
Salesforce DX Developer Guide
Version 66.0, Spring ’26

Last updated: February 13, 2026

© Copyright 2000–2026 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: How Salesforce Developer Experience (DX) Tooling Changes the Way You
Work . 1

Get Started by Using a Sample Repo . 3
Get Started by Creating a New DX Project . 4

Get an Org to Play With and Set It as Your Dev Hub . 5
Install the Salesforce Platform Development Tools . 5
Create a Salesforce DX Project . 6
Authorize Your Dev Hub and Create a Scratch Org . 7
Make a Change in Your Scratch Org And Retrieve It to Your Project 8
Create an Apex Class and Deploy it To the Scratch Org . 10
Create a Lightning Web Component and Deploy it to the Scratch Org 11
Deploy All Customizations To a Sandbox . 11
Add Project Files to Your VCS . 13
Next Steps . 13

Create an Application . 13
Migrate or Import Existing Source . 14
Release Notes . 14

Chapter 2: Provide Developers Access to Salesforce DX Tools 15

Select and Enable a Dev Hub Org . 16
Enable Unlocked Packaging . 17
Enable Einstein Chatbot Features in Scratch Orgs . 17
Enable Language Extension Packages (Beta) . 17

Enable Source Tracking in Sandboxes . 17
Enable Source Tracking for All Developer and Developer Pro Sandboxes 18
Enable Source Tracking in a Specific Sandbox . 19

Add Salesforce DX Users . 19
Determine Which License to Assign to Dev Hub Users . 20
Add a System Administrator or Standard User to Your Dev Hub Org 21
Add a Developer User to Your Dev Hub Org . 22
Add a Limited Access User to Your Dev Hub Org . 22
Create and Assign a Permission Set to Developer Users . 22

Chapter 3: Project Setup . 24

Sample Repository on GitHub . 25
Create a Salesforce DX Project . 25
Salesforce DX Project Structure and Source Format . 26

Decomposed Metadata Types . 30
How to Exclude Source When Syncing . 36

Create a Salesforce DX Project from Existing Source . 40
Convert Files in Metadata Format to Source Format . 42
Salesforce DX Usernames and Orgs . 42
Link a Namespace to a Dev Hub Org . 45
Salesforce DX Project Configuration . 46
Multiple Package Directories . 49
Replace Strings in Code Before Deploying or Packaging . 52

Test String Replacements . 56

Chapter 4: Authorization . 57

Authorize an Org Using a Browser . 58
Authorize an Org Using the JWT Flow . 59

Authorize a Scratch Org Using the JWT Flow . 60
Create a Private Key and Self-Signed Digital Certificate . 61
Create an External Client App in Your Org . 62

Get and Use the Consumer Key and Secret . 64
Create a Connected App in Your Org . 64
Use the Default Connected App Securely . 66
Use an Existing Access Token . 67
Authorize an Org Using Its SFDX Authorization URL . 68
Authorization Information for an Org . 68
Log Out of an Org . 69

Chapter 5: Metadata Coverage . 71

Chapter 6: Scratch Orgs . 72

Supported Scratch Org Editions and Allocations . 75
Build Your Own Scratch Org Definition File . 76

Scratch Org Features . 80
Scratch Org Settings . 167

Create a Scratch Org Based on an Org Shape . 168
Enable Org Shape for Scratch Orgs . 169
Org Shape Permissions . 170
Create and Manage Org Shapes . 171
Scratch Org Definition for Org Shape . 172
Troubleshoot Org Shape . 173

Create Scratch Orgs . 176
Scratch Org Snapshots . 178

Get Started with Scratch Org Snapshots . 180
Salesforce CLI Snapshot Commands . 181
Create a Scratch Org Snapshot . 181
Create a Snapshot for Use with Namespaced Scratch Orgs . 182
Create a Scratch Org Based on a Snapshot . 183
Create a Package Version Based on a Snapshot . 185
Manage and Maintain Your Snapshots . 186

Contents

Select the Salesforce Release for a Scratch Org . 186
Deploy Source From Your Project to the Scratch Org . 189
Retrieve Source from the Scratch Org to Your Project . 191
Scratch Org Users . 193

Create a Scratch Org User . 194
User Definition File for Customizing a Scratch Org User . 196
Generate or Change a Password for a Scratch Org User . 197

Manage Scratch Orgs from the Dev Hub Org . 198
Scratch Org Error Codes . 199

Chapter 7: Sandboxes . 201

Authorize Your Production Org . 202
Create a Sandbox Definition File . 202
Create, Clone, or Refresh a Sandbox . 205

Chapter 8: Track Changes Between Your Project and Org . 209

Manage Source Tracking for Your org . 210
Preview Changes Identified by Source Tracking . 211
Deploy and Retrieve Changes Identified by Source Tracking . 212

Retrieve Changes to Profiles with Source Tracking . 215
Resolve Conflicts Between Your Local Project and Org . 216
Best Practices . 217
Performance Considerations of Source Tracking . 218

Chapter 9: Work with Data . 219

Work With Small Datasets . 220
Work With Large Datasets . 222
Work With Individual Records . 226
Run a SOQL or SOSL Query . 228
Upload a File to Your Org . 229

Chapter 10: Salesforce DX MCP Server and Tools (Beta) . 230

Quick Start Using the VS Code With Copilot MCP Client (Beta) . 233
Install and Configure the Salesforce DX MCP Server (Beta) . 234

Add the Salesforce DX MCP Server to Your MCP Client (Beta) 234
Configure the Salesforce DX MCP Server for Your Environment (Beta) 235
Manage the Salesforce DX MCP Server (Beta) . 240

Use the Core Salesforce DX MCP Tools (Beta) . 241

Chapter 11: Development . 244

Develop Against Any Org . 246
Assign a Permission Set . 249
Create Lightning Apps and Aura Components . 250
Create Lightning Web Components . 250
Create an Apex Class . 251

Contents

Create an Apex Trigger . 252
Create a Custom Object . 252
Execute Anonymous Apex . 253
Run Apex Tests . 254

Debug Apex . 257
Generate and View Apex Debug Logs . 258

Chapter 12: Build and Release Your App . 260

Build and Release Your App with Metadata API . 262
Develop and Test Changes Locally . 264
Build and Test the Release Artifact . 265
Test the Release Artifact in a Staging Environment . 265
Release Your App to Production . 266
Cancel a Metadata Deployment . 266

Chapter 13: Unlocked Packages . 267

What’s an Unlocked Package? . 268
Package-Based Development Model . 268
Before You Create Unlocked Packages . 269
Know Your Orgs . 269
Create Org-Dependent Unlocked Packages . 270
Workflow for Unlocked Packages . 271
Configure Unlocked Packages . 272

Project Configuration File for Unlocked Packages . 273
Unlocked Packaging Keywords . 279
Package Installation Key . 280
Extract Dependency Information from Unlocked Packages . 281
Understanding Namespaces . 282
Share Release Notes and Post-Install Instructions . 286
Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked Packages) . . . 287
Best Practices for Unlocked Packages . 288
Package IDs and Aliases for Unlocked Packages . 288
Frequently Used Unlocked Packaging Operations . 289

How We Handle Profile Settings in Unlocked Packages . 290
Develop Unlocked Packages . 291

Create and Update an Unlocked Package . 292
Create New Versions of an Unlocked Package . 293
Guidance for Package Version Numbering . 298
Code Coverage for Unlocked Packages . 299
Considerations for Promoting Packages with Dependencies 300
Release an Unlocked Package . 301
Update an Unlocked Package Version . 302
Hard-Deleted Components in Unlocked Packages . 302
Delete an Unlocked Package or Package Version . 307

Contents

View Package Details . 308
Push a Package Upgrade for Unlocked Packages . 308

Schedule a Push Upgrade Using CLI . 309
Install an Unlocked Package . 312

Install Packages with the CLI . 313
Install Unlocked Packages from a URL . 314
Upgrade a Version of an Unlocked Package . 314
Sample Script for Installing Unlocked Packages with Dependencies 315

Migrate Deprecated Metadata from Unlocked Packages . 317
Uninstall an Unlocked Package . 318
Transfer an Unlocked Package to a Different Dev Hub . 318

Take Ownership of an Unlocked Package Transferred from a Different Dev Hub 321

Chapter 14: Continuous Integration . 323

Continuous Integration Using CircleCI . 324
Configure Your Environment for CircleCI . 324
Connect CircleCI to Your DevHub . 325

Continuous Integration Using Jenkins . 326
Configure Your Environment for Jenkins . 327
Jenkinsfile Walkthrough . 328
Sample Jenkinsfile . 334

Continuous Integration with Travis CI . 339
Sample CI Repos for Org Development Model . 339
Sample CI Repos for Package Development Model . 339

Chapter 15: Troubleshoot Salesforce DX . 341

Resolve Common Authorization Errors . 342
org login web Errors . 342
org login jwt Errors . 345

Error: No default dev hub found . 348
Unable to Work After Failed Org Authorization . 348
Error: The consumer key is already taken . 349
CLI Version Information . 350

Chapter 16: Limitations for Salesforce DX . 351

Contents

CHAPTER 1 How Salesforce Developer Experience (DX) Tooling
Changes the Way You Work

Salesforce DX tooling provides modern experience to manage and develop apps on the platform across
their entire lifecycle. It brings together source-driven development, team collaboration with governance,
and new levels of agility for custom app development on Salesforce based on modern best practices.

In this chapter ...

• Get Started by Using
a Sample Repo

Highlights include:
• Get Started by

Creating a New DX
Project

• Your tools, your way. You use the developer tools you already know.

• The ability to apply best practices to software development. Source code and metadata exist outside
of the org and provide more agility to develop Salesforce apps in a team environment. Instead of
the org, your version control system is the source of truth.

• Create an
Application

• Migrate or Import
Existing Source

• A powerful command-line interface (CLI) removes the complexity of working with your Salesforce
org for development, continuous integration, and delivery.

• Salesforce DX
Release Notes

• Flexible and configurable scratch orgs that you build for development and automated environments.
This new type of org makes it easier to build your apps and packages.

• You can use any IDE or text editor you want with the CLI and externalized source.

Note: Salesforce DX tooling requires the API Enabled system permission, which provides
programmatic access to your org's information.

Are You Ready to Begin?

Here’s the basic order for doing your work using Salesforce DX. These workflows include the most
common CLI commands. For all commands, see the Salesforce CLI Command Reference.

• Install Salesforce CLI

• Enable Dev Hub

• Use a Sample Repo to Get Started

• Create an Application

• Migrate or Import Existing Source

Optionally, install:

• Salesforce Extensions for VS Code

• Agentforce Vibes IDE

1

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/vscode-overview.html
https://developer.salesforce.com/docs/platform/code-builder/guide/codebuilder-overview.html

• DevOps Center

SEE ALSO:

Developer Experience (DX) Developer Center

Salesforce CLI Command Reference

2

How Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://help.salesforce.com/s/articleView?id=platform.devops_center_setup.htm&type=5&language=en_US
https://developer.salesforce.com/developer-centers/developer-experience
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference

Get Started by Using a Sample Repo

The quickest way to get going with Salesforce DX tooling is to clone the dreamhouse-lwc GitHub repo. Use its configuration files
and Salesforce application to try some commonly used Salesforce CLI commands. In addition to source code for the application, the
repo includes sample data and Apex tests.

This task assumes you have a Dev Hub org. See Select and Enable a Dev Hub Org for more information.

1. If you haven't already, install Salesforce CLI on your computer.

2. Open a terminal or command prompt window, and clone the dreamhouse-lwc GitHub sample repo using HTTPS or SSH.
HTTPS:

git clone https://github.com/trailheadapps/dreamhouse-lwc.git

SSH:

git clone git@github.com:trailheadapps/dreamhouse-lwc.git

3. Change to the dreamhouse-lwc project directory.

cd dreamhouse-lwc

4. Authorize your Dev Hub org by logging into it, set it as your default, and assign it an alias.

sf org login web --set-default-dev-hub --alias DevHub

Enter your Dev Hub org credentials in the browser that opens. After you log in successfully, you can close the browser.

5. Create a scratch org using the config/project-scratch-def.json file, set the org as your default, and assign it an alias.

sf org create scratch --definition-file config/project-scratch-def.json --set-default
--alias my-scratch-org

The command uses the default Dev Hub you set with the sf org login web command in a previous step.

6. View the orgs that you've either created or logged into.

sf org list

The table displays the Dev Hub you logged into and the scratch org you created. The right-most column indicates the default scratch
org and Dev Hub org; in the real-life output you see cute emojis, but in the output below we use (S) and (D), respectively. The
Alias column displays the aliases you assigned each org. Here’s some sample output.

Type Alias Username Org ID
Status Expires
── ─────── ────────────── ────────────────────────────────────── ──────────────────
───────────────────── ──────────
(D) DevHub DevHub jules@sf.com 00Daj0AUXXXXXXXXXX
Connected

Sandbox jules@sf.com.jssandtwo 00D02000EAMXXXXXXX
Connected
(S) Scratch my-scratch-org test-loo73bj6givn@example.com 00D7xOjgTEASXXXXXX
Active 2024-05-16

Legend: (D)=DevHub, (S)=Default Org Use --all to see expired and deleted scratch
orgs

3

Get Started by Using a Sample RepoHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm
https://www.sfdc.co/sfdx-sample-repo

7. Deploy the Dreamforce app, whose source is in the force-app directory, to the scratch org.

sf project deploy start --source-dir force-app

8. Assign the dreamhouse permission set to the default scratch org user (test-ibnpzayw@example.com).

sf org assign permset --name dreamhouse

9. Import sample data from three objects (Contact, Property, and Broker) into the scratch org using the specified plan definition file.

sf data import tree --plan data/sample-data-plan.json

10. Run Apex tests.

sf apex run test --result-format human --wait 1

Apex tests run asynchronously by default. If the tests finish before the --wait value, the results are displayed. Otherwise, use the
displayed command to get the results using a job ID.

11. Open the scratch org and view the deployed metadata under Most Recently Used.

sf org open

12. In App Launcher, find and open the Dreamhouse application.

Congrats! You just deployed an application to a new scratch org.

SEE ALSO:

Sample Repository on GitHub

Authorization

Create Scratch Orgs

Deploy Source From Your Project to the Scratch Org

Run Apex Tests

Get Started by Creating a New DX Project

Let's say you're a Salesforce developer who creates awesome org customizations using declarative tools and builders, such as Flow and
Lightning App Builder. You've heard about source-driven development, and want to move in that direction. You therefore need to
extract your customizations from your org and store them in a source control system, such as GitHub, which then becomes your new
source of truth. But you're not quite sure how it all works and would like to get some hands on practice using simple use cases. Keep
reading!

This tutorial starts completely from scratch and shows you how to create simple artifacts, such as Apex classes and LWC components,
and then how to sync them between your org and your local project on your laptop. Another tutorial to help you learn about source-driven
development is Get Started by Using a Sample Repo on page 3, which is also hands-on but provides a ready-made application that's
already in a GitHub repo. Both tutorials are a lot of fun.

Note: We highly recommend that you use a Developer Edition org to simulate your production org, and scratch orgs for your
development work. This tutorial shows you how to get set up. This way, you don’t mess up your developer sandbox with artifacts
you’re just playing with.

4

Get Started by Creating a New DX ProjectHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

Get an Org to Play With and Set It as Your Dev Hub
Before you do anything, you need a Salesforce org to play with and designate as your Dev Hub, which is required when working with
Salesforce DX. We don’t recommend using your production org.

If you don’t currently have an org in which you can play in, here are some options:

• Sign up for a free Developer Edition org here. Remember your username and password!

• Create a free Trailhead playground (also referred to as a Hands-on Org), which is just a Developer Edition org that’s linked to your
Trailhead account. Be sure you follow these instructions to get the username and password of your org.

Then follow these steps.

1. Log in to your org from your browser by navigating to login.salesforce.com and enter your username and password.

2. In the top-right corner, click the gear icon and then Setup.

3. In the Quick Find box on the left, enter Dev Hub, then click Dev Hub.

4. Click Enable Dev Hub.

Read more about it:

• Select and Enable a Dev Hub Org

Install the Salesforce Platform Development Tools
Now set up your local computer so you can start using the Platform development tools, Salesforce CLI and Salesforce Extensions for
Visual Studio Code (VS Code).

If you’re not allowed to install tools on your computer, you can use Agentforce Vibes IDE which contains all these tools in a Web browser.
In this document we show only Salesforce CLI and VS Code though.

1. Install Salesforce CLI on your computer.
Windows:

a. Download the .exe file to your computer.

b. Open Windows explorer and execute the downloaded *.exe file by double-clicking it and answering all the prompts.

macOS:

5

Get an Org to Play With and Set It as Your Dev HubHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/signup
https://trailhead.salesforce.com/content/learn/modules/trailhead_playground_management
https://trailhead.salesforce.com/content/learn/modules/trailhead_playground_management/get-your-trailhead-playground-username-and-password
http://login.salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/tools/salesforcecli

a. Download the *.pkg file to your computer.

b. Open Finder and execute the downloaded *.pkg file file by double-clicking it and answering all the prompts.

2. Open a command prompt (Windows) or terminal (macOS), and then run this CLI command to make sure Salesforce CLI is installed
correctly:

sf version

You see something like @salesforce/cli/2.98.6 darwin-arm64 node-v22.17.0.

3. Install Visual Studio Code on your computer.

4. Install the Salesforce Extensions into VS Code.

Tip: If Node.js is installed on your computer and you prefer using npm to install applications, run this command to install Salesforce
CLI

npm install -g @salesforce/cli

Read more about it:

• Agentforce Vibes IDE Overview

• Salesforce CLI: Quick Start

• Salesforce Extensions for Visual Studio Code

Create a Salesforce DX Project
Salesforce DX projects provide a structure for your org’s metadata (such as Apex code and org configuration), org templates, sample
data, and all your team’s tests. To bring consistency to your team’s development processes, store project metadata in a source control
system (SCS), such as GitHub. Let’s create a project and take a brief look at the default new files.

1. In your command prompt (Windows) or terminal (macOS), change to a directory on your computer where you want to create the
DX project. For example, on macOS:

cd /Users/juliet/sfdx

2. Create a Salesforce DX project called mydxproject by running this command:

sf project generate --name mydxproject

3. Change to the directory that was created.

cd mydxproject

Here’s some information about the most interesting files and subdirectories in your new DX project:

• sfdx-project.json: Main configuration file for your Salesforce DX project.

• config/project-scratch-def.json: Definition file for creating scratch orgs.

• .forceignore: File that specifies the source files you want to exclude when synchronizing metadata between your local project
and org. If you’re familiar with Git, you can see that the file is very similar to the .gitignore file.

• force-app: Directory that contains source files that represent metadata from your org. The directory doesn’t yet contain any files,
but we’ll add some later!

Read more about it:

• Create a Salesforce DX Project

6

Create a Salesforce DX ProjectHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/tools/salesforcecli
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode
https://developer.salesforce.com/tools/vscode/en/codebuilder/about
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm

• Salesforce DX Project Configuration

Authorize Your Dev Hub and Create a Scratch Org
Remember when you previously created a Dev Edition or Trailhead Playground org to play with and set it as your Dev Hub? You now
authorize it locally so you can use it with your Salesforce DX project. And then you can create a scratch org, which you use for development.

1. From your command prompt or terminal window, run this CLI command:

sf org login web --set-default-dev-hub --alias DevHub

The --set-default-dev-hub and --alias flags declare this Dev Hub org as your default Dev Hub org and give it an
alias. Later you see how specifying these flags now makes other CLI commands easier to use.

2. Log in to the org using your username and password in the window that pops up, just like you log into any Salesforce org.
But wait, didn’t you already log into this org? Yes, you did! But this time you’re logging into it via the org login web CLI
command, which authorizes the org to be used by your local DX project. After you’re connected, you don’t have to keep logging
into the org when you run subsequent CLI commands.

3. Click Allow in the browser window that opens and asks if you allow access to the org.

You can close the browser window because you’re all done with it.

Back in your command prompt or terminal, you should see output like this, which confirms that you successfully authorized the org:

Successfully authorized joe@creative-fox-gw7irx.com with org ID 00Daj123457MzBEAU.

4. In your command prompt or terminal, run this command to see the org you just authorized, along with additional information about
it, such as its org ID and Connected status.

sf org list

The little tree emoji () to the left indicates that it’s your default Dev Hub org.

5. Run this command to create a scratch org using the default definition file that was created in the Salesforce DX project:

sf org create scratch --definition-file config/project-scratch-def.json --set-default
--alias myscratch

Be sure you run the command from your main DX project directory, which in our example is
/Users/juliet/sfdx/mydxproject.

As the command runs, the output tells you what’s happening in the background as Salesforce creates the scratch org.

Similar to when you authorized the Dev Hub org, the --set-default and --alias flags set the scratch org as your default
org and give it an alias. The scratch org creation process requires a Dev Hub, but because you previously set the one you authorized
as your default, you don’t need to specify it to the org create scratch command. Otherwise you must use the --target-dev-hub
flag.

7

Authorize Your Dev Hub and Create a Scratch OrgHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_config.htm

You see this message when the scratch org creation is finished:

Your scratch org is ready.

6. Run this command again to see the new scratch org listed in the list of authorized orgs:

sf org list

The little leaf emoji () to the left indicates that it’s your default org. Run this command to see details about your new org:

sf org display

Good job! You’re now ready to do some development work using your new scratch org.

Read more about it:

• Authorize an Org Using a Browser

• Authorization Information for an Org

• Reference documentation for the “org” CLI commands

• Create Scratch Orgs

Make a Change in Your Scratch Org And Retrieve It to Your Project
If you’re a Salesforce admin, you’re probably familiar with customizing an org using tools such as Setup and Object Manager. You’re now
going to use these familiar tools to make a simple change in your new scratch org: add a custom field to the existing Account object.
The details don’t matter, you simply want to make any change so you can then retrieve its associated metadata into your project.

We’re also going to give VS Code a whirl. Most developers prefer using an integrated development environment (IDE) and VS Code is
optimized for working on the Salesforce Platform.

We don’t go into details about how to use VS Code, which can do all kinds of amazing things. Check out this Trailhead module for more
information. But we show you a few basics.

1. From your open command prompt or terminal, run this command to open your scratch org in a browser:

sf org open

Hold on, how did the CLI command know which org to open? Easy: when you created the scratch org, you specified that it’s your
default org. If you want to open a different org, or be explicit about the default org, you use the --target-org flag and pass it
a username or alias. For example:

sf org open --target-org myscratch

2. In the browser that opens, use Object Manager to create a custom field with label Account Status on the Account object. Choose
any properties about the field that you want, it doesn’t matter for the purposes of this exercise.
Never done this task before? Follow this Trailhead Quick Look for details.

When you’re finished, you see something like this:

8

Make a Change in Your Scratch Org And Retrieve It to Your
Project

How Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_view_info.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_create.htm
https://trailhead.salesforce.com/content/learn/projects/quickstart-vscode-salesforce
https://trailhead.salesforce.com/content/learn/modules/custom-fields-quick-look

3. Open VS Code. An easy way is to run this command from your open command prompt or terminal; the application opens right up:

code

4. Click File -> Open Folder ..., navigate to your Salesforce DX project folder (which is /Users/juliet/sfdx/mydxproject
in our example), and click Open.

5. On the left, under MYDXPROJECT, click the .forceignore file, which is in the root of your Salesforce DX project directory. The
contents of the file appears in a tab on the right. You see something like this:

You use the .forceignore file to ignore files or directories when you run the CLI commands to deploy or retrieve source.

6. Click inside the .forceignore tab and add these two lines at the end of the file after **/__tests__/**:

Exclude Profiles
/profiles/

The reason we’re excluding Profiles from the source that’s deployed and retrieved is that they can be finicky and it’s easier for now
to just not worry about them. You also get some practice using the .forceignore file!

7. Click File -> Save.

8. In the VS Code terminal, run this command to retrieve the customization you just made:

sf project retrieve start

If you don’t have a terminal window open in VS Code, click View -> Terminal.

The retrieve might take a minute or two. But when it’s finished, you see something like this:

Similar to when you previously opened the scratch org, this CLI command knows to retrieve changed or new metadata from the
scratch org because you set it as your default org.

The command output shows the metadata that it retrieved. You should see your new Account Status custom field. You probably
also see other retrieved metadata, such as Layouts. That’s normal.

The Path column shows where the new metadata files are located in your project. Take a look at them if you want!

9

Make a Change in Your Scratch Org And Retrieve It to Your
Project

How Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

What you just did was pretty amazing; you used the Object Manager UI to customize the scratch org and then retrieved that customization
(as metadata source files) to your DX project as local source files.

Read more about it:

• Develop with Ease with Salesforce Extensions for VS Code

• How to Exclude Source When Syncing

• Retrieve Metadata from Your Scratch Org

• Reference Documentation for the project CLI Commands

Create an Apex Class and Deploy it To the Scratch Org
But wait, there’s more! Let’s say you want to create an Apex class in your scratch org. You can use Setup in the Salesforce UI to create
Apex classes, but the tool is limited, so let’s instead use VS Code, which we introduced in the previous section.

1. From VS Code, click View -> Command Palette and run SFDX:Create Apex Class.
Enter MyApexClass for the Apex class name and store it in the default local source directory
(force-app/main/default/classes).

A new tab opens on the right with initial code for MyApexClass, which is stored in a file called MyApexClass.cls. The
command also created another file: MyApexClass.cls-meta.xml.

2. (Optional) If you’re familiar with the Apex programming language, add some code to the new class. But you can also leave it empty
for now; all we need for this exercise are the metadata files that correspond to the Apex class.

3. Click File -> Save to save the new Apex class.

4. From the command palette, run SFDX: Push Source to Default Org. (Deploying is sometimes also called pushing.)
You should see a notification like this when it’s complete:

Also check your output window (click View -> Output if you don’t see it). You see information about the deploy, including the files
that were actually deployed:

=== Pushed Source
STATE FULL NAME TYPE PROJECT PATH

─────── ─────────── ─────────
──
Created MyApexClass ApexClass
../mydxproject/force-app/main/default/classes/MyApexClass.cls
Created MyApexClass ApexClass
../mydxproject/force-app/main/default/classes/MyApexClass.cls-meta.xml

5. Go back to the browser window that’s open to your scratch org. If you closed the browser window, you can run this command again
from the VS Code terminal:

sf org open

6. In the Setup Quick Find box, enter Apex, then click Apex Classes. You should see the MyApexClass Apex class you just created,
but now it’s also in your scratch org. Pretty cool, huh!

10

Create an Apex Class and Deploy it To the Scratch OrgHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/tools/vscode
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_exclude_source.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_pull_md_from_scratch_org.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm

7. For fun, let’s do one last thing: edit the Apex class in Setup. For example, add this comment to the top of the file:

// This is a very exciting Apex class
Be sure to save!

8. In VS Code, go to the command palette and run SFDX: Pull Source from Default Org.

9. When the retrieve (also sometimes called a pull) finishes, refresh the MyApexClass Apex class in VS Code if necessary; you should
see the new comment that you made in Setup.

This section gave you just a taste of using VS Code to develop Apex classes.

Read more about it:

• Apex Quick Start

• Develop with Ease with Salesforce Extensions for VS Code

Create a Lightning Web Component and Deploy it to the Scratch Org
Writing an Apex class was fun, so let’s use VS Code to create a Lightning Web Component (LWC) in your DX project and then deploy it
to your scratch org.

1. From VS Code, click View -> Command Palette and run SFDX:Create Lightning Web Component.
Enter helloworld for the filename and store it in the default directory (force-app/main/default/lwc).

A new tab opens on the right with initial code for the new LWC component, which is stored in a file called helloworld.js.
The command also creats two other associated files (helloworld.html and helloworld.js-meta.xml) and a test.

2. (Optional) If you’re familiar with creating Lightning Web Components, add some code to any of the helloworld files. But you
can also leave them empty for now; all we need for this exercise are metadata files associated with the LWC component.

3. Click File -> Save to save the new LWC component.

4. From the command palette, run SFDX: Push Source to Default Org. Similar to when you deployed the Apex class, you see a
notification and information in the Output window.

Optionally run through the same steps described in the Apex section, such as opening your scratch org, viewing your new helloworld
component in Setup (search for Lightning Components in the Quick Find box), making a change, and then retrieving the change back
to your project.

Read more about it:

• Get Started with Lightning Web Components

• Develop with Ease with Salesforce Extensions for VS Code

Deploy All Customizations To a Sandbox
You just completed all this development work in a scratch org, but at some point you probably want to deploy everything to a sandbox
for further testing, and then eventually deploy to your production org.

Let’s simulate some of this process by deploying the changes you made (a new custom field, a new Apex class, and a new LWC component)
to your Dev Hub org, which we’ll pretend is the sandbox that you use for testing changes. This time we run CLI commands from a
command prompt or terminal, rather than use the VS Code commands.

Important: There’s a lot more involved in rigorous DevOps. This Getting Started doc simply gives you a taste of what you can do
with Salesforce CLI and VS Code extensions around org metadata and scratch orgs.

11

Create a Lightning Web Component and Deploy it to the
Scratch Org

How Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_qs_HelloWorld.htm
https://developer.salesforce.com/tools/vscode
https://developer.salesforce.com/docs/platform/lwc/guide/get-started-introduction.html
https://developer.salesforce.com/tools/vscode

1. From the command prompt (Windows) or terminal (macOS) that’s open in your Salesforce DX project, run this command to deploy
your changes to your Dev Hub.

sf project deploy start --source-dir force-app --target-org DevHub

The --source-dir flag specifies exactly what you want to deploy, which is all the metadata that’s in the force-app package
directory.

You see something like this:

─────────────── Deploying Metadata ───────────────
Deploying v64.0 metadata to joe@resilient-fox-4z9oop.com using the v64.0 SOAP API.

� Preparing 205ms
� Waiting for the org to respond - Skipped
� Deploying Metadata 2.88s
� Components: 7/7 (100%)

� Running Tests - Skipped
� Updating Source Tracking - Skipped
� Done 0ms
Status: Succeeded
Deploy ID: 0Affj0000017DPlCAM
Target Org: joe@resilient-fox-4z9oop.com
Elapsed Time: 3.09s

Deployed Source
┌─────────┬──┬──────────────────────────┬───┐
│ State │ Name │ Type │ Path

│
├─────────┼──┼──────────────────────────┼───┤
│ Created │ MyApexClass │ ApexClass │
force-app/main/default/classes/MyApexClass.cls
│
│ Created │ MyApexClass │ ApexClass │
force-app/main/default/classes/MyApexClass.cls-meta.xml
│
│ Created │ Account.Account_Status__c │ CustomField │
force-app/main/default/objects/Account/fields/Account_Status__c.field-meta.xml
│
│ Changed │ Account-Account %28Marketing%29 Layout │ Layout │
force-app/main/default/layouts/Account-Account %28Marketing%29 Layout.layout-meta.xml
│
│ Changed │ Account-Account %28Sales%29 Layout │ Layout │
force-app/main/default/layouts/Account-Account %28Sales%29 Layout.layout-meta.xml
│
│ Changed │ Account-Account %28Support%29 Layout │ Layout │
force-app/main/default/layouts/Account-Account %28Support%29 Layout.layout-meta.xml
│
│ Changed │ Account-Account Layout │ Layout │
force-app/main/default/layouts/Account-Account Layout.layout-meta.xml
│
│ Created │ helloworld │ LightningComponentBundle │
force-app/main/default/lwc/helloworld/helloworld.html
│

12

Deploy All Customizations To a SandboxHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

│ Created │ helloworld │ LightningComponentBundle │
force-app/main/default/lwc/helloworld/helloworld.js
│
│ Created │ helloworld │ LightningComponentBundle │
force-app/main/default/lwc/helloworld/helloworld.js-meta.xml
│
└─────────┴──┴──────────────────────────┴───┘

2. Open the Dev Hub org in a browser window:

sf org open --target-org DevHub

Use Object Manager and Setup to check that the new custom field (Account.Account_Status), Apex class (MyApexClass),
and LWC component (helloworld) exist in the org.

Wow, you just created and moved lots of metadata around! Awesome sauce.

Read more about it:

• Deploy Source From Your Project to the Scratch Org

• Reference Documentation for the project CLI Commands

Add Project Files to Your VCS
A typical next step is to add your Salesforce DX project's local files, which represent Salesforce customizations, to a version control system
like GitHub. You can then share the DX project, use it to create a scratch org that mirrors your production org's customizations, version
your code updates, test updates using a continuous integration (CI) system, and generally adhere to modern development practices.

However, that step is beyond the scope of this topic, but check out the Git and GitHub Basics Trailhead module for more information.

Next Steps
We hope this document gets you started using Salesforce DX. Here are a few more links to help you as you embark on this exciting
journey.

• Get Started by Using a Sample Repo

• Salesforce Developers Sample Apps

Create an Application

Follow the basic workflow when you are starting from scratch to create and develop an app that runs on the Lightning Platform.

1. Set up your project.

2. Authorize the Developer Hub org for the project.

3. Configure your local project.

4. Create a scratch org.

5. Push the source from your project to the scratch org.

6. Develop the app.

7. Pull the source to keep your project and scratch org in sync.

13

Add Project Files to Your VCSHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_push_md_to_
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm
https://trailhead.salesforce.com/content/learn/modules/git-and-git-hub-basics
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_intro_sample_repo.htm
https://github.com/trailheadapps/

8. Run tests.

9. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

• Build and release your app with managed packages

• Build and release your app using the Metadata API

Migrate or Import Existing Source

Use the Metadata API to retrieve the code, and then convert your source for use in a Salesforce DX project.

Tip: If your current repo follows the directory structure that is created from a Metadata API retrieve, you can skip the retrieve step
and go directly to converting the source.

1. Set up your project.

2. Retrieve your metadata.

3. Convert the metadata formatted source you just retrieved to source format.

4. Authorize the Developer Hub org for the project.

5. Configure your local project.

6. Create a scratch org.

7. Push the source from your project to the scratch org.

8. Develop the app.

9. Pull the source to sync your project and scratch org.

10. Run tests.

11. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

• Build and release your app with managed packages.

• Build and release your app using the Metadata API.

Salesforce DX Release Notes

Use the Salesforce Release Notes to learn about the most recent updates and changes to development environments, packaging, platform
development tools, and Salesforce APIs.

For the latest changes, visit:

• Salesforce Extensions for Visual Studio Code Release Notes

• Salesforce CLI Release Notes

• Development Environments Release Notes (Includes Developer Edition orgs, sandboxes, and scratch orgs)

• Packaging Release Notes

• New and Changed Items for Developers (Includes Apex, standard objects, Metadata API, and more)

14

Migrate or Import Existing SourceHow Salesforce Developer Experience (DX) Tooling Changes
the Way You Work

https://marketplace.visualstudio.com/items/salesforce.salesforcedx-vscode/changelog
https://github.com/forcedotcom/cli/blob/main/releasenotes/README.md
https://help.salesforce.com/s/articleView?id=release-notes.rn_dev_environments.htm&language=en_US
https://help.salesforce.com/s/articleView?id=release-notes.rn_development.htm&language=en_US
https://help.salesforce.com/s/articleView?id=release-notes.rn_development_new_changed.htm&language=en_US

CHAPTER 2 Provide Developers Access to Salesforce DX Tools

Prepare your development team with the license, user access, and user permissions they need. Determine
which org to use as your Dev Hub org, and enable the Dev Hub setting in that org.

In this chapter ...

• Select and Enable a
Dev Hub Org

• Enable Source
Tracking in
Sandboxes

• Add Salesforce DX
Users

15

Select and Enable a Dev Hub Org

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer, Enterprise,
Performance, and
Unlimited Editions

Scratch orgs available in:
Developer, Enterprise,
Group, and Professional
Editions

The Dev Hub lets you create scratch orgs, unlocked packages, and second-generation managed
packages. Your Dev Hub is also the designated place to manage all your scratch orgs, packages,
and namespaces.

Determine which org to use as your Dev Hub org, then enable the Dev Hub setting in that org. Dev
Hub comprises objects with permissions that allow admins to control the level of access available
to a user and an org. If you’re developing an unlocked package that you intend to deploy to other
orgs, enable the Dev Hub setting in one of your active production orgs. This ensures that your
package is owned by an active org.

All Salesforce ISV and OEM partners should designate their Partner Business Org (PBO) as their Dev
Hub org, see Enable Dev Hub and Second-Generation Managed Packaging for more details.

To enable Dev Hub in an org:

1. Log in as System Administrator to your production, Developer Edition, or trial org.

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

If you don't see Dev Hub in the Setup menu, make sure that your org is one of the supported
editions.

3. To enable Dev Hub, click Enable.

After you enable Dev Hub, you can’t disable it.

Note: You can’t enable Dev Hub in a sandbox.

The Dev Hub org instance determines where scratch orgs are created.

• Scratch orgs created from a Dev Hub org in Government Cloud are created on a Government Cloud instance.

• Scratch orgs created from a Dev Hub org in Hyperforce are created on a Hyperforce instance.

Consider these factors if you select a trial or Developer Edition org as your Dev Hub.

• You can create up to six scratch orgs and package versions per day, with a maximum of three active scratch orgs.

• Trial orgs expire on their expiration date.

• Developer Edition orgs can expire due to inactivity.

• Package versions are associated with your Dev Hub org. When a trial or Developer Edition org expires, you lose access to the package
versions.

Enable Unlocked Packaging

Enable packaging in your org so you can develop unlocked packages. You can work with the packages in scratch orgs and sandboxes.

Enable Einstein Chatbot Features in Scratch Orgs

Turn on Einstein Features in your Dev Hub to eliminate the manual steps for enabling the Chatbot feature in scratch orgs. When you
accept the Terms of Service for Einstein, a separate acceptance is not required in each scratch org created from this Dev Hub org. If
you previously accepted the Terms of Service for Einstein to turn on an Einstein-related feature, this setting is already enabled.

Enable Language Extension Packages (Beta)

Enable Language Extension Packages in Dev Hub to create language extension packages that contain translations of components
in other packages. This feature is available in unlocked and first- and second-generation managed packages.

16

Select and Enable a Dev Hub OrgProvide Developers Access to Salesforce DX Tools

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_enable_devhub.htm

Enable Unlocked Packaging
Enable packaging in your org so you can develop unlocked packages. You can work with the packages in scratch orgs and sandboxes.

Before you begin, enable Dev Hub in your org.

1. Log in to the org where you’ve enabled Dev Hub.

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

3. Select Enable Unlocked Packages and Second-Generation Managed Packages.

After you enable this setting, you can’t disable it.

To get started with creating unlocked packages, see Unlocked Packages. For information on second-generation managed packages, see
the Second-Generation Managed Packages Developer Guide.

Enable Einstein Chatbot Features in Scratch Orgs
Turn on Einstein Features in your Dev Hub to eliminate the manual steps for enabling the Chatbot feature in scratch orgs. When you
accept the Terms of Service for Einstein, a separate acceptance is not required in each scratch org created from this Dev Hub org. If you
previously accepted the Terms of Service for Einstein to turn on an Einstein-related feature, this setting is already enabled.

Complete this task before attempting to create a scratch org with the Chatbot feature.

1. Log in to your Dev Hub org.

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

3. On the Dev Hub Setup page, turn on Enable Einstein Features.

Enable Language Extension Packages (Beta)
Enable Language Extension Packages in Dev Hub to create language extension packages that contain translations of components in
other packages. This feature is available in unlocked and first- and second-generation managed packages.

Note: This feature is a Beta Service. Customer may opt to try such Beta Service in its sole discretion. Any use of the Beta Service
is subject to the applicable Beta Services Terms provided at Agreements and Terms.

Language extension packages can only contain Translations and CustomObjectTranslations. If a base package includes components
that can’t be translated, those components aren’t included when you create a language extension package.

1. In Dev Hub, from Setup, in the Quick Find box, enter Dev Hub, and then select Dev Hub.

2. On the Dev Hub Setup page, turn on Enable Language Extension Packages.

Enable Source Tracking in Sandboxes

By enabling source tracking in Developer and Developer Pro sandboxes, Salesforce DX tooling can automatically track new, changed,
and deleted metadata components. You can then select and determine which changes to move forward in the development cycle and
release. For DX tooling that uses a Salesforce DX project or source control repository, source tracking can aid in conflict detection and
resolution. And best of all, because source tracking identifies which metadata components changed, you no longer have to manually
keep track of changes.

You can enable source tracking in Developer and Developer Pro sandboxes in two ways: in your production org for all sandboxes created
from it, or for a specific sandbox. After you turn on source tracking, you can disable it at any time.

17

Enable Unlocked PackagingProvide Developers Access to Salesforce DX Tools

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://www.salesforce.com/company/legal/agreements/

• For all Developer and Developer Pro sandboxes—when you enable the feature in your production org, all newly created and refreshed
sandboxes use source tracking. Existing sandboxes don’t have source tracking enabled until you refresh them.

• For a specific Developer or Developer Pro sandbox—if you don’t want to enable source tracking in all sandboxes, or want to enable
source tracking without refreshing the sandbox, you can enable it directly in the sandbox from the Sandbox Settings Setup page.

Note: Source tracking isn’t supported and can’t be enabled for Partial Copy sandboxes, Full sandboxes, or Developer Edition orgs.
Source tracking can result in metadata deployments taking longer to complete.

SEE ALSO:

Salesforce Help: Refresh Your Sandbox

Enable Source Tracking for All Developer and Developer Pro Sandboxes

EDITIONS

Available in: Enterprise,
Performance, and
Unlimited Editions. For
Professional and
Database.com Editions, you
can only enable source
tracking directly in the
sandbox.

USER PERMISSIONS

To view a sandbox:
• View Setup and

Configuration AND
Customize Applications

To create, refresh, activate,
and delete a sandbox:
• Manage Dev Sandboxes

(Developer or Developer
Pro only) or Manage
Sandboxes (all sandbox
types)

Enable source tracking for all Developer and Developer Pro sandboxes in your production org from
the Dev Hub Setup page.

1. Log in to the source (production) org.

2. From Setup, find and select Dev Hub.

If you don't see Dev Hub in the Setup menu, make sure that the source org is one of the
supported editions.

3. Select Enable Source Tracking in Developer and Developer Pro Sandboxes.

4. Refresh any existing Developer or Developer Pro sandboxes to enable this feature.

Source tracking is automatically enabled for any newly created or refreshed Developer or
Developer Pro sandboxes.

You can disable this feature at any time by clicking the toggle. When the sandbox is refreshed, all
source tracking information is deleted.

18

Enable Source Tracking for All Developer and Developer Pro
Sandboxes

Provide Developers Access to Salesforce DX Tools

https://help.salesforce.com/s/articleView?id=platform.data_sandbox_refresh.htm&language=en_US

Enable Source Tracking in a Specific Sandbox

EDITIONS

Available in: Lightning
Experience in Developer and
Developer Pro sandboxes

USER PERMISSIONS

To view a sandbox:
• View Setup and

Configuration AND
Customize Applications

To create, refresh, activate,
and delete a sandbox:
• Manage Dev Sandboxes

(Developer or Developer
Pro only) or Manage
Sandboxes (all sandbox
types)

Enable source tracking for a specific Developer or Developer Pro sandbox in its Settings Setup page.
If you refresh a sandbox, you must re-enable this feature.

1. Log in to the Developer or Developer Pro sandbox.

2. From Setup, find and select Sandbox Settings.

3. Click Enable Source Tracking in This Sandbox.

Metadata changes from this point forward are tracked, but existing metadata changes made before
you enabled this feature aren’t tracked. When the sandbox is refreshed, all source tracking information
is deleted. If you haven’t enabled source tracking in the production org for all Developer and
Developer Pro sandboxes, and you want the refreshed sandbox to use source tracking, you must
re-enable the feature in the Sandbox Settings page.

If you disable source tracking, it can take several days to clean up the source tracking records. The
process isn’t instantaneous. You can re-enable source tracking after the cleanup process is finished.

Add Salesforce DX Users

System administrators can access the Dev Hub org by default. You can enable more users to access
the Dev Hub org so that they can create scratch orgs and use other developer-specific features.

Your developer users can use Salesforce DX with the Salesforce, and Salesforce Platform standard
user license, or you can assign them the Developer license, or the Salesforce Limited Access - Free license instead.

If your org has Developer licenses, you can add users with the Developer profile and assign them the provided Developer permission
set. Alternatively, you can add users with the Standard User or System Administrator profiles. For a standard user, you must create a
permission set with the required Dev Hub permissions. We recommend that you avoid adding users as system administrators unless
their work requires that level of authority and not just Dev Hub org access.

Determine Which License to Assign to Dev Hub Users

Which license type you assign to developer users depends on how much access they require in the Dev Hub org. If they require full
administrative access, you can assign the Salesforce or Salesforce Platform standard user license. If you want to limit access to only
specific features, Salesforce provides two developer license options

Add a System Administrator or Standard User to Your Dev Hub Org

Add system administrator users only if their work requires that level of authority. Otherwise, add standard users and create a permission
set with the required Salesforce DX permissions.

Add a Developer User to Your Dev Hub Org

Using a Developer license, add a user with the Developer profile and assign them the Developer permission set.

Add a Limited Access User to Your Dev Hub Org

If your users only require access to the Dev Hub, the Salesforce Limited Access - Free license is a good approach. The Salesforce
Limited Access - Free license is available by request. After this license is provisioned add a user with this license and the Limited
Access user profile, and then create and assign them a permission set to the required Dev Hub objects.

19

Enable Source Tracking in a Specific SandboxProvide Developers Access to Salesforce DX Tools

Create and Assign a Permission Set to Developer Users

To give full access to the Dev Hub org, create and assign a custom permission set that grants access to required Dev Hub objects.
Or if you have the Developer license, assign the Developer permission set.

SEE ALSO:

Org Shape Permissions

Determine Which License to Assign to Dev Hub Users
Which license type you assign to developer users depends on how much access they require in the Dev Hub org. If they require full
administrative access, you can assign the Salesforce or Salesforce Platform standard user license. If you want to limit access to only
specific features, Salesforce provides two developer license options

Salesforce or Salesforce Platform License
The Salesforce license is for users who require full access to standard CRM and AppExchange apps. Users with this user license are entitled
to access any standard or custom app.

The Salesforce Platform license is designed for users who need access to custom apps but not to standard CRM functionality. Users with
this user license are entitled to use custom apps developed in your organization or installed from AppExchange.

Developer License
The Developer license is designed for users whose role is to build customizations or applications. This license provides access to
development tools and environments. It comes with one Developer sandbox, one scratch org, and access to the Dev Hub. In the
production org, this license restricts access to standard and custom objects. For example, users can’t access the Account object within
the Sales app. And because of the restriction to custom objects, users can’t be assigned access to custom apps or AppExchange apps.

The development environments provide access to Salesforce features. With a Developer sandbox, you can use all the features that exist
in the production org. The org administrator can create the Developer sandbox that was provisioned with the Developer license. A
scratch org, which can be configured to your specifications using a scratch org definition file, gives you access to features on a trial basis.
For example, you can use a scratch org to work with Financial Services Cloud or to play with Sales Cloud Einstein features. The Developer
license provides access to the Dev Hub, enabling users to create scratch orgs on a self-service basis.

Free Limited Access License
The Salesforce Limited Access - Free license provides accounts to non-admin users in your production org, when these users require
access to only a specific app, feature, or setting. Standard Salesforce objects such as Accounts, Contacts, and Opportunities aren’t
accessible with this license. The Salesforce Limited Access - Free license isn’t available in Developer Edition orgs.

The edition of the Dev Hub org determines the maximum number of the Limited Access licenses you can request.

• Enterprise Edition orgs can request up to 20 licenses.

• Unlimited Edition orgs can request up to 50 licenses.

To request this license, contact your Salesforce account executive. A Salesforce admin can upgrade a Salesforce Limited Access - Free
license to a standard Salesforce license at any time.

The Salesforce Limited Access - Free license doesn’t support certain features.

• To provide the ability to create and manage org shapes, assign the Salesforce user license. The Salesforce Limited Access - Free
license isn’t supported at this time.

20

Determine Which License to Assign to Dev Hub UsersProvide Developers Access to Salesforce DX Tools

• Users with the Salesforce Limited Access - Free license and View All Records permissions can create scratch orgs using an existing
org shape.

• Users with the Salesforce Limited Access - Free license and View All Records permissions can view scratch org snapshots created by
users other than themselves.

• The Salesforce Limited Access - Free license doesn’t provide access to some Salesforce CLI commands, such as sf limits api
display.

• Contact your Salesforce admin for API limits information.

SEE ALSO:

Add Salesforce DX Users

Permission Set for Salesforce DX Users

Add a System Administrator or Standard User to Your Dev Hub Org
Add system administrator users only if their work requires that level of authority. Otherwise, add standard users and create a permission
set with the required Salesforce DX permissions.

1. Create a user in your Dev Hub org, if necessary.

a. In Setup, enter Users in the Quick Find box, then select Users.

b. Click New User.

c. Fill out the form, and assign the System Administrator or Standard User profile.

d. Click Save.

If you’re adding a System Administrator user, you can stop here.

2. If you’re adding a Standard User, create a permission set for Salesforce DX users if you don’t have one.

a. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets.

b. Click New.

c. Enter a label, API name, and description. The API name is a unique name used by the API and managed packages.

d. Select a user license option. If you plan to assign this permission set to multiple users with different licenses, select None.

e. Click Save. The permission set overview page appears. From here, you can navigate to the permissions you want to add or
change for Salesforce DX. For the required permissions, see Create and Assign a Permission Set to Developer Users.

3. Apply the Salesforce DX permission set to the Standard User.

a. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets.

b. Select the Salesforce DX permission set.

c. In the permission set toolbar, click Manage Assignments.

d. Click Add Assignments.

e. Select the user to assign the permission set to.

f. Click Assign.

g. Click Done.

You can limit a user’s access by modifying the permissions.

21

Add a System Administrator or Standard User to Your Dev
Hub Org

Provide Developers Access to Salesforce DX Tools

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm#sfdx_setup_permission_set.xml

Add a Developer User to Your Dev Hub Org
Using a Developer license, add a user with the Developer profile and assign them the Developer permission set.

The Developer license is a paid license that is designed for users whose role is to build customizations or applications. This license provides
access to development tools and environments. It comes with one Developer sandbox, one scratch org, and access to the Dev Hub. In
the production org, this license restricts access to standard and custom objects.

1. Create a user in your Dev Hub org.

a. In Setup, enter Users in the Quick Find box, then select Users.

b. Click New User.

c. Fill out the form.

d. Select Developer for User License, and then Developer for Profile.

e. After filling out the remaining information, click Save.

2. Assign the built-in Developer permission set to the user.

a. On the user's detail page, in the Permission Set Assignments related list, click Edit Assignments.

b. In the Available Permission Sets, add the Developer permission set and click Save.

The Developer permission set grants access to Dev Hub features and second-generation packages. For details, see Create and Assign a
Permission Set to Developer Users.

Add a Limited Access User to Your Dev Hub Org
If your users only require access to the Dev Hub, the Salesforce Limited Access - Free license is a good approach. The Salesforce Limited
Access - Free license is available by request. After this license is provisioned add a user with this license and the Limited Access user
profile, and then create and assign them a permission set to the required Dev Hub objects.

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and custom
objects.

1. Create a user in your Dev Hub org.

a. In Setup, enter Users in the Quick Find box, then select Users.

b. Click New User.

c. Fill out the form.

d. Select Salesforce Limited Access - Free for User License, and then Limited Access User for Profile.

e. After filling out the remaining information, click Save.

2. Create a permission set that provides your developer users with access to the required Dev Hub objects. For details, see Create and
Assign a Permission Set for Developer Users or Assign Second-Generation Managed Packaging User Permissions.

Create and Assign a Permission Set to Developer Users
To give full access to the Dev Hub org, create and assign a custom permission set that grants access to required Dev Hub objects. Or if
you have the Developer license, assign the Developer permission set.

22

Add a Developer User to Your Dev Hub OrgProvide Developers Access to Salesforce DX Tools

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm

Standard Developer Permission Set
If you're providing access to the Dev Hub org using the standard Developer license, it also includes a built-in Developer permission set.
This permission set provides the required permissions for scratch orgs, and unlocked and second-generation managed packaging. You
can use the provided Developer permission set or create your own.

Create a Permission Set
Follow the steps to create a permission set, then add the required scratch org and packaging permissions.

Required Permissions for Scratch Orgs
• Object Settings > Scratch Org Infos > Read, Create, Edit, and Delete

• Object Settings > Active Scratch Orgs > Read, Edit, and Delete

Required Permissions for Unlocked Packaging and Second-Generation Managed
Packaging
To work with unlocked or second-generation managed packages in the Dev Hub org, the permission set must contain the scratch org
permissions and:

• Object Settings > Namespace Registries > Read

• System Permissions > Create and Update Second-Generation Packages

The system permission provides access to:

Tooling API Object (Create and Edit)Salesforce CLI Command

Package2package create

Package2VersionCreateRequestpackage version create

Package2Versionpackage version update

Assign Permission Set to Users
To assign one or more users to a permission set, or to remove a user from a permission set, see Manage Permission Set Assignments in
Salesforce Help.

23

Create and Assign a Permission Set to Developer UsersProvide Developers Access to Salesforce DX Tools

https://help.salesforce.com/s/articleView?id=platform.perm_sets_create.htm&language=en_US
https://help.salesforce.com/s/articleView?id=platform.perm_sets_manage_assignments.htm&language=en_US

CHAPTER 3 Project Setup

A Salesforce DX project provides a project structure for your org’s metadata (code and configuration),
org templates, sample data, and all your team’s tests. To bring consistency to your team’s development
processes, store these items in a source control system (SCS). Retrieve the contents of your team’s
repository when you’re ready to develop a new feature.

In this chapter ...

• Sample Repository
on GitHub

• Create a Salesforce
DX Project

What makes a project a Salesforce DX project? It includes an sfdx-project.json file, which
defines the project’s configuration. This .json file includes connected app information for Salesforce

• Salesforce DX Project
Structure and Source
Format

CLI, in which directories project files are located, packaging directory structure for 2GP packages, and
which API version you want to use, if not the latest.

You have different options to create a Salesforce DX project depending on how you want to begin. You
can use your preferred SCS. Most of our examples use Git.

• How to Exclude
Source When Syncing

• Create a Salesforce
DX Project from
Existing Source

Explore the features of Salesforce DX using one of
our sample repos and your own SCS and toolset.

Use the Sample Repository on GitHub

Start with an existing Salesforce app to create a
Salesforce DX project.

Create a Salesforce DX Project from Existing Source• Convert Files in
Metadata Format to
Source Format

Create an app on the Salesforce Platform using a
Salesforce DX project.

Create a Salesforce DX Project
• Salesforce DX

Usernames and Orgs

• Link a Namespace to
a Dev Hub Org

• Salesforce DX Project
Configuration

• Multiple Package
Directories

• Replace Strings in
Code Before
Deploying or
Packaging

24

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_clone_repo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_from_existing.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm

Sample Repository on GitHub

To get started quickly, see the dreamhouse-lwc GitHub repo. This standalone application contains an example DX project with
multiple Apex classes, Aura components, custom objects, sample data, and Apex tests.

Cloning this repo creates the directory dreamhouse-lwc. See the repo’s Readme for more information.

Assuming that you’ve already set up Git, use the git clone command to clone the main branch of the repo from the command
line.

To use HTTPS:

git clone https://github.com/trailheadapps/dreamhouse-lwc

To use SSH:

git clone git@github.com:trailheadapps/dreamhouse-lwc.git

If you don’t want to use Git, download a .zip file of the repository’s source using Clone, or download on the GitHub website. Unpack the
source anywhere on your local file system.

See Get Started by Using a Sample Repo for the next steps.

Tip: Check out more complex examples in the Sample Gallery.

The Sample Gallery contains sample apps that show what you can build on the Salesforce platform. They’re continuously updated
to incorporate the latest features and best practices.

Create a Salesforce DX Project

A Salesforce DX project has a specific structure and a configuration file that identifies the directory as a Salesforce DX project.

1. Change to the directory where you want the DX project located.

2. Create the DX project.

sf project generate --name MyProject

If you don’t specify an output directory with the --output-dir flag, the project directory is created in the current location. You
can also use the --default-package-dir flag to specify the default package directory to target when syncing source to
and from the org. If you don’t indicate a default package directory, this command creates a default package directory, force-app.

Use the --template flag to specify what your project initially looks like. Each template provides a complete directory structure
that takes the guesswork out of where to put your source. If you choose --template empty, your project contains these
sample configuration files to get you started.

• .forceignore

• config/project-scratch-def.json

• sfdx-project.json

• package.json

If you choose --template standard, your project also contains these files that are especially helpful when using Salesforce
Extensions for VS Code. If you don’t specify the --template flag, the project generate command uses the standard
template.

• .gitignore: Makes it easier to start using Git for version control.

25

Sample Repository on GitHubProject Setup

https://developer.salesforce.com/code-samples-and-sdks

• .prettierrc and .prettierignore: Make it easier to start using Prettier to format your Aura components.

• .vscode/extensions.json: Causes Visual Studio Code, when launched, to prompt you to install the recommended
extensions for your project.

• .vscode/launch.json: Configures Replay Debugger, making it more discoverable and easier to use.

• .vscode/settings.json: By default, this file has one setting for excluding certain files and folders in searches and quick
open. You can change this value or add other settings.

If you choose --template analytics, you get all the helpful basic and VS Code files. But the default package directory
contains fewer directories, such as for storing Analytics template bundles. /force-app/main/default/waveTemplates)
and a few other metadata types, such as Apex classes and LWC components.

Example:

sf project generate --name mywork --template standard

sf project generate --name mywork --default-package-dir myapp-source

Next steps:

• (Optional) Register the namespace with the Dev Hub org.

