salesforce

Analytics Bindings Developer
Guide

Salesforce, Summer ‘22

- 22

Y @salesforcedocs
Last updated: June 30, 2022

https://twitter.com/salesforcedocs

© Copyright 2000-2022 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Interactions in CRM Analytics Dashboard i 1
Selection INteraction i e 1
Result INferactiono o e 2

Interactions in Dashboard Designer Dashboard 3

INTERACTIONS IN CRM ANALYTICS DASHBOARD

Interactions allow you to work with different components in a dashboard. You control the interactions by binding queries to each other.
There are two types of interactions: selection interaction and results interaction. The selection or results of one query triggers updates
in other queries in the dashboard.

@ Nofte: Prior to the Spring 20 release, interactions were called bindings. Prior to the Winter '20 release, queries were called steps.

0 Tip: Before you create interactions to make widgets interactive, consider faceting. Facets are the simplest and most common way
to specify interactions between widgets. When faceted, selections made in one widget automatically filter all other widgets using
queries from the same dataset. Faceting is easy to set up, but it is limited. It can only filter other queries and works only on queries
from the same dataset. To create interactions outside this scope, use interactions.

For more information about queries, see Widget Steps in a CRM Analytics Dashboard. For more information about faceting, see Making
Widgets Interactive Using Facets and Bindings.

Selection Interaction
Selection interaction is a method used to update a query based on the selection in another query. Selection interactions are evaluated
each time the user selects something in a widget.

Result Interaction
Results interaction is a method used to update a query based on the results of another query.

Interactions in Dashboard Designer Dashboard

The dashboard designer treats selection and results interactions the same. Both types of interactions operate on tabular data and
return complete rows, even for columns not used in widgets. The dashboard designer treats multiple selections as tabular data and
single selections as a single row of tabular data. The designer expresses each row of tabular data in the form of an array of objects,
where each object is keyed by the column name.

Selection Interaction

Selection interaction is a method used to update a query based on the selection in another query. Selection interactions are evaluated
each time the user selects something in a widget.

For example, you have the following dashboard.

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_dashboard_steps.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_dashboard_widgets_interactive.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_dashboard_widgets_interactive.htm&language=en_US

Interactions in CRM Analytics Dashboard Result Interaction

i of Deals by Industry

Industry Filter

O, Search for valuses

Hegh Tech
L shiowi Selected (D
Firi Swcs
Conpurmer 19, Tad
Fin Swcs 73,017 E b
Healthcare
Healthdare
High Tach J
uf: &0.080 ol Swcs

e S

A selection in the Industry Filter widget filters the results in the # of Deals by Industry chart.

Industry Filter # of Deals by Industry

Search for values

all Shiow Selected (2
Tirm Swrs
Consurmar 19, 76k
B FinSves 73,017
Healthcare 29,61
Hagh Tech 98,076
M 50, 08% L P
Pl Swcs 28,689

A selection interaction can be used to:

e Specify interactions between widgets which use queries from different datasets.
e In addition to filters, specify the measures, groupings, and other aspects of a query.
e Set widget display properties for some widget types (number and chart only).

@ Nofe: Interactions on widget titles and subtitles are ignored when you open the widget in an explorer lens.

Result Interaction

Results interaction is a method used to update a query based on the results of another query.
A results interaction is typically used to:

e Define intermediate results for a complex calculation. For example, to calculate the total opportunity amount for the top-five products,
use one query to calculate the top-five products. Then use those results to filter another query that calculates the total number of
open cases for each product.

e Setaninitial filter selection for a dashboard based on a characteristic of the logged-in user, like their country.

e Dynamically change the display of a widget based on the results of a query. For example, you can configure a number widget to
show different colors based on the value of the measure. (In dashboard designer only.)

Interactions in CRM Analytics Dashboard Interactions in Dashboard Designer Dashboard

Interactions in Dashboard Designer Dashboard

The dashboard designer treats selection and results interactions the same. Both types of interactions operate on tabular data and return
complete rows, even for columns not used in widgets. The dashboard designer treats multiple selections as tabular data and single
selections as a single row of tabular data. The designer expresses each row of tabular data in the form of an array of objects, where each
object is keyed by the column name.

Syntax

You must specify the right syntax when creating an interaction in a dashboard designer dashboard. The syntax is different for each
dashboard designer.

Interaction Functions

Dashboard designer dashboards support a variety of interaction functions that get data from a source query, manipulate it, and
serialize it to make it consumable by the target query.

Interaction Limitations for Dashboard Designer Dashboards

CRM Analytics supports interactions in numerous places, but not everywhere. Review the following limitations before you create
any interactions.

Interaction Errors
If you create an invalid interaction in a dashboard, the widget that uses the interaction displays an error in the dashboard.

Use Cases
To help you better understand how to build interactions, look at these different interaction use cases.

Syntax

You must specify the right syntax when creating an interaction in a dashboard designer dashboard. The syntax is different for each
dashboard designer.

To specify a selection or results interaction in the dashboard designer, use the following syntax.
<stepID>.<result|selection>
For example,

mySourceStep.selection

@ Note: When specifying the query, you specify the ID, not the label.

Interaction Functions

Dashboard designer dashboards support a variety of interaction functions that get data from a source query, manipulate it, and serialize
it to make it consumable by the target query.

If the input data has empty results, the function returns a null value. If the specified location of the data doesn't exist, an error occurs.
For example, the interaction is defined to get data from row 3, but row 3 doesn’t exist. An error also occurs if the shape of the input data
doesn’t meet the requirement for the function.

Interaction functions operate on input data with one the following shapes.

e Scalarvalue, like 0, "this is scalar", or null.

e One-dimensional array, like ([1, 2, 3]) or (["one","two","three"])

Interactions in CRM Analytics Dashboard Interaction Functions

e Two-dimensional array (an array of arrays), like ([[1, 2], [3, 4])

The required shape of the input data varies with each function. After processing the data, the functions can change the shape of the
data.

Each interaction consists of nested functions. Each interaction must have one data selection function and one data serialization function.
Optionally, interactions can have multiple data manipulation functions. (The following sections describe these types of functions.) The
following example illustrates how nested functions in an interaction work together to produce the expected result for a target query in
which they are defined. The example is based on the following interaction.

coalesce (cell (mySourceStep.selection, 0, \"grouping\"), \"state\").asString()

The mySourceStep query has the following input data.

display grouping
Regional Area region
Country country
State state

Technically, the data for this query is stored as a two-dimensional array, where each row is stored as a map of key-value pairs.

[
["display":"Regional Area", "grouping":"region"],
["display":"Country", "grouping":"country"],
["display":"State", "grouping":"state"]

]

At runtime, CRM Analytics evaluates the interaction functions, starting with the innermost function. Using that logic, CRM Analytics
evaluates the example’s interaction functions in the following order.

Function Description

mySourceStep.selection CRM Analytics returns each row of selected data as a map of
key-value pairs. If a single selection is made, only one row returns.
If multiple selections are made, multiple rows return.

[

["display":"Regional Area",
"grouping":"region"],

["display":"Country",
"grouping":"country"],

["display":"State", "grouping":"state"]

cell (mySourceStep.selection, 0, The cel1 functionreturns a scalarvalue fromthe "grouping™"

\"grouping\") column of the first row (indicated by the 0 index) returned by
mySourceStep.selection.Based on the selection, the
returnvalue canbe "region", "country",or "state".If
no selection is made, the function returns null.

Interactions in CRM Analytics Dashboard Interaction Functions

Function Description

coalesce (cell (mySourceStep.selection, 0, Tpe c5a1esce function returnsthe value ofthe ce11 function

if a selection was made. If no selection was made, the coalesce
function returns the specified default value "state™.

\"grouping\"), \"state\")

O Tip: Usethe coalesce function to provide a default
value so that an error doesn't occur when a null value is
encountered.

coalesce (cell (mySourceStep.selection, 0, The .asString functionreturnstheresultofthe coalesce
\"grouping\"), \"state\").asString() function as a SAQL string.

To see how these functions are used in interactions, see Use Cases.

Data Selection Functions

A data selection function selects data from a source. The source can be either a selection or results of a query. The function returns
a table of data, where each column has a name, and each row has an index, starting with 0. From the table, you can select one or
more rows, one or more columns, or a cell to include in your interaction.

Data Manipulation Functions

A data manipulation function changes the data into the format required by the data serialization function (see the next section).
You can apply a manipulation function on the results from a data selection or other data manipulation function. If the input data is
null, the manipulation function returns null, unless otherwise specified.

Data Serialization Functions
Serialization functions convert the data into the form expected by the query in which the interaction is inserted. For example, if the
interaction is used in a compact-form query, use the asObject () function to format the data into a one-dimensional object.

Data Serialization Functions for SQL and SOQL
SQL and SOQL serialization functions convert the data into the form expected by the query in which the interaction is inserted.

Data Selection Functions

A data selection function selects data from a source. The source can be either a selection or results of a query. The function returns a
table of data, where each column has a name, and each row has an index, starting with 0. From the table, you can select one or more
rows, one or more columns, or a cell to include in your interaction.

In cases where multiple rows or columns of data are selected, the function returns a two-dimensional array. When a single row or single
columniis selected, the function returns a one-dimensional array. When a cell is selected, the function returns a scalar value. The function
returns null if the source is empty. If the function tries to select data that doesn't exist, an interaction error occurs. For example, the table
only has two rows, but you try to select data from the third row.

cell Function
Returns a single cell of data as a scalar, like "This salesperson rocks", 2, or nul1l. An error occurs if the rowIndex isnotan integer,
the columnName is not a string, or the cell doesn't exist in the table.

column Function
Returns one column of data (as a one-dimensional array) or multiple columns of data (as a two-dimensional array).

Interactions in CRM Analytics Dashboard Interaction Functions

row Function

Returns one row of data (as a one-dimensional array) or multiple rows (as a two-dimensional array). For selection interactions, you
typically use this function to return the first row or all rows. For results interactions, you might want specific rows. To determine the
row index, display the query results in a values table.

cell Function

Returns a single cell of data as a scalar, like "This salesperson rocks", 2, or nul1. An error occurs if the rowIndex is not an integer,
the columnName is not a string, or the cell doesn't exist in the table.

Syntax

cell (source, rowlIndex, columnName)

Arguments
Argument Description
source (Required) Specify the name of the query and selection or
result.
rowlndex (Required) Specify the row using its index. Row index starts at 0.
columnName (Required) Specify the column name.

The following example is based on the myStep source query. Assume that myStep . selection retrieves the following rows from
the query.

[
{stateName: ‘CA’, Amount:100},
{stateName: ‘TX’, Amount:200},
{stateName: ‘OR’’, Amount:300},
{stateName: ‘AL’, Amount:400},
]

Although CRM Analytics doesn't store this data as a table, let's show the data in this format to make it easier to understand the example.

(row index) stateName Amount
0 CA 100
1 TX 200
2 OR 300
3 AL 400

@ Example:

cell (myStep.selection, 1, "stateName")

Interactions in CRM Analytics Dashboard Interaction Functions

Output:

nwpyxn

column Function

Returns one column of data (as a one-dimensional array) or multiple columns of data (as a two-dimensional array).

Syntax

column (source, [columnNames...])

Arguments
Argument Description
source (Required) Specify the name of the query and selection or
result.
columnNames (Required) Specify an array of column names. The order of the

listed columns affects the order that the columns appear in the
output. The order is important for serialization functions. For
example, the asOrder function requires the first element to be
a field name and the second to be the direction.

The following examples are based on the myStep source query. Assume that myQuery. selection retrieves the following rows
from the query.

[
{stateName: ‘CA’, Amount:100},
{stateName: ‘TX’, Amount:200},
{stateName: ‘OR’’, Amount:300},
{stateName: ‘AL’, Amount:400},
]

Although CRM Analytics doesn't store this data as a table, let's show the data in this format to make it easier to understand the examples

that follow.
(row index) stateName Amount
0 CA 100
1 TX 200
2 OR 300
3 AL 400

Interactions in CRM Analytics Dashboard Interaction Functions

@ Example:

column (myStep.selection, ["stateName"])

Output:

[IICA", IITX", IIOR", IIAL"]

@ Example:

column (myStep.selection, [])

Output:

[[IICA", IITX", IIOR", IIAL"], [lllOOll, 11200",11 1130011, II4OOII]]

row Function

Returns one row of data (as a one-dimensional array) or multiple rows (as a two-dimensional array). For selection interactions, you
typically use this function to return the first row or all rows. For results interactions, you might want specific rows. To determine the row
index, display the query results in a values table.

