
SQL for Analytics Developer
Guide

Salesforce, Summer ’24

Last updated: May 3, 2024

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

INTRODUCING SQL FOR CRM ANALYTICS . 1

QUICK START: RUN YOUR FIRST QUERY . 2

SQL VS SAQL . 4

SQL STATEMENTS . 5
SELECT Clause . 5

DATE FUNCTIONS . 41
Access Parts of a Date . 41
Project a Date Field . 42
Filter By Date Parts or Date Field . 43
Group By Date Part . 43
Order By Date Part . 44
Project a Custom Fiscal Date Part . 44
Day in Week, Month, Quarter or Year Functions . 45
First and Last Day in the Week, Month, Quarter or Year Functions . 48

AGGREGATE FUNCTIONS . 59
avg() . 59
count() . 60
min() . 60
max() . 60
sum() . 60
stddev_pop() . 61
stddev_samp() . 61
var_pop() . 61
var_samp() . 61
regr_intercept() . 61
regr_slope() . 62
regr_r2() . 62
percentile_cont . 62
percentile_disc . 62

MATH FUNCTIONS . 63
abs(n) . 64
acos(n) . 65
asin(n) . 65

atan(n) . 65
ceil(n), ceiling(n) . 66
cos(n) . 66
degrees(n) . 67
exp(n) . 67
floor(n) . 68
ln(n) . 68
log(m,n) . 69
log10(n) . 69
pi() . 69
power(m,n) . 70
radians(n) . 70
round(n[,m]) . 71
sign(n) . 71
sin(n) . 72
sqrt(n) . 72
tan(n) . 72
trunc(n[,m]) . 73

STRING FUNCTIONS AND OPERATORS . 74
ascii(char) . 74
chr(int) . 75
char_length(str) . 75
ends_with(source_str, search_str) . 76
index_of(source_str, search_str, [position,occurrence]) . 76
lower(str) . 77
mv_to_string(multivalue_column_name, [delimeter]) . 77
position(search_str IN source_str) . 79
replace(str, old_str, new_str) . 80
starts_with(source_str, search_str) . 80
substring(str FROM start FOR length) . 81
trim(LEADING | TRAILING | BOTH, chars, str) . 82
upper(str) . 82

RELEASE NOTES . 84

Contents

INTRODUCING SQL FOR CRM ANALYTICS

SQL for CRM Analytics is a query language that lets you execute queries against your CRM Analytics datasets. SQL (Structured Query
Language) is typically used for working with data stored in relational databases—you might already be familiar with variants like MySQL
and PostGreSQL. CRM Analytics uses the ANSI SQL interface to access CRM Analytics’s fast in-memory data store. It has native support
of Salesforce features used in CRM Analytics, including sharing inheritance and custom fiscal calendars.

SQL for CRM Analytics supports these standard SQL features.

• SELECT Clause

• FROM Clause

• WHERE Clause

• GROUP BY Clause

• GROUP BY ROLLUP

• GROUPING()

• HAVING Clause

• ORDER BY Clause

• LIKE Clause

• LIMIT Clause

• FETCH Clause

• OFFSET Clause

• CASE statements

• COALESCE()

• NULLIF()

• UNION Operator

• Aggregate, windowing, math, and string functions

• Subqueries

Note: These features don’t support the full range of cases covered by ANSI SQL. Refer to each statement in the SQL for CRM
Analytics reference for more information.

SEE ALSO:

Add Row-Level Security by Inheriting Sharing Rules

1

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_security_datasets_sharing_about.htm&language=en_US#bi_security_datasets_sharing_about

QUICK START: RUN YOUR FIRST QUERY

Let’s write a basic query for SQL for CRM Analytics in Analytics Studio.

1. In CRM Analytics Studio, open a Lens on a dataset.

2. Click the Query Mode button.

3. SAQL is the default query language. To use SQL, click Switch to SQL.

4. Switching to SQL provides a warning that switching clears your current query. If you don't want to lose the SAQL query, copy it. Then
click Switch to SQL.

2

Note: To return to SAQL query language, click the Chart Mode button, then click the Query Mode button. If you return to
SAQL, you lose any SQL query changes that you made.

5. The default query for SQL is the row count in your dataset. Let's update the query to count the number of times a category occurs
for each city. To run the query, click the Run Query button. Because we limit the results to 10 rows, the results display the first 10
cities in the furniture category.

SELECT Category, City, count(*) as "count" FROM "Superstore"
GROUP BY Category, City
LIMIT 10;

countCityCategory

2AkronFurniture

3Alexandria

1Allen

1Allentown

4Amarillo

8Anaheim

1Andover

1Apopka

2Apple Valley

13Arlington

SEE ALSO:

Find Analytics and Insights

3

Quick Start: Run Your First Query

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_home_browse.htm&language=en_US#bi_home_browse

SQL VS SAQL

SQL for CRM Analytics and Salesforce Analytics Query Language (SAQL) are both query languages intended for use with CRM Analytics.
Here's a guide to their different behaviors and limitations.

You can only write SQL queries against datasets.

SQL for CRM Analytics doesn't offer support for these features available in SAQL.

• Random sampling

• Cogrouping

• SAQL functions string_to_number() and toString(). Type casting is unavailable in SQL for CRM Analytics.

• Relative date filtering, for example, Closed_Date in ["2 years ago".."1 day ago"]

• Date functions such as day_in_week(), date_diff(), now(), date_to_epoch(), and date_to_string()tc

SQL and SAQL have the following differences in behavior.

• In a grouped query, SQL returns a group for null values in a grouped query by default.

• In SQL, counting all records in an empty dataset returns 0. In SAQL, it returns an empty response.

• In SQL, the GROUPING() function can take multiple arguments. In SAQL, it takes one argument only.

• SAQL’s DateOnly type corresponds with SQL for CRM Analytics’s Date type.

• SAQL’s DateTime and Date types correspond with SQL’s Timestamp type.

• In SQL, the Date and Timestamp types are treated as dates. In SAQL, when timezone is enabled, the DateOnly and
DateTime types are treated as dates. When timezone isn’t enabled, the DateOnly and DateTime types are treated as strings.

• When columns in a SELECT statement have the same data types, but different aliases, UNION ALL in SQL returns the results
in a single column. In SAQL, union returns all of the columns.

• If your values query (one without a grouping) includes aggregated and non-aggregated fields, SQL throws an error. SAQL handles
such queries differently by taking the value of individual rows.

In this example, City is a non-aggregated field. Count and sum_Profit are aggregated fields.

This SQL query throws an error.

SELECT City AS "City", COUNT(*) AS "Count", sum(Profit) AS "sum_Profit"
FROM "Superstore"
LIMIT 100;

The corresponding SAQL query yields the sum of Profit for each City.

q = load "Superstore";
q = foreach q generate 'City' as 'City', count() as 'count', sum('Profit') as
'sum_Profit';

SEE ALSO:

Analytics SAQL Developer Guide

4

https://developer.salesforce.com/docs/atlas.en-us.250.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_intro.htm

SQL STATEMENTS

Use a SQL statement to access and perform operations on data from one or more tables in your database.

A statement is made up of a series of clauses. It must include the keywords SELECT and FROM. SELECT indicates which columns
to retrieve, and FROM indicates which tables the columns are in. A statement follows this syntax:

SELECT column_name FROM table_name

Note: Einstein Analytics SQL does not support the use of * with the SELECT clause. You must specify which columns to retrieve.

SELECT Clause

The SELECT clause retrieves columns from a table.

SELECT Clause

The SELECT clause retrieves columns from a table.

SELECT query syntax takes the form of a required SELECT statement followed by one or more optional clauses, such as WHERE,
GROUP BY, and ORDER BY.

For a simple column projection, SQL outputs the results with the name of the column provided. If you include additional expressions
and functions, you must use an alias to name the column output. Include an alias by following the structure expression AliasName
or expression as AliasName. The "as" is not required.

Note: Unlike other versions of SQL, the CRM Analytics SQL server throws an error if you don't include an alias. It does not
automatically provide an alias name.

Let's look at an example.

SELECT City, COUNT(*) as StoreCount
FROM "Superstore"
GROUP BY City;

Here are the first ten results.

StoreCountCity

1Aberdeen

1Abilene

21Akron

14Albuquerque

16Alexandria

4Allen

7Allentown

5

StoreCountCity

2Altoona

10Amarillo

27Anaheim

This query returns a table with two columns, City and the alias StoreCount. StoreCount is the column name given to the
expression, COUNT(*), which means count the number of rows for each city in the Superstore table. The GROUP BY clause groups
all of the store counts by the City column.

SELECT supports the following operators.

Supported TypesOperator NameType

Numeric, String+Arithmetic Operators

Numeric-

Numeric*

Numeric/

Numeric%

Numeric, String, Boolean!=, =Comparison Operators

Numeric, String<, <=, >, >=

Numeric, StringIN, NOT IN

BooleanAND, OR, NOTLogical Operators

Numeric, String, BooleanCASE ... ENDCase Operators

SELECT supports arithmetic operators between measure fields and using "+" between string fields.

FROM Clause

The FROM clause defines which table or table function to query. CRM Analytics SQL supports using FROM with a single table only.
You can’t select from multiple tables.

WHERE Clause

By default, a SQL query retrieves every row in your dataset. Use the optional WHERE clause to restrict your query results to a
conditional expression.

Boolean Expressions in SELECT Clause

A boolean expression is a logical statement that returns either true or false.

GROUP BY Clause

The GROUP BY clause organizes the rows returned from a SELECT statement into groups. Within each group, you can apply
an aggregate function, like count() or sum() to get the number of items or sum, respectively.

6

SELECT ClauseSQL Statements

GROUP BY ROLLUP

ROLLUP is a sub-clause of GROUP BY that creates and displays aggregations of column data. The results output of ROLLUP is
based on column order in your query.

GROUPING()

Use the GROUPING() clause with ROLLUP to determine whether null values are the result of a ROLLUP operation or part of
your dataset. GROUPING() returns 1 if the null value is a subtotal generated by a rollup. It returns 0 otherwise.

HAVING Clause

Use the HAVING clause to filter grouped results from grouped columns, aggregate functions, or grouping functions.

ORDER BY Clause

SELECT returns rows in an unspecified order by default. To sort returned rows in ascending or descending order, use the ORDER
BY clause.

LIKE Clause

Use LIKE to match single characters and patterns found anywhere in a string—beginning, ending, or somewhere in between.

BETWEEN Operator

Use BETWEEN to check whether values fall within a given range. BETWEEN accepts numeric, string, and date data types, and can
be used with aggregate, window, and math functions.

LIMIT Clause

The LIMIT clause specifies the maximum number of rows to return. If no LIMIT clause is specified, then SQL returns all rows.

FETCH Clause

The FETCH clause specifies the number of rows to return. If no FETCH clause is specified, then SQL returns all rows.

OFFSET Clause

By default, a SQL query retrieves every row in your dataset. Use the optional WHERE clause to restrict your query results to a
conditional expression.

CASE Statements

Use case statements to express if/then logic. A case statement always has a pair of WHERE and THEN statements. CRM Analytics
supports the simple and searched forms of case expressions in a SELECT statement. Case statements have two formats: simple
and searched.

COALESCE()

You can use the coalesce() function as shorthand for case statements. The coalesce() function replaces null values in
your dataset with another value. The function takes a series of arguments and returns the first value that is not null.

NULLIF()

Use the nullif() function as shorthand for a searched case statement where two equal expressions return null.

UNION Operator

Use the UNION operator to combine the results of two or more SELECT statements. The joined statements must have the same
number of columns and the same data types for corresponding columns.

Subquery

A subquery is a query that is nested inside a SELECT statement. Nesting queries allows you to perform multi-step operations.

Window Functions

A window function lets you perform calculations on a selection—or "window"—of rows that are related to the current row. Unlike
a regular aggregate function, such as avg(), sum(), or count(), the row output of a window function isn’t grouped into a
single row.

7

SELECT ClauseSQL Statements

FROM Clause
The FROM clause defines which table or table function to query. CRM Analytics SQL supports using FROM with a single table only. You
can’t select from multiple tables.

CRM Analytics SQL supports the following table functions.

FILL

Use the FILL() table function to fill in any gaps in date fields. By specifying the date fields to check, FILL() creates rows that
contain the missing month, day, week, quarter, or year and null data. Use it with TIMESERIES() to forecast future results when
there are gaps in input data.

TIMESERIES

Use the TIMESERIES() table function to predict future values based on existing ones tracked over time. Optionally choose a
prediction model, confidence interval, and seasonality among other parameters.

FILL

Use the FILL() table function to fill in any gaps in date fields. By specifying the date fields to check, FILL() creates rows that
contain the missing month, day, week, quarter, or year and null data. Use it with TIMESERIES() to forecast future results when there
are gaps in input data.

FILL() takes the following syntax.

SELECT <PROJECTION_LIST>|* FROM FILL(
INPUT=>(SELECT STATEMENT),
DATE_COLS=>ARRAY[<DATE_FIELDS>, 'DATE_COLUMN_TYPE'],
[PARTITION=>'FIELD_NAME']

)

DescriptionName

Required. A SELECT statement that includes date information
and is the input to the FILL() function.

INPUT

Required.

DATE_FIELDS—The array of date fields in which to check for
gaps.

DATE_COLS

The DATE_COLUMN_TYPE string accepts these values.

• 'YEAR_FIELD', 'MONTH_FIELD', 'Y-M'

• 'YEAR_FIELD', 'QUARTER_FIELD', 'Y-Q'

• 'YEAR_FIELD', 'Y'

• 'YEAR_FIELD', 'WEEK_FIELD', 'Y-W'

• 'YEAR_FIELD', 'MONTH_FIELD', 'DAY_FIELD',
'Y-M-D'

Optional. A field used to split query results into smaller partitions.
The FILL() function resets when the field value changes. After

PARTITION

8

FROM ClauseSQL Statements

DescriptionName

each group of rows is completed for a given partition, FILL()
runs on the next partition.