• Configure the project (sfdx-project.json). If you use a namespace, update this file to include it.

• Create a scratch org definition that produces scratch orgs with the features you need for your project. The config directory of
your new project contains a sample scratch org definition file (project-scratch-def.json).

SEE ALSO:

Create a Salesforce DX Project from Existing Source

Salesforce DX Project Configuration

Link a Namespace to a Dev Hub Org

Build Your Own Scratch Org Definition File

How to Exclude Source When Syncing

VS Code Command: SFDX: Create Project, SFDX: Create Project with Manifest

Salesforce DX Project Structure and Source Format

A Salesforce DX project has a specific project structure and source format. Source format uses a different set of files and file extensions
from what Metadata API uses. When you retrieve metadata from the org with the project retrieve start command, Salesforce
CLI stores it in source format in your project. When you deploy metadata, Salesforce CLI converts it into the format that Metadata API
requires.

Source Transformation
It’s not uncommon for metadata formatted source to be very large, making it difficult to find what you want. If you work on a team with
other developers who update the same metadata at the same time, you have to deal with merging multiple updates to the file. If you’re
thinking that there has to be a better way, you’re right.

Before, all custom objects and object translations were stored in one large metadata file.

26

Salesforce DX Project Structure and Source FormatProject Setup

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/create-project.html

We solve this problem by providing a new source shape that breaks down, or decomposes, these large source files to make them more
digestible and easier to manage with a version control system. It’s called source format. Source format makes it much easier to find what
you want to change or update. And you're less likely to overwrite a team member's change if it's decomposed.

A Salesforce DX project decomposes custom objects and custom object translations into intuitive subdirectories by default. If you want,
you can also specify that other metadata types, such as permission sets and custom labels, are decomposed.

See Decomposed Metadata Types for details on how we decompose custom objects and custom object translations and how to configure
more metadata types to be similarly decomposed.

Static Resources
Static resources must reside in the /main/default/staticresources directory. The project deploy and project
retrieve commands support auto-expanding or compressing archive MIME types within your project. These behaviors support
both the .zip and .jar MIME types. This way, the source files are more easily integrated in your Salesforce DX project and version
control system.

For example, if you upload a static resource archive through the scratch org’s Setup UI, the project retrieve start command
expands it into its directory structure within the project. To mimic this process from the file system, add the directory structure to compress
directly into the static resources directory root, then create the associated .resource-meta.xml file. If an archive exists as a single
file in your project, it’s always treated as a single file and not expanded.

27

Salesforce DX Project Structure and Source FormatProject Setup

This example illustrates how different types of static resources are stored in your local project. You can see an expanded .zip archive
called expandedzippedresource and its related .resource-meta.xml file. You also see a couple .jpg files being stored
with their MIME type, and a single file being stored with the legacy .resource extension

See Salefsorce Help: Static Resources for more information.

File Extensions
When you convert existing metadata format to source format, we create an XML file for each bit. All files that contain XML markup now
have an .xml extension so that your XML editor recognizes them as XML files and you can look at them. To sync your local projects
and scratch orgs, Salesforce DX projects use a particular directory structure for custom objects, custom object translations, Lightning
web components, Aura components, and documents.

For example, if you had an object called Case, source format provides an XML version called Case.object-meta.xml. If you have
an app called DreamHouse, we create a file called DreamHouse.app-meta.xml. You get the idea.

Traditionally, static resources are stored on the file system as binary objects with a .resource extension. Source format handles static
resources differently by supporting content MIME types. For example, .gif files are stored as a .gif instead of .resource. By
storing files with their MIME extensions, you can manage and edit your files using the associated editor on your system.

You can have a combination of existing static resources with their .resource extension, and newly created static resources with
their MIME content extensions. Existing static resources with .resource extensions keep that extension, but any new static resources
show up in your project with their MIME type extensions. We allow .resource files to support the transition for existing customers.
Although you get this additional flexibility, we recommend storing your files with their MIME extensions.

28

Salesforce DX Project Structure and Source FormatProject Setup

https://help.salesforce.com/s/articleView?id=platform.pages_static_resources.htm&type=5&language=en_US

Aura Components
Aura bundles and components must reside in a directory named aura under the <package directory> directory.

Lightning Web Components
Lightning web components must reside in a directory named lwc under the <package directory> directory.

29

Salesforce DX Project Structure and Source FormatProject Setup

ExperienceBundle and DigitalExperienceBundle for Experience Cloud Sites
The ExperienceBundle metadata type represents an Aura or an LWR site, and must reside in a directory named experiences under
the <package directory> directory. The experiences directory contains a folder for each Aura or LWR site in your org.

The DigitalExperiencBundle metadata type represents an enhanced LWR site, and must reside in a directory named
digitalExperiences under the <package directory> directory. The digitalExperiences/site directory
contains a folder for each enhanced LWR site in your org.

Documents
Documents must be inside the directories of their parent document folder. The parent document folder must be in a directory called
documents. Each document has a corresponding metadata XML file that you can view with an XML editor.

Decomposed Metadata Types
Decomposition refers to splitting a single, often large, metadata XML file into smaller XML files based on its subtypes. The result is referred
to as source format. By default, a Salesforce DX project always decomposes custom objects and custom object translations. You can also
optionally specify that other metadata types, such as permission sets and custom labels, be decomposed.

30

Decomposed Metadata TypesProject Setup

Start Decomposing the Optional Metadata Types (Beta)
The Salesforce DX project file (sfdx-project.json) determines which of the optional metadata types are decomposed. But don't
update it manually. Rather, run the project convert source-behavior Salesforce CLI command which updates the project
file for you, and also breaks up the associated metadata file XML into smaller files.

Note: Decomposition of permission sets, custom labels, sharing rules, and workflows is a pilot or beta service that is subject to
the Beta Services Terms at Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and
applicable terms in the Product Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Before you begin, commit all your DX project source files to your version control system. Committing the files ensures that you can easily
see what changed in your project. You can also revert the changes if necessary.

1. Open a terminal or command prompt and change to your Salesforce DX project directory.

2. Optionally execute a dry run of the CLI command to display what it does before it actually changes your DX project. For example,
to dry run the decomposition of permission sets, run this command:

sf project convert source-behavior --behavior decomposePermissionSetBeta2 --dry-run

See this table for the --behavior values for the other metadata types you can optionally decompose.

3. When you're ready to update your DX project, run the same command but without the --dry-run flag:

sf project convert source-behavior --behavior decomposePermissionSetBeta2

If your default org is enabled for source tracking, the CLI command returns an error. This error is expected, because decomposing
your local metadata causes the source tracking system to get out of sync with the org. Follow the directions in the error message
and try again.

4. If you deleted your default org, recreate it and deploy your local source.

When the project convert source-behavior command finishes, your sfdx-project.json file is updated to always
decompose permission sets, or whatever type you specified. The existing source files in your local package directories are converted
into the new decomposed format. You can now deploy and retrieve your metadata as usual.

If you change your mind and don't want to decompose the optional types, revert the changes made by the project convert
source-behavior and recreate your source-tracking orgs.

This table provides the list of metadata types that are decomposed by default, and the types that you can optionally decompose. For
optional metadata types, the table also shows the corresponding --behavior flag value.

Details About the Source Format
Structure

Value of --behavior FlagMetadata Type

Custom ObjectsNot needed; type is decomposed by default.CustomObject

Custom Object TranslationsNot needed; type is decomposed by default.CustomObjectTranslation

Custom Labels (Beta)decomposeCustomLabelsBeta2CustomLabels

External Service Registrations (Beta)decomposeExternalServiceRegistrationBetaExternalServiceRegistration

Permission Sets (Beta)decomposePermissionSetBeta2PermissionSet

Sharing Rules (Beta)decomposeSharingRulesBetaSharingRules

Workflows (Beta)decomposeWorkflowBetaWorkflow

31

Decomposed Metadata TypesProject Setup

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/?_ga=2.247987783.1372150065.1709219475-629000709.1639001992
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/customobject.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customobjecttranslation.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customlabels.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalserviceregistration.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_permissionset.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_sharingrules.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_workflow.htm

Source Format Structure of Decomposed Metadata Types
This section provides details about how the decomposed metadata types are broken down into their local source format structure.

Note: Decomposition of the optional metadata types (custom labels, permission sets, sharing rules, and workflows) is a pilot or
beta service that is subject to the Beta Services Terms at Agreements - Salesforce.com or a written Unified Pilot Agreement if
executed by Customer, and applicable terms in the Product Terms Directory. Use of this pilot or beta service is at the Customer's
sole discretion.

Custom Objects
Custom objects are decomposed by default.

When you convert from metadata format to source format, your custom objects are placed in the
<package-directory>/main/default/objects directory. Each object has its own subdirectory that reflects the type of

custom object. Some parts of the custom objects are extracted into in these subdirectories:

• businessProcesses

• compactLayouts

• fields

• fieldSets

• indexes

• listViews

• recordTypes

• sharingReasons

• validationRules

• webLinks

The parts of the custom object that aren’t extracted are placed in a <object-name>.object-meta.xml file.

Custom Object Translations
Custom object translations are decomposed by default.

Custom object translations reside in the <package-directory>/main/default/objectTranslations directory, each
in their own subdirectory named after the custom object translation. Custom object translations and field translations are extracted into
their own files within the custom object translation’s directory.

• For field names, <field_name>.fieldTranslation-meta.xml

• For object names, <object_name>.objectTranslation-meta.xml

The remaining pieces of the custom object translation that aren’t field translations are placed in a file called
<objectTranslation-name>.objectTranslation-meta.xml.

See Salesforce Help: Translation Workbench for more information.

Custom Labels (Beta)
Custom labels aren’t decomposed by default; you must specifically configure your DX project to decompose them. See Start Decomposing
the Optional Metadata Types (Beta) for details.

32

Decomposed Metadata TypesProject Setup

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/?_ga=2.247987783.1372150065.1709219475-629000709.1639001992
https://help.salesforce.com/s/articleView?id=platform.workbench.htm&type=5&language=en_US

By default, all custom labels for your entire org are contained in a single file called CustomLabels.labels-meta.xml that
resides in the <package-directory>/labels directory. Each package directory can have its own
CustomLabels.labels-meta.xml file.

If you choose to decompose custom labels, individual CustomLabel components appear one time in a dedicated
*.label-meta.xml source file. The name of each *.label-meta.xml source file is derived from the fullName of the
CustomLabel component it contains. This example shows four custom label files in the default package directory.

You can further organize custom labels in your DX project, as long as you follow these guidelines:

• All *.label-meta.xml source files must be contained by a labels source directory.

• You can create a labels source directory in each of your multiple package directories in your DX project.

• You can create subdirectories of the labels source directory to further organize your *.label-meta.xml files.

Here are some examples of different ways you can organize custom labels.

33

Decomposed Metadata TypesProject Setup

External Service Registrations (Beta)
External service registrations aren’t decomposed by default; you must specifically configure your DX project to decompose them. See
Start Decomposing the Optional Metadata Types (Beta) for details.

By default, an external service registration is contained in a file called
<external-service-registration-name>.externalServiceRegistration-meta.xml that resides in the
<package directory>/main/default/externalServiceRegistrations directory.

If you choose to decompose external service registrations, they’re still stored in the top-level <package
directory>/main/default/externalServiceRegistrations directory. But each registration is decomposed into

two source files when you retrieve it to your Salesforce DX project. One of the files is in YAML format and contains an OpenAPI spec.
When you deploy the registration to your org, the two files are re-converted into the one metadata API XML file.

For example, let's say the name of your external service registration metadata component is BankService. The two source files after
decomposition are:

• BankService.yaml : A YAML file that contains the contents of the schema metadata component field. This field contains
an OpenAPI 2.0.x or OpenAPI 3.0.x schema in JSON or YAML format. If the field's content is in JSON format in your org, it's always
converted to YAML format when retrieved to your DX project.

• BankService.externalServiceRegistration-meta.xml : A standard metadata API XML file that contains all the
fields except schema.

Permission Sets (Beta)
Permission sets aren’t decomposed by default; you must specifically configure your DX project to decompose them. See Start Decomposing
the Optional Metadata Types (Beta) for details.

By default, a permission set is contained in a file called <permission-set-name>.permissionset-meta.xml that resides
in the <package-directory>/main/default/permissionsets directory.

If you choose to decompose permission sets, they’re still stored in the top-level
<package-directory>/main/default/permissionsets directory. This graphic shows how a sample permission set

called MyPermSet is then decomposed into its smaller XML files.

34

Decomposed Metadata TypesProject Setup

Here are some highlights about the decomposition:

• The decomposed files for a specific permission set are contained in a subdirectory named the same as the permission set, MyPermSet
in our example.

• The specific permission set directory contains a single file called <Name>.permissionset-meta.xml file, where
<Name> is the directory name. This XML file contains information such as the permission set label, description, and license. In our

example, the file is called MyPermSet.permissionset-meta.xml.

• The objectSettings directory consolidates object-related permissions and settings into a single file for each object, with
name <ObjectName>.objectSettings-meta.xml.

• The remaining permissions and settings are in focused files with a category-specific extension, such as
MyPermSet.applicationVisibilities-meta.xml or MyPermSet.flowAccesses-meta.xml.

Sharing Rules (Beta)
Sharing rules aren’t decomposed by default; you must specifically configure your DX project to decompose them. See Start Decomposing
the Optional Metadata Types (Beta) for details.

By default, all sharing rules for an object are contained in a file called <object-name>.sharingRules-meta.xml that resides
in the <package directory>/main/default/sharingRules directory. The object-name refers to the object to
which the sharing rule applies.

If you choose to decompose sharing rules, they’re still stored in the top-level <package
directory>/main/default/sharingRules directory. But the sharing rules are grouped into subdirectories with the same

name as the object that the sharing rule is associated with. Within this object subdirectory, parts of the sharing rule are extracted into
these subdirectories.

• sharingCriteriaRules

• sharingGuestRules

• sharingOwnerRules

• sharingTerritoryRules

The parts of the sharing rule that aren’t extracted are placed in a <object-name>.sharingRules-meta.xml file.

35

Decomposed Metadata TypesProject Setup

Workflows (Beta)
Workflows aren’t decomposed by default; you must specifically configure your DX project to decompose them. See Start Decomposing
the Optional Metadata Types (Beta) for details.

By default, all workflows for an object are contained in a file called <object-name>.workflow-meta.xml that resides in the
<package directory>/main/default/workflows directory. The object-name refers to the object to which the

workflow applies.

If you choose to decompose workflows, they’re still stored in the top-level <package
directory>/main/default/workflows directory. But the workflows are grouped into subdirectories with the same name

as the object that the workflow is associated with. Within this object subdirectory, parts of the workflow are extracted into these
subdirectories.

• workflowAlerts

• workflowFieldUpdates

• workflowKnowledgePublishes

• workflowOutboundMessages

• workflowRules

• workflowSends

• workflowTasks

The parts of the workflow that aren’t extracted are placed in a <object-name>.workflow-meta.xml file.

How to Exclude Source When Syncing

When syncing metadata between your local file system and a target org, you often have source files you want to exclude. Similarly, you
often want to exclude certain files when converting source to Salesforce DX source format. In both cases, you can exclude individual
files or all files in a specific directory with a .forceignore file.

The .forceignore file excludes files when running most of the project commands, such as project deploy start,
project retrieve start, project convert source, and project delete source.

Structure of the .forceignore File
The .forceignore file structure mimics the .gitignore structure. Each line in .forceignore specifies a pattern that
corresponds to one or more files. The files typically represent metadata components, but can be any files you want to exclude, such as
LWC configuration JSON files or tests.

The project commands, when parsing the .forceignore file, use the same rules and patterns as the .gitignore file. A
few common examples of these rules and patterns include:

• Always use the forward slash (/) as a directory separator, even on operating systems that use back slashes, such as Microsoft Windows.

• An asterisk (*) matches anything except a forward slash (/).

• Two consecutive asterisks (**) in patterns have special meaning, depending on where they’re located in the pathname. See for
examples.

• For readability, use blank lines as separators in the .forceignore file.

There are many more rules and patterns. See the git documentation for details.

36

How to Exclude Source When SyncingProject Setup

https://git-scm.com/docs/gitignore

Determine the Exact Filename for a Metadata Component
As you build your .forceignore file, you sometimes need the exact name of the metadata components that you want to exclude.
The easiest way to determine the name of a particular component is to look at the package directory that contains the source files, such
as the default force-app directory.

For example, profile metadata components live in the main/default/profiles directory. Let’s say that the directory contains
the source file NotUsedProfile.profile-meta.xml. To specify that the project commands exclude this component,
add this entry to your .forceignore:

**/NotUsedProfile.profile-meta.xml

Another way to determine the exact name of a metadata component is to look at the output of the project commands if you’re
also using source tracking. For example, if you have either local or remote changes, run the project deploy preview or
project retrieve preview command to display the full pathname of the changed components. This output displays the
filename of the Dreamhouse permission set and the Settings custom tab in the Path column of the Will Deploy section:

sf project deploy preview

Will Deploy [2] files.
Type Fullname Path

───────────── ──────────
───
PermissionSet dreamhouse
force-app/main/default/permissionsets/dreamhouse.permissionset-meta.xml
CustomTab Settings force-app/main/default/tabs/Settings.tab-meta.xml

Other Files That the Source Commands Ignore
The source commands ignore these files even if they aren’t included in your .forceignore file:

• Any source file or directory that begins with a “dot”, such as .DS_Store or .sf

• Any file that ends in .dup

• package2-descriptor.json

• package2-manifest.json

Exclude Remote Changes Not Yet Synced with Your Local Source
Sometimes, you make a change directly in an org but you don’t want to pull that change into your local DX project. To exclude remote
metadata changes, add an entry to .forceignore that represents the metadata source file that would be created if you did retrieve
it.

For example, if you have a permission set named Dreamhouse, add this entry to .forceignore:

**/Dreamhouse.permissionset-meta.xml

Exclude MetadataWithContent Types
Metadata components that include content, such as ApexClass or EmailTemplate, extend the MetadataWithContent type. These
components have two source files: one for the content itself, such as the Apex code or email template, and the accompanying metadata
file. For example, the source files for the HelloWorld Apex class are HelloWorld.cls and HelloWorld.cls-meta.xml.

37

How to Exclude Source When SyncingProject Setup

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_metadatawithcontent.htm

To exclude a MetadataWithContent component, such as an ApexClass, either list both source files in the .forceignore file, or use
an asterisk. For example:

Explicilty list the HelloWorld source files to be excluded
helloWorld/main/default/classes/HelloWorld.cls
helloWorld/main/default/classes/HelloWorld.cls-meta.xml

Exclude the HelloWorld Apex class using an asterisk
helloWorld/main/default/classes/HelloWorld.cls*

Exclude Bundles and File Groups
Use two consecutive asterisks (**) to ignore files spread across multiple directories with just one .forceignore entry.

For example, to exclude all resource files related to a Lightning web component named myLwcComponent, add this entry to exclude
the entire component bundle:

**/lwc/myLwcComponent

To exclude all Apex classes:

**/classes

Metadata with Special Characters
If a metadata name has special characters (such as forward slashes, backslashes, or quotation marks), we encode the file name on the
local file system for all operating systems. For example, if you retrieve a custom profile called Custom: Marketing Profile, the colon is
encoded in the resulting file name.

Custom%3A Marketing Profile.profile-meta.xml

If you reference a file name with special characters in .forceignore, use the encoded file name.

Where to Put .forceignore
Be sure the paths that you specify in .forceignore are relative to the directory containing the .forceignore file. For the
.forceignore file to work its magic, you must put it in the proper location, depending on which command you’re running.

• Add the .forceignore file to the root of your project for the project source tracking commands.

• Add the file to the metadata retrieve directory (with package.xml) for project convert mdapi.

Multiple .forceignore Files in a Single Project
You typically have only one .forceignore file in your Salesforce DX project, usually in the project’s root directory. However, it’s
possible to have more, so it’s important to know which .forceignore file the project commands use when deploying or
retrieving a particular source file.

When the project commands are determining whether to exclude a source file, they traverse up the directory tree from where the
source file lives, looking for a .forceignore file. When they find one, they refer to it to determine whether to exclude the source
file, and then stop. They don’t continue looking for another .forceignore file.

Let’s look at an example. Imagine you have a .forceignore file in the root directory of your project, and it doesn’t exclude any Apex
classes. In addition to the standard force-app package directory, you’ve configured a second package directory called

38

How to Exclude Source When SyncingProject Setup

second-package, which has its own .forceignore file at its root. This .forceignore file excludes Apex classes that start
with Paged. The second-package package directory has an Apex class called PagedResult in its main/default/classes
subdirectory. Here’s what it looks like in VS Code.

Let’s say you run this command in the project to deploy all Apex classes in all package directories.

sf project deploy start --metadata ApexClass

Because the PagedResult Apex class lives in the second-package package directory, the deploy command refers to the
.forceignore in that directory, and excludes the source files associated with the Apex class. The command doesn’t refer to the
project .forceignore file.

Let’s now assume that the force-app directory contains a PagedNewResult Apex class. The deploy command refers to the
project .forceignore file and thus doesn’t exclude the associated source files. Or in other words, the command deploys the files
associated with the PagedNewResult Apex class.

Sample Syntax
Here are some options for indicating which source to exclude. In this example, all paths are relative to the project root directory.

Specify a relative path to a directory from the project root
helloWorld/main/default/classes

Specify a wildcard directory - any directory named “classes” is excluded
**classes

Specify file extensions
**.cls*
**.pdf

Specify a specific file
helloWorld/main/default/HelloWorld.cls*

39

How to Exclude Source When SyncingProject Setup

List the Files and Directories Currently Being Ignored
Use the project list ignored command to list the files and directories in your project that the project commands are
currently ignoring. The project list ignored command refers to the .forceignore file to determine the list of ignored
files.

To list all the files in all package directories that are ignored, run the command without any flags. Use the --source-dir flag to
limit the check to a specific file or directory. If you specify a directory, the command checks all subdirectories recursively.

This example checks if a particular file is ignored.

sf project list ignored --source-dir package.xml

This example gets a list of all ignored files in a specific directory.

sf project list ignored --source-dir force-app/main/default

Sample output if the command finds ignored files:

Found the following ignored files:
force-app/main/default/aura/.eslintrc.json
force-app/main/default/lwc/.eslintrc.json
force-app/main/default/lwc/jsconfig.json

Sample output if the file isn’t ignored:

No ignored files found in paths:
README.md

SEE ALSO:

Retrieve Changes to Profiles with Source Tracking

Create a Salesforce DX Project from Existing Source

If you’re a Salesforce developer, partner, or ISV, you likely have existing source in a managed package in your packaging org or application
source in your sandbox or production org. Before you begin using Salesforce DX, retrieve the existing source into a Salesforce DX project.

1. Create a Salesforce DX project.

sf project generate --name MyProject

2. Change to the project directory.

cd MyProject

3. Retrieve your source by running the project retrieve start command. The location and format of your current source
determine the command flags you must use.

40

Create a Salesforce DX Project from Existing SourceProject Setup

Command To Retrieve Your SourceFormat and Location of Current Source

sf project retrieve start --package-name
<package-name> --target-org
<sourceOrg-username-or-alias>

You’re a partner who has your source already defined as a
managed package in your packaging org.

The --target-org flag specifies the username or alias for
the source org (such as a packaging org) from which you’re
retrieving the source. The --package-name flag specifies
the package name; if the name contains a space, enclose it in
double quotes.

By default, the command creates a package directory, with the
same name as your package, in the DX project directory. The
command then retrieves the source from your package and
organizes it in the new directory using the standard DX source
format structure. Use the --output-dir to specify a different
directory; the command creates the directory if it doesn’t exist.

sf project retrieve start --manifest
<manifest-file> --target-org
<sourceOrg-username-or-alias>

You have a manifest file, typically called package.xml, that
defines your unpackaged source in a sandbox or production org.

The --target-org flag specifies the username or alias for
the org (such as a sandbox or production) from which you’re
retrieving the source. The --manifest flag indicates the path
to the manifest file, typically called package.xml.

By default, the command retrieves the source into the existing
force-app package directory of your DX project Use the
--output-dir to specify a different directory; the command
creates the directory if it doesn’t exist.

Tip: If you already have a repo that follows the directory structure created from a Metadata API retrieve, then your source files
in the repo are in metadata format. You can convert these files into source format and include them in your Salesforce DX
project. See Convert Files in Metadata Format to Source Format for details.

4. If the retrieve created a package directory in your project, add it to your sfdx-project.json file.

Do you have source in a sandbox or production org, but you don’t have a manifest file (package.xml) for retrieving it to your project?
Use the project generate manifest CLI command to create one. For example, this command generates a manifest from
the metadata components in the org with the alias prod-org.

sf project generate manifest --from-org prod-org

See the command help for more examples and information.

sf project generate manifest --help

41

Create a Salesforce DX Project from Existing SourceProject Setup

You can also refer to Sample package.xml Manifest Files in the Metadata API Developer Guide.

SEE ALSO:

Create a Salesforce DX Project

Salesforce DX Project Structure and Source Format

Salesforce DX Project Configuration

Convert Files in Metadata Format to Source Format

VS Code Command: SFDX: Create Project, SFDX: Create Project with Manifest

Convert Files in Metadata Format to Source Format

If you already have a repo in which you’ve retrieved metadata from an org using the Metadata API directly, the files are in metadata
format. You can convert these files into source format and add them to your Salesforce DX project. You can then deploy and retrieve
them to and from your org using CLI commands and use source tracking to track changes.

The convert command ignores all files that start with a “dot,” such as .DS_Store. To exclude more files from the convert process,
add a .forceignore file.

1. Change to your Salesforce DX project directory.

2. Convert the files from metadata format to source format with the project convert mdapi command. Let’s say your
metadata-format files are in a directory called /Users/testing/mdapi_project.

sf project convert mdapi --root-dir /Users/testing/mdapi_project

The --root-dir flag is the name of the directory that contains the metadata format files.

The converted source is stored in the default package directory indicated in the sfdx-project.json file, typically named
force-app. Use the --output-dir flag to put the converted files in a different package directory; the command creates the
directory if it doesn’t exist.

3. If the convert created a package directory in your project, add it to your sfdx-project.json file.

SEE ALSO:

Salesforce DX Project Configuration

Salesforce DX Usernames and Orgs

Many Salesforce CLI commands connect to an org to complete their task. For example, the org create scratch command,
which creates a scratch org, connects to a Dev Hub org. The project deploy start and project retrieve start
commands synchronize source code between your project and an org. In each case, the CLI command requires a username to determine
which org to connect to. Usernames are unique within the entire Salesforce ecosystem and are associated with just one org.

When you create a scratch org, the CLI generates a username. The username looks like an email address, such as
test-wvkpnfm5z113@example.com. You don’t need a password to connect to or open a scratch org, although you can generate one
later with the org generate password command.

Salesforce recommends that you set the org that you connect to the most during development as your default org. The easiest way to
set it is when you log in to a Dev Hub org or create a scratch org; you can also use the config commands. Specify the

42

Convert Files in Metadata Format to Source FormatProject Setup

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/manifest_samples.htm
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/create-project.html

--set-default-dev-hub or --set-default flag, respectively. You can also create an alias to make the org’s usernames
more readable and intuitive. You can use usernames or their aliases interchangeably for all CLI commands that connect to an org.

These examples set the default org and aliases when you log in and authorize an org, in this case a Dev Hub org, and then when you
create a scratch org.

sf org login web --set-default-dev-hub --alias my-hub-org
sf org create scratch --definition-file config/project-scratch-def.json --set-default
--alias my-scratch-org

To verify whether a CLI command requires an org connection, look at its flag list with the -h flag. Commands that have the
--target-dev-hub flag connect to the Dev Hub org. Similarly, commands that have --target-org connect to scratch orgs,
sandboxes, and so on. This example displays the flag list and help information about org create scratch.

sf org create scratch -h

When you run a CLI command that requires an org connection and you don’t specify a username, the command uses the default. To
display all the orgs that you've authorized or created, run org list. The default Dev Hub and scratch orgs are marked with an emoji
on the left; see the legend at the end of the display for details.

Let's run through a few examples. This example deploys source code to the org that you've set as the default.

sf project deploy start

To specify an org other than the default, use --target-org. For example, let’s say you created a scratch org with the alias
my-other-scratch-org. It’s not the default but you still want to deploy source to it.

sf project deploy start --target-org my-other-scratch-org

This example shows how to use the --target-dev-hub flag to specify a non-default Dev Hub org when creating a scratch org.

sf org create scratch --target-dev-hub jdoe@mydevhub.com --definition-file my-org-def.json
--alias yet-another-scratch-org

More About Setting Default Orgs
If you’ve already created a scratch org, you can set it, or any other org, as your default by running the config set command from
your project directory.

sf config set target-org test-wvkpnfm5z113@example.com

The command sets the value locally, so it works only for the current project. To use the default org for all projects on your computer,
specify the --global flag. You can run this command from any directory. Local project defaults override global defaults.

sf config set target-org test-wvkpnfm5z113@example.com --global

The process is similar to set a default Dev Hub org, except you use the target-dev-hub config variable.

sf config set target-dev-hub jdoe@mydevhub.com

To unset a config variable, run the config unset command. Use the --global flag to unset it for all your Salesforce DX projects.

sf config unset target-org --global

To view all the configuration variables you’ve set, run config list; if you run it from a project directory it also lists the local ones.

sf config list

43

Salesforce DX Usernames and OrgsProject Setup

More About Aliasing
Use the alias set command to set an alias for a scratch org you’ve already created, or any org after you’ve authorized it. You can
create an alias for any org: Dev Hub, scratch org, production, sandbox, and so on. So when you issue a command that requires the org’s
username, using an easily-remembered alias speeds things up.

sf alias set my-scratch-org test-wvkpnfm5z113@example.com

An alias also makes it easy to set a default org. The previous example of using config set to set target-org now becomes
much more digestible when you use an alias rather than the actual username.

sf config set target-org my-scratch-org

Set multiple aliases with a single command by separating the name-value pairs with a space; in this case you must use the equal sign.

sf alias set org1=<username> org2=<username>

You can associate an alias with only one username at a time. If you set it multiple times, the alias points to the most recent username.
For example, if you run the following two commands, the alias my-org is set to test-wvkpnfm5z113@example.com.

sf alias set my-org test-blahdiblah@example.com
sf alias set my-org test-wvkpnfm5z113@example.com

To view all aliases that you’ve set, use one of the following commands.

sf alias list
sf org list

To remove an alias, use the alias unset command.

sf alias unset my-org

List All Your Orgs
Use the org list command to display the usernames and aliases for the orgs that you’ve authorized and the active scratch orgs
that you’ve created.

sf org list

Type Alias Username Org ID
Status Expires

── ─────── ────────────── ─── ──────────────────
───────────────────── ──────────
D DevHub JulesDevHub jules@sf.com 00DB0001234c7jiMAA
Connected
Sandbox jules@sf.com.jssandtwo 00D020012344XTiEAM

Connected
O Scratch my-scratch-org test-qjrr9q5d13o8@example.com 00DMN0012342Gez2AE
Active 2023-08-21

Legend: D=Default DevHub, O=Default Org Use --all to see expired and deleted scratch
orgs

The output lists the orgs that you’ve authorized or created, including Dev Hub orgs, production orgs, scratch orgs, and sandboxes. The
table displays the usernames that you specified when you authorized the orgs, their aliases, their IDs, and whether the CLI can connect

44

Salesforce DX Usernames and OrgsProject Setup

to it. An emoji on the left points to the default org or Dev Hub; refer to the legend at the bottom for details. Scratch orgs also display
their expiration dates.

To view more information, such as the scratch org creation date and associated DevHub org, and instance URL for all orgs, use the
--verbose flag.

sf org list --verbose

Use the --clean flag to remove non-active scratch orgs from the list. The command prompts you before it does anything.

sf org list --clean

SEE ALSO:

Authorization

Build Your Own Scratch Org Definition File

Create Scratch Orgs

Generate or Change a Password for a Scratch Org User

Deploy Source From Your Project to the Scratch Org

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub org.

Complete these tasks before you link a namespace.

• If you don’t have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, you’re good to go.

• In the Developer Edition org, create and register the namespace.

Important: Choose namespaces carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. After you associate a namespace with an org, you can't change it or reuse it.

1. Log in to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.

Tip: Make sure your browser allows pop-ups from your Dev Hub org.

a. From the App Launcher menu, select Namespace Registries.

b. Click Link Namespace.

2. In the window that pops up, log in to the Developer Edition org in which your namespace is registered using the org's System
Administrator's credentials.

You can’t link orgs without a namespace: sandboxes, scratch orgs, patch orgs, and branch orgs require a namespace to be linked to
the Namespace Registry.

45

Link a Namespace to a Dev Hub OrgProject Setup

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries list view.

SEE ALSO:

Get a Trial Development Environment for Free

Lightning Aura Components Developer Guide: Create a Namespace in Your Org

Add Salesforce DX Users

Salesforce Help: My Domain

Salesforce DX Project Configuration

The project configuration file sfdx-project.json indicates that the directory is a Salesforce DX project. The configuration file
contains project information and facilitates the authorization of orgs and the creation of second-generation packages. It also tells
Salesforce CLI where to put files when syncing between the project and org.

We provide sample sfdx-project.json files in the sample repos for creating a project using Salesforce CLI or Salesforce Extensions
for VS Code.

Note: Are you planning to create second-generation packages? When you’re ready, add packaging-specific configuration options
to support package creation. See Project Configuration File for a Second-Generation Managed Package.

We recommend that you check in this file with your source.

{
"packageDirectories" : [

{ "path": "force-app", "default": true},
{ "path" : "unpackaged" },
{ "path" : "utils" }

],
"namespace": "",
"sfdcLoginUrl" : "https://login.salesforce.com",
"sourceApiVersion": "63.0"
}

You can manually edit these parameters.

name (required for Salesforce Functions)
Salesforce DX or Salesforce Functions project name.

namespace (optional)
The global namespace that is used with a package. The namespace must be registered with an org that is associated with your Dev Hub
org. This namespace is assigned to scratch orgs created with the org create scratch command. If you’re creating an unlocked
package, you have the option to create a package with no namespace.

Important: Register the namespace with Salesforce and then connect the org with the registered namespace to the Dev Hub
org.

46

Salesforce DX Project ConfigurationProject Setup

https://developer.salesforce.com/free-trials
https://developer.salesforce.com/docs/atlas.en-us.260.0.lightning.meta/lightning/namespaces_creating.htm
https://help.salesforce.com/articleView?id=domain_name_overview.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

oauthLocalPort (optional)
By default, the OAuth port is 1717. Change this port if 1717 is already in use and you plan to create a connected app in your Dev Hub
org to support JWT-based authorization. Be sure you also follow the steps in Create a Connected App in Your Org to change the callback
URL.

packageAliases (optional)
Aliases for package IDs, which can often be cryptic. See Project Configuration File for a Second-Generation Managed Package for details.

packageDirectories (required)
Package directories indicate which directories to target when syncing source to and from the org. These directories can contain source
files from your managed or unmanaged package. They can also contain unpackaged source files produced by, for example, an ant tool
or change set. For information on all packageDirectories options, see Project Configuration File for a Second-Generation
Managed Package.

Keep these things in mind when working with package directories.

• The location of the package directory is relative to the project. Don’t specify an absolute path. The following two examples are
equivalent.

"path": "helloWorld"
"path" : "./helloWorld"

• You can have only one default path (package directory). If you have only one path, we assume it’s the default, so you don’t have to
explicitly set the default parameter. If you have multiple paths, you must indicate which one is the default.

• Salesforce CLI uses the default package directory as the target directory when retrieving changes from the org to the local project.
This default path is also used when creating second-generation packages.

• If you don’t specify an output directory, the default package directory is also where files are stored during source conversions. Source
conversions are both from metadata format to source format, and from source format to metadata format.

plugins (optional)
To use the custom plugins you’ve created with your Salesforce DX project, add a plugins section to the sfdx-project.json
file. In this section, add configuration values and settings to change your plugins’ behavior.

"plugins": {
"yourPluginName": {
"timeOutValue": "2"

},
"yourOtherPluginName": {
"yourCustomProperty": true

}
}

Store configuration variables for only those values that you want to check in to source control for the project. These configuration values
affect your whole development team.

47

Salesforce DX Project ConfigurationProject Setup

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://github.com/salesforcecli/cli/wiki/Quick-Introduction-to-Developing-sf-Plugins

pushPackageDirectoriesSequentially (optional) (Deprecated)
Note: This property is deprecated and applies only to the deprecated force:source:push command. It doesn't affect the
behavior of the project deploy start command. To deploy packages sequentially, and in a specific order, use
separate project deploy start commands in the desired order.

Set to true to push multiple package directories in the order they're listed in packageDirectories when using
force:source:push. The directories are pushed in separate transactions. The default value of this property is false, which
means that multiple package directories are deployed in a single transaction without regard to order. Example:

"packageDirectories": [
{
"path": "es-base-custom",
"default": true

},
{
"path": "es-base-ext"

}
],
"pushPackageDirectoriesSequentially": true,

replacements (optional)
Automatically replace strings in your metadata source files with specific values right before you deploy the files to an org.

See Replace Strings in Code Before Deploying for details.

sfdcLoginUrl (optional)
The login URL that the org login commands use. If not specified, the default is https://login.salesforce.com. Override
the default value if you want users to authorize to a specific Salesforce instance. For example, if you want to authorize into a sandbox
org, set this parameter to https://test.salesforce.com.

If you don’t specify a default login URL here, or if you run org login outside the project, specify the instance URL when authorizing
the org with the --instance-url flag.

sourceApiVersion (optional)
The API version that the source is compatible with.

The sourceApiVersion value determines the fields retrieved for each metadata type during project deploy, project
retrieve, or project convert. This field is important if you’re using a metadata type that has changed in a recent release.
You’d want to specify the version of your metadata source. For example, let's say a new field was added to the CustomTab for API version
63.0. If you retrieve components for version 57.0 or earlier, you see errors when running the project commands because the
components don't include that field.

Don’t confuse this project configuration parameter with the org-api-version CLI configuration variable, which has a similar name. See
How API Version and Source API Version Work in Salesforce CLI for more information and the default value.

48

Salesforce DX Project ConfigurationProject Setup

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_string_replace.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_dev_cli_config_values.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_apiversion.htm

sourceBehaviorOptions (optional) (Beta)
Specify which metadata types in your Salesforce DX project are decomposed. Custom objects and custom object translations are always
decomposed by default. Decomposition refers to splitting a single, often large, metadata XML file into smaller XML files based on its
subtypes.

Note: Decomposition of permission sets, custom labels, sharing rules, and workflows is a pilot or beta service that is subject to
the Beta Services Terms at Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and
applicable terms in the Product Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Don't manually update your sfdx-project.json file with this option. Rather, run the project convert
source-behavior Salesforce CLI command which updates the file for you, and also breaks up the associated metadata file XML
into smaller files. See Start Decomposing the Optional Metadata Types (Beta) on page 31 for details.

Possible values:

• decomposeCustomLabelsBeta2—Decompose the CustomLabels metadata type.

• decomposeExternalServiceRegistrationBeta—Decompose the ExternalServiceRegistration metadata type.

• decomposePermissionSetBeta2—Decompose the PermissionSet metadata type.

• decomposeSharingRulesBeta—Decompose the SharingRules metadata type

• decomposeWorkflowBeta—Decompose the WorkFlow metadata type.

Example:

"sourceBehaviorOptions": ["decomposePermissionSetBeta2", "decomposeCustomLabelsBeta2"]

SEE ALSO:

Link a Namespace to a Dev Hub Org

Authorization

How to Exclude Source When Syncing

Retrieve Source from the Scratch Org to Your Project

Deploy Source From Your Project to the Scratch Org

Multiple Package Directories

When you create your Salesforce DX project, we recommend that you organize your metadata into logical groupings by creating multiple
package directories locally. You then define these directories in your sfdx-project.json file. You can group similar code and
source files for an application or customization to better organize your team’s repository. Later, if you decide to use unlocked or
second-generation managed packages (2GP), these directories correspond to the actual unlocked or 2GP packages.

Note: For clarity, a package directory refers to the local (client-side) directory that contains decomposed metadata files, that is,
metadata in source format. This directory doesn’t always result in an unlocked or 2GP package. Package refers to an unlocked or
2GP package.

In your sfdx-project.json file, list each package directory separately in the packageDirectories section. Each local
package directory adheres to the standard Salesforce DX project structure.

The multiple package directory structure is client-side (local) only. When you deploy the source to the org with project deploy
start, there’s no association between its local package directory location and the package in the org. You specify that metadata
belongs to a specific unlocked or 2GP package in an org by explicitly installing the package.

49

Multiple Package DirectoriesProject Setup

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/?_ga=2.247987783.1372150065.1709219475-629000709.1639001992
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customlabels.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalserviceregistration.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_permissionset.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_sharingrules.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_workflow.htm

All of the project commands that deploy, retrieve, and convert metadata support multiple package directories.

How Do I Set It Up?
Setting up multiple package directories is easy. How you organize your local source code among these directories takes more thought
and planning, and depends on your development environment. Plan how to organize your code before you get started. Keep your
source code well organized as your project grows to make it easier and more efficient for your developers to work.

Let’s say you put the decomposed metadata files for a custom object MyObject in the default package directory. You can then put files
for a new field MyField on MyObject in a different “extension” package directory without having to also include the MyObject files.
Although this example is simple, you can organize your code in any number of different ways. These blog posts provide some ideas.

Here’s how you set up multiple package directories. Let’s first look at a sample sfdx-project.json snippet:

"packageDirectories": [
{
"path": "es-base-custom",
"default": true

},
{
"path": "es-base-ext"

},
{
"path": "es-base-styles"

}
],

The sample sfdx-project.json snippet defines three package directories: es-base-custom (the default), es-base-ext,
and es-base-styles. Let’s say your top-level local project directory is called easy-spaces-lwc. The directory hierarchy
underneath it looks something like this:

Each es-base-* directory adheres to the standard Salesforce DX project structure. For example, the es-base-ext directory
looks something like this:

50

Multiple Package DirectoriesProject Setup

https://developer.salesforce.com/blogs/2018/06/working-with-modular-development-and-unlocked-packages-part-1.html

Now add the decomposed metadata source to these multiple package directories in the way that best suits your development environment.

How Does It Work?
Let's go through a few examples to see how project deploy start and project retrieve start work with multiple
package directories.

For new orgs, the default project deploy start command deploys all the metadata in all multiple package directories
listed in your sfdx-project.json file. After that, the command deploys only metadata that's new, changed, or marked for delete.
By default, the command deploys the metadata in a single transaction, as if you had just one package directory.

sf project deploy start --target-org my-org

You can also target the metadata you want to deploy. You can deploy specific package directories, specific metadata components,
components listed in a manifest file, and more. This example deploys the metadata in the es-base-custom package directory:

sf project deploy start --source-dir es-base-custom --target-org my-org

To deploy more than one package directory, specify the --source-dir flag multiple times. This example deploys all the package
directories configured in the sample sfdx-project.json file shown in the previous section.

sf project deploy start --source-dir es-base-custom --source-dir es-base-ext --source-dir
es-base-styles --target-org my-org

This example deploys all Apex classes found in all your multiple package directories:

sf project deploy start --metadata ApexClass --target-org my-org

When you run project retrieve start, the command retrieves all remote changes from the org into your local project. For
each retrieved component, the command looks in all package directories for a local match. If it finds a match, the command updates it.
If it doesn't find a match, the command copies the local component into the default package directory, which in our example is
es-base-custom.

sf project retrieve start --target-org my-org

You can then move the retrieved files into the package directory that makes sense for your project. After you deploy the moved files
back to the org with project deploy start, Salesforce CLI tracks their new location.

You can also use project retrieve start to retrieve targeted metadata from your org. Existing metadata is retrieved into its
correct local package directory and new metadata into the default package directory. This example retrieves only the metadata components
contained in the local es-base-custom package directory:

sf project retrieve start --source-dir es-base-custom --target-org my-org

This example retrieves all Apex classes from your org; new classes go into the default package directory and classes that exist locally go
into their corresponding package directory.

sf project retrieve start --metadata ApexClass --target-org my-org

Push Source Sequentially
By default, project deploy start deploys metadata to your org in a single transaction, regardless of the order that you list
your multiple package directories in sfdx-project.json. But sometimes you must specify the exact order that the package
directories are pushed. Reasons include:

51

Multiple Package DirectoriesProject Setup

• The number of recomposed metadata component files in your local project exceeds the Salesforce metadata limit of 10,000 files
per retrieve or deploy. One workaround is to split up your metadata into multiple package directories that each contain less than
this limit and push each directory sequentially, and thus separately.

• You have dependencies between multiple package directories, which requires that they be pushed in a specific order.

• More than one package directory contains the same metadata component, and you want to specify which one is deployed last so
it's not overwritten.

If you need multiple deployments in a specific order, run project deploy start several times with the --source-dir or
--metadata flags in the desired order.

SEE ALSO:

Developer Guide: Second-Generation Managed Packages

Developer Guide: Install and Uninstall Second-Generation Managed Packages

Salesforce DX Project Structure and Source Format

Salesforce Developers Blog: Working with Modular Development and Unlocked Packages

Replace Strings in Code Before Deploying or Packaging

Automatically replace strings in your metadata source files with specific values right before you deploy the files to an org or create a
package version.

These sample use cases describe scenarios for using string replacement:

• A NamedCredential contains an endpoint that you use for testing. But when you deploy the source to your production org, you
want to specify a different endpoint.

• An ExternalDataSource contains a password that you don’t want to store in your repository, but you’re required to deploy the
password along with your metadata.

• You deploy near-identical code to multiple orgs. You want to conditionally swap out some values depending on which org you’re
deploying to.

For the project deploy start command, string replacement occurs when source-formatted files are converted to metadata
API format, and then a ZIP file is created and deployed to the org. It also occurs when you run the package version create
command, which converts source files as part of the package creation process. The changes that result from string replacement are
never written to your project source; they apply only to the deployed or packaged files.

Note: For simplicity, the rest of this topic assumes that you’re using string replacement before deploying to your org, but the
same ideas also apply to creating a package version.

Configure String Replacement
Configure string replacement by adding a replacements property to your sfdx-project.json file. The property accepts
multiple entries that consist of keys that define the:

• Source file or files that contain the string to be replaced.

• The string to be replaced.

• The replacement value.

To see how string replacements work, let’s look at an example; see more examples later in this topic.

52

Replace Strings in Code Before Deploying or PackagingProject Setup

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_install_upgrade.htm
https://developer.salesforce.com/blogs/2018/06/working-with-modular-development-and-unlocked-packages-part-1.html

This sample sfdx-project.json specifies that when the file force-app/main/default/classes/myClass.cls
is deployed, all occurrences of the string replaceMe are replaced with the value of the THE_REPLACEMENT environment variable:

{
"packageDirectories": [

{
"path": "force-app",
"default": true

}
],
"name": "myproj",
"replacements": [
{
"filename": "force-app/main/default/classes/myClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT"

}
]

}

You can specify these keys in the replacements property.

Location of Files
One of the following properties is required:

• filename: Single file that contains the string to be replaced.

• glob: Collection of files that contain the string to be replaced. Example: **/classes/*.cls.

String to be Replaced
One of the following properties is required:

• stringToReplace: The string to be replaced.

• regexToReplace: A regular expression (regex) that specifies a string pattern to be replaced.

Replacement Value
One of the following properties is required:

• replaceWithEnv: Specifies that the string is replaced with the value of the specified environment variable.

• replaceWithFile: Specifies that the string is replaced with the contents of the specified file.

Conditional Processing
These properties are optional:

• replaceWhenEnv: Specifies that a string replacement occur only when a specific environment variable is set to a specific
value. Use the property env to specify the environment variable and the property value to specify the value that triggers
the string replacement.

• allowUnsetEnvVariable: Boolean property used with the replaceWithEnv property. When set to true, specifies
that if the replaceWithEnv environment variable isn’t set, then remove the replacement string from the file before deploying.
In other words, replace it with nothing. When set to false (the default value), you get an error when the replaceWithEnv
environment variable isn’t set.

Follow these syntax rules:

• Always use forward slashes for directories (/), even on Windows.

53

Replace Strings in Code Before Deploying or PackagingProject Setup

• Both JSON and regular expressions use the backslash (\) as an escape character. As a result, when you use a regular expression to
match a dot, which requires escaping, you must use two backslashes for the regexToReplace value:

"regexToReplace" : "\\."

Similarly, to match a single backslash, you must specify three of them.

"regexToReplace" : "\\\"

Examples
This example is similar to the previous example but shows how to configure string replacement for two files:

"replacements": [
{
"filename": "force-app/main/default/classes/FirstApexClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT"

},
{
"filename": "force-app/main/default/classes/SecondApexClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT"

}
]

This example shows how to specify that the string replacement occur only if an environment variable called DEPLOY_DESTINATION
exists and it has a value of PROD.

"replacements": [
{
"filename": "force-app/main/default/classes/myClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT",
"replaceWhenEnv": [{
"env": "DEPLOY_DESTINATION",
"value": "PROD"

}]
}

]

In this example, if the environment variable SOME_ENV_THAT_CAN_BE_BLANK isn’t set, the string myNS__ in the myClass.cls
file is removed when the file is deployed. If the environment variable is set to a value, then that value replaces the myNS__ string.

"replacements": [
{
"filename": "/force-app/main/default/classes/myClass.cls",
"stringToReplace": "myNS__",
"replaceWithEnv": "SOME_ENV_THAT_CAN_BE_BLANK",
"allowUnsetEnvVariable": true

}
]

54

Replace Strings in Code Before Deploying or PackagingProject Setup

This example specifies that when the Apex class files in the force-app/main/default directory are deployed, all occurrences
of the string replaceMe are replaced with the contents of the file replacementFiles/copyright.txt.

"replacements": [
{
"glob": "force-app/main/default/classes/*.cls",
"stringToReplace": "replaceMe",
"replaceWithFile": "replacementFiles/copyright.txt"

}
]

Use a regular expression to specify a search pattern for text rather than the literal text. For example, Apex class XML files always contain
an <apiVersion> element that specifies the Salesforce API version, as shown in this snippet.

<?xml version="1.0" encoding="UTF-8" ?>
<ApexClass xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>55.0</apiVersion>
<status>Active</status>

</ApexClass>

Let’s say you want to test your Apex classes on a more recent API version before you actually update all your classes. This example shows
how to use a regular expression to search for the <apiVersion> element. At deploy, the element is replaced with a specific string,
such as <apiVersion>58.0</apiVersion>, which is contained in the
replacementFiles/latest-api-version.txt file.

"replacements": [
{
"glob": "force-app/main/default/classes/*.xml",
"regexToReplace": "<apiVersion>\\d+\\.0</apiVersion>",
"replaceWithFile": "replacementFiles/latest-api-version.txt"

}
]

Tips and Tricks
• (macOS or Linux only) When using the replaceWithEnv or replaceWhenEnv properties, you can specify that the environment

variables apply to a single command by prepending the variables before the command execution. For example:

THE_REPLACEMENT="some text" DEPLOY_DESTINATION=PROD sf project deploy start

Warning: Be careful when setting passwords or secrets this way, because they show up in your terminal history.

• If you’ve configured many string replacements, and are finding it difficult to manage, check out open-source tools that load the
contents of one or more files to your environment, such as dotenv-cli. In this example, environment variables configured in two local
.env files are loaded before the project deploy start command execution:

dotenv -e .env1 -e .env2 sf project deploy start

Warning: Don’t commit passwords or secrets in .env files.

• If you specify --json for project deploy start, the JSON output includes a replacements property that lists the
affected files and the string that was replaced. If you specify --json and --concise, the JSON output doesn’t include the
replacements property.

55

Replace Strings in Code Before Deploying or PackagingProject Setup

https://github.com/entropitor/dotenv-cli

To view string replacement information in the project deploy start human-readable output, specify --verbose.

• Many of the string replacement use cases and examples in this topic use environment variables. How to set an environment variable
to the required value depends on your operating system, and is beyond the scope of this document. But for some hints, see the
introduction of the Salesforce CLI Environment Variables topic in the Salesforce CLI Setup Guide.

Considerations and Limitations
• If you configure multiple string replacements in multiple files, the performance of the deployment can degrade. Consider using the

filename key when possible, to ensure that you open only one file. If you must use glob, try to limit the number of files that
are opened by specifying a single directory or metadata type.

For example, "glob": "force-app/main/default/classes/*.cls" targets Apex class files in a specific directory,
which is better than "glob": "**/classes/**”, which searches for all Apex metadata files in all package directories.

• Be careful using string replacement in static resources. When not doing string replacement, Salesforce CLI simply zips up all static
resources when it first encounters their directory and deploys them as-is. If you configure string replacement for a large static resource
directory, the CLI must inspect a lot more files than usual, which can degrade performance.

• You can’t use string replacements when deploying in metadata format, such as with the command project deploy start
--metadata-dir.

• If your deployment times out, or you specify the --async flag of project deploy start, and then run project
deploy resume or project deploy report to see what happened, the deployed files contain string replacements
as usual. However, the output of project deploy resume and project deploy report don’t display the same
string replacement information as project deploy start --verbose would have.

Test String Replacements

To test string replacement without actually deploying files to the org or creating a package version, follow these steps.

Test String Replacements
To test string replacement without actually deploying files to the org or creating a package version, follow these steps.

1. Set the SF_APPLY_REPLACEMENTS_ON_CONVERT environment variable to true.

2. Run the project convert source command, which converts the source files into metadata API format. For example:

sf project convert source --output-dir mdapiOut --source-dir force-app

3. Inspect the files in the output directory (mdapiOut in our example) for the string replacements and what exactly will be deployed
to the org or packaged.

Warning: Be careful when writing passwords or secrets to the file system while testing. Also, be sure to reset any environment
variables you set during testing so they aren’t accidentally applied later.

56

Test String ReplacementsProject Setup

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_dev_cli_env_variables.htm

CHAPTER 4 Authorization

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer,Enterprise,
Performance, and
Unlimited Editions

Scratch orgs are available
in: Developer, Enterprise,
Group, and Professional
Editions

Authorization refers to logging into an org so you can run
commands that require access to the org. Creating an org with a
CLI command also automatically authorizes it. For example, you
authorize a Dev Hub org to allow you to create, delete, and manage
your Salesforce scratch orgs. After you set up your project on your
local machine, you authorize the Dev Hub org before you can create
a scratch org. When you run the command to create the scratch
org, Salesforce CLI automatically authorizes it.

You can also authorize other existing orgs, such as sandboxes or
packaging orgs, to provide more flexibility when using CLI
commands.

You authorize an org only one time. To switch between orgs during
development, specify the username that you used to log into the
org with either the --target-org or --target-dev-hub
flag. You can also set a default org or use an alias.

In this chapter ...

• Authorize an Org
Using a Browser

• Authorize an Org
Using the JWT Flow

• Create a Private Key
and Self-Signed
Digital Certificate

• Create an External
Client App in Your
Org

• Create a Connected
App in Your Org

• Use the Default
Connected App
Securely You have some options when authorizing an org, depending on what you’re trying to accomplish.

• The easiest option is to run org login web, which opens a browser in which you enter your
Salesforce credentials. This option is officially called the OAuth 2.0 web server flow.

• Use an Existing
Access Token

• Authorize an Org
Using Its SFDX
Authorization URL

• For continuous integration (CI) or automated environments, use the org login jwt command.
This option is officially called the OAuth 2.0 JSON Web Tokens (JWT) bearer flow. This flow is ideal for
scenarios where you can’t interactively log in to a browser, such as from a CI script.

You can also use the org login sfdx-url command in automated environments; this
method uses the org’s SFDX authorization URL.

• Authorization
Information for an
Org

Important: If your org is configured with high assurance (stepped up) authentication,
Salesforce prompts the user to verify their identity. This verification process means that you
can’t use the JWT flow or SFDX authorization URL with Salesforce CLI for headless authentication.

• Log Out of an Org

SEE ALSO:

Authorize an Org Using a Browser

Authorize an Org Using the JWT Flow

Salesforce Help: OAuth 2.0 Web Server Flow for Web App Integration

Salesforce Help: OAuth 2.0 JWT Bearer Flow for Server-to-Server Integration

57

https://help.salesforce.com/articleView?id=remoteaccess_oauth_web_server_flow.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_oauth_jwt_flow.htm&language=en_US

Authorize an Org Using a Browser

Authorize an org with a browser by running a CLI command and entering your credentials in the browser that automatically opens.
That’s it!

Use this authorization method when multi-factor authentication (MFA) is enabled on your org, either directly with a username and
password or via single sign-on (SSO).

Important: You must have the Approve Uninstalled Connected Apps user permission to complete this task. Org administrators
have the permission by default.

1. Open a terminal (macOS and Linux) or command prompt (Windows).

2. Run the org login web CLI command. We recommend using the --alias flag to make it easy to refer to the org later.

sf org login web --alias my-org

Use the --set-default flag if you want the org to be the default for commands that accept the --target-org flag. If
you’re authorizing a Dev Hub org, use the --set-default-dev-hub flag instead. See the org login web command
for examples.

3. In the browser window that opens, sign in to your org with your Salesforce login credentials. Click Allow, which allows Salesforce
CLI to access to your org.

4. Close the browser window. Your org is now authorized!

If the URL that you use to log in to your org isn’t the default (login.salesforce.com), update your project configuration file
(sfdx-project.json). Set the sfdcLoginUrl option to your My Domain login URL. For example:

"sfdcLoginUrl" : "https://MyDomainName.my.salesforce.com"

This example is for a sandbox.

