.

This solution requires that the remote system is compatible with the standards supported by
Salesforce. At the time of writing, the web service standards supported by Salesforce for Apex SOAP
callouts are:

Apex SOAP callouts

• WSDL 1.1

• SOAP 1.1

• WSI-Basic Profile 1.1

• HTTP

The endpoint must be able to receive HTTP calls and be accessible over the public internet by
Salesforce.

Apex HTTP callouts can be used to call RESTful services using the standard GET, POST, PUT, and
DELETE methods.

Apex HTTP callouts

Outbound message • The endpoint must be able to implement a listener that can receive SOAP messages in
predefined format sent from Salesforce.

• The remote listener must participate in a contract-first implementation, where the contract is
supplied by Salesforce.

• Each outbound message has its own predefined WSDL.

Platform Events • Triggers, processes and flows can subscribe to events. You can receive event notifications
regardless of how they were published.

• Use CometD to subscribe to platform events from an external client. Implement your own
CometD client or use EMP Connector, an open-source, community-supported tool that
implements all the details of connecting to CometD and listening on a channel. Salesforce
sends platform events to CometD clients sequentially in the order they’re received. The order
of event notifications is based on the replay ID of events.

State Management

When integrating systems, unique record identifiers are important for ongoing state tracking. For example, if a record is created in the
remote system, you have two options.

• Salesforce stores the remote system’s primary or unique surrogate key for the remote record.

• The remote system stores the Salesforce unique record ID or some other unique surrogate key.

The following table lists considerations for state management in this pattern.

DescriptionMaster System

The remote system must store either the Salesforce RecordId or some other unique surrogate key
in the Salesforce record.

Salesforce

23

Remote Process Invocation—Fire and Forget

DescriptionMaster System

Salesforce must store a reference to the unique identifier in the remote system. Because the process
is asynchronous, storing this unique identifier can’t be part of the original transaction.

Salesforce must provide a unique ID in the call to the remote process. The remote system must
then call back to Salesforce to update the record in Salesforce with the remote system’s unique
identifier, using the Salesforce unique ID.

Remote system

The callback implies specific state handling in the remote application to store the Salesforce unique
identifier for that transaction to use for the callback when processing is complete, or the Salesforce
unique identifier is stored on the remote system’s record.

Complex Integration Scenarios

Each solution in this pattern has different considerations for complex integration scenarios such as transformation and process orchestration.

ConsiderationsSolution

In certain cases, solutions prescribed by this pattern require implementing several complex
integration scenarios best served using middleware or having Salesforce call a composite service.
These scenarios include:

Apex callouts

• Orchestration of business processes and rules involving complex flow logic

• Aggregation of calls and their results across calls to multiple systems

• Transformation of both inbound and outbound messages

• Maintaining transactional integrity across calls to multiple systems

Given the static, declarative nature of the outbound message, no complex integration scenarios,
such as aggregation, orchestration, or transformation, can be performed in Salesforce. The remote
system or middleware must handle these types of operations .

Outbound messaging

Given the static, declarative nature of events, no complex integration scenarios, such as aggregation,
orchestration, or transformation can be performed in Salesforce. The remote system or middleware
must handle these types of operations .

Platform Events

Governor Limits

Due to the multitenant nature of the Salesforce platform, there are limits to outbound callouts. Limits depend on the type of outbound
call and the timing of the call.

In case of platform events, different limits and allocations apply. See the Platforms Events Developer Guide.

There are no governor limits for outbound messaging. See the Salesforce Limits Quick Reference Guide.

Reliable Messaging

Reliable messaging attempts to resolve the issue of guaranteeing the delivery of a message to a remote system in which the individual
components are unreliable. The method of ensuring receipt of a message by the remote system depends on the solution you choose.

24

Remote Process Invocation—Fire and Forget

https://developer.salesforce.com/docs/atlas.en-us.248.0.platform_events.meta/platform_events/platform_events_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm

Reliable Messaging ConsiderationsSolution

Salesforce doesn’t provide explicit support for reliable messaging protocols (for example,
WS-ReliableMessaging). We recommend that the remote endpoint receiving the Salesforce message

Apex callouts

implement a reliable messaging system, like JMS or MQ. This system ensures full end-to-end
guaranteed delivery to the remote system that ultimately processes the message. However, this
system doesn’t ensure guaranteed delivery from Salesforce to the remote endpoint that it calls.

Guaranteed delivery must be handled through customizations to Salesforce. Specific techniques,
such as processing a positive acknowledgment from the remote endpoint in addition to custom
retry logic, must be implemented.

Outbound messaging provides a form of reliable messaging. If no positive acknowledgment is
received from the remote system, the process retries for up to 24 hours. This process guarantees

Outbound messaging

delivery only to the point of the remote listener. The retry interval increases exponentially over time,
starting with 15-second intervals and ending with 60-minute intervals. The overall retry period can
be extended to seven days by request to Salesforce support, but automatic retries are limited to
24 hours. All failed messages after 24 hours are placed in a queue and administrators must monitor
this queue for any messages exceeding the 24-hour delivery period and retry manually, if necessary.

In most implementations, the remote listener calls another remote service. Ideally, the invocation
of this remote service through a reliable messaging system ensures full end-to-end guaranteed
delivery. The positive acknowledgment to the Salesforce outbound message occurs after the remote
listener has successfully placed its own message on its local queue. Once the positive
acknowledgment is received by Salesforce, automatic retries are stopped.

Platform Events attempts to provide reliable messaging by temporarily persisting event messages
in the event bus. Subscribers can catch up on missed event messages by replaying messages from
the event bus using the Replay ID of event messages.

The event bus is a distributed system and doesn’t have the same guarantees as a transactional
database. As a result, Salesforce can’t provide a synchronous response for an event publish request.

Platform Events

Events are queued and buffered, and Salesforce attempts to publish the events asynchronously. In
rare cases, the event message might not be persisted in the distributed system during the initial
or subsequent attempts. This means that the events aren’t delivered to subscribers, and they aren’t
recoverable.

Middleware Capabilities

The following table highlights the desirable properties of a middleware system that participates in this pattern.

Not RequiredDesirableMandatoryProperty

XEvent handling

XProtocol conversion

XTranslation and transformation

XQueuing and buffering

XSynchronous transport protocols

25

Remote Process Invocation—Fire and Forget

Not RequiredDesirableMandatoryProperty

XAsynchronous transport protocols

XMediation routing

XProcess choreography and service orchestration

XTransactionality (encryption, signing, reliable
delivery, transaction management)

XRouting

XExtract, transform, and load

X (required for platform
events)

Long Polling

Solution Variant—Platform Events: Publishing Behavior and Transactions

When platform event messages are published immediately, event publishing doesn't respect transaction boundaries of the publishing
process. Event messages can be published before the transaction completes or even if a transaction fails. This behavior can lead to issues
when a subscriber expects to find data that the publishing transaction commits. The data might not be present when the subscriber
receives the event message. To solve this issue, set the platform event publish behavior to Publish After Commit in the event
definition. The publish behaviors you can set in a platform event definition are:

• Publish After Commit to have the event message published only after a transaction commits successfully. Select this option if
subscribers rely on data that the publishing transaction commits. For example, a process publishes an event message and creates
a task record. A second process that is subscribed to the event is fired and expects to find the task record. Another reason for choosing
this behavior is when you don’t want the event message to be published if the transaction fails.

• Publish Immediately to have the event message published when the publish call executes. Select this option if you want the event
message to be published regardless of whether the transaction succeeds. Also choose this option if the publisher and subscribers
are independent, and subscribers don’t rely on data committed by the publisher. For example, the immediate publishing behavior
is suitable for an event used for logging purposes. With this option, a subscriber might receive the event message before data is
committed by the publisher transaction.

Solution Variant—Outbound Messaging and Message Sequencing

Salesforce outbound messaging can’t guarantee the sequence of delivery for its messages because a single message can be retried over
a 24-hour period. Multiple methods for handling message sequencing in the remote system are available.

• Salesforce sends a unique message ID for each instance of an outbound message. The remote system discards messages that have
a duplicate message ID.

• Salesforce sends only the RecordId. The remote system makes a callback to Salesforce to obtain the necessary data to process the
request.

Solution Variant—Outbound Messaging and Deletes

Salesforce workflow rules can’t track deletion of a record. The rules can track only the insert or update of a record. Therefore, you can’t
directly initiate an outbound message from the deletion of a record. You can initiate a message indirectly with the following process.

