
Lightning Web Components in
CRM Analytics Dashboards

Salesforce, Spring ’24

Last updated: March 22, 2024

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

LIGHTNING WEB COMPONENTS IN CRM ANALYTICS DASHBOARDS 1
Architecture . 1
Setup . 3

HELLO WORLD COMPONENT EXAMPLE . 5
Component Attributes . 5
CRM Analytics Configuration . 6
Query Data . 10
Other Widgets . 10

REFERENCE . 15

RELEASE NOTES . 19

LIGHTNING WEB COMPONENTS IN CRM ANALYTICS
DASHBOARDS

With Lightning Web Components in dashboards, you can now extend CRM Analytics functionality with your own custom widgets.

Overview

With Lightning Web Components in dashboards, widgets can be a custom data visualization, a custom selection control, a richly formatted
custom document, and more. The main benefits are:

• Part of the dashboard canvas - Any Lightning Web Component can be next to a dashboard, but it’s always offset by spacing. Lightning
Web Components in dashboards allow the component to render ON the dashboard canvas, and it can look and feel like a native
widget. Also, the dashboard can have one or more Lightning Web Components inside it, so everything can be browsed, embedded,
and consumed as a single, cohesive unit.

• No code data querying built-in - Each Lightning Web Component can be optionally associated with a query, also known as a step.
This query provides a table of data to the Lightning Web Component, so that the developer writes less code to query and fetch data.
Anyone configuring your component can use the CRM Analytics Explorer UI to configure any query against datasets, Salesforce
Objects, or Snowflake with clicks and not code. Also, the Analytics Dashboard Designer UI has additional features like Embedded
Filters, Global Filters, selective faceting, and bindings. Here you can configure how the widget interacts with other dashboard elements
without adding any additional code to your Lightning Web Component.

• Attributes UI - The developer can specify attributes and their types that populate a configuration UI for each setup. These attributes
are a great way to abstract:

– Constants for use case defined parameters

– Dynamic, calculated data

– Metadata about how to use the columns of configured query results

– Labels

– Colors, sizes, and other styling attributes

By specifying the attribute type, your users see the appropriate configuration UI and validation for that type. And they always have
the option to use the Designer IDE to create custom interactions to make any attribute dynamic.

• Set and Get State Functions - These functions provide the same functionality present in the CRM Analytics Dashboard Component.
Your custom Lightning Web Component can get the entire state of the parent dashboard and modify it in any way. The benefit of
a Lightning Web Component is that it’s even easier to connect to the parent dashboard with auto-wiring.

Architecture

Let’s look at how custom Lightning Web Component widgets fit into the existing CRM Analytics dashboard architecture.

Setup

Set up your environment to create Lightning Web Component widgets, and then add them to your CRM Analytics dashboards.

Architecture

Let’s look at how custom Lightning Web Component widgets fit into the existing CRM Analytics dashboard architecture.

1

CRM Analytics dashboards work with a clean separation of concerns. Widgets get data from queries, and pass selection back to them.
Queries can pass selections to each other through faceting and receive global filters from the core runtime. Steps can also pass selections
and data to other components via bindings.

Now you have a way to put your code into the mix while taking advantage of this entire system.

Mixing custom code in with widgets creates a powerful dynamic, and you have many ways to get state and configuration into your
code. Meanwhile, you can communicate with the parent dashboard by setting selections on the associated query or using the setState
method.

2

ArchitectureLightning Web Components in CRM Analytics Dashboards

Setup

Set up your environment to create Lightning Web Component widgets, and then add them to your CRM Analytics dashboards.

CRM Analytics provides a collection of easy-to-digest code examples for Lightning Web Components that are specific to CRM Analytics
features. These examples demonstrate how to code charts, graphs, and hierarchies using third-party JS libraries and CRM Analytics
features.

Setup Instructions

Use these instructions to set up your Salesforce org for development of Lightning Web Components and to use the CRM Analytics
Lightning Web Component examples provided.

Getting Started with Lightning Web Components

Before continuing with this guide, we recommend you familiarize yourself with Lightning Web Components.

Setup Instructions
Use these instructions to set up your Salesforce org for development of Lightning Web Components and to use the CRM Analytics
Lightning Web Component examples provided.

1. Create or use a Developer Edition (DE) org enabled for CRM Analytics. Sign up for a new CRM Analytics enabled DE org at
developer.salesforce.com/promotions/orgs/analytics-de.