"sfdcLoginUrl" : "https://MyDomainName--SandboxName.sandbox.my.salesforce.com"

Alternatively, you can use the --instance-url flag of org login web to specify the URL. This value overrides the login URL
you specified in the sfdx-project.json file. For example:

sf org login web --alias my-hub-org --instance-url https://exciting.sandbox.my.salesforce.com

Note: We recommend that you use your enhanced My Domain login URL, as it isn’t affected by org migrations that change your
org’s Salesforce instance. Be sure you use the version that ends in my.salesforce.com instead of the URL you see in Lightning
Experience (.lightning.force.com). To verify the valid My Domain URL, from Setup, enter My Domain in the Quick
Find box, then select My Domain.

The orgs you authorize for Salesforce CLI are required to have either an external client app (preferred) or a connected app. We provide
a default connected app called Salesforce CLI. If you need more security or control, such as setting the refresh token timeout

58

Authorize an Org Using a BrowserAuthorization

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified

or specifying IP ranges, create your own external client app or connected app (only if you need to create scratch orgs or sandboxes).
You can also configure the default connected app to be more secure.

SEE ALSO:

Salesforce CLI Command Reference: org login web

Create an External Client App in Your Org

Create a Connected App in Your Org

Use the Default Connected App Securely

Salesforce DX Project Configuration

Salesforce Help: Enhanced Domains

VS Code Command: SFDX: Authorize an Org, SFDX: Authorize a Dev Hub

Authorize an Org Using the JWT Flow

Use the JWT flow to authorize an org in continuous integration (CI) environments, which are fully automated and don’t support the
human interactivity of logging into a browser.

The JWT flow requires a digital certificate, also called a digital signature, to sign the JWT request. You can use your own certificate or
create a self-signed certificate using OpenSSL.

Important: If your org is configured with high assurance (stepped up) authentication, Salesforce prompts the user to verify their
identity. This verification process means that you can’t use the JWT flow and Salesforce CLI for headless authentication.

1. If you don’t have your own private key and digital certificate, you can use OpenSSL to create the key and a self-signed certificate.

It’s assumed in this task that your private key file is named server.key and your digital certificate is named server.crt.

2. Create an external client app and configure it for Salesforce DX.

This task includes uploading the server.crt digital certificate file. Make note of the consumer key when you finish configuring
the external client app because you need it later.

Important: If you're authoring a Dev Hub org and plan to create scratch orgs or sandboxes with the org create
scratch|sandbox commands, then you must create a connected app instead of an external client app.

3. Open a terminal (macOS and Linux) or command prompt (Windows).

4. Run the org login jwt CLI command. We recommend using the --alias flag to make it easy to refer to the org later.
Specify the consumer key from your external client app or connected app with the --client-id flag, the path to the private
JWT key file (server.key), and the username for your org. For example:

sf org login jwt --client-id 04580y4051234051 --jwt-key-file /Users/jdoe/JWT/server.key
--username jdoe@myorg.com --alias my-hub-org

Use the --set-default flag if you want the org to be the default for commands that accept the --target-org flag. If
you’re authorizing a Dev Hub org, use the --set-default-dev-hub flag instead. See the org login jwt command
for examples.

You can authorize a scratch org using the same consumer key and private key file that you used to authorize its associated Dev Hub org.
See Authorize a Scratch Org Using the JWT Flow

59

Authorize an Org Using the JWT FlowAuthorization

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://help.salesforce.com/s/articleView?id=products.domain_name_enhanced.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/default-org.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_jwt_unified

If the URL that you use to log in to your org isn’t the default (login.salesforce.com), update your project configuration file
(sfdx-project.json). Set the sfdcLoginUrl option to your enhanced My Domain login URL. For example:

"sfdcLoginUrl" : "https://MyDomainName.my.salesforce.com"

This example is for a sandbox.

"sfdcLoginUrl" : "https://MyDomainName--SandboxName.sandbox.my.salesforce.com"

Alternatively, you can use the --instance-url flag of the org login jwt command to specify the URL. This value overrides
the login URL you specified in the sfdx-project.json file. For example:

sf org login jwt --client-id 04580y4051234051 --jwt-key-file /Users/jdoe/JWT/server.key
--username jdoe@myorg.com --alias my-hub-org --instance-url
https://mydomain--mysandbox.sandbox.my.salesforce.com

Note: We recommend that you use your My Domain login URL, because it isn’t affected by org migrations that change your org’s
Salesforce instance. Be sure you use the version that ends in my.salesforce.com instead of the URL you see in Lightning
Experience (.lightning.force.com). To verify the valid My Domain URL, from Setup, enter My Domain in the Quick
Find box, then select My Domain.

SEE ALSO:

Salesforce CLI Command Reference: org login jwt

Create a Private Key and Self-Signed Digital Certificate

Create a Connected App in Your Org

Salesforce DX Project Configuration

Salesforce Help: Enhanced Domains

Salesforce Help: Set Up Multi-Factor Authentication

Authorize a Scratch Org Using the JWT Flow
If you authorized your Dev Hub org using the org login jwt command, you can use the same digital certificate and private key
to authorize an associated scratch org. This method is useful for continuous integration (CI) systems that must authorize scratch orgs
after creating them, but don’t have access to the scratch org’s access token.

Before you begin, we assume that:

• You previously authorized your Dev Hub org with the org login jwt command.

• The private key file you used when authorizing your Dev Hub org is accessible and in /Users/jdoe/JWT/server.key.

• You’ve created a scratch org and have its administration user’s username, such as test-wvkpnfm5z113@example.com.

• You know the scratch org’s instance URL. If you don’t know it, you can query your Dev Hub org. For example:

sf data query --target-org my-dev-hub --query "SELECT SignupUsername,LoginUrl FROM
ScratchOrgInfo WHERE SignupUsername='test-wvkpnfm5z113@example.com'"

1. Copy the consumer key from the external client app (or connected app) that you created in your Dev Hub org.

a. Log in to your Dev Hub org.

b. From Setup, enter App Manager in the Quick Find box to get to the Lightning Experience App Manager.

c. Locate the external client app (or connected app) in the apps list, then click the dropdown menu on the right side, and select
View.

60

Authorize a Scratch Org Using the JWT FlowAuthorization

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_jwt_unified
https://help.salesforce.com/s/articleView?id=products.domain_name_enhanced.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=security_2fa_config.htm&language=en_US

d. In the API (Enable OAuth Settings) section, click Manage Consumer Details

If prompted, verify your identity by entering the verification code that was automatically sent to your email address.

e. Copy the Consumer Key to your clipboard. The consumer key is a long string of numbers, letters, and characters, such as
3MVG9szVa2Rx_sqBb444p50Yj (example shortened for clarity.)

2. Open a terminal (macOS and Linux) or command prompt (Windows).

3. Run the org login jwt CLI command. The --client-id and --jwt-key-file flag values are the same as when
you ran the command to authorize a Dev Hub org. Set --username to the scratch org’s admin username and set
--instance-url to the scratch org’s instance URL, such as
https://energy-enterprise-2539-dev-ed.scratch.my.salesforce.com. For example:

sf org login jwt --client-id 3MVG9szVa2Rx_sqBb444p50Yj \
--jwt-key-file /Users/jdoe/JWT/server.key --username test-wvkpnfm5z113@example.com \
--instance-url https://energy-enterprise-2539-dev-ed.scratch.my.salesforce.com

If you get an error that the user isn’t approved, it means that the scratch org information hasn’t yet been replicated. Wait a short
time and try again.

Note: If your scratch org is running on Hyperforce and the --username value of org login jwt is a non-admin scratch
org user, you can’t use your Dev Hub’s digital certificate and private key. To authorize the scratch org in this scenario, follow the
standard JWT flow steps.

SEE ALSO:

Authorize an Org Using the JWT Flow

Salesforce Help: Connected Apps

Create Scratch Orgs

Create a Private Key and Self-Signed Digital Certificate

Authorizing an org with the org login jwt command requires a digital certificate and the private key used to sign the certificate.
We highly recommend that you use your own private key and certificate issued by a certification authority. You can also use OpenSSL
to create a key and a self-signed digital certificate, just to get started. Using a private key and certificate is optional when you authorize
an org by logging into a browser.

Warning: The steps in this topic are for sample purposes only. You can use the generated key and certificate to get started, but
check with your company's security policies before you use either of them in a production environment.

This process produces two files:

• server.key—The private key. You specify this file when you authorize an org with the org login jwt command.

• server.crt—The digital certificate. You upload this file when you create the required external client app or connected app.

1. Open a terminal (macOS and Linux) or command prompt (Windows).

2. If necessary, install OpenSSL on your computer.

To check whether OpenSSL is installed on your computer, run the which command on macOS or Linux or the where command
on Windows.

which openssl

61

Create a Private Key and Self-Signed Digital CertificateAuthorization

https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US

3. Create a directory for storing the generated files, and change to the directory.

mkdir /Users/jdoe/JWT

cd /Users/jdoe/JWT

4. Generate a private key, and store it in a file called server.key.

openssl genpkey -aes-256-cbc -algorithm RSA -pass pass:SomePassword -out server.pass.key
-pkeyopt rsa_keygen_bits:2048

openssl rsa -passin pass:SomePassword -in server.pass.key -out server.key

5. Generate a certificate signing request by using the server.key file. Store the certificate signing request in a file called
server.csr. Enter information about your company when prompted.

openssl req -new -key server.key -out server.csr

6. Generate a self-signed digital certificate from the server.key and server.csr files. Store the certificate in a file called
server.crt.

openssl x509 -req -sha256 -days 365 -in server.csr -signkey server.key -out server.crt

Now create a external client app and upload the digital certificate to it. If you're authorizing a Dev Hub and you plan to create scratch
orgs or sandboxes later with the org create scratch|sandbox commands, then you must create a connected app instead.

SEE ALSO:

OpenSSL: Cryptography and SSL/TLS Tools

Create a Connected App in Your Org

Authorize an Org Using the JWT Flow

Create an External Client App in Your Org

Salesforce CLI requires an external client app in the org that you're authorizing. An external client app is a packageable framework that
enables a third-party application (Salesforce CLI) to integrate with Salesforce by using APIs and security protocols. We provide a default
connected app when you authorize an org with the org login web command. For extra security, you can create your own external
client app in your org by using Setup and configure it with the settings of your choice. You're required to create an external client app
when authorizing the org with the org login jwt command.

Important: If you're authoring a Dev Hub org and plan to create scratch orgs or sandboxes with the org create
scratch|sandbox commands, then you create a connected app instead.

In the next task, the steps marked (Required for JWT) are required only if you’re creating an external client app to use with the org
login jwt command. In this case, you also need a file that contains a digital certificate, such as server.crt. You can use your
own private key and certificate issued by a certification authority. Or you can use OpenSSL to create a key and a self-signed digital
certificate. See Create a Private Key and Self-Signed Digital Certificate.

The steps marked (Required for JWT) are optional if you’re creating an external client app to use with org login web.

1. Log in to your org.

2. From the Quick Find box in Setup, enter App Manager, then click App Manager.

62

Create an External Client App in Your OrgAuthorization

https://www.openssl.org/

3. Click New External Client App.

4. Update the basic information as needed, such as the external client app name and your contact email address.

5. Under API (Enable OAuth Settings), click Enable OAuth.

6. Under App Settings, in the Callback URL box, enter http://localhost:1717/OauthRedirect.

If port 1717 (the default) is already in use on your local machine, specify an available one instead. Then update your
sfdx-project.json file by setting the oauthLocalPort property to the new port. For example, if you set the callback
URL to http://localhost:1919/OauthRedirect:

"oauthLocalPort" : "1919"

7. In the OAuth Scopes section, select these scopes:

• Manage user data via APIs (api)

• Manage user data via Web browsers (web)

• Perform requests at any time (refresh_token, offline_access)

8. (Required for JWT) In the Flow Enablement section, select Enable JWT Bearer Flow.

9. (Required for JWT) Click Upload Files and upload the file that contains your digital certificate, such as server.crt.

10. Click Create.

The basic external client app is created and enabled, and you see the page to manage your new external client app. However, you
must further configure the external client app to use it with Salesforce CLI.

11. Click Edit.

12. (Required for JWT, including substeps) Click the Policies tab.

a. Open OAuth Policies.

b. In the Plugin Policies section, set Permitted Users to Admin approved users are pre-authorized.

c. Click OK.

d. In the App Policies section, select the profiles that are pre-authorized to use this external client app. Similarly, select the permission
sets. Create the profiles or permission sets if necessary.

13. If not currently there, click the Policies tab.

14. In the App Authorization section, under OAuth Policies, click Expire refresh token after a specific time.

15. In the Refresh Token Validity Period box, enter 90. For Refresh Token Validity Unit, select Day(s).

Setting a maximum of 90 days for the refresh token expiration is a security best practice. To continue running CLI commands against
an org whose refresh tokens have expired, reauthorize it with the org login web or org login jwt command.

16. In the Session Timeout in Minutes box, enter 15.

Setting a timeout for access tokens is a security best practice. Salesforce CLI automatically handles an expired access token by referring
to the refresh token.

17. Click Save.

Your external client app is ready to use.

63

Create an External Client App in Your OrgAuthorization

https://help.salesforce.com/s/articleView?id=xcloud.create_a_local_external_client_app.htm&language=en_US

Get and Use the Consumer Key and Secret
When you're ready to run one of the org login commands that uses this external client app, follow these steps to get the consumer
key and secret:

1. Log in to your org.

2. From the Quick Find box in Setup, enter App Manager, and then click External Client App Manager.

3. Click your external client app.

4. Click the Settings tab.

5. Open OAuth Settings and click Consumer Key and Secret.

The Verify Your Identiy web page opens.

6. Check your email for a verification code, and then copy and paste the code in the Verify Your Identity web page.

7. Click Verify.

8. Click Copy next to Consumer Key.

Depending on whether you've specified that it's required, also copy the Consumer Secret.

To use the consumer key, use the --client-id flag of the org login commands. For example, if your consumer key is
04580y4051234051 and you’re authorizing a Dev Hub org by logging into it from a browser, run this command in a terminal (macOS
and Linux) or command prompt (Windows):

sf org login web --client-id 04580y4051234051 --set-default-dev-hub --alias my-hub-org

If you specified in the external client app that the Web Server Flow requires a client (consumer) secret, the command prompts you for
it. The command then opens the login page for you to add your org credentials.

See the reference for org login web and org login jwt for more examples.

Create a Connected App in Your Org

Salesforce CLI requires either an external client app (preferred) or connected app in the org that you're authorizing.

Warning: Create a connected app in your org only if it's your Dev Hub and you plan to later create scratch orgs or sandboxes
with the org create scratch|sandbox commands. Otherwise, create an external client app, which is the preferred
integration framework.

Connected apps are being deprecated. We plan to provide the information in this topic only until the requirement to use connected
apps for sandbox or scratch org creation is removed.

A connected app is a framework that enables an external application, in this case Salesforce CLI, to integrate with Salesforce using APIs
and standard protocols, such as OAuth. We provide a default connected app when you authorize an org with the org login web
command.

Important: You must have the Approve Uninstalled Connected Apps user permission to complete this task. Org administrators
have the permission by default.

In the task below, the steps marked Required for JWT are required only if you’re creating a connected app to use with the org login
jwt command. In this case you also need a file that contains a digital certificate, such as server.crt. The steps are optional if
you’re creating a connected app to use with org login web.

1. Contact Salesforce Customer Support to enable the creation of connected apps in your org.

64

Get and Use the Consumer Key and SecretAuthorization

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_jwt_unified

Creating connected apps is now disabled by default, because connected apps are being deprecated. If you need to create a connected
app, Salesforce Customer Support must enable an org perm in your org. This is a one-time process per org. See New connected
apps can no longer be created in Spring ‘26.

2. Log in to your org.

3. From Setup, in the Quick Find box, enter External Client Apps, and then select Settings.

4. Turn on Allow creation of connected apps and click Enable.

5. Click New Connected App.

6. Update the basic information as needed, such as the connected app name and your email address.

7. Select Enable OAuth Settings.

8. For the callback URL, enter http://localhost:1717/OauthRedirect.

If port 1717 (the default) is already in use on your local machine, specify an available one instead. Then update your
sfdx-project.json file by setting the oauthLocalPort property to the new port. For example, if you set the callback
URL to http://localhost:1919/OauthRedirect:

"oauthLocalPort" : "1919"

9. (Required for JWT) Select Use digital signatures.

10. (Required for JWT) Click Choose File and upload file that contains your digital certificate, such as server.crt.

11. Add these OAuth scopes:

• Manage user data via APIs (api)

• Manage user data via Web browsers (web)

• Perform requests at any time (refresh_token, offline_access)

12. Click Save, then Continue.

13. Click Manage Consumer Details.

If prompted, verify your identity by entering the verification code that was automatically sent to your email address.

14. Click Copy next to Consumer Key because you need it later when you run an org login command. Depending on whether
you specify that it's required, also copy the Consumer Secret.

15. Click Back to Manage Connected Apps.

16. Click Manage.

17. Click Edit Policies.

18. In the OAuth Policies section, for the Refresh Token Policy field, click Expire refresh token after: and enter 90 days or less.

Setting a maximum of 90 days for the refresh token expiration is a security best practice. To continue running CLI commands against
an org whose refresh tokens have expired, reauthorize it with the org login web or org login jwt command.

19. In the Session Policies section, set Timeout Value to 15 minutes.

Setting a timeout for access tokens is a security best practice. Salesforce CLI automatically handles an expired access token by referring
to the refresh token.

20. (Required for JWT) In the OAuth Policies section, select Admin approved users are pre-authorized for permitted users, and click
OK.

21. Click Save.

65

Create a Connected App in Your OrgAuthorization

https://help.salesforce.com/s/articleView?id=005228017&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=005228017&type=1&language=en_US
https://help.salesforce.com/articleView?id=connected_app_create_basics.htm&language=en_US

22. (Required for JWT) Click Manage Profiles, select the profiles that are pre-authorized to use this connected app, and click Save.
Similarly, click Manage Permission Sets to select the permission sets. Create permission sets if necessary.

To specify the consumer key, use the --client-id flag of the org login commands. For example, if your consumer key is
04580y4051234051 and you’re authorizing a Dev Hub org by logging into it from a browser, run this command in a terminal (macOS
and Linux) or command prompt (Windows):

sf org login web --client-id 04580y4051234051 --set-default-dev-hub --alias my-hub-org

If you specifed in the connected app that the web login flow requires a client (consumer) secret, the command prompts you for it. The
command then opens the login page for you to add your org credentials.

See the reference for org login web and org login jwt for more examples.

SEE ALSO:

Create a Private Key and Self-Signed Digital Certificate

Salesforce Help: Connected Apps

Authorization

Salesforce Help: Set Up Multi-Factor Authentication

Use the Default Connected App Securely

If you authorize an org with the org login web command, but don't specify the --client-id flag, Salesforce CLI creates a
default connected app in the org called Salesforce CLI. However, its refresh tokens are set to never expire. As a security best
practice, Salesforce recommends that refresh tokens in your org expire after 90 days or fewer. Another security best practice is to set an
expiration for the access token to 15 minutes. Similar to refresh tokens, the access token in the default connected app is set to never
expire. To continue using this default connected app in a secure way, configure its policies.

Important: You must be the org administrator to install the default Salesforce CLI connected app, which is one of the
steps of this task.

1. Log in to your org.

2. From Setup, enter OAuth in the Quick Find box, then select Connected Apps OAuth Usage.

3. Select the Salesforce CLI app and click Install. Confirm by clicking Install again.

4. Click Edit Policies.

5. In the OAuth Policies section, for the Refresh Token Policy field, click Expire refresh token after: and enter 90 Days or less.

6. In the Session Policies section, set Timeout Value to 15 minutes.

7. Click Save.

If you run a CLI command against an org whose refresh token has expired, you get an error. For example:

ERROR running org open: Error authenticating with the refresh token due to: expired
access/refresh token

The org list command also displays expired refresh token information in the CONNECTED STATUS column. To continue using the
org, reauthorize it with the org login web or org login jwt command.

66

Use the Default Connected App SecurelyAuthorization

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_jwt_unified
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=security_2fa_config.htm&language=en_US

Salesforce CLI automatically handles an expired access token by referring to the refresh token.

SEE ALSO:

Salesforce Help: Connected Apps

Authorize an Org Using a Browser

Authorize an Org Using the JWT Flow

Use an Existing Access Token

When you authorize an org using the org login commands, Salesforce CLI takes care of generating and refreshing all tokens, such
as the access token. But sometimes you want to run a few CLI commands against an existing org without going through the entire
authorization process. In this case, you provide the access token and URL of the Salesforce instance that hosts the org to which you want
to connect.

Almost all CLI commands that have the --target-org | -o flag accept an access token. The only exception is org display
user.

1. Open a terminal (macOS and Linux) or command prompt (Windows).

2. To get the instance URL and access token for the org to connect to, run the org display command. See the values for the
Access Token and Instance Url keys.

sf org display --target-org myorg
=== Org Description

KEY VALUE
─────────────── ───
Access Token 00D8H0000007wprAQkAQAlOT5H (truncated for security)
...
Instance Url https://creative-impala-20hx3-dev-ed.my.salesforce.com
...

3. Use config set to set the org-instance-url configuration variable. To set it locally, run the command from a Salesforce
DX project; to set it globally, use the --global flag.

sf config set org-instance-url=https://creative-impala-20hx3-dev-ed.my.salesforce.com
--global

4. When you run the CLI command, use the org’s access token as the value for the --target-org flag rather than the org’s
username. For example:

sf project deploy start --source-dir <source-dir> --target-org 00D8H0000007wprAQkAQAlOT5H

Tip: If your access token contains a ! character, you must sometimes escape it with a backslash (\). For example, if your
access token is 00007wpr!AQkAQA, specify it this way: --target-org 00007wpr\!AQkAQA

67

Use an Existing Access TokenAuthorization

https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US

Salesforce CLI doesn’t store the access token in its internal files. It uses it only for this CLI command run.

SEE ALSO:

Authorization Information for an Org

Salesforce CLI Command Reference: config set

Salesforce CLI Command Reference: project deploy start

Authorize an Org Using Its SFDX Authorization URL

Use an org's Salesforce DX (SFDX) authorization URL to authorize an org in continuous integration (CI) environments, which are fully
automated and don’t support the human interactivity of logging into a browser.

1. Open a terminal (macOS and Linux) or command prompt (Windows) on the computer where you’ve already authorized the org
using a Web browser.

2. Get your org’s SFDX authorization URL and store it in a file by running this command.

sf org display --target-org my-org --verbose --json > authFile.json

The JSON output includes a key called sfdxAuthUrl, whose value is the org’s SFDX authorization URL.

3. In your CI environment, authorize the org by referencing the authFile.json file with this command.

sf org login sfdx-url --sfdx-url-file authFile.json

For more information and examples, see the reference about the org login sfdx-url command in the Salesforce CLI Command
Reference.

Authorization Information for an Org

You can view information for all orgs that you’ve authorized and the scratch orgs that you’ve created.

To view authorization information about an org, run this command from a terminal (macOS and Linux) or command prompt (Windows).

sf org display --target-org <username-or-alias>

If you have set a default org, you don’t have to specify the --target-org flag. To display the usernames for all the active orgs that
you’ve authorized or created, run org list.

If you’ve set an alias for an org, you can specify it with the --target-org flag. This example uses the my-scratch-org alias.

sf org display --target-org my-scratch-org

Warning: This command will expose sensitive information that allows for subsequent activity
using your current authenticated session.
Sharing this information is equivalent to logging someone in under the current credential,
resulting in unintended access and escalation of privilege.
For additional information, please review the authorization section of the
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm

=== Org Description

KEY VALUE

68

Authorize an Org Using Its SFDX Authorization URLAuthorization

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_config_commands_unified.htm#cli_reference_config_set_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm#cli_reference_project_deploy_start_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_sfdx-url_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_sfdx-url_unified

───────────────
──

Access Token <long-string>
Alias my-scratch-org

Api Version 58.0

Client Id PlatformCLI

Created By jdoe@fabdevhub.org

Created Date 2023-06-09T17:59:18.000+0000

Dev Hub Id jdoe@fabdevhub.org

Edition Developer

Expiration Date 2023-06-16

Id 00D8H0000007wprU

Instance Url https://java-connect-41-dev-ed.scratch.my.salesforce.com

Org Name Your Company

Signup Username test-gm9uud@example.com

Status Active

Username test-gm9uud@example.com

To get more information, such as the Salesforce DX authentication URL, include the --verbose flag. This flag displays the Sfdx
Auth Url value only if you authorized the org using org login web and not org login jwt.

Note: To help prevent security breaches, the org display output doesn’t include the org’s client secret or refresh token.

SEE ALSO:

OAuth 2.0 Web Server Authentication Flow

Salesforce DX Usernames and Orgs

Log Out of an Org

For security purposes, you can use the Salesforce CLI to log out of any org you’ve previously authorized. This practice prevents other
users from accessing your orgs if you don’t want them to.

Important: The only way to access an org after you log out of it is with a password. By default, new scratch orgs contain one
administrator with no password. Therefore, to avoid losing access to a scratch org, set a password for at least one user of a scratch

69

Log Out of an OrgAuthorization

https://help.salesforce.com/articleView?id=remoteaccess_oauth_web_server_flow.htm&language=en_US

org if you want to access it again after logging out. If you don’t want to access the scratch org again, delete it with org delete
scratch rather than log out of it.

To log out of an org, run org logout from a terminal (macOS and Linux) or command prompt (Windows). This example uses the
alias my-hub-org to log out.

sf org logout --target-org my-hub-org

To log out of all your orgs, including scratch orgs, use the --all flag.

sf org logout --all

To access an org again, other than a scratch org, reauthorize it.

When you log out of an org, it no longer shows up in the org list output. If you log out of a Dev Hub org, the associated scratch
orgs show up only if you specify the --all flag.

SEE ALSO:

Salesforce CLI Command Reference: org logout

VS Code Command: SFDX: Log Out from All Authorized Orgs, SFDX: Log Out from Default Org

70

Log Out of an OrgAuthorization

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_logout_unified
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/default-org.html

CHAPTER 5 Metadata Coverage

Launch the Metadata Coverage report to determine supported metadata for scratch org source tracking
purposes. The Metadata Coverage report is the ultimate source of truth for metadata coverage across
several channels. These channels include Metadata API, scratch org source tracking, unlocked packages,
second-generation managed packages, classic managed packages, and more.

View the Metadata Coverage report.

For more information, see Metadata Types in the Metadata API Developer Guide.

We've moved the information on Hard-Deleted Components in Unlocked Packages.

SEE ALSO:

Components Available in Managed Packages

71

https://dx-extended-coverage.my.salesforce-sites.com/docs/metadata-coverage
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm

CHAPTER 6 Scratch Orgs

The scratch org is a source-driven and disposable deployment of Salesforce code and metadata. A scratch
org is fully configurable, allowing developers to emulate different Salesforce editions with different
features and settings. You can share the scratch org configuration file with other team members, so you
all have the same basic org in which to do your development. In addition to code and metadata,
developers can install packages and deploy synthetic or dummy data for testing. Don’t add personal
data to scratch orgs.

In this chapter ...

• Supported Scratch
Org Editions and
Allocations

• Build Your Own
Scratch Org Definition
File Scratch orgs drive developer productivity and collaboration during the development process, and

facilitate automated testing and continuous integration. You can use Salesforce CLI or an IDE to open
your scratch org in a browser without logging in. Spin up a new scratch org when you want to:• Create a Scratch Org

Based on an Org
Shape • Start a new project.

• Start a new feature branch.• Create Scratch Orgs

• Test a new feature.• Scratch Org
Snapshots • Start automated testing.

• Select the Salesforce
Release for a Scratch
Org

• Perform development tasks directly in an org.

• Start from “scratch” with a fresh new org.

Alternatives to scratch orgs are sandboxes and Developer Edition orgs, which are used as development
environments for many Salesforce development use cases. If you’re wondering whether to use a sandbox,

• Deploy Source From
Your Project to the
Scratch Org scratch org, or Developer Edition org as your development environment, you’re not alone. To help you

better understand which to choose, see the Salesforce Developers Blog: Choose the Right Salesforce
Org for the Right Job.

• Retrieve Source from
the Scratch Org to
Your Project

Source Tracking

Source tracking refers to tracking the changes you make to your local source files and the metadata in
your org, and keeping both in sync.

• Scratch Org Users

• Manage Scratch
Orgs from the Dev
Hub Org

• Scratch Org Error
Codes Scratch orgs have source tracking enabled by default. You can opt out of source tracking when you

create the scratch org by specifying the --no-track-source flag of the org create
scratch command. This flag affects only your local configuration, not the scratch org itself. Salesforce
CLI sets a local configuration option trackSource: false as part of your authorization information
to the org. If you log out of the scratch org and then log back in again, source tracking is enabled again
by default.

If you’re actively in development mode, we suggest keeping source tracking enabled in your scratch
org so you can easily sync the changes between your org and your local project. But source tracking can
slow down deployments and retrievals, so it’s sometimes better to disable it if it’s not needed. Here are
some use cases.

72

https://developer.salesforce.com/blogs/2024/05/choose-the-right-salesforce-org-for-the-right-job
https://developer.salesforce.com/blogs/2024/05/choose-the-right-salesforce-org-for-the-right-job

• Your continuous integration (CI) script simply creates a scratch org, deploys source, runs Apex and
browser tests, and then deletes the scratch org.

• You want to spin up a scratch org for a demo, user acceptance testing, or debugging.

• Your test data has changed and you want to ensure it’s correct by importing it into a scratch org.
But you haven’t changed any metadata or source code.

• You want to install and verify a package your CI built.

• You want to test a pull request by deploying code to a scratch org, but you don’t plan to change
the code.

Scratch Org Creation Methods

By default, scratch orgs are empty. They don’t contain much of the sample metadata that you get when
you sign up for an org, such as a Developer Edition org, the traditional way. Some of the things not
included in a scratch org are:

• Custom objects, fields, indexes, tabs, and entity definitions

• Sample data

• Sample Chatter feeds

• Dashboards and reports

• Workflows

• Picklists

• Profiles and permission sets

• Apex classes, triggers, and pages

Before creating a scratch org, you must configure it so it has the features, settings, licenses, and limits
that mirror a source org, often your production org. The combination of features, settings, edition, licenses,
and limits are what we refer to as the org’s shape.

We offer these methods for configuring scratch orgs:

• Build Your Own Scratch Org Definition File

• Create a Scratch Org Based on an Org Shape

• Create a Scratch Org Based on a Snapshot

On Which Salesforce Instances Are Scratch Orgs
Created?

Scratch orgs are created on sandbox instances. The sandbox instance depends on the country information
used when creating the Dev Hub org.

Scratch orgs for Government Cloud and Hyperforce are created in the region where the Dev Hub org is
physically located.

• Scratch orgs created from a Dev Hub org in Government Cloud are created in a Government Cloud
instance.

• Scratch orgs created from a Dev Hub org in Hyperforce are created on a Hyperforce instance.

73

Scratch Orgs

If you notice that your scratch orgs aren’t located in the expected region, create a Salesforce Support
case.

Scratch Org Expiration Policy

A scratch org is temporary and is deleted along with the associated ActiveScratchOrgs records from the
Dev Hub after their expiration. This expiration process ensures that teams frequently sync their changes
with their version control system and are working with the most recent version of their project.

Scratch orgs have a maximum 30 days lifespan. You can select a duration from 1 through 30 days at the
time of creation, with the default set at 7 days. After the scratch org has expired, you can’t restore it.

Note: Deleting a scratch org doesn’t terminate your scratch org subscription. If your subscription
is still active, you can create a new scratch org. Creating a new scratch org counts against your
daily and active scratch org limits.

SEE ALSO:

Salesforce Admins Blog: Sandboxes vs. Scratch Orgs and How to Use Them

74

Scratch Orgs

https://admin.salesforce.com/blog/2023/sandboxes-vs-scratch-orgs-and-how-to-use-them

Supported Scratch Org Editions and Allocations

Your Dev Hub org is often your production org, and you can enable Dev Hub in these editions: Developer, Enterprise, Unlimited, or
Performance. Your Dev Hub edition determines how many scratch orgs you can create. You choose one of the supported scratch org
editions each time you create a scratch org.

Supported Scratch Org Editions
Possible values for the Salesforce edition of the scratch org are:

• Developer

• Enterprise

• Group

• Professional

Note: Partners can create partner edition scratch orgs: Partner Developer, Partner Enterprise, Partner Group, and Partner Professional.
This feature is available only if creating scratch orgs from a Dev Hub in a partner business org. See Supported Scratch Org Editions
for Partners in the First-Generation Managed Packaging Developer Guide for details.

Scratch orgs have these storage limits:

• 200 MB for data

• 50 MB for files

Entities defined as metadata types aren’t counted as part of storage allocations in scratch orgs. For more information about entities that
are counted against storage allocations, see Salesforce Help: Data and File Storage Allocations.

Supported Dev Hub Editions and Associated Scratch Org Allocations
To ensure optimal performance, your Dev Hub org edition determines your scratch org allocations. These allocations determine how
many scratch orgs you can create daily, and how many can be active at a given point.

To try out scratch orgs, sign up for a Developer Edition org on Salesforce Developers, then enable Dev Hub.

Note: If you’re a partner or ISV, your scratch org allocations are likely different. See the First-Generation Managed Packaging
Developer Guide for details.

The active scratch org allocation is the maximum number of scratch orgs you can have at any given time based on the edition type. The
allocation becomes available if you delete a scratch org or if a scratch org expires. The daily scratch org allocation is the maximum number
of successful scratch org creations you can initiate in a rolling (sliding) 24-hour window. Allocations are determined based on the number
of scratch orgs created in the preceding 24 hours.

Daily Scratch Org AllocationActive Scratch Org AllocationEdition

63Developer Edition or trial

8040Enterprise Edition

200100Unlimited Edition

200100Performance Edition

75

Supported Scratch Org Editions and AllocationsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_types_list.htm
https://help.salesforce.com/s/articleView?id=xcloud.overview_storage.htm&type=5&language=en_US
https://developer.salesforce.com/signup?d=70130000000td6N

List Active and Daily Scratch Orgs
Note: If your Salesforce admin provided access to the Dev Hub org using the Free Limited Access license and you can’t run this
command, contact your admin for assistance.

To view your scratch org allocations and how many are remaining, run this command in a terminal or command window against your
Dev Hub org. Only relevant limits (ActiveScratchOrgs and DailyScratchOrgs) are shown.

sf limits api display --target-org <Dev Hub username or alias>

Look for these two limits in the output:

Name Remaining Max
─── ───────── ─────────
ActiveScratchOrgs 198 200
DailyScratchOrgs 400 400

View Limits for a Scratch Org
To view limits information for a scratch org:

sf limits api display --target-org <scratch org username or alias>

Build Your Own Scratch Org Definition File

The scratch org definition file is a blueprint for a scratch org. It mimics the shape of an org that you use in the development lifecycle,
such as sandbox, packaging, or production.

The settings and configuration options associated with a scratch org determine its shape, including:

• Edition—The Salesforce edition of the scratch org, such as Developer, Enterprise, Group, or Professional.

• Add-on features—Functionality that isn’t included by default in an edition.

• Settings—Org and feature settings used to configure Salesforce products, such as Field Service and Experience Cloud.

Setting up different scratch org definition files allows you to easily create scratch orgs with different shapes for testing. For example, you
can turn Field Service on or off in a scratch org by setting the FieldService org preference in the definition file. If you want a scratch org
with sample data and metadata like you’re used to, add this option: hasSampleData.

We recommend that you keep this file in your project and check it in to your version control system. For example, create a team version
that you check in for all team members to use. Individual developers could also create their own local version that includes the scratch
org definition parameters. Examples of these parameters include email and last name, which identify who is creating the scratch org.

Scratch Org Definition File Name
You indicate the path to the scratch org configuration file when you create a scratch org with the org create scratch CLI
command.

• If you’re using Salesforce CLI on the command line, you can name this file whatever you like and locate it anywhere the CLI can
access.

• If you’re using Salesforce Extensions for VS Code, make sure that the scratch org definition file is located in the config folder of
your Salesforce DX project. Its name must also end in scratch-def.json.

76

Build Your Own Scratch Org Definition FileScratch Orgs

If you’re using a sample repo or creating a Salesforce DX project, the sample scratch org definition files are located in the config
directory. You can create different configuration files for different org shapes or testing scenarios. For easy identification, name the file
something descriptive, such as devEdition-scratch-def.json or packaging-org-scratch-def.json.

Scratch Org Definition File Options
Here are the options you can specify in the scratch org definition file:

Default If Not SpecifiedRequired?Name

CompanyNoorgName

Dev Hub's country. If you want to override this value, enter the
two-character, upper-case ISO-3166 country code (Alpha-2 code).

Nocountry

You can find a full list of these codes at several sites, such as:
https://www.iso.org/obp/ui/#search. This value sets the locale of
the scratch org.

test-unique_identifier@example.comNousername

Email address of the Dev Hub user making the scratch org creation
request

NoadminEmail

None. Valid entries are Developer, Enterprise, Group, or ProfessionalYesedition

None. 2000-character free-form text field.

The description is a good way to document the scratch org’s
purpose. You can view or edit the description in the Dev Hub. From

Nodescription

App Launcher, select Scratch Org Info or Active Scratch Orgs,
then click the scratch org number.

Valid values are true and false. False is the default, which
creates an org without sample data.

NohasSampleData

Default language for the country. To override the language set by
the Dev Hub locale, see Supported Languages for the codes to use
in this field.

Nolanguage

None. See Scratch Org Features.Nofeatures

Same Salesforce release as the Dev Hub org. Options are
preview or previous. You can use this option only during
Salesforce release transition periods.

Norelease

None. See Scratch Org Settings for more information.Nosettings

None. Use objectSettings to specify object-level sharing settings
and default record types. To successfully install in a scratch org,

NoobjectSettings

some packages require that you define object-level sharing settings
and default record types. The objectSettings option is a map. Each
key is the lowercase name of an object, such as opportunity or
account. The definition for each key is also a map with two possible
values:

77

Build Your Own Scratch Org Definition FileScratch Orgs

https://www.iso.org/obp/ui/#search
https://help.salesforce.com/articleView?id=faq_getstart_what_languages_does.htm&type=5&language=en_US

Default If Not SpecifiedRequired?Name

• sharingModel—Sets a sharing model. Different objects
support different sharing models. Possible values of sharing
models are:

– private

– read

– readWrite

– readWriteTransfer

– fullAccess

– controlledByParent

– controlledByCampaign

– controlledByLeadOrContent

• defaultRecordType—Creates a record type. This setting
is required before installing a package that creates record types.
Specify an alphanumeric string that starts with a lowercase
letter.

None. Useful for Dev Ops use cases where you want to track extra
information on the ScratchOrgInfo object. First, create the custom

No<custom field API name>

field, and then reference it in the scratch org definition by its API
name.

None. Name of a snapshot, which is a point-in-time copy of a
scratch org. You create the snapshot using the org create
snapshot CLI command.

Use only if you're using a snapshot to create your scratch org. See
Scratch Org Snapshots.

Nosnapshot

None. 15-character source org ID. Use only if you’re using Org
Shape for Scratch Orgs to create your scratch org. See Create a
Scratch Org Based on an Org Shape.

NosourceOrg

Sample Scratch Org Definition File
Here’s what the scratch org definition JSON file looks like. For more information on features and settings, see Scratch Org Features.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
"mobileSettings": {

"enableS1EncryptedStoragePref2": true

78

Build Your Own Scratch Org Definition FileScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_scratchorginfo.htm

},
"omniChannelSettings": {

"enableOmniChannel": true
},
"caseSettings": {

"systemUserEmail": "support@acme.com"
}

}
}

Some features, such as Experience Cloud, can require a combination of a feature and a setting to work correctly for scratch orgs. Experience
Cloud uses the term Communities in its configuration. This code snippet sets both the feature and associated setting.

"features": ["Communities"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
...

Create a Custom Field for ScratchOrgInfo
You can add more options to the scratch org definition to manage your Dev Ops process. To do so, create a custom field on the
ScratchOrgInfo object. (ScratchOrgInfo tracks scratch org creation and deletion.)

Important: If you’re making these changes directly in your production org, proceed with the appropriate level of caution. The
ScratchOrgInfo object isn’t available in sandboxes or scratch orgs.

In the Dev Hub org, create the custom field.

• From Setup, enter Object Manager in the Quick Find box, then select Object Manager.

• Click Scratch Org Info.

• In Fields & Relationships, click New.

• Define the custom field, then click Save.

After you create the custom field, you can pass it a value in the scratch org definition file by referencing it with its API name. Let’s say
you create two custom fields called workitem and release. Add the custom fields and associated values to the scratch org
definition, then create the scratch org:

{
"orgName": "MyCompany",
"edition": "Developer",
"workitem__c": "W-12345678",
"release__c": "June 2024 pilot",

"settings": {
"omniChannelSettings": {

"enableOmniChannel": true
}

}
}

79

Build Your Own Scratch Org Definition FileScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_scratchorginfo.htm

Set Object-Level Sharing Settings and Default Record Types
To install successfully, some packages require that you define object-level sharing settings and default record types before installation.
Set the sharing settings and default record types with objectSettings. In this sample scratch org definition file, we set a sharing
model and a default record type for opportunity, and a default record type for account.

{
"orgName": "MyCompany",
"edition": "Developer",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

}
}
"objectSettings": {

"opportunity": {
"sharingModel": "private",
"defaultRecordType": "default"

},
"account": {

"defaultRecordType": "default"
}

}
}

Scratch Org Features

The scratch org definition file contains the configuration values that determine the shape of the scratch org. You can enable these
supported add-on features in a scratch org.

Scratch Org Settings

Scratch org settings are the format for defining org preferences in the scratch org definition. Because you can use all Metadata API
settings, they’re the most comprehensive way to configure a scratch org. If a setting is supported in Metadata API, it’s supported in
scratch orgs. Settings provide you with fine-grained control because you can define values for all fields for a setting, rather than just
enabling or disabling it.

Scratch Org Features
The scratch org definition file contains the configuration values that determine the shape of the scratch org. You can enable these
supported add-on features in a scratch org.

Note: Some scratch org features require a license or permissions in the Dev Hub org. If you can’t create the scratch org by just
specifying the feature name in the scratch org definition file, see your Salesforce admin for assistance.

Supported Features
Features aren’t case-sensitive. You can indicate them as all-caps, or as we define them here for readability. If a feature is followed by
<value>, you must specify a value as an incremental allocation or limit.

You can specify multiple feature values in a comma-delimited list in the scratch org definition file.

"features": ["ServiceCloud", "API", "AuthorApex"],

80

Scratch Org FeaturesScratch Orgs

AccountInspection

Enables the Account Intelligence view. The Account Intelligence view is a consolidated dashboard showing account metrics, activities,
and related opportunities and cases.

AccountingSubledgerGrowthEdition

Provides three permission sets that enable access to Accounting Subledger Growth features.

AccountingSubledgerStarterEdition

Provides three permission sets that enable access to Accounting Subledger Starter features.

AccountingSubledgerUser

Enables organization-wide access to Accounting Subledger Growth features when the package is installed.

AddCustomApps:<value>

Increases the maximum number of custom apps allowed in an org. Indicate a value from 1–30.

AddCustomObjects:<value>

Increases the maximum number of custom objects allowed in the org. Indicate a value from 1–30.

AddCustomRelationships:<value>

Increases the maximum number of custom relationships allowed on an object. Indicate a value from 1–10.

AddCustomTabs:<value>

Increases the maximum number of custom tabs allowed in an org. Indicate a value from 1–30.

AddDataComCRMRecordCredit:<value>

Increases record import credits assigned to a user in your scratch org. Indicate a value from 1–30.

AddInsightsQueryLimit:<value>

Increases the size of your CRM Analytics query results. Indicate a value from 1–30 (multiplier is 10). Setting the quantity to 6 increases
the query results to 60.

AdditionalFieldHistory:<value>

Increases the number of fields you can track history for beyond the default, which is 20 fields. Indicate a value between 1–40.

AdmissionsConnectUser

Enables the Admissions Connect components. Without this scratch org feature parameter, the custom Admissions Connect
components render as blank.

AdvisorLinkFeature

Enables the Student Success Hub components. Without this scratch org feature parameter, the custom Student Success Hub
components render as blank.

AdvisorLinkPathwaysFeature

Enables the Pathways components. Without this scratch org feature parameter, the custom Pathways components render as blank.

AIAttribution

Provides access to Einstein Attribution for Marketing Cloud Account Engagement. Einstein Attribution uses AI modeling to dynamically
assign attribution percentages to multiple campaign touchpoints.

AllUserIdServiceAccess

Enables all users to access all users’ information via the user ID service.

AnalyticsAdminPerms

Enables all permissions required to administer the CRM Analytics platform, including permissions to enable creating CRM Analytics
templated apps and CRM Analytics Apps.

81

Scratch Org FeaturesScratch Orgs

AnalyticsAppEmbedded

Provides one CRM Analytics Embedded App license for the CRM Analytics platform.

ApexGuruCodeAnalyzer

Enables ApexGuru's generative AI-powered runtime insights in Salesforce Code Analyzer, which delivers Apex code quality
recommendations directly in developer IDEs.

API

Even in the editions (Professional, Group) that don’t provide API access, REST API is enabled by default. Use this scratch org feature
to access additional APIs (SOAP, Streaming, Bulk, Bulk 2.0).

ArcGraphCommunity

Lets you add Actionable Relationship Center (ARC) components to Experience Cloud pages so your users can view ARC Relationship
Graphs.

Assessments

Enables dynamic Assessments features, which enables both Assessment Questions and Assessment Question Sets.

AssetScheduling:<value>

Enables Asset Scheduling license. Asset Scheduling makes it easier to book rooms and equipments. Indicate a value between 1–10.

AssociationEngine

Enables the Association Engine, which automatically associates new accounts with the user’s current branch by creating branch unit
customer records.

AuthorApex

Enables you to access and modify Apex code in a scratch org. Enabled by default in Enterprise and Developer Editions.

B2BCommerce

Provides the B2B License. B2BCommerce enables business-to-business (B2B) commerce in your org. Create and update B2B stores.
Create and manage buyer accounts. Sell products to other businesses.

B2BLoyaltyManagement

Enables the B2B Loyalty Management license. Create loyalty programs and set up loyalty program-specific processes that allow you
to recognize, rewards, and retain customers.

B2CCommerceGMV

Provides the B2B2C Commerce License. B2B2C Commerce allows you to quickly stand up an ecommerce site to promote brands
and sell products into multiple digital channels. You can create and update retail storefronts in your org, and create and manage
person accounts.

B2CLoyaltyManagement

Enables the Loyalty Management - Growth license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

B2CLoyaltyManagementPlus

Enables the Loyalty Management - Advanced license. Create loyalty programs and set up loyalty program-specific processes that
allow you to recognize, rewards, and retain customers.

BatchManagement

Enables the Batch Management license. Batch Management allows you to process a high volume of records in manageable batches.

BenefitManagement

Enables the objects, features, and permissions for managing benefits programs, benefit disbursements, and benefit applicant tracking
in Public Sector Solutions.

82

Scratch Org FeaturesScratch Orgs

BigObjectsBulkAPI

Enables the scratch org to use BigObjects in the Bulk API.

BillingAdvanced

Enables access to all the Billing features and objects that are available with the Revenue Cloud Billing license in the scratch org.

Briefcase

Enables the use of Briefcase Builder in a scratch org, which allows you to create offline briefcases that make selected records available
for viewing offline.

BudgetManagement

Gives users access to budget management features and objects. To enable budget management, add this feature to your scratch
org definition file.

BusinessRulesEngine

Enables Business Rules Engine, which enables both expression sets and lookup tables.

BYOCCaaS

Enables you to set up and test a partner contact center that integrates with supported Contact Center as a Service (CCaaS) providers
in your scratch org.

BYOOTT

Enables you to set up and test a Bring Your Own Channel for Messaging channel that integrates with supported Messaging providers
in your scratch org.

CacheOnlyKeys

Enables the cache-only keys service. This feature allows you to store your key material outside of Salesforce, and have the Cache-Only
Key Service fetch your key on demand from a key service that you control.

CalloutSizeMB:<value>

Increases the maximum size of an Apex callout. Indicate a value between 3–12.

CampaignInfluence2

Provides access to Customizable Campaign Influence for Sales Cloud and Marketing Cloud Account Engagement. Customizable
Campaign Influence can auto-associate or allow manual creation of relationships among campaigns and opportunities to track
attribution.

CascadeDelete

Provides lookup relationships with the same cascading delete functionality previously only available to master-detail relationships.
To prevent records from being accidentally deleted, cascade-delete is disabled by default.

CaseClassification

Enables Einstein Case Classification. Case Classification offers recommendations to your agents so they can select the best value.
You can also automatically save the best recommendation and route the case to the right agent.

CaseWrapUp

Enables Einstein Case Wrap-Up. To help agents complete cases quickly, Einstein Case Wrap-Up recommends case field values based
on past chat transcripts.

CGAnalytics

Enables the Consumer Goods Analytics org perm in scratch orgs.

ChangeDataCapture

Enables Change Data Capture, if the scratch org edition doesn't automatically enable it.

Chatbot

Enables deployment of Bot metadata into a scratch org, and allows you to create and edit bots.

83

Scratch Org FeaturesScratch Orgs

ChatterEmailFooterLogo

ChatterEmailFooterLogo allows you to use the Document ID of a logo image, which you can use to customize chatter emails.

ChatterEmailFooterText

ChatterEmailFooterText allows you to use footer text in customized Chatter emails.

ChatterEmailSenderName

ChatterEmailSenderName allows you to customize the name that appears as the sender’s name in the email notification. For example,
your company’s name.

CloneApplication

CloneApplication allows you to clone an existing custom Lightning app and make required customizations to the new app. This
way, you don’t have to start from scratch, especially when you want to create apps with simple variations.

CMSMaxContType

Limits the number of distinct content types you can create within Salesforce CMS to 21.

CMSMaxNodesPerContType

Limits the maximum number of child nodes (fields) you can create for a particular content type to 15.

CMSUnlimitedUse

Enables unlimited content records, content types, and bandwidth usage in Salesforce CMS.

Communities

Allows the org to create an Experience Cloud site. Experience Cloud uses the term Communities in its configuration. To use
Communities, you must also include communitiesSettings > enableNetworksEnabled in the settings section of your scratch org
definition file.

CompareReportsOrgPerm

Enables the org permission to allow for comparison of Lightning Reports.

ConAppPluginExecuteAsUser

Enables the pluginExecutionUser field in the ConnectedApp Metadata API object.

ConcStreamingClients:<value>

Increases the maximum number of concurrent clients (subscribers) across all channels and for all event types for API version 36.0
and earlier. Indicate a value between 20–4,000.

ConnectedAppCustomNotifSubscription

Enables connected apps to subscribe to custom notification types, which are used to send custom desktop and mobile notifications.

ConnectedAppToolingAPI

Enables the use of connected apps with the Tooling API.

ConsentEventStream

Enables the Consent Event Stream permission for the org.

ConsolePersistenceInterval:<value>

Increases how often console data is saved, in minutes. Indicate a value between 0–500. To disable auto save, set the value to 0.

ContactsToMultipleAccounts

Enables the contacts to multiple accounts feature. This feature lets you relate a contact to two or more accounts.

ContractApprovals

Enables contract approvals, which allow you to track contracts through an approval process.

ContractManagement

Enables the Contract Lifecycle (CLM) Management features in the org.

84

Scratch Org FeaturesScratch Orgs

ContractMgmtInd

Enables the Contract Lifecycle Management (CLM) features for Industries.

CoreCpq

Enables read-write access to Revenue Cloud features and objects. To use Revenue Cloud, you must also include
revenueManagementSettings > enableCoreCPQ in the settings section of your scratch org definition file.

CPQ

Enables the licensed features required to install the Salesforce CPQ managed package but doesn't install the package automatically.

CustomerDataPlatform

Enables the CustomerDataPlatform license in scratch orgs.

CustomerDataPlatformLite

Enables the Data Cloud license in scratch orgs. You must also include the CustomerDataPlatform feature and
enableCustomerDataPlatform Metadata API setting in your scratch org definition.

CustomerExperienceAnalytics

Enables the Customer Lifecycle Analytics org perm in scratch orgs.

CustomFieldDataTranslation

Enables translation of custom field data for Work Type Group, Service Territory, and Service Resource objects. You can enable data
translation for custom fields with Text, Text Area, Text Area (Long), Text Area (Rich), and URL types.

CustomNotificationType

Allows the org to create custom notification types, which are used to send custom desktop and mobile notifications.

DataComDnbAccounts

Provides a license to Data.com account features.

DataComFullClean

Provides a license to Data.com cleaning features, and allows users to turn on auto fill clean settings for jobs.

DataMaskUser

Provides 30 Data Mask permission set licenses. This permission set enables access to an installed Salesforce Data Mask package.

DataProcessingEngine

Enables the Data Processing Engine license. Data Processing Engine helps transform data that's available in your Salesforce org and
write back the transformation results as new or updated records.

DebugApex

Enables Apex Interactive Debugger. You can use it to debug Apex code by setting breakpoints and checkpoints, and inspecting your
code to find bugs.

DecisionTable

Enables Decision Table license. Decision tables read business rules and decide the outcome for records in your Salesforce org or for
the values that you specify.

DefaultWorkflowUser

Sets the scratch org admin as the default workflow user.

DeferSharingCalc

Allows admins to suspend group membership and sharing rule calculations and to resume them later.

DevelopmentWave

Enables CRM Analytics development in a scratch org. It assigns five platform licenses and five CRM Analytics platform licenses to the
org, along with assigning the permission set license to the admin user. It also enables the CRM Analytics Templates and Einstein
Discovery features.

85

Scratch Org FeaturesScratch Orgs

DeviceTrackingEnabled

Enables Device Tracking.

DevOpsCenter

Enables DevOps Center in scratch orgs so that partners can create second-generation managed packages that extend or enhance
the functionality in the DevOps Center application (base) package.

DisableManageIdConfAPI

Limits access to the LoginIP and ClientBrowser API objects to allow view or delete only.

DisclosureFramework

Provides the permission set licenses and permission sets required to configure Disclosure and Compliance Hub.

Division

Turns on the Manage Divisions feature under Company Settings. Divisions let you segment your organization's data into logical
sections, making searches, reports, and list views more meaningful to users. Divisions are useful for organizations with extremely
large amounts of data.

DocGen

Enables the Document Generation Feature in the Org.

DocGenDesigner

Enables the designers to create and configure document templates.

DocGenInd

Enables the Industry Document Generation features in the org.

DocumentChecklist

Enables Document Tracking and Approval features, and adds the Document Checklist permission set. Document tracking features
let you define documents to upload and approve, which supports processes like loan applications or action plans.

DocumentReaderPageLimit

Limits the number of pages sent for data extraction to 5.

DSARPortability

Enables an org to access the DSARPortability feature in Privacy Center. Also, provides one seat each of the PrivacyCenter and
PrivacyCenterAddOn licenses.

DurableClassicStreamingAPI

Enables Durable PushTopic Streaming API for API version 37.0 and later.

DurableGenericStreamingAPI

Enables Durable Generic Streaming API for API version 37.0 and later.

DynamicClientCreationLimit

Allows the org to register up to 100 OAuth 2.0 connected apps through the dynamic client registration endpoint.

EAndUDigitalSales

Enables the Energy and Utilities Digital Sales feature in the org.

EAndUSelfServicePortal

Enables the Self Service Portal features for Digital Experience users in the org.

EAOutputConnectors

Enable CRM Analytics Output Connectors.

EASyncOut

Enable CRM Analytics SyncOut.

86

Scratch Org FeaturesScratch Orgs

EdPredictionM3Threshold

Sets the number of records in the payload to 10, after which the Einstein Discovery prediction service uses M3.

EdPredictionTimeout

Sets the maximum duration of a single Einstein Discovery prediction to 100 milliseconds.

EdPredictionTimeoutBulk

Sets the maximum duration of a single Einstein Discovery prediction when it runs in bulk to 10 milliseconds.

EdPredictionTimeoutByomBulk

Sets the maximum duration of a single Bring Your Own Model (BYOM) Einstein Discovery prediction to 100 milliseconds.

EducationCloud: <value>

Enables use of Education Cloud.

Einstein1AIPlatform

Provides access to Einstein generative AI features such as Agentforce, Prompt Builder, Model Builder, and the Models API. To use
generative AI features, you must also include einsteinGptSettings > enableEinsteinGptPlatform in the settings section of your scratch
org definition file.

EinsteinAnalyticsPlus

Provides one CRM Analytics Plus license for the CRM Analytics platform.

EinsteinArticleRecommendations

Provides licenses for Einstein Article Recommendations. Einstein Article Recommendations uses data from past cases to identify
Knowledge articles that are most likely to help your customer service agents address customer inquiries.

EinsteinBuilderFree

Provides a license that allows admins to create one enabled prediction with Einstein Prediction Builder. Einstein Prediction Builder
is custom AI for admins

EinsteinDocReader

Provides the license required to enable and use Intelligent Form Reader in a scratch org. Intelligent Form Reader uses optical character
recognition to automatically extract data with Amazon Textract.

EinsteinRecommendationBuilder

Provides a license to create recommendations with Einstein Recommendation Builder. Einstein Recommendation Builder lets you
build custom AI recommendations.

EinsteinSalesRepFdbk

Enables the Agentforce Sales Coach feature in an org. This scratch org feature also includes a large number of Einstein for Sales
Generative AI features.

EinsteinSearch

Provides the license required to use and enable Einstein Search features in a scratch org.

EinsteinVisits

Enables Consumer Goods Cloud. With Consumer Goods cloud, transform the way you collaborate with your retail channel partners.
Empower your sales managers to plan visits and analyze your business’s health across stores. Also, allow your field reps to track
inventory, take orders, and capture visit details using the Retail Execution mobile app.