Example
This example uses FILL() to add missing quarter and year values to tourist data.

SELECT "year", "quarter", tourists FROM FILL(
INPUT=>(SELECT EXTRACT(YEAR FROM "date") as "year", EXTRACT(QUARTER FROM "date") as

"quarter",
tourists FROM "TouristsData"),

DATE_COLS=>ARRAY['year', 'quarter', 'Y-Q']);

The input SELECT statement returns the year, quarter, and number of tourists for each quarter. Based on the results from the first three
years represented in the dataset, the only date data available is for the first quarter.

Tip: Another way to project all columns from the INPUT query is by using SELECT * FROM FILL(...).

These are the results from executing only the INPUT SELECT query.

touristsquarteryear

412712001

417312002

462112003

FILL() specifies in the DATE_COLS array to check for gaps in year and quarter fields in the input data. To have a complete dataset
of years and quarters, FILL() adds the 2nd, 3rd, and 4th quarters for each year and a null value for the number of tourists.

touristsquarteryear

412712001

-22001

-32001

-42001

417312002

-22002

-32002

-42002

462112003

-22003

9

FROM ClauseSQL Statements

touristsquarteryear

-32003

-42003

TIMESERIES

Use the TIMESERIES() table function to predict future values based on existing ones tracked over time. Optionally choose a
prediction model, confidence interval, and seasonality among other parameters.

TIMESERIES() takes the following syntax.

SELECT * FROM TIMESERIES(
INPUT=>(SELECT STATEMENT),
FIELDS=>ARRAY['MEASURE1', 'MEASURE2,...'],
LENGTH=>NUMBER,
[DATE_COLS=>ARRAY[<DATE_FIELDS>, 'DATE_COLUMN_TYPE'],]
[IGNORE_LAST=BOOLEAN,]
[ORDER=>ARRAY['FIELD_NAME1', 'DESC'|'ASC', 'FIELD_NAME2', 'DESC'|'ASC',...],],
[PARTITION=>'FIELD_NAME',]
[PREDICTION_INTERVAL=>ARRAY[NUMBER],]
[MODEL=>'MODEL_NAME',]
[SEASONALITY=NUMBER]

)

DescriptionName

Required. A SELECT statement that includes date information
and is the input to the TIMESERIES() function.

INPUT

Required. The field values in the input query from which to predict
future values. Predicted values are automatically named
predicted_fieldName.

FIELDS

Required. The number of points to predict.LENGTH

Optional.

DATE_FIELDS—The array of date fields from which to base
future predictions.

DATE_COLS

The DATE_COLUMN_TYPE string accepts these values.

• 'YEAR_FIELD', 'MONTH_FIELD', 'Y-M'

• 'YEAR_FIELD', 'QUARTER_FIELD', 'Y-Q'

• 'YEAR_FIELD', 'Y'

• 'YEAR_FIELD', 'WEEK_FIELD', 'Y-W'

• 'YEAR_FIELD', 'MONTH_FIELD', 'DAY_FIELD',
'Y-M-D'

Optional, unless no DATE_COLS are specified.ORDER

10

FROM ClauseSQL Statements

DescriptionName

Optional. A field used to split query results into smaller partitions.
The TIMESERIES() function resets when the field value

PARTITION

changes. After each group of rows is completed for a given
partition, TIMESERIES() runs on the next partition.

Optional. The confidence interval to display for each forecasted
data point.

PREDICTION_INTERVAL

Optional. If set to TRUE, excludes the last time period from
timeseries calculations.

IGNORE_LAST

Optional. Choose from these prediction models:MODEL

• NONE

• ADDITIVE

• MULTIPLICATIVE

Optional. Use with DATE_COLS to specify the seasonality for the
prediction.

SEASONALITY

Example
This example predicts the annual number of tourists for two years based on available data for previous years.

SELECT * FROM TIMESERIES(
INPUT=>(

SELECT EXTRACT(YEAR FROM "date") AS date_Year, SUM(tourists) AS sum_tourists FROM
"TouristsData" GROUP BY
EXTRACT(YEAR FROM "date")),
FIELDS=>ARRAY['sum_tourists'],
LENGTH=>2,
DATE_COLS=>ARRAY['date_Year', 'Y']

)

Sum of touristspredicted_sum_touristsdate (Year)

13140130082001

13543139642002

15502149342003

15894158942004

16784168552005

17713178162006

18719187772007

-197382008

-207002009

11

FROM ClauseSQL Statements

Sum of touristspredicted_sum_touristsdate (Year)

-216622010

Example with TIMESERIES() and FILL()

To fill in the gaps, the FILL() function takes the input of the annual tourist sums and fills in the gaps (if any) in date fields.
TIMESERIES() takes the input from the FILL() function and predicts the number of tourists expected for the specified length.
Here, LENGTH is set to 3, meaning three years. IGNORE_LAST is set to TRUE to exclude the last row for 2008 from generating
timeseries predictions. TIMESERIES() predicts values from 2008–2010.

SELECT * FROM TIMESERIES(
INPUT=>(

SELECT * FROM FILL(
INPUT=>(SELECT EXTRACT(YEAR FROM "date") AS date_Year, SUM(tourists) AS

sum_tourists
FROM "TouristsData"
GROUP BY EXTRACT(YEAR FROM "date")

),
DATE_COLS=>ARRAY['date_Year', 'Y']

)
),
FIELDS=>ARRAY['sum_tourists'],
LENGTH=>3,
DATE_COLS=>ARRAY['date_Year', 'Y'],
IGNORE_LAST=>TRUE

)

Sum of touristspredicted_sum_touristsdate (Year)

13140130082001

13543139642002

15502149342003

15894158942004

16784168552005

17713178162006

18719187772007

-197382008

-207002009

-216622010

WHERE Clause
By default, a SQL query retrieves every row in your dataset. Use the optional WHERE clause to restrict your query results to a conditional
expression.

12

WHERE ClauseSQL Statements

The conditional expression in the WHERE clause takes the following syntax.

fieldExpression [logicalOperator fieldExpression2][...]

SELECT COUNT(*) as Count
FROM "Superstore"
WHERE City = 'San Francisco';

Count

510

You can add multiple field expressions to conditional expressions with logical operators.

SELECT COUNT(*) as Count FROM "Superstore"
WHERE City = 'Los Angeles' OR City = 'San Francisco';

Count

1,257

The WHERE clause supports these operators.

Supported TypesOperator NameType

Numeric, String, Boolean!=, =Comparison Operators

Numeric, String<, <=, >, >=

Numeric, StringIN, NOT IN

NumericIS NULL, IS NOT NULLNull Operators

BooleanAND, OR, NOTLogical Operators

The left operand of a comparison operator must be a valid field. The right operand cannot be a field. Arithmetic operators (e.g. +, -, /, *,
%) between supported types can be used on the right hand side.

WHERE is limited to comparisons within a single column.

In a non-nested query (a non-subquery), you can’t pass fields to a math or string function in a WHERE clause. You can pass a constant.
To pass fields to a math or string function in a subquery, include it in the outer query’s WHERE clause. If you use it in the innermost
query, SQL throws an error.

Boolean Expressions in SELECT Clause
A boolean expression is a logical statement that returns either true or false.

A boolean expression in SELECT follows this syntax: SELECT boolean_expression as alias.

13

Boolean Expressions in SELECT ClauseSQL Statements

This example demonstrates a query that satisfies one numerical logical condition.

SELECT Profit > 0 as Profits FROM "Superstore" LIMIT 5;

Profits

true

true

true

false

true

This example demonstrates a query that satisfies two numerical logical conditions.

SELECT Profit > 0 and Profit < 100 as Profits FROM "Superstore" LIMIT 5;

Profits

true

false

true

false

true

This example demonstrates a text comparison.

SELECT Customer_Name LIKE 'A%' as "A Names" FROM "Superstore" LIMIT 5;

A Names

false

false

false

false

true

SEE ALSO:

SELECT Clause

14

Boolean Expressions in SELECT ClauseSQL Statements

GROUP BY Clause
The GROUP BY clause organizes the rows returned from a SELECT statement into groups. Within each group, you can apply an
aggregate function, like count() or sum() to get the number of items or sum, respectively.

In this example, the SELECT query counts the number of rows for each category and groups the counts by category.

SELECT Category, COUNT(*) AS "cnt"
FROM "Superstore"
GROUP BY Category;

cntCategory

2,121Furniture

6,026Office Supplies

1,847Technology

You can also group by multiple columns. This query generates the group of cities that contain stores in each category. The count column
shows how many stores there are in each city.

SELECT Category, City, count(*) as cnt
FROM "Superstore"
GROUP BY Category, City

Here are the first ten results.

cntCityCategory

2AkronFurniture

3Alexandria

1Allen

1Allentown

4Amarillo

8Anaheim

1Andover

1Apopka

2Apple Valley

Note: Grouping by ordinal number is not supported. You can't refer to a results column or an expression created by input values
by its index value. To shorten a lengthy expression in your query, use an alias. For example, this query throws an error.

SELECT Category, City, count(*) as cnt
FROM "Superstore"
GROUP BY 1, 2

15

GROUP BY ClauseSQL Statements

GROUP BY ROLLUP
ROLLUP is a sub-clause of GROUP BY that creates and displays aggregations of column data. The results output of ROLLUP is based
on column order in your query.

ROLLUP supports the following aggregate functions.

• Average

• Count

• Min

• Max

• Sum

This example first groups the results by category and sub-category, and runs Sum(Profit), an aggregate function on each resulting
row. By modifying the GROUP BY clause with ROLLUP, the query "rolls up" the results into subtotals and grand totals.

SELECT Category, Sub_Category, Sum(Profit) as TotalProfit
FROM "Superstore"
GROUP BY ROLLUP(Category, Sub_Category);

Notice how GROUP BY ROLLUP (Category, Sub_Category) creates groups for each column combination:

Category, Sub-Category
Category
() — null

The query first groups the total profit for each subcategory of a given category. Next, it groups is the total profit for a single category.
Once each category's total profit is accounted for, the query generates the total profit for all categories.

TotalProfitSub-CategoryCategory

-3,472.56BookcasesFurniture

25,590.17Chairs

13,059.14Furnishings

-17,725.48Tables

18,451.27-

18,138.01AppliancesOffice Supplies

6,527.79Art

30,221.76Binders

6,964.18Envelopes

949.52Fasteners

5,546.25Labels

34,053.57Paper

21,278.83Storage

-1,189.1Supplies

16

GROUP BY ROLLUPSQL Statements

TotalProfitSub-CategoryCategory

122,490.8-

You can also group by multiple columns. This query generates the group of cities that contain stores in each category. The count column
shows how many stores there are in each city.

SELECT Category, City, count(*) as cnt
FROM "Superstore"
GROUP BY Category, City

Here are the first ten results.

cntCityCategory

2AkronFurniture

3Alexandria

1Allen

1Allentown

4Amarillo

8Anaheim

1Andover

1Apopka

2Apple Valley

GROUPING()
Use the GROUPING() clause with ROLLUP to determine whether null values are the result of a ROLLUP operation or part of your
dataset. GROUPING() returns 1 if the null value is a subtotal generated by a rollup. It returns 0 otherwise.

This example uses the GROUPING() function and CASE statements together to label the subtotal and grand total categories. The
first case checks for a null value generated by the rollup in the Category field. If true, then the query labels the field "All Categories."
Similarly, the second case checks whether a Sub-Category field is null. If true, the query labels the field "All Sub-Categories."

SELECT
(CASE WHEN GROUPING("Category") = 1 THEN 'All Categories' ELSE "Category" END) as "Category",
(CASE WHEN GROUPING("Sub_Category") = 1 THEN 'All Sub-Categories' ELSE "Sub_Category" END)
as "SubCategory",
SUM("Sales") as "sum_sales"
FROM "Superstore"
GROUP BY ROLLUP("Category", "Sub_Category");

sum_salesSub-CategoryCategory

114,880BookcasesFurniture

17

GROUPING()SQL Statements

sum_salesSub-CategoryCategory

328,449.1Chairs

91,705.16Furnishings

206,965.53Tables

741,999.8All Sub-Categories

107,532.16AppliancesOffice Supplies

27,118.73Art

203,412.73Binders

16,476.4Envelopes

3,024.28Fasteners

12,486.31Labels

78,479.21Paper

223,843.61Storage

46,673.544Supplies

719,047.03All Sub-Categories

167,380.32AccessoriesTechnology

149,528.03Copiers

189,238.63Machines

330,007.05Phones

838,154.03All Sub-Categories

2,297,200.86All Sub-CategoriesAll Categories

SEE ALSO:

Aggregate Functions

GROUP BY Clause

HAVING Clause
Use the HAVING clause to filter grouped results from grouped columns, aggregate functions, or grouping functions.

HAVING follows this syntax: HAVING search-condition.

A search condition can contain boolean expressions, comparison operators, and scalar functions.

18

HAVING ClauseSQL Statements

Grouped Columns
This query returns groups of cities that contain furniture stores and their counts. The HAVING clause filters for the Furniture
category.

SELECT Category, City, count(*) as "cnt" FROM "Superstore" GROUP BY Category, City HAVING
Category = 'Furniture' LIMIT 10

cntCityCategory

2AkronFurniture

3Alexandria

1Allen

1Allentown

4Amarillo

8Anaheim

1Andover

1Apopka

2Apple Valley

13Arlington

You can also write this query using WHERE.