2. If you plan to publish any of your own Lightning Web Component work to App Exchange, enable your DE org as a dev hub. For
more information about enabling dev hubs, see Enable Dev Hub Features in Your Org.

3. Create a Connected App, a record client key, and a secret. DO NOT use the JWT flow. For more information on Connected Apps, see
Create a Connected App for Your Dev Hub Org.

4. Install the Salesforce CLI. For detailed instructions, see Install Salesforce CLI. Alternatively, you can install Visual Studio Code to perform
steps 6–10. See Install Salesforce Extensions for Visual Studio.

5. Log in to your DE org via the CLI. For org login web and other command details, see the CLI command reference guide.

6. Clone the GitHub repository containing the CRM Analytics Lightning Web Component example components. This repository is
structured as a Salesforce DX project for use with CLI commands.

git clone https://github.com/forcedotcom/sfdx-analytics.git

7. See the README file in the repository for more information on the CRM Analytics Lightning Web Component example components.

8. Deploy the CRM Analytics Lightning Web Component examples in the project from the command line with

sf project deploy start --source-dir quick-start/main/default/lwc --target-org <USERNAME>

or use the SFDX: Deploy Source to Org command in Visual Studio code.

9. Use and adapt the CRM Analytics LWC examples to create your own custom Lightning Web Component widgets for CRM Analytics
dashboards.

10. Create your own component using the SFDX: Create Analytics Dashboard LWC command in Visual Studio Code or a standard
Lightning Web Component with the sf lightning generate component CLI command.

Note: The SFDX: Create Analytics Dashboard LWC command requires installation of the analyticsdx-vscode extension
pack.

3

SetupLightning Web Components in CRM Analytics Dashboards

https://developer.salesforce.com/promotions/orgs/analytics-de
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm#sfdx_setup_install_cli
https://developer.salesforce.com/tools/vscode/en/getting-started/install
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm
https://github.com/forcedotcom/sfdx-analytics

Getting Started with Lightning Web Components
Before continuing with this guide, we recommend you familiarize yourself with Lightning Web Components.

There are many resources to help you get started, such as:

• Introducing Lightning Web Components: The official Lightning Web Components Developer Guide and reference

• Build Lightning Web Components: A Trailhead trail with QuickStart, basics, building, testing, and using events

• Lightning Web Components - Episode 1: An Introduction: A video series on Lightning Web Components

• Lightning Web Components Open Source: Documentation on the Lightning Web Components open-source UI framework

When you’re comfortable with the basics and have your development environment set up, continue to the Hello World Component
Example.

Note: If you create a Lightning Web Component that uses Lightning events, the events work when your CRM Analytics dashboard
is embedded in Salesforce pages, but not from Analytics Studio. Analytics Studio is a separate Lightning app.

4

Getting Started with Lightning Web ComponentsLightning Web Components in CRM Analytics Dashboards

https://developer.salesforce.com/docs/component-library/documentation/en/lwc
https://trailhead.salesforce.com/en/content/learn/trails/build-lightning-web-components
https://www.youtube.com/watch?v=FBKlTPcb614
https://lwc.dev/

HELLO WORLD COMPONENT EXAMPLE

Create a simple Lightning Web Component widget to display Hello World in your CRM Analytics dashboard.

Component Attributes

You can convert any Lightning Web Component into a CRM Analytics Lightning Web Component by adding specific attributes.

CRM Analytics Configuration

Now that the Lightning Web Component code is ready to go, it’s time to bring the component into a CRM Analytics dashboard.

Query Data

Let’s learn how to inject query results into your running Lightning Web Component code.

Other Widgets

The Hello World example is a simplified scenario. The most common real world use cases are a custom data visualization, a selection
widget, or even better, a widget that does both. With practice, you can add anything you want. To see a list, a third-party data
visualization integration, a hierarchy, and more widgets, check out the example GitHub repository.

Component Attributes

You can convert any Lightning Web Component into a CRM Analytics Lightning Web Component by adding specific attributes.