EinsteinVisitsED

Enables Einstein Discovery, which can be used to get store visit recommendations. With Einstein Visits ED, you can create a visit
frequency strategy that allows Einstein to provide optimal store visit recommendations.

EmbeddedLoginForIE

Provides JavaScript files that support Embedded Login in IE11.

87

Scratch Org FeaturesScratch Orgs

EmpPublishRateLimit:<value>

Increases the maximum number of standard-volume platform event notifications published per hour. Indicate a value between
1,000–10,000.

EnablePRM

Enables the partner relationship management permissions for the org.

EnableManageIdConfUI

Enables access to the LoginIP and ClientBrowser API objects to verify a user's identity in the UI.

Enablement

Enables features for creating, taking, and tracking sales programs with Enablement. Business operations experts and sales leaders
identify the revenue outcomes they want sales reps to achieve, such as increased average deal sizes or shorter ramp times. Then,
they create programs that help sales reps work towards those outcomes as part of their daily work.

EnableSetPasswordInApi

Enables you to use sf org generate password to change a password without providing the old password.

EncryptionStatisticsInterval:<value>

Defines the interval (in seconds) between encryption statistics gathering processes. The maximum value is 604,800 seconds (7 days).
The default is once per 86,400 seconds (24 hours).

EncryptionSyncInterval:<value>

Defines how frequently (in seconds) the org can synchronize data with the active key material. The default and maximum value is
604,800 seconds (7 days). To synchronize data more frequently, indicate a value, in seconds, equal to or larger than 0.

EnergyAndUtilitiesCloud

Enables the Energy and Utilities Cloud features in the org.

Entitlements

Enables entitlements. Entitlements are units of customer support in Salesforce, such as phone support or web support that represent
terms in service agreements.

ERMAnalytics

Enables the ERM Analytics org perm in your scratch org.

EventLogFile

Enables API access to your org's event log files. The event log files contain information about your org’s operational events that you
can use to analyze usage trends and user behavior.

EntityTranslation

Enables translation of field data for Work Type Group, Service Territory, and Service Resource objects.

ExcludeSAMLSessionIndex

Excludes Session Index in SAML sign-on (SSO) and single logout (SLO) flows.

Explainability

Enables an org to use Decision Explainer features.

ExpressionSetMaxExecPerHour

Enables an org to run a maximum of 500,000 expression sets per hour by using Connect REST API.

ExternalIdentityLogin

Allows the scratch org to use Salesforce Customer Identity features associated with your External Identity license.

FieldAuditTrail

Enables Field Audit Trail for the org and allows a total 60 tracked fields. By default, 20 fields are tracked for all orgs, and 40 more are
tracked with Field Audit Trail.

88

Scratch Org FeaturesScratch Orgs

FieldService:<value>

Provides the Field Service license. Indicate a value between 1–25.

FieldServiceAppointmentAssistantUser:<value>

Adds the Field Service Appointment Assistant permission set license. Indicate a value between 1–25.

FieldServiceDispatcherUser:<value>

Adds the Field Service Dispatcher permission set license. Indicate a value between 1–25.

FieldServiceLastMileUser:<value>

Adds the Field Service Last Mile permission set license. Indicate a value between 1–25.

FieldServiceMobileExtension

Adds the Field Service Mobile Extension permission set license.

FieldServiceMobileUser:<value>

Adds the Field Service Mobile permission set license. Indicate a value between 1–25.

FieldServiceSchedulingUser:<value>

Adds the Field Service Scheduling permission set license. Indicate a value between 1–25.

FinanceLogging

Adds Finance Logging objects to a scratch org. This feature is required for Finance Logging.

FinancialServicesCommunityUser:<value>

Adds the Financial Services Insurance Community permission set license, and enables access to Financial Services insurance community
components and objects. Indicate a value between 1–10.

FinancialServicesInsuranceUser

Adds the Financial Services Insurance permission set license, and enables access to Financial Services insurance components and
objects.

FinancialServicesUser:<value>

Adds the Financial Services Cloud Standard permission set license. This permission set enables access to Lightning components and
the standard version of Financial Services Cloud. Also provides access to the standard Salesforce objects and custom Financial Services
Cloud objects. Indicate a value between 1–10.

FlowSites

Enables the use of flows in Salesforce Sites and customer portals.

ForceComPlatform

Adds one Salesforce Platform user license.

ForecastEnableCustomField

Enables custom currency and customer number fields for use as measures in forecasts based on opportunities.

FSCAlertFramework

Makes Financial Services Cloud Record Alert entities accessible in the scratch org.

FSCServiceProcess

Enables the Service Process Studio feature of Financial Service Cloud. Provides 10 seats each of the IndustriesServiceExcellenceAddOn
and FinancialServicesCloudStardardAddOn licenses. To enable the feature, you must also turn on the StandardServiceProcess setting
in Setup and grant users the AccessToServiceProcess permission.

Fundraising

Gives users access to Nonprofit Cloud for Fundraising features and objects in Salesforce.

89

Scratch Org FeaturesScratch Orgs

GenericStreaming

Enables Generic Streaming API for API version 36.0 and earlier.

GenStreamingEventsPerDay:<value>

Increases the maximum number of delivered event notifications within a 24-hour period, shared by all CometD clients, with generic
streaming for API version 36.0 and earlier. Indicate a value between 10,000–50,000.

Grantmaking

Gives users access to Grantmaking features and objects in Salesforce and Experience Cloud.

GuidanceHubAllowed

Enables the Guidance Center panel in Lightning Experience. The Guidance Center shows suggested and assigned content in the
user’s flow of work. Suggested content is related to the app or page where the user is working. Assigned content includes guidance
sets for Salesforce admins, links or Trailhead modules assigned to users with Learning Paths, and Enablement programs for sales
reps.

HealthCloudAddOn

Enables use of Health Cloud.

HealthCloudEOLOverride

Salesforce retired the Health Cloud CandidatePatient object in Spring ‘22 to focus on the more robust Lead object. This scratch org
feature allows you to override that retirement and access the object.

HealthCloudForCmty

Enables use of Health Cloud for Experience Cloud Sites.

HealthCloudMedicationReconciliation

Allows Medication Management to support Medication Reconciliation.

HealthCloudPNMAddOn

Enables use of Provider Network Management.

HealthCloudUser

This enables the scratch org to use the Health Cloud objects and features equivalent to the Health Cloud permission set license for
one user.

HighVelocitySales

Provides Sales Engagement licenses and enables Salesforce Inbox. Sales Engagement optimizes the inside sales process with a
high-productivity workspace. Sales managers can create custom sales processes that guide reps through handling different types
of prospects. And sales reps can rapidly handle prospects with a prioritized list and other productivity-boosting features. The Sales
Engagement feature can be deployed in scratch orgs, but the settings for the feature can’t be updated through the scratch org
definition file. Instead, configure settings directly in the Sales Engagement app.

HighVolumePlatformEventAddOn

Increases the daily delivery allocation of high-volume platform events or change data capture events by 100,000 events. This scratch
org feature simulates the purchase of an add-on. If the org has the HighVolumePlatformEventAddOn, the daily allocation
is flexible and isn’t enforced strictly to allow for usage peaks.

HLSAnalytics

Enables the HLS Analytics org perm in scratch orgs.

HoursBetweenCoverageJob:<value>

The frequency in hours when the sharing inheritance coverage report can be run for an object. Indicate a value between 1–24.

IdentityProvisioningFeatures

Enables use of Salesforce Identity User Provisioning.

90

Scratch Org FeaturesScratch Orgs

IgnoreQueryParamWhitelist

Ignores allowlisting rules for query parameter filter rules. If enabled, you can add any query parameter to the URL.

IndustriesActionPlan

Provides a license for Action Plans. Action Plans allow you to define the tasks or document checklist items for completing a business
process.

IndustriesBranchManagement

Branch Management lets branch managers and administrators track the work output of branches, employees, and customer segments
in Financial Services Cloud.

IndustriesCompliantDataSharing

Grants users access to participant management and advanced configuration for data sharing to improve compliance with regulations
and company policies.

IndustriesMfgAdvncdAccFrcs

Enables Advanced Account Forecasting. With Advanced Account Forecasting, generate comprehensive, multi-horizon forecasts for
sales, operations, inventory, service, and other aspects of your business. Tailor your forecasting configurations to your objectives to
generate accurate, relevant forecasts.

IndustriesMfgPartnerVisitMgmt

Enables Partner Visit Management. Partner Visit Management helps sales managers in your company schedule visits to partner and
distributor locations. Sales managers can use those visits to monitor performance, arrange for periodic check-ins, conduct trainings,
upsell and cross-sell products, and follow up on sales agreement renewals and warranty expiration.

IndustriesMfgProgram

Enables Program Based Business. With Program Based Business, program managers can manage the end-to-end lifecycle of a program
where they derive forecasts based on their customers’ forecasts, transform these forecasts into business opportunities, and convert
those opportunities into run-rate business. Program based business is common across multiple industries such as process, aerospace,
defense, automotive, engineer-to-order, and make-to-order environments.

IndustriesMfgRebates

Enables Rebate Management. Manage incentive programs, track rebate attainment, automate payouts, and gain insights into sales
performance and program effectiveness.

IndustriesMfgTargets

Enables Sales Agreements. With Sales Agreements, you can negotiate purchase and sale of products over a continued period. You
can also get insights into products, prices, discounts, and quantities. And you can track your planned and actual quantities and
revenues with real-time updates from orders and contracts.

IndustriesManufacturingCmty

Provides the Manufacturing Sales Agreement for the Community permission set license, which is intended for the usage of partner
community users. It also provides access to the Manufacturing community template for admins users to create communities.

IndustriesMfgAccountForecast

Enables Account Forecast. With Account Forecast, you can generate forecasts for your accounts based on orders, opportunities, and
sales agreements. You can also create formulas to calculate your forecasts per the requirements of your company.

InsightsPlatform

Enables the CRM Analytics Plus license for CRM Analytics.

InsuranceCalculationUser

Enables the calculation feature of Insurance. Provides 10 seats each of the BRERuntimeAddOn and OmniStudioRuntime licenses.
Also, provides one seat each of the OmniStudio and BREPlatformAccess licenses.

91

Scratch Org FeaturesScratch Orgs

InsuranceClaimMgmt

Enables claim management features. Provides one seat of the InsuranceClaimMgmtAddOn license.

InsurancePolicyAdmin

Enables policy administration features. Provides one seat of the InsurancePolicyAdministrationAddOn license.

IntelligentDocumentReader

Provides the license required to enable and use Intelligent Document Reader in a scratch org. Intelligent Document Reader uses
optical character recognition to automatically extract data with Amazon Textract by using your AWS account.

InvestigativeCaseManagement

Enables the objects, features, and permissions for managing investigative cases, including evidence management and case proceedings,
in Public Sector Solutions.

InvoiceManagement

Enables access to all the Billing features and objects that are available with the Revenue Cloud Advanced license in the scratch org.

Interaction

Enables flows. A flow is the part of Salesforce Flow that collects data and performs actions in your Salesforce org or an external
system. Salesforce Flow provides two types of flows: screen flows and autolaunched flows.

IoT

Enables IoT so the scratch org can consume platform events to perform business and service workflows using orchestrations and
contexts.

JigsawUser

Provides one license to Jigsaw features.

Knowledge

Enables Salesforce Knowledge and gives your website visitors, clients, partners, and service agents the ultimate support tool. Create
and manage a knowledge base with your company information, and securely share it when and where it's needed. Build a knowledge
base of articles that can include information on process, like how to reset your product to its defaults, or frequently asked questions.

LegacyLiveAgentRouting

Enables legacy Live Agent routing for Chat. Use Live Agent routing to chat in Salesforce Classic. Chats in Lightning Experience must
be routed using Omni-Channel.

LightningSalesConsole

Adds one Lighting Sales Console user license.

LightningScheduler

Enables Lightning Scheduler. Lightning Scheduler gives you tools to simplify appointment scheduling in Salesforce. Create a
personalized experience by scheduling customer appointments—in person, by phone, or by video—with the right person at the
right place and time.

LightningServiceConsole

Assigns the Lightning Service Console License to your scratch org so you can use the Lightning Service Console and access features
that help manage cases faster.

LiveAgent

Enables Chat for Service Cloud. Use web-based chat to quickly connect customers to agents for real-time support.

LiveMessage

Enables Messaging for Service Cloud. Use Messaging to quickly support customers using apps such as SMS text messaging and
Facebook Messenger.

92

Scratch Org FeaturesScratch Orgs

LongLayoutSectionTitles

Allows page layout section titles to be up to 80 characters.

LoyaltyAnalytics

Enables Analytics for Loyalty license. The Analytics for Loyalty app gives you actionable insights into your loyalty programs.

LoyaltyEngine

Enables Loyalty Management Promotion Setup license. Promotion setup allows loyalty program managers to create loyalty program
processes. Loyalty program processes help you decide how incoming and new Accrual and Redemption-type transactions are
processed.

LoyaltyManagementStarter

Enables the Loyalty Management - Starter license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

LoyaltyMaximumPartners:<value>

Increases the number of loyalty program partners that can be associated with a loyalty program in an org where the Loyalty
Management - Starter license is enabled. The default and maximum value is 1.

LoyaltyMaximumPrograms:<value>

Increases the number of loyalty programs that can be created in an org where the Loyalty Management - Starter license is enabled.
The default and maximum value is 1.

LoyaltyMaxOrderLinePerHour:<value>

Increases the number of order lines that can be cumulatively processed per hour by loyalty program processes. Indicate a value
between 1–3,500,000.

LoyaltyMaxProcExecPerHour:<value>

Increases the number of transaction journals that can be processed by loyalty program processes per hour. Indicate a value between
1–500,000.

LoyaltyMaxTransactions:<value>

Increases the number of Transaction Journal records that can be processed. Indicate a value between 1–50,000,000.

LoyaltyMaxTrxnJournals:<value>

Increases the number of Transaction Journal records that can be stored in an org that has the Loyalty Management - Start license
enabled.

Macros

Enables macros in your scratch org. After enabling macros, add the macro browser to the Lightning Console so you can configure
predefined instructions for commonly used actions and apply them to multiple posts at the same time.

MarketingCloud

Provides licenses for Marketing Cloud Growth edition. These licenses provide access to campaigns, flows, emails, forms, landing
pages, and consent management features. You can send up to 20 emails per day from a scratch org.

MarketingUser

Provides access to the Campaigns object. Without this setting, Campaigns are read-only.

MaterialityAssessment

Provides the permission set licenses and permission sets required to configure materiality assessment in Net Zero Cloud.

MaxActiveDPEDefs:<value>

Increases the number of Data Processing Engine definitions that can be activated in the org. Indicate a value between 1–50.

93

Scratch Org FeaturesScratch Orgs

MaxApexCodeSize:<value>

Limits the non-test, unmanaged Apex code size (in MB). To use a value greater than the default value of 10, contact Salesforce
Customer Support.

MaxAudTypeCriterionPerAud

Limits the number of audience type criteria available per audience. The default value is 10.

MaxCustomLabels:<value>

Limits the number of custom labels (measured in thousands). Setting the limit to 10 enables the scratch org to have 10,000 custom
labels. Indicate a value between 1–15.

MaxDatasetLinksPerDT:<value>

Increases the number of dataset links that can be associated with a decision table. Indicate a value between 1–3.

MaxDataSourcesPerDPE:<value>

Increases the number of Source Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

MaxDecisionTableAllowed:<value>

Increases the number of decision tables rules that can be created in the org. Indicate a value between 1–30.

MaxFavoritesAllowed:<value>

Increases the number of Favorites allowed. Favorites allow users to create a shortcut to a Salesforce Page. Users can view their
Favorites by clicking the Favorites list dropdown in the header. Indicate a value between 0–200.

MaxFieldsPerNode:<value>

Increases the number of fields a node in a Data Processing Engine definition can contain. Indicate a value between 1–500.

MaxInputColumnsPerDT:<value>

Increases the number of input fields a decision table can contain. Indicate a value between 1–10.

MaxLoyaltyProcessRules:<value>

Increases the number of loyalty program process rules that can be created in the org. Indicate a value between 1–20.

MaxNodesPerDPE:<value>

Increases the number of nodes that a Data Processing Engine definition can contain. Indicate a value between 1–500.

MaxNoOfLexThemesAllowed:<value>

Increases the number of Themes allowed. Themes allow users to configure colors, fonts, images, sizes, and more. Access the list of
Themes in Setup, under Themes and Branding. Indicate a value between 0–300.

MaxOutputColumnsPerDT:<value>

Increases the number of output fields a decision table can contain. Indicate a value between 1–5.

MaxSourceObjectPerDSL:<value>

Increases the number of source objects that can be selected in a dataset link of a decision table. Indicate a value between 1–5.

MaxStreamingTopics:<value>

Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients.
Indicate a value between 40–100.

MaxUserNavItemsAllowed:<value>

Increases the number of navigation items a user can add to the navigation bar. Indicate a value between 0–500.

MaxUserStreamingChannels:<value>

Increases the maximum number of user-defined channels for generic streaming. Indicate a value between 20–1,000.

MaxWishlistsItemsPerWishlist

Limits the number of wishlist items per wishlist. The default value is 500.

94

Scratch Org FeaturesScratch Orgs

MaxWishlistsPerStoreAccUsr

Limits the number of wishlists allowed per store, account, and user. The default value is 100.

MaxWritebacksPerDPE:<value>

Increases the number of Writeback Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

MedVisDescriptorLimit:<value>

Increases the number of sharing definitions allowed per record for sharing inheritance to be applied to an object. Indicate a value
between 150–1,600.

MinKeyRotationInterval

Sets the encryption key material rotation interval at once per 60 seconds. If this feature isn't specified, the rotation interval defaults
to once per 604,800 seconds (7 days) for Search Index key material, and once per 86,400 seconds (24 hours) for all other key material.

MobileExtMaxFileSizeMB:<value>

Increases the file size (in megabytes) for Field Service Mobile extensions. Indicate a value between 1–2,000.

MobileSecurity

Enables Enhanced Mobile Security. With Enhanced Mobile Security, you can control a range of policies to create a security solution
tailored to your org’s needs. You can limit user access based on operating system versions, app versions, and device and network
security. You can also specify the severity of a violation.

MobileVoiceAndLLM

Allows mobile apps to download large language models (LLMs) and voice models for offline use from the model store service.
Normally, mobile apps have access to the model store service when Einstein is enabled, but the MobileVoiceAndLLM scratch org
feature enables offline voice without requiring orgs to fully enable Einstein.

MultiLevelMasterDetail

Allows the creation a special type of parent-child relationship between one object, the child, or detail, and another object, the parent,
or master.

MutualAuthentication

Requires client certificates to verify inbound requests for mutual authentication.

MyTrailhead

Enables access to a myTrailhead enablement site in a scratch org.

NonprofitCloudCaseManagementUser

Provides the permission set license required to use and configure the Salesforce.org Nonprofit Cloud Case Management managed
package. You can then install the package in the scratch org.

NumPlatformEvents:<value>

Increases the maximum number of platform event definitions that can be created. Indicate a value between 5–20.

ObjectLinking

Create rules to quickly link channel interactions to objects such as contacts, leads, or person accounts for customers (Beta).

OmnistudioMetadata

Enables Omnistudio metadata API. Using this API, customers can deploy and retrieve Omnistudio components programmatically.

OmnistudioRuntime

Enables business users to execute OmniScripts, DataMappers, FlexCards, and so on in the employee facing applications.

OmnistudioDesigner

Enables administrator or developer to create new OmniScripts/ DataMappers / Integration Procedures instances.

95

Scratch Org FeaturesScratch Orgs

OrderManagement

Provides the Salesforce Order Management license. Order Management is your central hub for handling all aspects of the order
lifecycle, including order capture, fulfillment, shipping, payment processing, and servicing.

OrderSaveLogicEnabled

Enables scratch org support for New Order Save Behavior. OrderSaveLogicEnabled supports only New Order Save Behavior. If your
scratch org needs both Old and New Order Save Behavior, use OrderSaveBehaviorBoth.

OrderSaveBehaviorBoth

Enables scratch org support for both New Order Save Behavior and Old Order Save Behavior.

OutboundMessageHTTPSession

Enables using HTTP endpoint URLs in outbound message definitions that have the Send Session ID option selected.

OutcomeManagement

Gives users access to Outcome Management features and objects in Salesforce and Experience Cloud.

PardotScFeaturesCampaignInfluence

Enables additional campaign influence models, first touch, last touch, and even distribution for Pardot users.

PersonAccounts

Enables person accounts in your scratch org.

PipelineInspection

Enables Pipeline Inspection. Pipeline Inspection is a consolidated pipeline view with metrics, opportunities, and highlights of recent
changes.

PlatformCache

Enables Platform Cache and allocates a 3 MB cache. The Lightning Platform Cache layer provides faster performance and better
reliability when caching Salesforce session and org data.

PlatformConnect:<value>

Enables Salesforce Connect and allows your users to view, search, and modify data that's stored outside your Salesforce org. Indicate
a value from 1–5.

PlatformEncryption

Shield Platform Encryption encrypts data at rest. You can manage key material and encrypt fields, files, and other data.

PlatformEventsPerDay:<value>

Increases the maximum number of delivered standard-volume platform event notifications within a 24-hour period, shared by all
CometD clients. Indicate a value between 10,000–50,000.

ProcessBuilder

Enables Process Builder, a Salesforce Flow tool that helps you automate your business processes.

ProductsAndSchedules

Enables product schedules in your scratch org. Enabling this feature lets you create default product schedules on products. Users
can also create schedules for individual products on opportunities.

ProductCatalogManagementAddOn

Enables read-write access to Product Catalog Management features and objects.

ProductCatalogManagementViewerAddOn

Enables read access to Product Catalog Management features and objects.

ProductCatalogManagementPCAddOn

Enables read access to Product Catalog Management features and objects for Partner Community Users in scratch orgs.

96

Scratch Org FeaturesScratch Orgs

ProgramManagement

Enables access to all Program Management and Case Management features and objects.

ProviderFreePlatformCache

Provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This feature is made available through a
capacity type called Provider Free capacity and is automatically enabled in Developer Edition orgs. Allocate the Provider Free capacity
to a Platform Cache partition and add it to your managed package.

ProviderManagement

Enables the objects, features, and permissions for managing provider networks, care plans, and service delivery in Public Sector
Solutions.

PSSAssetManagement

Enables the objects, features, and permissions for managing assets in Public Sector Solutions.

PublicSectorAccess

Enables access to all Public Sector features and objects.

PublicSectorApplicationUsageCreditsAddOn

Enables additional usage of Public Sector applications based on their pricing.

PublicSectorSiteTemplate

Allows Public Sector users access to build an Experience Cloud site from the templates available.

RateManagement

Enables Rate Management that allows you to set, manage, and optimize rates for usage-based products.

RecordTypes

Enables Record Type functionality. Record Types let you offer different business processes, picklist values, and page layouts to different
users.

RefreshOnInvalidSession

Enables automatic refreshes of Lightning pages when the user's session is invalid. If, however, the page detects a new token, it tries
to set that token and continue without a refresh.

RevSubscriptionManagement

Enables Subscription Management. Subscription Management is an API-first, product-to-cash solution for B2B subscriptions and
one-time sales.

S1ClientComponentCacheSize

Allows the org to have up to 5 pages of caching for Lightning Components.

SalesCloudEinstein

Enables Sales Cloud Einstein features and Salesforce Inbox. Sales Cloud Einstein brings AI to every step of the sales process.

SalesforceContentUser

Enables access to Salesforce content features.

SalesforceFeedbackManagementStarter

Provides a license to use the Salesforce Feedback Management - Starter features.

SalesforceHostedMCP

Enables hosted MCP servers on the scratch org. With this scratch org feature parameter, MCP clients can connect to available hosted
MCP servers.

SalesforceIdentityForCommunities

Adds Salesforce Identity components, including login and self-registration, to Experience Builder. This feature is required for Aura
components.

97

Scratch Org FeaturesScratch Orgs

SalesforcePricing

Enables Salesforce Pricing, which allows you to set, manage, and optimize prices across your entire product portfolio

SalesUser

Provides a license for Sales Cloud features.

SAML20SingleLogout

Enables usage of SAML 2.0 single logout.

SCIMProtocol

Enables access support for the SCIM protocol base API.

ScvMultipartyAndConsult

Enables you to set up and test multiparty calls and consult calls for Service Cloud Voice with Partner Telephony.

SecurityEventEnabled

Enables access to security events in Event Monitoring.

SentimentInsightsFeature

Provides the license required to enable and use Sentiment Insights in a scratch org. Use Sentiment Insights to analyze the sentiment
of your customers and get actionable insights to improve it.

ServiceCatalog

Enables Employee Service Catalog so you can create a catalog of products and services for your employees. It can also turn your
employees' requests for these products and services into approved and documented orders.

ServiceCloud

Assigns the Service Cloud license to your scratch org, so you can choose how your customers can reach you, such as by email, phone,
social media, online communities, chat, and text.

ServiceCloudVoicePartnerTelephony

Assigns the Service Cloud Voice with Partner Telephony add-on license to your scratch org, so you can set up a Service Cloud Voice
contact center that integrates with supported telephony providers. Indicate a value from 1–50.

ServiceUser

Adds one Service Cloud User license, and allows access to Service Cloud features.

SessionIdInLogEnabled

Enables Apex debug logs to include session IDs. If disabled, session IDs are replaced with "SESSION_ID_REMOVED" in debug logs.

SFDOInsightsDataIntegrityUser

Provides a license to Salesforce.org Insights Platform Data Integrity managed package. You can then install the package in the scratch
org.

SharedActivities

Allow users to relate multiple contacts to tasks and events.

Sites

Enables Salesforce Sites, which allows you to create public websites and applications that are directly integrated with your Salesforce
org. Users aren’t required to log in with a username and password.

SocialCustomerService

Enables Social Customer Service, sets post defaults, and either activates the Starter Pack or signs into your Social Studio account.

StateAndCountryPicklist

Enables state and country/territory picklists. State and country/territory picklists let users select states and countries from predefined,
standardized lists, instead of entering state, country, and territory data into text fields.

98

Scratch Org FeaturesScratch Orgs

StreamingAPI

Enables Streaming API.

StreamingEventsPerDay:<value>

Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients
(API version 36.0 and earlier). Indicate a value between 10,000–50,000.

SubPerStreamingChannel:<value>

Increases the maximum number of concurrent clients (subscribers) per generic streaming channel (API version 36.0 and earlier).
Indicate a value between 20–4,000.

SubPerStreamingTopic:<value>

Increases the maximum number of concurrent clients (subscribers) per PushTopic streaming channel (API version 36.0 and earlier).
Indicate a value between 20–4,000.

SurveyAdvancedFeatures

Enables a license for the features available with the Salesforce Feedback Management - Growth license.

SustainabilityCloud

Provides the permission set licenses and permission sets required to install and configure Sustainability Cloud. To enable or use CRM
Analytics and CRM Analytics templates, include the DevelopmentWave scratch org feature.

SustainabilityApp

Provides the permission set licenses and permission sets required to configure Net Zero Cloud. To enable or use Tableau CRM and
Tableau CRM templates, include the DevelopmentWave scratch org feature.

TalentRecruitmentManagement

Enables the objects, features, and permissions for managing the talent recruitment and hiring process in Public Sector Solutions.

TCRMforSustainability

Enables all permissions required to manage the Net Zero Analytics app by enabling Tableau CRM. You can create and share the
analytics app for your users to bring your environmental accounting in line with your financial accounting.

TimelineConditionsLimit

Limits the number of timeline record display conditions per event type to 3.

TimelineEventLimit

Limits the number of event types displayed on a timeline to 5.

TimelineRecordTypeLimit

Limits the number of related object record types per event type to 3.

TimeSheetTemplateSettings

Time Sheet Templates let you configure settings to create time sheets automatically. For example, you can create a template that
sets start and end dates. Assign templates to user profiles so that time sheets are created for the right users.

TransactionFinalizers

Enables you to implement and attach Apex Finalizers to Queueable Apex jobs.

UsageManagement

Enables Usage Management. Using Usage Management, you can setup, track, and manage the consumption of usage-based products.

VolunteerManagement

Gives users access to Volunteer Management features and objects in Salesforce.

WaveMaxCurrency

Increases the maximum number of supported currencies for CRM Analytics. Indicate a value between 1–5.

99

Scratch Org FeaturesScratch Orgs

WavePlatform

Enables the Wave Platform license.

Workflow

Enables Workflow so you can automate standard internal procedures and processes.

WorkflowFlowActionFeature

Allows you to launch a flow from a workflow action.

WorkplaceCommandCenterUser

Enables access to Workplace Command Center features including access to objects such as Employee, Crisis, and
EmployeeCrisisAssessment.

WorkThanksPref

Enables the give thanks feature in Chatter.

AccountInspection
Enables the Account Intelligence view. The Account Intelligence view is a consolidated dashboard showing account metrics, activities,
and related opportunities and cases.

AccountingSubledgerGrowthEdition
Provides three permission sets that enable access to Accounting Subledger Growth features.

More Information
Requires that you also include the DataProcessingEngine scratch org feature in your scratch org definition file. Requires that you enable
Data Pipelines. Requires configuration using the Setup menu in the scratch org. See Accounting Subledger in Salesforce Help.

AccountingSubledgerStarterEdition
Provides three permission sets that enable access to Accounting Subledger Starter features.

More Information
Requires that you also include the DataProcessingEngine scratch org feature in your scratch org definition file. Requires that you enable
Data Pipelines. Requires configuration using the Setup menu in the scratch org. See Accounting Subledger in Salesforce Help.

AccountingSubledgerUser
Enables organization-wide access to Accounting Subledger Growth features when the package is installed.

More Information
Requires that you install the Accounting Subledger or Accounting Subledger for Industries managed package. If you install the Accounting
Subledger package, also set up the Opportunity object. See Accounting Subledger Legacy Documentation in Salesforce Help.

AddCustomApps:<value>
Increases the maximum number of custom apps allowed in an org. Indicate a value from 1–30.

100

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.Accounting_Subledger.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.Accounting_Subledger.htm&language=en_US
https://sfdo-docs.s3.us-west-2.amazonaws.com/Accounting_Subledger_Legacy_Documentation.pdf

Supported Quantities
1–30, Multiplier: 1

AddCustomObjects:<value>
Increases the maximum number of custom objects allowed in the org. Indicate a value from 1–30.

Supported Quantities
1–30, Multiplier: 1

AddCustomRelationships:<value>
Increases the maximum number of custom relationships allowed on an object. Indicate a value from 1–10.

Supported Quantities
1–10, Multiplier: 5

AddCustomTabs:<value>
Increases the maximum number of custom tabs allowed in an org. Indicate a value from 1–30.

Supported Quantities
1–30, Multiplier: 1

AddDataComCRMRecordCredit:<value>
Increases record import credits assigned to a user in your scratch org. Indicate a value from 1–30.

Supported Quantities
1–30, Multiplier: 1

AddInsightsQueryLimit:<value>
Increases the size of your CRM Analytics query results. Indicate a value from 1–30 (multiplier is 10). Setting the quantity to 6 increases
the query results to 60.

Supported Quantities
1–30, Multiplier: 10

AdditionalFieldHistory:<value>
Increases the number of fields you can track history for beyond the default, which is 20 fields. Indicate a value between 1–40.

101

Scratch Org FeaturesScratch Orgs

Supported Quantities
1–40, Multiplier: 1

More Information
Previous name: AddHistoryFieldsPerEntity.

AdmissionsConnectUser
Enables the Admissions Connect components. Without this scratch org feature parameter, the custom Admissions Connect components
render as blank.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "Omega - Dev Org",
"edition": "Partner Developer",
"hasSampleData": "true",
"features": [
"DevelopmentWave",
"AdmissionsConnectUser",
"Communities",
"OmniStudioDesigner",
"OmniStudioRuntime"

],
"settings": {

"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"chatterSettings": {

"enableChatter": true
},
"languageSettings": {

"enableTranslationWorkbench": true
},
"enhancedNotesSettings": {

"enableEnhancedNotes": true
},
"pathAssistantSettings": {

"pathAssistantEnabled": true
},
"securitySettings": {

"enableAdminLoginAsAnyUser":true
},
"userEngagementSettings": {

"enableOrchestrationInSandbox": true,
"enableOrgUserAssistEnabled": true,
"enableShowSalesforceUserAssist": false

},
"experienceBundleSettings": {

"enableExperienceBundleMetadata": true

102

Scratch Org FeaturesScratch Orgs

},
"communitiesSettings": {

"enableNetworksEnabled": true,
"enableOotbProfExtUserOpsEnable": true

},
"mobileSettings": {

"enableS1EncryptedStoragePref2": false
}

}
}

More Information
Next, install the Admissions Connect package in the scratch org. For installation instructions, see Install Admissions Connect in Salesforce
Help.

AdvisorLinkFeature
Enables the Student Success Hub components. Without this scratch org feature parameter, the custom Student Success Hub components
render as blank.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"edition": "Partner Developer",
"features": [
"Communities",
"FeatureParameterLicensing",
"AdvisorLinkFeature"

],
"orgName": "SAL - Dev Workspace",
"hasSampleData": "true",
"settings": {
"chatterSettings": {
"enableChatter": true

},
"communitiesSettings": {
"enableNetworksEnabled": true,
"enableOotbProfExtUserOpsEnable": true

},
"enhancedNotesSettings": {
"enableEnhancedNotes": true

},
"experienceBundleSettings": {
"enableExperienceBundleMetadata": true

},
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false

103

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.AC_Install.htm&language=en_US

},
"languageSettings": {
"enableTranslationWorkbench": true

},
"securitySettings": {
"enableAdminLoginAsAnyUser": true

}
}

}

More Information
Next, install the Student Success Hub package in the scratch org. For setup instructions, see Install Student Success Hub in Salesforce
Help.

AdvisorLinkPathwaysFeature
Enables the Pathways components. Without this scratch org feature parameter, the custom Pathways components render as blank.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "Pathways - Dev Org",
"edition": "Partner Developer",
"features": [
"Communities",
"FeatureParameterLicensing",
"AdvisorLinkFeature",
"AdvisorLinkPathwaysFeature"

],
"settings": {
"chatterSettings": {
"enableChatter": true

},
"enhancedNotesSettings": {
"enableEnhancedNotes": true

},
"communitiesSettings": {
"enableNetworksEnabled": true

},
"languageSettings": {
"enableTranslationWorkbench": true

},
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false

}
}

}

104

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.SSH_Install.htm&language=en_US

More Information
Next, install the Pathways package in the scratch org. For setup instructions, see Set Up Pathways in Salesforce Help.

AIAttribution
Provides access to Einstein Attribution for Marketing Cloud Account Engagement. Einstein Attribution uses AI modeling to dynamically
assign attribution percentages to multiple campaign touchpoints.

Sample Scratch Org Definition File
Before enabling Einstein Attribution, make sure that enableAIAttribution and enableCampaignInfluence2 are set
to true.

{
"orgName": "NTOutfitters",
"edition": "Enterprise",
"features": ["AIAttribution"],
"settings": {
"campaignSettings": {

"enableAIAttribution": true
"enableCampaignInfluence2": true

}
}

More Information
This feature is available in Account Engagement Advanced and Premium editions.

Optional configuration steps are accessible in Setup in the scratch org. For more information, see Salesforce Help: Einstein Attribution.

AllUserIdServiceAccess
Enables all users to access all users’ information via the user ID service.

More Information
The AllUserIdServiceAccess permission is off by default for all new and existing orgs. To turn on this feature, contact Salesforce Customer
Support.

AnalyticsAdminPerms
Enables all permissions required to administer the CRM Analytics platform, including permissions to enable creating CRM Analytics
templated apps and CRM Analytics Apps.

More Information
See Set Up the CRM Analytics Platform in Salesforce Help for more information.

105

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.ssh_setup_pathways.htm&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_einstein_attribution_parent.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_help_setup.htm&type=5&language=en_US

AnalyticsAppEmbedded
Provides one CRM Analytics Embedded App license for the CRM Analytics platform.

ApexGuruCodeAnalyzer
Enables ApexGuru's generative AI-powered runtime insights in Salesforce Code Analyzer, which delivers Apex code quality
recommendations directly in developer IDEs.

More Information
To improve developer accuracy and speed, use ApexGuru in Salesforce Code Analyzer to detect antipatterns using both static analysis
and generative AI.

For more information about ApexGuru, see ApexGuru Insights in Salesforce Help.

API
Even in the editions (Professional, Group) that don’t provide API access, REST API is enabled by default. Use this scratch org feature to
access additional APIs (SOAP, Streaming, Bulk, Bulk 2.0).

More Information
See Salesforce editions with API access for more information.

ArcGraphCommunity
Lets you add Actionable Relationship Center (ARC) components to Experience Cloud pages so your users can view ARC Relationship
Graphs.

More Information
Provides 1 seat of the FinancialServicesEALoginAddon add-on license.

Requires that you install Financial Services Cloud. See Customize Experience Cloud Templates using ARC Components in Financial Services
Cloud Administrator Guide.

Assessments
Enables dynamic Assessments features, which enables both Assessment Questions and Assessment Question Sets.

More Information
Add these options to your scratch org feature definition file. For "edition," you can indicate any of the supported scratch org feature
editions.

{
"orgName": "Sample Org",
"edition": "Developer",
"features": ["Assessments"],
"settings": {

106

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=xcloud.apexguru_overview.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=000326486&type=1&mode=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_arc_experience_cloud.htm

"industriesSettings": {
"enableIndustriesAssessment": true,
"enableDiscoveryFrameworkMetadata": true

}
}

}

Add the Assessment to the page layout. See Page Layouts in Salesforce Help for more information.

AssetScheduling:<value>
Enables Asset Scheduling license. Asset Scheduling makes it easier to book rooms and equipments. Indicate a value between 1–10.

Supported Quantities
1–10

More Information
See Enable Asset Scheduling in Salesforce Scheduler in Salesforce Help for more information.

AssociationEngine
Enables the Association Engine, which automatically associates new accounts with the user’s current branch by creating branch unit
customer records.

More Information
Provides 11 seats of the FSCComprehensivePsl user license and 11 seats of the FSCComprehensiveAddOn add-on license.

Requires that you install Financial Services Cloud. See AssociationEngineSettings in Metadata API Developer Guide.

AuthorApex
Enables you to access and modify Apex code in a scratch org. Enabled by default in Enterprise and Developer Editions.

More Information
For Group and Professional Edition orgs, this feature is disabled by default. Enabling the AuthorApex feature lets you edit and test your
Apex classes.

B2BCommerce
Provides the B2B License. B2BCommerce enables business-to-business (B2B) commerce in your org. Create and update B2B stores. Create
and manage buyer accounts. Sell products to other businesses.

More Information
Requires that you also include the Communities scratch org feature in your scratch org definition file to create a store using B2B Commerce.
Not available in Professional, Partner Professional, Group, or Partner Group Edition orgs.

107

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=platform.customize_layout.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ls_overview.htm&type=5;&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_associationenginesettings.htm

B2BLoyaltyManagement
Enables the B2B Loyalty Management license. Create loyalty programs and set up loyalty program-specific processes that allow you to
recognize, rewards, and retain customers.

More Information
See Loyalty Management in Salesforce Help for more information.

B2CCommerceGMV
Provides the B2B2C Commerce License. B2B2C Commerce allows you to quickly stand up an ecommerce site to promote brands and
sell products into multiple digital channels. You can create and update retail storefronts in your org, and create and manage person
accounts.

More Information
Also requires the Communities feature in your scratch org definition file.

Not available in Professional, Partner Professional, Group, or Partner Group Edition orgs.

For more information, see Salesforce Help at Salesforce B2B Commerce and B2B2C Commerce..

B2CLoyaltyManagement
Enables the Loyalty Management - Growth license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

More Information
See Loyalty Management in Salesforce Help for more information.

B2CLoyaltyManagementPlus
Enables the Loyalty Management - Advanced license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

More Information
See Loyalty Management in Salesforce Help for more information.

BatchManagement
Enables the Batch Management license. Batch Management allows you to process a high volume of records in manageable batches.

More Information
See Batch Management in Salesforce Help for more information.

108

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=xcloud.loyaltyoverview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=commerce.comm_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.loyaltyoverview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.loyaltyoverview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.concept_batch_management.htm&type=5&language=en_US

BenefitManagement
Enables the objects, features, and permissions for managing benefits programs, benefit disbursements, and benefit applicant tracking
in Public Sector Solutions.

Sample Scratch Org Definition File
To enable BenefitManagement, add these features and settings to your scratch org definition file.

{
"orgName": "BM Org",
"edition": "Developer",
"features": ["BenefitManagement:2"],
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false
},
"IndustriesSettings": {
"enableIndustriesAssessment": true,
"enableDiscoveryFrameworkMetadata": true,
"enableInteractionSummaryPref": true,
"enableBenefitManagementPreference": true,
"enableGroupMembershipPref": true,
"enableCaseReferralPref": true
},
"OmniStudioSettings": {
"enableOmniStudioMetadata": false
},
"DocumentChecklistSettings": {
"deleteDCIWithFiles": true
}
}
}

BigObjectsBulkAPI
Enables the scratch org to use BigObjects in the Bulk API.

More Information
See Big Objects Implementation Guide for more information.

BillingAdvanced
Enables access to all the Billing features and objects that are available with the Revenue Cloud Billing license in the scratch org.

More Information

• Available in Enterprise, Unlimited, and Developer Edition scratch orgs.

109

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.bigobjects.meta/bigobjects/big_object.htm

• Provides 10 seats of BillingAdvancedAddOn add-on licenses.

• Enable Billing in Revenue Cloud and turn on Billing settings.

• Provides permission sets to access Billing features.

• See Manage Billing in Revenue Cloud for more information.

Scratch Org Definition File
To enable BillingAdvanced, add these settings to your scratch org definition file.

{
"orgName": "<Org Name>",
"adminEmail":"<Admin Email Address>"
"edition": "<Edition Name>",
"features": [
"InvoiceManagement",
"BillingAdvanced",
"EnableSetPasswordInApi"

],
"settings": {
"billingSettings": {
"enableBillingSetup": true

},
"lightningExperienceSettings": {

"enableS1DesktopEnabled": true
}

}
}

Briefcase
Enables the use of Briefcase Builder in a scratch org, which allows you to create offline briefcases that make selected records available
for viewing offline.

BudgetManagement
Gives users access to budget management features and objects. To enable budget management, add this feature to your scratch org
definition file.

More Information
See Budget Management in Salesforce Help for more information.

BusinessRulesEngine
Enables Business Rules Engine, which enables both expression sets and lookup tables.

More Information
Provides 10 Business Rules Engine Designer and 10 Business Rules Engine Runtime licenses. For more information, see Business Rules
Engine in Salesforce Help.

110

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.billing_setup_enable.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_billingsettings.htm?q=billing
https://help.salesforce.com/s/articleView?id=ind.billing_permission_sets.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.billing.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.grmk_budget_management_for_grantmaking.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.business_rules_engine.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.business_rules_engine.htm&type=5&language=en_US

BYOCCaaS
Enables you to set up and test a partner contact center that integrates with supported Contact Center as a Service (CCaaS) providers in
your scratch org.

More Information
This feature requires that you also include the ServiceCloud and Scrt2Conversation scratch org features in your scratch
org definition file. You must also enable second-generation managed packaging to use this feature in a scratch org. Available in Salesforce
Enterprise and Developer Editions.

For setup and configuration steps, see Bring Your Own Channel for CCaaS in Salesforce Help.

Sample Scratch Org Definition File

{
"orgName": "BYO CCaaS Scratch Org",
"edition": "Developer",
"features": ["ServiceCloud", "Scrt2Conversation", "BYOCCaaS"
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},

"mobileSettings": {
"enableS1EncryptedStoragePref2": false

}
}

}

BYOOTT
Enables you to set up and test a Bring Your Own Channel for Messaging channel that integrates with supported Messaging providers
in your scratch org.

More Information
This feature requires that you also include the ServiceCloud and Scrt2Conversation scratch org features in your scratch
org definition file. You must also enable second-generation managed packaging to use this feature in a scratch org. Available in Salesforce
Enterprise and Developer Editions.

For setup and configuration steps, see Bring Your Own Channel in Salesforce Help.

Sample Scratch Org Definition File

{
"orgName": "BYOC Scratch Org",
"edition": "Developer",
"features": ["ServiceCloud", "Scrt2Conversation", "BYOOTT"
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},

111

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=service.byoc_ccaas_setup.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=service.partner_messaging_intro.htm&type=5&language=en_US

"mobileSettings": {
"enableS1EncryptedStoragePref2": false

}
}

}

CacheOnlyKeys
Enables the cache-only keys service. This feature allows you to store your key material outside of Salesforce, and have the Cache-Only
Key Service fetch your key on demand from a key service that you control.

More Information
Requires enabling PlatformEncryption and configuration using the Setup menu in the scratch org. See Which User Permissions Does
Shield Platform Encryption Require?, Generate a Tenant Secret with Salesforce, and Cache-Only Key Service in Salesforce Help.

CalloutSizeMB:<value>
Increases the maximum size of an Apex callout. Indicate a value between 3–12.

Supported Quantities
3–12, Multiplier: 1

CampaignInfluence2
Provides access to Customizable Campaign Influence for Sales Cloud and Marketing Cloud Account Engagement. Customizable Campaign
Influence can auto-associate or allow manual creation of relationships among campaigns and opportunities to track attribution.

Sample Scratch Org Definition File
To enable Customizable Campaign Influence, set enableCampaignInfluence2 to true.

{
"orgName": "NTOutfitters",
"edition": "Enterprise",
"features": ["CampaignInfluence2"],
"settings": {
"campaignSettings": {

"enableCampaignInfluence2": true

}
}

More Information
This feature is available in Salesforce Enterprise, Performance, Unlimited, and Developer Editions.

Optional configuration steps are accessible in Setup in the scratch org. For more information, see Salesforce Help: Customizable Campaign
Influence.

112

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_byok_cache.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.campaigns_influence_customizable.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.campaigns_influence_customizable.htm&type=5&language=en_US

CascadeDelete
Provides lookup relationships with the same cascading delete functionality previously only available to master-detail relationships. To
prevent records from being accidentally deleted, cascade-delete is disabled by default.

CaseClassification
Enables Einstein Case Classification. Case Classification offers recommendations to your agents so they can select the best value. You
can also automatically save the best recommendation and route the case to the right agent.

CaseWrapUp
Enables Einstein Case Wrap-Up. To help agents complete cases quickly, Einstein Case Wrap-Up recommends case field values based on
past chat transcripts.

More Information
Available in Enterprise Edition scratch orgs.

Requires configuration using the Setup menu in the scratch org.

See Set Up Einstein Classification Apps in Salesforce Help for more information.

CGAnalytics
Enables the Consumer Goods Analytics org perm in scratch orgs.

More Information
Provides 1 seat of the CGAnalyticsPlus add-on license.

ChangeDataCapture
Enables Change Data Capture, if the scratch org edition doesn't automatically enable it.

Chatbot
Enables deployment of Bot metadata into a scratch org, and allows you to create and edit bots.

More Information
To use this feature, turn on Enable Einstein Features in the Dev Hub org to accept the Terms of Service.

See Einstein Bots in Salesforce Help for more information.

ChatterEmailFooterLogo
ChatterEmailFooterLogo allows you to use the Document ID of a logo image, which you can use to customize chatter emails.

113

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=cc_service_what_is.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_intro.htm&type=5&language=en_US

More Information
See Add Your Custom Brand to Email Notifications in Salesforce Help for more information.

ChatterEmailFooterText
ChatterEmailFooterText allows you to use footer text in customized Chatter emails.

More Information
See Add Your Custom Brand to Email Notifications in Salesforce Help for more information.

ChatterEmailSenderName
ChatterEmailSenderName allows you to customize the name that appears as the sender’s name in the email notification. For example,
your company’s name.

More Information
See Chatter Email Settings and Branding in Salesforce Help for more information.

CloneApplication
CloneApplication allows you to clone an existing custom Lightning app and make required customizations to the new app. This way,
you don’t have to start from scratch, especially when you want to create apps with simple variations.

More Information
See Create Lightning Apps in Salesforce Help for more information.

CMSMaxContType
Limits the number of distinct content types you can create within Salesforce CMS to 21.

CMSMaxNodesPerContType
Limits the maximum number of child nodes (fields) you can create for a particular content type to 15.

CMSUnlimitedUse
Enables unlimited content records, content types, and bandwidth usage in Salesforce CMS.

Communities
Allows the org to create an Experience Cloud site. Experience Cloud uses the term Communities in its configuration. To use Communities,
you must also include communitiesSettings > enableNetworksEnabled in the settings section of your scratch org definition file.

114

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=experience.collab_admin_email_customize.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.collab_admin_email_customize.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.collab_admin_email_settings.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.apps_lightning_create.htm.htm&type=5&language=en_US

More Information
Available in Enterprise and Developer Edition scratch orgs.

CompareReportsOrgPerm
Enables the org permission to allow for comparison of Lightning Reports.

ConAppPluginExecuteAsUser
Enables the pluginExecutionUser field in the ConnectedApp Metadata API object.

ConcStreamingClients:<value>
Increases the maximum number of concurrent clients (subscribers) across all channels and for all event types for API version 36.0 and
earlier. Indicate a value between 20–4,000.

Supported Quantities
20–4,000, Multiplier: 1

ConnectedAppCustomNotifSubscription
Enables connected apps to subscribe to custom notification types, which are used to send custom desktop and mobile notifications.

More Information
Sending custom notifications requires both CustomNotificationType to create notification types and
ConnectedAppCustomNotifSubscription to subscribe to notification types. See Manage Your Notifications with Notification Builder in
Salesforce Help for more information on custom notifications.

ConnectedAppToolingAPI
Enables the use of connected apps with the Tooling API.

ConsentEventStream
Enables the Consent Event Stream permission for the org.

More Information
See Use the Consent Event Stream in Salesforce Help for more information.

ConsolePersistenceInterval:<value>
Increases how often console data is saved, in minutes. Indicate a value between 0–500. To disable auto save, set the value to 0.

115

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=platform.notif_builder.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.consent_event_stream.htm&type=5&language=en_US

Supported Quantities
0–500, Multiplier: 1

ContactsToMultipleAccounts
Enables the contacts to multiple accounts feature. This feature lets you relate a contact to two or more accounts.

ContractApprovals
Enables contract approvals, which allow you to track contracts through an approval process.

ContractManagement
Enables the Contract Lifecycle (CLM) Management features in the org.

ContractMgmtInd
Enables the Contract Lifecycle Management (CLM) features for Industries.

CoreCpq
Enables read-write access to Revenue Cloud features and objects. To use Revenue Cloud, you must also include
revenueManagementSettings > enableCoreCPQ in the settings section of your scratch org definition file.

More Information

• Available in Developer and Enterprise scratch org editions.

• Provides 10 RevenueLifecycleManagementAddOn add-on licenses.

• Provides permission sets for Context Service, Business Rules Engine, Document Generation, Omnistudio, Data Processing Engine,
Product Catalog Management, Salesforce Pricing, Product Configurator, Transaction Management, Salesforce Contracts, Rate
Management, Dynamic Revenue Orchestrator, and Billing.

• Displays the setup pages for Context Service, Business Rules Engine, Document Generation, Omnistudio, Data Processing Engine,
Product Catalog Management, Salesforce Pricing, Revenue Settings (Product Configurator and Transaction Management), Contracts,
Rate Management, Dynamic Revenue Orchestrator, and Billing.

• Requires configuration using the Setup menu in the scratch org. See Revenue Cloud.

Scratch Org Definition File
Add these options to your scratch org definition file.

{
"edition": "Enterprise",
"features": [
"BusinessRulesEngine",
"Communities",
"OrderSaveLogicEnabled",
"OrderManagement",
"OrderSaveBehaviorBoth",

116

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.revenue_lifecycle_management.htm&type=5&language=en_US

"PartnerCommunity",
“CustomerCommunityPlus",
"ContextService",
"CoreCpq",
"SalesforcePricing",
"SalesforceConfiguratorEngine",
"UsageManagement",
"BillingAdvanced",
"DocGen",
"EnableSetPasswordInApi",
"ProductCatalogManagementPCAddOn"
],
"settings": {
"communitiesSettings": {
"enableNetworksEnabled": true
},
"customAddressFieldSettings": {
"enableCustomAddressField": true
},
"currencySettings": {
"enableMultiCurrency": true
},
"experienceBundleSettings": {
"enableExperienceBundleMetadata": true
},
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},
"industriesContextSettings": {
"enableContextDefinitions": true
},
"opportunitySettings": {
"enableOpportunityTeam": true
},
"revenueManagementSettings": {
"enableCoreCPQ": true
},
"orderManagementSettings": {
"enableOrderManagement": true
},
"orderSettings": {
"enableOrders": true,
"enableEnhancedCommerceOrders": true,
"enableOrderEvents": true,
"enableOptionalPricebook": true,
"enableZeroQuantity": true,
"enableNegativeQuantity": true
},
"quoteSettings": {
"enableQuote": true,
"enableQuotesWithoutOppEnabled": true
},
"industriesPricingSettings": {
"enableSalesforcePricing": true

117

Scratch Org FeaturesScratch Orgs

},
"industriesRatingSettings": {
"enableRating": true,
"enableRatingWaterfall": true,
"enableRatingWaterfallPersistence": true
},
"DynamicFulfillmentOrchestratorSettings": {
"enableDFOPref": true
}
},
"orgName": "<your org name>",
"adminEmail": "<your admin email>"

}

CPQ
Enables the licensed features required to install the Salesforce CPQ managed package but doesn't install the package automatically.

More Information
For additional information and configuration steps, see Manage Your Quotes with CPQ in Salesforce Help.

CustomerDataPlatform
Enables the CustomerDataPlatform license in scratch orgs.

Sample Scratch Org Definition File

{
"orgName": "Acme",
"edition": "Developer",
"features": ["CustomerDataPlatform", "CustomerDataPlatformLite"],
"settings": {
"customerDataPlatformSettings" : {
"enableCustomerDataPlatform" : true

}
}

}

More Information
To create scratch orgs that use Data Cloud, you must first log a case with Salesforce Partner Support. This feature can be enabled on
your Partner Business Org (PBO) only. After it’s enabled, you can create scratch orgs with Data Cloud features. .

See Salesforce Help: Feature Availability in Data Cloud and Customer Data Platform for a list of functionality available with the
CustomerDataPlatform license.

CustomerDataPlatformLite
Enables the Data Cloud license in scratch orgs. You must also include the CustomerDataPlatform feature and enableCustomerDataPlatform
Metadata API setting in your scratch org definition.

118

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=cpq_master.htm&type=5&language=en_US
https://partners.salesforce.com
https://help.salesforce.com/s/articleView?id=data.c360_a_feature_availability.htm&type=5&language=en_US

Sample Scratch Org Definition File

{
"orgName": "Acme",
"edition": "Developer",
"features": ["CustomerDataPlatform", "CustomerDataPlatformLite"],
"settings": {
"customerDataPlatformSettings" : {
"enableCustomerDataPlatform" : true

}
}

}

More Information
To create scratch orgs that use Data Cloud, you must first log a case with Salesforce Partner Support. This feature can be enabled on
your Partner Business Org (PBO) only. After it’s enabled, you can create scratch orgs with Data Cloud features.

See Salesforce Help: Feature Availability in Data Cloud and Customer Data Platform for a list of functionality available with the Data Cloud
license.

CustomerExperienceAnalytics
Enables the Customer Lifecycle Analytics org perm in scratch orgs.

More Information
Provides 1 seat of the CustomerExperienceAnalyticsPlus add-on license.

CustomFieldDataTranslation
Enables translation of custom field data for Work Type Group, Service Territory, and Service Resource objects. You can enable data
translation for custom fields with Text, Text Area, Text Area (Long), Text Area (Rich), and URL types.

More Information
Requires that you also include the EntityTranslation scratch org feature in your scratch org definition file. Not available in Professional,
Partner Professional, Group, or Partner Group Edition orgs.

CustomNotificationType
Allows the org to create custom notification types, which are used to send custom desktop and mobile notifications.

More Information
Sending custom notifications requires both CustomNotificationType to create notification types and
ConnectedAppCustomNotifSubscription to subscribe to notification types. See Manage Your Notifications with Notification Builder in
Salesforce Help for more information on custom notifications.

119

Scratch Org FeaturesScratch Orgs

https://partners.salesforce.com
https://help.salesforce.com/s/articleView?id=data.c360_a_feature_availability.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.notif_builder.htm&type=5&language=en_US

DataComDnbAccounts
Provides a license to Data.com account features.

DataComFullClean
Provides a license to Data.com cleaning features, and allows users to turn on auto fill clean settings for jobs.

DataMaskUser
Provides 30 Data Mask permission set licenses. This permission set enables access to an installed Salesforce Data Mask package.

More Information
For additional installation and configuration steps, see Install the Managed Package in Salesforce Help.

DataProcessingEngine
Enables the Data Processing Engine license. Data Processing Engine helps transform data that's available in your Salesforce org and write
back the transformation results as new or updated records.

More Information
See Data Processing Engine in Salesforce Help for more information.

DebugApex
Enables Apex Interactive Debugger. You can use it to debug Apex code by setting breakpoints and checkpoints, and inspecting your
code to find bugs.

DecisionTable
Enables Decision Table license. Decision tables read business rules and decide the outcome for records in your Salesforce org or for the
values that you specify.

More Information
See Decision Table in Salesforce Help for more information.

DefaultWorkflowUser
Sets the scratch org admin as the default workflow user.

DeferSharingCalc
Allows admins to suspend group membership and sharing rule calculations and to resume them later.

120

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=data_mask_install.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.dpe_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=concept_decision_table.htm&language=en_US

More Information
Requires configuration using the Setup menu in the scratch org. See Defer Sharing Calculations in Salesforce Help.