Syntax
row (source), [rowIndices...], [columnNames...])
Arguments
Argument Description
source (Required) Specify the name of the query and selection or
result.
rowlndices (Required) Specify an array of row indices, where each element of
the array identifies a row. Row index 0 identifies the first row. To
include all rows, specify an empty array.
columnNames (Optional) Specify an array of column names to select and order

them. If not specified, all columns are selected and every row has
the same order of columns. However, that order isn't guaranteed
to be the same across different queries.

The following examples are based on the myStep source query. Assume that myStep. selection retrieves the following rows
from the query.

[
{stateName: ‘CA’, Amount:100},
{stateName: ‘TX’, Amount:200},
{stateName: ‘OR’’, Amount:300},
{stateName: ‘AL’, Amount:400},

Interactions in CRM Analytics Dashboard

Interaction Functions

Although CRM Analytics doesn't store this data as a table, let's show the data in this format to make it easier to understand the examples

that follow.
(row index) stateName
0 CA
1 X
2 OR
3 AL
Example:
row (myStep.selection, [0], ["Amount"])
Output:
["io0"]
Example:

row (myStep.selection, [0,2], [1)

Output:

[[IICA", lllOOll], ["ORII, 1130011]]

Example:

row (myStep.selection, [], ["stateName"])

Output:

[[IICA"]’ [IITX"]’ [IIOR"]’ [IIAL"]]

Example:

row (myStep.selection, [0,2], ["stateName",

Output:

[[IICA", lllOOll], ["ORII, 1130011]]

Data Manipulation Functions

"Amount"])

Amount
100
200
300

400

A data manipulation function changes the data into the format required by the data serialization function (see the next section). You
can apply a manipulation function on the results from a data selection or other data manipulation function. If the input data is null, the

manipulation function returns null, unless otherwise specified.

@ Nofte: If data manipulation isn't required, add a data serialization function to the results of the data selection functions.

Interactions in CRM Analytics Dashboard Interaction Functions

coalesce Function
Returns the first non-null source from a list of sources. Useful for providing a default value in case a function returns a null value.

concat Function
Joins streams from multiple sources into a one- or two-dimensional array. Null sources are skipped.

flatten Function
Flattens a two-dimensional array into a one-dimensional array.

join Function
Converts a one- or two-dimensional array into a string by joining the elements using the specified token. An error occurs if the data
has any other shape.

slice Function

Selects one or more values from a one-dimensional array given a start and, optionally, an end position, and returns a one-dimensional
array. An error occurs if the start value is greater than the end value. Negative indices are supported.

toArray Function

Converts scalars to a one-dimensional array, and one-dimensional arrays to a two-dimensional array. For example, use this function
to convert the scalar result of a cell function to an array, which is required by compact-form measures, groups, and order clauses.
The function returns an error if the input is a series of static one-dimensional arrays, a two-dimensional array, or a mix of scalars and
one-dimensional arrays.

valueAt Function

Returns the single scalar value at the given index.

coalesce Function

Returns the first non-null source from a list of sources. Useful for providing a default value in case a function returns a null value.

Syntax
coalesce (sourcel, source2,...)
Arguments
Argument Description
source (Required) Source can be the results of a data selection or other

data manipulation function. The source can have any shape.

@ Example:

coalesce(cell (stepl.selection, 0, "columnl"), "green")

Output: The output is the result returned by cell (stepl.selection, 0, "columnl").However, if
cell (stepl.selection, 0, "columnl") returns null,then the outputis

"green"

For an application of this function in an interactions use case, see Change the Map Type Based on a Toggle Widget.

10

Interactions in CRM Analytics Dashboard Interaction Functions

concat Function

Joins streams from multiple sources into a one- or two-dimensional array. Null sources are skipped.

Syntax
concat (sourcel, source2,...)
Arguments
Argument Description
source (Required) Each source can be the results of a data selection or

other data manipulation function. Each source must be either a
one- or two-dimensional array. An error occurs if you try to
concatenate data from sources of different shapes. For example,
the following function produces an error: concat (["a",
"b"], ["c", "d", "e"]).

@ Example:

concat(["a", "b"], [ncvv, "dnl)

Output:

["a", "b", llc", "d"]
@ Example:

concat([["a", nbvv]], [["C", ndvv]])

Output:

[[nan, llb"], ["C", lld"]]

flatten Function

Flattens a two-dimensional array into a one-dimensional array.

Syntax

flatten (source)

Arguments
Argument Description
source (Required) Source can be the results of a data selection or other

data manipulation function. The source must be a two-dimensional

n

Interactions in CRM Analytics Dashboard

Argument

Example:

flatten([["CDG", "SAN"], ["BLR", "HND"],
Output:

[IICDG"’ "SAN", IIBLR"’ "HND", IISMF"’ "JIFK"

join Function

Converts a one- or two-dimensional array into a string by joining the
any other shape.

Syntax

join (source, token)

Arguments

Argument

source

token

Example:

join(["a", "b", "C"], "+")
Output:

["a+b+c"]

Example:

join([["a", "b", "C"],

Output:

["a~b~c~1~2"]

12

Interaction Functions

Description

array; otherwise, an error occurs because there’s no reason to flatten
a one-dimensional array or scalar.

["SMF", "JFK"])

]

elements using the specified token. An error occurs if the data has

Description

(Required) Source can be the results of a data selection or other
data manipulation function. The source must be a two-dimensional
array; otherwise, an error occurs.

(Required) Any string value, like + or ,.

Interactions in CRM Analytics Dashboard Interaction Functions

slice Function

Selects one or more values from a one-dimensional array given a start and, optionally, an end position, and returns a one-dimensional
array. An error occurs if the start value is greater than the end value. Negative indices are supported.

Syntax

slice(source, start, end)

Arguments
Argument Description
source (Required) Source can be the results of a data selection or other
data manipulation function. The source can have any shape.
start (Required) Index that identifies the start value in the array. For
example, 0 represents the first element in the array.
end (Optional) Index that identifies the end value in the array.

@ Example:

slice(step.selection, -1, 0)

Returns the last selected row.

toArray Function

Converts scalars to a one-dimensional array, and one-dimensional arrays to a two-dimensional array. For example, use this function to
convert the scalar result of a cell function to an array, which is required by compact-form measures, groups, and order clauses. The
function returns an error if the input is a series of static one-dimensional arrays, a two-dimensional array, or a mix of scalars and
one-dimensional arrays.

Syntax
toArray (sourcel, source2,...)
Argument
Argument Description
source (Required) The input must be scalars, including static values, or

one-dimensional arrays.

13

Interactions in CRM Analytics Dashboard Interaction Functions

@ Example: Consider the following Opportunities query result.

Oppty_Name Owner Region Amount Created_Date
Alpha Danny Americas 1000 2/20/2017
Bravo Danny Americas 500 4/15/2017
Charlie Jeff EMEA 2000 5/1/2017

These interactions use the Opportunities query as a source.

Interaction Result

toArray(cell (Opportunities.selection, ["Americas’]
0, “Region”))

toArray (“APAC”) ["APAC"]

toArray(cell (Opportunities.selection, ["Americas”, "APAC"]
0, “Region”), “APAC”)

toArray(column (Opportunities.selection, [["Alpha”,“Bravo”, “Charlie”], ["Americas’, “Americas”, "EMEA"]]
[“Oppty Name”]),
column (Opportunities.selection, [“Region]

)

toArray (column (Opportunities.selection, Error.The column interaction function returnsatwo-dimensional
[“Oppty Name”, “Region”])) array, which is an invalid input.

toArray([1, 2, 31, 1[4, 5, 6]) Error. The input can't be a series of static one-dimensional arrays.

valueAt Function

Returns the single scalar value at the given index.

Syntax

valueAt (source, index)

Arguments
Argument Description
source (Required) Source can be the results of a data selection or other
data manipulation function. The source can have any shape.
index (Required) Negative indexes are supported. If you specify an index

that doesn't exist, the function returns null.

14

Interactions in CRM Analytics Dashboard Interaction Functions

@ Example:

valueAt (cell (step.selection, 0, "column"), -1)

Returns the last selected value.

Data Serialization Functions

Serialization functions convert the data into the form expected by the query in which the interaction is inserted. For example, if the
interaction is used in a compact-form query, use the asObject () function to format the data into a one-dimensional object.

asDateRange() Function
Returns the date range filter condition as a string for a SAQL query. The date range is inclusive. Use the string as part of a filter based
on dates.

asEquality() Function
Returns an equality or "in" filter condition as a string for a SAQL query. The input data must be a scalar, one-dimensional array, or
two-dimensional array.

asGrouping() Function
Returns a grouping as a string. Can also return multiple groupings

asObject() Function
Passes data through with no serialization. Returns data as an object (an array of strings).

asOrder() Function
Returns the sort order as a string for a SAQL query.

asProjection() Function
Returns the query expression and alias as a string that you can use to project a field in a query. The query expression determines the
value of the field. The alias is the field label.

asRange() Function
Returns a range filter condition as a string for a SAQL query. The range is inclusive.

asString() Function
Serializes a scalar, one-dimensional array, or two-dimensional array as a string. Escapes double quotes in strings.

asDateRange() Function

Returns the date range filter condition as a string for a SAQL query. The date range is inclusive. Use the string as part of a filter based on
dates.

The input data must be a one- or two-dimensional array. If the input data is a one-dimensional array with two elements, the function
uses the first element as the minimum and the second element as the maximum. Null resultsin fieldName in all,whichapplies
no filter.

Syntax

<input data>.asDateRange (fieldName)

15

Interactions in CRM Analytics Dashboard Interaction Functions

Arguments
Argument Description
fieldName (Required) The name of the date field.

The following example is based on the stepFoo source query. Assume that stepFoo.selection retrieves the following rows
from the query.

[
{min: 1016504910000, max: 1281655993000}

]

@ Example:

row (stepFoo.selection, [0], ["min", "max"]).asDateRange ("date(year, month, day)")

Output:
date (year, month, day) in [dateRange ([2002,3,19], [2010,8,12])]

See also Date Range Filters.

asEquality() Function

Returns an equality or "in" filter condition as a string for a SAQL query. The input data must be a scalar, one-dimensional array, or
two-dimensional array.

If a single field name is provided, the returned string contains the in operator foraone-dimensional array (fieldName in ["foo",
"bar"]) or the equality operator for a scalar (fieldName == "foo").

If multiple field names are provided, the returned string contains a composite filter. For this case, a two-dimensional array is expected.
The number of values in each array must match the number of specified fields.

In Spring ‘21, the behavior of null values has changed due to the addition of nulls in group values. The updated behavior if the input to
this function is nul1, is the function now returns <fieldName> is null,instead of <fieldName> by all,where
<fieldName> isthefirst field. For example, if cell (stepl.selection, 0, "columnl") evaluatesto null,

cell (stepl.selection, 0, "columnl").asEquality("fieldl") nowevaluatesto 'fieldl' is null,
insteadof 'fieldl' by all.lftherearenoselectedrows, cell (stepl.selection, "columnl"),thefunctionevaluates
to <fieldName> in all.

Syntax

<input data>.asEquality(fieldName)

Arguments
Argument Description
fieldName (Required) The name of the field.

16

Interactions in CRM Analytics Dashboard Interaction Functions

The following examples are based on the myStep source query. Assume that myStep.selection is the following.

[

{grouping: "first", measure: 19}
{grouping: "second", measure: 32}
]
Example:
cell (myStep.selection, 1, "measure").asEquality("bar")
Output:
bar == 32
Example:
column (myStep.selection, ["grouping"]).asEquality("bar")
Output:
bar in ['first', 'second']

Example: This example illustrates how a lack of input data is handled. Imagine that myStep.selection resolves as
[l
cell (myStep.selection, 0, "value").asEquality("bar")

Output:

'bar' in all

Example: The next examples illustrate how null values and empty arrays are evaluated when present in the
myStep.selection

[

{grouping: "first", measure: null},

{grouping: "second", measure: 32}
]
cell (myStep.selection, 0, "measure").asEquality ("bar")
Output:

'bar' is null

{label: "Bananas", value: []}

cell (myStep.selection, 0, "value") .asEquality("bar")

Output

'bar' in all

17

Interactions in CRM Analytics Dashboard Interaction Functions

See also Filters.

asGrouping() Function
Returns a grouping as a string. Can also return multiple groupings

The input data must be a scalar or one-dimensional array of groupings. Null results ina group by all.