1. Create a custom object to store key information from the deleted records.

2. Create an Apex trigger, fired by the deletion of the base record, to store information, such as the unique identifier in the custom
object.

3. Implement a workflow rule to initiate an outbound message based on the creation of the custom object record.

26

Remote Process Invocation—Fire and Forget

It’s important that state tracking is enabled by storing the remote system’s unique identifier in Salesforce or Salesforce’s unique identifier
in the remote system.

Example

A telecommunications company wants to use Salesforce as a front end for creating accounts using the lead-to-opportunity process. An
order is created in Salesforce when the opportunity is closed and won, but the back-end ERP system is the data master. The order must
be saved to the Salesforce opportunity record, and the opportunity status changed to indicate that the order was created.

The following constraints apply.

• No custom development in Salesforce.

• You don’t require immediate notification of the order number after the opportunity converts to an order.

• The organization has an ESB that supports the CometD protocol and is able to subscribe to platform events.

This example is best implemented using Salesforce platform events, but does require that the ESB subscribes to the platform event..

On the Salesforce side:

• Create a Process Builder process to initiate the platform event (for example, when the opportunity status changes to Close-Won).

• Create a new platform event which publishes the opportunity details.

On the remote system side:

• The ESB subscribes to the Salesforce platform event using the CometD protocol.

• The ESB receives one or more notifications indicating that the opportunity is to be converted to an order.

• The ESB forwards the message to the back-end ERP system so that the order can be created.

• After the order is created in the ERP system, a separate thread calls back to Salesforce using the SessionId as the authentication token.
The callback updates the opportunity with the order number and status. You can do this callback using documented pattern solutions,
such as Salesforce platform events, Salesforce SOAP API, REST API, or an Apex web service.

This example demonstrates the following.

• Implementation of a remote process invoked asynchronously

• End-to-end guaranteed delivery

• Subsequent callback to Salesforce to update the state of the record

27

Remote Process Invocation—Fire and Forget

CHAPTER 4 Batch Data Synchronization

Context

You’re moving your CRM implementation to Salesforce and want to:

• Extract and transform accounts, contacts, and opportunities from the current CRM system and load the data into Salesforce (initial
data import).

• Extract, transform, and load customer billing data into Salesforce from a remote system on a weekly basis (ongoing).

• Extract customer activity information from Salesforce and import it into an on-premises data warehouse on a weekly basis (ongoing).

Problem

How do you import data into Salesforce and export data out of Salesforce, taking into consideration that these imports and exports can
interfere with end-user operations during business hours, and involve large amounts of data?

Forces

There are various forces to consider when applying solutions based on this pattern:

• Should the data be stored in Salesforce? If not, there are other integration options an architect can and should consider (mashups,
for example).

• If the data should be stored in Salesforce, should the data be refreshed in response to an event in the remote system?

• Should the data be refreshed on a scheduled basis?

• Does the data support primary business processes?

• Are there analytics (reporting) requirements that are impacted by the availability of this data in Salesforce?

Solution

The following table contains various solutions to this integration problem.

CommentsData masterFitSolution

Salesforce Change Data Capture publishes change events, which
represent changes to Salesforce records. Changes include creation

SalesforceBestSalesforce Change Data
Capture

of a new record, updates to an existing record, deletion of a record,
and undeletion of a record.

28

CommentsData masterFitSolution

With Change Data Capture, you can receive near-real-time changes
of Salesforce records, and synchronize corresponding records in
an external data store.

Change Data Capture takes care of the continuous synchronization
part of replication. It publishes the deltas of Salesforce data for new
and changed records. Change Data Capture requires an integration
app for receiving events and performing updates in the external
system.

Leverage a third-party ETL tool that allows you to run change data
capture against source data.

The tool reacts to changes in the source data set, transforms the
data, and then calls Salesforce Bulk API to issue DML statements.
This can also be implemented using the Salesforce SOAP API.

Remote systemBestReplication via third-party ETL
tool

Leverage a third-party ETL tool that allows you to run change data
capture against ERP and Salesforce data sets.

In this solution, Salesforce is the data source, and you can use
time/status information on individual rows to query the data and

SalesforceGoodReplication via third-party ETL
tool

filter the target result set. This can be implemented by using SOQL
together with SOAP API and the query() method, or by using
SOAP API and the getUpdated() method.

It’s possible for a remote system to call into Salesforce by using
one of the APIs and perform updates to data as they occur.

Remote systemSuboptimalRemote call-in

However, this causes considerable on-going traffic between the
two systems.

Greater emphasis should be placed on error handling and locking.
This pattern has the potential for causing continual updates, which
has the potential to impact performance for end users.

It’s possible for Salesforce to call into a remote system and perform
updates to data as they occur. However, this causes considerable
on-going traffic between the two systems.

Greater emphasis should be placed on error handling and locking.
This pattern has the potential for causing continual updates, which
has the potential to impact performance for end users.

SalesforceSuboptimalRemote process invocation

Sketch

The following diagram illustrates the sequence of events in this pattern, where the remote system is the data master.

29

Batch Data Synchronization

The following diagram illustrates the sequence of events in this pattern, where Salesforce is the data master.

Results

You can integrate data that’s sourced externally with Salesforce under the following scenarios:

• External system is the data master—Salesforce is a consumer of data provided by a single source system or multiple systems. In this
scenario, it’s common to have a data warehouse or data mart that aggregates the data before the data is imported into Salesforce.

• Salesforce is the data master—Salesforce is the system of record for certain entities and Salesforce Change Data Capture client
applications can be informed of changes to Salesforce data.

30

Batch Data Synchronization

In a typical Salesforce integration scenario, the implementation team does one of the following:

• Implement change data capture on the source data set.

• Implement a set of supporting database structures, known as control tables, in an intermediate, on-premises database.

The ETL tool is then used to create programs that will:

1. Read a control table to determine the last run time of the job and extract any other control values needed.

2. Use the above control values as filters and query the source data set.

3. Apply predefined processing rules, including validation, enrichment, and so on.

4. Use available connectors/transformation capabilities of the ETL tool to create the destination data set.

5. Write the data set to Salesforce objects.

6. If processing is successful, update the control values in the control table.

7. If processing fails, update the control tables with values that enable a restart and exit.

Note: We recommend that you create the control tables and associated data structures in an environment that the ETL tool has
access to even if access to Salesforce isn’t available. This provides adequate levels of resilience. Salesforce should be treated as a
spoke in this process and the ETL infrastructure is the hub.

For an ETL tool to gain maximum benefit from data synchronization capabilities, consider the following:

• Chain and sequence the ETL jobs to provide a cohesive process.

• Use primary keys from both systems to match incoming data.

• Use specific API methods to extract only updated data.

• If importing child records in a master-detail or lookup relationship, group the imported data using its parent key at the source to
avoid locking. For example, if you’re importing contact data, be sure to group the contact data by the parent account key so the
maximum number of contacts for a single account can be loaded in one API call. Failure to group the imported data usually results
in the first contact record being loaded and subsequent contact records for that account to fail in the context of the API call.

• Any post-import processing, such as triggers, should only process data selectively.

• If your scenario involves large data volumes, follow the best practices in the white paper Best Practices for Deployments with Large
Data Volumes.

Error Handling and Recovery

An error handling and recovery strategy must be considered as part of the overall solution. The best method depends on the solution
you choose.

Error handling and recovery strategyError location

Read from Salesforce using
Change Data Capture

• Error handling—Error handling must be performed in the remote service because the event is
effectively handed off to the remote system for further processing. Because this pattern is
asynchronous, the remote system handles message queuing, processing, and error handling.
Additionally, Change Data Capture events aren’t processed within database transactions. As a
result, published events can’t be rolled back within a transaction.

• Recovery—Because this pattern is asynchronous, the remote system must initiate retries based
on the service’s quality of service requirements. The replay ID associated with each Change
Data Capture event is atomic and increases with every event published. This ID can be used
replay the stream from a specific event (for example, based upon the last successfully captured
event). High-volume platform event messages are stored for 72 hours (3 days). You can retrieve
past event messages when using CometD clients to subscribe to a channel.