DevelopmentWave
Enables CRM Analytics development in a scratch org. It assigns five platform licenses and five CRM Analytics platform licenses to the org,
along with assigning the permission set license to the admin user. It also enables the CRM Analytics Templates and Einstein Discovery
features.

DeviceTrackingEnabled
Enables Device Tracking.

DevOpsCenter
Enables DevOps Center in scratch orgs so that partners can create second-generation managed packages that extend or enhance the
functionality in the DevOps Center application (base) package.

Dev Hub Org
Ask a Salesforce admin to enable DevOps Center in the Dev Hub org. From Setup, enter DevOps Center in the Quick Find box, then
select DevOps Center. You can create scratch orgs after the org preference is enabled.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["DevOpsCenter"],
"settings": {

"devHubSettings": {
"enableDevOpsCenterGA": true
}

}
}

Scratch Org Definition File For Scratch Orgs Created from an Org Shape
If you create a scratch org based on an org shape with DevOps Center enabled, we still require that you add the DevOps Center feature
and setting to the scratch org definition for legal reasons as part of the DevOps Center terms and conditions.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"features": ["DevOpsCenter"],
"settings": {

"devHubSettings": {
"enableDevOpsCenterGA": true
}

121

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=security_sharing_defer_sharing_calculations.htm&type=5&language=en_US

}
}

More Information
Salesforce Help: Build an Extension Package for DevOps Center

DisableManageIdConfAPI
Limits access to the LoginIP and ClientBrowser API objects to allow view or delete only.

DisclosureFramework
Provides the permission set licenses and permission sets required to configure Disclosure and Compliance Hub.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "dch org",
"edition": "Developer",
"features": ["DisclosureFramework"],
"settings": {
"industriesSettings":{
"enableGnrcDisclsFrmwrk": true,
"enableIndustriesAssessment" : true

}
}

}

More Information
For configuration steps, see Disclosure and Compliance Hub in the Set Up and Maintain Net Zero Cloud guide in Salesforce Help.

Division
Turns on the Manage Divisions feature under Company Settings. Divisions let you segment your organization's data into logical sections,
making searches, reports, and list views more meaningful to users. Divisions are useful for organizations with extremely large amounts
of data.

DocGen
Enables the Document Generation Feature in the Org.

DocGenDesigner
Enables the designers to create and configure document templates.

122

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=platform.devops_center_partners_extension_packages.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_setup_disclosure_and_compliance_hub.htm&type=5&language=en_US

DocGenInd
Enables the Industry Document Generation features in the org.

DocumentChecklist
Enables Document Tracking and Approval features, and adds the Document Checklist permission set. Document tracking features let
you define documents to upload and approve, which supports processes like loan applications or action plans.

More Information
See Enable Document Tracking and Approvals in the Financial Services Cloud Administrator Guide for more information.

DocumentReaderPageLimit
Limits the number of pages sent for data extraction to 5.

More Information
See Intelligent Form Reader in Salesforce Help for more information.

DSARPortability
Enables an org to access the DSARPortability feature in Privacy Center. Also, provides one seat each of the PrivacyCenter and
PrivacyCenterAddOn licenses.

More Information
See Portability in the Salesforce REST API Developer Guide for more information.

DurableClassicStreamingAPI
Enables Durable PushTopic Streaming API for API version 37.0 and later.

More Information
Available in Enterprise and Developer Edition scratch orgs.

DurableGenericStreamingAPI
Enables Durable Generic Streaming API for API version 37.0 and later.

More Information
Available in Enterprise and Developer Edition scratch orgs.

DynamicClientCreationLimit
Allows the org to register up to 100 OAuth 2.0 connected apps through the dynamic client registration endpoint.

123

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/admin_enable_doc_mgmt.htm
https://help.salesforce.com/s/articleView?id=ind.form_reader.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.242.0.api_rest.meta/api_rest/resources_portability.htm

EAndUDigitalSales
Enables the Energy and Utilities Digital Sales feature in the org.

EAndUSelfServicePortal
Enables the Self Service Portal features for Digital Experience users in the org.

EAOutputConnectors
Enable CRM Analytics Output Connectors.

More Information
This scratch org requires the Dev Hub to have the EAOutputConnectors permission. See Salesforce Output Connection in Salesforce
Help for more details.

EASyncOut
Enable CRM Analytics SyncOut.

More Information
This scratch org requires the Dev Hub to have the EASyncOut permission. See Sync Out for Snowflake in Salesforce Help for more details.

EdPredictionM3Threshold
Sets the number of records in the payload to 10, after which the Einstein Discovery prediction service uses M3.

EdPredictionTimeout
Sets the maximum duration of a single Einstein Discovery prediction to 100 milliseconds.

EdPredictionTimeoutBulk
Sets the maximum duration of a single Einstein Discovery prediction when it runs in bulk to 10 milliseconds.

EdPredictionTimeoutByomBulk
Sets the maximum duration of a single Bring Your Own Model (BYOM) Einstein Discovery prediction to 100 milliseconds.

EducationCloud: <value>
Enables use of Education Cloud.

Supported Quantities
Maximum: 10; Multiplier: 1

124

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=analytics.bi_integrate_connectors_output_salesforce.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=analytics.bi_integrate_connectors_sync_out_snowflake.htm&type=5&language=en_US

More Information
Standard set up steps are required after enabling this feature. See Set Up Education Cloud in Salesforce Help for more information.

Einstein1AIPlatform
Provides access to Einstein generative AI features such as Agentforce, Prompt Builder, Model Builder, and the Models API. To use generative
AI features, you must also include einsteinGptSettings > enableEinsteinGptPlatform in the settings section of your scratch org definition
file.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "Agentforce scratch org",
"edition": "Developer",
"features": ["Einstein1AIPlatform"],
"settings": {

"einsteinGptSettings": {
"enableEinsteinGptPlatform": true

}
}

}

Additional Configuration for Prompt Builder
After you generate the scratch org, Prompt Builder isn’t available until you assign yourself the Manage Prompts permission in the scratch
org.

When packaging a prompt template in second-generation packages, add the EinsteinGPTPromptTemplateManager
permission set to the sfdx-project.json file. See Considerations for Packaging Prompt Templates in Salesforce Help for details.

More Information
Available in Developer and Enterprise Edition scratch orgs.

Requires configuration using the Setup menu in the scratch org. Many generative AI features also require a Data Cloud license.

See Einstein Generative AI in Salesforce Help for more information.

EinsteinAnalyticsPlus
Provides one CRM Analytics Plus license for the CRM Analytics platform.

EinsteinArticleRecommendations
Provides licenses for Einstein Article Recommendations. Einstein Article Recommendations uses data from past cases to identify Knowledge
articles that are most likely to help your customer service agents address customer inquiries.

More Information
Available in Enterprise Edition scratch orgs.

125

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.ec_set_up_education_cloud_2.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.generative_ai_about.htm&type=5&language=en_US

Requires configuration using the Setup menu in the scratch org.

See Set Up Einstein Article Recommendations in Salesforce Help for more information.

EinsteinBuilderFree
Provides a license that allows admins to create one enabled prediction with Einstein Prediction Builder. Einstein Prediction Builder is
custom AI for admins

More Information
For configuration steps, see Einstein Prediction Builder in Salesforce Help.

EinsteinDocReader
Provides the license required to enable and use Intelligent Form Reader in a scratch org. Intelligent Form Reader uses optical character
recognition to automatically extract data with Amazon Textract.

More Information
To use this scratch org feature, the Dev Hub org requires the EinsteinDocReader and SalesforceManagedIFR permissions. For information
about Intelligent Form Reader, see Intelligent Form Reader in Salesforce Help.

EinsteinRecommendationBuilder
Provides a license to create recommendations with Einstein Recommendation Builder. Einstein Recommendation Builder lets you build
custom AI recommendations.

More Information
Enabled in Developer and Enterprise Editions.

Requires configuration using the Setup menu in the scratch org. You also need the EinsteinRecommendationBuilderMetadata feature
to use Einstein Recommendation Builder in scratch org.

EinsteinSalesRepFdbk
Enables the Agentforce Sales Coach feature in an org. This scratch org feature also includes a large number of Einstein for Sales Generative
AI features.

More Information
The EinsteinSalesRepFdbk scratch org feature enables Agentforce for Sales standard actions, such as Create Close Plan, Get Product
Pricing, Meeting Follow-Up Email, Send Meeting Request, Identify Contact Role, Identify Key Contacts, Find Similar Opportunities, Review
My Day, and Find Contact Interactions. It also enables Einstein Generative AI features, such as Sales Call Summaries, Call Explorer, Generative
Conversation Insights, and Automatic Contact Enhancement.

EinsteinSearch
Provides the license required to use and enable Einstein Search features in a scratch org.

126

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=einstein_article_recommendations_set_up.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=custom_ai_prediction_builder.htm&type=0&language=en_US
https://help.salesforce.com/s/articleView?id=ind.form_reader.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_close_plan.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_get_product_pricing.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_get_product_pricing.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_draft_or_revise_email.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_send_meeting_request.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_identify_contact_role.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_identify_key_contacts.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_find_similar_opportunities.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_review_my_day.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_review_my_day.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_ref_find_contact_interactions.htm&language=en_US&type=5
https://help.salesforce.com/s/articleView?id=sales.eci_call_summaries.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.eci_call_explorer.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.eci_gen_insights.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.eci_gen_insights.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.automatic_contact_enhancements.htm&type=5&language=en_US

More Information
Available in Professional and Enterprise Edition scratch orgs.

Requires configuration using the Setup menu in the scratch org.

EinsteinVisits
Enables Consumer Goods Cloud. With Consumer Goods cloud, transform the way you collaborate with your retail channel partners.
Empower your sales managers to plan visits and analyze your business’s health across stores. Also, allow your field reps to track inventory,
take orders, and capture visit details using the Retail Execution mobile app.

EinsteinVisitsED
Enables Einstein Discovery, which can be used to get store visit recommendations. With Einstein Visits ED, you can create a visit frequency
strategy that allows Einstein to provide optimal store visit recommendations.

More Information
See Create a Visit Frequency Next Best Action Strategy in Salesforce Help.

EmbeddedLoginForIE
Provides JavaScript files that support Embedded Login in IE11.

EmpPublishRateLimit:<value>
Increases the maximum number of standard-volume platform event notifications published per hour. Indicate a value between
1,000–10,000.

Supported Quantities
1,000–10,000, Multiplier: 1

EnablePRM
Enables the partner relationship management permissions for the org.

EnableManageIdConfUI
Enables access to the LoginIP and ClientBrowser API objects to verify a user's identity in the UI.

Enablement
Enables features for creating, taking, and tracking sales programs with Enablement. Business operations experts and sales leaders identify
the revenue outcomes they want sales reps to achieve, such as increased average deal sizes or shorter ramp times. Then, they create
programs that help sales reps work towards those outcomes as part of their daily work.

127

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.industries_einstein_visit_frequency_strategy.htm&type=5&language=en_US

More Information

• Provides 5 Enablement add-on licenses, where each license provides 1 seat of the Enablement permission set license and 1 seat of
the Enablement Resources permission set license.

• Provides permission set groups, permission sets, and user permissions for managing and accessing sales programs data.

• Provides access to the Enablement Settings page in Setup, which provides guidance for assigning permissions and includes other
optional configuration settings.

See Sales Programs and Partner Tracks with Enablement in Salesforce Help and see the Sales Programs and Partner Tracks with Enablement
Developer Guide for more information.

EnableSetPasswordInApi
Enables you to use sf org generate password to change a password without providing the old password.

EncryptionStatisticsInterval:<value>
Defines the interval (in seconds) between encryption statistics gathering processes. The maximum value is 604,800 seconds (7 days).
The default is once per 86,400 seconds (24 hours).

Supported Quantities
0–60,4800, Multiplier: 1

More Information
Requires enabling PlatformEncryption and some configuration using the Setup menu in the scratch org. See Which User Permissions
Does Shield Platform Encryption Require?, and Generate a Tenant Secret with Salesforce in Salesforce Help.

EncryptionSyncInterval:<value>
Defines how frequently (in seconds) the org can synchronize data with the active key material. The default and maximum value is 604,800
seconds (7 days). To synchronize data more frequently, indicate a value, in seconds, equal to or larger than 0.

Supported Quantities
0–604,800, Multiplier: 1

More Information
Requires enabling PlatformEncryption and some configuration using the Setup menu in the scratch org. See Which User Permissions
Does Shield Platform Encryption Require?, and Generate a Tenant Secret with Salesforce in Salesforce Help.

EnergyAndUtilitiesCloud
Enables the Energy and Utilities Cloud features in the org.

128

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/sales/enablement/overview
https://developer.salesforce.com/docs/sales/enablement/overview
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US

Entitlements
Enables entitlements. Entitlements are units of customer support in Salesforce, such as phone support or web support that represent
terms in service agreements.

ERMAnalytics
Enables the ERM Analytics org perm in your scratch org.

More Information
Provides 1 seat of the ERMAnalyticsPlus add-on license.

EventLogFile
Enables API access to your org's event log files. The event log files contain information about your org’s operational events that you can
use to analyze usage trends and user behavior.

EntityTranslation
Enables translation of field data for Work Type Group, Service Territory, and Service Resource objects.

More Information
To translate custom field data, also include the CustomFieldDataTranslation scratch org feature in your scratch org definition file. Not
available in Professional, Partner Professional, Group, or Partner Group Edition orgs.

ExcludeSAMLSessionIndex
Excludes Session Index in SAML sign-on (SSO) and single logout (SLO) flows.

More Information
The ExcludeSAMLSessionIndex permission is off by default for all new and existing orgs. Enable this permission when Salesforce is the
identity provider and you don’t want the session index to be sent during SAML SSO. Enable this permission when Salesforce is the service
provider and you don’t want the session index to be sent during SLO. To turn on this feature, contact Salesforce Customer Support.

Explainability
Enables an org to use Decision Explainer features.

For more information, see Decision Explainer for Expression Set in Salesforce developer documentation.

ExpressionSetMaxExecPerHour
Enables an org to run a maximum of 500,000 expression sets per hour by using Connect REST API.

For more information, see Expression Set in Salesforce developer documentation.

129

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/decision_explainer_bre_parent.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/connect_resources_bre_expression_set.htm

ExternalIdentityLogin
Allows the scratch org to use Salesforce Customer Identity features associated with your External Identity license.

FieldAuditTrail
Enables Field Audit Trail for the org and allows a total 60 tracked fields. By default, 20 fields are tracked for all orgs, and 40 more are
tracked with Field Audit Trail.

More Information
Previous name: RetainFieldHistory

FieldService:<value>
Provides the Field Service license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
Available in Enterprise Edition. Enabled by default in Developer Edition. See Enable Field Service in Salesforce Help for more information.

FieldServiceAppointmentAssistantUser:<value>
Adds the Field Service Appointment Assistant permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Setup Field Service Appointment Assistant and Assign Field Service Permissions in Salesforce Help for more information.

FieldServiceDispatcherUser:<value>
Adds the Field Service Dispatcher permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Assign Field Service Permissions in Salesforce Help for more information.

130

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=fs_enable.htm&language=en_US
https://help.salesforce.com/s/articleView?language=en_US&id=sf.mfs_appointment_assistant_parent.htm
https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US
https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US

FieldServiceLastMileUser:<value>
Adds the Field Service Last Mile permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

FieldServiceMobileExtension
Adds the Field Service Mobile Extension permission set license.

FieldServiceMobileUser:<value>
Adds the Field Service Mobile permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Assign Field Service Permissions in Salesforce Help for more information.

FieldServiceSchedulingUser:<value>
Adds the Field Service Scheduling permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Assign Field Service Permissions in Salesforce Help for more information.

FinanceLogging
Adds Finance Logging objects to a scratch org. This feature is required for Finance Logging.

FinancialServicesCommunityUser:<value>
Adds the Financial Services Insurance Community permission set license, and enables access to Financial Services insurance community
components and objects. Indicate a value between 1–10.

Supported Quantities
1–10, Multiplier: 1

131

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US
https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US

FinancialServicesInsuranceUser
Adds the Financial Services Insurance permission set license, and enables access to Financial Services insurance components and objects.

More Information
See Get Started with Financial Services Cloud for Insurance in Salesforce Help.

FinancialServicesUser:<value>
Adds the Financial Services Cloud Standard permission set license. This permission set enables access to Lightning components and the
standard version of Financial Services Cloud. Also provides access to the standard Salesforce objects and custom Financial Services Cloud
objects. Indicate a value between 1–10.

Supported Quantities
1–10, Multiplier: 1

FlowSites
Enables the use of flows in Salesforce Sites and customer portals.

ForceComPlatform
Adds one Salesforce Platform user license.

ForecastEnableCustomField
Enables custom currency and customer number fields for use as measures in forecasts based on opportunities.

More Information
Available in Enterprise Edition and Unlimited Edition scratch orgs, and requires enabling Salesforce Forecasting in Setup. See Salesforce
Forecasting in Salesforce Help for more information.

FSCAlertFramework
Makes Financial Services Cloud Record Alert entities accessible in the scratch org.

More Information
Provides 11 seats of the FSCComprehensivePsl user license and 11 seats of the FSCComprehensiveAddOn add-on license.

Requires that you install Financial Services Cloud and OmniStudio. See Record Alerts in Financial Services Cloud Administrator Guide.

FSCServiceProcess
Enables the Service Process Studio feature of Financial Service Cloud. Provides 10 seats each of the IndustriesServiceExcellenceAddOn
and FinancialServicesCloudStardardAddOn licenses. To enable the feature, you must also turn on the StandardServiceProcess setting in
Setup and grant users the AccessToServiceProcess permission.

132

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.fsc_admin_insurance_landing.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.forecasts3_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.forecasts3_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_record_alerts.htm

Fundraising
Gives users access to Nonprofit Cloud for Fundraising features and objects in Salesforce.

Scratch Org Definition File
See Nonprofit Cloud for Fundraising in Salesforce Help for more information. To enable Fundraising, add these settings to your scratch
org definition file.

Note: The Fundraising licenses are assigned when the Fundraising feature is enabled in the scratch org.

{
"orgName": "Fundraising Org",
"edition": "Enterprise",
"features": [
"AccountingSubledgerGrowthEdition",
"IndustriesActionPlan",
"AnalyticsQueryService",
"PublicSectorAccess",
"Fundraising",
"IndustriesSalesExcellenceAddOn",
"IndustriesServiceExcellenceAddOn",
"MarketingUser",
"ProgramManagement",
"OmniStudioDesigner",
"OmniStudioRuntime",
"EnableSetPasswordInApi",
"PersonAccounts"

],
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"IndustriesSettings": {
"enableFundraising": true,
"enableGiftEntryGrid": true,
"enableGroupMembershipPref": true

}
}

}

GenericStreaming
Enables Generic Streaming API for API version 36.0 and earlier.

More Information
Available in Enterprise and Developer Edition scratch orgs.

GenStreamingEventsPerDay:<value>
Increases the maximum number of delivered event notifications within a 24-hour period, shared by all CometD clients, with generic
streaming for API version 36.0 and earlier. Indicate a value between 10,000–50,000.

133

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.NPC_FR_Nonprofit_Cloud_Fundraising.htm&language=en_US

Supported Quantities
10,000–50,000, Multiplier: 1

Grantmaking
Gives users access to Grantmaking features and objects in Salesforce and Experience Cloud.

More Information
See Grantmaking in Salesforce Help for more information. To enable Grantmaking, add these settings to your scratch org definition file.

{
"features": ["Grantmaking"],
"settings": {
"IndustriesSettings": {
"enableGrantmaking": true

}
}

}

GuidanceHubAllowed
Enables the Guidance Center panel in Lightning Experience. The Guidance Center shows suggested and assigned content in the user’s
flow of work. Suggested content is related to the app or page where the user is working. Assigned content includes guidance sets for
Salesforce admins, links or Trailhead modules assigned to users with Learning Paths, and Enablement programs for sales reps.

More Information
Not available in Group Edition scratch orgs.

To use this scratch org feature, the Dev Hub org requires the GuidanceHubAllowed permission. If this permission isn't enabled in the
Dev Hub, contact Salesforce Customer Support.

See Guidance Center in Salesforce Help for more information.

HealthCloudAddOn
Enables use of Health Cloud.

More Information
See Administer Health Cloud in Salesforce Help for more information.

HealthCloudEOLOverride
Salesforce retired the Health Cloud CandidatePatient object in Spring ‘22 to focus on the more robust Lead object. This scratch org
feature allows you to override that retirement and access the object.

134

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.grmk_grantmaking.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.admin_guidancecenter_ov.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.healthcare_admin.htm&type=5&language=en_US

More Information
To use this scratch org feature, the Dev Hub org requires the HealthCloudEOLOverride permission. See Candidate Patient Data Entity
Retirement in Salesforce Help for more information.

HealthCloudForCmty
Enables use of Health Cloud for Experience Cloud Sites.

More Information
See Experience Cloud Sites in Salesforce Help for more information.

HealthCloudMedicationReconciliation
Allows Medication Management to support Medication Reconciliation.

More Information
See Enable Medication Management to Perform Medication Reconciliation in Salesforce Help for more information.

HealthCloudPNMAddOn
Enables use of Provider Network Management.

More Information
See Provider Network Management in Salesforce Help for more information.

HealthCloudUser
This enables the scratch org to use the Health Cloud objects and features equivalent to the Health Cloud permission set license for one
user.

More Information
See Assign Health Cloud Permission Sets and Permission Set Licenses in Salesforce Help for more information.

HighVelocitySales
Provides Sales Engagement licenses and enables Salesforce Inbox. Sales Engagement optimizes the inside sales process with a
high-productivity workspace. Sales managers can create custom sales processes that guide reps through handling different types of
prospects. And sales reps can rapidly handle prospects with a prioritized list and other productivity-boosting features. The Sales Engagement
feature can be deployed in scratch orgs, but the settings for the feature can’t be updated through the scratch org definition file. Instead,
configure settings directly in the Sales Engagement app.

135

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=000391944&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000391944&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=ind.admin_communities.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.admin_medication_management_enable.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.admin_provider_network_management.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.admin_permissionset_licenses_assign.htm&type=5&language=en_US

HighVolumePlatformEventAddOn
Increases the daily delivery allocation of high-volume platform events or change data capture events by 100,000 events. This scratch
org feature simulates the purchase of an add-on. If the org has the HighVolumePlatformEventAddOn, the daily allocation is
flexible and isn’t enforced strictly to allow for usage peaks.

More Information
See Platform Event Allocations in the Platform Events Developer Guide.

HLSAnalytics
Enables the HLS Analytics org perm in scratch orgs.

More Information
Provides 1 seat of the HealthCareAnalyticsPlus add-on license.

HoursBetweenCoverageJob:<value>
The frequency in hours when the sharing inheritance coverage report can be run for an object. Indicate a value between 1–24.

Supported Quantities
1–24, Multiplier: 1

IdentityProvisioningFeatures
Enables use of Salesforce Identity User Provisioning.

IgnoreQueryParamWhitelist
Ignores allowlisting rules for query parameter filter rules. If enabled, you can add any query parameter to the URL.

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

IndustriesActionPlan
Provides a license for Action Plans. Action Plans allow you to define the tasks or document checklist items for completing a business
process.

More Information
Previous name: ActionPlan.

For more information and configuration steps, see Enable Actions Plans in Salesforce Help.

136

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.platform_events.meta/platform_events/platform_event_limits.htm
https://help.salesforce.com/articleView?id=fsc_action_plans.htm&language=en_US

IndustriesBranchManagement
Branch Management lets branch managers and administrators track the work output of branches, employees, and customer segments
in Financial Services Cloud.

More Information
Provides the Branch Management add-on license and user permissions, plus 11 seats of the FSCComprehensivePsl user license and 11
seats of the FSCComprehensiveAddOn add-on license.

Requires that you install Financial Services Cloud. See Branch Management in Financial Services Cloud Administrator Guide.

IndustriesCompliantDataSharing
Grants users access to participant management and advanced configuration for data sharing to improve compliance with regulations
and company policies.

More Information
Provides 1 seat of the FinancialServicesCloudStandardAddOn add-on license.

Requires that you install Financial Services Cloud. See Compliant Data Sharing in Financial Services Cloud Administrator Guide.

IndustriesMfgAdvncdAccFrcs
Enables Advanced Account Forecasting. With Advanced Account Forecasting, generate comprehensive, multi-horizon forecasts for sales,
operations, inventory, service, and other aspects of your business. Tailor your forecasting configurations to your objectives to generate
accurate, relevant forecasts.

More Information
See Create Holistic, Multi-Enterprise Forecasts with Advanced Account Forecasting in Salesforce Help for more information.

IndustriesMfgPartnerVisitMgmt
Enables Partner Visit Management. Partner Visit Management helps sales managers in your company schedule visits to partner and
distributor locations. Sales managers can use those visits to monitor performance, arrange for periodic check-ins, conduct trainings,
upsell and cross-sell products, and follow up on sales agreement renewals and warranty expiration.

More Information
See Partner Visit Management in Manufacturing Cloud in Salesforce Help for more information.

IndustriesMfgProgram
Enables Program Based Business. With Program Based Business, program managers can manage the end-to-end lifecycle of a program
where they derive forecasts based on their customers’ forecasts, transform these forecasts into business opportunities, and convert those
opportunities into run-rate business. Program based business is common across multiple industries such as process, aerospace, defense,
automotive, engineer-to-order, and make-to-order environments.

137

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_branch.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_cds.htm
https://help.salesforce.com/s/articleView?id=ind.aaf_admin_parent_concept.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.mfg_pvm_container.htm&type=5&language=en_US

More Information
See Learn About Program Based Business in Salesforce Help for more information.

IndustriesMfgRebates
Enables Rebate Management. Manage incentive programs, track rebate attainment, automate payouts, and gain insights into sales
performance and program effectiveness.

More Information
See Rebate Management in Salesforce Help for more information.

IndustriesMfgTargets
Enables Sales Agreements. With Sales Agreements, you can negotiate purchase and sale of products over a continued period. You can
also get insights into products, prices, discounts, and quantities. And you can track your planned and actual quantities and revenues
with real-time updates from orders and contracts.

More Information
See Track Sales Compliance with Sales Agreements in Salesforce Help for more information.

IndustriesManufacturingCmty
Provides the Manufacturing Sales Agreement for the Community permission set license, which is intended for the usage of partner
community users. It also provides access to the Manufacturing community template for admins users to create communities.

More Information
See Improve Partner Collaboration with Communities in Salesforce Help for more information.

IndustriesMfgAccountForecast
Enables Account Forecast. With Account Forecast, you can generate forecasts for your accounts based on orders, opportunities, and
sales agreements. You can also create formulas to calculate your forecasts per the requirements of your company.

More Information
See Create Account Forecasts to Enhance Your Planning in Salesforce Help for more information.

InsightsPlatform
Enables the CRM Analytics Plus license for CRM Analytics.

InsuranceCalculationUser
Enables the calculation feature of Insurance. Provides 10 seats each of the BRERuntimeAddOn and OmniStudioRuntime licenses. Also,
provides one seat each of the OmniStudio and BREPlatformAccess licenses.

138

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.pbb_parent_concept.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.rebates_admin_parent.htm&language=en_US
https://help.salesforce.com/articleView?id=sa_admin_parent_concept.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=sa_admin_communityoverview_concept.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=af_admin_parent_concept.htm&type=5&language=en_US

InsuranceClaimMgmt
Enables claim management features. Provides one seat of the InsuranceClaimMgmtAddOn license.

More Information
See Manage Claims in Salesforce Help for more information.

InsurancePolicyAdmin
Enables policy administration features. Provides one seat of the InsurancePolicyAdministrationAddOn license.

More Information
See Manage Insurance Policies in Salesforce Help for more information.

IntelligentDocumentReader
Provides the license required to enable and use Intelligent Document Reader in a scratch org. Intelligent Document Reader uses optical
character recognition to automatically extract data with Amazon Textract by using your AWS account.

More Information
To use this scratch org feature, the Dev Hub org requires the EinsteinDocReader and BYOAForIFR permissions. For information about
Intelligent Document Reader, see Intelligent Document Reader in Salesforce Help.

InvestigativeCaseManagement
Enables the objects, features, and permissions for managing investigative cases, including evidence management and case proceedings,
in Public Sector Solutions.

Sample Scratch Org Definition File
To enable InvestigativeCaseManagement, add these features and settings to your scratch org definition file.

{
"orgName": "ICM Org",
"edition": "Developer",
"features": [
"InvestigativeCaseManagement:2"
],
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false
},
"industriesSettings": {
"enableCarePlansPreference": true,
"enableBenefitManagementPreference": true,

139

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.insurance_claims_617267.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.insurance_policy_administration_621128.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.intelligent_document_reader.htm&type=5&language=en_US

"enableTimelinePref": true,
"enableGroupMembershipPref": true,
"enableIndustriesAssessment": true,
"enableDiscoveryFrameworkMetadata": true,
"enableInteractionSummaryPref": true,
"enableEnhancedUIForISPref": true,
"enableInteractionCstmSharingPref": true,
"enableCaseProceedingsPref": true,
"enableEvidenceManagementPref": true,
"enableInvestigativeCaseMgmntPrf": true,
"enableDisbursementPreference": true,
"enableCaseReferralPref": true
}
}
}

InvoiceManagement
Enables access to all the Billing features and objects that are available with the Revenue Cloud Advanced license in the scratch org.

More Information

• Available in Enterprise, Unlimited, and Developer Edition scratch orgs.

• Provides 10 seats of BillingAddOn add-on licenses.

• Enable Billing in Revenue Cloud and turn on the required Billing settings.

• Provides permission sets to access Billing features.

• See Manage Billing in Revenue Cloud for more information.

Scratch Org Definition File
To enable InvoiceManagement, add these settings to your scratch org definition file.

{
"orgName": "<Org Name>",
"adminEmail":"<Admin Email Address>"
"edition": "<Edition Name>",
"features": [
"InvoiceManagement"
"EnableSetPasswordInApi"

],
"settings": {
"billingSettings": {
"enableBillingSetup": true

},
"lightningExperienceSettings": {

"enableS1DesktopEnabled": true
}

}
}

140

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.billing_setup_enable.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_billingsettings.htm?q=billing
https://help.salesforce.com/s/articleView?id=ind.billing_permission_sets.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.billing.htm&type=5&language=en_US

Interaction
Enables flows. A flow is the part of Salesforce Flow that collects data and performs actions in your Salesforce org or an external system.
Salesforce Flow provides two types of flows: screen flows and autolaunched flows.

More Information
Requires configuration in the Setup menu of the scratch org.

IoT
Enables IoT so the scratch org can consume platform events to perform business and service workflows using orchestrations and contexts.

More Information
Also requires Metadata API Settings in the scratch org definition file.

JigsawUser
Provides one license to Jigsaw features.

Knowledge
Enables Salesforce Knowledge and gives your website visitors, clients, partners, and service agents the ultimate support tool. Create and
manage a knowledge base with your company information, and securely share it when and where it's needed. Build a knowledge base
of articles that can include information on process, like how to reset your product to its defaults, or frequently asked questions.

More Information
See Salesforce Knowledge in Salesforce Help for more information.

LegacyLiveAgentRouting
Enables legacy Live Agent routing for Chat. Use Live Agent routing to chat in Salesforce Classic. Chats in Lightning Experience must be
routed using Omni-Channel.

LightningSalesConsole
Adds one Lighting Sales Console user license.

LightningScheduler
Enables Lightning Scheduler. Lightning Scheduler gives you tools to simplify appointment scheduling in Salesforce. Create a personalized
experience by scheduling customer appointments—in person, by phone, or by video—with the right person at the right place and
time.

More Information
See Manage Appointments with Lightning Scheduler in Salesforce Help for more information.

141

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=knowledge_whatis.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ls_overview.htm&type=5&language=en_US

LightningServiceConsole
Assigns the Lightning Service Console License to your scratch org so you can use the Lightning Service Console and access features that
help manage cases faster.

More Information
See Lightning Service Console in Salesforce Help for more information.

LiveAgent
Enables Chat for Service Cloud. Use web-based chat to quickly connect customers to agents for real-time support.

LiveMessage
Enables Messaging for Service Cloud. Use Messaging to quickly support customers using apps such as SMS text messaging and Facebook
Messenger.

LongLayoutSectionTitles
Allows page layout section titles to be up to 80 characters.

More Information
To turn on this feature, contact Salesforce Customer Support.

LoyaltyAnalytics
Enables Analytics for Loyalty license. The Analytics for Loyalty app gives you actionable insights into your loyalty programs.

More Information
See Analytics for Loyalty in Salesforce Help for more information.

LoyaltyEngine
Enables Loyalty Management Promotion Setup license. Promotion setup allows loyalty program managers to create loyalty program
processes. Loyalty program processes help you decide how incoming and new Accrual and Redemption-type transactions are processed.

More Information
See Create Processes with Promotion Setup in Salesforce Help for more information.

LoyaltyManagementStarter
Enables the Loyalty Management - Starter license. Create loyalty programs and set up loyalty program-specific processes that allow you
to recognize, rewards, and retain customers.

142

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=console_lex_service_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.analytics_loyalty_deploy_and_use.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.promotion_setup.htm&type=5&language=en_US

More Information
See Loyalty Management in Salesforce Help for more information.

LoyaltyMaximumPartners:<value>
Increases the number of loyalty program partners that can be associated with a loyalty program in an org where the Loyalty Management
- Starter license is enabled. The default and maximum value is 1.

Supported Quantities
0–1, Multiplier: 1

LoyaltyMaximumPrograms:<value>
Increases the number of loyalty programs that can be created in an org where the Loyalty Management - Starter license is enabled. The
default and maximum value is 1.

Supported Quantities
0–1, Multiplier: 1

LoyaltyMaxOrderLinePerHour:<value>
Increases the number of order lines that can be cumulatively processed per hour by loyalty program processes. Indicate a value between
1–3,500,000.

Supported Quantities
1–3,500,000, Multiplier: 1

LoyaltyMaxProcExecPerHour:<value>
Increases the number of transaction journals that can be processed by loyalty program processes per hour. Indicate a value between
1–500,000.

Supported Quantities
1–500,000, Multiplier: 1

LoyaltyMaxTransactions:<value>
Increases the number of Transaction Journal records that can be processed. Indicate a value between 1–50,000,000.

Supported Quantities
1–50,000,000, Multiplier: 1

143

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=xcloud.loyaltyoverview.htm&type=5&language=en_US

LoyaltyMaxTrxnJournals:<value>
Increases the number of Transaction Journal records that can be stored in an org that has the Loyalty Management - Start license enabled.

Supported Quantities
1–25,000,000, Multiplier: 1

More Information
See Transaction Journal Limits in Salesforce Help for more information.

Macros
Enables macros in your scratch org. After enabling macros, add the macro browser to the Lightning Console so you can configure
predefined instructions for commonly used actions and apply them to multiple posts at the same time.

More Information
See Set Up and Use Macros in Salesforce Help for more information.

MarketingCloud
Provides licenses for Marketing Cloud Growth edition. These licenses provide access to campaigns, flows, emails, forms, landing pages,
and consent management features. You can send up to 20 emails per day from a scratch org.

Scratch Org Definition File

{
"features": [

"MarketingCloud",
"CustomerDataPlatform",
"CustomerDataPlatformLite",
"EnableSetPasswordInApi",

],
"settings": {

"customerDataPlatformSettings": {
"enableCustomerDataPlatform": true

},
"lightningExperienceSettings": {

"enableS1DesktopEnabled": true
},
"mobileSettings": {

"enableS1EncryptedStoragePref2": false
}

}
}

144

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.transaction_journal_limit_starter.htm&language=en_US
https://help.salesforce.com/articleView?id=macros_def.htm&language=en_US

More Information
Marketing Cloud Growth edition uses Data Cloud to store engagement events, create segments, personalize messages, process decisions
in flows, and generate analytics. Salesforce ISVs that develop applications for Marketing Cloud Growth edition must have the Data Cloud
Scratch Org permission enabled in their Partner Business Orgs.

You can enable Data Cloud in your scratch org by creating a case with Salesforce Partner Support. Use this template as a guide when
you submit your request, replacing {your_org_id_here} with the ID of your Partner Business Org:

• Subject: Enable Data Cloud for scratch orgs in Dev Hub

• Description: Please enable Data Cloud scratch org permissions on my Partner Business
Org. My org ID is {your_org_id_here}

• Product and Topic: Partner Programs & Benefits (License Request - Trial/Dev Org)

After Salesforce Partner Support completes your request, add the CustomerDataPlatform and
CustomerDataPlatformLite features to your scratch org definition file.

MarketingUser
Provides access to the Campaigns object. Without this setting, Campaigns are read-only.

MaterialityAssessment
Provides the permission set licenses and permission sets required to configure materiality assessment in Net Zero Cloud.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "NZC Package Dev",
"edition": "Enterprise",
"features": [
"DisclosureFramework",
"DocGen",
"DocGenDesigner",
"DocGenInd",
"OmnistudioDesigner",
"OmnistudioRuntime",
"SurveyAdvancedFeatures",
"SustainabilityApp",
"MaterialityAssessment:1"

],
"settings": {
"industriesSettings": {
"enableGnrcDisclsFrmwrk": true,
"enableIndustriesAssessment": true,
"enableSustainabilityCloud": true,
"enableSCCarbonAccounting": true,
"enableSCSNGManagement": true,
"enableMaterialityAssessment": true,
"enableInformationLibrary": true

}

145

Scratch Org FeaturesScratch Orgs

https://partners.salesforce.com/

}
}

More Information
For configuration steps, see Configure Net Zero Cloud and Enable the Disclosure and Compliance Hub in the Set Up and Maintain Net
Zero Cloud guide in Salesforce Help.

MaxActiveDPEDefs:<value>
Increases the number of Data Processing Engine definitions that can be activated in the org. Indicate a value between 1–50.

Supported Quantities
1–50, Multiplier: 1

MaxApexCodeSize:<value>
Limits the non-test, unmanaged Apex code size (in MB). To use a value greater than the default value of 10, contact Salesforce Customer
Support.

MaxAudTypeCriterionPerAud
Limits the number of audience type criteria available per audience. The default value is 10.

MaxCustomLabels:<value>
Limits the number of custom labels (measured in thousands). Setting the limit to 10 enables the scratch org to have 10,000 custom
labels. Indicate a value between 1–15.

Supported Quantities
1–15, Multiplier: 1,000

MaxDatasetLinksPerDT:<value>
Increases the number of dataset links that can be associated with a decision table. Indicate a value between 1–3.

Supported Quantities
1–3, Multiplier: 1

MaxDataSourcesPerDPE:<value>
Increases the number of Source Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

Supported Quantities
1–50, Multiplier: 1

146

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=netzero_admin.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_setup_enable_disclosure_and_compliance_hub.htm&language=en_US

MaxDecisionTableAllowed:<value>
Increases the number of decision tables rules that can be created in the org. Indicate a value between 1–30.

Supported Quantities
1–30, Multiplier: 1

MaxFavoritesAllowed:<value>
Increases the number of Favorites allowed. Favorites allow users to create a shortcut to a Salesforce Page. Users can view their Favorites
by clicking the Favorites list dropdown in the header. Indicate a value between 0–200.

Supported Quantities
0–200, Multiplier: 1

MaxFieldsPerNode:<value>
Increases the number of fields a node in a Data Processing Engine definition can contain. Indicate a value between 1–500.

Supported Quantities
1–500, Multiplier: 1

MaxInputColumnsPerDT:<value>
Increases the number of input fields a decision table can contain. Indicate a value between 1–10.

Supported Quantities
1–10, Multiplier: 1

MaxLoyaltyProcessRules:<value>
Increases the number of loyalty program process rules that can be created in the org. Indicate a value between 1–20.

Supported Quantities
1–20, Multiplier: 1

MaxNodesPerDPE:<value>
Increases the number of nodes that a Data Processing Engine definition can contain. Indicate a value between 1–500.

Supported Quantities
1–500, Multiplier: 1

147

Scratch Org FeaturesScratch Orgs

MaxNoOfLexThemesAllowed:<value>
Increases the number of Themes allowed. Themes allow users to configure colors, fonts, images, sizes, and more. Access the list of
Themes in Setup, under Themes and Branding. Indicate a value between 0–300.

Supported Quantities
0–300, Multiplier: 1

MaxOutputColumnsPerDT:<value>
Increases the number of output fields a decision table can contain. Indicate a value between 1–5.

Supported Quantities
1–5, Multiplier: 1

MaxSourceObjectPerDSL:<value>
Increases the number of source objects that can be selected in a dataset link of a decision table. Indicate a value between 1–5.

Supported Quantities
1–5, Multiplier: 1

MaxStreamingTopics:<value>
Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients. Indicate
a value between 40–100.

Supported Quantities
40–100, Multiplier: 1

MaxUserNavItemsAllowed:<value>
Increases the number of navigation items a user can add to the navigation bar. Indicate a value between 0–500.

Supported Quantities
0–500, Multiplier: 1

MaxUserStreamingChannels:<value>
Increases the maximum number of user-defined channels for generic streaming. Indicate a value between 20–1,000.

Supported Quantities
20–1,000, Multiplier: 1

148

Scratch Org FeaturesScratch Orgs

MaxWishlistsItemsPerWishlist
Limits the number of wishlist items per wishlist. The default value is 500.

More Information
For more information, see Salesforce Help at Salesforce B2B Commerce and D2C Commerce

MaxWishlistsPerStoreAccUsr
Limits the number of wishlists allowed per store, account, and user. The default value is 100.

For example, if User1 is associated with Store1 and Store2, and has access to Account1 and Account2, then the wishlist limit is the same
for the combinations of User1 with Store1 and Account1, User1 with Store2 and Account2, and User1 with Store1 and Account2.

More Information
For more information, see Salesforce Help at Salesforce B2B Commerce and D2C Commerce.

MaxWritebacksPerDPE:<value>
Increases the number of Writeback Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

Supported Quantities
1–10, Multiplier: 1

MedVisDescriptorLimit:<value>
Increases the number of sharing definitions allowed per record for sharing inheritance to be applied to an object. Indicate a value between
150–1,600.

Supported Quantities
150–1,600, Multiplier: 1

MinKeyRotationInterval
Sets the encryption key material rotation interval at once per 60 seconds. If this feature isn't specified, the rotation interval defaults to
once per 604,800 seconds (7 days) for Search Index key material, and once per 86,400 seconds (24 hours) for all other key material.

More Information
Requires enabling PlatformEncryption and some configuration using the Setup menu in the scratch org. See Which User Permissions
Does Shield Platform Encryption Require? and Generate a Tenant Secret with Salesforce in Salesforce Help.

MobileExtMaxFileSizeMB:<value>
Increases the file size (in megabytes) for Field Service Mobile extensions. Indicate a value between 1–2,000.

149

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=commerce.comm_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=commerce.comm_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US

Supported Quantities
1–2,000, Multiplier: 1

MobileSecurity
Enables Enhanced Mobile Security. With Enhanced Mobile Security, you can control a range of policies to create a security solution
tailored to your org’s needs. You can limit user access based on operating system versions, app versions, and device and network security.
You can also specify the severity of a violation.

MobileVoiceAndLLM
Allows mobile apps to download large language models (LLMs) and voice models for offline use from the model store service. Normally,
mobile apps have access to the model store service when Einstein is enabled, but the MobileVoiceAndLLM scratch org feature enables
offline voice without requiring orgs to fully enable Einstein.

Sample Scratch Org Definition File
This sample scratch org definition file enables MobileVoiceAndLLM. Additionally, the sample scratch org definition configures
lightningExperienceSettings and mobileSettings.

{
"orgName": "Acme",
"edition": "Developer",
"features": ["MobileVoiceAndLLM"],
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false

}
}

}

MultiLevelMasterDetail
Allows the creation a special type of parent-child relationship between one object, the child, or detail, and another object, the parent,
or master.

MutualAuthentication
Requires client certificates to verify inbound requests for mutual authentication.

MyTrailhead
Enables access to a myTrailhead enablement site in a scratch org.

150

Scratch Org FeaturesScratch Orgs

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["MyTrailhead"],
"settings": {
"trailheadSettings": {
"enableMyTrailheadPref": true

}
}

}

More Information
Salesforce Help: Enablement Sites (myTrailhead)

NonprofitCloudCaseManagementUser
Provides the permission set license required to use and configure the Salesforce.org Nonprofit Cloud Case Management managed
package. You can then install the package in the scratch org.

More Information
For installation and configuration steps, see Salesforce.org Nonprofit Cloud Case Management.

NumPlatformEvents:<value>
Increases the maximum number of platform event definitions that can be created. Indicate a value between 5–20.

Supported Quantities
5–20, Multiplier: 1

ObjectLinking
Create rules to quickly link channel interactions to objects such as contacts, leads, or person accounts for customers (Beta).

OmnistudioMetadata
Enables Omnistudio metadata API. Using this API, customers can deploy and retrieve Omnistudio components programmatically.

For more information, see Enable OmniStudio Metadata API Support.

OmnistudioRuntime
Enables business users to execute OmniScripts, DataMappers, FlexCards, and so on in the employee facing applications.

151

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sales.mth_intro.htm&type=5&language=en_US
https://powerofus.force.com/s/article/CM-Documentation
https://help.salesforce.com/s/articleView?id=xcloud.os_enable_omnistudio_metadata_api_support.htm&type=5&language=en_US

OmnistudioDesigner
Enables administrator or developer to create new OmniScripts/ DataMappers / Integration Procedures instances.

OrderManagement
Provides the Salesforce Order Management license. Order Management is your central hub for handling all aspects of the order lifecycle,
including order capture, fulfillment, shipping, payment processing, and servicing.

More Information
Available in Enterprise and Developer Edition scratch orgs.

If you want to configure Order Management to use any of these features, enable it in your scratch org:

• MultiCurrency

• PersonAccounts

• ProcessBuilder

• StateAndCountryPicklist

Requires configuration using the Setup menu in the scratch org. For installation and configuration steps, see Salesforce Help: Salesforce
Order Management.

Note: The implementation process includes turning on several Order and Order Management feature toggles in Setup. In a scratch
org, you can turn them on by including metadata settings in your scratch org definition file. For details about these settings, see
OrderSettings and OrderManagementSettings in the Metadata API Developer Guide.

OrderSaveLogicEnabled
Enables scratch org support for New Order Save Behavior. OrderSaveLogicEnabled supports only New Order Save Behavior. If your scratch
org needs both Old and New Order Save Behavior, use OrderSaveBehaviorBoth.

Scratch Org Definition File
To enable OrderSaveLogicEnabled, update your scratch org definitions file.

{
"features": ["OrderSaveLogicEnabled"],
"settings": {
"orderSettings": {
"enableOrders": true

}
}

}

OrderSaveBehaviorBoth
Enables scratch org support for both New Order Save Behavior and Old Order Save Behavior.

152

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=commerce.om_order_management.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=commerce.om_order_management.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_ordersettings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_ordermanagementsettings.htm

Scratch Org Definition File
To enable OrderSaveLogicEnabled, update your scratch org definitions file.

{
"features": ["OrderSaveBehaviorBoth"],
"settings": {
"orderSettings": {
"enableOrders": true

}
}

}

OutboundMessageHTTPSession
Enables using HTTP endpoint URLs in outbound message definitions that have the Send Session ID option selected.

OutcomeManagement
Gives users access to Outcome Management features and objects in Salesforce and Experience Cloud.

More Information
See Outcome Management in Salesforce Help for more information. To enable Outcome Management, add these settings to your
scratch org definition file.

{
"features": ["OutcomeManagement"],
"settings": {
"IndustriesSettings": {
"enableOutcomes": true

}
}

}

PardotScFeaturesCampaignInfluence
Enables additional campaign influence models, first touch, last touch, and even distribution for Pardot users.

PersonAccounts
Enables person accounts in your scratch org.

More Information
Available in Enterprise and Developer Edition scratch orgs.

PipelineInspection
Enables Pipeline Inspection. Pipeline Inspection is a consolidated pipeline view with metrics, opportunities, and highlights of recent
changes.

153

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.outcome_management.htm&type=5&language=en_US

More Information
Available in Enterprise Edition scratch orgs. To enable Pipeline Inspection in your scratch org, add this setting in your scratch org definition
file.

"settings": {
...
"opportunitySettings": {
"enablePipelineInspectionFlow": true

},
...

}

PlatformCache
Enables Platform Cache and allocates a 3 MB cache. The Lightning Platform Cache layer provides faster performance and better reliability
when caching Salesforce session and org data.

More Information
See Platform Cache in the Apex Developer Guide for more information.

PlatformConnect:<value>
Enables Salesforce Connect and allows your users to view, search, and modify data that's stored outside your Salesforce org. Indicate a
value from 1–5.

Supported Quantities
1–5, Multiplier: 1

PlatformEncryption
Shield Platform Encryption encrypts data at rest. You can manage key material and encrypt fields, files, and other data.

PlatformEventsPerDay:<value>
Increases the maximum number of delivered standard-volume platform event notifications within a 24-hour period, shared by all CometD
clients. Indicate a value between 10,000–50,000.

Supported Quantities
10,000–50,000, Multiplier: 1

ProcessBuilder
Enables Process Builder, a Salesforce Flow tool that helps you automate your business processes.

154

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_cache_namespace_overview.htm

More Information
Requires configuration in the Setup menu of the scratch org.

See Process Builder in Salesforce Help for more information.

ProductsAndSchedules
Enables product schedules in your scratch org. Enabling this feature lets you create default product schedules on products. Users can
also create schedules for individual products on opportunities.

ProductCatalogManagementAddOn
Enables read-write access to Product Catalog Management features and objects.

More Information
Available in Developer and Enterprise scratch org editions. Provides 1 Product Catalog Management add-on license.

ProductCatalogManagementViewerAddOn
Enables read access to Product Catalog Management features and objects.

More Information
Available in Developer and Enterprise scratch org editions. Provides 1 Product Catalog Management Viewer add-on license.

ProductCatalogManagementPCAddOn
Enables read access to Product Catalog Management features and objects for Partner Community Users in scratch orgs.

More Information

• Available in Developer and Enterprise scratch org editions.

• Provides 1 Product Catalog Management add-on license.

• Requires a partner community user to be set up. The partner community user must be granted the Product Catalog Management
Partner Community add-on license.

ProgramManagement
Enables access to all Program Management and Case Management features and objects.

More Information
To enable ProgramManagement, add these settings to your scratch org definition file.

{
"orgName": "Sample Org" ,
"edition": "Enterprise",
"features": ["ProgramManagement"],

155

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=process_overview.htm&language=en_US

"settings": {
"IndustriesSettings": {
"enableBenefitManagementPreference": true,
"enableBenefitAndGoalSharingPref": true,
"enableCarePlansPreference": true

}
}

}

Alternatively, enable the settings in the org manually. See Enable Program Management in Salesforce Help.

ProviderFreePlatformCache
Provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This feature is made available through a capacity
type called Provider Free capacity and is automatically enabled in Developer Edition orgs. Allocate the Provider Free capacity to a Platform
Cache partition and add it to your managed package.

More Information
See Set Up a Platform Cache Partition with Provider Free Capacity in Salesforce Help for more information.

ProviderManagement
Enables the objects, features, and permissions for managing provider networks, care plans, and service delivery in Public Sector Solutions.

Sample Scratch Org Definition File
To enable ProviderManagement, add these features and settings to your scratch org definition file.

{
"orgName": "Provider Management Org",
"edition": "Developer",
"features": ["ProviderManagement:2"],
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false
},
"IndustriesSettings": {
"enableBenefitAndGoalSharingPref": true,
"enableBenefitManagementPreference": true,
"enableCarePlansPreference": true,
"enableCaseReferralPref": true,
"enableProviderManagementPref": true,
"enableProviderMgmtSharingPref": true,
"enableDisbursementPreference": true
}
}
}

156

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.NPC_PM_Enable_Program_Management.htm&language=en_US
https://help.salesforce.com/articleView?id=data_platform_cache_setup_provider_capacity.htm&type=5&language=en_US

PSSAssetManagement
Enables the objects, features, and permissions for managing assets in Public Sector Solutions.

Sample Scratch Org Definition File
To enable PSSAssetManagement, add these features and settings to your scratch org definition file.

{
"orgName": "PSS Asset Management Org",
"edition": "Enterprise",
"features": [
"PSSAssetManagement"
],
"settings": {
"industriesSettings": {
"enableIndustriesAssessment": true,
"enableDiscoveryFrameworkMetadata": true
}
}
}

PublicSectorAccess
Enables access to all Public Sector features and objects.

PublicSectorApplicationUsageCreditsAddOn
Enables additional usage of Public Sector applications based on their pricing.

PublicSectorSiteTemplate
Allows Public Sector users access to build an Experience Cloud site from the templates available.

RateManagement
Enables Rate Management that allows you to set, manage, and optimize rates for usage-based products.

More Information

• Provides these set of licenses:

– 5 RatingEngineAccess platform licenses

– 5 RatingRunTimeAddOn add-on licenses

– 5 RatingDesignTimeAddOn add-on licenses

– 10 FullCRM licenses

• Requires you to enable CoreCpq to access Rate Management.

See Configure Rate Pricing Calculations in Revenue Cloud in Salesforce Help for more information.

157

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_corecpq
https://help.salesforce.com/s/articleView?id=ind.rm_rate_management.htm&type=5&language=en_US

RecordTypes
Enables Record Type functionality. Record Types let you offer different business processes, picklist values, and page layouts to different
users.

RefreshOnInvalidSession
Enables automatic refreshes of Lightning pages when the user's session is invalid. If, however, the page detects a new token, it tries to
set that token and continue without a refresh.

RevSubscriptionManagement
Enables Subscription Management. Subscription Management is an API-first, product-to-cash solution for B2B subscriptions and one-time
sales.

More Information
Available in Enterprise and Developer scratch orgs. To enable Subscription Management in your scratch org, add this setting in your
scratch org definition file.

"settings": {
...
"subscriptionManagementSettings": {
"enableSubscriptionManagement": true

},
...

}

For more information about Subscription Management, see
https://developer.salesforce.com/docs/revenue/subscription-management/overview.

S1ClientComponentCacheSize
Allows the org to have up to 5 pages of caching for Lightning Components.

SalesCloudEinstein
Enables Sales Cloud Einstein features and Salesforce Inbox. Sales Cloud Einstein brings AI to every step of the sales process.

More Information
Available in Enterprise Edition scratch orgs.

See Sales Cloud Einstein in Salesforce Help for more information.

SalesforceContentUser
Enables access to Salesforce content features.

158

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/revenue/subscription-management/overview
https://help.salesforce.com/articleView?id=einstein_sales.htm&type=5&language=en_US

SalesforceFeedbackManagementStarter
Provides a license to use the Salesforce Feedback Management - Starter features.

More Information
Available in Enterprise and Developer edition scratch orgs. To use the Salesforce Feedback Management - Starter features, enable Surveys
and assign the Salesforce Advanced Features Starter user permission to the scratch org user. For additional information on how to enable
Surveys and configuration steps, see Enable Surveys and Configure Survey Settings and Assign User Permissions in Salesforce Help.

SalesforceHostedMCP
Enables hosted MCP servers on the scratch org. With this scratch org feature parameter, MCP clients can connect to available hosted
MCP servers.

More Information
Use of Salesforce hosted MCP servers requires setup of external clients. See Salesforce Hosted MCP Severs in Salesforce Help.

SalesforceIdentityForCommunities
Adds Salesforce Identity components, including login and self-registration, to Experience Builder. This feature is required for Aura
components.

SalesforcePricing
Enables Salesforce Pricing, which allows you to set, manage, and optimize prices across your entire product portfolio

More Information
Provides 5 Salesforce Pricing Design Time AddOn, 5 Salesforce Pricing Run Time AddOn licenses. For more information, see Salesforce
Pricing in Salesforce Help.

SalesUser
Provides a license for Sales Cloud features.

SAML20SingleLogout
Enables usage of SAML 2.0 single logout.

SCIMProtocol
Enables access support for the SCIM protocol base API.

ScvMultipartyAndConsult
Enables you to set up and test multiparty calls and consult calls for Service Cloud Voice with Partner Telephony.

159

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=xcloud.task_enable_surveys.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.concept_setup_sfm_profiles.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.hosted_mcp_servers.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.pricing_salesforce_pricing.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.pricing_salesforce_pricing.htm&type=5&language=en_US

More Information
This feature requires that you also include the ServiceCloudVoicePartnerTelephony scratch org feature in your scratch
org definition file. Available in Salesforce Enterprise, Unlimited, and Developer Editions.

For setup and configuration steps, see Manage Multiparty Calls and Consult Calls in the Service Cloud Voice for Partner Telephony
Developer Guide.

Sample Scratch Org Definition File

{
"orgName": "MultipartyScratchOrg",
"edition": "Developer",
"features": ["ScvMultipartyAndConsult", "ServiceCloudVoicePartnerTelephony"]
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},

"mobileSettings": {
"enableS1EncryptedStoragePref2": false

}
}

}

SecurityEventEnabled
Enables access to security events in Event Monitoring.

SentimentInsightsFeature
Provides the license required to enable and use Sentiment Insights in a scratch org. Use Sentiment Insights to analyze the sentiment of
your customers and get actionable insights to improve it.

More Information
To use this scratch org feature, the Dev Hub org requires the IESentimentAnalysis, AwsSentimentAnalysis, BYOAForSentiment, and
IESentimentAnalysisEnabled permissions. For information about Sentiment Insights, see Sentiment Insights in Salesforce Help.

ServiceCatalog
Enables Employee Service Catalog so you can create a catalog of products and services for your employees. It can also turn your employees'
requests for these products and services into approved and documented orders.

More Information
To use this scratch org feature, the Dev Hub org requires the ServiceCatalog permission. To learn more, see Employee Service Catalog.