Syntax
<input data>.asGrouping ()

Let's look at some examples where the selection determines the groupings in a SAQL-form query. The following examples are based on
the stepFoo source query. Assume that stepFoo.selection retrieves the following rows from the query.

[
{grouping: "first", alias: "foo"}
{grouping: "second", alias: "bar"}

]

@ Example:

cell (stepFoo.selection, 1, "grouping").asGrouping()

Output:

'second’

@ Example: To make the interaction return multiple fields for the grouping, replace the ce 11 interaction function witha column
function and update the arguments.

column (stepFoo.selection, ["grouping"]) .asGrouping/ ()
Output:
("first', 'second')

See also Group Interactions.

asObiject() Function

Passes data through with no serialization. Returns data as an object (an array of strings).

Syntax

<input data>.asObject ()

@ Example:

column (StaticMeasureNamesStep.selection, [\"value\"]).asObject ()

For an application of this function in an interactions use case, see Bind Parts of a Query.

18

Interactions in CRM Analytics Dashboard Interaction Functions

Example:

cell(static_l.selection, 0, \"value\").asObject ()

asOrder() Function
Returns the sort order as a string for a SAQL query.

The input data must be a scalar, one-dimensional array, or two-dimensional array. A two-dimensional array is treated as a tuple of
interactions.

Syntax
<input data>.asOrder ()

The following example is based on the stepFoo source query. Assume that stepFoo.selection retrieves the following rows
from the query.

[
{order: "first", direction: "desc"}
{order: "second", direction: "asc"}

]

Example:

cell (stepFoo.selection, 1, "order") .asOrder ()

Output:

'second'’

Example:

column (stepFoo.selection, ["order"]).asOrder ()

Output:

("first', 'second')

Example:

row (stepFoo.selection, [], ["order", "direction"]).asOrder ()
Output:
("first' desc, 'second' asc)

See also Order Interactions.

asProjection() Function

Returns the query expression and alias as a string that you can use to project a field in a query. The query expression determines the
value of the field. The alias is the field label.

19

Interactions in CRM Analytics Dashboard

Use this function to write a foreach statement for a field projection. The function concatenates the query expression, ‘as’, and the
field label in the following format.

<query expression> as <field label>
Here's a sample projection that rounds the price to two decimals and stores the result in the SalesPrice field.
g = foreach g generate round(Price, 2) as SalesPrice;

In this example, round (Price, 2) istheexpressionand SalesPrice isthe field label.

Syntax
<input data>.asProjection ()

The following example is based on the stepFoo source query. Assume that stepFoo.selection retrieves the following rows
from the query.

[
X ion: i , ias:
{expression: "first", alias: "foo"}
{expression: "second", alias: "bar"}

]

@ Example:

stepFoo.selection, [0], ["expression", "alias"]).asProjection()

Output:

first as 'foo'

@ Example:

stepFoo.selection, [], ["expression", "alias"]).asProjection()
Output:
first as 'foo', second as 'bar'

See also Projection Interactions.

asRange() Function
Returns a range filter condition as a string for a SAQL query. The range is inclusive.

The input data must be a one-dimensional array with at least two elements. The function uses the first as the minimum and the second
as the maximum. null results in fieldName by all, which applies no filter.

Syntax

<input data>.asRange (fieldName)

20

Interaction Functions

Interactions in CRM Analytics Dashboard Interaction Functions

Arguments
Argument Description
fieldName (Required) The name of the field.

The following example is based on the myStep source query. Assumethat myStep. selection retrieves the following rows from
the query.

[
{grouping: "first", measure: 19}
{grouping: "second", measure: 32}
]

@ Example:
row (myStep.selection, [0], ["min", "max"]).asRange("bar")
Output:
bar >= 19 && bar <= 32

See also Range Filters.

asString() Function

Serializes a scalar, one-dimensional array, or two-dimensional array as a string. Escapes double quotes in strings.

Syntax

<input data>.asString()

@ Example:

cell (stepOpportunity.selection, 1, "measure") .asString()

@ Example:

cell (color l.result, 0, "color").asString()

For an application of this function in an interactions use case, see Highlight Values with Color Coding.

Data Serialization Functions for SQL and SOQL

SQL and SOQL serialization functions convert the data into the form expected by the query in which the interaction is inserted.

asSQLGrouping() Function
Returns a grouping as a string in a SQL or SOQL query. Can also return multiple groupings.

21

Interactions in CRM Analytics Dashboard Interaction Functions

asSQLHaving() Function

Returns the grouped results for a SQL or SOQL query restricted by a conditional filter logic applied on aggregate functions. This
function is similar to the asSQLWHERE function.

asSQLOrder() Function
Returns the sort order as a string for a SQL or SOQL query.

asSQLSelect() Function

Returns the SQL or SOQL query expression and alias as a string that you can use to project a field in the query. The query expression
determines the value of the field. The alias is the field label.

asSQLWhere() Function
Returns the SQL or SOQL query results restricted by a conditional filter logic applied on a measure, dimension, or date.

asSQALGrouping() Function
Returns a grouping as a string in a SQL or SOQL query. Can also return multiple groupings.

The input data must be a scalar or one-dimensional array of groupings. Null or no results will return an ungrouped query.

Syntax

<input data>.asSQLGrouping (SQLType, includeKeywords)

Arguments
Argument Description
SQLType (Required) Specify SQL or SOQL variant type. Valid values are:
® dataset
® snowflake
® sobject
@ Note: For SOQL, use sobject.
includeKeywords (Optional) The default value is false.

Let's look at some examples where the selection determines the groupings in a SQL and SOQL-form query. The following examples are
based on the stepFoo source query. Assume that stepFoo.selection retrieves the following rows from the query.

[
{grouping: "first", alias: "foo"}
{grouping: "second", alias: "bar"}

]

@ Example:

(cell (stepFoo.selection, 0, "grouping") .asSQLGrouping ("snowflake", true))

22

Interactions in CRM Analytics Dashboard Interaction Functions

Output in standard dataset or Snowflake live dataset:
GROUP BY "first"
(cell (stepFoo.selection, 0, "grouping") .asSQLGrouping("sobject", true))

Output in SOQL:

GROUP BY first

@ Example:

(cell (stepFoo.selection, 0, "grouping") .asSQLGrouping ("snowflake", false))
Output in standard dataset or Snowflake live dataset:

"first"

(cell (stepFoo.selection, 0, "grouping") .asSQLGrouping ("sobject", false))
Output in SOQL:
first
@ Example: To make the interaction return multiple fields for the grouping, replace the ce 11 interaction function witha column
function and update the arguments.
(column (stepFoo.selection, ["alias"]).asSQLGrouping("snowflake", true))
Output in standard dataset or Snowflake live dataset:

GROUP BY "foo", "bar"

(column (stepFoo.selection, ["alias"]) .asSQLGrouping("sobject", true))

Outputin SOQL:

GROUP BY foo, bar

(column (stepFoo.selection, ["alias"]) .asSQLGrouping ("snowflake", false))
Output in standard dataset or Snowflake live dataset:

"fOO", "har"

(column (stepFoo.selection, ["alias"]) .asSQLGrouping ("sobject", false))
Output in SOQL:

foo, bar

asSQLHaving() Function

Returns the grouped results for a SQL or SOQL query restricted by a conditional filter logic applied on aggregate functions. This function
is similar to the asSQLWHERE function.

23

Interactions in CRM Analytics Dashboard Interaction Functions

Syntax

<input data>.asSQLHaving (SQLType, includeKeywords)

Argument Description

SQLType (Required) Specify SQL or SOQL variant type. Valid values are:
® dataset
® snowflake

® sobject

@ Note: For SOQL, use sobject.

includeKeywords (Optional) The default value is false.

The following examples are based on the stepFoo source query. Assume that stepFoo.selection retrieves the following
rows from the query. This function is similar to the asSQLWhere function.

@ Note: The >< and >=<= operators aren't supported.

Example:

(toArray ("SUM (Revenue) ", ">",column (stepFoo.selection,

["Revenue"]) .asSQLHaving ("snowflake", true))

Output in standard or Snowflake live dataset:

HAVING "SUM(Revenue)" > 10

(toArray ("SUM (Revenue) ", ">",column (stepFoo.selection,
["Revenue"]) .asSQLHaving ("sobject", true))

Output in SOQL:

HAVING SUM (Revenue) > 10

Example:

(toArray ("SUM(Revenue)", ">",column (stepFoo.selection,

["Revenue"]) .asSQLHaving ("dataset"))
Output in standard or Snowflake live dataset:

"SUM (Revenue)" > 10
Outputin SOQL:

SUM (Revenue) > 10

24

Interactions in CRM Analytics Dashboard Interaction Functions

@ Example:

([].asSQLHaving ('dataset'))
or ([].asSQLHaving('dataset', 'false'))

Output in standard or Snowflake live dataset:

nn

Output in Snowflake live dataset:

nn

Output in SOQL:

asSQLOrder() Function

Returns the sort order as a string for a SQL or SOQL query.

The input data must be a scalar, one-dimensional array, or two-dimensional array. A two-dimensional array is treated as a tuple of
interactions.

Syntax

<input data>.asSQLOrder (SQLType, includeKeywords)

Arguments

Argument Description

SQLType (Required) Specify SQL or SOQL variant type. Valid values are:
® dataset
® snowflake
® sobject
@ Note: For SOQL, use sobject.

includeKeywords (Optional) The default value is false.

The following example is based on the stepFoo source query. Assume that stepFoo.selection retrieves the following rows
from the query.

values: [
{order: "first", direction: "desc"}
{order: "second", direction: "asc"}

25

Interactions in CRM Analytics Dashboard Interaction Functions

@ Example:

(cell (stepFoo.selection, 0, "order") .asSQLOrder ("snowflake", true))
Output in standard dataset or Snowflake live dataset:

ORDER BY "first"

(cell (stepFoo.selection, 0, "order") .asSQLOrder ("sobject", true))
Output in SOQL:

ORDER BY first

@ Example:

column (stepFoo.selection, ["order"]).asSQLOrder ("snowflake"))
Output in standard dataset or Snowflake live dataset:

"first", "second"

column (stepFoo.selection, ["order"]).asSQLOrder ("sobject"))
Output in SOQL:

first, second

@ Example:

(row (stepFoo.selection, [], ["order", "direction"]).asSQLOrder ("snowflake", true))
Output in standard dataset or Snowflake live dataset:

ORDER BY "first"™ DESC, "second", ASC

(row (stepFoo.selection, [], ["order", "direction"]) .asSQLOrder ("sobject", true))

Output in SOQL:

ORDER BY first DESC, second ASC

asSQLSelect() Function

Returns the SQL or SOQL query expression and alias as a string that you can use to project a field in the query. The query expression
determines the value of the field. The alias is the field label.

Syntax

<input data>.asSQLSelect (SQLType)

26

Interactions in CRM Analytics Dashboard Interaction Functions

Argument Description

SQLType (Required) Specify SQL or SOQL variant type. Valid values are:

® dataset
® snowflake

® sobject

@ Note: For SOQL, use sobject.

The following example is based on the stepFoo source query. Assume that stepFoo . selection retrieves the following rows
from the query.

values: [
{expression: "SUM("first")", alias: "foo"}
{expression: "second", alias: "bar"}
]
Example:
(row (stepFoo.selection, [0], ["expression", "alias"]).asSQLSelect ("snowflake"))

Output in standard dataset or Snowflake live dataset:

SUM("first"™) AS "foo"

(row (stepFoo.selection, [0], ["expression", "alias"]).asSQLSelect ("sobject"))
Output in SOQL:

SUM("first") foo

Example:

(row (stepFoo.selection, [0], ["expression"]).asSQLSelect ("snowflake"))

Output in standard dataset or Snowflake live dataset:

SUM("first")

(row (stepFoo.selection, [0], ["expression"]).asSQLSelect ("sobject"))
Output in SOQL:

SUM("first")

Example:

(row (stepFoo.selection, [], ["expression", "alias"]) .asSQLSelect ("snowflake"))

27

Interactions in CRM Analytics Dashboard

Output in standard dataset or Snowflake live dataset:

SUM ("first"™) AS "foo", "second" AS "bar"

(row (stepFoo.selection,

[1, ["expression"

Output in SOQL:

SUM("first") foo, second bar

asSQLWhere() Function

Returns the SQL or SOQL query results restricted by a conditional filt

Syntax

<input data>.asSQLWhere (SQLType, includeKeywo

Argument

SQLType

includeKeywords

Interaction Functions

"alias"]) .asSQLSelect ("sobject"))

14

er logic applied on a measure, dimension, or date.

rds)

Description

(Required) Specify SQL or SOQL variant type. Valid values are:
® dataset
® snowflake

® sobject

@ Note: For SOQL, use sobject.