31

Batch Data Synchronization

https://developer.salesforce.com/page/Best_Practices_for_Deployments_with_Large_Data_Volumes
https://developer.salesforce.com/page/Best_Practices_for_Deployments_with_Large_Data_Volumes

Error handling and recovery strategyError location

Read from Salesforce using a 3rd
party ETL system

• Error handling—If an error occurs during a read operation, implement a retry for errors that
aren’t infrastructure-related. In the event of repeated failure, standard processing using control
tables/error tables should be implemented in the context of an ETL operation to:

– Log the error

– Retry the read operation

– Terminate if unsuccessful

– Send a notification

• Recovery—Restart the ETL process to recover from a failed read operation.

If the operation succeeds but there are failed records, an immediate restart or subsequent execution
of the job should address the issue. In this case, a delayed restart might be a better solution because
it allows time to triage and correct data that might be causing the errors.

Write to Salesforce • Error handling—Errors that occur during a write operation can result from a combination of
factors in the application. The API calls return a result set that consists of the information listed
below. This information should be used to retry the write operation (if necessary).

– Record identifying information

– Success/failure notification

– A collection of errors for each record

• Recovery—Restart the ETL process to recover from a failed read operation.

If the operation succeeds but there are failed records, an immediate restart or subsequent execution
of the job should address the issue. In this case, a delayed restart might be a better solution because
it allows time to triage and correct data that might be causing the errors.

Errors should be handled in accordance with the best practices of the master system.External master system

Security Considerations

Any call to a remote system must maintain the confidentiality, integrity, and availability of the request. Different security considerations
apply, depending on the solution you choose.

• A Lightning Platform license with at least “API Only” user permissions is required to allow authenticated API access to the Salesforce
API.

• We recommend that standard encryption be used to keep password access secure.

• Use the HTTPS protocol when making calls to the Salesforce APIs. You can also proxy traffic to the Salesforce APIs through an
on-premises security solution, if necessary.

See Security Considerations.

Sidebars

Timeliness

32

Batch Data Synchronization

Timeliness isn’t of significant importance in this pattern. However, care must be taken to design the interfaces so that all of the batch
processes complete in a designated batch window.

As with all batch-oriented operations, we strongly recommend that you take care to insulate the source and target systems during batch
processing windows. Loading batches during business hours might result in some contention, resulting in either a user's update failing,
or more significantly, a batch load (or partial batch load) failing.

For organizations that have global operations, it might not be feasible to run all batch processes at the same time because the system
might continually be in use. Data segmentation techniques using record types and other filtering criteria can be used to avoid data
contention in these cases.

State Management

You can implement state management by using surrogate keys between the two systems. If you need any type of transaction management
across Salesforce entities, we recommend that you use the Remote Call-In pattern using Apex.

Standard optimistic record locking occurs on the platform, and any updates made using the API require the user, who is editing the
record, to refresh the record and initiate their transaction. In the context of the Salesforce API, optimistic locking refers to a process where:

• Salesforce doesn’t maintain the state of a record being edited by a specific user.

• Upon read, it records the time when the data was extracted.

• If the user updates the record and saves it, Salesforce checks to see if another user has updated the record in the interim.

• If the record has been updated, the system notifies the user that an update was made and the user should retrieve the latest version
of the record before proceeding with their updates.

Middleware Capabilities

The most effective external technologies used to implement this pattern are traditional ETL tools. It’s important that the middleware
tools chosen support the Salesforce Bulk API.

It’s helpful, but not critical, that the middleware tools support the getUpdated() function. This function provides the closest
implementation to standard change data capture capability on the Salesforce platform.

The following table highlights the desirable properties of a middleware system that participates in this pattern.

Not requiredDesirableMandatoryProperty

XEvent handling

XProtocol conversion

XXTranslation and transformation

XQueuing and buffering

XSynchronous transport protocols

XAsynchronous transport protocols

XMediation routing

XProcess choreography and service orchestration

XTransactionality (encryption, signing, reliable
delivery, transaction management)

XRouting

XExtract, transform, and load

33

Batch Data Synchronization

Not requiredDesirableMandatoryProperty

X (required for Salesforce
Change Data Capture)

Long Polling

Example

A utility company uses a mainframe-based batch process that assigns prospects to individual sales reps and teams. This information
needs to be imported into Salesforce on a nightly basis.

The customer has decided to implement change data capture on the source tables using a commercially available ETL tool.

The solution works as follows:

• A cron-like scheduler executes a batch job that assigns prospects to users and teams.

• After the batch job runs and updates the data, the ETL tool recognizes these changes using change data capture. The ETL tool collates
the changes from the data store.

• The ETL connector uses the Salesforce SOAP API to load the changes into Salesforce.

34

Batch Data Synchronization

CHAPTER 5 Remote Call-In

Context

You use Salesforce to track leads, manage your pipeline, create opportunities, and capture order details that convert leads to customers.
But, Salesforce isn’t the system that contains or processes orders. Orders are managed by an external (remote) system. That remote
system needs to update the order status in Salesforce as the order passes through its processing stages.

Problem

How does a remote system connect and authenticate with Salesforce to notify Salesforce about external events, create records, and
update existing records?

Forces

There are various forces to consider when applying solutions based on this pattern:

• Is the purpose of the remote call to Salesforce to notify Salesforce of an event that occurred externally using an event-driven
architecture? Or is the purpose to perform CRUD operations on specific records? If you use an event-driven architecture, the event
producer (the remote process) is decoupled from the Salesforce event consumer.

• Does the call to Salesforce require the remote process to wait for a response before continuing processing? Remote calls to Salesforce
are always synchronous request-reply, although the remote process can discard the response if it isn’t needed to simulate an
asynchronous call.

• Does each transaction operate against a single Salesforce object or multiple, related objects?

• What is the format of the message (for example, SOAP or REST, or both over HTTP)?

• Is the message size relatively small or large?

• If the remote system is SOAP-capable, is the remote system able to participate in a contract-first approach, where Salesforce dictates
the contract? This is required where our SOAP API is used, for which a predefined WSDL is supplied.

• Is transaction processing required?

• What is the extent to which you’re tolerant of customization in Salesforce?

Solution

This table contains various solutions to this integration problem.

35

CommentsFitSolution

BestSOAP API • Accessibility—Salesforce provides a SOAP API that remote
systems can use to:

– Publish events to notify your Salesforce org

– Query data in your org

– Create, update, and delete data

– Obtain metadata about your org

– Run utilities to perform administrative tasks

• Synchronous API—After the API call is made, the remote
client application waits until it receives a response from
the service. Asynchronous calls to Salesforce aren’t
supported.

• Generated WSDL—Salesforce provides two WSDLs for
remote systems:

– Enterprise WSDL—Provides a strongly-typed WSDL
that’s specific to a Salesforce org.

– Partner WSDL—Contains a loosely typed WSDL that’s
not specific to a Salesforce org.

• Security—The client executing SOAP API must have a valid
login and obtain a session to perform any API calls. The
API respects object-level and field-level security configured
in Salesforce based on the logged in user’s profile.

• Transaction/Commit Behavior—By default, each API call
allows for partial success if some records are marked with
errors. This can be changed to an “all or nothing” behavior
where all the results are rolled back if any error occurs. It’s
not possible to span a transaction across multiple API calls.
To overcome this limitation, it’s possible for a single API
call to affect multiple objects.

• Bulk Data—Any data operation that includes more than
2,000 records is a good candidate for Bulk API 2.0 to
successfully prepare, execute, and manage an asynchronous
workflow that uses the Bulk framework. Jobs with fewer
than 2,000 records should involve “bulkified” synchronous
calls in REST (for example, Composite) or SOAP.

• Event-Driven Architecture—Platform events are defined the
same way you define Salesforce objects. Publishing an
event via SOAP API is the same as creating a Salesforce
record.

BestREST API • Accessibility—Salesforce provides a REST API that remote
systems can use to:

– Publish events to notify your Salesforce org

36

Remote Call-In

CommentsFitSolution

– Query data in your org

– Create, update, and delete data

– Obtain metadata about your org

– Run utilities to perform administrative tasks

• Synchronous API—After the API call is made, the remote
client application waits until it receives a response from
the service. Asynchronous calls to Salesforce aren’t
supported.

• REST API vs. SOAP API—REST exposes resources
(entities/objects) as URIs and uses HTTP verbs to define
CRUD operations on these resources. Unlike SOAP, REST
API requires no predefined contract, utilizes XML and JSON
for responses, and has loose typing. REST API is lightweight
and provides a simple method for interacting with
Salesforce. Its advantages include ease of integration and
development, and it’s an excellent choice for use with
mobile apps and web apps.