ServiceCloud
Assigns the Service Cloud license to your scratch org, so you can choose how your customers can reach you, such as by email, phone,
social media, online communities, chat, and text.

160

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_multiparty_consult_calls.htm
https://help.salesforce.com/s/articleView?id=xcloud.sentiment_insights.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=service.esc_get_started_with_employee_service_catalog.htm&type=5&language=en_US

ServiceCloudVoicePartnerTelephony
Assigns the Service Cloud Voice with Partner Telephony add-on license to your scratch org, so you can set up a Service Cloud Voice
contact center that integrates with supported telephony providers. Indicate a value from 1–50.

Supported Quantities
1–50, Multiplier: 1

More Information
For setup and configuration steps, see Service Cloud Voice with Partner Telephony in Salesforce Help.

ServiceUser
Adds one Service Cloud User license, and allows access to Service Cloud features.

SessionIdInLogEnabled
Enables Apex debug logs to include session IDs. If disabled, session IDs are replaced with "SESSION_ID_REMOVED" in debug logs.

SFDOInsightsDataIntegrityUser
Provides a license to Salesforce.org Insights Platform Data Integrity managed package. You can then install the package in the scratch
org.

More Information
For installation and configuration steps, see the Salesforce.org Insights Platform Data Integrity help.

SharedActivities
Allow users to relate multiple contacts to tasks and events.

More Information
For additional installation and configuration steps, see Considerations for Enabling Shared Activities in Salesforce Help.

Sites
Enables Salesforce Sites, which allows you to create public websites and applications that are directly integrated with your Salesforce
org. Users aren’t required to log in with a username and password.

More Information
You can create sites and communities in a scratch org, but custom domains, such as www.example.com, aren't supported.

161

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=service.voice_pt_setup.htm&type=5&language=en_US
https://powerofus.force.com/s/article/IP-Documentation
https://help.salesforce.com/s/articleView?id=sales.activities_shared_considerations.htm&type=5&language=en_US

SocialCustomerService
Enables Social Customer Service, sets post defaults, and either activates the Starter Pack or signs into your Social Studio account.

StateAndCountryPicklist
Enables state and country/territory picklists. State and country/territory picklists let users select states and countries from predefined,
standardized lists, instead of entering state, country, and territory data into text fields.

StreamingAPI
Enables Streaming API.

More Information
Available in Enterprise and Developer Edition scratch orgs.

StreamingEventsPerDay:<value>
Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients (API
version 36.0 and earlier). Indicate a value between 10,000–50,000.

Supported Quantities
10,000–50,000, Multiplier: 1

SubPerStreamingChannel:<value>
Increases the maximum number of concurrent clients (subscribers) per generic streaming channel (API version 36.0 and earlier). Indicate
a value between 20–4,000.

Supported Quantities
20–4,000, Multiplier: 1

SubPerStreamingTopic:<value>
Increases the maximum number of concurrent clients (subscribers) per PushTopic streaming channel (API version 36.0 and earlier).
Indicate a value between 20–4,000.

Supported Quantities
20–4,000, Multiplier: 1

SurveyAdvancedFeatures
Enables a license for the features available with the Salesforce Feedback Management - Growth license.

162

Scratch Org FeaturesScratch Orgs

More Information
Available in Enterprise and Developer edition scratch orgs. To use the Salesforce Feedback Management - Growth features, enable
Surveys and assign the Salesforce Surveys Advanced Features user permission to the scratch org user. For additional information on how
to enable Surveys and configuration steps, see Enable Surveys and Configure Survey Settings and Assign User Permissions in Salesforce
Help.

SustainabilityCloud
Provides the permission set licenses and permission sets required to install and configure Sustainability Cloud. To enable or use CRM
Analytics and CRM Analytics templates, include the DevelopmentWave scratch org feature.

More Information
For installation and configuration steps, see Sustainability Cloud Legacy Documentation in the Set Up and Maintain Net Zero Cloud
guide in Salesforce Help.

SustainabilityApp
Provides the permission set licenses and permission sets required to configure Net Zero Cloud. To enable or use Tableau CRM and Tableau
CRM templates, include the DevelopmentWave scratch org feature.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "net zero scratch org",
"edition": "Developer",
"features": ["SustainabilityApp"],
"settings": {
"industriesSettings": {
"enableSustainabilityCloud": true,
"enableSCCarbonAccounting": true

}
}

}

More Information
For configuration steps, see Configure Net Zero Cloud in the Set Up and Maintain Net Zero Cloud guide in Salesforce Help.

TalentRecruitmentManagement
Enables the objects, features, and permissions for managing the talent recruitment and hiring process in Public Sector Solutions.

163

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=xcloud.task_enable_surveys.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.concept_setup_sfm_profiles.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.sustainability_cloud_legacy_documentation.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=netzero_admin.htm&language=en_US

Sample Scratch Org Definition File
To enable TalentRecruitmentManagement, add these features and settings to your scratch org definition file.

{
"orgName": "TRM Org",
"edition": "Developer",
"features": [
"TalentRecruitmentManagement:4"
],
"settings": {
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false
},
"IndustriesSettings": {
"enablePositionRecruitmentPref": true,
"enableIndustriesAssessment": true,
"enableDiscoveryFrameworkMetadata": true,
"enableCriteriaBasedSearchAndFilter": true
},
"DocumentChecklistSettings": {
"deleteDCIWithFiles": true
}
}
}

TCRMforSustainability
Enables all permissions required to manage the Net Zero Analytics app by enabling Tableau CRM. You can create and share the analytics
app for your users to bring your environmental accounting in line with your financial accounting.

More Information
For more information, see Deploy Net Zero Analytics in the Set Up and Maintain Net Zero Cloud guide in Salesforce Help.

TimelineConditionsLimit
Limits the number of timeline record display conditions per event type to 3.

More Information
See Provide Holistic Patient Care with Enhanced Timeline in Salesforce Help for more information.

TimelineEventLimit
Limits the number of event types displayed on a timeline to 5.

164

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.netzero_admin_analytics_deploy.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.hc_timeline.htm&type=5&language=en_US

More Information
See Provide Holistic Patient Care with Enhanced Timeline in Salesforce Help for more information.

TimelineRecordTypeLimit
Limits the number of related object record types per event type to 3.

More Information
See Provide Holistic Patient Care with Enhanced Timeline in Salesforce Help for more information.

TimeSheetTemplateSettings
Time Sheet Templates let you configure settings to create time sheets automatically. For example, you can create a template that sets
start and end dates. Assign templates to user profiles so that time sheets are created for the right users.

More Information
For configuration steps, see Create Time Sheet Templates in Salesforce Help.

TransactionFinalizers
Enables you to implement and attach Apex Finalizers to Queueable Apex jobs.

More Information

Note: This functionality is currently in open pilot and subject to restrictions.

See the Transaction Finalizers (Pilot) in Apex Developer Guide for more information.

UsageManagement
Enables Usage Management. Using Usage Management, you can setup, track, and manage the consumption of usage-based products.

More Information

• Provides 5 UsageManagementAddOn add-on licenses and 10 FullCRM licenses.

See Usage Management in Salesforce Help for more information.

VolunteerManagement
Gives users access to Volunteer Management features and objects in Salesforce.

Scratch Org Definition File
See Nonprofit Cloud for Volunteer Management in Salesforce Help for more information. To enable Volunteer Management, add these
settings to your scratch org definition file.

165

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.hc_timeline.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.hc_timeline.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=fs_create_timesheets.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_transaction_finalizers.htm
https://help.salesforce.com/s/articleView?id=ind.um_usage_management.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.volunteer_mgmt_volunteer_management.htm&language=en_US

Note: Volunteer Management licenses are assigned when the Volunteer Management feature is enabled in the scratch org.

{
"orgName": "Volunteer Management Org",
"edition": "Enterprise",
"hasSampleData": "false",
"features": [

"PersonAccounts",
"VolunteerManagement"

],
"settings": {

"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"IndustriesSettings": {

"enableVolunteerManagement": true
}

}
}

WaveMaxCurrency
Increases the maximum number of supported currencies for CRM Analytics. Indicate a value between 1–5.

WavePlatform
Enables the Wave Platform license.

Workflow
Enables Workflow so you can automate standard internal procedures and processes.

More Information
Requires configuration in the Setup menu of the scratch org.

WorkflowFlowActionFeature
Allows you to launch a flow from a workflow action.

More Information
This setting is supported only if you enabled the pilot program in your org for flow trigger workflow actions. If you enabled the pilot,
you can continue to create and edit flow trigger workflow actions.

If you didn't enable the pilot, use the Flows action in the ProcessBuilder scratch org feature instead.

WorkplaceCommandCenterUser
Enables access to Workplace Command Center features including access to objects such as Employee, Crisis, and EmployeeCrisisAssessment.

166

Scratch Org FeaturesScratch Orgs

More Information
For additional installation and configuration steps, see Set Up Your Work.com Development Org in the Workplace Command Center for
Work.com Developer Guide.

WorkThanksPref
Enables the give thanks feature in Chatter.

Scratch Org Settings
Scratch org settings are the format for defining org preferences in the scratch org definition. Because you can use all Metadata API
settings, they’re the most comprehensive way to configure a scratch org. If a setting is supported in Metadata API, it’s supported in
scratch orgs. Settings provide you with fine-grained control because you can define values for all fields for a setting, rather than just
enabling or disabling it.

For information on Metadata API settings and their supported fields, see Settings in Metadata API Developer Guide.

Important: Although the Settings are upper camel case in the Metadata API Developer Guide, be sure to indicate them as lower
camel case in the scratch org definition.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
"lightningExperienceSettings": {

"enableS1DesktopEnabled": true
},
"mobileSettings": {

"enableS1EncryptedStoragePref2": true
},
"omniChannelSettings": {

"enableOmniChannel": true
},
"caseSettings": {

"systemUserEmail": "support@acme.com"
}

}
}

Here’s an example of how to configure SecuritySettings in your scratch org. In this case, to define session timeout, you nest the field
values.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": [],
"settings": {

"mobileSettings": {
"enableS1EncryptedStoragePref2": true

167

Scratch Org SettingsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.workdotcom_dev_guide.meta/workdotcom_dev_guide/wdc_cc_setup_dev_org.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_settings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_securitysettings.htm

},
"securitySettings": {

"sessionSettings":{
"sessionTimeout": "TwelveHours"

}
}

}
}

This example shows how to use NameSettings to enable middle names and suffixes in your org for these person objects: Contact, Lead,
Person Account, and User.

{
"orgName": "Acme",
"edition": "Enterprise",
"settings": {

"mobileSettings": {
"enableS1EncryptedStoragePref2": true

},
"nameSettings": {

"enableMiddleName": true,
"enableNameSuffix": true

}
}

}

Create a Scratch Org Based on an Org Shape

We know it’s not easy to build a scratch org definition that mirrors the features and settings in your production org. With Org Shape for
Scratch Orgs, you can leave building the scratch org definition to us. After you capture the org’s shape, you can spin up scratch orgs
based on it.

Available in: Developer, Group, Professional, Unlimited, and Enterprise editions. The scratch org created from the org shape is the same
edition as the source org.

Not available in: Scratch orgs and sandboxes

What’s Included in Org Shape?
Features, Metadata API settings, edition, limits, and licenses determine what we refer to as an org’s shape. For further clarification, org
shape includes:

• Metadata API settings with boolean fields.

• Licenses associated with installed packages, but not the packages themselves. To use the associated package, install it in the scratch
org created from the org shape.

Note: Some features aren’t captured when the org shape is created. However, you can add the features manually to the scratch
org definition file. See Troubleshoot Org Shape for details.

168

Create a Scratch Org Based on an Org ShapeScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_namesettings.htm

What’s Not Included in Org Shape?
• Metadata API settings with integer or string fields. However, you can manually add non-Boolean settings or other settings

not included in the source org to your scratch org definition. See Scratch Org Definition for Org Shape for examples.

• Metadata types

• Data

Org Shapes Are Specific to a Release
Scratch org shapes are associated with a specific Salesforce release. Be sure to recreate the org shape after the source org is upgraded
to the new Salesforce release. During a Salesforce major release transition, your Dev Hub org and source org can be on different release
versions. See Scratch Org Definition for Org Shape for options during the transition period.

Can I See the Org Shape File?
Org shapes are internal system files and aren’t viewable.

Enable Org Shape for Scratch Orgs

Enable Org Shape for Scratch Orgs in the org whose shape you want to capture (source org).

Org Shape Permissions

A Salesforce admin for the Dev Hub org must assign permissions to users who plan to create org shapes, or create scratch orgs based
on an org shape. If you already have a permission set for Salesforce DX users, you can update it to include access.

Create and Manage Org Shapes

Create an org shape to mimic the baseline setup (features, limits, edition, and Metadata API settings) of a source org without the
extraneous data and metadata. If the features, settings, or licenses of that org change, you can capture those updates by recreating
the org shape. You can have only one active org shape at a time. Org shapes are internal system files and aren’t viewable.

Scratch Org Definition for Org Shape

During org shape creation, we capture the features, settings, edition, licenses, and limits of the specified source org. This way, you
don’t have to manually include these items in the scratch org definition file. You can create a scratch org based solely on the source
org shape. Or you can add more features and settings in the scratch org definition file to include functionality not present in the
source org.

Troubleshoot Org Shape

Here are some issues you can encounter when using Org Shape for Scratch Orgs.

SEE ALSO:

Metadata API Developer Guide: Settings

Enable Org Shape for Scratch Orgs
Enable Org Shape for Scratch Orgs in the org whose shape you want to capture (source org).

Available in: Developer, Group, Professional, Unlimited, and Enterprise editions

Not available in: Scratch orgs and sandboxes

Be sure to:

169

Enable Org Shape for Scratch OrgsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_settings.htm

• Enable Org Shape for Scratch Orgs in both the source org and the Dev Hub org, if you want to capture the shape of an org that isn’t
also your Dev Hub org.

• When entering the org ID, use only the first 15 characters rather than the full 18-character org ID.

You can find the org ID in Setup > Company Information.

1. Enable Org Shape for Scratch Orgs in the Dev Hub org that you use to create scratch orgs. Contact a Salesforce admin if you require
assistance.

a. From Setup, enter Scratch Orgs in the Quick Find box, then select Scratch Orgs.

b. Click the toggle for Enable Org Shape for Scratch Orgs.

c. In the text box, enter the 15-character org ID for the Dev Hub, then click Save.

2. (Optional) If the source org is different from the Dev Hub org, enable Org Shape for Scratch Orgs in the source org.

a. Log in to the source org.

b. From Setup, enter Scratch Orgs in the Quick Find box, then select Scratch Orgs.

c. Click the toggle for Enable Org Shape for Scratch Orgs.

d. Enter the 15-character Dev Hub org ID that you’re using to create scratch orgs.

You can specify up to 50 Dev Hub org IDs to address these common use cases:

• You have multiple production orgs but your development team has access to only one. For the customization they're building, they
require the shape of another production org.

• Your developers use their own Dev Hub orgs and don't have access to the production org. However, they want to create scratch
orgs based on the shape of the production org.

• You're an ISV who uses your production org to create scratch orgs. You want to capture the shape of your first-generation packaging
org so you can build second-generation packages.

Org Shape Permissions
A Salesforce admin for the Dev Hub org must assign permissions to users who plan to create org shapes, or create scratch orgs based
on an org shape. If you already have a permission set for Salesforce DX users, you can update it to include access.

PermissionsAccess

Object Settings > Shape Representation > Create, EditCreate an org shape

Object Settings > Shape Representation > DeleteDelete an org shape

No additional permissions are required besides the ones for creating
scratch orgs.

Use an org shape to create a scratch org

You don’t require the “Modify All Records” permission to delete shapes created by others because there can be only one active shape
in the org at a time.

170

Org Shape PermissionsScratch Orgs

Supported Licenses
In addition to providing users with appropriate permissions, be sure to assign the Salesforce license to Org Shape users. Other user
licenses aren’t supported at this time.

SEE ALSO:

Add Salesforce DX Users

SOAP API Developer Guide: ShapeRepresentation

Create and Manage Org Shapes
Create an org shape to mimic the baseline setup (features, limits, edition, and Metadata API settings) of a source org without the
extraneous data and metadata. If the features, settings, or licenses of that org change, you can capture those updates by recreating the
org shape. You can have only one active org shape at a time. Org shapes are internal system files and aren’t viewable.

An org shape captures Metadata API settings, not all metadata types. For example, customizations that appear in the org, such as
Lightning Experience Themes, aren’t included as part of org shape. See Settings in the Metadata API Guide for the complete list.

An org shape includes org preference and permissions. It doesn’t include data entries such as AddressSettings.

Important: Scratch org shapes are associated with a specific Salesforce release. Be sure to recreate the org shape after the source
org is upgraded to the new Salesforce release.

1. Authorize both your Dev Hub org and the source org. Run this command for each org.

sf auth web login --alias

2. Create the org shape for the source org. This command kicks off an asynchronous process to create the org shape.

sf org create shape --target-org <source org username/alias>
Successfully created org shape for 3SRB0000000TXbnOCG.

3. Check the status of the shape:create command.

sf org shape list

=== Org Shapes
ALIAS USERNAME ORG ID SHAPE STATUS CREATED BY CREATED DATE
────── ──────── ────────────────── ──────────── ────────── ─────────────
SrcOrg me@my.org 00DB1230000Ifx5MAC InProgress me@my.org 2020-08-06

You can use the org shape after the status is Active:

=== Org Shapes
ALIAS USERNAME ORG ID SHAPE STATUS CREATED BY CREATED DATE
────── ───────── ────────────────── ──────────── ──────────── ────────────
SrcOrg me@my.org 00DB1230000Ifx5MAC Active me@my.org 2020-08-06

If you run the sf org create shape command again for this org, the previous shape is marked inactive and replaced by a new
active shape.

If you don’t want to create scratch orgs based on this shape, you can delete the org shape. To delete an org shape:

sf org delete shape --target-org <username/alias>

171

Create and Manage Org ShapesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.api.meta/api/sforce_api_objects_shaperepresentation.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_settings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_addresssettings.htm

Scratch Org Definition for Org Shape
During org shape creation, we capture the features, settings, edition, licenses, and limits of the specified source org. This way, you don’t
have to manually include these items in the scratch org definition file. You can create a scratch org based solely on the source org shape.
Or you can add more features and settings in the scratch org definition file to include functionality not present in the source org.

Important: In the scratch org definition, indicate the 15-character sourceOrg instead of edition. The sourceOrg is the
org ID for the org whose shape you created. Use only the first 15 characters rather than the full 18-character org ID.

Simple Scratch Org Definition File
If your Dev Hub org, source org, and org shape are all on the same Salesforce version, you can use the simple scratch org definition.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5"

}

Scratch Org Definition File during Salesforce Release Transitions
During the Salesforce major release transition, your Dev Hub org and source org can be on different versions. If your Dev Hub org is on
a different version than your source org, add the release option to your scratch org definition file to create scratch orgs using the
org shape.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"release": "previous"

}

Release Option to Use in
Scratch Org Definition File

Supported Scratch Org
Version

Dev Hub VersionSource Org/Org Shape
Version

"release": "previous"Current version onlyPreviewCurrent

"release": "preview"Preview version onlyCurrentPreview

Scratch Org Definition File for DevOps Center
If you create a scratch org based on an org shape with DevOps Center enabled, we still require that you add the DevOps Center feature
and setting to the scratch org definition. We require that customers explicitly enable it for legal reasons as part of the DevOps Center
terms and conditions.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"features": ["DevOpsCenter"],
"settings": {

"devHubSettings": {
"enableDevOpsCenterGA": true
}

172

Scratch Org Definition for Org ShapeScratch Orgs

}
}

Scratch Org Definition File with Other Features and Settings
To add features not captured by org shape, or to test features that your source org doesn't have, you can add more scratch org features
and Metadata API settings. Settings refer to the Settings metadata type, not all metadata types.

{
"orgName": "Acme",
"sourceOrg": "00DB1230000Ifx5",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
"mobileSettings": {

"enableS1EncryptedStoragePref2": true
},
"omniChannelSettings": {

"enableOmniChannel": true
},
"caseSettings": {

"systemUserEmail": "support@acme.com"
}

}
}

Next: Create a scratch org using the org shape scratch org definition file.

SEE ALSO:

Metadata API Developer Guide: Settings

Troubleshoot Org Shape
Here are some issues you can encounter when using Org Shape for Scratch Orgs.

Some Features Not Captured by Org Shape
Description: Some features and settings aren’t enabled in the org shape, in many cases by design due to security or legal reasons.

• Chatbot

• DevOpsCenter

• MultiCurrency

• PersonAccounts

Workaround: Add them to the scratch org definition.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"features": [”Chatbot”, "MultiCurrency", "DevOpsCenter"],

173

Troubleshoot Org ShapeScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_settings.htm

"settings":
{
"botSettings":

"enableBots": true
}
"currencySettings":

"enableMultiCurrency": true
}
"devHubSettings": {

"enableDevOpsCenterGA": true
}

}

Some Field Service Features Aren't Enabled in Org Shape
Description: Even when the Field Service Enhanced Scheduling and Optimization, and Field Service Integration features are enabled
in the source org in which the org shape is created, these features aren’t enabled when creating a scratch org based on the org shape.

Workaround: Manually add the missing Field Service Metadata API settings to the scratch org definition depending on which features
are enabled in the source org.

Scenario 1: If the org shape included both the Field Service Enhanced Scheduling and Optimization, and Field Service Integration features,
manually add the Field Service Enhanced Scheduling and Optimization Metadata API setting, o2EngineEnabled, in the scratch
org definition file, which enables both features.

"settings":
{
"fieldServiceSettings":
{
"fieldServiceOrgPref": true,
"o2EngineEnabled": true

}
}

Scenario 2: If the org shape included only the Field Service Integration feature, manually add the Field Service Enhanced Scheduling and
Optimization Metadata API setting optimizationServiceAccess, to the scratch org definition file.

"settings":
{
"fieldServiceSettings":
{
"fieldServiceOrgPref": true,

"optimizationServiceAccess": true
}

}

DevOps Center Isn’t Enabled in a Scratch Org Based on an Org Shape
Description: Although DevOps Center is enabled in the source org, the scratch org created from the source org’s shape doesn’t have
DevOps Center enabled. The DevOps Center org preference is purposely toggled off. We require that customers explicitly enable it by
indicating the feature and setting in the scratch org definition file for legal reasons as part of the DevOps Center terms and conditions.

Workaround: Add the DevOps Center feature and setting to the scratch org definition file. See Scratch Org Definition for Org Shape for
details.

174

Troubleshoot Org ShapeScratch Orgs

ERROR running force:org:shape:list
Description: A trial org from which you created the org shape has expired. You could see either of these errors:

ERROR running org list shape: Error authenticating with the refresh token due to: inactive
user
ERROR running org list shape: Error authenticating with the refresh token due to: expired
access/refresh token

Workaround:

• Use sf org logout to log out and remove the expired org.

• Run sf org list shape again.

Can't create a Digital Experience Cloud Site Using Org Shape
Description: When you try to create a scratch org from an org shape that contains an Experience Cloud Site, you get an error.

Required fields are missing: [Welcome Email Template, Change Password Email Template, Lost
Password Template]

Workaround: None.

Error While Creating Scratch Org Using a Shape
Description: You see this error when creating a scratch org using a shape.

ERROR running org create scratch: A fatal signup error occurred. Please try again.
If you still see this error, contact Salesforce Support for assistance.

Workaround: Generate a new shape using the org create shape command, then try again.

Shift Status Picklists Aren’t Populated When Using a Shape With Field Service
Description: When you create a scratch org from a shape with Field Service enabled, the Status field picklist for Shifts is empty.

Workaround: Use an org shape with field service disabled, then enable field service in the scratch org definition file settings.

{
"orgName": "Acme",
"sourceOrg": "00DB1230000Ifx5",
"settings": {

"fieldServiceSettings": {
"fieldServiceOrgPref": true

}
}
}

Org Shape Feature Accepts Only 15-Character Org IDs
Description: You can use only 15-character org IDs when enabling Org Shape for Scratch Orgs and specifying the source org in the
scratch org definition file. Org IDs are usually 18 characters long, which is what the org list command displays.

Workaround: Use only the first 15 characters of a standard 18-character org ID when working with the Org Shape feature.

175

Troubleshoot Org ShapeScratch Orgs

Create Scratch Orgs

Easily spin up a scratch org and open it directly from the command line.

Before you create a scratch org:

• Set up your Salesforce DX project

• Authorize the Dev Hub org

• Create the scratch org definition file (build your own or use an org shape)

You can create scratch orgs for different functions, such as for feature development, for development of packages that contain a
namespace, or for user acceptance testing.

Tip: Delete any unneeded or malfunctioning scratch orgs in the Dev Hub org or via the command line so that they don’t count
against your active scratch org allocations.

Indicate the path to the scratch definition file relative to your current directory. For sample repos and new projects, this file is located in
the config directory.

Ways to Create Scratch Orgs
Create a scratch org for development using a scratch org definition file, give the scratch org an alias, and indicate that this scratch org
is the default. Use the --target-dev-hub flag to specify your Dev Hub org’s username or alias; if you don’t specify this flag, the
command uses your default Dev Hub.

sf org create scratch --definition-file config/project-scratch-def.json --alias MyScratchOrg
--set-default --target-dev-hub MyHub

You can override many of the options in the user definition file by specifying the corresponding flag at the command line when you run
org create scratch. This technique allows multiple users or continuous integration jobs to share a base definition file and then
customize options when they run the command. This example overrides the adminEmail and edition options.

sf org create scratch --definition-file config/project-scratch-def.json --admin-email
me@email.com --edition developer

You’re not required to specify a definition file when you create a scratch org, as long as you specify the required flag --edition.

sf org create scratch --edition developer

This example creates a scratch org from a snapshot with the specified name.

sf org create scratch --snapshot dhsnapshot --wait 10 --target-dev-hub MyHub

This example creates a scratch org from an org shape with the specified ID.

sf org create scratch --source-org 00DB1230000Ifx5

Create a scratch org for user acceptance testing or to test installations of packages. In this case, you don’t want to create a scratch org
with a namespace. You can use this command to override the namespace value in the scratch org definition file. This example also
specifies the scratch org’s duration, which indicates when the scratch org expires (in 1-30 days). The default duration is 7 days.

sf org create scratch --definition-file config/project-scratch-def.json --no-namespace
--duration-days 30

176

Create Scratch OrgsScratch Orgs

Specify the Salesforce release for the scratch org. During the Salesforce release transition, you can specify the release (preview or previous)
when creating a scratch org. See Select the Salesforce Release for a Scratch Org for details.

sf org create scratch --edition developer --release preview

Request a scratch org, but don’t wait for it complete, by specifying the --async flag.

sf org create scratch --edition developer --async

The command displays a job ID that you pass to the org resume scratch command. Use this command to also resume a scratch
org creation that times out.

sf org resume scratch --job-id 2SRB0000CSqdJOAT

Create a scratch org with source tracking disabled.

sf org create scratch --definition-file config/project-scratch-def.json --no-track-source

View Scratch Org Creation Progress
While executing, the org create scratch command displays running information about the background processes. When the
command completes, it displays two important pieces of information: the org ID and the username.

────────────── Creating Scratch Org ──────────────

� Prepare Request 11ms
� Send Request 11.73s
� Wait For Org - Skipped
� Available 12ms
� Authenticate 1.51s
� Deploy Settings 2.14s
� Done 0ms

Request Id: 2SRWs000003y7mUOAQ (https://cbdocorg.my.salesforce.com/2SRWs000003y7mUOAQ)
OrgId: 00DE200000DHqsM
Username: test-lvsbbdryeaxn@example.com
Alias: myscratch
Elapsed Time: 15.40s

Your scratch org is ready.

Open the Scratch Org
sf org open --target-org test-st9thgoyyyq3@example.com

If you used the --alias flag to set an alias, you can use that value for --target-org.

sf org open --target-org MyScratchOrg

Salesforce Release Transition Periods
Timing is everything during the Salesforce release transition period. During the transition period, you can intend to create a scratch org
on the current release but find that the scratch org is unexpectedly created on the preview release. If the instance on which the scratch

177

Create Scratch OrgsScratch Orgs

is created transitions to the preview release after the creation request is initiated, the scratch org is created on the preview version instead
of the current version. During this transition period, there’s no way to know when the sandbox (CS) instance will be upgraded.

If you open the scratch org and it isn’t on the expected version, you have some options. See “How Release Transitions Can Affect the
Scratch Org Version” in Select the Salesforce Release for a Scratch Org.

Troubleshooting Tips
If the create command runs into an error, it’s not always clear if the scratch org was created. Issue this command on your Dev Hub org
to see if it returns the scratch org ID, which confirms the existence of a scratch org that was created today and owned by you:

sf data query --query "SELECT ID, Name, Status FROM ScratchOrgInfo WHERE CreatedBy.Name =
'<your name>' AND CreatedDate = TODAY" --target-org <Dev Hub org>

Use this information to determine if the creation actually worked. For example, let’s say your name is Jane Doe, and you created an alias
for your Dev Hub org called DevHub:

sf data query --query "SELECT ID, Name, Status FROM ScratchOrgInfo WHERE CreatedBy.Name =
'Jane Doe' AND CreatedDate = TODAY" --target-org DevHub

SEE ALSO:

ScratchOrgInfo sObject API Reference

Project Setup

Authorization

Build Your Own Scratch Org Definition File

Deploy Source From Your Project to the Scratch Org

VS Code Command: SFDX: Create a Default Scratch Org

Scratch Org Snapshots

Capture the state of a scratch org’s configuration so that you can use it to create scratch org replicas. A snapshot is a point-in-time copy
of a scratch org that includes installed packages, features, limits, licenses, metadata, and data.

Configuring a scratch org with a project’s dependencies can be a manual and time-consuming process. It can require deploying dependent
metadata to it, seeding it with sample data, installing one or more packages, and then performing manual tasks directly in the scratch
org. And then, poof, the scratch org expires, and you have to start all over again. With scratch org snapshots, you can quickly replicate
scratch orgs with the required project dependencies.

How Snapshots Fit in the Development Lifecycle
Because a snapshot is a point-in-time copy of your scratch org, it’s static. To update your snapshot, delete it and create another snapshot.

You can create a snapshot from only a scratch org and, conversely, you can create only scratch orgs from a snapshot. Snapshots have
the same 200-MB data storage limit as scratch orgs. A snapshot isn’t meant to replace source-driven development or a version control
system. You continue to follow best development practices by externalizing and modularizing your project source.

Snapshots and scratch orgs don’t replace sandboxes for user acceptance testing. A snapshot is intended to contain the static dependencies
of a project, and not the entire happy soup of your production org.

178

Scratch Org SnapshotsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_scratchorginfo.htm
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/vscode-overview.html

Snapshot Allocations and Limits
Snapshots are associated with a Dev Hub org. Therefore, you must use the same Dev Hub org when you create the scratch org from the
snapshot.

• The number of snapshots you can create is the same as the active scratch org allocation based on edition type.

• Snapshots expire after 90 days. When a snapshot expires or is deleted, its status is updated automatically and its license becomes
immediately available.

• Snapshot data is retained for 100 days. When a snapshot expires, it’s associated data is deleted 10 days later. If a snapshot is deleted,
its associated data is deleted 100 days after its creation date.

Snapshot Allocations (Active and Daily)Edition

3Developer Edition

40Enterprise Edition

100Unlimited Edition

100Performance Edition

To view your snapshot usage with Salesforce CLI, run:

sf org list limits -o <Dev Hub username or alias>

Look for these values in the output:

Name Remaining Max
───────────────────── ───────── ─────────
ActiveOrgSnapshots 38 40
DailyOrgSnapshots 35 40

Unsupported Features
These features aren’t copied to the snapshot because they risk exposing sensitive data or authentication secrets.

• Connected apps

• External credentials

• Named credentials

Get Started with Scratch Org Snapshots

Install the required Salesforce DX tools, then enable Dev Hub and Scratch Org Snapshots in an org, usually your production org.

Salesforce CLI Snapshot Commands

You must use Salesforce CLI commands to create and manage your scratch org snapshots.

Create a Scratch Org Snapshot

You can create a snapshot if the source scratch org wasn’t created using a snapshot or with a namespace.

Create a Snapshot for Use with Namespaced Scratch Orgs

While you can't use a namespaced scratch org to create a snapshot, you can create a namespaced scratch org from a snapshot. That
way, you can deploy namespaced metadata to the scratch org. Snapshots are intended to include only dependent packages,
metadata, and test data.

179

Scratch Org SnapshotsScratch Orgs

Create a Scratch Org Based on a Snapshot

The snapshot must belong to the Dev Hub that you’re using to create the scratch org. We recommend that you create a scratch org
definition file that references the snapshot, although you can also reference it directly with the --snapshot flag of org create
scratch. Changing or deleting a scratch org has no effect on a snapshot.

Create a Package Version Based on a Snapshot

If you’re a partner or ISV who builds second-generation managed packages that depend on base packages, you can create package
versions significantly faster by using scratch org snapshots. Using a snapshot to create a package version is a great choice if your
dependent base packages are stable.

Manage and Maintain Your Snapshots

You can check the status of snapshot creation, list all snapshots, and delete a snapshot.

Get Started with Scratch Org Snapshots
Install the required Salesforce DX tools, then enable Dev Hub and Scratch Org Snapshots in an org, usually your production org.

• Install Salesforce CLI.

• Enable Dev Hub in your production org.

• Authorize your Dev Hub org. The Dev Hub org is the org you use to create and manage scratch orgs.

• Enable Scratch Org Snapshots in the Dev Hub org.

• Provide users with permissions to create snapshots.

Enable Scratch Org Snapshots in the Dev Hub Org

A snapshot must belong to the Dev Hub org that you’re using to create the scratch orgs.

Assign a License and Permissions to Snapshot Users

Provide all non-admin Scratch Org Snapshots users with a supported license and access to the required scratch org and snapshot
objects. Dev Hub (production org) admins can create and manage snapshots by default.

Enable Scratch Org Snapshots in the Dev Hub Org

EDITIONS

Available in: Developer,
Enterprise, Group,
Professional, and Unlimited
editions

Not available in: Scratch
orgs and sandboxes

A snapshot must belong to the Dev Hub org that you’re using to create the scratch orgs.

1. Log into your Dev Hub org as the admin user.

2. From Setup, enter Scratch Orgs in the Quick Find box, then select Scratch Orgs.

3. Click to enable Enable Scratch Org Snapshots.

Assign a License and Permissions to Snapshot Users
Provide all non-admin Scratch Org Snapshots users with a supported license and access to the
required scratch org and snapshot objects. Dev Hub (production org) admins can create and manage
snapshots by default.

1. Log in to your Dev Hub org as the admin user.

2. Assign to each snapshot user a Salesforce, Salesforce Platform, or Salesforce Limited Access license.

3. In Setup, create a permission set or select an existing one.

4. From the permission set’s Object Settings, select Org Snapshots, then click Edit.

180

Get Started with Scratch Org SnapshotsScratch Orgs

https://developer.salesforce.com/tools/salesforcecli
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth.htm

a. Under Object Permissions, select Read, Create, and Delete.

b. (Optional) Add these object permissions to the permission set.

• To allow users to see snapshots that other users create, select View All Records.

• To allow users to delete snapshots that other users create, select Modify All Records (Salesforce license only).

5. If snapshot users don’t already have access to the required scratch org objects (Scratch Org Info and Active Scratch Orgs) through
another permission set, include access to them in this permission set.

See Required Permissions for Scratch Orgs in Create and Assign a Permission Set to Developer Users for details.

6. Save your changes.

7. Click Manage Assignments, then Add Assignment.

8. Select the users, click Next, and optionally set an expiration date.

9. Click Assign, then Done.

Salesforce CLI Snapshot Commands
You must use Salesforce CLI commands to create and manage your scratch org snapshots.

org create snapshot
Create a snapshot of a scratch org.

org delete snapshot
Delete a scratch org snapshot.

org get snapshot
Get details about a scratch org snapshot.

org list snapshot
List scratch org snapshots that belong to the specified Dev Hub org.

Get Help in the Terminal for Command Syntax
The --help and -h flags enable you to get varying levels of help (comprehensive or abbreviated) right in the command window:

Example:

sf org create snapshot --help

Create a Scratch Org Snapshot
You can create a snapshot if the source scratch org wasn’t created using a snapshot or with a namespace.

Before you begin:

• Enable Dev Hub in your production org, or another org you use to create scratch orgs.

• Enable Scratch Org Snapshots in the Dev Hub org.

• Be sure that non-admin users have the proper permissions to use scratch orgs and snapshots. See Assign a License and Permissions
to Snapshot Users for details.

A snapshot captures the state of a scratch org at a point in time. To update your snapshot, delete it and create another snapshot. Unlike
an org shape, a snapshot includes installed packages, metadata, and data. The time to create a snapshot depends on the size of the
source scratch org. To speed up snapshot creation time, include only what’s necessary for your project.

181

Salesforce CLI Snapshot CommandsScratch Orgs

Note: If you continue to modify the source scratch org after you run the snapshot command, not all the modifications will be
reflected in the snapshot. Instead, complete the configuration of the source scratch org before creating the snapshot.

Command syntax:

sf org create snapshot --name <name> --source-org <ID or alias of scratch org> \
--target-dev-hub <username or alias of Dev Hub org> --description <text>

A snapshot name can have a maximum length of 15 characters. It can contain only alphanumeric characters (no special characters or
spaces, even if the name is surrounded by quotation marks during creation).

Tip: To view the aliases, usernames, and IDs of your authenticated orgs and scratch orgs, run the org list command.

Example:

sf org create snapshot --name dhsnapshot --source-org dreamhouse-scratch \
--target-dev-hub my-dev-hub --description "Dreamhouse app"

Your request is initially InProgress:

Name Value
────────────────── ────────────────────
Id 0Oo1Q0000004C93SXX
Snapshot Name dhsnapshot
Description Dreamhouse app
Status InProgress
Source Org 00D050000004ipAEXX
Created Date 09/22/2023, 02:07 PM
Last Modified Date 09/22/2023, 02:07 PM
Expiration Date 2023-12-21

To check the status of the request, see Manage and Maintain Your Snapshots.

Create a Snapshot for Use with Namespaced Scratch Orgs
While you can't use a namespaced scratch org to create a snapshot, you can create a namespaced scratch org from a snapshot. That
way, you can deploy namespaced metadata to the scratch org. Snapshots are intended to include only dependent packages, metadata,
and test data.

1. Create and register the namespace in the Dev Hub org and add it to the sfdx-project.json file.

2. When you create the scratch org that you plan to use as the source of the snapshot, be sure to indicate the --no-namespace
flag.

3. Create the scratch org snapshot.

4. Create a scratch org based on the snapshot.

The resulting scratch org has a namespace, which means that any unpackaged metadata from the snapshot is now namespaced in
the resulting scratch org.

SEE ALSO:

Link a Namespace to a Dev Hub Org

182

Create a Snapshot for Use with Namespaced Scratch OrgsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

Create a Scratch Org Based on a Snapshot
The snapshot must belong to the Dev Hub that you’re using to create the scratch org. We recommend that you create a scratch org
definition file that references the snapshot, although you can also reference it directly with the --snapshot flag of org create
scratch. Changing or deleting a scratch org has no effect on a snapshot.

Create the Scratch Org Definition File
The scratch org definition file is the blueprint for your scratch org. It’s likely that your snapshot includes all the required features and
settings to configure the scratch orgs created from it.

Using our Dreamhouse scratch org as an example, let’s create a scratch org definition file called dhsnapshot-scratch-def.json
that contains only two entries: orgName and snapshot, which is the name you gave the snapshot when you created it.

Important: Be sure you use the snapshot option instead of edition in the scratch org definition file.

{
"orgName": "Salesforce",
"snapshot": "dhsnapshot"

}

When creating the scratch org definition file, don’t include these options:

• edition

• features

• hasSampleData

• release

• sourceOrg

Add Settings to the Scratch Org Definition File to Override Default Snapshot Settings
Some scratch org settings aren’t inherited from the org snapshot. In these cases, you can add these settings in the scratch org definition
file to achieve the desired scratch org configuration when creating a scratch org from a snapshot.

This example scratch org definition file illustrates adding some scratch org settings, in the event that these settings weren’t inherited
from the scratch org snapshot.

{
"orgName": "Salesforce",
"snapshot": "dhsnapshot",
"settings": {
"activitiesSettings": {
"enableCalendarHomeLWC": false

},
"omniChannelSettings": {
"enableOmniSkillRouting": true
"enableOmniChannel": true

},
"experienceBundleSettings": {
"enableExperienceBundleMetadata": true

},
"oauthOidcSettings": {
"blockOAuthUnPwFlow": true

183

Create a Scratch Org Based on a SnapshotScratch Orgs

},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false

},
"securitySettings": {
"lockerServiceNext": false

}
}

}

Create the Scratch Org Based On Your Snapshot
It can take Salesforce longer to create a scratch org from a snapshot, so we suggest you increase the --wait value so the command
doesn’t time out. Remember to set the --target-dev-hub flag to the same Dev Hub org associated with the snapshot.

For example:

sf org create scratch --definition-file config/dhsnapshot-scratch-def.json \
--alias dh-scratch-ci --wait 10 --target-dev-hub my-dev-hub

This example shows how to use the --snapshot flag to directly reference the snapshot without using a defintion file.

sf org create scratch --snapshot dhsnapshot \
--alias dh-scratch-ci --wait 10 --target-dev-hub my-dev-hub

You can indicate whether the scratch org you create from the snapshot has a namespace, which is important if you’re using scratch orgs
for second-generation package development.

• Define a namespace in the sfdx-project.json file. The resulting scratch org has a namespace, which means that any
unpackaged metadata from the snapshot is now namespaced in the resulting scratch org.

• Use the --no-namespace flag to ensure the resulting scratch org doesn’t have a namespace, even if you have a namespace
specified in the sfdx-project.json file.

Success! Development and testing with scratch orgs just got a whole lot easier.

Determine the Release Version for the Resulting Scratch Org
Normally, a scratch org is created on the same release version as the Dev Hub org regardless of how the scratch org was created: using
the standard method, an org shape, or a snapshot. However, during Salesforce Preview, a scratch org can be created on a different release
version from the Dev Hub org, if the snapshot release version differs from the Dev Hub’s release version.

During the Salesforce release transition, release version differences can occur for these scenarios:

• The Dev Hub org is on the current generally available Salesforce release, but the snapshot is created on the preview release version.

• The Dev Hub has upgraded to the preview release, but the snapshot was created on the current release version.

In cases where the Dev Hub org and snapshot release versions differ, the resulting scratch org is created on the same release version as
the snapshot, as illustrated in this table.

Resulting Scratch Org Release
Version

Snapshot Release VersionDev Hub Release Version

CurrentCurrentCurrent

PreviewPreviewCurrent

184

Create a Scratch Org Based on a SnapshotScratch Orgs

Resulting Scratch Org Release
Version

Snapshot Release VersionDev Hub Release Version

CurrentCurrentPreview

PreviewPreviewPreview

Snapshot Error Codes
See Scratch Org Error Codes for details.

Create a Package Version Based on a Snapshot
If you’re a partner or ISV who builds second-generation managed packages that depend on base packages, you can create package
versions significantly faster by using scratch org snapshots. Using a snapshot to create a package version is a great choice if your dependent
base packages are stable.

What Are the Benefits of Using a Snapshot When Developing a Package Version?
A snapshot includes all the dependencies and configurations required for your package. When you run the package version
create CLI command, we create a scratch org behind the scenes. That scratch org serves as a build org where we build your package.
In the build org we install the dependent packages you specified, and deploy the package metadata for the package version you're
creating.

If you install your dependent packages in the scratch org before you create the snapshot, and specify the snapshot when you create a
package version, the package build process bypasses these steps. Meaning, we don't install the dependent packages into the build org,
but use the snapshot instead. If you don’t use a snapshot, those dependent packages have to be installed each time you create a package
version, which can greatly prolong package creation times.

For a more detailed explanation, see Second-Generation Managed Packaging Guide: When to Use Scratch Org Snapshots in Package
Development.

Why Can’t I Promote a Package Version Based on a Snapshot?
Using snapshots to create package versions speeds up the package development and testing process. However, a scratch org snapshot
could contain unpackaged metadata that’s not associated with the package. For example, if you’re an ISV that created a package version
with unpackaged metadata in a snapshot, it’s likely that your customers could encounter installation issues when you perform a push
upgrade to orgs that don’t contain the dependent metadata.

To ensure your package version is ready to release and doesn’t contain any unintended dependencies, you must build a package version
without a snapshot.

Note: You can promote an unlocked package based on a snapshot. Only managed packages based on snapshots can’t be
promoted to the released state.

How Do I Create a Package Version Based on Snapshot?
See Second-Generation Managed Packaging Guide: Create a Package Version Based on a Scratch Org Snapshot.

185

Create a Package Version Based on a SnapshotScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_error_codes.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_so_when_use_snapshot.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_so_when_use_snapshot.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_so_pkg_snapshot.htm

Manage and Maintain Your Snapshots
You can check the status of snapshot creation, list all snapshots, and delete a snapshot.

Check the Status of a Snapshot Creation
Creating a snapshot can take a while. Use the snapshot name or ID to check its creation status.

sf org get snapshot --snapshot <name or ID> --target-dev-hub <username or alias>

For example:

sf org get snapshot --snapshot dhsnapshot --target-dev-hub my-dev-hub

After the status changes to Active, you can use the snapshot to create scratch orgs.

Name Value
────────────────── ────────────────────
Id 0Oo1Q0000004C93SXX
Snapshot Name dhsnapshot
Description Dreamhouse app
Status Active
Source Org 00D050000004ipAEXX
Created Date 09/22/2023, 02:07 PM
Last Modified Date 09/22/2023, 02:14 PM
Expiration Date 2024-09-21
Last Cloned Date
Last Cloned By Id

List All Scratch Org Snapshots
You can view all the snapshots in a Dev Hub org that you have access to. If you’re an admin, you can see all snapshots associated with
the Dev Hub org. If you’re a user, you can see only your snapshots, unless a Dev Hub admin gives you View All Records permissions.

sf org list snapshot --target-dev-hub <username or alias>

Delete a Scratch Org Snapshot
If you don’t need a snapshot anymore or run out of active snapshots, you can delete a snapshot. Dev Hub admins can delete any snapshot,
while users can delete only their snapshots unless a Dev Hub admin gives the user Modify All Records permissions. Deleting a snapshot
frees up a license to create an additional snapshot, but the associated data is retained for 100 days after the snapshot was created.

This example identifies the snapshot for deletion by snapshot name.

sf org delete snapshot --snapshot dhsnapshot --target-dev-hub my-dev-hub

This example identifies the snapshot for deletion by snapshot ID.

sf org delete snapshot --snapshot 0OoWt00000000A1BCD --target-dev-hub my-dev-hub

Select the Salesforce Release for a Scratch Org

During the Salesforce release transition, you can specify the release (preview or previous) when creating a scratch org.

186

Manage and Maintain Your SnapshotsScratch Orgs

What Is Salesforce Preview?
During every major Salesforce release, you can get early access to the upcoming release in your scratch orgs and sandboxes to test new
customizations and features before your production org is upgraded. This window is called the Salesforce Preview. Scratch orgs created
on the upcoming release are called preview scratch orgs.

Normally, you create scratch orgs that are the same version as the Dev Hub. However, during the major Salesforce release transition that
happens three times a year, you can select the Salesforce release version Preview or Previous, based on the version of your Dev
Hub.

To try out new features in an upcoming release, you no longer have to create a trial Dev Hub on the upcoming version to create preview
scratch orgs. You can use your existing Dev Hub that includes your existing scratch org active and daily limits.

For example, you can select a version over the next three releases during these release transition dates. Preview start date is when
sandbox instances are upgraded. Preview end date is when all instances are on the GA release.

Preview End DatePreview Start DateRelease Version

February 21, 2026January 11, 2026Spring ’26

June 13, 2026May 10, 2026Summer ’26

October 10, 2026August 30, 2026Winter ’27

Because previous and preview are relative terms, your Dev Hub org version during the release transition determines their relative
significance. Here’s what happens when you try to create a scratch org with one of the release values.

PreviousPreviewDev Hub Version

Prior Dev Hub versionError (Dev Hub is already on the latest
version)

Dev Hub has upgraded to the latest version

Error (Dev Hub is on the GA version;
previous version unavailable)

Version following the Dev Hub version
(newly released Salesforce version)

Dev Hub is still on the GA version

Note: If you don’t specify a release value, the scratch org version is the same version as the Dev Hub org.

Create a Scratch Org for a Specific Release
You can specify the release version in the scratch org definition file or directly on the command line. Any value you set on the command
line overrides what you have defined in your scratch definition file.

• Find out which instance your Dev Hub org is on: https://status.salesforce.com.

• Add the release option (lowercase) to your scratch org definition file.

{
"orgName": "Dreamhouse",
"edition": "Developer",
"release": "preview",
"settings": {

"mobileSettings": {
"enableS1EncryptedStoragePref2": true

187

Select the Salesforce Release for a Scratch OrgScratch Orgs

https://status.salesforce.com

}
}

}

Alternatively, you can specify the release value directly on the command line with the --release flag. Any value you specify on
the command line overrides the value in the scratch org definition.

• Create the scratch org by executing the org create scratch command in a terminal (macOS and Linux) or command
prompt (Windows).

In this example, we’re creating a scratch org on the preview release.

sf org create scratch --definition-file config/project-scratch-def.json --alias PreviewOrg
--target-dev-hub DevHub --release preview

Be sure to set the apiVersion to match the scratch org version.

To set it globally for all DX projects:

sf config set org-api-version 59.0 --global

To set it on the command line:

SF_ORG_API_VERSION=59.0 sf org create scratch --definition-file
config/project-scratch-def.json --alias PreviewOrg --target-dev-hub DevHub --release preview

Note: Regardless of the release version of your Dev Hub, you can use scratch org features that are available in the release (preview
or previous) of the scratch org you create.

How Release Transitions Can Affect the Scratch Org Version
During a Salesforce major release transition, the sandbox (CS) instances on which scratch orgs are created transition to the preview
release before your Dev Hub org does. During this transition period, you can intend to create a scratch org on the current generally
available release but unexpectedly discover that it was created on the preview release. Sandbox instances begin to transition to the
preview release several days before the preview start date. If the instance on which the scratch org is created transitions to the preview
release after the creation request is initiated, the scratch org is created on the preview version instead of the current version.

During this transition period, there’s no way to know when the sandbox instance will be upgraded. If the scratch org must be on the
current release, you can try these options:

• If it’s a day or two before the preview start date, recreate the scratch org. If the scratch org is again created on the preview release,
contact Salesforce Customer Support and open a case.

• Wait to create the scratch org until after the preview start date, and indicate previous as the release value in the scratch org
definition file.

What If I Want to Create a Pre-Release Scratch Org?
Pre-release is a very early build of the latest version of Salesforce that’s available before Salesforce Preview. It's not built to handle scale
and doesn't come with any Salesforce Support service-level agreements (SLAs). For this reason, the only way to create a pre-release
scratch org is to sign up for a pre-release trial Dev Hub org (subject to availability).

SEE ALSO:

VS Code Command: SFDX: Create a Default Scratch Org

188

Select the Salesforce Release for a Scratch OrgScratch Orgs

https://sfdc.co/RR-Pre-Release
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/vscode-overview.html

Deploy Source From Your Project to the Scratch Org

After changing the source, you can sync the changes to your scratch org by deploying the changed source to it with the project
deploy start command.

Note: Scratch orgs have source tracking enabled by default. But sometimes you don’t want source tracking, such as in a continuous
integration environment when you want to speed up deployments. You can opt out of source tracking when you create the scratch
org by specifying the --no-track-source flag.

sf org create scratch --definition-file config/project-scratch-def.json --no-track-source

See Create Scratch Orgs for more reasons to disable source tracking.

The first time you deploy source to the org, all source in the package directories in the sfdx-project.json file is deployed to the
scratch org to complete the initial setup. At this point, Salesforce CLI starts source-tracking locally on the file system and remotely in the
scratch org to determine which metadata has changed. Let’s say you deployed an Apex class to a scratch org and then decide to modify
the class in the scratch org instead of your local file system. Salesforce CLI tracks in which local package directory the class was created,
so when you retrieve it back to your project, it knows where it belongs.

To run the deploy commands described in the remainder of this topic, first open a terminal (macOS and Linux) or command window
(Windows) and then change to your Salesforce DX project directory.

Preview a Deployment
Before you deploy source to an org, you can preview the components that will be deployed, the potential conflicts, and the ignored
files by executing project deploy preview. For example, this command displays a preview of deploying all the source in your
project to a scratch org with alias MyGroovyScratchOrg.

sf project deploy preview --target-org MyGroovyScratchOrg

Use flags to target the source you want to preview, such as only the source listed in a manifest. In this example, --target-org
points to the scratch org’s username.

sf project deploy preview --manifest package.xml --target-org test-am6xqkossaq8@example.com

Tip: You can create an alias for an org using alias set. To display the usernames and aliases of all the scratch orgs you’ve
created, run org list.

Deploy Source to a Scratch Org
To deploy changed local source to your default scratch org, run this command.

sf project deploy start

The command displays what it deployed. This sample output shows a deployment of the PropertyController Apex class.

Deploying v58.0 metadata to test-am6xqkossaq8@example.com using the v59.0 SOAP API.
Deploy ID: 0Af7e00001WsuoSCAR
Status: Succeeded | ██ | 1/1 Components (Errors:0)
| 0/0 Tests (Errors:0)

Deployed Source
===

189

Deploy Source From Your Project to the Scratch OrgScratch Orgs

| State Name Type Path

| ─────── ────────────────── ─────────
──
| Changed PropertyController ApexClass force-app/main/default/classes/PropertyController.cls

| Changed PropertyController ApexClass
force-app/main/default/classes/PropertyController.cls-meta.xml

Use flags to target the source you want to deploy, rather than everything that’s changed.

• Use the --metadata flag to deploy specific metadata components, such as Apex classes.

• Use the --manifest flag to deploy components in a manifest file.

• Use --source-dir to deploy source in a package directory.

See the reference information about project deploy start for examples and other flags you can specify.

Select Files to Ignore During Deploys
It’s likely that you have some files that you don’t want to sync between the project and scratch org. Add these files to the .forceignore
file so they’re ignored by the deploy command.

If the Deploy Detects Warnings
If you run project deploy start, and warnings occur, Salesforce CLI doesn’t deploy the source. Warnings can occur, for example,
if your project source is using an outdated version. If you want to ignore these warnings and deploy the source to the scratch org, run:

sf project deploy start --ignore-warnings

Tip: Although you can successfully deploy using this option, we recommend addressing the issues in the source files. For example,
if you see a warning because a Visualforce page is using an outdated version, consider updating your page to the current version
of Visualforce. This way, you can take advantage of new features and performance improvements.

If the Deploy Detects File Conflicts
During development, you change files locally in your file system and change the scratch org directly using the builders and editors that
Salesforce supplies. Usually, these changes don’t cause a conflict and involve unique files. Also, the project deploy start
command doesn’t handle merges. Projects and scratch orgs are meant to be used by one developer.

However, if you run project deploy start, and conflicts are detected, Salesforce CLI terminates the operation and doesn’t
deploy the source. Instead, it displays conflict information, such as this sample output. The PropertyController Apex class has been
changed both locally and in the org, but the changes are in conflict.

sf project deploy start
STATE FULL NAME TYPE FILE PATH

──────── ────────────────── ─────────
───

Conflict PropertyController ApexClass
<dir>/force-app/main/default/classes/PropertyController.cls-meta.xml
Conflict PropertyController ApexClass

190

Deploy Source From Your Project to the Scratch OrgScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm#cli_reference_project_deploy_start_unified

<dir>/force-app/main/default/classes/PropertyController.cls
Error (1): There are changes in the org that conflict with the local changes you're trying
to deploy.

First decide which change you want to keep. To keep the local change, rerun the deploy and specify the --ignore-conflicts
flag.

sf project deploy start --ignore-conflicts

To keep the change that’s in the org, run the project retrieve start command to retrieve the change to your local project,
and specify the --ignore-conflicts flag.

sf project retrieve start --ignore-conflicts

SEE ALSO:

How to Exclude Source When Syncing

Retrieve Source from the Scratch Org to Your Project

Track Changes Between Your Project and Org

VS Code Command: SFDX: Deploy Source to Org

Retrieve Source from the Scratch Org to Your Project

After you do an initial deploy, your changes are tracked between your local file system and your scratch org. If you change metadata in
your scratch org, retrieve those changes to your local project to keep both in sync.

Note: Scratch orgs have source tracking enabled by default. But sometimes you don’t want source tracking, such as in a continuous
integration environment when you want to speed up deployments. You can opt out of source tracking when you create the scratch
org by specifying the --no-track-source flag.

sf org create scratch --definition-file config/project-scratch-def.json --no-track-source

See Create Scratch Orgs for more reasons to disable source tracking.

To run the retrieve commands described in the remainder of this topic, first open a terminal (macOS and Linux) or command window
(Windows) and then change to your Salesforce DX project directory.

Preview a Retrieve
Before you retrieve metadata from an org, you can preview the components that will be retrieved, the potential conflicts, and the ignored
files by executing project retrieve preview. For example, this command displays a preview of retrieving changed metadata
from a scratch org with the alias MyGroovyScratchOrg to your local project.

sf project retrieve preview --target-org MyGroovyScratchOrg

Tip: You can create an alias for an org using alias set. To display the usernames and aliases of all the scratch orgs you’ve
created, run org list.