(Optional) The default value is false.

The following examples are based on the stepFoo source query. Assume that stepFoo.selection retrieves the following

rows from the query.

@ Example:

([].asSQLWhere ('dataset'))

or ([].asSQLWhere('dataset',

'false'))

Output in standard dataset:

Output in Snowflake live dataset:

Output in SOQL:

28

Interactions in CRM Analytics Dashboard Interaction Functions

Example:
((toArray ("foo", "IN", column(stepFoo.selection, ["foo"])).asSQLWhere ("snowflake",
true))
toArray ("foo", "IN", column(stepFoo.selection, ["foo"]) => ["foo", "IN", ["a", "b"]]

Output in standard dataset:

WHERE "foo" IN ('a', 'b'")

Output in Snowflake live dataset:

WHERE "foo" IN ('a', 'b'")

((toArray ("foo", "IN", column (stepFoo.selection, ["foo"])) .asSQLWhere ("sobject", true))

toArray ("foo", "IN", column(stepFoo.selection, ["foo"]) => ["foo", "IN", ["a", "Db"]]
Output in SOQL:

WHERE foo IN ('a', 'b'")

Example:
(toArray ("bar", "><", column(stepFoo.selection, ["bar"])).asSQLWhere ("snowflake",
false))
toArray ("bar", "><", column (stepFoo.selection, ["bar"]) => ["bar", "><", [10, 100]]

Output in standard dataset:

"bar" > 10 AND "bar" < 100
Output in Snowflake live dataset:
"bar" > 10 AND "bar" < 100

(toArray ("bar", "><", column (stepFoo.selection, ["bar"])).asSQLWhere ("sobject", false))

toArray ("bar", "><", column (stepFoo.selection, ["bar"]) => ["bar", "><", [10, 100]]

Outputin SOQL:

bar > 10 AND bar < 100

Example: (Multiple filters)

(toArray (toArray ("foo", "IN", column (stepFoo.selection, ["foo"]),
toArray ("bar", "><", column (stepFoo.selection, ["bar"]))).asSQLWhere ("snowflake",
true))

Output in standard dataset or Snowflake live dataset:

WHERE "foo" IN ('a', 'b') AND ("bar" > 10 AND "bar" < 100)

(toArray (toArray ("foo", "IN", column (stepFoo.selection, ["foo"]),
toArray ("bar", "><", column (stepFoo.selection, ["bar"]))).asSQLWhere ("sobject", true))

29

Interactions in CRM Analytics Dashboard Interaction Functions

Output in SOQL:

WHERE foo IN ('a', 'b') AND (bar > 10 AND bar < 100)

@ Example:

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) .asSQLWhere ("dataset", true))

toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection, ["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [1016504910000, 12816559930001]]

Output in standard dataset:

WHERE ("CreatedDate" >= DATE '2002-3-19' AND "CreatedDate" <= '2010-8-12"))

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) .asSQLWhere ("snowflake", true))

toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection, ["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [1016504910000, 1281655993000]]

Output in Snowflake live dataset:

WHERE ("CreatedDate" BETWEEN to date('2002-3-19') AND to date('2010-8-12"))

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) .asSQLWhere ("sobject", true))

toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection, ["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [1016504910000, 1281655993000]]

Output in SOQL:

WHERE (CreatedDate >= 2002-03-19 AND CreatedDate <= 2010-08-12)

@ Example:

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) .asSQLWhere ("dataset"))

toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection, ["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [null, 1281655993000]]

Output in standard dataset:

"CreatedDate" <= DATE '2010-8-12'

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) .asSQLWhere ("snowflake™))

toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection, ["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [null, 1281655993000]]

Output in Snowflake live dataset:

"CreatedDate" <= to date('2010-8-12")

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,
["CreatedDate"])) .asSQLWhere ("sobject"))

30

Interactions in CRM Analytics Dashboard Interaction Functions

toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [null, 1281655993000]]

Output in SOQL:

CreatedDate <= 2010-08-12

@ Example:

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) .asSQLWhere ("dataset",
toArray ("CreatedDate", "BETWEEN",

true))

column (stepFoo.selection, ["CreatedDate"]))

=>
["CreatedDate", "BETWEEN", [2015, 8, 1], [2021, 3, 1]]
Output in standard dataset:
WHERE ("CreatedDate" >= DATE '2015-8-1'" AND CreatedDate <= '2021-3-1"))
(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,
["CreatedDate"])) .asSQLWhere ("snowflake", true))
toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection, ["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [2015, 8, 1], [2021, 3, 1]]
Output in Snowflake live dataset:
WHERE ("CreatedDate" BETWEEN to date('2015-8-1') AND to date('2021-3-1"))
(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,
["CreatedDate"])) .asSQLWhere ("sobject", true))
toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection, ["CreatedDate"])) =>
["CreatedDate", "BETWEEN", [2015, 8, 1], [2021,

3, 111
Output in SOQL:

WHERE (CreatedDate >= 2015-08-01 AND CreatedDate <= 2021-03-01))
@ Example:

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) .asSQLWhere ("snowflake", true))

toArray ("CreatedDate", "BETWEEN",

column (stepFoo.selection, ["CreatedDate"])) =>

["CreatedDate", "BETWEEN", ["quarter", -2], ["quarter", 3]

Output in Snowflake live dataset:

WHERE ("CreatedDate" >= date trunc(quarter, dateadd(quarter, -2,

current date()))AND
"CreatedDate" <= date trunc(quarter, dateadd(quarter, 3,

current date())))

(toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,
["CreatedDate"])) .asSQLWhere ("sobject", true))
toArray ("CreatedDate", "BETWEEN", column (stepFoo.selection,

["CreatedDate"])) =>
["CreatedDate", "BETWEEN", ["quarter", -2], ["quarter", 3]

31

Interactions in CRM Analytics Dashboard

Output in SOQL:

Interaction Limitations for Dashboard Designer Dashboards

WHERE (CreatedDate >= LAST N QUARTERS:2 AND CreatedDate <= NEXT N QUARTERS:3)

Interaction Limitations for Dashboard Designer Dashboards

CRM Analytics supports interactions in numerous places, but not everywhere. Review the following limitations before you create any

interactions.

You can bind widget properties in chart and number widgets only. You can bind all properties, except the following ones.

Widget Type Unsupported Widget Properties
Number e borderEdges

e borderWidth

e compact

e explorelink

Chart

You can't bind the following query properties:

Query Property

selectMode

Interaction Errors

measureField

textAlignment

borderkdges
borderRadius
borderWidth
exploreLink

measureField

If you create an invalid interaction in a dashboard, the widget that uses the interaction displays an error in the dashboard.

Generally, there are two types of errors.

Validation errors

These errors occur when CRM Analytics is unable to parse the interaction due to the wrong syntax or illegal arguments used in your
interactions. Another typical issue is that you didn't escape double quotes when they are inside other double quotes. For example,

notice how the inner set of double quotes is escaped.

"numberColor": "{{cell(color l.result, 0, \"color\").asString()}}"

32

Interactions in CRM Analytics Dashboard Use Cases

Execution errors
These errors occur when CRM Analytics executes the interaction and either the expected columns or rows are missing or the data
is in the wrong shape. For example, the interaction received a row, when it expected a cell.

Review error messages to understand how to resolve interaction issues. For example, here's an example of an interaction errorin a
dashboard.

44 Warning!

This widget can’t be displayed becawse there
is @ problem with source step

The binding telllstep_date selection, 1,
"“CreatedDate_Year"]. asEquality| ‘CloseDate Y
ear'y contains an eror: Mo data found at row
index 1, colurmn nams letﬂﬂalt_‘f'ﬁr'.

Use Cases

To help you better understand how to build interactions, look at these different interaction use cases.

To get hands-on with interactions, check out the Einstein Analytics Learning Adventure app available on Salesforce AppExchange. The
app walks you through best-practice interaction examples for building powerful, dynamic apps. Download the app today and get your
hands dirty!

Bind Parts of a Query
You can dynamically set parts of a query based on the selection or results of another query. For example, you can set the grouping
in a query based on the grouping selected in a chart.

Bind Queries from Different Datasets
You can bind queries from different datasets. For example, the following dashboard contains two charts, each based on its own
dataset.

Bind a Custom Query with Other Queries

You can create custom queries to specify your own values for a query, instead of getting values from a query. For example, you might
create a custom query to show “Top 5 Customers” and “Bottom 5 Customers” in a toggle widget. After you create the ustom query,
to make it interact with the other widgets in the dashboard, manually bind the custom query to the queries of the other widgets.

Bind Widget Properties
In a dashboard designer dashboard only, you can implement interactions to dynamically change properties for number or chart
widgets.

33

https://appexchange.salesforce.com

Interactions in CRM Analytics Dashboard Use Cases

Bind the Initial Filter Selection
You can use a results interaction to dynamically set the initial selection of a query based on a characteristic of the logged-in user.
For example, you can filter a region-based dashboard based on the country of the logged-in user.

Create Deeper Dependencies with Nested Interactions
Nested interactions enable you to create deeper dependencies among widgets.

Bind Parts of a Query

You can dynamically set parts of a query based on the selection or results of another query. For example, you can set the grouping in a
query based on the grouping selected in a chart.

Before we discuss how to bind the different parts of the query, let's look at a comprehensive example. This example illustrates what the
interactions look like for different parts of a query. The chart is bound based on selections for grouping, measure, filter, order, and limit.
When you make a selection in one of the toggle widgets, the chart morphs to visualize the results of the modified query.

.

Owdering Ascendeng

et heware

Here's the JSON for the queries that power this dashboard. The Account_BillingCount_1 query is the underlying query for the chart
widget. This query contains multiple interactions based on other queries.

"steps": {
"Account BillingCount 1": {
"datasets": [
{
"id": "OFbB0O00OOOOOOOEkKKAI",

"label": "Opportunities",
"name": "opportunity",
"url": "/services/data/v38.0/wave/datasets/0FbB000000000EKKAT"

1,

"isFacet": true,
"isGlobal": false,
"query": {

34

Interactions in CRM Analytics Dashboard

Use Cases

[\"value\"]) .asObject()}}",

"measures": "{{column(StaticMeasureNames.selection,
[\"value\"]) .asObject()}}",
"limit": "{{column(StaticLimits.selection,
"groups": "{{column(StaticGroupingNames.selection,

[\"value\"]) .asObject ()}

"filter

"order

by

"selectMode":

"type" :
"useGlob
"visuali

"visualizationType":

"Opt

s

"StaticGroup
"dataset
"dimensi
"isFacet
"isGloba

"selectMode":

"start":

by

s": "{{column (StaticFilters.selection,

"{{column (StaticOrdering.selection,

"single",
"aggregateflex",
al":

zationParameters":

true,

{
"hbar",
{}

ions":

ingNames":
[1,
(1,
true,
false,
"single",

{
S"-
ons":

"o

1

{

"display": [

b
lltype" :
"useGlob
"values"

{

1,
"visuali
"Opt

"Country"

"staticflex",
al":

A

true,

"display":
"Account.BillingCountry"

"Country",
"value":

"display": "Industry",

"value": "Account.Industry"

"display": "Product",

"value": "Product.Product.Family"

"display": "Source",

"value": "Account.AccountSource"

zationParameters":

{}

{

ions":

35

[\"value\"]) .asObject()}}",

[\"value\"]) .asObject() }}"

Interactions in CRM Analytics Dashboard

"StaticFilters": {
"datasets": [],
"dimensions": [],
"isFacet": true,
"isGlobal": false,
"selectMode": "single",
"start": {

"display": "Ads Only"
I

"type": "staticflex",
"useGlobal": true,
"values": [

{
"display": "Ads Only",
"value": [
"LeadSource",
[

"Advertisement"
1,
nipm
]
}y
{
"display": "Partners Only",
"value": [

"Account.Type",
[

"Partner"
1,

"in"

"display": "$1M+ Only",
"value": [
"Amount",

[

1000000,
11921896

o= n

1,
"visualizationParameters": ({
"options": {}

}I

"StaticOrdering": {
"datasets": [],
"dimensions": [],
"isFacet": true,

36

Use Cases

Interactions in CRM Analytics Dashboard Use Cases

"isGlobal": false,
"selectMode": "single",
"start": {

"display": "Ads Only"
I

"type": "staticflex",
"useGlobal": true,
"values": [
{
"display": "Ascending",
"value": [
-1,