SELECT Category, City, count(*) as "cnt" FROM "Superstore" WHERE Category = 'Furniture'
GROUP BY Category, City LIMIT 10

In the logical execution of a SELECT statement, WHERE filters out rows before any grouping or aggregate function runs. In this
example, it selects the rows that can be passed to the aggregate function count(). The WHERE clause comes before a GROUP BY
statement. With HAVING, the filtering occurs after all of the rows have been passed to count(). HAVING always comes after a
GROUP BY statement. Both HAVING and WHERE run before projection.

Aggregate Functions
This query returns groups of cities that have more than 150 stores in each category. The HAVING clause filters out values greater than
150 in the aggregate column, cnt.

SELECT Category, City, count(*) as cnt FROM "Superstore"
GROUP BY Category, City HAVING count(*) > 150

cntCityCategory

154Los AngelesFurniture

192New York City

231HoustonOffice Supplies

19

HAVING ClauseSQL Statements

cntCityCategory

443Los Angeles

552New York City

312Philadelphia

322San Francisco

249Seattle

171New York CityTechnology

Using HAVING with an aggregate function automatically implies GROUP BY(). These two queries return the same result.

SELECT Sum(Profit) as TotalProfit
FROM "Superstore"
HAVING Sum(Profit) > 0

SELECT Sum(Profit) as TotalProfit
FROM "Superstore"
GROUP BY ()
HAVING Sum(Profit) > 0

TotalProfit

286,397.02

GROUP BY ROLLUP

Here’s a simple example of how to use HAVING with GROUP BY ROLLUP. The query returns the profit for each Sub-Category,
rolls them up into subtotals of each Category, and then sums up the grand total. Here, HAVING filters on positive profits.

SELECT Category, Sub_Category, Sum(Profit) as TotalProfit FROM "Superstore" GROUP BY
ROLLUP(Category, Sub_Category) HAVING Sum(Profit) > 0;

TotalProfitSub-CategoryCategory

26,590.17ChairsFurniture

13,059.14Furnishings

18,451.27-

18,138.01AppliancesOffice Supplies

6,527.79Art

30,221.76Binders

6,964.18Envelopes

949.52Fasteners

20

HAVING ClauseSQL Statements

TotalProfitSub-CategoryCategory

5,546.25Labels

34,053.57Paper

21,278.83Storage

122,490.8-

41,936.64AccessoriesTechnology

55,617.82Copiers

3,384.76Machines

44,515.73Phones

145,454.95-

286,397.02-

GROUP BY ROLLUP with GROUPING()
In SQL for CRM Analytics, you can use HAVING() with the GROUP BY ROLLUP subclause and the GROUPING() function. You
can use GROUPING() with ROLLUP only; you can't use it on its own.

This example uses the GROUPING() function with the HAVING() function to filter for the subtotals of each category and return
the grand total. The GROUPING() function returns 1 for null values that are the result of a ROLLUP, and not null values in your dataset.
Here, by setting GROUPING(Sub_Category) = 1, we know that these Sub-Category values refer to the subtotals of each
category.

SELECT Category, Sub_Category, Sum(Profit) as TotalProfit
FROM "Superstore"
GROUP BY ROLLUP(Category, Sub_Category)
HAVING GROUPING(Sub_Category) = 1

TotalProfitSub-CategoryCategory

18,451.27-Furniture

122,490.8-Office Supplies

145,454.95-Technology

286,397.02--

SEE ALSO:

WHERE Clause

ORDER BY Clause
SELECT returns rows in an unspecified order by default. To sort returned rows in ascending or descending order, use the ORDER
BY clause.

21

ORDER BY ClauseSQL Statements

ORDER BY takes the following syntax.

ORDER BY field_name(s) [ASC | DESC] [NULLS { FIRST | LAST }]

This example shows how ORDER BY works with multiple fields.

SELECT State, Category, Sub_Category FROM "Superstore" ORDER BY State, Category;

Here, the SELECT statement orders by the State and Category columns. Alabama and Furniture are the first alphabetized fields for
their respective columns. For all of the rows where State is equal to Alabama and Category is equal to Furniture, SQL returns the
Sub-Category column values without any order. When State is equal to Alabama, and Category has displayed all of the Furniture values,
the Category column displays Office Supplies, the next value in alphabetical order.

Sub-CategoryCategoryState

ChairsFurnitureAlabama

ChairsFurnitureAlabama

ChairsFurnitureAlabama

ChairsFurnitureAlabama

FurnishingsFurnitureAlabama

TablesFurnitureAlabama

ChairsFurnitureAlabama

FurnishingsFurnitureAlabama

TablesFurnitureAlabama

FurnishingsFurnitureAlabama

TablesFurnitureAlabama

ChairsFurnitureAlabama

AppliancesOffice SuppliesAlabama

To order the columns in ascending or descending order, use the keywords ASC and DSC. The order is ascending by default. To sort
fields that contain null values, specify NULLS FIRST or NULLS LAST. By default, null values are treated as the largest. In ascending
order, they are ordered last. In descending order, they are first.

LIKE Clause
Use LIKE to match single characters and patterns found anywhere in a string—beginning, ending, or somewhere in between.

LIKE takes this syntax.

[NOT] LIKE pattern

NOT—Optional.

Returns True if the left operand matches the pattern on the right. This operator is case-sensitive. A pattern must be at least two
characters.

22

LIKE ClauseSQL Statements

To match any single character in the string, include an underscore (_). To match any pattern, include a percent sign (%). Starting a pattern
with a percent sign returns all words that end with the specified characters. The percent sign indicates that any number of characters
can precede the specified ones. Ending a pattern with a percent sign returns all the words that begin with the specified characters. Any
number of characters can follow the specified ones. To match a pattern anywhere in a string, the pattern must start and end with a
percent sign.

For example, let's say we have a list of countries. A query that filters on the pattern %a%a% returns Bahamas, Jamaica, Slovakia, and
Trinidad and Tobago. If we change the pattern to _a_a___, the query returns Bahamas and Jamaica.

To include a literal percent sign or underscore in a pattern, escape them with a backwards slash (\).

Additional wildcard characters and regular expressions aren’t supported.

Here are some more examples.

Simple Pattern in a String
This example checks whether a customer name contains the characters "ni" anywhere in the string. If the string contains "ni", then the
condition evaluates to True and the query returns the name.

SELECT Customer_Name as 'name'
FROM "Superstore"
WHERE Customer_Name LIKE "%ni%";
GROUP BY Customer_Name;
LIMIT 5;

name

Annie Thurman

Annie Zypern

Benjamin Venier

Berenike Kampe

Chad Cunningham

One Underscore
This query returns city names that contain any single character preceding "lb" and zero or more characters following it.

SELECT City as 'city'
FROM "Superstore"
WHERE City LIKE "_lb%";
GROUP BY City;

city

Albuquerque

23

LIKE ClauseSQL Statements

Multiple Underscores
If we precede the characters "lb" with two underscores, the query returns results that have any two characters before "lb."

SELECT City as 'city'
FROM "Superstore"
WHERE City LIKE "__lb%";
GROUP BY City;

city

Gilbert

Melbourne

End with Percent Sign
This query matches names that begin with "An." These names include Andrew Levine, Annette Boone, Annette Cline, and Annie Horne.

WHERE Customer_Name LIKE "An%"

Exclude Records with NOT
This query shows all customer names that don’t contain "po." These names include Aaron Davies Bruce, Aaron Day, Aaron Dillon, and
Aaron Riggs.

WHERE Customer_Name NOT LIKE "%po%"

SEE ALSO:

String Functions and Operators

BETWEEN Operator
Use BETWEEN to check whether values fall within a given range. BETWEEN accepts numeric, string, and date data types, and can be
used with aggregate, window, and math functions.

BETWEEN takes this syntax.

<expr> BETWEEN (SYMMETRIC | ASYMMETRIC) <lower_bound> AND <upper_bound>

Numeric Example
This example filters results on flights whose prices are between $300 and $600.

SELECT price, origin, dest
FROM FlightsData
WHERE price BETWEEN 300 and 600
ORDER BY price ASC

24

BETWEEN OperatorSQL Statements

PriceOriginDest

300LAXPHX

400PHXLAX

400LAXPHX

500PHXLAX

550SFOLAX

560OAKLAX

600LAXSFO

600LAXOAK

600PHXLAX

Aggregate and Window Functions Example
This example checks whether the sum of profits for each account is less than 5% of the total sum of profits for all accounts. It returns the
account name, account ID, and IsLowPercent, a boolean value that is true if the sum of profits is less than 5%.

SELECT Account_ID, Account_Name, SUM(Profit) BETWEEN 0 AND 5 * SUM(SUM(Profit)) OVER (ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) / 100 AS IsLowPercent
FROM "Opportunity"
GROUP BY Account_ID, Account_Name
LIMIT 10;

isLowPercentAccount NameAccount ID

trueAlphenymp00137000003dT6qAAE

trueAboveRosa00137000003dT6rAAE

trueAcidyles00137000003dT6sAAE

trueAngelstage00137000003dT6tAAE

trueAnimorror00137000003dT6uAAE

trueAnnouncerKing00137000003dT6vAAE

trueApenguinInca00137000003dT6wAAE

trueAttractivePenguin00137000003dT6xAAE

trueBearDigestAir00137000003dT6yAAE

trueBertramWillow00137000003dT6zAAE

25

BETWEEN OperatorSQL Statements

Date Example with TIMESTAMP
This example returns ten CloseDate values that are between two TIMESTAMP values, 2014-12-31 and 2015-12-31.

SELECT CloseDate
FROM "Opportunity"
WHERE CloseDate BETWEEN TIMESTAMP '2014-12-31 00:00:00' AND TIMESTAMP '2015-12-31 00:00:00'
LIMIT 10;

CloseDate

2014-12-31 16:00:00

2015-01-01 16:00:00

2015-01-30 16:00:00

2015-01-31 16:00:00

2015-02-28 16:00:00

2015-03-30 17:00:00

2015-03-31 17:00:00

2015-04-29 17:00:00

2015-04-30 17:00:00

2015-05-30 17:00:00

Date Example with EXTRACT
This example uses SQL for CRM Analytics’s EXTRACT function to access the MONTH values from the CloseDate field and return
dates between April (4) and July (7).

SELECT CloseDate
FROM "Opportunity"
WHERE EXTRACT(MONTH FROM CloseDate) BETWEEN 4 AND 7
LIMIT 10;

CloseDate

2015-04-29 17:00:00

2015-04-30 17:00:00

2015-05-30 17:00:00

2015-05-31 17:00:00

2015-07-31 17:00:00

26

BETWEEN OperatorSQL Statements

Asymmetric and Symmetric Example
By default, the BETWEEN statement evaluates a value that falls between the lower and upper bounds in order of least to greatest as
true. If the lower and upper bound values are reversed, BETWEEN evaluates the statement as false. To specify this behavior, use
the ASYMMETRIC operator.

Let’s go back to the numeric example.

Here, the range is specified as ASYMMETRIC BETWEEN 300 and 600. The statement evaluates to true.

SELECT price, origin, dest
FROM FlightsData
WHERE price ASYMMETRIC BETWEEN 300 and 600
ORDER BY price ASC

When the range is specified as ASYMMETRIC BETWEEN 600 and 300, the statement evaluates to false.

SELECT price, origin, dest
FROM FlightsData
WHERE price ASYMMETRIC BETWEEN 600 and 300
ORDER BY price ASC

By using the SYMMETRIC operator, the order of the upper and lower bounds of your BETWEEN statement remain true if reversed.
The order is irrelevant.

SELECT price, origin, dest
FROM FlightsData
WHERE price SYMMETRIC BETWEEN 600 and 300
ORDER BY price ASC

By using SYMMETRIC, the BETWEEN statement evaluates to true.

Here’s the date example using EXTRACT and the SYMMETRIC operator. By including SYMMETRIC, the query returns the same
results, even though the months are filtered BETWEEN 7 AND 4.

SELECT CloseDate
FROM "Opportunity"
WHERE EXTRACT(MONTH FROM CloseDate) SYMMETRIC BETWEEN 7 AND 4
LIMIT 10;

SEE ALSO:

Access Parts of a Date

WHERE Clause

LIMIT Clause
The LIMIT clause specifies the maximum number of rows to return. If no LIMIT clause is specified, then SQL returns all rows.

LIMIT follows the syntax LIMIT {count}.

Important: When working with two or more columns, make sure to use LIMIT with an ORDER BY clause, so that your results
are returned in a specified order. Otherwise, results return in an order you may not want. ORDER BY is optional for working with a
single column.

27

LIMIT ClauseSQL Statements

Here’s an example.

SELECT City
FROM "Superstore"
ORDER BY City
LIMIT 5;

This query returns the cities in the first three rows of the dataset.

City

Aberdeen

Abilene

Akron

Akron

Akron

FETCH Clause
The FETCH clause specifies the number of rows to return. If no FETCH clause is specified, then SQL returns all rows.

FETCH follows this syntax. FETCH {FIRST||NEXT} count {ROW|ROWS} ONLY

FIRST
Returns the count of rows beginning from the first row in the dataset.

NEXT
Returns the count of rows that immediately follow the current row.

count
Optional. The number of rows to return. If you don't specify a count, FETCH returns one row by default.

Note: FETCH FIRST ROW ONLY is the same as FETCH FIRST 1 ROW ONLY.

In this example, because there’s an offset of one row, FETCH starts from the second value of the City column, ordered ascending.
The query returns the next three rows, which are the second, third, and fourth rows.

SELECT City
FROM "Superstore"
OFFSET 1
ORDER BY City
FETCH NEXT 3 ROWS ONLY;

City

Abilene

Abilene

Akron

28

FETCH ClauseSQL Statements

Here, the query returns the first row.

SELECT City
FROM "Superstore"
ORDER BY City
FETCH FIRST ROW ONLY;

City

Aberdeen

OFFSET Clause
By default, a SQL query retrieves every row in your dataset. Use the optional WHERE clause to restrict your query results to a conditional
expression.