191

Retrieve Source from the Scratch Org to Your ProjectScratch Orgs

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/deploy-changes.html

Retrieve Metadata from Your Scratch Org
To retrieve changed source from your default scratch org to your project, run this command

sf project retrieve start

The command displays what it retrieved and where in your local Salesforce DX project it puts it. This sample output shows a retrieve of
the DiscountSpecial Apex class and DiscountPermSet permission set into the force-app/main/default directory.

Preparing retrieve request... �
Preparing retrieve request... Succeeded

Retrieved Source
==
| State Name Type Path

| ─────── ─────────────── ─────────────
──
| Created DiscountSpecial ApexClass force-app/main/default/classes/DiscountSpecial.cls

| Created DiscountSpecial ApexClass
force-app/main/default/classes/DiscountSpecial.cls-meta.xml
| Created DiscountPermSet PermissionSet
force-app/main/default/permissionsets/DiscountPermSet.permissionset-meta.xml

Use flags to target the source you want to retrieve, rather than everything that’s changed.

• Use the --metadata flag to retrieve specific metadata components, such as Apex classes.

• Use the --manifest flag to retrieve components in a manifest file.

• Use --source-dir to retrieve source in a package directory.

See the reference information about project retrieve start for examples and other flags you can specify.

Select Files to Ignore During Retrieves
It’s likely that you have some files that you don’t want to sync between the project and scratch org. Add these files to the .forceignore
file so they’re ignored by the retrieve command.

If the Retrieve Detects File Conflicts
During development, you change files locally in your file system and change the scratch org using builders and editors. Usually, these
changes don’t cause a conflict and involve unique files. Also, the project retrieve start command doesn’t handle merges.
Projects and scratch orgs are meant to be used by one developer.

However, if you run project retrieve start, and conflicts are detected, Salesforce CLI terminates the operation and doesn’t
retrieve the source. Instead, it displays conflict information, such as this sample output. The PropertyController Apex class has been
changed both locally and in the org, but the changes are in conflict.

sf project retrieve start
Preparing retrieve request... � Sending request to org
STATE FULL NAME TYPE FILE PATH

──────── ────────────────── ─────────
───

192

Retrieve Source from the Scratch Org to Your ProjectScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm#cli_reference_project_retrieve_start_unified

Conflict PropertyController ApexClass
<dir>force-app/main/default/classes/PropertyController.cls-meta.xml
Preparing retrieve request... Error
Error (1): There are changes in your local files that conflict with the org changes you're
trying to retrieve.

First decide which change you want to keep. To keep the change that’s in the org, rerun the retrieve and specify the
--ignore-conflicts flag.

sf project retrieve start --ignore-conflicts

To keep the local change, run the project deploy start command to deploy the change to your org, and specify the
--ignore-conflicts flag.

sf project deploy start --ignore-conflicts

SEE ALSO:

Retrieve Source from the Scratch Org to Your Project

How to Exclude Source When Syncing

Track Changes Between Your Project and Org

VS Code Command: SFDX: Retrieve Source to Org

Scratch Org Users

A scratch org includes one administrator user by default. The admin user is typically adequate for all your testing needs. But sometimes
you need other users to test with different profiles and permission sets.

You can create a user by opening the scratch org in your browser and navigating to the Users page in Setup. You can also use the org
create user CLI command to easily integrate the task into a continuous integration job.

Scratch Org User Limits, Defaults, and Considerations
• You can run the org create user command only for scratch orgs. If you try to create a user for a non-scratch org, the command

fails.

• Your scratch org edition determines the number of available user licenses. The number of licenses determines the number of users
you can create. For example, a Developer Edition org includes a maximum of two Salesforce user licenses. Therefore, in addition to
the default administrator user, you can create one standard user.

• The new user’s username must be unique across all Salesforce orgs and in the form of an email address. The org create user
command provides the --set-unique-username flag to ensure uniqueness. The username is active only within the bounds
of the associated scratch org.

• You can’t delete a user using Salesforce CLI, just like you can’t delete a Salesforce user using Setup. The user is deactivated when
you delete the scratch org with which the user is associated. Deactivating a user frees up the user license. But you can’t reuse
usernames, even if the associated user has been deactivated.

• The simplest way to create a user is to let the org create user command assign default or generated characteristics to the
new user. If you want to customize your new user, create a definition file and specify it with the --definition-file (-f)
flag. In the file, you can include all the User sObject fields and a set of Salesforce DX-specific options, described in User Definition
File for Customizing a Scratch Org User. You can also specify these options on the command line.

193

Scratch Org UsersScratch Orgs

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/deploy-changes.html

• If you don’t customize your new user, the org create user command creates a user with these default characteristics.

– The username is the existing administrator’s username prepended with a timestamp. For example, if the administrator username
is test-wvkpnfm5z113@example.com, the new username is something like 1505759162830_test-wvkpnfm5z113@example.com.

– The user’s profile is Standard User.

– The values of the required fields of the User sObject are the corresponding values of the administrator user. For example, if the
administrator’s locale (specifically the LocaleSidKey field of User sObject) is en_US, the new user’s locale is also en_US.

• After the new user has been created, Salesforce CLI automatically authenticates it to the scratch org so the new user can immediately
start using the scratch org. Salesforce CLI uses the same authentication method that was used on the associated Dev Hub org. Due
to Hyperforce limitations, if the Dev Hub authentication used the JWT flow and the scratch org is on Hyperforce, then the scratch
org user creation fails. For this reason, if you plan to create scratch org users, authenticate to the Dev Hub org with either the org
login web or org login sfdx-url command, and not org login jwt.

How Scratch Org Users Can Log In to the Scratch Org
How you log in to a scratch org can depend on if you’re the default admin user, or on which infrastructure the scratch org was created.
To determine the infrastructure, find the Instance on the Company Information Setup page, then go to Find My Instance.

• Regardless of the instance, default admin users can log in using test.salesforce.com or the My Domain URL, such as
https://MyDomainName.scratch.my.salesforce.com.

• If the scratch org is on a Salesforce first-party instance, other users can log in using test.salesforce.com or the My Domain
URL.

• If the scratch org is on a Hyperforce instance, other users must log in using the My Domain URL.

Create a Scratch Org User

Although scratch orgs were designed to be used by one developer, sometimes you need other users to test with different profiles
and permission sets.

User Definition File for Customizing a Scratch Org User

To customize a new scratch org user, rather than use the default and generated values, create a definition file.

Generate or Change a Password for a Scratch Org User

By default, new scratch orgs contain one administrator user with no password. Use the org generate password CLI command
to generate or change a password for this admin user. After it's set, you can’t unset a password, you can only change it.

SEE ALSO:

User sObject API Reference

Create a Scratch Org User
Although scratch orgs were designed to be used by one developer, sometimes you need other users to test with different profiles and
permission sets.

Use the org create user command to create a user. Specify the --set-alias flag to assign a simple name to the user that
you can reference in later CLI commands. When the command completes, it outputs the new username and user ID.

sf org create user --set-alias qa-user --target-org my-scratch
Successfully created user "1690397809_test-st9thgoyyyq3@example.com" with ID 0058I002inzvQAA
for org 00D80000PhAkUAK.

194

Create a Scratch Org UserScratch Orgs

https://availability.salesforce.com/find-my-instance/
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

See more details about this user by running "sf org user display -o
1690397809774_test-st9thgoyyyq3@example.com".

Users are associated with a specific scratch org. Specify the scratch org username or alias at the command line with the --target-org
flag if it isn’t already set as the default. If you try to create a user for a non-scratch org, the org create user command fails.

You can customize the new user by creating a definition file and specifying it with the --definition-file flag.

sf org create user --set-alias qa-user --definition-file config/user-def.json

View the list of users associated with a scratch org with the org list users command. The (A) on the left identifies the administrator
user that was created when the scratch org was created.

sf org list users --target-org my-scratch
=== Users in org 00D80000PhAkUAK

Default Alias Username Profile Name User
Id
─────── ────────── ─── ────────────────────
───────────────
(A) my-scratch test-st9thgoyyyq3@example.com System Administrator
0058I002inzvQAA

qa-user 1690397809_test-st9thgoyyyq3@example.com Standard User
0058I002inzvQAA

Display details about a user with the org display user command.

sf org display user --target-org qa-user
Warning: This command exposes sensitive information <truncated for readability>

=== User Description

key label

────────────
──

Username 1690397809_test-st9thgoyyyq3@example.com

Profile Name Standard User

Id 0058I002inzvQAA

Org Id 00D80000PhAkUAK

Access Token 00D8I<truncated>
Instance Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Login Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Alias qa-user

195

Create a Scratch Org UserScratch Orgs

User Definition File for Customizing a Scratch Org User
To customize a new scratch org user, rather than use the default and generated values, create a definition file.

The user definition file uses JSON format and can include any Salesforce User sObject field and these Salesforce DX-specific options.

Default If Not SpecifiedDescriptionSalesforce DX Option

NoneAn array of permission sets assigned to the
user. Separate multiple values with commas,
and enclose in square brackets.

You must have previously deployed the
permission sets to the scratch org with
project deploy start.

permsets

FalseBoolean. Specifies whether to generate a
random password for the user.

If set to true, org create user
displays the generated password after it

generatePassword

completes. You can also view the password
using org display user.

Standard UserName of a profile to associate with the user.
Similar to the ProfileId field of the User

profileName

sObject except that you specify the name
of the profile and not its ID. Convenient
when you know only the name of the
profile.

The user definition file options are case-insensitive. However, we recommend that you use lower camel case for the Salesforce DX-specific
options and upper camel case for the User sObject fields. This format is consistent with other Salesforce DX definition files.

This user definition file includes some User sObject fields and three Salesforce DX options (profileName, permsets, and
generatePassword).

{
"Username": "tester1@sfdx.org",
"LastName": "Hobbs",
"Email": "tester1@sfdx.org",
"Alias": "tester1",
"TimeZoneSidKey": "America/Denver",
"LocaleSidKey": "en_US",
"EmailEncodingKey": "UTF-8",
"LanguageLocaleKey": "en_US",
"profileName": "Standard Platform User",
"permsets": ["Dreamhouse", "Cloudhouse"],
"generatePassword": true

}

In the example, the username tester1@sfdx.org must be unique across the entire Salesforce ecosystem; otherwise, the org create
user command fails. We recommend that you use the --set-unique-username flag, which overrides the value in the
configuration file and ensures a unique username. The alias in the Alias option is different from the alias you specify with the

196

User Definition File for Customizing a Scratch Org UserScratch Orgs

--set-alias flag of org create user. Use the Alias option only with the Salesforce UI. The --set-alias flag is local to
the computer from which you run the CLI, and you can use it with other CLI commands.

Indicate the path to the user definition file with the --definition-file flag. You can name this file whatever you like and store
it anywhere the CLI can access.

sf org create user --set-alias qa-user --definition-file config/user-def.json --target-org
my-scratch

You can override an option in the user definition file by specifying it as a name-value pair at the command line. This technique allows
multiple users or continuous integration jobs to share a base definition file and then customize options when they run the command.
This example overrides the username, list of permission sets, and whether to generate a password.

sf org create user --set-alias qa-user --definition-file config/user-def.json
permsets="Dreamy,Cloudy" Username=tester345@sfdx.org generatePassword=false --target-org
my-scratch

You can also add options at the command line that aren’t in the user definition file. This example adds the City option.

sf org create user --set-alias qa-user --definition-file config/user-def.json City=Oakland
--target-org my-scratch

SEE ALSO:

User sObject API Reference

Generate or Change a Password for a Scratch Org User
By default, new scratch orgs contain one administrator user with no password. Use the org generate password CLI command
to generate or change a password for this admin user. After it's set, you can’t unset a password, you can only change it.

You can also use the --on-behalf-of flag to generate a password for a scratch org user that you've created locally with the org
create user command. You can’t use the org generate password command for users that you created in the scratch
org with Setup.

1. Generate a password for a scratch org user with this command:

sf org generate password --target-org <username-or-alias>

You can run this command for scratch org users only. The command outputs the generated password.

The target org must be the username or alias for the scratch org admin user. Use the --on-behalf-of flag to assign passwords
to multiple users at once, including admin users, or to users who don’t have permissions to do it themselves. Specify multiple locally
created users by specifying multiple --on-behalf-of flags. For example, let’s say the my-scratch alias corresponds to the
scratch org’s admin user, and you want to generate a password for users with aliases ci-user and qa-user:

sf org generate password --target-org my-scratch --on-behalf-of ci-user --on-behalf-of
qa-user

By default, the command generates a password that's 13 characters in length; the possible characters include all lower and upper
case letters, numbers, and symbols. To change the password strength, use the --length and --complexity flags. The
--complexity flag is a number from 0 through 5; the higher the value, the more possible characters are used, which strengthens
the password. The default value is 5. See the command-line help for a description of each value. This example shows how to generate
a password that's 20 characters long:

sf org generate password --target-org my-scratch --length 20

197

Generate or Change a Password for a Scratch Org UserScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

2. View the generated password and other user details:

sf org display user --target-org qa-user
Warning: This command exposes sensitive information <truncated for readability>

=== User Description

key label

────────────
──

Username 1690397809_test-st9thgoyyyq3@example.com

Profile Name Standard User

Id 0058I002inzvQAA

Org Id 00D80000PhAkUAK

Access Token 00D8I<truncated>
Instance Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Login Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Alias qa-user
Password ogihymg%lXa

3. Log in to the scratch org with the new password:

a. From the org display user output, copy the value of the Instance URL and paste it into your browser. In our example,
the instance URL is https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com.

b. If you’ve already opened the scratch org with the org open command, you’re automatically logged in again. To try out the
new password, log out and enter the username and password listed in the output of the org display user command.

c. Click Log In to Sandbox.

Note: If you change a scratch org user’s password using the Salesforce UI, the new password doesn’t show up in the org
display user output.

Manage Scratch Orgs from the Dev Hub Org

You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

In the Dev Hub org, the ActiveScratchOrg standard object represents the scratch orgs that are currently in use. The ScratchOrgInfo
standard object represents the requests that were used to create scratch orgs and provides historical context.

1. Log in to the Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.

2. From the App Launcher, select Active Scratch Orgs to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. To delete an active scratch org from the Active Scratch Orgs list view, choose Delete from the dropdown.

198

Manage Scratch Orgs from the Dev Hub OrgScratch Orgs

Deleting an active scratch org doesn’t delete the request (ScratchOrgInfo) that created it, but it does free up a scratch org so that it
doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Infos from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

Deleting the request (ScratchOrgInfo) also deletes the active scratch org.

SEE ALSO:

Add Salesforce DX Users

Scratch Org Error Codes

If scratch org creation fails, the system generates an error code that can help you identify the cause. Some of these errors are generated
by the SignupRequest API and apply to all org signups.

Note: These error codes are specific to scratch org signups. Additional error codes for other org signup scenarios are included in
the Object Reference for the Salesforce Platform: SignupRequest.

DescriptionError Code

Duplicate username.C-1007

Error while establishing the new org’s My Domain (subdomain) settings. Contact Salesforce Support for
assistance.

C-1015

Error while configuring the OAuth connected app for Proxy Signup. Verify that your connected app has a
valid consumer key, callback URL, and unexpired certificate (if applicable).

C-1016

Invalid subdomain value provided during sign-up.C-1018

Subdomain in use. Choose a new subdomain value.C-1019

Template not found. Either the template doesn’t exist or it was deleted.C-1020

Template is the wrong version.C-1033

Can’t create the org. Contact Salesforce Customer Support for assistance.C-1034

Not a valid scratch org. Contact Salesforce Customer Support for assistance.C-9998

Generic fatal error. Contact Salesforce Customer Support for assistance.C-9999

Namespace isn’t registered. To use a namespace with a scratch org, you must link the Developer Edition
org where the namespace is registered to a Dev Hub org. See Salesforce Help: Link a Namespace to a Dev
Hub Org.

S-1017

Invalid country.S-2006

Can't create scratch org from org shape. Contact the source org admin to add your Dev Hub org ID. From
Setup, in the Quick Find box, enter Org Shape, and then select Org Shape.

SH-0001

199

Scratch Org Error CodesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_signuprequest.htm
https://help.salesforce.com/articleView?id=sfdx_dev_reg_namespace.htm&language=en_US
https://help.salesforce.com/articleView?id=sfdx_dev_reg_namespace.htm&language=en_US

DescriptionError Code

Can't create scratch org. No org shape exists for the specified sourceOrg. Create an org shape and try
again.

SH-0002

Can't create scratch org from the org shape because it was created on a previous Salesforce release version
and is outdated. Recreate the org shape and try again.

SH-0003

The snapshot has expired. Create another snapshot, then try again.SN-0001

The snapshot doesn’t belong to the specified Dev Hub org. Run the command with the appropriate
--target-dev-hub.

SN-0002

Can’t validate org shape due to fatal error. Contact Salesforce Customer Support for assistance.SH-9999

Can’t create the scratch org. Try again later.VR-0001

Can’t create the scratch org. Check that the release value is valid. If no release value was specified, contact
Salesforce Customer Support.

VR-0002

Can’t create the scratch org. Check that the release value is valid. If no release value was specified, contact
Salesforce Customer Support.

VR-0003

200

Scratch Org Error CodesScratch Orgs

CHAPTER 7 Sandboxes

USER PERMISSIONS

To view a sandbox:
• View Setup and

Configuration

To create, refresh, activate,
and delete a sandbox:
• Manage Dev Sandboxes

(Developer or Developer
Pro only) or Manage
Sandboxes (all sandbox
types)

Sandboxes are copies of your Salesforce org that you can use for
development, testing, and training, without compromising the
data and applications in your production org.

Salesforce offers sandboxes and a set of deployment tools, so you
can:

In this chapter ...

• Authorize Your
Production Org

• Create a Sandbox
Definition File

• Isolate customization and development work from your
production environment until you’re ready to deploy changes.

• Create, Clone, or
Refresh a Sandbox

• Test changes against copies of your production data and users.

• Provide a training environment.

• Coordinate individual changes into one deployment to
production.

Traditionally, you or your admin has created and managed your
sandboxes through the Setup UI. But we realize that many developers want the ability to create and
manage their developer and testing environments programmatically, and to automate their CI processes.
Salesforce CLI enables you to do both.

Alternatives to sandboxes are scratch orgs and Developer Edition orgs, which are used as development
environments for many Salesforce development use cases. If you’re wondering whether to use a sandbox,
scratch org, or Developer Edition org as your development environment, you’re not alone. To help you
better understand which to choose, see the Salesforce Developers Blog: Choose the Right Salesforce
Org for the Right Job.

201

https://developer.salesforce.com/blogs/2024/05/choose-the-right-salesforce-org-for-the-right-job
https://developer.salesforce.com/blogs/2024/05/choose-the-right-salesforce-org-for-the-right-job

Authorize Your Production Org

JWT and Web-based flows require a production org with sandbox licenses instead of a Dev Hub. However, it’s OK if your production org
is also a Dev Hub org.

The examples in Authorize an Org Using the JWT-Based Flow and Authorize an Org Using the Web-Based Flow are geared toward scratch
orgs. Follow these tips to successfully authorize your production org.

• Be sure to use https://login.salesforce.com for sfdcLoginUrl in sfdx-project.json file. Alternatively,
you can use org login jwt --instance-url to specify the URL directly on the command line. This value overrides the
login URL you specified in the sfdx-project.json file.

• Specify the username for your production org when running the org login jwt command. No need to specify a Dev Hub or
indicate a default Dev Hub.

• The JWT authorization flow requires that you create a connected app. When you create the connected app, log in to your production
org, not a Dev Hub org.

Create a Sandbox Definition File

Before you can create a sandbox using Salesforce CLI, define the configuration for it in a sandbox definition file. The sandbox definition
file is a blueprint for the sandbox. You can create different definition files for each sandbox type that you use in the development process.

Sandbox Configuration Values

DescriptionRequired?Option

A reference to the ID of a public group of Salesforce
users who can access the sandbox. The user who
created the sandbox is added to the group by default.

You can specify either
activationUserGroupId or
activationUserGroupName but not both.

NoactivationUserGroupId

The name of the public group of Salesforce users who
can access the sandbox. The user who created the
sandbox is added to the group by default.

You can specify either
activationUserGroupId or
activationUserGroupName but not both.

NoactivationUserGroupName

A reference to the ID of an Apex class that runs after
each copy of the sandbox. Allows you to perform
business logic on the sandbox to prepare it for use.

You can specify either apexClassId or
apexClassName but not both.

NoapexClassId

202

Authorize Your Production OrgSandboxes

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm#sfdx_dev_auth_jwt_flow
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm#sfdx_dev_auth_web_flow

DescriptionRequired?Option

The name of the Apex class that runs after each copy
of the sandbox. Allows you to perform business logic
on the sandbox to prepare it for use.

You can specify either apexClassId or
apexClassName but not both.

NoapexClassName

If true, you can activate a sandbox refresh
immediately.

NoautoActivate

Full sandboxes only. This field is visible if your
organization has purchased an option to copy

NocopyArchivedActivities

archived activities for sandbox. To obtain this option,
contact Salesforce Customer Support.

If true, archived Chatter data is copied to the
sandbox.

NocopyChatter

A description of the sandbox (1000 or fewer
characters), which helps you distinguish it from other
sandboxes.

Nodescription

The add-on features to apply when creating or
refreshing the sandbox. The features option is
not needed when cloning a sandbox.

Currently, there’s one valid value:

Nofeatures

• ['SandboxStorage']: Increases the data
storage available for Developer sandboxes from
200 MB to 400 MB and Developer Pro sandboxes
from 1 GB to 2 GB. You can’t use this feature with
Partial Copy or Full sandboxes.

Full sandboxes only. Represents the number of days
of object history to be copied in the sandbox.

Valid values:

NohistoryDays

• -1, which means all available days

• 0 (default)

• 10

• 20

• 30

• 60

• 90

• 120

• 150

• 180

203

Create a Sandbox Definition FileSandboxes

DescriptionRequired?Option

Valid values are Developer, Developer_Pro,
Partial, and Full.

You can specify only one of these options:
licenseType, sourceSandboxName, or
sourceId.

Yes (for sandbox creation)licenseType

A unique alphanumeric string (10 or fewer characters)
to identify the sandbox. You can’t reuse a name while
a sandbox is in the process of being deleted.

YessandboxName

A reference to the ID of the sandbox being cloned.

You can specify only one of these options:
licenseType, sourceSandboxName, or
sourceId.

Yes (for sandbox cloning)sourceId

Name of the sandbox being cloned.

You can specify only one of these options:
licenseType, sourceSandboxName, or
sourceId.

Yes (for sandbox cloning)sourceSandboxName

Optional for Full sandboxes. Not available for
Developer and Developer Pro sandboxes.

A reference to the sandbox template as identified by
the 15-character ID beginning with 1ps in the URL

Yes (for Partial sandboxes)templateId

when viewing a sandbox template in a browser. A
sandbox template lets you select which objects to
copy in a sandbox.

Sample Sandbox Definition File
Although you can place the sandbox definition file anywhere, we recommend keeping it in your Salesforce DX project in the config
directory. When naming the file, we suggest providing a descriptive name that ends in sandbox-def.json, for example,
developer-sandbox-def.json.

Here's a sample definition file for creating a sandbox:

{
"sandboxName": "dev1",
"licenseType": "Developer"

}

Here's a sample definition file for cloning a sandbox:

{
"sandboxName": "dev1clone",
"sourceSandboxName": "dev1"

}

204

Create a Sandbox Definition FileSandboxes

Here's a sample definition file for creating a sandbox with the features option:

{
"sandboxName": "dev1",
"licenseType": "Developer" or "Developer_Pro",
"features": "['SandboxStorage']"

}

SEE ALSO:

Tooling API: SandboxInfo

Salesforce Help: Public and Personal Groups

Create, Clone, or Refresh a Sandbox

Create a sandbox to use for development, testing, or training. Clone a sandbox to copy its data and metadata to another sandbox. Refresh
an existing sandbox to get the latest metadata, and sometimes data, from the source org.

Before you create or clone a sandbox:

• Create a Salesforce DX project with a manifest file.

• Authorize to a production org with available sandbox licenses.

• Create the sandbox definition file.

Why We Recommend Using Aliases
When you create or clone a sandbox, the usernames generated in the sandbox are based on the usernames present in the production
org or sandbox. The username looks like an email address, such as username@company.com.dev1. If the resulting username
isn’t unique, we prepend some characters and digits to the username. The modified username looks something like
00x7Vqusername@company.com.dev1.

As you can imagine, remembering these usernames can be challenging, especially if you have several sandboxes you’re managing.
Aliasing is a powerful way to manage and track your orgs, and we consider it a best practice. So when you issue a command that requires
the username, using an alias that you can remember can speed up things.

If you didn’t set an alias when you created the sandbox, you can set one later.

sf alias set MyDevSandbox username@company.com.dev1

Create a Sandbox
Optional: Create a Sandbox Definition File

When you create a sandbox, Salesforce copies the metadata and data (for Partial Copy and Full) from your production org to a sandbox
org. Specify the username or alias of your production org with the --target-org flag.

sf org create sandbox --target-org prodOrg --definition-file config/dev-sandbox-def.json
--alias MyDevSandbox --set-default --wait 30

The command asks you to confirm the sandbox configuration and then shows information as the sandbox is being created.

The --set-default flag indicates that this sandbox is your default org for all CLI commands. If you’re working with several orgs
and you don’t want this one to be the default, exclude this flag.

205

Create, Clone, or Refresh a SandboxSandboxes

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_tooling.meta/api_tooling/tooling_api_objects_sandboxinfo.htm
https://help.salesforce.com/articleView?id=user_groups.htm&language=en_US

To directly define the required sandbox options, or to override the values defined in the sandbox definition file, specify appropriate flags
on the command line.

sf org create sandbox --name FullSbx --license-type=Full --target-org prodOrg --alias
MyFullSandbox --wait 30

Tip: Because the sandbox is processed in a queue, the sandbox creation process can take longer than the default wait time of 6
minutes. We recommend setting a larger value for --wait, for example, 30 minutes.

How long the creation process takes depends on the size and complexity of your production org. You see status messages posted to
output:

Sandbox Create... � 00:28:00 until timeout. 26%
Field Value
───────────── ────────────────────────────
Id 0GR1Q888800HORuWAO
SandboxName dev11
Status Processing
LicenseType DEVELOPER
SandboxInfoId 0GQ1Q000009999mWAO
Created Date 2023-10-17T21:42:49.000+0000
CopyProgress 26%
SandboxOrg 00DP0099993zEZj

Sandbox Create Stages
� - Pending
… - Processing
… - Activating
… - Authenticating

After the wait period is over, you can run the org resume sandbox command to check the status of the sandbox creation process.
If the sandbox is created within the wait time, Salesforce CLI automatically authenticates in to the sandbox. And the sandbox appears
in the output of the org list command. Team members can authenticate to the sandbox by running the org web login
command and providing their usernames and passwords.

sf org web login --instance-url https://test.salesforce.com

Clone a Sandbox
You can create a sandbox by cloning an existing sandbox rather than using your production org as your source. You can save time by
customizing a sandbox with a set of data and metadata and then replicating it. Use the --source-sandbox-name flag to specify
the existing sandbox name and the --name flag to the name of the new sandbox. You can also use the --sourceId flag to specify
the existing sandbox by its ID rather than its name. Both sandboxes must be associated with the specified production org that contains
the sandbox licenses. (--target-org flag).

Sandbox cloning simplifies having multiple concurrent streams of work in your application lifecycle. You can set up a sandbox for each
type of work, such as development, testing, and staging. Your colleagues can easily clone individual sandboxes instead of sharing one
sandbox and stepping on each other’s toes.

sf org create sandbox --source-sandbox-name FullSbx --name NewSbx --target-org prodOrg
--alias MyDevSandbox --set-default --wait 30

Tip: Because the sandbox is processed in a queue, the sandbox cloning process can take longer than the default wait time of 6
minutes. We recommend setting a larger value for --wait, for example, 30 minutes.

206

Create, Clone, or Refresh a SandboxSandboxes

After the wait period is over, you can run the org resume sandbox command to check the status of the sandbox cloning process.
If the sandbox is cloned within the wait time, the CLI automatically authenticates in to the sandbox. And the sandbox appears in the
output of the org list command. Team members can authenticate to the sandbox by running the org web login command
and providing their usernames and passwords.

sf org web login --instance-url https://test.salesforce.com

Check the Sandbox Status
Creating or cloning a sandbox can take several minutes. If the command times out, it displays a job ID that you can pass to the org
resume sandbox command to report on creation or cloning status. When the sandbox is ready, this command also authenticates
to the sandbox.

sf org resume sandbox --job-id 0GR1888880000HORuWAO --target-org prodOrg

If the org create sandbox command times out, the alias isn’t set. However, you can set it using the alias set command:

sf alias set MyDevSandbox username@company.com.dev1

Open a Sandbox
After the sandbox is ready, you can open it by specifying its username or alias. However, you don’t have to provide its password because
the CLI manages the authentication details for you.

sf org open --target-org MyDevSandbox

Refresh a Sandbox
Refreshing an existing sandbox updates its metadata from the source org. If the sandbox is a clone or if it uses a sandbox template, the
refresh process also updates the sandbox org’s data.

sf org refresh sandbox --name FullSbx --target-org prodOrg

Be sure the value of --name is the sandbox name, and not its alias. The --target-org flag can be either the username or alias
of the source org.

To change the configuration of the refreshed sandbox, specify a definition file with the --definition-file flag. Then include
the configuration options you want to change, such as licenseType, templateID, or copyArchivedActivities (full
sandbox only.) You can’t, however, change the sandbox name using the org refresh sandbox command. To change the
sandbox name, first delete it with the org delete sandbox command. Then recreate it with the org create sandbox
command and give it a new name.

Delete a Sandbox
You can delete a sandbox using Salesforce CLI, whether you created it locally with org create sandbox or logged into an existing
sandbox with a org login command. You must also have previously logged into the production org that contains the sandbox
license.

sf org delete sandbox --target-org MyDevSandbox

207

Create, Clone, or Refresh a SandboxSandboxes

Next:
• Retrieve metadata from your sandbox to your local DX project.

• Develop directly in your sandbox, then retrieve the changes to your local DX project.

• Deploy local changes to a sandbox.

SEE ALSO:

Salesforce Help: Deploy Enhancements from Sandboxes

Salesforce Help: Create, Clone, or Refresh a Sandbox Using Setup UI

Authorize an Org Using the JWT Flow

Authorize an Org Using a Browser

208

Create, Clone, or Refresh a SandboxSandboxes

https://help.salesforce.com/articleView?id=deploy_sandboxes_parent.htm&language=en_US
https://help.salesforce.com/articleView?id=data_sandbox_create_parent.htm&language=en_US

CHAPTER 8 Track Changes Between Your Project and Org

Use source tracking to track the changes between your local project and a scratch org or sandbox when
you create, update, or delete source code.

In this chapter ...

• Manage Source
Tracking for Your org Source tracking has no direct effect on the org; it affects only your local environment. Specifically,

Salesforce CLI checks a local configuration file to determine whether you’ve enabled source tracking for
• Preview Changes

Identified by Source
Tracking

a particular org. If you have, then source tracking operations are executed when you work with the org,
such as using the project deploy start command.

The project deploy|retrieve start commands without flags deploy or retrieve all changed
source between your local project and the target org. For more granular control, use flags to specify

• Deploy and Retrieve
Changes Identified
by Source Tracking specific metadata components, package directories, or manifest files to deploy or retrieve. This example

retrieves the MyFabClass Apex class:

sf project retrieve start --metadata ApexClass:MyFabClass

• Resolve Conflicts
Between Your Local
Project and Org

In addition to listing the changes you make, source tracking makes it possible to:• Best Practices
• Automatically track changes to metadata components, saving you from tracking them manually.• Performance

Considerations of
Source Tracking

• See changes deployed to a sandbox by other developers.

• Deploy or retrieve changed source.

• Identify and resolve conflicts between your local project and scratch org or sandbox before deploying
or retrieving source.

To see which metadata components support source tracking, check the Source Tracking column of the
Metadata Coverage Report.

209

https://developer.salesforce.com/docs/metadata-coverage/

Manage Source Tracking for Your org

Source tracking works only if your target org allows it. Don’t worry, you can still deploy or retrieve metadata to and from an org without
source tracking. But the commands don’t check for conflicts, and you must specify exactly what you want to deploy or retrieve using an
appropriate flag, such as --source-dir or --metadata.

Org Editions that Support Source Tracking
• Developer Edition orgs, production orgs, Partial Copy sandboxes, and Full sandboxes—Source tracking isn’t supported.

• Developer and Developer Pro sandboxes—Source tracking is supported if their associated production org has been enabled for
source tracking.

• Scratch orgs—Source tracking is always supported.

Manage Source Tracking in New Orgs
Scratch Orgs have source tracking enabled by default. For Developer and Developer Pro sandboxes, source tracking is also enabled by
default as long as their associated production org has been enabled for source tracking.

You can opt out of source tracking when you create the scratch org or sandbox by specifying the --no-track-source flag of the
org create scratch|sandbox command. This flag affects only your local configuration, not the org itself. Salesforce CLI sets
a local configuration option trackSource: false as part of your authorization information to the org. If you log out of the org
and then log back in again, source tracking is enabled again by default.

Here’s how to create a scratch org with source tracking disabled.

sf org create scratch --target-dev-hub=MyHub --definition-file
config/project-scratch-def.json --no-track-source

Here’s a sandbox example.

sf org create sandbox --definition-file config/dev-sandbox-def.json --target-org prodOrg
--no-track-source

Manage Source Tracking in Existing Orgs
You can change whether an existing scratch org or sandbox allows source tracking with these two commands:

• org enable tracking: Allow Salesforce CLI to track changes in your source files between your project and an org.

• org disable tracking: Prevent Salesforce CLI from tracking changes in your source files between your project and an org.

This example shows how to enable source tracking in an org with alias mySandbox; the command returns an error if the org doesn't
support tracking, such as a Full sandbox.

sf org enable tracking --target-org mySandbox

210

Manage Source Tracking for Your orgTrack Changes Between Your Project and Org

Let’s say you have a sandbox that you use for integration tests, and you want to deploy source to it but not wait for tracking operations.
This example shows how to disable source tracking on an org with alias mySandbox:

sf org disable tracking --target-org mySandbox

SEE ALSO:

VS Code Command: SFDX: Create a Default Scratch Org

Preview Changes Identified by Source Tracking

To see changes between your local project and target org, navigate to the project directory for which you want to see changes. Then
run one of the preview commands, which display either the local changes in your project you can deploy to your org, or the org changes
that you can retrieve.

1. In a terminal or command window, navigate to the project directory. In this example, the directory is named MyProject.

cd /Users/joe/dx-projects/MyProject

2. To see what’s changed between your project and org, run either the project deploy preview or project retrieve
preview command. Include the --target-org flag to specify the username or alias of the scratch org or sandbox that you
want to compare with your local project. In this example, the command displays the local changes that can be deployed to the
sandbox with the alias DevSandbox.

sf project deploy preview --target-org DevSandbox

Similarly, this example displays the remote changes in the sandbox that can be retrieved back into the local project.

sf project retrieve preview --target-org DevSandbox

The project deploy preview command accepts the --metadata, --source-dir, and --manifest flags,
which you can use to preview more granular deployments. This example previews a deployment of only ApexClass metadata:

sf project deploy preview --metadata ApexClass --target-org DevSandbox

This project deploy preview sample output shows that there are local changes to the WidgetClass Apex class and
WidgetObject__c custom object that can be deployed to the org.

sf project deploy preview --target-org DevSandbox

No conflicts found.

No files will be deleted.

Will Deploy [2] files.
Type Fullname Path

──────────── ───────────────
──
ApexClass WidgetClass force-app/main/default/classes/WidgetClass.cls-meta.xml

CustomObject WidgetObject__c
force-app/main/default/objects/WidgetObject__c/WidgetObject__c.object-meta.xml

211

Preview Changes Identified by Source TrackingTrack Changes Between Your Project and Org

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/vscode-overview.html

No files were ignored. Update your .forceignore file if you want to ignore certain files.

This project retrieve preview sample output shows that there are remote changes to the GizmoClass Apex class and
GizmoObject__c custom object (and its layout) that can be retrieved from the org to the local project. The output also shows that there
are no conflicts between the project and org.

sf project retrieve preview --target-org DevSandbox

No conflicts found.

No files will be deleted.

Will Retrieve [3] files.
Type Fullname Path
──────────── ───────────────────────────────── ────
Layout GizmoObject__c-GizmoObject Layout
CustomObject GizmoObject__c
ApexClass GizmoClass

Ignored [2] files. These files won't retrieve because they're ignored by your .forceignore
file.
Type Fullname Path
─────── ─────────────────────────────────── ────
Profile Admin
Profile B2B Reordering Portal Buyer Profile

The preview commands use tables of change information with three columns: Type, Fullname, and Path. Each row represents one
change.

• Type is the changed component’s metadata type. It describes what the component is, such as an Apex class or a custom object.

• Fullname is the API name of the component.

• Path is the location of the component in your local project. If it’s blank, the component isn’t present in your local project. When
blank, it usually means that a component is present in the org but not in your local project.

If source tracking doesn’t detect any changes, then the preview commands return a statement saying No results found.

=== Source Status
No results found

After previewing the changes in the source in your local project and the org, you’re ready to deploy or retrieve and resolve potential
conflicts.

Deploy and Retrieve Changes Identified by Source Tracking

When you create a Salesforce app, you typically use both low-code and pro-code techniques. An example of low-code is creating a
custom object directly in an org using Setup. An example of pro-code is creating an Apex class in your local project using an IDE, such
as VS Code. As you work, source tracking identifies changes so you can keep the remote metadata in the org in sync with the source in
your local project.

The process is iterative. First you preview the remote and local changes. If conflicts exist, you resolve them. You must now ensure that
these changes exist in both the org and your local project. So you retrieve the remote changes to your local project, then push them to
your source control repository, to ensure that the source control system contains all your changes and is the source of historical truth.

212

Deploy and Retrieve Changes Identified by Source TrackingTrack Changes Between Your Project and Org

You deploy your local changes, such as Apex code, to the org so you can validate and test it. And you keep iterating through this process
until you finish developing the Salesforce app.

To see source tracking in action, let’s look at some examples.

Say you run project retrieve preview and see remote changes.

sf project retrieve preview --target-org DevSandbox

No conflicts found.

No files will be deleted.

Will Retrieve [3] files.
Type Fullname Path
──────────── ───────────────────────────────── ────
Layout GizmoObject__c-GizmoObject Layout
CustomObject GizmoObject__c
ApexClass GizmoClass

Ignored [2] files. These files won't retrieve because they're ignored by your .forceignore
file.
Type Fullname Path
─────── ─────────────────────────────────── ────
Profile Admin
Profile B2B Reordering Portal Buyer Profile

Retrieve the changes in your org to your local project with the project retrieve start command. Now that the components
have been created locally, the Path column has a value and it includes the default package directory.

sf project retrieve start --target-org DevSandbox
Preparing retrieve request... � Sending request to org
Preparing retrieve request... Succeeded

Retrieved Source
===
| State Name Type Path

| ─────── ───────────────────────────────── ────────────
──
| Created GizmoClass ApexClass
force-app/main/default/classes/GizmoClass.cls
| Created GizmoClass ApexClass
force-app/main/default/classes/GizmoClass.cls-meta.xml
| Created GizmoObject__c CustomObject
force-app/main/default/objects/GizmoObject__c/GizmoObject__c.object-meta.xml
| Created GizmoObject__c-GizmoObject Layout Layout
force-app/main/default/layouts/GizmoObject__c-GizmoObject Layout.layout-meta.xml

After retrieving the source, run project retrieve preview again. Now, source tracking reports that there’s nothing to retrieve.

sf project retrieve preview

No conflicts found.

No files will be deleted.

213

Deploy and Retrieve Changes Identified by Source TrackingTrack Changes Between Your Project and Org

No files will be retrieved.

Ignored [2] files. These files won't retrieve because they're ignored by your .forceignore
file.
Type Fullname Path
─────── ─────────────────────────────────── ────
Profile Admin
Profile B2B Reordering Portal Buyer Profile

Let’s now look at deploying. To preview your local changes, run project deploy preview.

sf project deploy preview --target-org DevSandbox

No conflicts found.

No files will be deleted.

Will Deploy [2] files.
Type Fullname Path

──────────── ───────────────
──
ApexClass WidgetClass force-app/main/default/classes/WidgetClass.cls-meta.xml

CustomObject WidgetObject__c
force-app/main/default/objects/WidgetObject__c/WidgetObject__c.object-meta.xml

No files were ignored. Update your .forceignore file if you want to ignore certain files.

Then deploy your local changes. After deploying to a sandbox, other developers that are using the sandbox can see your changes.

sf project deploy start --target-org DevSandbox
Deploying v59.0 metadata to test-ikspctiorkzs@example.com using the v59.0 SOAP API.
Deploy ID: 0Af8D00000pNmKySAK
Status: Succeeded | ██ | 2/2 Components (Errors:0)
| 0/0 Tests (Errors:0)

Deployed Source
===
| State Name Type Path

| ─────── ─────────────── ────────────
──
| Created WidgetClass ApexClass force-app/main/default/classes/WidgetClass.cls

| Created WidgetClass ApexClass
force-app/main/default/classes/WidgetClass.cls-meta.xml
| Created WidgetObject__c CustomObject
force-app/main/default/objects/WidgetObject__c/WidgetObject__c.object-meta.xml

Run project deploy preview again.

sf project deploy preview

No conflicts found.

214

Deploy and Retrieve Changes Identified by Source TrackingTrack Changes Between Your Project and Org

No files will be deleted.

No files will be deployed.

No files were ignored. Update your .forceignore file if you want to ignore certain files.

The command reports there’s nothing to deploy, indicating that your local project and the org are synchronized.

Retrieve Changes to Profiles with Source Tracking

Retrieving profiles behaves a little differently with source tracking.

SEE ALSO:

VS Code Command: SFDX: Deploy|Retrieve Source to|from Org

Retrieve Changes to Profiles with Source Tracking
Retrieving profiles behaves a little differently with source tracking.

Important: In general, we recommend that you use permission sets instead of profiles. Profiles aren’t consistent across orgs, and
the source files that are retrieved and deployed depend on the org type, the tracking state, and other metadata in the operation.
If you decide to continue using profiles, we recommend that you exclude them when you deploy or retrieve by adding them to
the .forceignore file.

Without source tracking, retrieving profiles only returns some profile information. Retrieving profiles returns information about profiles
that pertains to other items specified in the package.xml file.

For example, retrieving profiles with this package.xml file returns profile permissions for the MyCustomField__c custom field on
the Account object.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>Account.MyCustomField__c</members>
<name>CustomField</name>
</types>
<types>
<members>*</members>
<name>Profile</name>
</types>
<version>50.0</version>
</Package>

With source tracking, retrieving profiles returns profile information pertaining to anything else specified in the package.xml file
plus any components getting tracked by source tracking. That includes any entity for which a change exists between your local project
and the org.

215

Retrieve Changes to Profiles with Source TrackingTrack Changes Between Your Project and Org

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/deploy-changes.html

For example, say you create a custom field on the Opportunity object called OppCustomField__c in your local environment. Source
tracking detects the change and reports it. Now you retrieve profiles using the same package.xml file as you did when source
tracking was off.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>Account.MyCustomField__c</members>
<name>CustomField</name>
</types>
<types>
<members>*</members>
<name>Profile</name>
</types>
<version>50.0</version>
</Package>

Even though the package.xml file doesn’t reference OppCustomField__c, because source tracking is tracking the new custom field,
your retrieve returns profile permissions for both the MyCustomField__c custom field on the Account object and the OppCustomField__c
on the Opportunity object.

For more information about retrieving profiles, see the Profile metadata type in the Metadata API Developer Guide.

Note: Although source retrieves don’t include package.xml files, retrieve requests return profile information pertaining to
everything reported by source tracking.

SEE ALSO:

Salesforce Help: Permission Sets

How to Exclude Source When Syncing

Resolve Conflicts Between Your Local Project and Org

As a best practice, if conflicts exist for components in your local project or in the org, resolve them before moving forward. You can
resolve the conflict manually, or overwrite one version of a component with another. Only overwrite changes if you're certain that the
new version is the one you want to use.

Say you run project deploy preview and see conflicting changes between your local project and in the org. For example,
this command output shows that WidgetClass has conflicting changes but GizmoClass is ready to be deployed.

sf project deploy preview --target-org DevSandbox

Conflicts [1]. Run the command with the --ignore-conflicts flag to override.
Type Fullname Path
───────── ─────────── ───
ApexClass WidgetClass force-app/main/default/classes/WidgetClass.cls-meta.xml

No files will be deleted.

Will Deploy [1] files.
Type Fullname Path
───────── ────────── ──
ApexClass GizmoClass force-app/main/default/classes/GizmoClass.cls-meta.xml

216

Resolve Conflicts Between Your Local Project and OrgTrack Changes Between Your Project and Org

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_profile.htm
https://help.salesforce.com/s/articleView?id=platform.perm_sets_overview.htm&type=5&language=en_US

No files were ignored. Update your .forceignore file if you want to ignore certain files.

If you try to actually deploy the source, Salesforce CLI reports the conflict again and stops the operation from completing. You see similar
conflict messages when you run project retrieve preview. To successfully deploy or retrieve, first resolve the conflicts, and
then overwrite either your local project or the org with the resolved file. Let’s see how this works.

Overwrite Conflicting Changes
If you decide that the local version is correct, overwrite the conflicting change in the org by including the --ignore-conflicts
flag when you deploy. In our example, because only WidgetClass has conflicting changes, let’s first deploy just that component
to get rid of the conflicts and then deploy the non-conflicting source later.

sf project deploy start --metadata ApexClass:WidgetClass --ignore-conflicts --target-org
DevSandbox

The DevSandbox org now has the same version of WidgetClass that was in your local project. When you run project deploy
preview again you see no conflicting changes messages.

If, however, you decide that the version of WidgetClass in the org is the correct one, overwrite your local copy by retrieving the
DevSandbox org version while ignoring conflicts.

sf project retrieve start --metadata ApexClass:WidgetClass --ignore-conflicts --target-org
DevSandbox

Your local project now has the same version of WidgetClass that was in your org.

Well done, you resolved the conflict! Now run project deploy start without any special flags to finish deploying GizmoClass
and any other new local source.

sf project deploy start --target-org DevSandbox
Deploying v59.0 metadata to test-ikspctiorkzs@example.com using the v59.0 SOAP API.
Deploy ID: 0Af8D00000pNtEUSA0
Status: Succeeded | ██ | 1/1 Components (Errors:0)
| 0/0 Tests (Errors:0)

Deployed Source
===
| State Name Type Path
| ─────── ────────── ───────── ──
| Created GizmoClass ApexClass force-app/main/default/classes/GizmoClass.cls
| Created GizmoClass ApexClass force-app/main/default/classes/GizmoClass.cls-meta.xml

SEE ALSO:

VS Code Documentation: Detect Conflicts on Deploy

Best Practices

Get the most out of source tracking by following these best practices.

217

Best PracticesTrack Changes Between Your Project and Org

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/detect-conflicts.html

Retrieve changes and resolve conflicts before deploying your changes to
a sandbox
This practice helps other developers incorporate your changes and facilitates collaboration.

Review metadata change history with a version control system like Git
With a version control system, you can version your changes, track change history, and review metadata changes before promoting to
other environments, such as a sandbox.

Get source tracking files back into sync
If source tracking gets confused and starts reporting inaccuracies, you can use the project deploy|retrieve start
commands to get back into sync. Which command you use depends on which source you most trust: use project deploy start
if you trust your local source files and project retrieve start if you trust what’s in your org. For either command, specify
the --ignore-conflicts flag. See Resolve Conflicts Between Your Local Project and Org for details and examples.

Performance Considerations of Source Tracking

Source tracking performs extra functions to determine changes to source tracked components, such as running more queries and waiting
for the SourceMember Tooling API object to be updated after a deployment. So, some commands can take a little longer to run when
working with medium-to-large sized projects. If you’re working with small projects, you don’t notice any slowdown.

A medium-sized project has 30 or more components or 50 or more tests. A project with 25 components and 51 tests is considered
medium.

A large-sized project is 600 or more components or 150 or more tests. A project with 610 components and 140 tests is considered large.

If you experience long-running commands, break up your projects into smaller sets of components, and deploy the smaller sets.

You can also opt out of source tracking when you create a scratch org or sandbox by specifying the --no-track-source flag of
the org create scratch|sandbox command. See Source Tracking for use cases.

If creating a scratch org or sandbox for use as a development environment in DevOps Center, don’t disable source tracking.

218

Performance Considerations of Source TrackingTrack Changes Between Your Project and Org

CHAPTER 9 Work with Data

Development environments, such as scratch orgs and developer sandboxes, need a set of stock data for
testing.

In this chapter ...

• Work With Small
Datasets Sometimes, the stock data in a development environment doesn’t meet your development needs. Apex

tests generally create their own data. Therefore, if Apex tests are the only tests you’re running in a scratch
• Work With Large

Datasets
org, you probably don’t need to worry about data for the time being. However, other tests, such as UI,
API, or user acceptance tests, do need baseline data. Scale and performance testing often requires a very
large set of data. Make sure that you use consistent datasets when you run tests of each type.• Work With Individual

Records
Scratch orgs come with the same set of data as the edition on which they’re based. For example, Developer
Edition orgs typically include 10–15 records for key standard objects, such as Account, Contact, and

• Run a SOQL or SOSL
Query

Lead. These records come in handy when you’re testing something like a new Apex trigger, flow, or
Lightning web component.• Upload a File to Your

Org
The following sections describe the Salesforce CLI commands you can use to populate your orgs and
provide basic usage examples. The commands you use depend on your current stage of development.

SEE ALSO:

Salesforce DX Developer Guide: Supported Scratch Org Editions and Allocations

Salesforce Help: Sandbox Licenses and Storage Limits by Type

Salesforce Help: Scalability

Salesforce Help: Secure Your Sandbox Data with Salesforce Data Mask

219

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_editions_and_allocations.htm
https://help.salesforce.com/s/articleView?id=platform.data_sandbox_environments.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.scalability_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.data_mask_overview.htm&type=5&language=en_US

Work With Small Datasets

Use the data export|import tree commands to move small sets of data between orgs, such as fewer than 3,000 records.
These commands use JSON files to describe Salesforce records and the relationships between them. Developers can use these commands
to quickly and easily create small sets of representative data in a scratch org when developing or testing their code.

The data export tree command uses one or more SOQL queries to select the data in an org that it writes to the JSON files. The
queries can be for one or more Salesforce objects, using either a multi-level relationship query or multiple individual queries. The JSON
files use the sObject tree format, which is a collection of nested parent-child records with a single root record. You then use these JSON
files to import data into an org with the data import tree command.

When exporting records from two or more Salesforce objects, we recommend using the --plan flag. Specifying this flag generates
separate JSON files for each object and a plan definition file that aggregates them, thus making imports easier. When using plans, you
can export up to five levels of child objects using a relationship query, or export multiple objects that don't necessarily have relationships
by specifying multiple queries.

Let’s look at a few examples to see the power of these commands.

Data from a Single Salesforce Object
For this example, imagine you created a set of useful Account records while working on your application in a scratch org. Exporting
these records allows you to save this data as a JSON file in your version control system. Later, you can use this file to import the same
set of Account records into a new scratch org or sandbox as you continue to develop and refine your application.

This example shows how to export Account records from your default org:

sf data export tree \
--query "SELECT Name, Industry, TickerSymbol from Account" \
--output-dir test-data

The --query flag specifies the SOQL query that selects the records you want to export; in this case it’s very simple and touches just
one object: Account. For simplicity, the example SOQL query includes only a few Account fields, but in real life you include the writable
fields that you want to export. Don’t include fields that aren’t writable, such as formula fields. The --output-dir flag specifies the
directory in which to write the single JSON file.

The output JSON file is always named after the queried object, in this case Account.json. The file is in the sObject Tree format and
looks something like this:

{
"records": [

{
"attributes": {

"type": "Account",
"referenceId": "AccountRef1"

},
"Name": "Edge Communications",
"Industry": "Electronics",
"TickerSymbol": "EDGE"

},
{

"attributes": {
"type": "Account",
"referenceId": "AccountRef2"

},

220

Work With Small DatasetsWork with Data

"Name": "Burlington Textiles Corp of America",
"Industry": "Apparel",
"TickerSymbol": "BTXT"

}
]

}

For each record, the type key specifies its object, such as Account in our example. The referenceID key is a stand-in for a record
ID; when imported into a new org the record gets a different ID than in the org where it was exported from. These stand-in IDs help
preserve relationships, such as lookups, between imported records.

To import these records into a new scratch org, use this CLI command:

sf data import tree \
--files test-data/Account.json \
--target-org new-scratch-org

You use the --files flag to specify the JSON file that has the records, and --target-org to specify the org into which you want
to import the records.

Data from Salesforce Objects with Parent/Child Relationships
Now imagine you created a useful set of both Account and Contact records while working on your application in a scratch org. To export
records from both of these objects, you must use a SOQL relationship query. When combined with the --plan flag, the query results
in multiple data JSON files and a plan definition file that includes references to preserve the relationships between records from different
objects. As a result, your data is correctly imported into a new org.

Here’s what your new export command looks like. The SOQL query now has a relationship subquery that includes child Contact records
for each Account record found. As before, the SOQL query includes only a few fields, but you can specify any writable fields required by
your dataset:

sf data export tree \
--query "SELECT Name, Industry, TickerSymbol, (SELECT FirstName, LastName, Email, Phone

FROM Contacts) FROM Account" \
--output-dir test-data --plan

When the command finishes, the output directory contains an Account.json file with the Account records, just as before. But it
also now contains a Contact.json file with Contact records, and a file called Account-Contact-plan.json that details
the plan for importing all the records. The plan outlines the relationships between the objects that were exported and specifies the order
in which to load them when imported. For example, contacts typically have references to accounts, so the Account records must be
imported before the Contact records.

Here’s the corresponding command to import these records into an org with alias new-scratch-org:

sf data import tree \
--plan test-data/Account-Contact-plan.json --target-org new-scratch-org

This import uses the --plan flag to specify the name of the plan definition file created by the export command. Without a plan you
must import each object separately, so using a plan makes imports much easier.

Data from Salesforce Objects with Junction Relationships
A junction object is a Salesforce object with two master-detail relationships that models a many-to-many relationship between two
objects. An example of a junction object is AccountContactRelation, which represents a relationship between a contact and one or more
accounts.

221

Work With Small DatasetsWork with Data

Let’s say you created several many-to-many relationships between your contacts and accounts while working on your application in a
scratch org. To export the records from both these objects while preserving the junction object relationships, you must specify multiple
queries during the export. To do so, use the --query flag multiple times when executing the data export tree command.
For example, you can combine individual queries against the Account, Contact, and AccountContactRelation objects, ensuring that the
references for all exported data match and can then be imported into a new org.

sf data export tree \
--query "SELECT Name, Industry, TickerSymbol FROM Account" \
--query "SELECT FirstName, LastName, Email, Phone FROM Contact" \
--query "select ID, ContactId, AccountId from AccountContactRelation" \
--output-dir test-data-junction --plan

When executing the data export tree with multiple queries, the plan definition file is always named plan.json. As always,
this file outlines the relationships between the exported objects and specifies the order in which records are loaded during import. The
import command itself is similar to previous examples.

sf data import tree --plan test-data-junction/plan.json --target-org new-scratch-org

Tip: To automatically enable the feature to relate a contact to multiple accounts in a scratch org, specify the
ContactsToMultipleAccounts feature in the scratch org definition file. For example:

{
"orgName": "Dreamhouse",
"edition": "Developer",
"features": ["Walkthroughs", "EnableSetPasswordInApi", "ContactsToMultipleAccounts"],

…
}

SEE ALSO:

Salesforce CLI Command Reference: data Commands

SOQL and SOSL Reference Guide

REST API Developer Guide: sObject Tree

Salesforce Help: Create a Many-to-Many Object Relationship (Junction Objects)

Salesforce Help: Contacts to Multiple Accounts

Object Reference for the Salesforce Platform: AccountContactRelation

Work With Large Datasets

When you’re ready to do more real-world testing, you often need large sets of data, such as millions of records. In this case, you use the
various data bulk CLI commands to move the data around, typically between sandboxes. These commands are also useful when
automating data extractions and data loads in production orgs.

Salesforce CLI’s data bulk commands use the Salesforce Bulk API 2.0, which is optimized for working with large sets of data. You
can use these CLI commands to import, export, update, upsert, or delete many records asynchronously; collectively these actions are
also known as bulk ingests. The commands work in pairs: first run a command such as data import bulk to submit a bulk ingest
request, and then later run data import resume to view the status and results. Salesforce processes the request in the background.

Here are the bulk commands:

• data export bulk|resume

• data import bulk|resume

222

Work With Large DatasetsWork with Data

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_data_commands_unified.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_rest.meta/api_rest/resources_composite_sobject_tree.htm
https://help.salesforce.com/s/articleView?id=platform.relationships_manytomany.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sales.shared_contacts_overview.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_accountcontactrelation.htm

• data delete bulk|resume

• data upsert bulk|resume

• data update bulk|resume

• data bulk results

Let’s see how these commands work.

Bulk Export and Import
Let’s first assume you already have many records in an org that you want to export and store in a file so you can later import them into
another org for scale testing. Use a SOQL query to select the records you want to export; you can query only one Salesforce object. This
example shows how to export records from the Account object from your default org:

sf data export bulk \
--query "SELECT Name, Phone, Website FROM Account" \
--output-file accounts.csv --wait 10

When the request finishes, the file accounts.csv contains the records in comma-separated values (CSV) format. The --wait flag
specifies that the command waits for 10 minutes to complete before it times out.