{

"ascending": true

"display": "Descending",
"value": [

-1,

{

"ascending": false

1,
"visualizationParameters": {
"options": {}

}I

"StaticLimits": {
"datasets": [],
"dimensions": [],
"isFacet": true,
"isGlobal": false,
"selectMode": "single",
"start": {

"display": [
ngn

}I
"type": "staticflex",
"useGlobal": true,
"values": [
{
"display": "5",
"value": 5

"display": "10",
"value": 10

37

Interactions in CRM Analytics Dashboard

"display": "25",
"value": 25

1,
"visualizationParameters": {
"options": {}

by
"StaticMeasureNames": {
"datasets": [],
"dimensions": [],
"isFacet": true,
"isGlobal": false,
"selectMode": "singlerequired",
"start": {
"display": [
"Total Amount"

}I
"type": "staticflex",
"useGlobal": true,
"values": [
{
"display": "Max Employees",
"value": [
"max",

"Account .NumberOfEmployees"

"display": "Total Amount",
"value": [

"sum" ,

"Amount"

"display": "Avg Amount",
"value": [

"avg",

"Amount"

1,
"visualizationParameters": {
"options": {}

by
"Account AccountSourc 1": {
"datasets": [
{
"id": "OFbBOOOOOOOOOEkKKAI",
"label": "Opportunities",
"name": "opportunity",

38

Use Cases

Interactions in CRM Analytics Dashboard Use Cases

"url": "/services/data/v38.0/wave/datasets/0FbB000000000EKKATL"

1,
"isFacet": true,
"isGlobal": false,

"query": {
"measures": [
[
"count",
wxn
]
I
"groups": [

"Account.AccountSource"

I
"order": [
[
_1,
{

"ascending": false

}y

"type": "aggregateflex",

"useGlobal": true,

"visualizationParameters": ({
"visualizationType": "hbar",
"options": {}

}y

"widgetStyle": {
"backgroundColor": "#FFFFFFE",
"borderColor": "#EG6ECF2",
"borderEdges": [],
"borderRadius": 0,
"borderWidth": 1

@ Note: If you bind a measure or grouping in a query used for a chart created during or after Spring '18, you must also replace the
columnMap section in the widget-level chart JSON with an empty columns array. For more information, see Measure
Interactions and Group Interactions.

Measure Interactions

Bind the measure to allow the dashboard viewer to select which measures to show in a widget. For example, you can show different
measures in a chart based on the selection in a toggle widget.

Filter Interactions

You can create different types of filters in a SAQL query. The following sections walk you through some example filters that use
different types of interactions.

Projection Interactions

Use the asProjection () serialization function to specify the projection of a field in a SAQL query.

39

Interactions in CRM Analytics Dashboard Use Cases

Group Interactions

Bind the grouping to allow the dashboard viewer to select which dimensions to group the results by. For example, you can show
different groupings in a chart based on the selection in a toggle widget.

Order Interactions
Use the asOrder () serialization function to specify the sort order in a SAQL query.

Limit and Offset Interactions
You can also bind the limit and offset of a SAQL query. These interactions don't require data serialization functions.

Measure and Group Bindings in Compact-Form and SAQL-Form Queries
Bindings can be used both in compact-form queries and SAQL-form queries.

Measure Interactions

Bind the measure to allow the dashboard viewer to select which measures to show in a widget. For example, you can show different
measures in a chart based on the selection in a toggle widget.

To dynamically set the measure in a query based on a selection, complete the following tasks.
e Bindthe measures property of the query.

e Ifthe query is used for a chart created during or after Spring '18, replace the columnMap section of the widget with an empty
columns array. Why? Because when you change the query, the set of fields will likely be different from what'sin the columnMap
section. When you replace the columnMap property with an empty columns array, the system remaps the columns based on
the new query definition.

Let’s look at an example where we bind the measure for a donut chart based on the selection in the toggle widget.

Total Amount Average Amount Count of Rows
Sum of Amount Pro v
w Step ID: MeasuresController_1 j "
Airlp @
63M

BackPain @
DTC
Fish @
Funboard
355,164,558 e
Longboard
Malibu
Shortboard

\ Vazee @

[Step ID: PieByProduct_1 j

The toggle widget uses the following custom query.

"MeasuresController 1": ({
"type": "staticflex",
"label": "MeasuresController",
"values": [
{
"display": "Total Amount",

"step property": ["sum", "Amount"]
}y
{

"display": "Average Amount",

40

Interactions in CRM Analytics Dashboard Use Cases

"step property": ["avg", "Amount"]
by
{
"display": "Count of Rows",
"step property": ["count", "*"]
}
1,
"selectMode": "singlerequired",
"start": {
"display": ["Total Amount"]

}I

"broadcastFacet": true,
"groups": [],
"numbers": [],
"strings": []

}
Each toggle option has one display label (display) that appears in the toggle. It also has one value (step property) that
determines the measure.

Let'sbind the step_property field of the custom query (MeasuresController 1)tothe measureinthe donutchart'sstep
(PieByProduct 2).Any selection in the custom query passes the aggregation method (like sum or count) and the measure field
tothe PieByProduct 2 query.

"PieByProduct 2": {

"label": "PieByProduct 2",
nqueryn: {
"measures": [

"{{ cell (MeasuresController l.selection, O, \"step_property\").asObject() T

1,
"groups": ["Product"]
b

"visualizationParameters": {

}y
"receiveFacet": true,
"selectMode": "single",
"type": "aggregateflex",
"isGlobal": false,
"useGlobal": true,
"broadcastFacet": true,
"datasets": [

{

"id": "OFbBO0000000g5gKAA",

"label": "Flexy Sales",
"name": "Flexy Sales",
"url": "/services/data/v42.0/wave/datasets/0FbB00000000g5gKAA"

4

Interactions in CRM Analytics Dashboard Use Cases

When you create the donut chart, by default, the widget (chart 2) contains the columnMap section that maps measures and
groupings to chart attributes.

"chart 2": {

"type": "chart",

"parameters": {
"visualizationType": "pie",
"step": "PieByProduct 2",

"columnMap": {
"trellis": [],
"dimension": ["Product"],
"plots": ["sum Amount"]
},

}
@ Note: The properties under the columnMap property vary based on the chart type.

To enable the interaction to work, replace the columnMap section with an empty columns array because interactions cannot be
used to specify columnMap.

"chart 2": {

"type": "chart",

"parameters": {
"visualizationType": "pie",
"step": "PieByProduct 2",
"columns" : [],

Filter Interactions

You can create different types of filters in a SAQL query. The following sections walk you through some example filters that use different
types of interactions.

Filters
You can bind filters based on certain conditions. CRM Analytics supports multiple operators that provide flexibility when defining
the conditions.

Range Filters
Use the asRange () serialization function to bind filters based on numeric ranges.

Date Range Filters
Use the asDateRange () serialization function to bind filters based on date ranges. You can create filters using absolute or
relative date ranges.

42

Interactions in CRM Analytics Dashboard Use Cases

Filters

You can bind filters based on certain conditions. CRM Analytics supports multiple operators that provide flexibility when defining the
conditions.

Filter Example (SAQL Form)

Let's say you have the following results from the source query.

[
{grouping: "first", measure: 19}
{grouping: "second", measure: 32}

]

You can bind afilter using the asEquality () interaction function. The following filter condition determines whether the returned
value equals “bar.”

g = filter g by {{cell(stepFoo.selection, 1, "measure").asEquality("bar")}};
After evaluating the interaction based on the data returned from the source query, CRM Analytics produces the following filter.

g = filter g by bar == 32;

@ Note: Ifa selection returns multiple values, asEquality () insertsthe 'in' operator, instead of ==, in the filter statement. For
example, the following filter condition determines if any value in the “grouping” column equals “bar.”

g = filter g by {{column(stepFoo.selection, ["grouping"]).asEquality ("bar")}};
If the selection returns first and second, the filter becomes:

q = filter g by bar in ["first","second"];

Filter Example with the 'in' Operator (Compact Form)

Let’s say you want to filter the Case by Status widget in the following dashboard based on the account selected in the Account list
widget.

43

Interactions in CRM Analytics Dashboard

Ownerld Name > Accountld Name

Opportunities and Cases

Account

All ~

Opportunties by Owner and Account

o 200Kk 1m

Alak Montri Kumatsu ...

Anjana 5. LuthorCorp [180k

Sto Plains... [EZEQY
Stricklan... [203k
Anna Bre... Ferris Me... 419K
Red Pack...

Universal - 141k
West Airi.. | 20k

BenMatt.. Canson [NNNNNNNNECED
STCLabs [EED
Bryan Cer.. BerkHath... | 27k
Electric C_ | 15
Genrse M 1 30K

™

Cases by Status \

10 20 Measure

=]

Countof Rows

/

Name

Reglon

All v

Opportunties

0 500K M
ABC- 10 Laptops | 11k
ABC Labs - 30 Desktops [l 84k
ABC Labs - 64 Laptops] 48k
ABC Labs - 9 Spider 25... | 12«
ABC Telecom - 49 Lapt...] 48k
ABC Telecom - 58 Lapt... [44k
ABC Telecom - 59 Lapt... [l 58k
ABC Telecom - 81 Lapt... [l 79«
AMP Industries - 63 Pri... J] 47k
Acme - 600 Desktops 737K
Acme - 700 Desktops m
Acme Inc- 6 Star 10 Se... | 14k
Acme Inc. - 48 Laptops. I 36K
Acme Inc.-Desktop I 20k

Cases by Account

0 20 Accountld Name
ABCLabs @

High | III Acmelnc. @@
American Bank

Arbuckle Laborator..

Dixon Chemical

Environmental Co

G

Use Cases

Faceting doesn’t work in this case because the queries on these widgets are based on different datasets. To enable filtering, create an

interaction in the Cases by Status widget's query (Status_ 1) based on the selection in the Account widget's query
(AccountId Name 1).Thisinteraction compares the value of the AccountId.Name fieldinthe Status 1 querytothe

selectedvaluesinthe AccountId.Name fieldofthe AccountId Name 1 query.Because there can be multiple selected account
names, we'll use the 'in' operator.

"y

teps": {

Status_1": {

"datasets": [{

"id": "OFbB0O0000000rlDKAQ",
"label": "CasesAccounts",
"name": "CasesAccounts",

"url": "/services/data/v38.0/wave/datasets/0FbB00000000r1DKAQ"

1
"isFacet": true,
"isGlobal": false,
"query": {
"measures": [
[
"count",
wxm
]
]I
"groups": [
"Status"
1,
"filters": [
[

"AccountId.Name",

"{{column (AccountId Name_1l.selection,

44

[\"AccountId.Name\"]) .asObject()}}",

Interactions in CRM Analytics Dashboard

llin"

1
1
}I
"type": "aggregateflex",
"useGlobal": true,
"visualizationParameters": {
"visualizationType": "hbar",
"options": {}

}
by

"AccountId Name 1": {
"datasets": [{
"id": "OFbB00000000rlIKAQ",

"url": "/services/data/v38.0/wave/datasets/0OFbB00000000r1IKAQ"

"label": "OpptiesAccountsSICsUsers",
"name": "OpptiesAccountsSICsUsers",
11,
"isFacet": true,
"isGlobal": false,
"query": {
"measures": [
[
"count",
nxm
]
i
"groups": [

"AccountId.Name"
]
by
"selectMode": "single",
"type": "aggregateflex",
"useGlobal": false,
"visualizationParameters": {
"options": {}
}
}

Filter Example with an Inequality Operator (SAQL Form)

Let's say you have the following results from a source query.

[{grouping: "first", measure:

You can create a filter interaction using on an inequality operator.
g = filter g by bar > {{cell (queryFoo.selection,

After evaluating the interaction, the filter becomes:

g = filter g by bar > 32;

19} {grouping:

"measure") .asString () }};

Use Cases

Interactions in CRM Analytics Dashboard Use Cases

Filter Example with the 'matches' Operator (SAQL Form)

Let's say you have the following results from a source query.

[{grouping: "first", measure: 19} {grouping: "second", measure: 32}]
You can create a filter interaction using on the matches operator.

g = filter g by bar matches "{{cell (queryFoo.selection, 1, "grouping") .asString()}}";
After evaluating the interaction, the filter results to this.

qg = filter g by bar matches "second";

Range Filters
Use the asRange () serialization function to bind filters based on numeric ranges.
Let's look at some examples with inclusive ranges.

The source query for an interaction produces the following results.