OFFSET takes the syntax OFFSET {start}. Start refers to the number of rows to skip before returning rows.

This example skips over rows 1-5. It returns the three subsequent rows, 6-8.

SELECT City
FROM "Superstore"
ORDER BY City
OFFSET 5
LIMIT 3;

City

Aberdeen

Abilene

Abilene

CASE Statements
Use case statements to express if/then logic. A case statement always has a pair of WHERE and THEN statements. CRM Analytics
supports the simple and searched forms of case expressions in a SELECT statement. Case statements have two formats: simple and
searched.

Simple Form
A simple statement compares a case expression against a set of expressions. The result is the matched expression.

SELECT Category, CASE Category
WHEN 'Furniture' THEN 'Available'
WHEN 'Office Supplies' THEN 'Unavailable'
ELSE 'Unknown' END AS Availability
FROM "Superstore"
GROUP BY Category;

Here are the results.

29

OFFSET ClauseSQL Statements

AvailabilityCategory

AvailableFurniture

UnavailableOffice Supplies

UnknownTechnology

Searched Form
The searched form evaluates to a result. A searched statement compares an expression against a series of boolean expressions. If it
matches a boolean expression, the result is the corresponding THEN clause. If the expression does not return true for any of the boolean
expressions, then the result is the corresponding ELSE clause.

SELECT Region, CASE
WHEN sum(Profit) <= -500000 THEN 'Huge Loss'
WHEN sum(Profit) <= 0 THEN 'Loss'
WHEN sum(Profit) > 500000 THEN 'Huge Profit'
ELSE 'Profit' END AS ProfitLoss
FROM "Superstore"
GROUP BY Region;

ProfitLossRegion

ProfitCentral

ProfitEast

ProfitSouth

ProfitWest

COALESCE()
You can use the coalesce() function as shorthand for case statements. The coalesce() function replaces null values in your
dataset with another value. The function takes a series of arguments and returns the first value that is not null.

In this query, the first case statement says that if the City value is not null, return the City value. Otherwise, return NULL. For the second
case, it says if a Country value is not null, return the Country. If it is null, return the string "Unknown."

SELECT CASE WHEN City
IS NOT NULL
THEN City
ELSE NULL
END AS City,
CASE WHEN Country
IS NOT NULL
ELSE 'Unknown'
END As Country
FROM "Superstore"
Group by City, Country;

30

COALESCE()SQL Statements

Here's the same query rewritten with coalesce().

SELECT COALESCE(City, NULL) as City, COALESCE(Country, 'Unknown') as Country
FROM "Superstore"
GROUP BY City, Country;

There are no null City or Country values in the first five results returned from the query.

CountryCity

United StatesAberdeen

United StatesAbilene

United StatesAkron

United StatesAlbuquerque

United StatesAlexandria

NULLIF()
Use the nullif() function as shorthand for a searched case statement where two equal expressions return null.

nullif() takes the following syntax. Its two arguments are the expressions that you want to compare.

nullif(fieldName1, fieldName2)

In this example, the query returns null for all City values that are Aberdeen. If the City value is not Aberdeen, then it returns the City value.

Here’s how to write the query as a case statement.

SELECT CASE WHEN City='Aberdeen'
THEN NULL
ELSE City
END AS City
FROM "Superstore"
GROUP BY City;

Here's how to write the same query using nullif().

SELECT NULLIF(City, 'Aberdeen') as City
FROM "Superstore"
GROUP BY City;

City

Aberdeen

Akron

Albuquerque

Alexandria

31

NULLIF()SQL Statements

UNION Operator
Use the UNION operator to combine the results of two or more SELECT statements. The joined statements must have the same
number of columns and the same data types for corresponding columns.

SQL for CRM Analytics supports UNION ALL only. This clause returns all results—it doesn't remove duplicate values. Let's see what
happens when we combine two SELECT statements that retrieve the Cities field.

SELECT City From "Superstore" UNION ALL SELECT City from "Superstore";

The query returns all City results in an unspecified order.

City

Henderson

Henderson

Los Angeles

Fort Lauderdale

Fort Lauderdale

Los Angeles

Los Angeles

Los Angeles

Los Angeles

Los Angeles

To include an ORDER BY or LIMIT clause when using the UNION operator, you must enclose the first SELECT statement in
parentheses so that the SQL parser can identify the UNION operator.

In this example, ORDER BY City DESC applies to the results of the full query, not only the second SELECT clause. The results
display in reverse alphabetical order for the combined set of the City field.

(SELECT City
FROM "Superstore"
ORDER BY City ASC)
UNION ALL
SELECT City
FROM "Superstore"
ORDER BY City DESC;

City

Yuma

Yuma

Yuma

Yuma

32

UNION OperatorSQL Statements

City

Yuma

Yuma

Yuma

Yuma

Yucaipa

Yucaipa

York

If you include parentheses around the second SELECT statement, the query returns results from the first SELECT statement in
ascending order and the second in descending order.

(SELECT City
FROM "Superstore"
ORDER BY City ASC)
UNION ALL
(SELECT City
FROM "Superstore"
ORDER BY City DESC);

The first ten results show values from the first SELECT statement in ascending order.

City

Aberdeen

Abilene

Akron

Akron

Akron

Akron

Akron

Akron

Akron

Akron

Subquery
A subquery is a query that is nested inside a SELECT statement. Nesting queries allows you to perform multi-step operations.

33

SubquerySQL Statements

A subquery follows this syntax.

SELECT field
FROM (select_statement || union_all)

To pass fields to a math or string function in a subquery, include it in the outer query’s WHERE clause. If you use it in the innermost
query, SQL throws an error.

Simple Example
This query returns the sum of all profits and the max profit value from the Superstore dataset where all the profits are greater than zero.
Values greater than zero mean that no losses are reflected in the results.

SELECT d.sumProfit, maxProfit
FROM (

SELECT SUM(Profit) as sumProfit, MAX(Profit) as maxProfit
FROM (

SELECT Profit
FROM "Superstore"
WHERE Profit > 0
)

) as d;

CRM Analytics first runs the innermost query: SELECT Profit FROM "Superstore" WHERE Profit > 0.

The output from this query becomes the dataset on which the outer query operates.

SELECT SUM(Profit) as sumProfit, MAX(Profit) as maxProfit
FROM (innermost query);

Optionally, you can refer to an inner query by its alias, if you choose to use one. In the outermost query, you can refer to sumProfit
as d.sumProfit, as shown in the example, or you can refer to it simply as sumProfit.

SELECT d.sumProfit, maxProfit FROM (nested subqueries as d);

maxProfitsumProfit

8,399.98442,649.60

Subqueries with UNION ALL

The UNION ALL operator combines the results of two datasets into one. It doesn't remove any duplicate rows. This example includes
UNION ALL after a subquery.

The first part of this example, up to the UNION ALL statement, returns the total profit and the maximum profit values from the
Superstore dataset. After the UNION ALL statement, the query returns the total and maximum profit values from the ClearanceSales
dataset. Note that ClearanceSales is intended for example purposes only.

SELECT d.sumProfit as total, maxProfit as max_profit
FROM (

SELECT SUM(Profit) as sumProfit, MAX(Profit) as maxProfit
FROM (

SELECT Profit
FROM "Superstore"
WHERE Profit > 0

34

SubquerySQL Statements

)
) as d

UNION ALL (
SELECT SUM("Profit") as total, MAX("Profit") as max_profit
FROM "ClearanceSales"
GROUP BY ()

)

max_profittotal

8,399.98442,649.60

4,519.50286,397.02

You can also include UNION ALL within a subquery. This example finds all the names in the Superstore and Opportunity datasets
that contain "an." The outer query then filters for names that have counts over 30 and returns that subset of results.

SELECT Customer_Name as "name", "count"
FROM (

(SELECT Customer_Name, count(*) as "count"
FROM "Superstore"
WHERE Customer_Name LIKE '%an%'
GROUP BY Customer_Name

) UNION ALL (
SELECT User_Name as "name", count(*) as "count" FROM "Opportunity" WHERE User_Name LIKE

'%an%' GROUP BY User_Name
)

) WHERE "count" > 30

countname

31Emily Phan

32Jonathan Doherty

34Matt Abelman

654Han Solo

583Indiana Jones

Window Functions
A window function lets you perform calculations on a selection—or "window"—of rows that are related to the current row. Unlike a
regular aggregate function, such as avg(), sum(), or count(), the row output of a window function isn’t grouped into a single
row.

A window function takes this syntax.

<window function>(<projection expression>) OVER ([PARTITION BY <reset groups>] [ORDER
BY order_clause] <frame_clause>) AS <label>

35

Window FunctionsSQL Statements

DescriptionName

There are two types of window functions.window function

An aggregate function performed over a specified group of rows
related to the current row. SQL for CRM Analytics supports these
aggregate functions.

• avg()

• sum()

• min()

• max()

• count()

• percentile_disc()

• percentile_cont()

A ranking function that returns a rank value for each row in the
partition. SQL for CRM Analytics supports these rank functions.

• rank()

• dense_rank()

• cume_dist()

• row_number()

The expression that serves as the input to the window function.projection expression

Optional. Splits query results into smaller partitions based on the
reset_group. When provided, the window function resets

PARTITION BY

after it runs on each part. When you don't include PARTITION
BY, all rows are treated as part of a single partition and the function
doesn't reset.

One or more columns that reset the windowing aggregation
function when their value (or values) change.

reset_group

Optional. Provides a sorting order for rows in each partition. If
ordering rows in a partition isn't relevant to your query, then don't
include this clause.

ORDER BY within a window function isn’t the sorting order for
your query’s results.

ORDER BY

To specify the order of query results, include the ORDER BY
clause at the end of your query.

The expressions by which to order the results within a window
function partition.

order_clause

Specifies a subset of rows within the current partition that make
up the window "frame." The frame has a start and end value, such

frame_clause

as ROWS BETWEEN CURRENT ROW AND UNBOUNDED
FOLLOWING. If no end value is specified, the frame's end value

36

Window FunctionsSQL Statements

DescriptionName

defaults to the current row. For example, for ROWS UNBOUNDED
PRECEDING, the frame starts at the beginning of the partition
and ends at the current row. See the Example Frame Clause Values
table for more examples.

The output column name.label

Table 1: Example Frame Clause Values

DescriptionFrame Clause Value

From the beginning of the partition to the current row.ROWS UNBOUNDED PRECEDING

From the beginning of the partition to the current row.ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW

From the current row to the last row in the partition.ROWS BETWEEN CURRENT ROW AND UNBOUNDED
FOLLOWING

From the beginning of the partition to number rows before the
current row.

ROWS BETWEEN UNBOUNDED PRECEDING TO number
PRECEDING

From the beginning of the partition to the end of the partition.
Aggregates the full partition.

ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING

From the current row to number rows after the current row in the
partition.

ROWS BETWEEN CURRENT ROW AND number
FOLLOWING

A ranking function returns a ranking value for each row in a partition.

Table 2: Supported Ranking Functions

DescriptionFunction Name

Returns a ranking value for each row within a partition. If values
are tied, RANK() assigns them the same ranking value and skips

RANK()

over the next ranking. For example, if 2 items are ranked at 2, the
next-ranked value is 4.

Returns a ranking value for each row within a partition. Unlike
RANK(), DENSE_RANK() doesn’t skip over a rank value if

DENSE_RANK()

multiple entries are tied. If 2 items are ranked at 2, the next-ranked
value is 3.

Returns the cumulative distribution between entries in a reset
group.

CUME_DIST()

Returns the sequential number of a row in a partition, starting at
1.

ROW_NUMBER()

37

Window FunctionsSQL Statements

Aggregation Example
Windowing in SQL for CRM Analytics is available for grouped queries only. This example looks at flights grouped by origin. The query
has 3 window functions that demonstrate variations on the 3 parts of a windowing function: partitioning, ordering, and framing.

SELECT origin, sum(price) as sum1,
sum(sum(price)) OVER (ORDER BY sum(price) ROWS UNBOUNDED PRECEDING) as sum2,
sum(sum(price)) OVER (PARTITION BY origin ORDER BY sum(price) ROWS UNBOUNDED PRECEDING)
as sum3,
sum(sum(price)) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS sum4
FROM "FlightsData"
WHERE dest='LAX'
GROUP BY origin
ORDER BY sum1

sum4sum3sum2sum1origin

5430150015001500PHX

5430195034501950SFO

5430198054301980OAK

This query first executes the WHERE and GROUP BY clauses, so that each expression operates on flights whose destination is LAX.
Each group has a column that contains the sum of all of its respective flights' prices.

Note: The WHERE, GROUP, and HAVING clauses execute before windowing functions.

The subset of data with which we're concerned looks like this.

PriceOrigin

400PHX

500PHX

600PHX

550SFO

650SFO

750SFO

560OAK

660OAK

760OAK

We've included sum(price) as sum1 in this example for demonstration purposes only. The window functions return the same
results regardless of whether sum(price) is included in the SELECT statement. sum(price) is a regular aggregate function.
The expressions that follow it use sum() as a window function.

38

Window FunctionsSQL Statements

Here's the output for the first part of the query calculation.

SELECT origin, sum(price) as sum1
FROM "FlightsData"
WHERE dest='LAX'
GROUP BY origin

sum1Origin

1500PHX

1950SFO

1980OAK

Let's break down the windowing functions line by line.

The first windowing function is: sum(sum(price)) OVER (ORDER BY sum(price) ROWS UNBOUNDED PRECEDING)
as sum2. The window function sum() takes the argument sum(price) as the input for the window function sum2. The clause
after OVER specifies the rows and the order in which the function operates on them. Since there’s no partitioning clause, all of the rows
belong to the same partition.