• Security—The client executing REST API must have a valid
login and obtain a session to perform any API calls. The
API respects object-level and field-level security configured
in Salesforce based on the logged in user’s profile.

• Transaction/Commit Behavior—By default, each record is
treated as a separate transaction and committed separately.
Failure of one record change doesn’t cause rollback of
other record changes. This behavior can be altered to an
“all or nothing” behavior. Use the REST API composite
resources to make a series of updates in one API call.

• REST Composite Resources—Use these REST API resources
to perform multiple operations in a single API call. It’s also
possible to use the output of one call as the input to the
next call. All of the response bodies and HTTP statuses for
the requests are returned in a single response body. The
entire request counts as a single call toward your API limits.

• Bulk Data—Any data operation that includes more than
2,000 records is a good candidate for Bulk API 2.0 to
successfully prepare, execute, and manage an asynchronous
workflow that uses the Bulk framework. Jobs with fewer
than 2,000 records should involve “bulkified” synchronous
calls in REST (for example, Composite) or SOAP.

• Event-Driven Architecture—Platform events are defined the
same way you define Salesforce objects. Publishing an
event via REST API is the same as creating a Salesforce
record.

37

Remote Call-In

CommentsFitSolution

Apex class methods can be exposed as web service methods
to external applications. This method is an alternative to SOAP

SuboptimalApex web services

API, and is typically used only where the following additional
requirements must be met.

• Full transactional support is required (for example, create
an account, contact, and opportunity all in one transaction).

• Custom logic must be applied on the Salesforce side before
committing.

The benefit of using an Apex web service must be weighed
against the additional code that needs to be maintained in
Salesforce.

Not applicable for platform events because transaction
pre-insert logic at the consumer doesn’t apply in an
event-driven architecture. To notify a Salesforce org that an
event has occurred, use SOAP API, REST API, or Bulk API 2.0.

An Apex class can be exposed as REST resources mapped to
specific URIs with an HTTP verb defined against it (for example,
POST or GET).

You can use REST API composite resources to perform multiple
updates in a single transaction.

SuboptimalApex REST services

Unlike SOAP, there’s no need for the client to consume a service
definition/contract (WSDL) and generate client stubs. The
remote system requires only the ability to form an HTTP request
and process the returned results (XML or JSON).

Not applicable for platform events because transaction
pre-insert logic at the consumer doesn’t apply in an
event-driven architecture. To notify a Salesforce org that an
event has occurred, use SOAP API, REST API, or Bulk API 2.0.

Bulk API 2.0 is based on REST principles, and is optimized for
loading or deleting large sets of data. It has the same
accessibility and security behavior as REST API.

Any data operation that includes more than 2,000 records is a
good candidate for Bulk API 2.0 to successfully prepare, execute,

Optimal for bulk
operations

Bulk API 2.0

and manage an asynchronous workflow that uses the Bulk
framework. Jobs with fewer than 2,000 records should involve
“bulkified” synchronous calls in REST (for example, Composite)
or SOAP.

Bulk API 2.0 allows the client application to query, insert,
update, upsert, or delete a large number of records
asynchronously by submitting a number of batches, which are
processed in the background by Salesforce. In contrast, SOAP

38

Remote Call-In

CommentsFitSolution

API is optimized for real-time client applications that update
small numbers of records at a time.

Although SOAP API can also be used for processing large
numbers of records, when the data sets contain hundreds of
thousands to millions of records, it becomes less practical. This
is due to its relatively high overhead and lower performance
characteristics.

• Event-Driven Architecture—Platform events are defined the
same way you define Salesforce objects. Publishing an
event via Bulk API 2.0 is the same as creating a Salesforce
record. Only the create and insert operations are supported.
Events within a batch are published to the Salesforce event
bus asynchronously as the batch job is processed.

Sketch

The following diagrams illustrate the sequence of events when you implement this pattern using either REST API for notifications from
external events or SOAP API to query a Salesforce object. The sequence of events is the same when using REST API.

39

Remote Call-In

Remote System Querying Salesforce Via SOAP API

Remote System Notifying Salesforce with Events Via REST API

40

Remote Call-In

Results

In an event-driven architecture, the remote system calls into Salesforce using SOAP API, REST API, or Bulk API 2.0 to publish an event to
the Salesforce event bus. Publishing an event notifies all subscribers. Event subscribers can be on the Salesforce Platform such as Process
Builder Processes, Flows, or Lightning Components, Apex triggers. Event subscribers can also be external to the Salesforce Platform such
as CometD subscribers.

When working directly with Salesforce objects, the solutions related to this pattern allow for:

• The remote system to call the Salesforce APIs to query the database and execute single-object operations (create, update, delete,
and so on).

• The remote system to call the Salesforce REST API composite resources to perform a series of object operations.

• Remote system to call custom-built Salesforce APIs (services) that can support multi-object transactional operations and custom
pre/post processing logic.

Calling Mechanisms

The calling mechanism depends on the solution chosen to implement this pattern.

DescriptionCalling mechanism

The remote system uses the Salesforce Enterprise or Partner WSDL to generate client stubs that
are in turn used to invoke the standard SOAP API.

SOAP API

The remote system has to authenticate before accessing any Apex REST service. The remote system
can use OAuth 2.0 or username and password authentication. In either case, the client must set

REST API

the authorization HTTP header with the appropriate value (an OAuth access token or a session ID
can be acquired via a login call to SOAP API).

The remote system then generates REST invocations (HTTP requests) with the appropriate verbs
and processes the results returned (JSON and XML data formats are supported).

The remote system consumes the custom Apex web service WSDL to generate client stubs that
are in turn used to invoke the custom Apex web service.

Apex web service

As per REST API, the resource URI and applicable verbs are defined using the @RestResource,
@HttpGet, and @HttpPost annotations.

Apex REST service

Bulk API 2.0 is a REST-based API, so the same calling mechanisms as REST API apply.Bulk API 2.0

Use REST API to call a custom invocable actions endpoint to invoke an auto-launched flow.REST API to invoke Flow

Error Handling and Recovery

An error handling and recovery strategy must be considered as part of the overall solution.

• Error handling—All the remote call-in methods, standard or custom APIs, require the remote system to handle any subsequent
errors, such as timeouts and the management of retries. Middleware can be used to provide the logic for error handling and recovery.

• Recovery—A custom retry mechanism needs to be created if quality-of-service requirements dictate it. In this case, it’s important to
ensure idempotent design characteristics. Platform event enables subscribers to use the replay ID to fetch messages within a certain
time period after those messages were published.

Idempotent Design Considerations

41

Remote Call-In

Idempotent capabilities guarantee that repeated invocations are safe and won’t have a negative effect. If idempotency isn’t implemented,
then repeated invocations of the same message can have different results, potentially resulting in data integrity issues, for example,
creation of duplicate records, duplicate processing of transactions, and so on.

The remote system must manage multiple (duplicate) calls, in the case of errors or timeouts, to avoid duplicate inserts and redundant
updates (especially if downstream triggers and workflow rules fire). While it’s possible to manage some of these situations within
Salesforce (particularly in the case of custom SOAP and REST services), we recommend that the remote system (or middleware) manages
error handling and idempotent design.

Security Considerations

Different security considerations apply, depending on the pattern solution chosen. In all cases, the platform uses the logged-in user’s
access rights (for example, profile settings, sharing rules, permission sets, and so on). Additionally, profile IP restrictions can be used to
restrict access to the API for a specific IP address range.

Security considerationsSolution

Salesforce supports Secure Sockets Layer v3 (SSL) and the Transport Layer Security (TLS) protocols.
Ciphers must have a key length of at least 128 bits.

The remote system must log in using valid credentials to obtain a session ID. If the remote system
already has a valid session ID, then it can call the API without an explicit login. This is used in call-back

SOAP API

patterns covered earlier in this document, where a preceding Salesforce outbound message
contained a session ID and record ID for subsequent use.

We recommend that clients that call SOAP API cache and reuse the session ID to maximize
performance, rather than obtaining a new session ID for each call.

We recommend that the remote system establish an OAuth trust for authorization. REST calls can
then be made on specific resources using HTTP verbs. It’s also possible to make REST calls with a

REST API

valid session ID that might have been obtained by other means (for example, retrieved by calling
SOAP API or provided via an outbound message).

We recommend that clients that call the REST API cache and reuse the session ID to maximize
performance, rather than obtaining a new session ID for each call.