The Lightning Web Component framework requires a special tag to know your component is compatible for use in CRM Analytics
dashboards. Let’s start by adding this XML to your js-meta.xml file:

<targets>
<target>analytics__Dashboard</target>

</targets>

The target attribute informs the designer UI that this widget is compatible with CRM Analytics and allows the component to show
up in the component selector. This stage in the process is also a good time to make sure your component widget is visible. To enable
visibility, check out this line in the js-meta.xml:

<isExposed>true</isExposed>

Now any CRM Analytics dashboard author can add your widget after it’s published to an org, but you also want to expose configuration
options. To do that, create an attribute:

<targetConfigs>
<targetConfig targets="analytics__Dashboard">

<hasStep>false</hasStep>
<property name="title" type="String" label="Title" description="Title of the

component" required="true" />
</targetConfig>

</targetConfigs>

5

Here, you set hasStep to false because you aren’t using any query data. You’re adding a single attribute title, which is type
String, so that the dashboard author can type any free text to configure. Set required="true" so that authors can’t make
blank components. When you’re done, the whole file looks something like:

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>53.0</apiVersion>
<isExposed>true</isExposed>

<masterLabel>Hello LWC</masterLabel>
<description>Test project for LWC.</description>

<targets>
<target>analytics__Dashboard</target>

</targets>

<targetConfigs>
<targetConfig targets="analytics__Dashboard">

<hasStep>false</hasStep>
<property name="title" type="String" label="Title" description="Title of the

component" required="true" />
</targetConfig>

</targetConfigs>
</LightningComponentBundle>

Note: Your API version can be different so that it matches the version of the Salesforce org that you’re developing your Lightning
Web Component for.

To wire up the component, start by adding these attributes with @api annotations in your .js file. After you add them, the .js
file looks like:

import { LightningElement, api } from 'lwc';

export default class HelloWorld extends LightningElement {
@api title;

}

You don’t use any custom logic in this example, so no additional code is needed. You do need your component to say hello, so edit the
HTML template in the .html file.

<template>
Hello World: {title}

</template>

CRM Analytics Configuration

Now that the Lightning Web Component code is ready to go, it’s time to bring the component into a CRM Analytics dashboard.

Basic Configuration
After pushing your code into a Salesforce org, go to the CRM Analytics dashboard designer and create a blank dashboard.

1. To create a dashboard component, drop a component widget () onto a dashboard.

6

CRM Analytics ConfigurationHello World Component Example

2. Select the Lightning Components tab.

Note: If you don’t see this tab, you must enable this feature. For enablement information, see the Setup page.

3. Choose the Hello World Lightning Web Component that you created from the list.

4. To see the title attribute, expand the Component Attributes on the right-hand side. Type your name in the box, and then watch
your code in action.

Note: You can use Preview to run the dashboard, but many attributes update during design time, for faster testing.

Advanced Configuration - SOQL Query
Let’s make your component dynamic by adding some user attributes. You can use SOQL with a filter by the current user token to grab
any field from your user object. For this example, use the First.Name field.

1. On your dashboard, click Edit.

2. In the dashboard editor, click a blank space.

3. At the top-right, click the Create Query button.

4. Select the Salesforce Object tab.

5. Select the User object.

6. To edit the SOQL, click .

7. Paste this SOQL into the editor:

SELECT FirstName, COUNT(Id) FROM User WHERE Id= '!{User.Id}' GROUP BY FirstName ORDER
BY FirstName ASC LIMIT 1

8. Name the query and click Done.import chartjsPluginSubtitle from '@salesforce/resourceUrl/chartJsPluginSubtitle';

Now you have a query that returns one row containing the current user’s first name. Use the interactions UI to wire it into your step.

1. To bring up the query panel to the right, click a blank space on the dashboard.

2. Find your new SOQL query, and then from its dropdown menu, select Properties.

3. Click Advanced Editor.

4. Under Source Query, select your query.

5. For Source Data, choose cell, 0, and FirstName.

6. For Interaction Type, keep Result.

7

CRM Analytics ConfigurationHello World Component Example

7. Optionally, add a default value in case no results are found. This example uses You.

8. Copy the interaction.

9. Save your work.

10. Click on your component and then click Advanced Editor in the Widget menu.

11. In the editor, paste the interaction as the title value and click Save.

Next. Try it out. You have a dynamic value automatically set by the current user viewing your content. If it’s not working, preview your
results from the query panel to verify the data is coming back correct. To debug for typos, use the Advanced Editor, or cmd+e/CTRL+e
to view the dashboard JSON.

Advanced End-User Configuration - Static Step UI
Using bindings, you can create any dynamic value from existing queries and selections. Let’s make a set of discrete values that an end
user can select that drives an attribute in your LWC code.