The rows are sorted in ascending order of sum(price). ROWS UNBOUNDED PRECEDING says apply this
operation—sum(sum(price))—from the beginning of the partition to the current row. Because the query is already grouped by
origin, there’s only one value corresponding to each origin. For PHX, that means taking the sum of 1500. For the next row, SFO, the
function calculates the sum of sum1 in addition to the unbounded preceding ones—the sum1 value of PHX, 1500 + 1950. For
the last group, OAK, the function sums up the OAK total in addition to the two preceding rows, 1500 + 1950 + 1980. This
window function computes a running sum of sum(price), ordered by sum(price).

The second windowing function is: sum(sum(price)) OVER (PARTITION BY origin ORDER BY sum(price)
ROWS UNBOUNDED PRECEDING). Partitioning by origin returns the groupings that the query established with the initial GROUP
BY clause. By including the clause ROWS UNBOUNDED PRECEDING, we take the sum of all of the preceding rows within a particular
origin. Since each origin's prices are already summed up, taking the sum is just each summed value. The results are the same as the
results for sum1.

The third windowing function is: sum(sum(price)) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) as sum4. Since partitioning isn't specified, all rows are part of the same partition. ROWS BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING starts the frame at the first row of the partition and continues to the last row. The
function aggregates the full partition, which in this example is all of the rows.

Ranking Example
This example demonstrates the differences between the RANK() and DENSE_RANK() functions.

SELECT origin, SUM(price) as s,
RANK() OVER (ORDER BY SUM(price) ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED

FOLLOWING) as rnk,
DENSE_RANK() OVER (ORDER BY SUM(price) DESC ROWS BETWEEN UNBOUNDED PRECEDING AND

UNBOUNDED FOLLOWING) as denserank
FROM "FlightsData"
GROUP BY origin

39

Window FunctionsSQL Statements

denserankrnksorigin

185400LAX

263300HI

263300SJC

352700ASE

442400ORD

531980OAK

621950SFO

711500PHX

The RANK() function assigns the sum of the prices for all flights from LAX the highest rank. Because the DENSE_RANK() function
specifies to order the rows descending, it assigns LAX the rank 1.

Since HI and SJC’s sums are the same value, 3300, instead of assigning them values of 7 and 6, RANK() skips over 7. It assigns
them both the rank 6. By contrast, DENSE_RANK() assigns consecutive ranking values. It assigns HI and SJC the value 2. HI
and SJC have the next highest descending value after LAX, which has the ranking value 1. The next value DENSE_RANK() assigns
to ASE is 3.

SEE ALSO:

Aggregate Functions

40

Window FunctionsSQL Statements

DATE FUNCTIONS

SQL for CRM Analytics supports DateTime, DateOnly, and Date date types. If you’re familiar with standard SQL, the DateOnly
type corresponds with SQL’s Date type and the DateTime type corresponds with SQL's Timestamp type. DateTime and
DateOnly have custom time zone support. If your org doesn’t support custom time zones, then use the Date type, which supports
GMT date information only.

A DateTime date type follows this format.

DateTimeFormat = "2006-01-02 15:04:05"

A DateOnly date type follows this format.

DateOnlyFormat = "2006-01-02"

Access Parts of a Date

Use the EXTRACT() function to access parts of a date. You can use EXTRACT() in projections, filtering, grouping and ordering.

Project a Date Field

To project a date field of type DateTime, use the EXTRACT() function on the date field in the SELECT statement.

Filter By Date Parts or Date Field

To filter by a date part, use the WHERE clause with the EXTRACT() function, and pass it the desired date parts (year, month, or
day). To filter by a date field, use the WHERE clause with a logical operator.

Group By Date Part

To group by date part, use the GROUP BY clause and the EXTRACT() function. Pass EXTRACT() the date parts to isolate.

Order By Date Part

To order by date part, use EXTRACT() on the date field with the ORDER BY clause. The query returns the count of rows
containing these same values and orders the results by count descending.

Project a Custom Fiscal Date Part

To project a custom fiscal date part, pass custom fiscal date parts to the EXTRACT() function.

Day in Week, Month, Quarter or Year Functions

Use the following functions to find the position of a day within a week, month, quarter, or year.

First and Last Day in the Week, Month, Quarter or Year Functions

Use the following functions to find the first and last week, month, quarter, or year for both standard and fiscal calendars. These
functions accept DateTime, DateOnly, and legacy input values. They return the same type as the input value.

SEE ALSO:

Enable Custom Time Zones

Access Parts of a Date

Use the EXTRACT() function to access parts of a date. You can use EXTRACT() in projections, filtering, grouping and ordering.

41

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_setup_time_zone_support.htm&language=en_US#bi_setup_time_zone_support

EXTRACT() follows this syntax.

EXTRACT(date_part FROM date_field)

A date part can be one of the following values.

• YEAR

• QUARTER

• MONTH

• WEEK

• DAY

• HOUR

• MINUTE

• SECOND

• EPOCH_DAY

• EPOCH

• FISCAL_YEAR

• FISCAL_QUARTER

• FISCAL_MONTH

• FISCAL_WEEK

Note: If you query a date field that doesn't contain time information, it will return 0.

Project a Date Field

To project a date field of type DateTime, use the EXTRACT() function on the date field in the SELECT statement.

SELECT CloseDate
FROM "OpportunityFiscalEMTimezoned"
LIMIT 1;

CloseDate

2014-12-30 16:00:00

This example projects only the year from the DateTime field.

SELECT EXTRACT(Year FROM CloseDate) As CloseDate_Year
FROM "OpportunityFiscalEMTimezoned"
LIMIT 1;

CloseDate_Year

2014

42

Project a Date FieldDate Functions

Filter By Date Parts or Date Field

To filter by a date part, use the WHERE clause with the EXTRACT() function, and pass it the desired date parts (year, month, or day).
To filter by a date field, use the WHERE clause with a logical operator.

This example filters by year.

SELECT CloseDate
FROM "OpportunityFiscalEMTimezoned"
WHERE EXTRACT(YEAR FROM CloseDate) = 2014;

CloseDate

2014-12-31 15:00:00

2014-12-30 16:00:00

This example returns CloseDate fields that occur on or before the given timestamp.

SELECT CloseDate
FROM "OpportunityFiscalEMTimezoned"
WHERE CloseDate <= TIMESTAMP '2014-12-31 15:00:00';

CloseDate

2014-12-30 16:00:00

Group By Date Part

To group by date part, use the GROUP BY clause and the EXTRACT() function. Pass EXTRACT() the date parts to isolate.

SELECT EXTRACT(YEAR FROM CloseDate) AS CloseDate_Year, EXTRACT(MONTH FROM CloseDate) AS
CloseDate_Month, count(*) AS cnt
FROM "OpportunityFiscalEMTimezoned"
GROUP BY EXTRACT(YEAR FROM CloseDate), EXTRACT(MONTH FROM CloseDate)
LIMIT 10;

The results are grouped by year and month parts of the CloseDate field.

cntCloseDate_MonthCloseDate_Year

1122014

312015

122015

232015

242015

252015

43

Filter By Date Parts or Date FieldDate Functions

cntCloseDate_MonthCloseDate_Year

162015

182015

1102015

1112015

Order By Date Part

To order by date part, use EXTRACT() on the date field with the ORDER BY clause. The query returns the count of rows containing
these same values and orders the results by count descending.

SELECT EXTRACT(YEAR FROM CloseDate) AS CloseDate_Year, EXTRACT(MONTH FROM CloseDate) AS
CloseDate_Month, COUNT(*) AS cnt
FROM "OpportunityFiscalEMTimezoned"
GROUP BY EXTRACT(YEAR FROM CloseDate), EXTRACT(MONTH FROM CloseDate)
ORDER BY cnt DESC
LIMIT 10;

cntCloseDate_MonthCloseDate_Year

312015

232015

242015

252015

1122014

122015

162015

182015

1102015

1112015

Project a Custom Fiscal Date Part

To project a custom fiscal date part, pass custom fiscal date parts to the EXTRACT() function.

SELECT EXTRACT(FISCAL_YEAR FROM CloseDate) AS CloseDate_Fiscal_Year, EXTRACT(FISCAL_QUARTER
FROM CloseDate) AS CloseDate_Fiscal_Quarter, EXTRACT(FISCAL_MONTH FROM CloseDate) AS
CloseDate_Fiscal_Month, EXTRACT(FISCAL_WEEK FROM CloseDate) AS CloseDate_Fiscal_Week
FROM "OpportunityFiscalEMTimezoned"
LIMIT 10;

44

Order By Date PartDate Functions

CloseDate_Fiscal_WeekCloseDate_Fiscal_MonthCloseDate_Fiscal_QuarterCloseDate_Fiscal_Year

491142015

491142015

491242015

531242015

541242015

5112016

9212016

9212016

13312016

13312016

Day in Week, Month, Quarter or Year Functions

Use the following functions to find the position of a day within a week, month, quarter, or year.

Date position functions take this syntax.

SELECT EXTRACT (FunctionName FROM Date) AS DateAlias
FROM dataset;

Day of Week

Returns an integer that represents the day of the week for a specific date.

Day of Month

Returns an integer that represents the day of the month for a specific date.

Day of Quarter

Returns an integer that represents the day of the quarter for a specific date. The first quarter of the year begins on January 1.

Day of Year

Returns an integer that represents the day of the year for a specific date.

Day of Week
Returns an integer that represents the day of the week for a specific date.

Example:

SELECT OrderDate as "date", EXTRACT (DOW FROM OrderDate) as "day_of_week" FROM
"dates_sample_data";

45

Day in Week, Month, Quarter or Year FunctionsDate Functions

day_of_weekdate

32015-01-21 15:30:00

32015-01-21 00:00:00

62015-01-31 10:00:30

22015-02-03 15:30:00

42016-01-21 23:59:59

62015-10-31 23:59:59

42015-12-03 00:00:00

12016-01-11 03:30:00

12016-01-11 03:30:00

Day of Month
Returns an integer that represents the day of the month for a specific date.

Example:

SELECT OrderDate as "date", EXTRACT (DAY FROM OrderDate) as "day_of_month" FROM
"dates_sample_data";

day_of_monthdate

212015-01-21 15:30:00

212015-01-21 00:00:00

312015-01-31 10:00:30

32015-02-03 15:30:00

212016-01-21 23:59:59

312015-10-31 23:59:59

32015-12-03 00:00:00

112016-01-11 03:30:00

112016-01-11 03:30:00

Day of Quarter
Returns an integer that represents the day of the quarter for a specific date. The first quarter of the year begins on January 1.

46

Day of MonthDate Functions

Example:

SELECT OrderDate as "date", EXTRACT (DOQ FROM OrderDate) as "day_of_quarter" FROM
"dates_sample_data";

day_of_quarterdate

212015-01-21 15:30:00

212015-01-21 00:00:00

312015-01-31 10:00:30

342015-02-03 15:30:00

212016-01-21 23:59:59

312015-10-31 23:59:59

642015-12-03 00:00:00

112016-01-11 03:30:00

112016-01-11 03:30:00

Day of Year
Returns an integer that represents the day of the year for a specific date.

Example:

SELECT OrderDate as "date", EXTRACT (DOY FROM OrderDate) as "day_of_year" FROM
"dates_sample_data";

day_of_yeardate

212015-01-21 15:30:00

212015-01-21 00:00:00

312015-01-31 10:00:30

342015-02-03 15:30:00

212016-01-21 23:59:59

3042015-10-31 23:59:59

3372015-12-03 00:00:00

112016-01-11 03:30:00

112016-01-11 03:30:00

47

Day of YearDate Functions

First and Last Day in the Week, Month, Quarter or Year Functions

Use the following functions to find the first and last week, month, quarter, or year for both standard and fiscal calendars. These functions
accept DateTime, DateOnly, and legacy input values. They return the same type as the input value.

Date position functions take this syntax.

SELECT functionName(Date) AS DateAlias FROM dataset;

week_first_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
first day (Sunday) of the week that contains the specified date.

fiscal_week_first_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
first day (Monday) of the fiscal week that contains the specified date.

month_first_day(date)

Accepts a DateTime, DateOnly, or legacy object as input. Returns an object of the same type that corresponds to the first day
of the month that contains the specified date.

fiscal_month_first_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
first day of the fiscal month that contains the specified date.

quarter_first_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
first day of the quarter that contains the specified date.

fiscal_quarter_first_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
first day of the fiscal quarter that contains the specified date. By default, the first fiscal quarter is defined as February, March, April.
The second quarter is May, June, July. The third is August, September, October. The fourth is November, December, January.

year_first_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
first day of the year that contains the specified date.

fiscal_year_first_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
first day of the fiscal year that contains the specified date. By default, the fiscal year begins on February 1.

week_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day (Saturday) of the week that contains the specified date.

fiscal_week_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day (Sunday) of the fiscal week that contains the specified date.

month_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day of the month that contains the specified date.

48

First and Last Day in the Week, Month, Quarter or Year
Functions

Date Functions

fiscal_month_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day of the month that contains the specified date.

quarter_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day of the quarter that contains the specified date.

fiscal_quarter_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day of the fiscal quarter that contains the specified date.

year_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day of the year that contains the specified date.

fiscal_year_last_day(date)

Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the
last day of the fiscal year that contains the specified date.

SEE ALSO:

Project a Custom Fiscal Date Part

week_first_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the first
day (Sunday) of the week that contains the specified date.

Example:

SELECT OrderDate as "date", week_first_day(OrderDate) as "week_first_day" FROM
"dates_sample_data";

week_first_daydate

2015-01-18 00:00:002015-01-21 15:30:00

2015-01-18 00:00:002015-01-21 00:00:00

2015-01-25 00:00:002015-01-31 10:00:30

2015-02-01 00:00:002015-02-03 15:30:00

2016-01-17 00:00:002016-01-21 23:59:59

2015-10-25 00:00:002015-10-31 23:59:59

2015-11-29 00:00:002015-12-03 00:00:00

2016-01-10 00:00:002016-01-11 03:30:00

2016-01-10 00:00:002016-01-11 03:30:00

49

week_first_day(date)Date Functions

fiscal_week_first_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the first
day (Monday) of the fiscal week that contains the specified date.