We recommend that the remote system establish an OAuth trust for authorization.Apex web service

We recommend that the remote system establish an OAuth trust for authorization.Apex REST service

We recommend that the remote system establish an OAuth trust for authorization.Bulk API 2.0

See Security Considerations.

Sidebars

Timeliness

SOAP API and Apex web service API are synchronous. The following timeouts apply:

• Session timeout — The session times out if there’s no activity based on the Salesforce org’s session timeout setting.

• Query timeout — Each SOQL query has an individual timeout limit of 120 seconds.

Data Volumes

42

Remote Call-In

Data volume considerations depend on which solution and communication type you choose.

LimitsCommunication
type

Solution

SynchronousSOAP API or REST API • SOAP Login—The SOAP login request size is limited to 10 KB or less. You can
make a maximum of 3,600 calls to the login() function per user per hour.
If you exceed this limit, the API returns an error.

• Create, Update, Delete—The remote system can create, update, or delete up
to 200 records at a time. Multiple calls can be made to process more than a
total of 200 records, but each request is limited to 200 records in size.

• BLOB Data—You can use SObject Basic Information, SObject Rows, or SObject
Collections REST resources to insert or update BLOB data in Salesforce standard
objects. For the SObject Basic Information or SObject Rows resources, the
maximum file size for uploads is 2 GB for ContentVersion objects and 500 MB
for all other eligible standard objects. Using the SObject Collections resources,
the maximum total size of all files in a single request is 500 MB.

• Query Results Size — By default, the number of rows returned in the query
result object (batch size), returned in a query() or queryMore() call
is set to 500. The maximum number of rows returned is 2,000. You can explicitly
set the batch size, but there's no guarantee that the requested batch size will
be the actual batch size. This is done to maximize performance. Where the
number of rows to be returned exceeds the batch size, use the
queryMore() API call to iterate through multiple batches. Additional rules
might apply, so for more information, see Salesforce Developer Limits and
Allocations Quick Reference.

• Event Message—The maximum event message size is 1 MB. Publishing an
event using the Salesforce APIs counts against your standard API limits.

Bulk API 2.0 is optimized for importing and exporting large sets of data
asynchronously.

SynchronousBulk API 2.0

Any data operation that includes more than 2,000 records is a good candidate for
Bulk API 2.0 to successfully prepare, execute, and manage an asynchronous
workflow that uses the Bulk framework. Jobs with fewer than 2,000 records should
involve “bulkified” synchronous calls in REST (for example, Composite) or SOAP.

Bulk API 2.0 is synchronous when submitting the batch request and associated
data. The actual processing of the data occurs asynchronously. For more
information about API and batch processing limits, see Limits.

Endpoint Capability and Standards Support

The capability and standards support for the endpoint depends on the solution that you choose.

43

Remote Call-In

https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_asynch.meta/api_asynch/bulk_common_limits.htm

Endpoint considerationsSolution

The remote system must be capable of implementing a client that can call the Salesforce SOAP
API, based on a message format predefined by Salesforce.

The remote system (client) must participate in a contract-first implementation where the contract
is supplied by Salesforce (for example, Enterprise or Partner WSDL).

SOAP API

The remote system must be capable of implementing a REST client that invokes Salesforce—defined
REST services, and processes the XML or JSON results.

REST API

The remote system must be capable of implementing a client that can invoke SOAP messages of
a predefined format, as defined by Salesforce.

The remote system must participate in a code-first implementation, where the contract is supplied
by Salesforce after the Apex web service is implemented. Each Apex web service has its own WSDL.

Apex web service

The same endpoint considerations as REST API apply.Apex REST service

State Management

When integrating systems, keys are important for on-going state tracking, for example, if a record gets created in the remote system, to
support ongoing updates to that record. There are two options:

• Salesforce stores the remote system’s primary or unique surrogate key for the remote record.

• The remote system stores the Salesforce unique record ID or some other unique surrogate key.

There are specific considerations for handling integration keys in this synchronous pattern.

DescriptionMaster system

In this scenario, the remote system stores either the Salesforce RecordId or some other unique
surrogate key from the record.

Salesforce

In this scenario, Salesforce stores a reference to the unique identifier in the remote system. Because
the process is synchronous, the key can be provided as part of the same transaction using external
ID fields.

Remote system

Complex Integration Scenarios

Each solution in this pattern has different considerations when handling complex integration scenarios such as transformation and
process orchestration.

ConsiderationsSolution

SOAP API and REST API provide for simple transactions on objects. Complex integration scenarios,
such as aggregation, orchestration, and transformation, can’t be performed in Salesforce. These

SOAP API or REST API

scenarios must be handled by the remote system or middleware, with middleware as the preferred
method.

Custom web services can provide for cross-object functionality, custom logic, and more complex
transaction support. This solution should be used with care, and you should always consider the
suitability of middleware for any transformation, orchestration, and error handling logic.

Apex web service or Apex REST
service

44

Remote Call-In

Governor Limits

Due to the multitenant nature of the Salesforce platform, there are limits when using the APIs.

LimitsSolution

SOAP API, REST API, and custom
Apex APIs

• API request limits—Salesforce applies a limit on the number of API calls per 24–hour period.
The limit is based on the Salesforce edition type and number of licenses. For example, Unlimited
Edition provides 5,000 API requests per Salesforce or Lightning Platform license per 24 hours.
For more information, see Salesforce Developer Limits and Allocations Quick Reference.

• API query cursor limits—A user can have up to 10 query cursors open at a time. Otherwise, the
oldest of the 10 cursors is released. If the remote application attempts to open the released
query cursor, an error results. For example, if sharing integration user credentials, the maximum
query cursors need to be considered. Whenever possible, the middleware should complete
the full query before executing another query (in a serial fashion) or each application should
use a designated integration user. Alternatively, the middleware may need to execute requests
across multiple users in a “round robin” fashion.

• Call limits—See Data Volumes sidebar for create, update, and query limits.

See Data Volumes sidebar for more information.Bulk API 2.0

Platform Events • Event notification limits—A maximum of 100,000 events can be published per hour for standard
volume platform events. A maximum of 250,000 events can be published per hour for
high-volume usage-based platform events. To monitor high-volume event usage, use REST
API limits resource.

• Event message size limits—The maximum event message size is 1 MB. Publishing an event using
the Salesforce APIs counts against your standard API limits.

Reliable Messaging

Reliable messaging attempts to resolve the issue of guaranteeing the delivery of a message to a remote system where the individual
components themselves might be unreliable. The Salesforce SOAP API and REST API are synchronous and don’t provide explicit support
for any reliable messaging protocols, per se (for example, WS-ReliableMessaging).

We recommend that the remote system implement a reliable messaging system to ensure that error and timeout scenarios are successfully
managed. Publishing of platform events from external systems relies on Salesforce APIs, so the same considerations for SOAP API and
REST API apply.

Middleware Capabilities

This table highlights the desirable properties of a middleware system that participates in this pattern:

Not requiredDesirableMandatoryProperty

XEvent handling

XProtocol conversion

XTranslation and transformation

XQueuing and buffering

XSynchronous transport protocols

45

Remote Call-In

https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm

Not requiredDesirableMandatoryProperty

XAsynchronous transport protocols

XMediation routing

XProcess choreography and service orchestration

XTransactionality (encryption, signing, reliable
delivery, and transaction management)

XRouting

X (for bulk/batches)Extract, transform, and load

Example

A printing supplies and services company uses Salesforce as a front end to create and manage printer supplies and orders. Salesforce
asset records representing printers are periodically updated with printing usage statistics (ink status, paper level) from the on-premises
Printer Management System (PMS), which regularly monitors printers on client sites. Upon reaching a set threshold value (for example,
low ink status or low/empty paper level of less than 30%), multiple apps/processes (variable) interested in the event are notified, email
or Chatter alerts are sent, and an Order record is created. The PMS stores the Salesforce ID (Salesforce is the asset record master).

The following constraints apply:

• The PMS can participate in a contract-first integration, where Salesforce provides the contract and the PMS acts as a client (consumer)
of the Salesforce service (defined via the Enterprise or Partner WSDL).

• There should be no custom development in Salesforce.

This example is best implemented using the Salesforce SOAP API or REST API to publish events, and declarative automation (Process
Builder) in Salesforce. The primary reason to use platform events is the variable and non-finite number of subscribers; however, for simple
updates to a finite list of records such as orders, then use SOAP or REST API to update the records.