1. Drag a toggle widget onto the dashboard page.

2. To configure the widget, click the Toggle button.

3. At the bottom of the configuration menu, choose Create Custom Query.

4. Under the Display column, add a few options. This example uses the many names of Salesforce Analytics:

8

CRM Analytics ConfigurationHello World Component Example

5. Click Done.

6. To show the Properties panel on the right, click your LWC Component.

7. Click Advanced Editor.

8. To create an interaction, choose the static query you created.

9. For Source Data, select cell, 0, and Display.

10. Choose a selection binding.

11. Optionally, add a default value in case no results are found. This example uses whoever the user is.

12. Copy and paste the interaction as the title value.

13. Save your changes.

Note: Instead of setting a default value, you can go into the query properties and set the selection mode to SingleRequired.
This setting ensures there’s always a selection for the query.

And there you have it. Preview your dashboard to try it out. Select a name from the toggle and then watch your Lightning Web Component
say “Hello” to that name.

Now that you have an understanding of attributes and configuration, feel free to add more to your widget. You can add style and CSS
options to your component and expose them as attributes, such as Text Size, Text Color, or Background Color.

9

CRM Analytics ConfigurationHello World Component Example

Query Data

Let’s learn how to inject query results into your running Lightning Web Component code.

To start, modify your Hello World component to use a step by setting hasStep to true in the js-meta.xml.

<hasStep>true</hasStep>

Add the results wiring into your .js file.

import { LightningElement, api } from 'lwc';

export default class HelloWorld extends LightningElement {
@api title;

@api results;

get stringResults() {
return JSON.stringify(this.results)

}
}

To view the query results as text, update your .html file.

<template>
Hello World: {title}
Results: {stringResults}

</template>

Deploy the changes to your component to your org. Refresh your dashboard to pick up any updates to the component code. After
refreshing the dashboard, edit the dashboard and click your component. You’re now prompted to select a data source. You can select
a dataset to create a query or select an existing query. Make your selection and watch the query results appear in your dashboard.

Other Widgets

The Hello World example is a simplified scenario. The most common real world use cases are a custom data visualization, a selection
widget, or even better, a widget that does both. With practice, you can add anything you want. To see a list, a third-party data visualization
integration, a hierarchy, and more widgets, check out the example GitHub repository.

GitHub Examples
Clone the GitHub example repository, git clone https://github.com/forcedotcom/sfdx-analytics.git.
Open the repository in Visual Studio. The Lightning Web Component examples are in the quick-start/main/default/lwc
directory and include:

RequirementsDescriptionExample

No step or attribute requirementsLeaves breadcrumbs as users
navigate through a dashboard.

breadcrumb

Requires 2 attributes from step results:Render a graph.graph

• sourceField - graph edge sources (Dimension)

10

Query DataHello World Component Example

https://github.com/forcedotcom/sfdx-analytics

RequirementsDescriptionExample

• destinationField - graph edge destinations
(Dimension)

• valueField - Optional numeric weight for an edge
(Measure)

Requires 4 attributes from step results:Render results into a hierarchical
structure as a tree grid.

hierarchy

• idColumn - primary key (Dimension)

• parentIdColumn - self-reference to parent record
(Dimension)

• labelColumn - record label (Dimension)

• root - root node (String)

Requires 2 attributes from step results:Render results using Chart.js.libsChartjs

• measureColumn - segment size (Measure)

• labelColumn - segment label (Dimension)

Requires a step, but no attributes. Set up the component with a
simple step of Count of Rows on 1 field and it lists the field
results.

Render results in a list.list

Requires a step and 1 attribute.Play recording of dashboard
selection changes.

playButton

• delay - delay between selection steps in milliseconds
(Integer)

Requires a step and 1 attribute.Navigate to another dashboard
page.

selectNavigate

• targetPage - ID of page to navigate to on selection (String)

Requires 4 attributes from step results, plus formatting attributes:Gantt chart example with
multiple attributes exposed for

tdxGanttChart

• fromColumn - start of segment (Dimension)
user input in a CRM Analytics
dashboard. • toColumn - end of segment (Dimension)

• labelColumn - segment label (Dimension)

• colorColumn - segment color (Dimension)

• axesType - the type of axes: linear or time (String)

• title - optional title for the chart (String)

• titleFontSize - optional title font size for the chart
(Integer)

• subtitle - optional subtitle for the chart. (String)

• subtitleFontSize - optional subtitle font size for the
chart (Integer)

• theme - theme to use for the chart (String)

• backgroundColor - the background color for the chart
(String)

11

Other WidgetsHello World Component Example

RequirementsDescriptionExample

• label - the label for the chart (String)

Requires 2 attributes from step results, plus formatting attributes:Render a word cloud.wordcloud2

• wordColumn - column with words to display (Dimension)

• measureColumn - numerical value defining word size
(Measure)

• height - height of the canvas (Integer)

• width - width of the canvas (Integer)

• minTextSize - minimum size of the text in px (Integer)

Using the Hierarchy Component
To test and play with this component, create a custom static query in the dashboard editor.