Example:

SELECT OrderDate as "date", fiscal_week_first_day(OrderDate) as "fiscal_week_first_day"
FROM "dates_sample_data";

fiscal_week_first_daydate

2015-01-19 00:00:002015-01-21 15:30:00

2015-01-19 00:00:002015-01-21 00:00:00

2015-01-26 00:00:002015-01-31 10:00:30

2015-02-02 00:00:002015-02-03 15:30:00

2016-01-18 00:00:002016-01-21 23:59:59

2015-10-26 00:00:002015-10-31 23:59:59

2015-11-30 00:00:002015-12-03 00:00:00

2016-01-11 00:00:002016-01-11 03:30:00

2016-01-11 00:00:002016-01-11 03:30:00

month_first_day(date)
Accepts a DateTime, DateOnly, or legacy object as input. Returns an object of the same type that corresponds to the first day of
the month that contains the specified date.

Example:

SELECT OrderDate as "date", month_first_day(OrderDate) as "month_first_day" FROM
"dates_sample_data";

month_first_daydate

2015-01-01 00:00:002015-01-21 15:30:00

2015-01-01 00:00:002015-01-21 00:00:00

2015-01-01 00:00:002015-01-31 10:00:30

2015-02-01 00:00:002015-02-03 15:30:00

2016-01-01 00:00:002016-01-21 23:59:59

2015-10-01 00:00:002015-10-31 23:59:59

2015-11-01 00:00:002015-12-03 00:00:00

50

fiscal_week_first_day(date)Date Functions

month_first_daydate

2016-01-01 00:00:002016-01-11 03:30:00

2016-01-01 00:00:002016-01-11 03:30:00

fiscal_month_first_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the first
day of the fiscal month that contains the specified date.

Example:

SELECT OrderDate as "date", fiscal_month_first_day(OrderDate) as "fiscal_month_first_day"
FROM "dates_sample_data";

fiscal_month_first_daydate

2015-01-01 00:00:002015-01-21 15:30:00

2015-01-01 00:00:002015-01-21 00:00:00

2015-01-01 00:00:002015-01-31 10:00:30

2015-02-01 00:00:002015-02-03 15:30:00

2016-01-01 00:00:002016-01-21 23:59:59

2015-10-01 00:00:002015-10-31 23:59:59

2015-12-01 00:00:002015-12-03 00:00:00

2016-01-01 00:00:002016-01-11 03:30:00

2016-01-01 00:00:002016-01-11 03:30:00

quarter_first_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the first
day of the quarter that contains the specified date.

Example:

SELECT OrderDate as "date", quarter_first_day(OrderDate) as "quarter_first_day" FROM
"dates_sample_data";

quarter_first_daydate

2015-01-01 00:00:002015-01-21 15:30:00

2015-01-01 00:00:002015-01-21 00:00:00

51

fiscal_month_first_day(date)Date Functions

quarter_first_daydate

2015-01-01 00:00:002015-01-31 10:00:30

2015-01-01 00:00:002015-02-03 15:30:00

2016-01-01 00:00:002016-01-21 23:59:59

2015-10-01 00:00:002015-10-31 23:59:59

2015-10-01 00:00:002015-12-03 00:00:00

2016-01-01 00:00:002016-01-11 03:30:00

2016-01-01 00:00:002016-01-11 03:30:00

fiscal_quarter_first_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the first
day of the fiscal quarter that contains the specified date. By default, the first fiscal quarter is defined as February, March, April. The second
quarter is May, June, July. The third is August, September, October. The fourth is November, December, January.

Example:

SELECT OrderDate as "date", fiscal_quarter_first_day(OrderDate) as
"fiscal_quarter_first_day" FROM "dates_sample_data";

fiscal_quarter_first_daydate

2014-11-01 00:00:002015-01-21 15:30:00

2014-11-01 00:00:002015-01-21 00:00:00

2014-11-01 00:00:002015-01-31 10:00:30

2015-02-01 00:00:002015-02-03 15:30:00

2015-11-01 00:00:002016-01-21 23:59:59

2015-08-01 00:00:002015-10-31 23:59:59

2015-11-01 00:00:002015-12-03 00:00:00

2015-11-01 00:00:002016-01-11 03:30:00

2015-11-01 00:00:002016-01-11 03:30:00

year_first_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the first
day of the year that contains the specified date.

52

fiscal_quarter_first_day(date)Date Functions

Example:

SELECT OrderDate as "date", year_first_day(OrderDate) as "year_first_day" FROM
"dates_sample_data";

year_first_daydate

2015-01-01 00:00:002015-01-21 15:30:00

2015-01-01 00:00:002015-01-21 00:00:00

2015-01-01 00:00:002015-01-31 10:00:30

2015-01-01 00:00:002015-02-03 15:30:00

2016-01-01 00:00:002016-01-21 23:59:59

2015-01-01 00:00:002015-10-31 23:59:59

2015-01-01 00:00:002015-12-03 00:00:00

2016-01-01 00:00:002016-01-11 03:30:00

2016-01-01 00:00:002016-01-11 03:30:00

fiscal_year_first_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the first
day of the fiscal year that contains the specified date. By default, the fiscal year begins on February 1.

Example:

SELECT OrderDate as "date", fiscal_year_first_day(OrderDate) as "fiscal_year_first_day"
FROM "dates_sample_data";

year_first_daydate

2014-02-01 00:00:002015-01-21 15:30:00

2014-02-01 00:00:002015-01-21 00:00:00

2014-02-01 00:00:002015-01-31 10:00:30

2015-02-01 00:00:002015-02-03 15:30:00

2015-02-01 00:00:002016-01-21 23:59:59

2015-02-01 00:00:002015-10-31 23:59:59

2015-02-01 00:00:002015-12-03 00:00:00

2015-02-01 00:00:002016-01-11 03:30:00

2015-02-01 00:00:002016-01-11 03:30:00

53

fiscal_year_first_day(date)Date Functions

week_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day (Saturday) of the week that contains the specified date.

Example:

SELECT OrderDate as "date", week_last_day(OrderDate) as "week_last_day" FROM
"dates_sample_data";

week_last_daydate

2015-01-24 00:00:002015-01-21 15:30:00

2015-01-24 00:00:002015-01-21 00:00:00

2015-01-31 00:00:002015-01-31 10:00:30

2015-02-07 00:00:002015-02-03 15:30:00

2016-01-23 00:00:002016-01-21 23:59:59

2015-10-31 00:00:002015-10-31 23:59:59

2015-12-05 00:00:002015-12-03 00:00:00

2016-01-16 00:00:002016-01-11 03:30:00

2016-01-16 00:00:002016-01-11 03:30:00

fiscal_week_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day (Sunday) of the fiscal week that contains the specified date.

Example:

SELECT OrderDate as "date", fiscal_week_last_day(OrderDate) as "fiscal_week_last_day"
FROM "dates_sample_data";

fiscal_week_last_daydate

2015-01-25 00:00:002015-01-21 15:30:00

2015-01-25 00:00:002015-01-21 00:00:00

2015-02-01 00:00:002015-01-31 10:00:30

2015-02-08 00:00:002015-02-03 15:30:00

2016-01-24 00:00:002016-01-21 23:59:59

2015-11-01 00:00:002015-10-31 23:59:59

2015-12-06 00:00:002015-12-03 00:00:00

54

week_last_day(date)Date Functions

fiscal_week_last_daydate

2016-01-17 00:00:002016-01-11 03:30:00

2016-01-17 00:00:002016-01-11 03:30:00

month_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day of the month that contains the specified date.

Example:

SELECT OrderDate as "date", month_last_day(OrderDate) as "month_last_day" FROM
"dates_sample_data";

month_last_daydate

2015-01-31 00:00:002015-01-21 15:30:00

2015-01-31 00:00:002015-01-21 00:00:00

2015-01-31 00:00:002015-01-31 10:00:30

2015-02-28 00:00:002015-02-03 15:30:00

2016-01-31 00:00:002016-01-21 23:59:59

2015-10-31 00:00:002015-10-31 23:59:59

2015-12-31 00:00:002015-12-03 00:00:00

2016-01-31 00:00:002016-01-11 03:30:00

2016-01-31 00:00:002016-01-11 03:30:00

fiscal_month_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day of the month that contains the specified date.

Example:

SELECT OrderDate as "date", fiscal_month_last_day(OrderDate) as "fiscal_month_last_day"
FROM "dates_sample_data";

fiscal_month_last_daydate

2015-01-31 00:00:002015-01-21 15:30:00

2015-01-31 00:00:002015-01-21 00:00:00

55

month_last_day(date)Date Functions

fiscal_month_last_daydate

2015-01-31 00:00:002015-01-31 10:00:30

2015-02-28 00:00:002015-02-03 15:30:00

2016-01-31 00:00:002016-01-21 23:59:59

2015-10-31 00:00:002015-10-31 23:59:59

2015-12-31 00:00:002015-12-03 00:00:00

2016-01-31 00:00:002016-01-11 03:30:00

2016-01-31 00:00:002016-01-11 03:30:00

quarter_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day of the quarter that contains the specified date.

Example:

SELECT OrderDate as "date", quarter_last_day(OrderDate) as "quarter_last_day" FROM
"dates_sample_data";

quarter_last_daydate

2015-03-31 00:00:002015-01-21 15:30:00

2015-03-31 00:00:002015-01-21 00:00:00

2015-03-31 00:00:002015-01-31 10:00:30

2015-03-31 00:00:002015-02-03 15:30:00

2016-03-31 00:00:002016-01-21 23:59:59

2015-12-31 00:00:002015-10-31 23:59:59

2015-12-31 00:00:002015-12-03 00:00:00

2016-03-31 00:00:002016-01-11 03:30:00

2016-03-31 00:00:002016-01-11 03:30:00

fiscal_quarter_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day of the fiscal quarter that contains the specified date.

56

quarter_last_day(date)Date Functions

Example:

SELECT OrderDate as "date", fiscal_quarter_last_day(OrderDate) as
"fiscal_quarter_last_day" FROM "dates_sample_data";

fiscal_quarter_last_daydate

2015-01-31 00:00:002015-01-21 15:30:00

2015-01-31 00:00:002015-01-21 00:00:00

2015-01-31 00:00:002015-01-31 10:00:30

2015-04-30 00:00:002015-02-03 15:30:00

2016-01-31 00:00:002016-01-21 23:59:59

2015-10-31 00:00:002015-10-31 23:59:59

2015-01-31 00:00:002015-12-03 00:00:00

2016-01-31 00:00:002016-01-11 03:30:00

2016-01-31 00:00:002016-01-11 03:30:00

year_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day of the year that contains the specified date.

Example:

SELECT OrderDate as "date", year_last_day(OrderDate) as "year_last_day" FROM
"dates_sample_data";

year_last_daydate

2015-12-31 00:00:002015-01-21 15:30:00

2015-12-31 00:00:002015-01-21 00:00:00

2015-12-31 00:00:002015-01-31 10:00:30

2015-12-31 00:00:002015-02-03 15:30:00

2016-12-31 00:00:002016-01-21 23:59:59

2015-12-31 00:00:002015-10-31 23:59:59

2015-12-31 00:00:002015-12-03 00:00:00

2016-12-31 00:00:002016-01-11 03:30:00

2016-12-31 00:00:002016-01-11 03:30:00

57

year_last_day(date)Date Functions

fiscal_year_last_day(date)
Accepts a DateTime, DateOnly, or legacy Date object as input. Returns an object of the same type that corresponds to the last
day of the fiscal year that contains the specified date.

Example:

SELECT OrderDate as "date", fiscal_year_last_day(OrderDate) as "fiscal_year_last_day"
FROM "dates_sample_data";

fiscal_year_last_daydate

2015-01-31 00:00:002015-01-21 15:30:00

2015-01-31 00:00:002015-01-21 00:00:00

2015-01-31 00:00:002015-01-31 10:00:30

2016-01-31 00:00:002015-02-03 15:30:00

2016-01-31 00:00:002016-01-21 23:59:59

2016-01-31 00:00:002015-10-31 23:59:59

2016-01-31 00:00:002015-12-03 00:00:00

2016-01-31 00:00:002016-01-11 03:30:00

2016-01-31 00:00:002016-01-11 03:30:00

58

fiscal_year_last_day(date)Date Functions

AGGREGATE FUNCTIONS

Aggregate functions perform operations across columns.

CRM Analytics supports the following aggregate functions.

avg()

Takes the average of row values in a given column.

count()

Returns the number of rows that match a specified condition in a column.

min()

Returns the lowest row value in a numeric column.

max()

Returns the highest row value in a numeric column.

sum()

Returns the sum of all rows values in a numeric column.

stddev_pop()

Returns the population standard deviation of the values in a field. Accepts measure fields as input. This function does not accept
expressions.

stddev_samp()

Returns the standard deviation of values in a field. Accepts measure fields as input. This function does not accept expressions.

var_pop()

Returns the population variance of the values in a field. Accepts measure fields as input. This function does not accept expressions.

var_samp()

Returns the sample variance of the values in a field. Accepts measure fields as input. This function does not accept expressions.

regr_intercept()

Returns the y-intercept value of a regression line.

regr_slope()

Returns the slope of a regression line between two numerical fields.

regr_r2()

Returns the R-squared, or goodness-of-fit value for a regression.

percentile_cont

Calculates a percentile based on a continuous distribution of the column value.

percentile_disc

Returns the value corresponding to a given percentile.

avg()

Takes the average of row values in a given column.

59

avg() follows this syntax.