[{grouping: "first", measure: 19} {grouping: "second", measure: 32}]
You can bind the filter using the following syntax.

g = filter g by {{row(stepFoo.selection, [0], ["min", "max"]).asRange("bar")}};
After evaluating the interaction, CRM Analytics produces the following range filter.

g = filter g by bar >= 19 && bar <= 32;

Date Range Filters

Use the asDateRange () serialization function to bind filters based on date ranges. You can create filters using absolute or relative
date ranges.

If the input data is a one-dimensional array with two elements:

e And both elements are numbers, CRM Analytics assumes the numbers are a epoch times. [1016504910000,
1016504910000] resultsin fieldName in [dateRange ([2002,3,19], [2010,8,12])].

e Otherwise, the first element is used as the minimum and the second element is used as the maximum. ["current day", "1
month ahead"] resultsin fieldName in ["current day".."1l month ahead"].Ifoneoftheelementsisnull,
the date range is open-ended. ["1 month ago", null] resultsin fieldName in ["1 month ago"..].

If the input data is a two-dimensional array where the outer array has two elements:

e Andboth nested arrays have two elements, CRM Analytics assumes the data is in the relative date array format. [["year",
-21, ["year"™, 1]] resultsin fieldName in ["2 years ago".."l year ahead"].

e Andboth nested arrays have 3 elements, the nested arrays are passed to the SAQL dateRange () function. [[2015, 2,
1], [2016, 2, 11] resultsin fieldName in [dateRange ([2015,2,1], [2016,2,1])1.

If the input datais null,theresultis fieldName in all,which doesn'tfilter anything.

Binding to a Date Filter Widget
For instance, let's say you make a selection in a date widget that returns the following absolute date range (in epoch format).

[{min: 1016504910000, max: 1281655993000}]

46

Interactions in CRM Analytics Dashboard Use Cases

You can create a filter using the returned selection data.

g = filter g by {{row(queryFoo.selection, [0], ["min", "max"]).asDateRange ("date (year,
month, day)")}};

After evaluating the binding, CRM Analytics produces the following date range filter.

g = filter g by date(year, month, day) in [dateRange([2002,3,19], [2010,8,12])1;
What about relative dates? Assume the date widget returns the following relative dates based on your selection.

[{min: ["quarter", -2], max: ["quarter", 3]} 1
After evaluation, the following date range filter results.

g = filter g by date(year, month, day) in ["2 quarters ago".."3 quarters ahead"];

Binding to a Custom List of Date Ranges

It's common to filter based on a custom set of date ranges. To accomplish this, create a custom query with rows for each custom date
range. You can specify ranges using absolute or relative dates.

To do this with absolute ranges, the results of the custom query must return absolute dates.

[
{label: "8/30/15 - 8/30/16", range: [[2015, 8, 30], [2016, 8, 3011}
{label: "7/30/16 - 8/30/16", range: [[2016, 7, 30], [2016, 8, 3011}
]

You can create the filter based on the selected value of the source query.

g = filter g by {{cell(queryFoo.selection, 0, "range").asDateRange ("date (year, month,
day)") }};

After CRM Analytics evaluates the binding, the filter becomes this.
g = filter g by date(year, month, day) in [dateRange([2015, 8, 30], [2016, 8, 301)1;
To do this with relative ranges, the source query results must look like this.

[

{"label": "YTD", "range": ["1 year ago", "current day"]}
{"label": "MTD", "range": ["1 month ago", "current day"]}
{"label": "Everything up to today", "range": [null, "current day"]}

]
You can use the following binding to create a filter based on the selected value of the source query.

g = filter g by {{cell(queryFoo.selection, 0, "range").asDateRange ("date (year, month,
day)") }};

After CRM Analytics evaluates the binding, the filter becomes:
qg = filter g by date(year, month, day) in ["1 year ago".."current day"];

You can also create an open-ended range filter by specifying null as one of the relative date keywords in the source query. The bound
filter looks like this.

g = filter g by {{cell(queryFoo.selection, 2, "range").asDateRange ("date (year, month,
day) ") }};

47

Interactions in CRM Analytics Dashboard Use Cases

After CRM Analytics evaluates the binding, the filter becomes:

g = filter g by date(year, month, day) in [.."current day"];

@ Note: The SAQL function date to_epoch () returns epoch seconds, but date range filters bindings require milliseconds.

Projection Interactions
Use the asProjection () serialization function to specify the projection of a field in a SAQL query.

Given the following data from a source query:

[
{expression: "first", alias: "foo"}
{expression: "second", alias: "bar"}

]
You can bind the projection of a field in a target query.

g = foreach g generate {{row(stepFoo.selection, [0], ["expression",
"alias"]) .asProjection() }};

After CRM Analytics evaluates the interaction, the projection becomes:
g = foreach g generate first as 'foo';
To return all rows in the interaction, create the following filter.

g = foreach g generate {{row(stepFoo.selection, [], ["expression",
"alias"]) .asProjection () }};

After CRM Analytics evaluates the interaction, the filter becomes:

g = foreach g generate first as 'foo', second as 'bar';

Group Interactions

Bind the grouping to allow the dashboard viewer to select which dimensions to group the results by. For example, you can show different
groupings in a chart based on the selection in a toggle widget.

To dynamically set the grouping in a query based on a selection, bind the groups property in the query. If the query is used for a chart,
also bind the corresponding widget property under columnMap to identify the chart attribute affected by selected grouping. Some
charts accept multiple groupings and use them differently. For example, the stacked bar chart can have two groupings, one for the
vertical axis and one used to segment the bars. The columnMap widget-level property has subproperties that specify which grouping
to use for each of these chart attributes.

To dynamically set the grouping in a query based on a selection, complete the following tasks.
e Bindthe groups property of the query.

e Ifthe query is used for a chart created during or after Spring 18, replace the columnMap section of the widget with an empty
columns array. Why? Because when you change the query, the set of fields will likely be different from what'sinthe columnMap
section. When you replace the columnMap property with an empty columns array, the system remaps the columns based on
the new query definition.

Let's look at an example. Let's bind the grouping for this donut chart based on the selection in the toggle widget.

48

https://developer.salesforce.com/docs/atlas.en-us.238.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_functions_date2epoch.htm

Interactions in CRM Analytics Dashboard

Sum of Amount

+11355,164,558

l Country Rep Name ‘

Product

AirUp
BackPain
DTC

Fish
Funboard
Gun
Longboard
Malibu
Shortboard

[N N N NN N

Vazee

Use Cases

@ Nofe: Dashboard selections automatically reset each time you change your query grouping. For example, if you drill into Air Up

and then switch your grouping to Country, the donut chart resets and Air Up is no longer selected.

The toggle widget uses the following custom query.

"GroupingsController 1": {
"type": "staticflex",
"values": [

{
"display": "Country",
"value": "Country"
}I
{
"display": "Product",
"value": "Product"
}I
{
"display": "Rep Name",
"value": "Referral"
}
I
"start": {
"display": ["Product"]
by
"broadcastFacet": true,

"groups": [1],

"label":

"GroupingsController",

"numbers": [],

"selectMode":

"strings": []

}

"singlerequired",

Each toggle option has one display label (di splay) that appears in the toggle. It also has one value (value) that determines the

grouping.

49

Interactions in CRM Analytics Dashboard Use Cases

Let's bind the value field of the custom query (GroupingsController 1)to the groupingin the donutchart's query
(PieByProduct_2).Any selection in the custom query passes the grouping to the PieByProduct 2 query.

"PieByProduct 2": {
"label": "PieByProduct",
"query": {
"measures": [[
"sum",
"Amount"
11,
"groups": [
"{{ cell(GroupingsController_ 1l.selection, O, \"value\") .asString() }}"

}I
"broadcastFacet": true,
"isGlobal": false,
"receiveFacet": true,
"selectMode": "single",
"type": "aggregateflex",
"useGlobal": true,
"visualizationParameters": {
"type": "chart",
"parameters": {

}y
"options": {}
by
"datasets": [
{
"id": "O0FbB0O0000000g5gKAA",

"label": "Flexy Sales",
"name": "Flexy Sales",
"url": "/services/data/v42.0/wave/datasets/0FbB00000000g5gKAA"

}

When you create the donut chart, by default, the widget (chart_3) contains the columnMap section that maps measures and
groupings to chart attributes.

"chart 3": {

"type": "chart",

"parameters": {
"visualizationType": "pie",
"step": "PieByProduct 2",
"theme": "wave",

"columnMap": {
"trellis": [],
"dimension": [
"{{ cell(GroupingsController 1l.selection, 0, \"value\").asString() }}"
1,
"plots": ["sum Amount"]
},

50

Interactions in CRM Analytics Dashboard Use Cases

}
@ Nofe: The properties under the columnMap property vary based on the chart type.

To enable the interaction to work, replace the columnMap section with an empty columns array.

"chart 3": {

"type": "chart",

"parameters": {
"visualizationType": "pie",
"step": "PieByProduct 2",
"theme": "wave",

"columns" : [],

Order Interactions
Use the asOrder () serialization function to specify the sort order in a SAQL query.
Let's look at an example where the selection in a toggle widget determines the sort order in a SAQL query.

Given the following data from a source query:

[
{order: "first", direction: "desc"}
{order: "second", direction: "asc"}

]
To order by a single field, apply the following order logic. When you don't specify the direction in the query, the default is ascending.
g = order g by {{cell (stepFoo.selection, 1, "order").asOrder () }};
After CRM Analytics evaluates the interaction, the grouping becomes:
g = order g by 'second';
To order by multiple fields, use the following grouping logic.
g = order g by {{column (stepFoo.selection, ["order"]).asOrder()}};
After CRM Analytics evaluates the interaction, the grouping becomes:
g = order g by ('first', 'second');
To specify the order and the direction, use the following grouping logic.

g = order g by {{row(stepFoo.selection, [], ["order", "direction"]).asOrder()}};

51

Interactions in CRM Analytics Dashboard Use Cases

After CRM Analytics evaluates the interaction, the grouping becomes:

g = order g by ('first' desc, 'second' asc);

Limit and Offset Interactions
You can also bind the limit and offset of a SAQL query. These interactions don't require data serialization functions.

Consider a source query that provides the following data.
[{limit: 100, offset: 10}]

To bind the limit and offset, create the following logic.

q limit g {{cell(stepFoo.selection, 0, "limit").asString()}};
g = offset g {{cell(stepFoo.selection, 0, "offset").asString() }};

After CRM Analytics evaluates the interaction, the limit and offset become:
g = limit g 100; g = offset g 10;

For information about limits and offsets, see the CRM Analytics SAQL Developer Guide.

Measure and Group Bindings in Compact-Form and SAQL-Form Queries
Bindings can be used both in compact-form queries and SAQL-form queries.

Let’s look at an example where the selections in two custom queries (StaticSAQLMeasureNames and
StaticSAQLGroupingNames) determine the measure and grouping of a SAQL-form query. Notice that the bindings for both
measures and groups are defined in two places. To learn more about strings, numbers, and groups fields, see saqgl Step Type Properties.