Drop a component on the dashboard, select Hierarchy from the Lightning Components list, and use Existing Query to set the custom
static query as the component step.

In the component properties menu, set the Component Attributes to these values.

• ID Column - ID

• Parent ID Column - ParentID

• Label Column - Display

• Root Node - 0

Save your work and preview the dashboard to see the working hierarchy component. If you make any updates to the component
attributes, refresh the dashboard in preview mode to render the changes.

Using the TDX Gantt Chart Demo Component
To test and play with this component, create a custom query in the dashboard editor. Use the Opportunities dataset to create a values
table query with six columns. The six columns are CreatedDate, CloseDate, Opportunity Name, Opportunity Owner, Amount, and
Stage.

12

Other WidgetsHello World Component Example

Drop a component on the dashboard, select TDX Gantt Chart Demo from the Lightning Components list, and use Existing Query
to set the custom query as the component step.

In the component properties menu, set the Component Attributes to these values.

• From Column - CreatedDate

• To Column - CloseDate

• Label Column - Opportunity Name

• Color Column - Stage

• Axes Type - time

• Title - Deals over Time

• Title Font Size - 22

• Subtitle - Dealflow Analysis

• Subtitle Font Size - 11

• Theme - Sunrise

• Background Color - #FFFFFF

Save your work and preview the dashboard to see the working Gantt chart component. If you make any updates to the component
attributes, refresh the dashboard in preview mode to render the changes.

Using the Word Cloud 2 Component
To test and play with this component, create a custom query in the dashboard editor. Use the Opportunities dataset to create a compare
table query with a column for Count of Rows and a column for Scaled Size. Make the Scaled Size column a formula of A/10. Group
the columns by Account.Industry.

13

Other WidgetsHello World Component Example

Drop a component on the dashboard, select Word Cloud 2 from the Lightning Components list, and use Existing Query to set the
custom static query as the component step.

In the component properties menu, set the Component Attributes to these values.

• Words - Account.Industry

• Measure Column - Scaled Size

• Height - 400

• Width - 1000

• Min Text Size - 20

Save your work and preview the dashboard to see the working word cloud component. If you make any updates to the component
attributes, refresh the dashboard in preview mode to render the changes.

Note: Creating a query first isn’t required. You can also create a query when the component is added to the dashboard. You have
the choice to select fields from the existing dataset or to change the data source to another dataset and then select fields.

14

Other WidgetsHello World Component Example

REFERENCE

Detailed reference for Lightning Web Components in Analytics dashboards.

Component Configuration

Description of attributes for the component js-meta.xml file.

analytics__Dashboard Target
To allow the component to be used in Analytics dashboards, add this target to the list of targets.

<targets>
<target>analytics__Dashboard</target>

<targets>

To customize how the component appears in Analytics dashboards, add a targetConfig to targetConfigs.

<targetConfigs>
<targetConfig target="analytics__Dashboard">
</targetConfig>

</targetConfigs>

<hasStep> tag
In an analytics__Dashboard target config, you can choose to include the <hasStep>true</hasStep> attribute.

<targetConfigs>
<targetConfig target="analytics__Dashboard">

<hasStep>true</hasStep>
</targetConfig>

</targetConfigs>

This attribute indicates that your component requires a dashboard step to function as expected. With this tag, the dashboard builder
UI prompts the user to attach an existing step or to create a step to an instance of the component. Components with an attached
step have access to step specific API hooks like results and selection.

Measure and Dimension Attribute Data Types
Attributes specified in an analytics__Dashboard target config are displayed in the Analytics dashboard builder UI for
configuration. In addition to the common data types, this target also supports Measure and Dimension data types for
components with <hasStep>true</hasStep>. The dashboard builder is able to choose a column of the given data type
from the results of the attached step.

<targetConfigs>
<targetConfig target="analytics__Dashboard">

<hasStep>true</hasStep>
<property name="labelColumn" type="Dimension" label="Label Column"

description="Segment label." required="true"/>
</targetConfig>

</targetConfigs>

15

API Hooks Overview

Available for Use in LWCDescriptionName

Requires
<hasStep>true</hasStep>.