SELECT avg(column_name)
FROM dataset
WHERE condition;

count()

Returns the number of rows that match a specified condition in a column.

count() follows this syntax.

SELECT count(column_name)
FROM dataset
WHERE condition;

min()

Returns the lowest row value in a numeric column.

min() follows this syntax.

SELECT min(column_name)
FROM dataset
WHERE condition;

max()

Returns the highest row value in a numeric column.

max() follows this syntax.

SELECT max(column_name)
FROM dataset
WHERE condition;

sum()

Returns the sum of all rows values in a numeric column.

sum() follows this syntax.

SELECT sum(column_name)
FROM dataset
WHERE condition;

60

count()Aggregate Functions

stddev_pop()

Returns the population standard deviation of the values in a field. Accepts measure fields as input. This function does not accept
expressions.

stddev_pop() follows this syntax.

SELECT stddev_pop(field1, field2)
FROM dataset;

stddev_samp()

Returns the standard deviation of values in a field. Accepts measure fields as input. This function does not accept expressions.

stddev_samp() follows this syntax.

SELECT stddev_pop(field1, field2)
FROM dataset;

var_pop()

Returns the population variance of the values in a field. Accepts measure fields as input. This function does not accept expressions.

var_pop() follows this syntax.

SELECT var_pop(field1, field2)
FROM dataset;

var_samp()

Returns the sample variance of the values in a field. Accepts measure fields as input. This function does not accept expressions.

var_samp() follows this syntax.

SELECT var_samp(field1, field2)
FROM dataset;

regr_intercept()

Returns the y-intercept value of a regression line.

regr_intercept() follows this syntax.

SELECT regr_intercept(field1, field2)
FROM dataset;

61

stddev_pop()Aggregate Functions

regr_slope()

Returns the slope of a regression line between two numerical fields.

regr_slope() follows this syntax.

SELECT regr_slope(field1, field2)
FROM dataset;

regr_r2()

Returns the R-squared, or goodness-of-fit value for a regression.

regr_r2() follows this syntax.

SELECT regr_r2(field1, field2)
FROM dataset;

percentile_cont

Calculates a percentile based on a continuous distribution of the column value.

percentile_cont() follows this syntax.

SELECT percentile_cont(field1, field2)
FROM dataset;

percentile_disc

Returns the value corresponding to a given percentile.

percentile_disc() follows this syntax.

SELECT percentile_disc(field1, field2)
FROM dataset;

62

regr_slope()Aggregate Functions

MATH FUNCTIONS

SQL for CRM Analytics supports the following math functions.

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1.797e308 <= n <=
1.797e308.

acos(n)

Returns the arccosine value of radians value n. n can be any real number in the range of -1 <= n <= 1. If null is passed as an
argument, acos() returns null.

asin(n)

Returns the arcsine value of radians value n. n can be any real number in the range of -1 <= n <= 1. If null is passed as an
argument, sin() returns null.

atan(n)

Returns the arctan value of radians value n. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed
as an argument, atan() returns null.

ceil(n), ceiling(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1.797e308 <= n <=
1.797e308.

cos(n)

Returns the cosine value of radians value n. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed
as an argument, cos() returns null.

degrees(n)

Returns the degrees value of n radians. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as an
argument, radians() returns null.

exp(n)

Returns the value of Euler's number e raised to the power of n, where e = 2.71828183… The smallest value for n that does not
result in 0 is 3e-324. n can be any real numeric value in the range of -1.797e308 <= n <= 700.

floor(n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1.797e308<= n <= 1.797e308.

ln(n)

Returns the base e (Euler's number) logarithm of a number n. The value n can be any positive, non-zero numeric value in the range
0 < n <= 1.797e308.

log(m,n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the range
0 < m, n <= 1.797e308 and m ≠ 1.

log10(n)

Returns the base 10 logarithm of a number n. The value n can be any positive, non-zero numeric value in the range 0 < n <=
1.797e308.

63

pi()

Returns the value of constant π, where π=3.14159.

power(m,n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1.797e308 <= m, n <= 1.797e308. Returns null
if m = 0 and n < 0.

radians(n)

Returns the radians value of n degrees. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as an
argument, radians() returns null.

round(n[,m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places
to the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half
way from zero convention. n can be any real numeric value in the range of -1.797e308 <= n <= 1.797e308. m can be an integer
value between -15 and 15, inclusive.

sign(n)

Returns 1 if the numeric value, n is positive. It returns -1 if the n is negative, and 0 if n is 0. n can be any real number in the range
of -1e308 <= n <= 1e308.

sin(n)

Returns the sine value of radians value n. ncan be any real number in the range of -1e308 <= n <= 1e308. If null is passed as
an argument, sin() returns null.

sqrt(n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1.797e308.

tan(n)

Returns the tan value of radians value n. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as
an argument, tan() returns null.

trunc(n[,m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any
real numeric value in the range of -1.797e308 <= n <= 1.797e308. m can be an integer value between -15 and 15 inclusive.

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1.797e308 <= n <= 1.797e308.

abs(n) takes the following syntax.

SELECT abs(column_name) as AliasName
FROM dataset;

Example: This example takes the absolute value of the Profit field.

SELECT abs(Profit) as absProfit FROM Superstore
LIMIT 1;

absProfit

41.9136

64

abs(n)Math Functions

acos(n)

Returns the arccosine value of radians value n. n can be any real number in the range of -1 <= n <= 1. If null is passed as an
argument, acos() returns null.

acos(n) takes the following syntax.

SELECT ACOS(n) as Alias
FROM dataset;

Example: This example takes the arccosine of 35 degrees.

SELECT ACOS(RADIANS(90)) as acosValue
FROM "Opportunity"
LIMIT 1;

acosValue

0.913643

asin(n)

Returns the arcsine value of radians value n. n can be any real number in the range of -1 <= n <= 1. If null is passed as an argument,
sin() returns null.

asin(n) takes the following syntax.

SELECT ASIN(n) as Alias
FROM dataset;

Example: This example takes the arcsine of 35 degrees.

SELECT ASIN(RADIANS(35)) as asinValue
FROM "Opportunity"
LIMIT 1;

asinValue

0.60746

atan(n)

Returns the arctan value of radians value n. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as
an argument, atan() returns null.

65

acos(n)Math Functions

atan(n) takes the following syntax.

SELECT ATAN(n) as Alias
FROM dataset;

Example: This example takes the arctan of 90 degrees.

SELECT ATAN(RADIANS(90)) as arctanValue
FROM "Opportunity"
LIMIT 1;

arctanValue

1.00388

ceil(n), ceiling(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1.797e308 <= n <=
1.797e308.

ceil(n) takes the following syntax.

SELECT ceil(column_name) as aliasName
FROM dataset;

Example: This example takes the ceiling of the Profit field.

SELECT ceil(Profit) as ceilProfit
FROM Superstore
LIMIT 1;

ceilProfit

42

cos(n)

Returns the cosine value of radians value n. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as
an argument, cos() returns null.

cos(n) takes the following syntax.

SELECT COS(n) as Alias
FROM dataset;

66

ceil(n), ceiling(n)Math Functions

Example: This example takes the cosine of 90 degrees.

SELECT COS(RADIANS(90)) as cosValue
FROM "Opportunity"
LIMIT 1;

cosValue

6.12323e-17

degrees(n)

Returns the degrees value of n radians. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as an
argument, radians() returns null.

degrees(n) takes the following syntax.

SELECT DEGREES(n) as Alias
FROM dataset;

Example: This example returns the degrees of 1.57079 radians.

SELECT DEGREES(1.57079) as degreesValue
FROM "Opportunity"
LIMIT 1;

degreesValue

90

exp(n)

Returns the value of Euler's number e raised to the power of n, where e = 2.71828183… The smallest value for n that does not result
in 0 is 3e-324. n can be any real numeric value in the range of -1.797e308 <= n <= 700.

exp(n) takes the following syntax.

SELECT exp(n) as AliasName
FROM dataset;

Example: This example returns the value of e raised to the 5th power.

SELECT exp(5) as expExample FROM Superstore
LIMIT 1;

expExample

148.413

67

degrees(n)Math Functions

floor(n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1.797e308<= n <= 1.797e308.

floor(n) takes the following syntax.

SELECT floor(column_name) as AliasName
FROM dataset;

Example: This example returns values in the Discount field rounded down to the nearest integer. In the first three rows, the
Discount value is 0. The fourth and fifth values are 0.45 and 0.2, respectively, which are rounded to 0.

SELECT floor(Discount) as floorDiscount
FROM Superstore
LIMIT 5;

floorDiscount

0

0

0

0

0

ln(n)

Returns the base e (Euler's number) logarithm of a number n. The value n can be any positive, non-zero numeric value in the range 0
< n <= 1.797e308.

ln(n) takes the following syntax.

SELECT ln(numericValue) as AliasName
FROM dataset;

Example: This example returns the base e logarithm for the number 8.

SELECT ln(8.0) as LnExample FROM Superstore
LIMIT 1;

LnExample

2.079

68

floor(n)Math Functions

log(m,n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the range 0
< m, n <= 1.797e308 and m ≠ 1.

log(mn) takes the following syntax.

SELECT log(baseNumber, numericValue) as AliasName
FROM dataset;

Example: This example returns the base 2 logarithm for the number 8.

SELECT log(2.0,8.0) as natlLogExample FROM Superstore
LIMIT 1;

natlLogExample

3.0

log10(n)

Returns the base 10 logarithm of a number n. The value n can be any positive, non-zero numeric value in the range 0 < n <= 1.797e308.

log10(n) takes the following syntax.

SELECT log10(numeric_value) as AliasName
FROM dataset;

Example: This example returns the base 10 logarithm for the number 5.

SELECT log10(5) as logExample FROM Superstore
LIMIT 1;

logExample

0.698

pi()

Returns the value of constant π, where π=3.14159.

PI() takes the following syntax.

SELECT PI() as Alias
FROM dataset;

69

log(m,n)Math Functions

Example:

SELECT PI() as piValue
FROM "Opportunity"
LIMIT 1;

piValue

3.14159

power(m,n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1.797e308 <= m, n <= 1.797e308. Returns null if
m = 0 and n < 0.

• If m = 0, n must be a non-negative value.

• If m < 0, n must be an integer value.

• The result of power(m, n) must be within the range expressed by a float64 number.

power(m,n) takes the following syntax.

SELECT power(m,n) as AliasName
FROM dataset;

Example: This example returns 2 raised to the 5th power.

SELECT power(2, 5) as powerExample FROM Superstore
LIMIT 1;

powerExampe

32.0

radians(n)

Returns the radians value of n degrees. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as an
argument, radians() returns null.

radians(n) takes the following syntax.

SELECT RADIANS(n) as Alias
FROM dataset;

Example: This example returns the radians of 90 degrees.

SELECT RADIANS(90) as radiansValue
FROM "Opportunity"
LIMIT 1;

70

power(m,n)Math Functions

radiansValue

1.57079

round(n[,m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places to
the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half way from
zero convention. n can be any real numeric value in the range of -1.797e308 <= n <= 1.797e308. m can be an integer value between
-15 and 15, inclusive.

round(n[,m]) takes the following syntax.

SELECT round(n[,m]) as AliasName
FROM dataset;

Example: This example returns 47.385 rounded to the first decimal place.

SELECT round(47.385, 1) as roundExample FROM Superstore
LIMIT 1;

roundExample

47.4

sign(n)

Returns 1 if the numeric value, n is positive. It returns -1 if the n is negative, and 0 if n is 0. n can be any real number in the range of
-1e308 <= n <= 1e308.

SIGN(n) takes the following syntax.

SELECT SIGN(n) as Alias
FROM dataset;

Example: This example returns the sign of -12.

SELECT SIGN(-12) as signValue
FROM "Opportunity"
LIMIT 1;

signValue

-1

71

round(n[,m])Math Functions

sin(n)

Returns the sine value of radians value n. ncan be any real number in the range of -1e308 <= n <= 1e308. If null is passed as an
argument, sin() returns null.

sin(n) takes the following syntax.

SELECT SIN(n) as Alias
FROM dataset;

Example: This example takes the sine of 90 degrees.

SELECT SIN(RADIANS(90)) as sinValue
FROM "Opportunity"
LIMIT 1;

sinValue

1

sqrt(n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1.797e308.

sqrt(n) takes the following syntax.

SELECT sqrt(n) as AliasName
FROM dataset;

Example: This example returns the square root of 64.

SELECT sqrt(64.0) as SqrtExample FROM Superstore
LIMIT 1;

SqrtExample

8.0

tan(n)

Returns the tan value of radians value n. n can be any real number in the range of -1e308 <= n <= 1e308. If null is passed as an
argument, tan() returns null.

tan(n) takes the following syntax.

SELECT TAN(n) as Alias
FROM dataset;

72

sin(n)Math Functions

Example: This example takes the tan of 90 degrees.

SELECT TAN(RADIANS(90)) as tanValue
FROM "Opportunity"
LIMIT 1;

tanValue

163312

trunc(n[,m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any real
numeric value in the range of -1.797e308 <= n <= 1.797e308. m can be an integer value between -15 and 15 inclusive.

trunc(n[,m]) takes the following syntax.

SELECT trunc(n[,m]) as AliasName
FROM dataset;

Example: This example returns 47.385 truncated to the second decimal place.