In Salesforce:

• Define a platform event in Salesforce to contain the notification data coming from the PMS.

• Create a Process Builder process that’s triggered by the printer event notification. The process updates the printer asset and creates
an order (using an auto-launched Flow).

• Download the Enterprise or Partner WSDL and provide it to the remote system.

In the remote system:

• Create a client stub from the Enterprise or Partner WSDL.

• Authenticate to Salesforce (via OAuth web server or bearer token flow) using the integration user’s credentials.

• Upon printer status event, the PMS calls the API to create the printer status platform event (with printer usage statistics). The Salesforce
event bus notifies Process Builder subscriber and all other subscribers.

When you use platform events, the event bus lets you replay events for 72 hours for high-volume platform events. Publishing those
events using a middleware solution can help incorporate error handling on the publishing side. However, you can implement error
handling on the subscribing side if you need higher reliability.

This example demonstrates the following:

• Implementation of a Salesforce synchronous API client (consumer).

46

Remote Call-In

• A callback to Salesforce to publish a platform event (aligned with previously covered request/reply platform event patterns).

47

Remote Call-In

CHAPTER 6 UI Update Based on Data Changes

Context

You use Salesforce to manage customer cases. A customer service rep is on the phone with a customer working on a case. The customer
makes a payment, and the customer service rep needs to see a real-time update in Salesforce from the payment processing application,
indicating that the customer has successfully paid the order’s outstanding amount.

Problem

When an event occurs in Salesforce, how can the user be notified in the Salesforce user interface without having to refresh their screen
and potentially losing work?

Forces

There are various forces to consider when applying solutions based on this pattern:

• Does the data being acted on need to be stored in Salesforce?

• Can a custom user interface layer be built for viewing this data?

• Will the user have access for invoking the custom user interface?

Solution

The recommended solution to this integration problem is to use the Salesforce Streaming API. This solution is composed of the following
components:

• A PushTopic with a query definition that allows you to:

– Specify what events trigger an update

– Select what data to include in the notification

• A JavaScript-based implementation of the Bayeux protocol (currently CometD) that can be used by the user interface

• A Visualforce page or Lightning component

• A JavaScript library included as a static resource

Sketch

The following diagram illustrates how Streaming API can be implemented to stream notifications to the Salesforce user interface. These
notifications are triggered by record changes in Salesforce.

48

https://docs.cometd.org/current4/reference/#_bayeux
https://docs.cometd.org/

UI Update in Salesforce Triggered by a Data Change

Results

Benefits

The application of the solution related to this pattern has the following benefits:

• Eliminates the need for writing custom polling mechanisms

• Eliminates the need for a user-initiated feedback loop

Unsupported Requirements

The solution has the following limitations:

• Delivery of notifications isn’t guaranteed.

• Order of notifications isn’t guaranteed.

• Notifications aren’t generated from record changes made by Bulk API.

Security Considerations

Standard Salesforce org-level security is adhered to. It’s recommended that you use the HTTPS protocol to connect to Streaming API.
See Security Considerations.

Sidebars

The optimal solution involves creating a custom user interface in Salesforce. It’s imperative that you account for an appropriate user
interface container that can be used for rendering the custom user interface. Supported browsers are listed in the Streaming API Developer
Guide.

Example

A telecommunications company uses Salesforce to manage customer cases. The customer service managers want to be notified when
a case is successfully closed by one of their customer service reps.

Implementing the solution prescribed by this pattern, the customer should:

49

UI Update Based on Data Changes

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_streaming.meta/api_streaming/intro_stream.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_streaming.meta/api_streaming/intro_stream.htm

• Create a PushTopic that sends a notification when a case is saved with a Status of “Closed” and Resolution of “Successful.”

• Create a custom user interface available to customer service managers. This user interface subscribes to the PushTopic channel.

• Implement logic in the custom user interface that shows alerts generated by that manager’s customer service reps.

50

UI Update Based on Data Changes

CHAPTER 7 Data Virtualization

Context

You use Salesforce to track leads, manage your pipeline, create opportunities, and capture order details that convert leads to customers.
However, Salesforce isn’t the system that contains or processes orders. Orders are managed by an external (remote) system. But sales
reps want to view and update real-time order information in Salesforce without having to learn or use the external system.

Problem

In Salesforce, how do you view, search, and modify data that’s stored outside of Salesforce, without moving the data from the external
system into Salesforce?

Forces

There are various forces to consider when applying solutions based on this pattern:

• Do you want to build a declarative/point-and-click outbound integration or UI mashup in Salesforce?

• Do you have a large amount of data that you don’t want to copy into your Salesforce org?

• Do you need to access small amounts of remote system data at any one time?

• Do you need real-time access to the latest data?

• Do you store your data in the cloud or in a back-office system, but want to display or process that data in your Salesforce org?

• Do you have data residency concerns for storing certain types of data in Salesforce?

Solution

The following table contains various solutions to this integration problem.

CommentsFitSolution

Use Salesforce Connect to access data from external sources, along with your
Salesforce data. Pull data from legacy systems such as SAP, Microsoft, and
Oracle in real time without making a copy of the data in Salesforce.

Salesforce Connect maps data tables in external systems to external objects
in your org. External objects are similar to custom objects, except that they

BestSalesforce Connect

map to data located outside your Salesforce org. Salesforce Connect uses a
live connection to external data to always keep external objects up-to-date.

51

CommentsFitSolution

Accessing an external object fetches the data from the external system in real
time.

Salesforce Connect lets you:

• Query data in an external system.

• Create, update, and delete data in an external system.

• Access external objects via list views, detail pages, record feeds, custom
tabs, and page layouts.

• Define relationships between external objects and standard or custom
objects to integrate data from different sources.

• Enable Chatter feeds on external object pages for collaboration.

• Run reports (limited) on external data.

• View the data on the Salesforce mobile app.

To access data stored on an external system using Salesforce Connect, you
can use one of the following adapters:

• OData 2.0 adapter or OData 4.0 adapter — connects to data exposed by
any OData 2.0 or 4.0 producer.

• Cross-org adapter — connects to data that’s stored in another Salesforce
org. The cross-org adapter uses the standard Lightning Platform REST API.
Unlike OData, the cross-org adapter directly connects to another org
without needing an intermediary web service.

• Custom adapter created via Apex — if the OData and cross-org adapters
aren’t suitable for your needs, develop your own adapter with the Apex
Connector Framework.

Use Salesforce web service APIs to make ad-hoc data requests to access and
update external system data. This solution includes the following approaches:

Use Salesforce SOAP API. A custom Visualforce page or button initiates an
Apex SOAP callout in a synchronous manner. In Salesforce, you can consume

SuboptimalRequest and Reply

a WSDL and generate a resulting proxy Apex class. This class provides the
necessary logic to call the remote service. A user-initiated action on a
Visualforce page then calls an Apex controller action that executes this proxy
Apex class to perform the remote call. Visualforce pages require customization
of the Salesforce app.

Use Salesforce REST API. A custom Visualforce page or button initiates an Apex
HTTP callout (REST service) in a synchronous manner. In Salesforce, you can
invoke HTTP services using standard GET, POST, PUT, and DELETE methods.
You can use several HTTP classes to integrate with RESTful services. A
user-initiated action on a Visualforce page then calls an Apex controller action
that executes these proxy Apex classes to perform the remote call. Visualforce
pages require customization of the Salesforce app.

For more information on this solution, see Remote Process
Invocation—Request and Reply.

52

Data Virtualization

Sketch

The following diagram illustrates how you can use Salesforce Connect to pull data from an external system using an OData adapter.

In this scenario:

1. The browser performs an AJAX call that in turn performs an action on the corresponding external object adapter.

2. The adapter translates the action into an OData request and makes an HTTP GET request to the remote system via the Integration
and Services layers.

3. The remote system returns a JSON response to Salesforce via the Integration and Services layers.

4. The response is translated from OData into an external object and presented back to the browser.

Results

The application of the solutions related to this pattern allows for user-interface initiated invocations in which the result of the transaction
can be displayed to the end user.

Calling Mechanisms

53

Data Virtualization

The calling mechanism depends on the solution chosen to implement this pattern.

DescriptionCalling Mechanism

Salesforce Connect maps Salesforce external objects to data tables in external systems. Instead of
copying the data into your org, Salesforce Connect accesses the data on demand and in real time.