An array of objects.results

Requires
<hasStep>true</hasStep>.

An object with three arrays: groups,
strings, and numbers. Each array is
the field name of each type from the
associated query.

metadata

Requires
<hasStep>true</hasStep>.

Returns the selection mode of the
associated query. Valid values are:

selectMode

• single

• multi

• singlerequired

• multirequired

• none

Requires
<hasStep>true</hasStep>.

The current selection of the associated step.selection

Requires
<hasStep>true</hasStep>.

Use this function to modify the current
selection on the associated step and inform
the parent dashboard.

setSelection

Always available.Use this function to retrieve the entire
parent dashboard state as a JSON
document.

getState

Always availableUse this function to modify the dashboard
state.

setState

Always availableUse this function to refresh the dashboard
state.

refresh

API Hooks Details

Results

The results are rows returned by the query represented as an array of maps.

[
{columnOne: 'one', columnTwo: 123},
{columnOne: 'two', columnTwo: 456}

]

16

Reference

Metadata

Metadata describes the shape of the results using lists of column developer names organized into groups, numbers, and
strings.

• Groups - Grouped dimensions. Typically, all grouped columns can be used together as a primary key for the row.

• Strings - All text fields, also known as Strings or Dimensions.

• Numbers - All numeric fields, also known as Measures.

{
groups: [],
strings: ['columnOne'],
numbers: ['columnTwo']

}

selectMode

Returns the select mode specified for the associated step. Valid values are:

• single

• multi

• singlerequired

• multirequired

• none

isMultiSelect() {
return this.selectMode.includes('multi');

}

selection

The current selection of the associated step as an Array of objects, with each object being one or more selected rows from results.
Use the setSelection function to update the dashboard selection.

return new Map((this.selection ?? []).map((row) => [this.hash(row), row]));

setSelection

The setSelection function is a callback passed in that allows the component to update the attached step's selection in Analytics.
In doing so, it potentially applies filters to the rest of the dashboard's contents depending on how the queries are configured.

this.setSelection(this.isMultiSelect() ? [...selectedRowsByHash.values(), row] : [row]);

getState and setState

Use getState to retrieve the current state of the dashboard. Use setState to modify the current state of the dashboard.
Fetch and modify all the current selections, filters, and the currently viewed page. Use these functions to add custom logic and
behavior that's not standard in the dashboard runtime.

if (!this.getState().pageId == this.targetPage) {
this.priorPage = this.getState().pageId;
this.setState({...this.getState(), pageId: this.targetPage, replaceState: true});

}

Learn more about selection syntax with Filter and Selection Syntax for Embedded Dashboards.

17

Reference

https://help.salesforce.com/articleView?id=bi_embed_filters.htm&language=en_US

refresh

Use refresh to rerun either all the queries on the dashboard or a particular query. To rerun a specific query, use the config
argument with the step id of the query.

this.refresh({step: this.step});

Custom Lifecycle Methods

stateChangedCallback

Use stateChangedCallback, a built-in callback method, to inform the component whenever the state of the dashboard
changes. Use stateChangedCallback to compare the current state with the new state and then rerender if necessary.

stateChangedCallback(prevState, newState) {
// perform comparison logic and set the new state to the current state to trigger a

rerender of the component
this.currentState = newState;

}

For an example of this callback in action, see the Breadcrumb javascript in the GitHub example repository.

Note: This callback method is available in v55 and later.

18

Reference

https://github.com/forcedotcom/sfdx-analytics/tree/main/quick-start/main/default/lwc/breadcrumb

RELEASE NOTES

Use the Salesforce Release Notes to learn about the most recent updates and changes to Lightning Web Components in CRM Analytics
Dashboards.

For a list of all current developer changes, including Lightning Web Components in CRM Analytics Dashboards, see CRM Analytics in
the Salesforce Release Notes.

Note: If the Analytics Development section in the Salesforce Release Notes isn’t present, there aren’t any updates for that release.

19

https://help.salesforce.com/s/articleView?id=release-notes.rn_bi_analytics_cloud.htm&language=en_US

	Lightning Web Components in CRM Analytics Dashboards
	Architecture
	Setup
	Setup Instructions
	Getting Started with Lightning Web Components

	Hello World Component Example
	Component Attributes
	CRM Analytics Configuration
	Query Data
	Other Widgets

	Reference
	Release Notes