{
“label”: “New dashboard”,
“mobileDisabled”: false,
“state”: {
“steps”: {
“lens 1": {
“type”: “saqgql”,
“query”: “qg = load \“OpportunityWithAccount\“;\ng = group g by

{{column (StaticSAQLGroupingNames.selection, [\“value\“]).asGrouping()}};\ng = foreach g
generate {{row(StaticSAQLGroupingNames.selection, [], [\“expression\",
\“alias\"“]).asProjection()}}, {{row(StaticSAQLMeasureNames.selection, [], [\“expression\",
\“alias\“]) .asProjection()}};\ng = order g by ‘AccountId.Industry’ asc;\nqg = limit g
2000;™,

“useGlobal”: true,

“numbers”: “{{column (StaticSAQLMeasureNames.selection,
[\“alias\“]) .asObject () }}%,

“groups”: “{{column (StaticSAQLGroupingNames.selection,
[\“alias\"“]) .asObject () }}",

“strings”: “{{column (StaticSAQLGroupingNames.selection,
[\“alias\“]) .asObject () }}%,

“visualizationParameters”: {},

“selectMode”: “single”,

“broadcastFacet”: true,

“receiveFacetSource”: {

“mode”: “all”,

52

https://developer.salesforce.com/docs/atlas.en-us.238.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_intro.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_dbjson_steps_types_saql.htm&language=en_US#bi_dbjson_steps_types_saql

Interactions in CRM Analytics Dashboard

“steps”: []

s
“StaticSAQLMeasureNames”: {
“datasets”: [],
“dimensions”: [],
“isFacet”: true,
“isGlobal”: false,
“selectMode”: “singlerequired”,
“start”: {
“display”: [
“Total Amount”

}I
“type”: “staticflex”,
“useGlobal”: true,
“values”: [
{
“display”: “Total Amount”,
“ef”: |
“sum”,
“Amount”

1,

“expression”: “sum(‘Amount’)"“,

“alias”: “sum Amount”

“display”: “Avg Amount”,
wefr |
\\avgll
4
“Amount”
1,

“expression”: “avg(‘Amount’)"“,

“alias”: “avg Amount”

I
“‘numbers”: [],
“strings”: [],
“groups”: [],
“columns”: {},
“broadcastFacet”: true
s
“StaticSAQLGroupingNames”: {
“datasets”: [],
“dimensions”: [],
“isFacet”: true,
“isGlobal”: false,
“selectMode”: “multirequired”,
“start”: {
“display”: [
“Country”

b
“type”: “staticflex”,

53

Use Cases

Interactions in CRM Analytics Dashboard

“useGlobal”: true,

“values”: [

{

“display”

“value”:

: “Industry”,

“AccountId.Industry”,

“expression”: “‘AccountId.Industry’",

“alias”:

“display”

“value”: “AccountId.AccountSource”,
“expression”: “‘AccountId.AccountSource’",
“alias”: “AccountId.AccountSource”
}
] 14
“numbers”: [],
“strings”: [],

“groups”: [],
“columns”: {},
“broadcastFacet”:

b
“widgets”: {
“pillbox 37: {

“type”: “pillbox”

“parameters”: {

“AccountId.Industry”

: “Source”,

true

14

“compact”: false,
“showActionMenu”: true,
“exploreLink”: false,
“fontSize”: 14,

“textColor”:

“#0070D2",

“selectedTab”: {
“textColor”: “#FFFFFE”,
“backgroundColor”: “#0070D2"”,
“borderEdges”: [

“g11”

I

“borderColor”: “#C6D3E1l”,
“borderWidth”: 1

by

“step”: “StaticSAQLGroupingNames”

by
“pillbox 47: {

“type”: “pillbox”

“parameters”: {

I4

“compact”: false,
“showActionMenu”: true,
“exploreLink”: false,
“fontSize”: 14,

“textColor”:

“#0070D2",

“selectedTab”: {
“textColor”: “#FFFFFFE”,
“backgroundColor”: “#0070D2"”,

54

Use Cases

Interactions in CRM Analytics Dashboard

“borderEdges”: [
“all”
1,
“borderColor”:
“borderWidth”: 1
}y

“step”:

I
“chart 17: {
“type”: “chart”,
“parameters”: {
“visualizationType”:
“title”: |
“label”:
“fontSize”: 14,
“subtitleLabel”:

V74
4

“subtitleFontSize”:

“Yalign”:
}y
“theme”:
“showValues”: true,
“axisMode”: “multi”,
“autoFitMode”:
“binvValues”: false,
“bins”: {

“breakpoints”: {
0,
100

“wave’” ,

“low”:
“high”:
by
“bands”: {
“low”: {
“label”:
“color”:
s

“medium”: {

“center”’

“#C6D3ELl”,

“StaticSAQLMeasureNames”

“hbar",

V74
14

11,

“keepLabels”,

V74

“B22222"

“label”: ™7
“color”: “#FFA500"
o
“high”: {
“label”: “
“color”: “#008000”
}
}
I
“dimensionAxis”: {
“showAxis”: true,
“showTitle”: true,
“title”: V7,
“customSize”: “auto”,
“icons”: {
“uselcons”: false,

“iconProps”:

“column”:

{

N4
’

55

Interactions in CRM Analytics Dashboard

“fit”: “cover”,
“type”: “round”

}I

“measureAxisl": {
“sgrtScale”: false,
“showAxis”: true,
“customDomain”: {

“showDomain”: false

}I
“showTitle”: true,
“title”: W

}I

“measureAxis2": {
“sgrtScale”: false,
“showAxis”: true,
“customDomain”: {

“showDomain”: false

}I
“showTitle”: true,
“title”: W

}I

“legend”: {
“show”: true,
“showHeader”: true,
“inside”: false,
“descOrder”: false,
“position”: “right-top”,
“customSize”: “auto”

}I

“tooltip”: {

“customizeTooltip”: false,

“showDimensions”: true,
“dimensions”: “7,
“showMeasures”: true,
“measures”: “”
“showPercentage”: true,
“showNullValues”: true,
“showBinLabel”: true
}I
“trellis”: {
“enable”: false,
“showGridLines”: true,
“fliplLabels”: false,
“type”: “x”,
“chartsPerLine”: 4,
“size”: [
100,
100

by

“applyConditionalFormatting”:

“showActionMenu”: true,

56

true,

Use Cases

Interactions in CRM Analytics Dashboard

“exploreLink”: true,
“step”: “lens 1"

I
“filters”: [],
“gridLayouts”: [
{
“name”: “Default”,
“numColumns”: 12,
“rowHeight”: “normal”,
“version”: 1,
“pages”: [
{
“label”: “Untitled”,

“name”: “36d03d4a-cdce-427e-b338-4ae29dblba26”,

“widgets”: [

{
“row”: O,

“column”: 6,

“rowspan”: 2,

“colspan”: 6,

“name”: “pillbox 3",

“widgetStyle”: {}

“row”: 2,

“column”: 6,
“rowspan”: 2,
“colspan”: 6,
“name”: “pillbox 47",
“widgetStyle”: {}

“row”: 0,
“column”: O,
“rowspan”: 4,
“colspan”: 6,
“name”: “chart 1",
“widgetStyle”: {}

1,

“navigationHidden”: false

1,

“selectors”: [],

“style”: {
“backgroundColor”: “#F2F6FA”,
“gutterColor”: “#CS5D3EQ",
“cellSpacingX”: 8,
“cellSpacing¥”: 8,
“fit”: “original”,
“alignmentX”: “left”,
“alignmentY”: “top”

57

Use Cases

Interactions in CRM Analytics Dashboard

] 4

“dataSourceLinks”: [],

“widgetStyle”: {
“backgroundColor”: “#FFFFFF”,
“borderEdges”: [],
“borderColor”: “#E6ECF2”,
“borderWwidth”: 1,
“pborderRadius”: 0

by

“datasets”: [

{
“id”: “Edgemartl3",

“name”: “OpportunityWithAccount”,
“label”: “Opportunity With Accounts”,

“url”:

w

}

}

../../WaveCommon/repo/edgemarts/OpportunityWithAccount/OpportunityWithAccountEM”

Use Cases

@ Nofte: If you bind a measure or grouping in a compact-form or SAQL-form step used for a chart created during or after Spring
"18, you must also replace the columnMap Ssection in the widget-level chart JSON with an empty columns array. For more

information, see Measure Interactions and Group Interactions.

@ Note: If you provide an aggregate function for a measure, then the measure value must be a string, not an array.

Bind Queries from Different Datasets

You can bind queries from different datasets. For example, the following dashboard contains two charts, each based on its own dataset.

Opportunities DS

Count of Rows

Canada @
usa @

SalesOpp DS

Australia
Bedgeurn
Branl
Canada
China

France

Germany

Ireland

lapan

L NN N N

When a selection is made in the Opportunities DS chart, that selection also filters the SalesOpp DS chart because of a selection interaction.
The filters attribute of the Country 1 query contains a selection interaction based on the Account BillingCount 1

query.

Interactions in CRM Analytics Dashboard Use Cases

Here's the dashboard JSON for the queries and chart widgets.

{
"label": "Cross-Dataset Bindings",
"state": {
"gridLayouts": [...],
"layouts": [],
"steps": {
"Account BillingCount 1": {
"datasets": [
{
"id": "0Fbx000000000LzCAI",
"label": "Opportunities",
"name": "opportunityl",
"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCAT"

I
"isFacet": true,
"isGlobal": false,
"query": {
"measures": [
[

"count",

"k

i
"groups": [
"Account.BillingCountry"

b

"type": "aggregateflex",

"useGlobal": true,

"visualizationParameters": ({
"visualizationType": "hbar",
"options": {}

s
"Country 1": {
"datasets": [
{
"id": "O0Fbx000000000NACAY",
"label": "SalesOpps",
"name": "SalesOpps",
"url": "/services/data/v38.0/wave/datasets/0Fbx000000000NACAY"

1,
"isFacet": true,
"isGlobal": false,
"query": {
"measures": [
[

"count",

wxn

59

Interactions in CRM Analytics Dashboard Use Cases

"groups": [
"Country"

1,

"filters": [

[
"Country",
"{{column (Account_BillingCount_l.selection,
[\"Account.BillingCountry\"]) .asObject()}}"
]

by

"type": "aggregateflex",

"useGlobal": true,

"visualizationParameters": {
"visualizationType": "hbar",
"options": {}

b
"widgetStyle": {...},
"widgets": {

"text 1": {
"parameters": {
"fontSize": 20,
"text": "Opportunities DS",
"textAlignment": "center",
"textColor": "#000000"
by
"type": "text"
s
"text 2": {
"parameters": {
"fontSize": 20,
"text": "SalesOpp DS",
"textAlignment": "center",

"textColor": "#000000"
b
"type": "text"
b
"chart 2": {

"parameters": {
"legend": {
"showHeader": true,

"show": true,
"position": "right-top",
"inside": false

by

"showMeasureTitle": true,
"showTotal": true,
"visualizationType": "pie"

"step": "Country 1",
"exploreLink": true,
"inner": 70,
"title": {

60

Interactions in CRM Analytics Dashboard

"label": "",
"subtitleLabel": "",
"align": "center"
s
"theme": "wave",
"trellis": {
"enable": false,
"type": "x",
"chartsPerLine": 4
}
by
"type": "chart"
by
"chart 1": {
"parameters": {
"legend": {
"showHeader": true,

"show": true,
"position": "right-top",
"inside": false

by

"showMeasureTitle": true,

"showTotal": true,

"visualizationType": "pie

"step": "Account BillingCount 1",

"exploreLink": true,
"inner": 70,
"title": {
"label": "",
"subtitleLabel": "",
"align": "center"
}y
"theme": "wave",
"trellis": {
"enable": false,
"type": "x",
"chartsPerLine": 4

by
"type": "chart"

by
"datasets": [
{
"id": "OFbx000000000LzCAI",

"label": "Opportunities",
"name": "opportunityl",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCATL"

"id": "0Fbx000000000NACAY",
"label": "SalesOpps",
"name": "SalesOpps",

61

Use Cases

Interactions in CRM Analytics Dashboard Use Cases

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000NACAY"

Bind a Custom Query with Other Queries

You can create custom queries to specify your own values for a query, instead of getting values from a query. For example, you might
create a custom query to show “Top 5 Customers” and “Bottom 5 Customers” in a toggle widget. After you create the ustom query, to
make it interact with the other widgets in the dashboard, manually bind the custom query to the queries of the other widgets.

For an example, see Measure Interactions.

Bind Widget Properties

In a dashboard designer dashboard only, you can implement interactions to dynamically change properties for number or chart widgets.

Highlight Values with Color Coding

You can highlight content in a widget based on selections or results in other queries. For example, color code the values of number
widgets based on thresholds to draw attention to low and high numbers.

Change the Map Type Based on a Toggle Widget

You can dynamically change the map type based on selections in a toggle widget. For example, you can create a toggle that switches
between two different types of maps.

Dynamically Set the Reference Line and Label

You can dynamically set a reference line and its label based on a measure from a query. For example, you might want to set the
reference line to represent the sales target and then compare it against your won opportunities.

Highlight Values with Color Coding

You can highlight content in a widget based on selections or results in other queries. For example, color code the values of number
widgets based on thresholds to draw attention to low and high numbers.

Let's say you want to change the colors of measures in three number widgets based on whether the numbers are high (green), medium
(yellow), or low (red).

83,138

Opp Count (United States)

Opp Count (Asia Pacific)

23,013

Opp Count (Europe)

62

Interactions in CRM Analytics Dashboard

In the dashboard JSON, compute the color based on the measure of each query. Then apply the computed color to the numberColor

field of each number widget.