External Objects

Even though the data is stored outside your org, Salesforce Connect provides seamless integration
with the Lightning Platform. External objects are available to Salesforce tools, such as global search,
lookup relationships, record feeds, and the Salesforce mobile app. External objects are also available
to Apex, SOSL, SOQL queries, Salesforce APIs, and deployment via the Metadata API, change sets,
and packages.

Used when the remote process is triggered as part of an end-to-end process involving the user
interface, and the result must be displayed or updated in a Salesforce record. For example, a process

Lighting Components or
Visualforce Pages

that submits credit card payments to an external payment gateway and immediately returns
payment results that are displayed to the user. Integration triggered from user interface events
usually requires the creation of custom Lightning components or Visualforce pages.

Error Handling

It’s important to include error handling as part of the overall solution. When an error occurs (exceptions or error codes are returned to
the caller), the caller manages the error handling. The Salesforce Connect Validator is a free tool to run some common queries and notice
error types and failure causes.

Benefits

Some of the benefits of using a Salesforce Connect solution are:

• This solution doesn't consume data storage in Salesforce.

• Users don't have to worry about regularly synchronizing data between the external system and Salesforce.

• A declarative setup that can be achieved quickly with OData, or a cross-org adapter, or using minimal code with a custom Apex
adapter.

• Users can access external data with much of the same functionality as custom objects in the form of external objects.

• Ability to do a federated search in the connected external system using global search.

• Ability to run reports that access external data from cloud and on-premises sources. Refer to reporting considerations below.

Salesforce Connect Considerations

The Salesforce Connect solution has the following considerations:

• External objects behave like custom objects, but some features aren’t available for external objects. For more information, see
Salesforce Compatibility Considerations for Salesforce Connect.

• External objects can impact report performance. For more information, see Report Considerations for Salesforce Connect.

• For additional considerations for using Salesforce Connect adapters see Considerations for Salesforce Connect—All Adapters.

• If you’re considering using a cross-org adapter, see Considerations for Salesforce Connect—Cross-Org Adapter.

• If you’re considering using a OData adapter, see Considerations for Salesforce Connect—OData 2.0 and 4.0 Adapters.

• If you’re considering using a custom Apex adapter, see Considerations for Salesforce Connect—Custom Adapter.

Security Considerations

Solutions for this pattern should adhere to standard Salesforce org-level security. It’s recommended you use the HTTPS protocol to
connect to any remote system. For more details, see Security Considerations.

54

Data Virtualization

https://appexchange.salesforce.com/listingDetail?listingId=a0N3A00000EJHQ6UAP
https://help.salesforce.com/articleView?id=platform_connect_considerations_compatibility.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=platform_connect_considerations_reports.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=platform_connect_considerations.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=xorg_considerations.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=odata_considerations.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=apex_adapter_considerations.htm&type=5&language=en_US

If you’re using an OData connector, make sure that you understand the special behaviors, limitations, and recommendations for Cross-Site
Request Forgery (CSRF) on OData external data sources. For more information, see CSRF Considerations for Salesforce Connect — OData
2.0 and 4.0 Adapters.

Sidebars

Timeliness

Timeliness is of significant importance in this pattern. Keep the following points in mind:

• The request is typically invoked from the user interface, so the process must not keep the user waiting.

• Depending on the availability of and the connection to the external system, it can take a long time to retrieve external data. Salesforce
has a configurable 120-second maximum timeout value to wait for a response from the external system.

• Completion of the remote process should execute in a timely manner and complete within the Salesforce timeout limit and within
user expectations.

Data Volumes

This pattern is used primarily for small volume, real-time activities, due to the small timeout values and maximum size of the request or
response for the Apex call solution. Don’t use this pattern in batch processing activities in which the data payload is contained in the
message.

Endpoint Capability and Standards Support

The capability and standards support for the endpoint depends on the solution that you choose.

Endpoint ConsiderationsSolution

OData APIs—Uses the Open Data Protocol to access data that’s
stored outside Salesforce. The external data must be exposed via
OData producers.

Salesforce Connect

Other APIs—Use the Apex Connector Framework to develop your
own custom adapter when the other available adapters aren’t
suitable for your needs. A custom adapter can obtain data from
any source. For example, some data can be retrieved from the
internet via callouts, while other data can be manipulated or even
generated programmatically.

Connect to Salesforce—Uses the Lightning Platform REST API to
access data that’s stored in other Salesforce orgs.

Connect via Middleware

Connect via Middleware—The Salesforce Connect partner
ecosystem has worked closely with Salesforce to make sure that
their middleware gateways expose OData endpoints from their
service so Salesforce can connect with them without writing
additional code.

Apex SOAP Callouts

The endpoint must be able to receive a web service call via HTTP.
Salesforce must be able to access the endpoint over the public
Internet.

Request & Reply

55

Data Virtualization

https://help.salesforce.com/articleView?id=odata_considerations_csrf.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=odata_considerations_csrf.htm&type=5&language=en_US

Endpoint ConsiderationsSolution

Apex HTTP Callouts

The endpoint must be able to receive HTTP calls. Salesforce must
be able to access the endpoint over the public Internet.

You can use Apex HTTP callouts to call RESTful services using the
standard GET, POST, PUT, and DELETE methods.

State Management

When integrating systems, keys are important for on-going state tracking. For example, if a record gets created in the remote system,
typically the record needs some sort of identifying key to support ongoing updates. There are two options:

• Salesforce stores the primary or unique surrogate key for the remote record.

• The remote system stores the Salesforce unique record ID or some other unique surrogate key. There are specific considerations for
handling integration keys in this synchronous pattern.

DescriptionMaster System

The remote system stores either the Salesforce record ID or some
other unique surrogate key from the record.

Salesforce

The call to the remote process returns the unique key from the
application, and Salesforce stores that key value in a unique record
field.

Remote System

Complex Integrations

In certain cases, the solution prescribed by this pattern can require the implementation of a complex integration scenario. These scenarios
are often solved using middleware. The scenarios include:

• Aggregation of calls and their results across calls to multiple systems

• Transformation of both inbound and outbound messages

• Maintaining transactional integrity across calls to multiple systems

• Other process orchestration activities between Salesforce and the external system

Governing Limits

Different limits apply for different adapters. For more details, see General Limits for Salesforce Connect.

Middleware Capabilities

The following table highlights the desirable properties of a middleware system that participates in this pattern.

Not requiredDesirableMandatoryProperty

XEvent handling

XProtocol conversion

XTranslation and transformation

XQueuing and buffering

56

Data Virtualization

https://help.salesforce.com/articleView?id=platform_connect_general_limits.htm&type=5&language=en_US

Not requiredDesirableMandatoryProperty

XSynchronous transport protocols

XAsynchronous transport protocols

XMediation routing

XProcess choreography and service orchestration

XTransactionality (encryption, signing, reliable
delivery, transaction management)

XRouting

XExtract, transform, and load

XLong polling

External Object Relationships

External objects support standard lookup relationships, which use the 18-character Salesforce record ID to associate related records.
However, data that’s stored outside your Salesforce org often doesn’t contain those record IDs. Therefore, two special types of lookup
relationships are available for external objects: external lookups and indirect lookups.

This table summarizes the types of relationships that are available to external objects.

Parent Field for Matching
Records

Allowed Parent ObjectsAllowed Child ObjectsRelationship

The 18-character Salesforce
record ID

Standard, CustomStandard, Custom, ExternalLookup

The External ID standard fieldExternalStandard, Custom, ExternalExternal lookup

Select a custom field with the
External ID and Unique
attributes

Standard, CustomExternalIndirect lookup

High Data Volume Considerations for Salesforce Connect—OData 2.0 and 4.0 Adapters

If your org hits rate limits when accessing external objects, consider selecting the High Data Volume option on the associated external
data sources. Doing so bypasses most rate limits, but some special behaviors and limitations apply. For more information, see High Data
Volume Considerations for Salesforce Connect.

Client-Driven and Server-Driven Paging for Salesforce Connect—OData 2.0 and 4.0 Adapters

It's common for Salesforce Connect queries of external data to have a large result set that's broken into smaller batches or pages. You
decide whether to have the paging behavior controlled by the external system (server-driven) or by the OData 2.0 or 4.0 adapter for
Salesforce Connect (client-driven). The Server Driven Pagination field on the external data source specifies whether to use client-driven
or server-driven paging. If you enable server-driven paging on an external data source, Salesforce ignores the requested page sizes,
including the default queryMore() batch size of 500 rows. The pages returned by the external system determine the batches, but
each page can’t exceed 2,000 rows. However, the limits for the OData adapters for Salesforce Connect still apply.