SELECT trunc(47.385, 2) as truncExample FROM Superstore
LIMIT 1;

truncExample

47.38

73

trunc(n[,m])Math Functions

STRING FUNCTIONS AND OPERATORS

SQL for CRM Analytics supports the following string functions and operators.

ascii(char)

Returns UTF-8 numeric value of the specified character. Returns null if n is null.

chr(int)

Returns the UTF-8 character for integer n. Returns null if n is null.

char_length(str)

Returns the number of characters in a given string.

ends_with(source_str, search_str)

Returns a Boolean indicating whether a string ends with the search string.

index_of(source_str, search_str, [position,occurrence])

Returns a boolean indicating whether a string ends with the search string.

lower(str)

Returns a copy of string str with all cased characters converted to lowercase.

mv_to_string(multivalue_column_name, [delimeter])

Converts multivalue fields to string fields.

position(search_str IN source_str)

Returns an integer that indicates the first occurrence of a substring in a given string. If the substring is not found, the function returns
0.

replace(str, old_str, new_str)

Replaces all occurrences in string str of a substring old_str with a new substring new_str. Returns a new string.

starts_with(source_str, search_str)

Returns a Boolean indicating whether a string begins with the search string.

substring(str FROM start FOR length)

Returns a substring from string str that begins with the character at the start position.

trim(LEADING | TRAILING | BOTH, chars, str)

Removes leading or trailing characters from a string. If no characters are specified, the function removes blank spaces.

upper(str)

Returns a copy of string str with all cased characters converted to uppercase.

ascii(char)

Returns UTF-8 numeric value of the specified character. Returns null if n is null.

74

Example: This example returns the ASCII value for the letter “a.”

SELECT ASCII('C') as "asciiValue"
FROM "Superstore"
LIMIT 1;

asciiValue

67

chr(int)

Returns the UTF-8 character for integer n. Returns null if n is null.

Example: This example returns the character value of 67.

SELECT CHR(67) as "charValue"
FROM "Superstore"
LIMIT 1;

charValue

C

char_length(str)

Returns the number of characters in a given string.

Example: This example returns the number of characters in the first five entries in the City column.

SELECT City, CHAR_LENGTH(City) as "CityLen"
FROM "Superstore"
GROUP BY City
LIMIT 5;

CityLenCity

8Aberdeen

7Abilene

5Akron

11Albuquerque

10Alexandria

75

chr(int)String Functions and Operators

ends_with(source_str, search_str)

Returns a Boolean indicating whether a string ends with the search string.

ENDS_WITH() follows this syntax.

source_str
The string to be searched.

search_str
The string to search for within the source string.

Example: This example returns a Boolean that confirms whether the value in the City field ends with “ale.”

SELECT City, ENDS_WITH(City, "ale") as "endValue"
FROM "Superstore"
LIMIT 5;

endValueCity

falseHenderson

falseHenderson

falseLos Angeles

trueFort Lauderdale

trueFort Lauderdale

index_of(source_str, search_str, [position,occurrence])

Returns a boolean indicating whether a string ends with the search string.

INDEX_OF() follows this syntax.

source_str
The string to be searched.

search_str
The string to search for within the source string.

position
Optional. The index from which to begin searching the string. The default position is set to 1.

occurrence
Optional. If there’s more than one instance of the searched string, you can specify occurrence to choose which instance to return.
The default occurrence is set to 1.

The function returns 0 if search_str isn’t found.

76

ends_with(source_str, search_str)String Functions and Operators

Example: This example returns the index of the second occurrence of the letter “e” in the first five cities in the dataset.

SELECT City, INDEX_OF(City, 'e', 1, 2) as "indexValue"
FROM "Superstore"
LIMIT 5;

indexValueCity

5Henderson

5Henderson

10Los Angeles

15Fort Lauderdale

15Fort Lauderdale

lower(str)

Returns a copy of string str with all cased characters converted to lowercase.

Example: This example returns the first five entries in the City column in lowercase.

SELECT lower(City) as "lCity"
FROM "Superstore"
GROUP BY City
LIMIT 5;

lCity

aberdeen

abilene

akron

albuquerque

alexandria

mv_to_string(multivalue_column_name, [delimeter])

Converts multivalue fields to string fields.

MV_TO_STRING() takes this syntax.

MV_TO_STRING(multivalue_column_name, delimeter)

multivalue_column_name
Name of the multivalue field to be converted to a string.

77

lower(str)String Functions and Operators

delimiter
Optional. The characters used to delimit values in the converted string. Maximum length is 2 characters.

Returns an alphabetically sorted, delimited string representation of a multivalue field. The default delimiter is a comma followed by a
space (,).

You can’t use MV_TO_STRING() in a WHERE or GROUP BY clause. Use it in the SELECT statement only. If you run
MV_TO_STRING() on single-value dimensions or on unindexed multivalue dimensions, the function returns a single value.

Note: To enable multivalue fields, you must select the Enable indexing of multivalue fields in CRM Analytics preference in
Setup. If you run MV_TO_STRING() without the preference selected, the function returns the first value in the first field only.

1. From Settings, in the Quick Find box, enter Analytics, and then select Settings from the list of Analytics options.

2. In Settings, select Enable indexing of multivalue fields in CRM Analytics.

Simple Example
This query converts the multivalue field flight_attendants to a string and returns values that contain the name “maria.”

SELECT MV_TO_STRING(flight_attendants) as Flight_Attendants
FROM "FlightsWithNullDim"
WHERE "flight_attendants" IN ('maria')

Flight_Attendants

kate, maria, mark, martin, sara

maria, sarah

kate, maria, mark, martin, sara

maria, sarah

kate, maria, mark, martin, sara

maria, sarah

Example with Custom Delimeter
This query returns all values of the flight_classes field and delimits them with “;;”.

SELECT MV_TO_STRING(flight_classes, ';;') as Flight_Classes
FROM "FlightsWithNullDim"
LIMIT 10;

78

mv_to_string(multivalue_column_name, [delimeter])String Functions and Operators

Flight_Classes

business;;economy

business;;economy;;first

business;;economy

business;;economy

business;;economy

business;;economy;;first

business;;economy

business;;economy

business;;economy

business;;economy;;first

Example with Grouping
The custom delimeter example returns two result values: business;;economy and business;;economy;;first. Let's group by the
flight_classes field and display the counts for each of these values. Since MV_TO_STRING() throws an error if included in
a GROUP BY statement, we can nest the SELECT statement containing MV_TO_STRING() as a subquery and group the results
in the outer query.

SELECT Flight_Classes, count() as cnt
FROM (

SELECT MV_TO_STRING(flight_classes, ';;') as Flight_Classes
FROM "FlightsWithNullDim"

)
GROUP BY Flight_Classes;

cntFlight_Classes

18business;;economy

6business;;economy;;first

position(search_str IN source_str)

Returns an integer that indicates the first occurrence of a substring in a given string. If the substring is not found, the function returns 0.

Example: This example returns the position of the substring “der” in the City field.

SELECT City, POSITION('der' IN City) as "Pos"
FROM "Superstore"
LIMIT 5;

79

position(search_str IN source_str)String Functions and Operators

PosCity

4Henderson

4Henderson

0Los Angeles

9Fort Lauderdale

9Fort Lauderdale

replace(str, old_str, new_str)

Replaces all occurrences in string str of a substring old_str with a new substring new_str. Returns a new string.

Example: This example replaces instances of 'Al' with 'AL' in the City column. The query returns the first five entries.

SELECT replace(City, 'Al', 'AL') as "City"
From "Superstore"
GROUP BY City
LIMIT 5;

City

Aberdeen

Abilene

Akron

ALbuquerque

ALexandria

starts_with(source_str, search_str)

Returns a Boolean indicating whether a string begins with the search string.

STARTS_WITH() follows this syntax.

source_str
The string to be searched.

search_str
The string to search for within the source string.

80

replace(str, old_str, new_str)String Functions and Operators

Example: This example returns a Boolean that confirms whether the value in the City field begins with “Hen.”

SELECT City, STARTS_WITH(City, "Hen") as "startValue"
FROM "Superstore"
LIMIT 5;

startValueCity

trueHenderson

trueHenderson

falseLos Angeles

falseFort Lauderdale

falseFort Lauderdale

substring(str FROM start FOR length)

Returns a substring from string str that begins with the character at the start position.

Note: The substring function isn’t supported in Analytics Studio. An error occurs when the function is used in the UI. The function
is available using the Query API. For more information, see Query CRM Analytics Data with the Query API.

start
Required. The starting position of the substring. This is the first character of the substring. The value can be positive or negative. If
positive, the position is taken from the beginning of the string. If negative, the position is taken from the end of the string.

length
Optional. The length of the substring, beginning at the start position. If no value is provided, substring() extracts characters
from the start position through the end of the string.

Example: This example extracts the first three letters from each City field.

SELECT City, SUBSTRING(City FROM 1 FOR 3) as CityCode FROM "Superstore"
GROUP BY City LIMIT 5;

CityCodeCity

AbeAberdeen

AbiAbilene

AkrAkron

AlbAlbuquerque

AleAlexandria

81

substring(str FROM start FOR length)String Functions and Operators

https://developer.salesforce.com/docs/atlas.en-us.250.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/bi_rest_api_query_data.htm

trim(LEADING | TRAILING | BOTH, chars, str)

Removes leading or trailing characters from a string. If no characters are specified, the function removes blank spaces.

Note: The trim function isn’t supported in Analytics Studio. An error occurs when the function is used in the UI. The function is
available using the Query API. For more information, see Query CRM Analytics Data with the Query API.

LEADING
Optional. Specify to remove characters from the beginning of the string.

TRAILING
Optional. Specify to remove characters from the end of the string.

BOTH
Optional. Specify to remove characters from both the start and end of the string.

If LEADING, TRAILING, or BOTH aren't specified, trim() defaults to BOTH.

Example: This example shows all variations of the trim() function for removing the characters "A", "b", and "n" from the
beginning, end, or both sides of the City field string.

SELECT City, Trim('Abn' FROM City) as TrimCity, Trim(LEADING 'Abn' FROM City) as
LTrimCity, Trim(TRAILING 'Abn' FROM City) as RTrimCity, Trim(BOTH 'Abn' FROM City) as
BothTrimCity
FROM "Superstore"
GROUP BY City
LIMIT 5;

BothTrimCityRTrimCityLTrimCityTrimCityCity

erdeeAberdeeerdeenerdeeAberdeen

ileneAbileneileneileneAbilene

kroAkrokronkroAkron

IbuquerqueAlbuquerquelbuquerquelbuquerqueAlbuquerque

lexandriaAlexandrialexandrialexandriaAlexandria

upper(str)

Returns a copy of string str with all cased characters converted to uppercase.

Example: This example returns the first five entries in the City column in uppercase.

SELECT upper(City) as upperCity FROM "Superstore"
GROUP BY City
LIMIT 5;

upperCity

ABERDEEN

82

trim(LEADING | TRAILING | BOTH, chars, str)String Functions and Operators

https://developer.salesforce.com/docs/atlas.en-us.250.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/bi_rest_api_query_data.htm

upperCity

ABILENE

AKRON

ALBUQUERQUE

ALEXANDRIA

83

upper(str)String Functions and Operators

SQL FOR ANALYTICS RELEASE NOTES

Use the Salesforce Release Notes to learn about the most recent updates and changes to SQL for Analytics.

For a list of all current developer changes, including SQL for Analytics, see CRM Analytics in the Salesforce Release Notes.

Note: If the Analytics Development section in the Salesforce Release Notes isn’t present, there aren’t any updates for that release.

84

https://help.salesforce.com/s/articleView?id=release-notes.rn_bi_analytics_cloud.htm&language=en_US

	Introducing SQL for CRM Analytics
	Quick Start: Run Your First Query
	SQL vs SAQL
	SQL Statements
	SELECT Clause
	FROM Clause
	FILL
	TIMESERIES

	WHERE Clause
	Boolean Expressions in SELECT Clause
	GROUP BY Clause
	GROUP BY ROLLUP
	GROUPING()
	HAVING Clause
	ORDER BY Clause
	LIKE Clause
	BETWEEN Operator
	LIMIT Clause
	FETCH Clause
	OFFSET Clause
	CASE Statements
	COALESCE()
	NULLIF()
	UNION Operator
	Subquery
	Window Functions

	Date Functions
	Access Parts of a Date
	Project a Date Field
	Filter By Date Parts or Date Field
	Group By Date Part
	Order By Date Part
	Project a Custom Fiscal Date Part
	Day in Week, Month, Quarter or Year Functions
	Day of Week
	Day of Month
	Day of Quarter
	Day of Year

	First and Last Day in the Week, Month, Quarter or Year Functions
	week_first_day(date)
	fiscal_week_first_day(date)
	month_first_day(date)
	fiscal_month_first_day(date)
	quarter_first_day(date)
	fiscal_quarter_first_day(date)
	year_first_day(date)
	fiscal_year_first_day(date)
	week_last_day(date)
	fiscal_week_last_day(date)
	month_last_day(date)
	fiscal_month_last_day(date)
	quarter_last_day(date)
	fiscal_quarter_last_day(date)
	year_last_day(date)
	fiscal_year_last_day(date)

	Aggregate Functions
	avg()
	count()
	min()
	max()
	sum()
	stddev_pop()
	stddev_samp()
	var_pop()
	var_samp()
	regr_intercept()
	regr_slope()
	regr_r2()
	percentile_cont
	percentile_disc

	Math Functions
	abs(n)
	acos(n)
	asin(n)
	atan(n)
	ceil(n), ceiling(n)
	cos(n)
	degrees(n)
	exp(n)
	floor(n)
	ln(n)
	log(m,n)
	log10(n)
	pi()
	power(m,n)
	radians(n)
	round(n[,m])
	sign(n)
	sin(n)
	sqrt(n)
	tan(n)
	trunc(n[,m])

	String Functions and Operators
	ascii(char)
	chr(int)
	char_length(str)
	ends_with(source_str, search_str)
	index_of(source_str, search_str, [position,occurrence])
	lower(str)
	mv_to_string(multivalue_column_name, [delimeter])
	position(search_str IN source_str)
	replace(str, old_str, new_str)
	starts_with(source_str, search_str)
	substring(str FROM start FOR length)
	trim(LEADING | TRAILING | BOTH, chars, str)
	upper(str)

	Release Notes