{

"label": "Sales Overview",
"state": {
"gridLayouts": [...],
"layouts": [],
"steps": {
"color 1": {
"type": "aggregateflex",
"visualizationParameters": {
"options": {}
by
"query": {
"piggl": "g = load \"Opportunity Dataset\";\n
q = filter g by 'Region' == \"US\";\n
q = group g by all;\n
q = foreach g generate count() as 'count',
(case when count() < 25000 then \"#EEOA50\"
when count() < 50000 then \"#F8CEOO\"
else \"#0FD178\" end) as 'color';\n
qg = limit g 2000;",
"measures": [[
"count",
mn
"count"] 1,
"groups": ["color"],
"measuresMap": {}
}y
"isFacet": true,
"useGlobal": true,
"isGlobal": false,
"datasets": [{
"name": "Opportunity Dataset",
"url": "/services/data/v38.0/wave/datasets/0Fbx000000000KLCAY",
"id": "OFbx000000000KLCAY"
}]
by
"color 2": {
"type": "aggregateflex",
"visualizationParameters": {
"options": {}
by
"query": {
"piggl": "g = load \"Opportunity Dataset\";\n
q = filter g by 'Region' == \"AP\";\n
q = group g by all;\n
q = foreach g generate count() as 'count',
(case when count() < 25000 then \"#EEOA50\"
when count() < 50000 then \"#F8CEOO\"
else \"#0FD178\" end) as 'color';\n
qg = limit g 2000;",
"measures": [[
"count",

63

Interactions in CRM Analytics Dashboard

Wk

4
"count"
11,

"groups": ["color" 1],
"measuresMap": {}
by
"isFacet": true,

"useGlobal": true,
"isGlobal": false,

"datasets": [{

"name": "Opportunity Dataset",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000KLCAY",

"id": "O0Fbx000000000KLCAY"

H
by

"color 3": {
"type": "aggregateflex",
"visualizationParameters": ({
"options": {}
}y
"query": {
"piggl": "g = load \"Opportunity Dataset\";\n
q = filter g by 'Region' == \"EU\";\n
g = group gq by all;\n
q = foreach g generate count() as 'count',
(case when count() < 25000 then \"#EEOAS50\"
when count() < 50000 then \"#F8CEOO\"
else \"#0FD178\" end) as 'color';\n
g = limit g 2000;",
"measures": [[
"count",
e
"count"
11,
"groups": ["color" 1],
"measuresMap": {}
by
"isFacet": true,
"useGlobal": true,

"isGlobal": false,

"datasets": [{

"name": "Opportunity Dataset",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000KLCAY",

"id": "O0Fbx000000000KLCAY"

}]
}
bo
"widgetStyle": {...
"widgets": {

b

"number 5": {
"type": "number",
"parameters": {
"step": "color 1",
"measureField": "count",

64

Use Cases

Interactions in CRM Analytics Dashboard

"textAlignment": "right",
"compact": false,
"exploreLink": true,
"titleColor": "#335779",
"titleSize": 14,
"numberColor": "{{cell(color_l.result, 0, \"color\").asString()}}",
"numberSize": 32,
"title": "Opp Count (United States)"
}
s
"number 6": {
"type": "number",
"parameters": {
"step": "color 2",
"measureField": "count",
"textAlignment": "right",
"compact": false,
"exploreLink": true,
"titleColor": "#335779",
"titleSize": 14,
"numberColor": "{{cell(color_ 2.result, O, \"color\") .asString()}}",
"numberSize": 32,
"title": "Opp Count (Asia Pacific)"
}
bo
"number 7": {
"type": "number",
"parameters": {
"step": "color 3",
"measureField": "count",
"textAlignment": "right",

"numberColor": "{{cell(color_3.result, 0, \"color\").asString()}}",
"numberSize": 32,
"title": "Opp Count (Europe)"
}
}
t
bo
"datasets": [...]

"compact": false,
"exploreLink": true,
"titleColoxr": "#335779",
"titleSize": 14,

Change the Map Type Based on a Toggle Widget

Use Cases

You can dynamically change the map type based on selections in a toggle widget. For example, you can create a toggle that switches
between two different types of maps.

Let’s say you want to analyze how your company is doing both globally and specifically in the U.S. To enable this, add a toggle that
allows you to switch between showing a country map of the world and a state map of the U.S. If no selection is made in the toggle,
show the world map by default.

65

Interactions in CRM Analytics Dashboard Use Cases

Ew::nl..ln’tnll.I State

|
-

When you click the State toggle option, the dashboard shows your results for each state.

The custom query (static_ 1) provides the "Country" and "State" values that appear in the toggle widget. The chart widget has a
Map Type property that allows you to select the type of map to display. To dynamically set the map type based on a selection in the

66

Interactions in CRM Analytics Dashboard

custom query (static 1), bind the Map Type property in the query (State ¢ 1) of the chart widget to the custom query

(static_1).For more information about maps, see Maps.

Here's the dashboard JSON.

{

"label": "Choropleth Binding",
"state": {
"gridLayouts": [...],
"layouts": [],
"steps": {

"static 1": {
"datasets": [1],

"dimensions": [],
"isFacet": false,
"isGlobal": false,
"selectMode": "single",
"type": "staticflex",
"useGlobal": false,
"values": [
{
"display": "Country",
"grouping": "Country c",
"mapType": "World Countries"
},
{
"display": "State",
"grouping": "State__ c",
"mapType": "US States"
}
1,
"visualizationParameters": ({
"options": {}

by
"State c 1": {
"datasets": [
{
"id": "OFbBO00000001uGKAQ",
"label": "GUS Roster",
"name": "Roster",

"url": "/services/data/v38.0/wave/datasets/0FbB000000001uGKAQ"

I
"isFacet": true,
"isGlobal": false,
"query": {
"measures": [
[

"count",

"ok n

I
"groups": [

"{{coalesce(cell(static_l.selection, O, \"grouping\"),

67

Use Cases

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_chart_intro_map.htm&language=en_US

Interactions in CRM Analytics Dashboard

cell(static_l.result, 0, \"grouping\")).asString()}}"
]
b

"type": "aggregateflex",

"useGlobal": true,

"visualizationParameters": ({
"visualizationType": "hbar",
"options": {}

by
"widgetStyle": {...},
"widgets": {
"pillbox 1": {
"parameters": {
"compact": false,
"exploreLink": false,
"step": "static 1"
bo
"type": "pillbox"
}s
"chart 1": {
"parameters": {
"legend": {
"showHeader": true,
"show": true,
"position": "right-top",
"inside": false
by
"highColor™: "#1674D9",
"lowColor": "#C5DBF7",
"visualizationType": "choropleth",
"step": "State c 1",
"theme": "wave",
"exploreLink": true,
"title": {
"label": "",
"align": "center",
"subtitleLabel": ""
by
"trellis": {
"enable": false,
"type": "x",
"chartsPerLine": 4
by
"map": "{{coalesce(cell(static_l.selection, O,
cell (static_l.result, 0, \"mapType\")).asString()}}"
by
"type": "chart"

by

"datasets": [...]

68

\ "mapTYPe\ ") ,

Use Cases

Interactions in CRM Analytics Dashboard Use Cases

Dynamically Set the Reference Line and Label

You can dynamically set a reference line and its label based on a measure from a query. For example, you might want to set the reference
line to represent the sales target and then compare it against your won opportunities.

@ Note: You can create dynamic reference lines without code. Learn more about creating reference lines.

In the following example, let’s say you have a timeline chart that shows the total opportunity amount over time. The dashboard also
contains a list selector that allows you to show the total amount for a particular account. To compare the total for each account against
the average for all accounts, you'd like to set a reference line based on the average opportunity amount for all accounts.

age. $39,013 &

Account. Name

: 39012 TOM0229845

To create the reference line label and its value based on the average for all accounts, add interactions in widget properties for the timeline
chart (chart_3) as follows.

"referenceLines": [
{
"color": "#9271E8",
"value": "{{cell(all 1l.result, 0, \"avg Amount\").asString()}}",
"label": "Avg: {{cell(all 1l.result, O, \"avg_Amount\").asString()}}"

]

In this example, the interaction gets the average from the query (a11 1), which calculates the average in the number widget based
on the selected account name in the list widget.

For a live example of this interaction example, install the CRM Analytics Learning Adventure app in your org. This app contains lots of
interaction examples.

Bind the Initial Filter Selection

You can use a results interaction to dynamically set the initial selection of a query based on a characteristic of the logged-in user. For
example, you can filter a region-based dashboard based on the country of the logged-in user.

@ Example:

@ Note: Only staticflex-, saql- or sogl-type queries can use interactions for initial filter selections.

To focus the dashboard on the logged-in user's country, configure the list widget to select the country when the dashboard first
opens.

69

https://help.salesforce.com/articleView?id=bi_chart_reference_lines_multiple.htm&type=5&language=en_US
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000DoLB3UAN

Interactions in CRM Analytics Dashboard

Bonjour Jean-Michel!

OCpen Amount

177M

Sum of Amount

Flying Einstein iﬁ;

Alice Chen f‘*
3

I
Amruta Moktali (.4)

¥i Chen

Srirama Koneru K';
Poiting Astro (p)
Floating Astro @

Use Cases

To implement this behavior, first, you need to define a query that retrieves the logged-in user's country from the Salesforce User

object.
"UserData": {
"groups": [],
"numbers": [1],
"query": "SELECT Username, Country, FirstName, LastLoginDate
FROM User WHERE Name = '!{user.name}'",
"selectMode": "single",
"strings": [

"Username",
"Country",
"FirstName",
"LastLoginDate"
I
"type": "sogl"
}

Next, bind the initial selection in the list widget's query to the logged-in user’s country.

"Billing Country 2": {
"groups": [],

"isFacet": true,

"label": "Billing Country",
"numbers": [],

"query": "g = load \"Opp Icons\";\n

g = group g by 'Billing Country';\n
q foreach g generate 'Billing Country' as 'Billing Country'
sum('Amount') as 'sum_Amount';\n

q = order q by 'sum Amount' desc;",
"selectMode": "multi",
"start": "{{cell (UserData.result, 0, \"Country\").asObject() }}",
"strings": [],
"type": "saqgl",
"useGlobal": true

70

Interactions in CRM Analytics Dashboard Use Cases

Create Deeper Dependencies with Nested Interactions

Nested interactions enable you to create deeper dependencies among widgets.

Example: This pie chart shows the number of opportunities for each segment. It filters the results based on the selected grouping
in the toggle widget and selected value from that grouping in the horizontal bar chart.

W TE Country lmm

To enable the pie chart to filter based on the value of the selected grouping, the query contains a nested interaction.

q = load \"Opportunitiesl\";\n
filter g by {{column(RevenueDynamicGrouping.selection,

Q
I

column (StaticGroupingNames.selection,
[\"value\"])) .asEquality(
cell (StaticGroupingNames.selection,
0,
\"value\"))
}};\n
g = group gq by 'Segment';\n
g = foreach g generate 'Segment' as 'Segment', count() as 'count';\n
q = order g by 'Segment' asc;\ng = limit g 200;

@ Nofe: If you bind a measure or grouping in a query used for a chart created during or after Spring 18, you must also replace
the columnMap section in the widget-level chart JSON with an empty columns array. For more information, see Measure
Interactions and Group Interactions.

71

	Interactions in CRM Analytics Dashboard
	Selection Interaction
	Result Interaction
	Interactions in Dashboard Designer Dashboard
	Syntax
	Interaction Functions
	Data Selection Functions
	cell Function
	column Function
	row Function

	Data Manipulation Functions
	coalesce Function
	concat Function
	flatten Function
	join Function
	slice Function
	toArray Function
	valueAt Function

	Data Serialization Functions
	asDateRange() Function
	asEquality() Function
	asGrouping() Function
	asObject() Function
	asOrder() Function
	asProjection() Function
	asRange() Function
	asString() Function

	Data Serialization Functions for SQL and SOQL
	asSQLGrouping() Function
	asSQLHaving() Function
	asSQLOrder() Function
	asSQLSelect() Function
	asSQLWhere() Function

	Interaction Limitations for Dashboard Designer Dashboards
	Interaction Errors
	Use Cases
	Bind Parts of a Query
	Measure Interactions
	Filter Interactions
	Filters
	Range Filters
	Date Range Filters

	Projection Interactions
	Group Interactions
	Order Interactions
	Limit and Offset Interactions
	Measure and Group Bindings in Compact-Form and SAQL-Form Queries

	Bind Queries from Different Datasets
	Bind a Custom Query with Other Queries
	Bind Widget Properties
	Highlight Values with Color Coding
	Change the Map Type Based on a Toggle Widget
	Dynamically Set the Reference Line and Label

	Bind the Initial Filter Selection
	Create Deeper Dependencies with Nested Interactions