57

Data Virtualization

https://help.salesforce.com/articleView?id=odata_considerations_high_data_volume.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=odata_considerations_high_data_volume.htm&type=5&language=en_US

Example

A manufacturing company uses Salesforce to manage customer cases. The customer service agents want to access the real-time order
information from the back-office ERP system to get a 360 view of the customer without having to learn and manually run reports in ERP.

Implementing the solution prescribed by this pattern, you should:

• Configure your external data source with an OData endpoint. Your remote application may include native support for OData. For
other applications, major integration vendors such as Dell Boomi, Informatica, Jitterbit, MuleSoft, and Progress Software have partnered
with Salesforce on Salesforce Connect to build adapters.

• Point Salesforce Connect at the OData endpoint, either directly, or through a middleware solution.

• Sync your external database tables with external objects in Salesforce. When a user accesses a page with data from these external
objects, Salesforce Connect makes real-time callouts to your back-end applications.

58

Data Virtualization

APPENDICES

APPENDIX A Resources—External

1. Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns. Boston: Addison-Wesley Professional, 2003.

2. Microsoft Corporation. Integration Patterns (Patterns & Practices). Redmond: Microsoft Press, 2004.

3. “Synchronous vs. Asynchronous Communication in Applications Integration,” MuleSoft, last accessed March 18, 2019,
https://www.mulesoft.com/resources/esb/applications-integration.

4. “Hub and Spoke [or] Zen and the Art of Message Broker Maintenance,” Enterprise Integration Patterns, last accessed March 18, 2019,
http://www.eaipatterns.com/ramblings/03_hubandspoke.html.

59

http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=sr_1_1?s=books&ie=UTF8&qid=1337717676&sr=1-1
http://www.amazon.com/Integration-Patterns-Practices-Microsoft-Corporation/dp/073561850X/ref=sr_1_2?s=books&ie=UTF8&qid=1337717848&sr=1-2
https://www.mulesoft.com/resources/esb/applications-integration
http://www.eaipatterns.com/ramblings/03_hubandspoke.html

APPENDIX B Resources—Salesforce

Developer Documentation

• Salesforce Help: Give Integration Users API Only Access

• SOAP API Developer Guide

• REST API Developer Guide

• Streaming API Developer Guide

• Bulk API 2.0 and Bulk API Developer Guide

• Apex Developer Guide

• SOQL and SOSL Reference

• Salesforce Developer Limits and Allocations Quick Reference

• Platform Events Developer Guide

• Apex Developer Guide: Salesforce Connect

Trailhead

• Large Data Volumes

• Platform Events Basics

• Change Data Capture Basics

• Salesforce Connect

• Quick Start: Salesforce Connect

60

https://help.salesforce.com/s/articleView?id=sf.integration_user.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.api.meta/api/sforce_api_quickstart_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_rest.meta/api_rest/intro_what_is_rest_api.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_streaming.meta/api_streaming/intro_stream.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_asynch.meta/api_asynch/asynch_api_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_dev_guide.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.platform_events.meta/platform_events/platform_events_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/platform_connect_about.htm
https://trailhead.salesforce.com/en/content/learn/modules/large-data-volumes
https://trailhead.salesforce.com/en/content/learn/modules/platform_events_basics
https://trailhead.salesforce.com/en/content/learn/modules/change-data-capture
https://trailhead.salesforce.com/en/content/learn/modules/lightning_connect
https://trailhead.salesforce.com/en/content/learn/projects/quickstart-lightning-connect

APPENDIX C Security Considerations

To be effective members of the enterprise portfolio, all applications must be created and integrated with relevant security mechanisms.
Modern IT strategies employ a combination of on-premises and cloud-based services.

While integrating cloud-to-cloud services typically focuses on web services and associated authorization, connecting on-premises and
cloud services often introduces increased complexity. This section describes security tools, techniques, and Salesforce-specific
considerations.

Reverse Proxy Server

“A reverse proxy is a server that sits in front of web servers and forwards client (e.g. web browser) requests to those web servers. Reverse
proxies are typically implemented to help increase security, performance, and reliability.”10

It’s “a type of proxy server that retrieves resources on behalf of a client from one or more servers. These resources are then returned to
the client as though they originated from the proxy server itself. Unlike a forward proxy, which is an intermediary for its associated clients
to contact any server, a reverse proxy is an intermediary for its associated servers to be contacted by any client.”11

In Salesforce implementations, such a service is typically provided via an external gateway product. For example, open source options
such as Apache HTTP, lighttpd, and nginix can be used. Commercial products include IBM WebSeal and Computer Associates SiteMinder.
These products can be easily configured to proxy and manage all outbound Salesforce requests on behalf of the internal requester.

Encryption

Some enterprises require selected transactions or data fields to be encrypted between a combination of on-premises and cloud-based
applications. If your organization must adhere to additional compliance requirements, you can implement alternatives, including:

• On-premises commercial encryption gateway services, including Salesforce’s own, CipherCloud, IBM DataPower, Computer Associates.
For each solution, the encryption engine or gateway is invoked at the transaction boundary by sending and receiving an encrypted
payload or when encrypting or decrypting specific data fields before the HTTP(S) request executes.

• Cloud-based options, such as Salesforce Shield Platform Encryption. Shield Platform Encryption gives your data a whole new layer
of security while preserving critical platform functionality. The data you select is encrypted at rest using an advanced key derivation
system. You can protect your data more securely than ever before. Refer to the Salesforce online help for more information.

Specialized WS-* Protocol Support

To address the requirements of security protocols (such as WS-*), we recommend these alternatives.

10 “What Is a Reverse Proxy?,” Cloudflare, last accessed April 11, 2019, https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/.
11 “Reverse proxy,” Wikipedia, last accessed April 11, 2019, http://en.wikipedia.org/wiki/Reverse_proxy.

61

https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/
http://en.wikipedia.org/wiki/Reverse_proxy

• Security/XML gateway—Inject WS-Security credentials (IBM WebSeal or Datapower, Layer7, TIBCO, and so on) into the transaction
stream itself. This approach requires no changes to application-level web services or web service invocations from Salesforce. You
can also reuse this approach across the Salesforce installation. However, it requires additional design, configuration, testing, and
maintenance to manage the appropriate WS-Security injection into the existing security gateway approach.

• Transport-level encryption—Encrypt the communication channel using two-way SSL and IP restrictions. While this approach doesn’t
directly implement the WS-* protocol by itself, it secures the communication channel between the on-premises applications and
Salesforce without passing a username and password. It also doesn’t require changes to Salesforce-generated classes. However,
some on-premises web services modifications might be required (at either the application itself or at the middleware/ESB layer).

• Salesforce custom development—Add WS-Security headers to the outbound SOAP request via the WSDL2Apex utility. This generates
a Java-like Apex class from the WSDL file used to invoke the internal service. While this approach requires no changes to back-end
web services or additional components in the DMZ, it does require:

– an increased build and test effort

– a relatively complex and manual process to hand-code the WS-Security attributes (including XML serialization within the Apex
code)

– a higher long-term maintenance effort

Note: The last option isn’t recommended due to its complexity and the risk that such integrations need periodic reviews
based on regular updates to Salesforce.

62

Security Considerations

APPENDIX D Event Driven Architecture

The Salesforce Enterprise Messaging Platform (EMP) with Platform Events, Streaming API, and Change Data Capture (CDC) enables
enterprises to create event driven style architectures (EDAs).

An EDA decouples event message consumers (subscribers) from event message producers (publishers), allowing for greater scale and
flexibility. Specific patterns are covered in this document as part of the existing pattern structure that compare and contrast related
alternatives or options. However, getting a holistic understanding of the event driven architecture, and how patterns interplay, can help
you select the right pattern for your needs.

63

	Introduction
	Integration Patterns Overview
	Purpose and Scope
	Pattern Template
	Pattern Summary
	Pattern Approach
	Pattern Selection Guide
	Middleware Terms and Definitions

	Design Pattern Catalog
	Remote Process Invocation—Request and Reply
	Remote Process Invocation—Fire and Forget
	Batch Data Synchronization
	Remote Call-In
	UI Update Based on Data Changes
	Data Virtualization

	Appendices
	Resources—External
	Resources—Salesforce
	Security Considerations
	Event Driven Architecture