Warning: The data export bulk command uses Bulk API 2.0, which limits the type of SOQL queries you can run. For
example, you can’t use clauses such as GROUP BY or LIMIT, or aggregate functions such as count(). For the complete list
of limitations, see the SOQL Considerations section in the Bulk API Developer Guide.

Here are a few other flags you can specify to customize the export.

DescriptionFlag

Read the SOQL query from a file rather than at the command line. This flag is useful if
your SOQL query is very long.

--query-file

Export into a file that uses JSON format rather than CSV, the default. Note that bulk imports
support files in only CSV format, not JSON.

--result-format:

Include rows that have been soft-deleted due to a merge or delete; by default, deleted
records are not included.

--all-rows:

The character used between columns when writing CSV output. Default is COMMA, but
you can specify BACKQUOTE, CARET, and more.

--column-delimiter:

This example gets the SOQL query from the soql-query.txt file, writes the records to a file in JSON format, and includes soft-deleted
records; it also runs on an org with the alias my-org:

sf data export bulk \
--query-file soql-query.txt --result-format json --all-rows \
--output-file accounts-all.json --wait 10 --target-org my-org

Bulk exports can take a while, depending on how many records are returned by the SOQL query. In our previous examples, we specified
that the command wait for 10 minutes for it to finish. If the command times out, it displays the data export resume command
you must run to get the status and results of the job. The command then returns control of the terminal, even though the job processing
is still happening in the background. The resume command uses a job ID, or you can use the --use-most-recent flag to resume
the most recently run job.

sf data export resume --job-id 750xx00fake00005sAAA

223

Work With Large DatasetsWork with Data

To bulk import the records from a file, run the data import bulk command. Similar to exporting, you can import records into
only one Salesforce object at a time, so the records in the file must be for the same object. Also, bulk import supports only files in CSV
format, not JSON.

This example shows how to bulk import records from the accounts.csv file into the Account object in the org with the alias
new-scratch-org. You must specify the column delimiter used in the file, which in this example is the comma.

sf data import bulk --file accounts.csv --sobject Account \
--column-delimiter COMMA --wait 10 --target-org new-scratch-org

Important: The format of the CSV file from which you’re importing must follow the rules and guidelines imposed by Bulk API
2.0. For example, the first row lists the fields you’re importing, and you must include all the object's required fields. For complete
documentation about creating these files, see the Prepare Data to Ingest section of the Bulk API Developer Guide.

The CSV file created by the data export bulk command follows the required formatting rules and guidelines.

Similar to the bulk export command, if the import times out, it completes and displays the data import resume command you
must run to get the status and results of the job. You can also use the --use-most-recent flag to resume the most recently run
import job.

sf data import resume --use-most-recent

Bulk Delete
Use the data delete bulk command to delete multiple records at once from a single Salesforce object. You must specify a
comma-separated values (CSV) file that has only one column (named Id) and then the list of record IDs you want to delete, one ID per
line. This sample CSV file snippet is for deleting account records:

Id
0017z00000m14R9AAI
0017z00000m5a0nAAA
0017z00000m5a0oAAA

This example deletes the accounts listed in the specified CSV file from the default org:

sf data delete bulk --sobject Account --file delete-accounts.csv --wait 10

As with all the bulk data commands, if the data delete bulk command times out, it displays the data delete resume
command you must run to see the status and results.

By default, the data delete bulk command puts the deleted records into the Salesforce Recycle Bin. You can specify that you
want the records to be marked for immediate deletion, also known as hard delete, by including the --hard-delete flag.

Important: You must have the "Bulk API Hard Delete” system permission to use the --hard-delete flag. This system
permission is disabled by default and can be enabled only by your Salesforce admin.

Bulk Update and Upsert
The data update bulk and data upsert bulk commands both read a CSV file that has new field values for a single
Salesforce object. The first column in the file must be a record ID. The remaining columns are the fields you want to update. This sample
CSV file snippet is for updating the Name field of the Account object:

Id,Name
0017z00000m14R9AAI,"New Name One"

224

Work With Large DatasetsWork with Data

0017z00000m5930AAA,"New Name Two"
0017z00000m5931AAA,"New Name Three"

Important: See Prepare Data to Ingest in the Bulk API Developer Guide for full documentation about the format of the CSV file when
bulk updating and upserting.

However, when you run data update bulk, you can update only existing records; if the command finds an ID in the CSV file that
doesn’t currently exist, the command fails. By contrast, if you run data upsert bulk on the same CSV file, the command updates
existing records and creates a record if necessary.

This example updates records of the Account object of your default org using the accounts-update.csv file:

sf data update bulk --file accounts-update.csv \
--sobject Account --wait 10

If all the records in accounts-update.csv exist, then the command completes successfully and the Account object fields are
updated with their new values. To also insert new records, you must use data upsert bulk. The command requires the
--external-id flag, which for this example we set to just the Id field. Then, in the CSV file, rows that contain no value for the Id
column are inserted as new records. For example:

Id,Name
0017z00000m14R9AAI,"New Name One"
0017z00000m5930AAA,"New Name Two"
0017z00000m5931AAA,"New Name Three"
,"New Account”

Here’s how to run the upsert command:

sf data upsert bulk --file accounts-update.csv \
--sobject Account --external-id Id --wait 10

As with all the bulk data commands, if the data update|upsert bulk commands time out, they display the data
update|upsert resume commands you must run to see the status and results.

Get Detailed Results From Any Bulk Ingest Job
Use the data bulk results CLI command to get detailed results from any completed bulk ingest job that you previously ran
using any Salesforce tool. Examples of these tools include:

• The bulk Salesforce CLI commands discussed in this topic, such as data import bulk and data upsert bulk

• Data Loader

• A partner product on AppExchange that uses Bulk API 2.0

The data bulk results command requires that the bulk ingest job has completed; the command also needs the job ID. For
example, if you’re using data import bulk, and it’s still processing, run data import resume first and wait for it to complete.
Make note of the outputted job ID.

The data bulk results command first shows a summary of the job results. It includes the overall status, the executed operation,
the affected Salesforce object, and the number of successful and failed records that were processed. For example:

sf data bulk results --job-id 75fake00CZBD1IAP --target-org my-scratch

Status: JobComplete
Operation: insert
Object: Account

225

Work With Large DatasetsWork with Data

Processed records: 13
Successful records: 13

Saved successful results to 75fake00CZBD1IAP-success-records.csv

The command also provides a CSV file that contains details of every successful record that was processed, including the new Salesforce
record IDs; in our sample output, the name of the file is 75fake00CZBD1IAP-success-records.csv. If any errors occurred
during the bulk ingest job, the command generates separate CSV files with details about the failures, and if possible, the unprocessed
records.

SEE ALSO:

Salesforce CLI Command Reference: data Commands

Salesforce Help: Sandbox Licenses and Storage Limits by Type

Bulk API Developer Guide: Bulk API 2.0

Bulk API Developer Guide: SOQL Considerations

Bulk API Developer Guide: Prepare Data to Ingest

Data Loader Guide

Salesforce AppExchange

Work With Individual Records

Everyone’s process is unique, and you don’t always need the same data as your teammates. When you want to create, modify, or delete
individual records quickly, use the data record commands, such as data create record. With these commands you specify
field values directly at the command line, so you don’t need any CSV or JSON data files. These commands work with both standard and
custom Salesforce objects, and Tooling API objects.

Create a Record
This example shows how to create a record in the Account object in your default org:

sf data create record --sobject Account \
--values "Name='Exciting Company' Website=www.example.com NumberOfEmployees=45

Phone='(415) 555-1212'"

Use the --values flag to specify field values in the form <fieldName>=<value>. Be sure to use the object’s field API name
and not its label. Separate multiple pairs with spaces, and use single quotes for individual values that include spaces. You must specify
a value for all required object fields.

Use the --use-tooling-api flag to create a Tooling API object record. This example creates a record in the TraceFlag Tooling
API object:

sf data create record --use-tooling-api --sobject TraceFlag \
--values "DebugLevelId=7dl170000008U36AAE StartDate=2024-12-15T00:26:04.000+0000 \
ExpirationDate=2024-12-15T00:56:04.000+0000 LogType=CLASS_TRACING

TracedEntityId=01p17000000R6bLAAS"

226

Work With Individual RecordsWork with Data

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_data_commands_unified.htm
https://help.salesforce.com/s/articleView?id=platform.data_sandbox_environments.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_asynch.meta/api_asynch/bulk_api_2_0.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_asynch.meta/api_asynch/queries.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_asynch.meta/api_asynch/datafiles_prepare_data.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.dataLoader.meta/dataLoader/data_loader_intro.htm
https://appexchange.salesforce.com/

Get a Record
Use the data get record command to retrieve and display a single record of a Salesforce standard or Tooling API object. The
command first displays basic information about the record, such as its ID, and then displays all the record’s fields, one field per line. Fields
with no values are displayed as null.

Identify the record by either its ID (--record-id flag) or with a list of field-value pairs (--where flag). If your list of fields identifies
more than one record, the command fails; the error displays how many records were found.

When using --where to identify a record by its field values, be sure to use the object’s field API name and not its label. Separate
multiple field-value pairs with spaces, and use single quotes for individual values that include spaces.

For example, to display the Account record that we added in the previous section, run this command:

sf data get record --sobject Account \
--where "Name='Exciting Company' Website=www.example.com"

If you noted the record ID when you created the record, you can use it to display the record this way:

sf data get record --sobject Account --record-id 001Oy0000xyz123

Here’s the example for Tooling API objects:

sf data get record --use-tooling-api --sobject TraceFlag --record-id 7tf8c00xx

Update or Delete a Record
Use the data update|delete record commands to change an existing object or Tooling API record.

Identify the record by either its ID (--record-id flag) or with a list of field-value pairs (--where flag). If your list of fields identifies
more than one record, the command fails; the error displays how many records were found.

To update a field, use the --values flag to specify the new field value. For both --values and --where, be sure to use the
object’s field API name and not its label. Separate multiple field-value pairs with spaces, and use single quotes for individual values that
include spaces.

For example, let’s say the phone number for the Exciting Company account changed; here’s the CLI command to update the record:

sf data update record --sobject Account \
--where "Name='Exciting Company'" --values "Phone='(510) 555-1212'"

Here’s how you delete the record:

sf data delete record --sobject Account --where "Name='Exciting Company'"

This example shows how to delete a record of a Tooling API object using its record ID:

sf data delete record --use-tooling-api --sobject TraceFlag --record-id 7tf8c00xx

SEE ALSO:

Salesforce CLI Command Reference: data Commands

Tooling API: TraceFlag

227

Work With Individual RecordsWork with Data

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_data_commands_unified.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_tooling.meta/api_tooling/tooling_api_objects_traceflag.htm

Run a SOQL or SOSL Query

It’s often useful to run a CLI command to quickly query a Salesforce object or search for specific terms across many objects. For example,
maybe you want to see all the Account records for the energy industry, or search for contact or lead names that begin with the letters
JO. Salesforce provides two robust search languages for just these use cases: SOQL and SOSL.

SOQL
Use Salesforce Object Query Language (SOQL) to search a single Salesforce or Tooling API object for specific information. SOQL is similar
to the SELECT statement in the widely used Structured Query Language (SQL) but is designed specifically for Salesforce data.

This example shows how to run a simple SOQL query against the Account object in your default org:

sf data query --query "SELECT ID, Name FROM Account WHERE Industry='Energy'"

If your query is long, you can store it in a file and specify the file name to the --file flag, as shown in this example, which runs against
an org with the alias new-scratch-org:

sf data query --file query.txt --target-org new-scratch-org

Tip: If your query returns more than 2,000 records, use the data export bulk command instead.

Use the --all-rows flag to also return records that have been soft-deleted due to a merge or delete. By default, deleted records
aren’t returned. To change the format of the output, such as to comma-separated values (CSV) or JSON, use the --result-format
flag.

sf data query --query "SELECT ID, Name FROM Account WHERE Industry='Energy'" --all-rows
--result-format json

To query a Tooling API object, include the --use-tooling-api flag. This example also shows how to use the --output-file
to write output to a file in CSV format.

sf data query --query "SELECT ID, Name FROM ApexClass" --use-tooling-api --result-format
csv --output-file query-output.csv

SOSL
Use Salesforce Object Search Language (SOSL) search fields across multiple objects.

This SOSL query searches the contacts and leads in your default org for names that start with Jo:

sf data search
--query "FIND {Jo*} IN Name FIELDS Returning Contact(Name, Phone), Lead(Name, Phone)"

If your SOSL search query is long, you can store it in a file and specify the filename to the --file flag, as shown in this example, which
runs against an org with the alias new-scratch-org:

sf data search --file query.txt --target-org new-scratch-org

228

Run a SOQL or SOSL QueryWork with Data

Specify --result-format csv to write a comma-separated value (CSV) file to disk:

sf data search --file query.txt --result-format csv

SEE ALSO:

Salesforce CLI Command Reference: data Commands

SOQL and SOSL Reference Guide

Upload a File to Your Org

Use the data create file CLI command to upload a local file to your org. The file is uploaded to the ContentDocument standard
object; when the command finishes it outputs the new record ID. In the Salesforce UI, the uploaded file is available from the Files tab.
The command always creates a new file in the org; you can’t update an existing file. If you create a file with the name of an existing file,
a new duplicate record is created.

This simple example shows how to upload the file called astro.png to an org with the alias new-scratch-org:

sf data create file --file astro.png --target-org new-scratch-org

By default, the Title field of the new ContentDocument record is the same as the name of the file (without the extension). In the
example, the title is astro. Use the --title flag to give it a new title:

sf data create file --file astro.png --title "Astro Running" --target-org new-scratch-org

By default, the uploaded file isn’t attached to a Salesforce record, such as an account or contact. If you know the ID of the record to which
you want to attach the uploaded file, specify it with the --parent-id flag. This example attaches the file to a contact because the
ID starts with 003:

sf data create file --file astro.png --parent-id 003O300000WLdtwIAD --title "Astro Running"
--target-org new-scratch-org

SEE ALSO:

Salesforce CLI Command Reference: data Commands

Object Reference for the Salesforce Platform: ContentDocument

229

Upload a File to Your OrgWork with Data

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_data_commands_unified.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_data_commands_unified.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_contentdocument.htm

CHAPTER 10 Salesforce DX MCP Server and Tools (Beta)

Use the Salesforce DX MCP Server and its tools to enter natural language prompts in your IDE to complete
standard DX tasks like syncing metadata, running Apex and agent tests, and creating scratch orgs. The
DX MCP server includes over 60 MCP tools for various Salesforce features, such as DevOps, LWC
development, and code analysis. These tools provide predictable, secure, and structured context to large
language models (LLMs), ensuring efficient and accurate results.

In this chapter ...

• Quick Start Using the
VS Code With Copilot
MCP Client (Beta)

• Install and Configure
the Salesforce DX
MCP Server (Beta)

Note: Salesforce DX MCP Server is a pilot or beta service that is subject to the Beta Services Terms
at Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer,
and applicable terms in the Product Terms Directory. Use of this pilot or beta service is at the
Customer's sole discretion.

• Use the Core
Salesforce DX MCP
Tools (Beta) Let's see how this work with an example. Say you enter Deploy my metadata in your IDE's agentic

chat window. The LLM sees that the DX MCP Server provides a deploy_metadata MCP tool, which
sounds perfect! The LLM then calls that tool within the context of your local DX project. Success and
error messages that result from the metadata deploy are then returned back to the LLM to determine
the next steps. In sum, the MCP DX tools guide the LLM to accomplish your goals in the the most accurate,
tested, and up-to-date way.

If the LLM didn't have the specific context for your prompt, it would still come up with a suggestion,
and eventually even the correct one. But because the LLM might be relying on out-of-date training data,
getting to the correct answer often involves inefficiencies, guesswork, and unpredictable behavior. MCP
solves this problem.

The Salesforce DX MCP Server is a specialized Model Context Protocol (MCP) implementation designed
to facilitate seamless interaction between LLMs and Salesforce orgs. See MCP Solutions for Developers
in the Agentforce Developer Guide for general MCP information and descriptions of other Salesforce MCP
Servers.

Key features of Salesforce DX MCP Server include:

• Direct interaction with Salesforce orgs through LLM-driven tools.

• Secure access using TypeScript libraries (not shelling out to Salesforce CLI).

• Improved security by avoiding the exposure of secrets in plain text.

• Granular access control with org allowlisting.

• Modular tool architecture for easy extensibility.

Salesforce DX MCP Server Security Features

The Salesforce DX MCP Server was designed with security as a top priority.

• Uses TypeScript libraries directly.

– Greatly decreases the size of the MCP Server.

230

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://developer.salesforce.com/docs/einstein/genai/guide/mcp.html

– Significantly reduces the risk of remote code execution (RCE).

• No secrets needed in configuration.

– Eliminates the risk of plain text secret exposure.

– Accesses pre-existing (encrypted) auth files on the user's machine.

– Implements allowlisting for auth info key/values to prevent sensitive data exposure.

• No secrets exposed via MCP tools.

– Prevents other tools from accessing unencrypted tokens.

– Tools pass usernames around instead of tokens.

• Granular access control.

– MCP Server can access auth info for only orgs that have been explicitly allowlisted.

– Users specify allowed orgs when starting the server.

Agentforce Vibes Extension Includes the Salesforce
DX MCP Server

Agentforce Vibes is an AI-powered Salesforce developer tool that's available as an easy-to-install Visual
Studio Code (VS Code) extension. It includes Agentforce, an intelligent coding partner that provides
information and, most importantly, can take action.

The Salesforce DX MCP Server is pre-configured in Agentforce Vibes, so you can start using the DX MCP
tools immediately after you install the extension in VS Code.

See Set Up Agentforce Vibes and Build with Agentforce for more information.

Types of MCP Tools Included in Salesforce DX MCP
Server

The Salesforce DX MCP Server includes many tools for working with different Salesforce features. To
narrow the LLM context, the DX MCP Server groups the tools into toolsets based on functionality. You
can then easily enable only those tools you want to use, rather than enable them all and overwhelm the
LLM.

These are the high-level types of MCP tools included in the DX MCP Server:

• Core DX: Usual DX tools for working with orgs, deploying and retrieving metadata, and so on.

• DevOps: Manage work items, resolve merge conflicts, and troubleshoot deployment problems
within DevOps Center.

• Code Analysis: Run a static analysis of your code using Salesforce Code Analyzer.

• Mobile: Help LWC developers create Lightning web components that integrate with device-native
features and adhere to Mobile Offline design patterns.

• Lightning Web Components (LWC) and Aura: Help you design, build, test, and optimize LWC
code and facilitate Aura migration to LWC.

231

Salesforce DX MCP Server and Tools (Beta)

https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/einstein-setup.html
https://developer.salesforce.com/docs/platform/einstein-for-devs/guide/devagent-overview.html

• Lightning Types: Create and enhance custom Lightning types to define complex data structures
and build custom user interfaces for Agentforce, Prompt Builder, and other Salesforce applications.
See the Lightning Types MCP Tool documentation.

MCP Terminology

Here are the MCP-specific terms we use in this document.

• MCP Server - An MCP server lets users interact with a system (such as Salesforce) using an LLM and
natural language instead of an API. MCP servers provide the LLM with tools, prompts, and resources
that the LLM can use to perform specific tasks.

• MCP Tools - Executable functions that the LLM can call to perform actions.

• MCP Toolsets - Logical groups of MCP tools based on their functionality. For example, the Salesforce
DX MCP Server has metadata and orgs toolsets.

• MCP Client - The interface (such as Agentforce) or IDE (such as Cursor) that can host an MCP server
and act as an interface to the LLM. Also called MCP Host, although this document uses the term
MCP client.

232

Salesforce DX MCP Server and Tools (Beta)

https://developer.salesforce.com/docs/platform/lightning-types/guide/lightning-types-mcp-tool.html

Quick Start Using the VS Code With Copilot MCP Client (Beta)

Get started with the Salesforce DX MCP Server using Visual Studio Code (VS Code) as the MCP client. After you configure it with the
Salesforce DX MCP Server, you then use GitHub Copilot and natural language to easily execute typical Salesforce DX development tasks,
such as creating scratch orgs, deploying or retrieving metadata, and viewing org records.

For the best getting-started experience, make sure that you have a standard Salesforce DX environment set up on your computer. In
particular:

• Install Node.js on your computer. We recommend you use the Active LTS version.

• Install Salesforce CLI on your computer.

• Install VS Code on your computer.

• Create a Salesforce DX project and open it in VS Code. You can also clone an example repo, such as dreamhouse-lwc, which is a
ready-to-use DX project that contains a simple Salesforce application, with metadata and test data.

• Authorize at least one development Salesforce org to use with your DX project, such as a Trailhead playground, sandbox, scratch
org, or Developer Edition org, and set it as your default org.

If you want to create a scratch org using MCP, then you must also authorize a Dev Hub org.

You also need a GitHub account.

Okay, let’s do it!

1. Create a .vscode/mcp.json file at the root of your DX project and add this JSON:

{
"servers": {
"Salesforce DX": {
"command": "npx",
"args": ["-y", "@salesforce/mcp@latest",

"--orgs", "DEFAULT_TARGET_ORG",
"--toolsets", "orgs,metadata,data,users,testing"]

}
}

}

You can also configure the DX MCP Server globally by editing the VS Code settings.json file and adding a similar JSON snippet but
contained in an mcp:servers section.

The --orgs flag is required and specifies the authorized orgs you're allowing the DX MCP Server to access. The --toolsets
flag specifies the toolsets it should consult when determining the specific tool to run. See Configure the Salesforce DX MCP Server
for Your Environment (Beta) for the available values for the two flags.

2. Open VS Code, go to View -> Command Palette and find and click MCP: List Servers.

Tip: You can also get to the command palette by pressing Ctrl+Shift+P (Windows or Linux) or Command-Shift-P (macOS).

3. Click Salesforce DX, then Start Server.
Click Yes if you’re asked if the DX MCP Server is trustworthy.

Check the Output tab for the server status and errors. The output also shows information such as the MCP tools and toolsets that
were registered, and which MCP tool registration was skipped because they’re not generally available (NON-GA).

When the DX MCP Server is ready, you see a message like this (your server version might be different):

� Salesforce MCP Server v0.21.2 running on stdio

233

Quick Start Using the VS Code With Copilot MCP Client (Beta)Salesforce DX MCP Server and Tools (Beta)

https://nodejs.org/en
https://nodejs.org/en/about/previous-releases
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm#sfdx_setup_install_cli
https://code.visualstudio.com/docs
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_intro_sample_repo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm
https://github.com/
https://code.visualstudio.com/docs/configure/settings#_settings-file-locations

4. Run Chat: Open Chat (Agent) from the command palette to start a new GitHub Copilot chat session. If necessary, you’re asked to
log in to GitHub and authorize VS Code to access it.
Be sure your GitHub Copilot chat window is in Agent mode; if you're in Ask or Edit mode, use the little drop-down to switch.

5. In the GitHub Copilot chat window, use natural language to explain what you want to do. The DX MCP Server determines which
configured tool to use, and then shows it to you along with other information. Review the chosen tool and parameters, then click
Continue to run the tool and see the results of your request.
Try out these sample prompts:

• Do I have any active scratch orgs? What about inactive scratch orgs?

• Show me all the available information about all my orgs.

• Show me all the accounts in the org with the alias my-org.

• Deploy the Apex classes in my DX project to the org with the alias my-org.

• Retrieve all agents from my org.

6. To stop, restart, or view the DX MCP Server configuration, run the MCP: List Servers command, click Salesforce DX, then click the
appropriate option.

Install and Configure the Salesforce DX MCP Server (Beta)

Install the Salesforce DX MCP Server in your MCP client to start using the tools.

Follow these steps:

1. Install Node.js on your computer. We recommend you use the Active LTS version.

2. Add the Salesforce DX MCP Server to Your MCP Client (Beta).

3. Configure the Salesforce DX MCP Server for Your Environment (Beta).

Add the Salesforce DX MCP Server to Your MCP Client (Beta)
The Salesforce DX MCP Server is an npm package called @salesforce/mcp. Adding the DX MCP Server to an MCP client typically
involves updating a JSON file that tells the MCP client how to run the @salesforce/mcp package using npx and specifying the
args option to configure the DX MCP Server. We recommend that you also use the @latest tag (@salesforce/mcp@latest)
so you always get the latest version of the DX MCP Server.

While each MCP client has different JSON files, the format of the args option is always the same. Here are instructions for some popular
MCP clients.

Agentforce Vibes
The Salesforce DX MCP Server is pre-configured in Agentforce Vibes. See Agentforce Vibes Extension Includes the Salesforce DX MCP
Server.

VS Code with Copilot
See the Quick Start Using the VS Code With Copilot MCP Client (Beta), which uses VS Code with GitHub Copilot as the example. The
topic includes details about which JSON file to update and an example JSON snippet.

234

Install and Configure the Salesforce DX MCP Server (Beta)Salesforce DX MCP Server and Tools (Beta)

https://github.blog/ai-and-ml/github-copilot/copilot-ask-edit-and-agent-modes-what-they-do-and-when-to-use-them/
https://nodejs.org/en
https://nodejs.org/en/about/previous-releases

Cursor
To configure Cursor to work with Salesforce DX MCP Server, add this snippet to your Cursor mcp.json file:

{
"mcpServers": {
"Salesforce DX": {
"command": "npx",
"args": ["-y", "@salesforce/mcp@latest",

"--orgs", "DEFAULT_TARGET_ORG",
"--toolsets", "orgs,metadata,data,users,testing"]

}
}

}

Cline
To configure Cline, add this snippet to your Cline cline_mcp_settings.json file:

{
"mcpServers": {
"Salesforce DX": {
"command": "npx",
"args": ["-y", "@salesforce/mcp@latest",

"--orgs", "DEFAULT_TARGET_ORG",
"--toolsets", "orgs,metadata,data,users,testing"]

}
}

}

Other MCP Clients
For these other clients, refer to their documentation for adding MCP servers and follow the same pattern as in the preceding VS Code
and Cursor JSON snippets:

• Claude Code

• Windsurf

• Zed

• Trae

Configure the Salesforce DX MCP Server for Your Environment (Beta)
After you’ve added the basic Salesforce DX MCP Server to your MCP client, configure the server for your specific environment by updating
the args option with new flags or new values to the flags.

Surround the flag name and its value each in double quotes, and separate all flags and values with commas. Boolean flags don't take a
value.

Let’s just run through some examples so you get the idea. Then see later sections for the full list of values you can specify for the args
option and its flags.

235

Configure the Salesforce DX MCP Server for Your Environment
(Beta)

Salesforce DX MCP Server and Tools (Beta)

https://cursor.com/docs/context/mcp
https://docs.cline.bot/mcp/mcp-overview
https://docs.claude.com/en/docs/claude-code/mcp
https://docs.windsurf.com/windsurf/cascade/mcp
https://github.com/zed-industries/zed
https://docs.trae.ai/ide/model-context-protocol?_lang=en

This basic example (for the VS Code with Copilot MCP client) configures the DX MCP Server to access your default org and enables the
core DX toolsets.

{
"servers": {
"Salesforce DX": {
"command": "npx",
"args": ["-y", "@salesforce/mcp@latest",

"--orgs", "DEFAULT_TARGET_ORG",
"--toolsets", "orgs,metadata,data,users,testing"]

}
}

}

The "-y", "@salesforce/mcp@latest" part tells the npx command to automatically install the latest version of the
@salesforce/mcp npm package instead of asking permission. Don't change this.

From now on we’ll show examples of just the args option, which is the key configuration option for the Salesforce DX MCP Server.

This example shows how to enable just the data, orgs, and metadata toolsets and allow access to two orgs: your default Dev
Hub org and an org with username test-org@example.com.

"args": ["-y", "@salesforce/mcp@latest",
"--orgs", "DEFAULT_TARGET_DEV_HUB,test-org@example.com",
"--toolsets", "data,orgs,metadata"]

This example shows how to configure access to two orgs for which you specified aliases when you authorized them (my-scratch-org
and my-dev-hub).

"args": ["-y", "@salesforce/mcp@latest",
"--orgs", "my-scratch-org,my-dev-hub",
"--toolsets", "data,orgs,metadata"]

This example allows the MCP Server to access all your authorized orgs, all toolsets, and tools that are not yet generally available. In other
words, this enables everything! Only do this if you truly need everything.

"args": ["-y", "@salesforce/mcp@latest",
"--orgs", "ALLOW_ALL_ORGS",
"--toolsets", "all",
"--allow-non-ga-tools"]

This example enables five tool sets (data, orgs, metadata, lwc-experts, and code-analysis) and a specific tool
(run_apex_test) from a different toolset.

"args": ["-y", "@salesforce/mcp@latest",
"--orgs", "DEFAULT_TARGET_ORG",
"--toolsets", "data,orgs,metadata,lwc-experts,code-analysis",
"--tools", "run_apex_test",
"--allow-non-ga-tools"]

This example allows access to both your default org and default Dev Hub org. It also enables three specific MCP tools rather than using
toolsets. The core toolset is always enabled, even if you don't specify it in the server configuration.

"args": ["-y", "@salesforce/mcp@latest",
"--orgs", "DEFAULT_TARGET_ORG,DEFAULT_TARGET_DEV_HUB",
"--tools", "list_all_orgs,deploy_metadata,run_apex_test"]

236

Configure the Salesforce DX MCP Server for Your Environment
(Beta)

Salesforce DX MCP Server and Tools (Beta)

This example enables the orgs toolset and the specific tool deploy_metadata.

"args": ["-y", "@salesforce/mcp@latest",
"--orgs", "DEFAULT_TARGET_ORG",
"--toolsets", "orgs",
"--tools", "deploy_metadata"]

Valid Values for the args Option
These are the flags that you can pass to the args option.

Table 1: Valid values for the args option

DescriptionRequired?Flag Name

One or more orgs that you've locally
authorized and are allowing the MCP Server
to use.

You must specify at least one org.

Yes--orgs

See Valid Values for the --orgs Flag.

Groups of MCP tools based on functionality.
Allows you to run the DX MCP Server with

You must specify at least one of these flags:
--toolsets, --tools,
--dynamic-tools.

--toolsets

only the tools you require, which in turn
reduces the LLM context.

See Valid Values for the --toolsets Flag.

Specific MCP tools you want to enable.

See Valid Values for the --tools Flag.

You must specify at least one of these flags:
--toolsets, --tools,
--dynamic-tools.

--tools

Boolean flag to disable telemetry, which is
the automatic collection of data for
monitoring and analysis.

Telemetry is enabled by default, so specify
this flag to disable it.

No--no-telemetry

Boolean flag that requests that the DX MCP
Server print debug logs.

Debug mode is disabled by default.

No--debug

Not all MCP clients expose MCP logs, so this
flag might not work in your environment.

Boolean flag to allow the DX MCP Server to
use both the generally available (GA) and

No--allow-non-ga-tools

NON-GA tools that are in the toolset you
specify.

By default, the DX MCP Server uses only the
tools marked GA.

237

Configure the Salesforce DX MCP Server for Your Environment
(Beta)

Salesforce DX MCP Server and Tools (Beta)

DescriptionRequired?Flag Name

(experimental) Boolean flag that enables
dynamic tool discovery and loading. When

You must specify at least one of these flags:
--toolsets, --tools,
--dynamic-tools.

--dynamic-tools

specified, the DX MCP Server starts with a
minimal set of core tools and loads new
tools as needed.

This flag is useful for reducing the initial
context size and improving LLM
performance. Dynamic tool discovery is
disabled by default.

This feature works in VS Code and Cline but
may not work in other MCP clients.

Valid Values for the --orgs Flag
The Salesforce MCP tools require an org, and so you must include the required --orgs flag and specify at least one authorized org.
Separate multiple values with commas.

We recommend that, for security reasons, you don’t automatically specify all the orgs you’ve authorized but instead only the orgs you
want the DX MCP Server to access.

Tip: If you’re limiting the MCP tools to those that don’t typically require a Salesforce org (such as Salesforce Code Analyzer tools
in the code-analysis toolset), you must still set the --orgs flag, such as --orgs DEFAULT_TARGET_ORG. You
don’t get an error on server start, even if you haven’t set a default org.

You must explicitly authorize the orgs on your computer before the MCP server can access them. Use the org login web Salesforce
CLI command or the VS Code SFDX: Authorize an Org command from the command palette.

These are the available values for the --orgs flag.

Table 2: Valid values for the --orgs Flag

DescriptionFlag Value

Allow access to your default org.

If you've set a local default org in your DX project, the DX MCP
Server uses it. If not, the server uses a globally-set default org.

DEFAULT_TARGET_ORG

Allow access to your default Dev Hub org.

If you've set a local default Dev Hub org in your DX project, the DX
MCP Server uses it. If not, the server uses a globally-set default Dev
Hub org.

DEFAULT_TARGET_DEV_HUB

Allow access to all authorized orgs.

Use caution with this value!

ALLOW_ALL_ORGS

Allow access to a specific org by specifying its username or alias,
such as my-org (alias) or test@example.com (username).

<username or alias>

238

Configure the Salesforce DX MCP Server for Your Environment
(Beta)

Salesforce DX MCP Server and Tools (Beta)

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm

Valid Values for the --toolsets Flag
The Salesforce DX MCP Server uses toolsets to logically group MCP tools based on functionality; use the --toolsets flag to specify
the ones you want to enable for your environment. Separate multiple toolsets commas.

Tip: If you enable an MCP tool with the --toolsets flag, you can then disable it in your MCP client, which takes precedence.

These are the available toolsets. For some of these toolsets, the complete list of included tools is documented in separate documentation,
as indicated.

Table 3: Valid values for the --toolsets Flag

DescriptionToolset Name

Enables all available tools from all toolsets.

We recommend that you configure only the toolsets you’re going
to use, rather than all of them with this value. The DX MCP Server

all

includes over 60 MCP tools, so enabling them all in your MCP client
can overwhelm the LLM context.

Core set of DX MCP tools. This toolset is always enabled.

See Core DX MCP Tools Reference for the included tools.

core

Tools to manage your authorized orgs.

See Core DX MCP Tools Reference for the included tools.

orgs

Tools to manage the data in your org, such as listing all accounts.

See Core DX MCP Tools Reference for the included tools.

data

Tools to manage org users, such as assigning a permission set.

See Core DX MCP Tools Reference for the included tools.

users

Tools to deploy and retrieve metadata between your org and DX
project.

See Core DX MCP Tools Reference for the included tools.

metadata

Tools to test Salesforce features, such as Apex classes and
Agentforce agents.

See Core DX MCP Tools Reference for the included tools.

testing

Tools to run a static analysis of your code using Salesforce Code
Analyzer.

See the Code Analyzer MCP Tools documentation.

code-analysis

Tools to manage work items, resolve merge conflicts, and
troubleshoot deployment problems within DevOps Center.

See the DevOps MCP Tools documentation.

devops

239

Configure the Salesforce DX MCP Server for Your Environment
(Beta)

Salesforce DX MCP Server and Tools (Beta)

https://developer.salesforce.com/docs/platform/salesforce-code-analyzer/guide/mcp.html
https://help.salesforce.com/s/articleView?id=platform.devops_center_mcp_intro.htm&language=en_US

DescriptionToolset Name

Tools to help you design, build, test, and optimize LWC code.

See the LWC MCP Tools documentation.

lwc-experts

Tools to help you migrate Aura applications to LWC.

See the LWC MCP Tools documentation.

aura-experts

Core (minimal) set of tools to help LWC developers create Lightning
web components that integrate with device-native features and
adhere to Mobile Offline design patterns.

See the Mobile MCP Tools documentation.

mobile-core

All the tools to help LWC developers create Lightning web
components that integrate with device-native features and adhere
to Mobile Offline design patterns.

See the Mobile MCP Tools documentation.

mobile

Valid Values for the --tools Flag
You can use the --tools flag to enable specific tools. Use the --toolsets and --tools flags in combination to enable, for
example, all the tools in the orgs toolset and just one tool (run_apex_test) in the testing toolset. Separate multiple tools with
commas.

Tip: If you enable an MCP tool with the --tools or --toolsets flag, you can then disable it in your MCP client, which
takes precedence.

The easiest way to find the name of a specific MCP tool is using your MCP client. For example, in VS Code with GitHub Copilot, click the
Configure Tools button in the bottom-right of the chat window to see all the available tools, including the Salesforce DX ones.

You can also refer to the documentation for the different types of MCP tools:

• Core Salesforce DX MCP Tools Documentation on page 241

• DevOps Center MCP Tools Documentation

• Code Analyzer MCP Tools Documentation

• Mobile MCP Tools Documentation

• LWC MCP Tools Documentation

Manage the Salesforce DX MCP Server (Beta)
The exact steps to manage the Salesforce DX MCP Server depends on your MCP client.

But most clients allow you to:

240

Manage the Salesforce DX MCP Server (Beta)Salesforce DX MCP Server and Tools (Beta)

https://developer.salesforce.com/docs/platform/lwc/guide/mcp-intro.html
https://developer.salesforce.com/docs/platform/lwc/guide/mcp-intro.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.mobile_offline.meta/mobile_offline/dx_mobile_mcp_tools.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.mobile_offline.meta/mobile_offline/dx_mobile_mcp_tools.htm
https://help.salesforce.com/s/articleView?id=platform.devops_center_mcp_intro.htm&language=en_US
https://developer.salesforce.com/docs/platform/salesforce-code-analyzer/guide/mcp.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.mobile_offline.meta/mobile_offline/dx_mobile_mcp_tools.htm
https://developer.salesforce.com/docs/platform/lwc/guide/mcp-intro.html

• Stop and restart the server. If a new version of the DX MCP Server npm package (@salesforce/mcp) was released, then it’s
automatically updated.

• Set the LLM models that the DX MCP Server can use.

Check your MCP client documentation for details.

Use the Core Salesforce DX MCP Tools (Beta)

Use the core Salesforce DX MCP tools to run classic DX tasks, such as work with orgs, retrieve and deploy metadata, run Apex tests, and
more.

The core DX tools are grouped into these toolsets:

• orgs

• metadata

• data

• users

• testing

See the toolset topic for information about the other available toolsets, such as DevOps and LWC, and links to documentation about
how to effectively use them.

Prerequisites for Using the Core DX MCP Tools
To work with the core DX MCP tools, you need the standard Salesforce DX environment set up on your computer. In particular:

• Install and configure the Salesforce DX MCP Server in your MCP client.

• Install Salesforce CLI on your computer.

• Install VS Code on your computer.

• Create a Salesforce DX project and open it in VS Code. You can also clone an example repo, such as dreamhouse-lwc, which is a
ready-to-use DX project that contains a simple Salesforce application, with metadata and test data.

• Authorize at least one development Salesforce org to use with your DX project, such as a Trailhead playground, sandbox, scratch
org, or Developer Edition org, and set it as your default org.

If you want to create a scratch org using MCP, then you must also authorize a Dev Hub org.

Sample Prompts that Invoke the Core DX MCP Tools
Here are some sample prompts to get you started using the core DX MCP tools. You never call a specific MCP tool directly; as always in
this exciting new AI world, you use natural language to tell the LLM what you want to accomplish, and it then figures out what tools to
call to complete the task.

You can configure your MCP client to automatically run MCP tools that just provide information, but to ask for your explicit confirmation
before it runs a tool that makes a real change in your local DX project or in your org. We think this behavior is a good idea.

Get information about the orgs that the DX MCP Server knows about:

• List all my orgs and provide all the details you know about them.

• Fully describe the org with the alias my-org.

Tips:

241

Use the Core Salesforce DX MCP Tools (Beta)Salesforce DX MCP Server and Tools (Beta)

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm#sfdx_setup_install_cli
https://code.visualstudio.com/docs
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_intro_sample_repo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm

• If the MCP client doesn’t list the authorized orgs that you want to use, update the --orgs flag in your DX MCP Server configuration
and either add the org’s alias or username or specify ALLOW_ALL_ORGS.

• In general, if the LLM seems to be getting confused, start a new chat session which clears the context. This tip applies to pretty much
all LLM usage.

Open your org in a browser:

• Open my org in a browser.

• Open the Resort Manager agent in Agent Builder.

• Open the Get Experiences flow in its associated builder.

• Open the file I’m currently working on (in my IDE) in my org.

Tips:

• To open an agent or flow in its associated org builder, you must have the metadata files in your Salesforce DX project. Try retrieving
them if they’re in your org, but not in your DX project.

Work with scratch orgs and snapshots:

• Do I have any active scratch orgs? What about inactive scratch orgs?

• Create a scratch org, give it the alias my-scratch, and make it my default org.

• Create a snapshot from the scratch org you just created.

• Create a scratch org from the snapshot you just created.

• Delete the scratch org with the alias my-scratch.

Tips:

• If you successfully create a scratch org using a prompt, but it doesn’t show up when you ask to list your orgs, update the --orgs
flag in your DX MCP Server configuration and either add the new scratch org alias or username or specify ALLOW_ALL_ORGS.

Get information about your org:

• Show me all the accounts in my org.

• What are all the fields of the account object?

• Show me all the accounts in my org; include the name, billing address, web site, and phone fields.

• How many system administrators do I have in my org? What are their usernames?

Deploy and retrieve metadata:

• Deploy all local Apex classes to my org.

• Deploy everything in my DX project to my org.

• Retrieve all agents from my org.

Run tests:

• Run all local Apex tests and diagnose any failures.

• Run all agent tests.

Core DX MCP Tools Reference
The core Salesforce DX MCP Server provides these tools for working with orgs, metadata, and so on. We provide this reference information
so you understand what kinds of tasks these tools can accomplish; you don’t call these tools directly, but rather the LLM does.

The tools marked NON-GA are not yet generally available, specify the --allow-non-ga-tools flag in your DX MCP Server
configuration to use them. See Configure the Salesforce DX MCP Server for Your Environment.

242

Use the Core Salesforce DX MCP Tools (Beta)Salesforce DX MCP Server and Tools (Beta)

Table 4: Core DX MCP Tools

DescriptionGA?ToolsetTool name

Determines the appropriate
username or alias for Salesforce

GAcore

Always available

get_username

operations, handling both
default orgs and Dev Hubs.

Resumes a long-running
operation that wasn't completed
by another tool.

GAcore

Always available

resume_tool_operation

Lists all configured Salesforce
orgs.

GAorgslist_all_orgs

Creates a scratch org snapshot.NON-GAorgscreate_org_snapshot

Creates a scratch org.NON-GAorgscreate_scratch_org

Deletes a locally-authorized
Salesforce scratch org or
sandbox.

NON-GAorgsdelete_org

Opens a Salesforce org in a
browser.

NON-GAorgsorg_open

Runs a SOQL query against a
Salesforce org.

GAdatarun_soql_query

Assigns a permission set to the
user or on behalf of another
user.

GAusersassign_permission_set

Deploys metadata from your
Salesforce DX project to an
authorized org.

GAmetadatadeploy_metadata

Retrieves metadata from an
authorized org to your Salesforce
DX project.

GAmetadataretrieve_metadata

Executes Agentforce agent tests
in your authorized org.

GAtestingrun_agent_test

Executes Apex tests in your
authorized org.

GAtestingrun_apex_test

243

Use the Core Salesforce DX MCP Tools (Beta)Salesforce DX MCP Server and Tools (Beta)

CHAPTER 11 Development

After you import some test data, you’ve completed the process of setting up your project. Now, you’re
ready to start the development process.

In this chapter ...

• Develop Against Any
Org

Create Source Files from the CLI

To add source files from the CLI, make sure that you’re working in an appropriate directory. For example,
if your package directory is called force-app, create Apex classes in

• Assign a Permission
Set

• Create Lightning
Apps and Aura
Components force-app/main/default/classes. You can organize your source as you want underneath

each package directory except for documents, custom objects, and custom object translations.• Create Lightning Web
Components As of API version 45.0, you can build Lightning components using two programming models: Lightning

Web Components and Aura Components. To organize your components’ source files, your Aura• Create an Apex
Class components must be in the aura directory. Your Lightning web components must be in the lwc

directory.• Create an Apex
Trigger Execute one of these commands.

• Create a Custom
Object

• apex generate class

• apex generate trigger• Execute Anonymous
Apex • cmdt generate object

• cmdt generate field• Run Apex Tests

• cmdt generate record

• cmdt generate records

• cmdt generate fromorg

• lightning generate app

• lightning generate component

• lightning generate event

• lightning generate interface

• lightning generate test

• schema generate sobject

• schema generate field

• schema generate platformevent

• schema generate tab

• static-resource generate

• visualforce generate component

• visualforce generate page

244

Many of the commands have these two helpful optional flags:

DescriptionFlag

The directory for saving the created files. If you don’t indicate
a directory, your source is added to the current folder. To add

-d, --output-dir

the source to an existing directory, indicate the absolute or
relative path. If you don’t indicate an absolute or a relative
path and the directory doesn’t exist, Salesforce CLI attempts
to create it for you.

Template used for the file creation.-t, --template

Tip: If you want to know more information about a command, run it with the --help flag. For
example, sf apex generate class --help.

Edit Source Files

Use your favorite code editor to edit Apex classes, Visualforce pages and components, Lightning web
components, and Aura components in your project. You can also make edits in the Setup UI of your org
and then use project retrieve start to retrieve those changes to your project. For Lightning
pages (FlexiPage files) that are already in your org, use the shortcut to open Lightning App Builder in a
scratch org from your default browser. Lightning Pages are stored in the flexipages directory.

To edit a FlexiPage in your default browser—for example, to edit the Property_Record_Page
source—execute this command from the flexipages directory.

sf org open --source-file Property_Record_Page.flexipage-meta.xml

If you want to generate a URL that loads the .flexipage-meta.xml file in Lightning App Builder
but doesn’t launch your browser, use the --url-only | -r flag.

sf org open --source-file Property_Record_Page.flexipage-meta.xml
--url-only

SEE ALSO:

Salesforce CLI Command Reference

245

Development

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_unified.htm

Develop Against Any Org

After developing against scratch or sandbox orgs that have source tracking enabled, you eventually test and validate your changes in a
non-source-tracked org.

You can use Salesforce CLI to retrieve and deploy metadata (in metadata format) to non-source-tracked orgs with the same ease as
retrieving and deploying source (in source format) to and from scratch orgs. If you’re new to Salesforce CLI, Salesforce DX Project Structure
and Source File Format explains the difference between source format and metadata format.

Using project retrieve start, you can retrieve the metadata you need in source format to your local file system (DX project).
When your changes are ready for testing or production, you can use project deploy start to deploy your local files directly
to a non-source-tracked org.

Not sure what metadata types are supported or which metadata types support wild cards in package.xml? See Metadata Types in
the Metadata API Developer Guide.

Before You Begin
Before you begin, don't forget to:

• Create a Salesforce DX project that includes a manifest (package.xml). Run project generate --name mywork
MyProject --manifest.

• Authorize your non-source-tracked org. If connecting to a sandbox, edit your sfdx-project.json file to set sfdcLoginUrl
to https://test.salesforce.com before you authorize the org. Don't forget to create aliases for your non-source-tracked
orgs.

Metadata Names That Require Encoding on the Command Line
When retrieving or deploying metadata using the --metadata option, commas in metadata names require encoding to work
properly.

Don’t: sf project deploy start --metadata "Profile:Standard User" --metadata
"Layout:Page,Console"

Do: sf project deploy start --metadata "Profile:Standard User" --metadata
"Layout:Page%2CConsole"

Retrieve Source from a Non-Source-Tracked Org
Use the project retrieve start command to retrieve source from orgs that don’t have source tracking, such as a sandbox
or your production org. If you already have the source code and metadata in a VCS, you might be able to skip this step. If you're starting
anew, you retrieve the metadata associated with the feature, project, or customization you're working on.

You can retrieve metadata in source format using one of these methods:

• Specify a package.xml that lists the components to retrieve.

• Specify a comma-separated list of metadata component names.

• Specify a comma-separated list of source file paths to retrieve. You can use the source path option when source exists locally, for
example, after you've done an initial retrieve.

• Specify a comma-separated list of package names.

If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double quotes.

246

Develop Against Any OrgDevelopment

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_cli_usernames_orgs.htm

Command ExampleTo Retrieve:

sf project retrieve start --manifest
path/to/package.xml

All metadata components listed in a manifest

sf project retrieve --source-dir path/to/sourceSource files in a directory

sf project retrieve --source-dir
path/to/apex/classes/MyClass.cls --source-dir
path/to/source/objects

A specific Apex class and the objects whose source
is in a directory

sf project retrieve start --metadata
"Profile:Standard User"

Metadata that contains spaces

sf project retrieve --metadata ApexClassAll Apex classes

sf project retrieve --metadata ApexClass:MyApexClassA specific Apex class

sf project retrieve --metadata "Layout:Page%2C
Console"

A layout name that contains a comma (Layout: Page,
Console)

sf project retrieve --metadata --package-name
DreamHouse

All the metadata related to a specific package or
packages

You can specify only one scoping parameter when retrieving metadata: --metadata, --source-dir, or --manifest. If you
indicate --package-name, you can include one additional scoping parameter.

sf project retrieve start --package-name DreamHouse --manifest manifest/package.xml

Deploy Source to a Non-Source-Tracked Org
Use the project deploy start command to deploy source to orgs that don’t have source tracking, such as a sandbox or
production org.

You can deploy metadata in source format using these methods:

• Specify a package.xml that lists the components to deploy

• Specify a comma-separated list of metadata component names

• Specify a comma-separated list of source file paths to deploy

If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double quotes.

Command ExampleTo Deploy:

sf project deploy start --manifest
path/to/package.xml

All components listed in a manifest

sf project deploy start --source-dir path/to/sourceSource files in a directory

sf project deploy start --source-dir
path/to/apex/classes/MyClass.cls --source-dir
path/to/source/objects

A specific Apex class and the objects whose source
is in a directory

sf project deploy start --metadata ApexClassAll Apex classes

247

Develop Against Any OrgDevelopment

Command ExampleTo Deploy:

sf project deploy start --metadata
ApexClass:MyApexClass

A specific Apex class

sf project deploy start --metadata CustomObject
--metadata ApexClass

All custom objects and Apex classes

sf project deploy start --metadata ApexClass
--metadata "Profile:Content Experience Profile"

All Apex classes and a profile that has a space in its
name

sf project deploy quick --job-id JOBID

You can run this option after you have run tests, passed code coverage
requirements, and performed a check-only deployment using the project
deploy validate command, which returns the job ID.

A recently validated set of components without
running Apex tests (often referred to as a quick
deploy)

sf project deploy start --ignore-warningsEven if the deployment contains warnings

sf project deploy start --ignore-errorsRegardless of whether the deployment contains
errors (not recommended if deploying to a
production org)

Delete Non-Tracked Source
Use the project delete source command to delete components from orgs that don’t have source tracking, such as sandboxes.

If the source exists locally in a DX project, you can delete metadata by specifying the path to the source or by listing individual metadata
components. If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double
quotes.

Command ExampleTo Delete:

sf project delete source --source-dir path/to/sourceSource files in a directory

sf project delete source --metadata
FlexiPage:Broker_Record_Page

A specific component, such as a FlexiPage

sf project delete source --metadata "Profile:Content
Experience Profile"

A specific component that includes a space

Do You Want to Retain the Generated Metadata?
Normally, when you run some CLI commands, a temporary directory with all the metadata is created then deleted upon successful
completion of the command. However, retaining these files can be useful for several reasons. You can debug problems that occur during
command execution. You can use the generated package.xml when running subsequent commands, or as a starting point for
creating a manifest that includes all the metadata you care about.

To retain all the metadata in a specified directory path when you run these commands, set the SF_MDAPI_TEMP_DIR environment
variable:

• project deploy start

• project retrieve start

248

Develop Against Any OrgDevelopment

• project delete source

• project convert mdapi|source

• org create scratch (if your scratch org definition contains scratch org settings, not org preferences)

Example:

SF_MDAPI_TEMP_DIR=/users/myName/myDXProject/metadata

SEE ALSO:

VS Code Command: SFDX: Deploy|Retrieve|Delete Source From Org

Assign a Permission Set

After creating your scratch org and deploying the source, you must sometimes give your users access to your application, especially if
your app contains custom objects.

1. If needed, create the permission set in the scratch org.

a. Open the scratch org in your browser.

sf org open --target-org <scratch org username/alias>

b. From Setup, enter Perm in the Quick Find box, then select Permission Sets.

c. Click New.

d. Enter a descriptive label for the permission set, then click Save.

e. Under Apps, click Assigned Apps > Edit.

f. Under Available Apps, select your app, then click Add to move it to Enabled Apps.

g. Click Save.

2. Retrieve the permission set from the scratch org to your project.

sf project retrieve start --target-org <scratch org username/alias>

3. Assign the permission set to one or more users of the org that contains the app:

sf org assign permset --name <permset_name> --target-org <username/alias>

The target username must have permission to assign a permission set. Use the --on-behalf-of flag to assign a permission
set to non-administrator users.

sf org assign permset --name <permset_name> --target-org <admin-user> --on-behalf-of
<non-admin-user>

You can also assign permission set licenses to users using the org assign permsetlicense command. It works similarly to
the org assign permset command.

SEE ALSO:

Salesforce Help: Permission Sets

Salesforce Help: Permission Set Licenses

249

Assign a Permission SetDevelopment

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/deploy-changes.html
https://help.salesforce.com/s/articleView?id=platform.perm_sets_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.users_permissionset_licenses_overview.htm&type=5&language=en_US

Create Lightning Apps and Aura Components

You can use Salesforce CLI to create Lightning apps and Aura components in your local Salesforce DX project. The generated files live
in an aura directory in a package directory of your project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the aura directory in the location you want to generate the Lightning app and Aura components. For example, if you want
to generate them in the default package directory, create the force-app/main/default/aura directory if it doesn’t exist.

3. Create a Lightning app or an Aura component; specify the app or component name with the --name flag and the aura directory
with the --output-dir flag.

sf lightning generate app --name myApp --output-dir force-app/main/default/aura

sf lightning generate component --type aura --name myAuraComponent --output-dir
force-app/main/default/aura

Use the project deploy start command to deploy the new Lightning app and Aura component to your org.

sf project deploy start --metadata AuraDefinitionBundle:myApp --metadata
AuraDefinitionBundle:myAuraComponent

SEE ALSO:

VS Code Command: SFDX: Create Aura App|Component|Event|Interface

Create Lightning Web Components

Create Lightning Web Components

You can use Salesforce CLI to create Lightning web components in your local Salesforce DX project. The generated files live in a lwc
directory in a package directory of your project.

Note: Want to develop your Lightning web components in a real-time preview of your Lightning app or Experience Cloud site?
Try the new Local Dev experience, which lets you iterate faster on your components without deploying code or manually refreshing
the preview.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the lwc directory in the location you want to generate the Lightning app and Aura components. For example, if you want
to generate them in the default package directory, create the force-app/main/default/aura directory if it doesn’t exist.

3. Create the Lightning web component; specify the component name with the --name flag and the lwc directory with the
--output-dir flag.

sf lightning generate component --type lwc --name myLightningWebComponent --output-dir
force-app/main/default/lwc

250

Create Lightning Apps and Aura ComponentsDevelopment

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/aura-writing.html
https://developer.salesforce.com/docs/platform/lwc/guide/get-started-test-components.html

Use the project deploy start command to deploy your new Lightning web component to your org.

sf project deploy start --metadata LightningComponentBundle:myLightningWebComponent

SEE ALSO:

Create Lightning Apps and Aura Components

Lightning Web Components Dev Guide: Introducing Lightning Web Components

VS Code Command: SFDX: Create Lightning Web Component | Test

Create an Apex Class

You can use Salesforce CLI to create Apex classes in your local Salesforce DX project. The generated class files live in a classes directory
in a package directory of your project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the classes directory in the location you want to generate the Apex class. For example, if you want to generate it in the
default package directory, create the force-app/main/default/classes directory if it doesn’t exist.

3. Create the Apex class; specify the class name with the --name flag and the classes directory with the --output-dir
flag.

sf apex generate class --name myClass --output-dir force-app/main/default/classes

The command generates two files:

• myClass.cls-meta.xml—metadata file

• myClass.cls—Apex source file

By default, the command creates an empty Apex class. However, you can select different templates, depending on what you’re creating,
by specifying the --template flag.

More Information in Apex Developer
Guide

DescriptionTemplate

ClassesStandard Apex class.DefaultApexClass (default)

Exception Class and Built-in ExceptionsUse Apex built-in exceptions or create
custom exceptions. All exceptions have
common methods.

ApexException

isTest AnnotationUse the @isTest annotation to define
classes and methods that only contain code
used for testing your application.

ApexUnitTest

Apex Email ServiceUse email services to process the contents,
headers, and attachments of inbound email.

InboundEmailService

This example selects the ApexException template.

sf apex generate class --name myException --template ApexException --output-dir
force-app/main/default/classes

251

Create an Apex ClassDevelopment

https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/lwc-writing.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_classes_understanding.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_classes_exception_methods.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_classes_annotation_isTest.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_classes_email_inbound_what_is.htm

Use the project deploy start command to deploy the new Apex class to your org.

sf project deploy start --metadata ApexClass:myClass

SEE ALSO:

Apex Developer Guide

VS Code Command: SFDX: Create Apex Class

Create an Apex Trigger

Use Apex triggers to perform custom actions before or after a change to a Salesforce record, such as an insertion, update, or deletion.
You can use Salesforce CLI to create Apex triggers in your local Salesforce DX project. The generated files live in a triggers directory
in a package directory of your project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the triggers directory in the location you want to generate the Apex trigger. For example, if you want to generate it in
the default package directory, create the force-app/main/default/triggers directory if it doesn’t exist.

3. Generate the Apex trigger; specify the trigger name with the --name flag and the triggers directory with the --output-dir
flag.

sf apex generate trigger --name myTrigger --output-dir force-app/main/default/triggers

By default, the generated trigger is for before insert events on the generic sObject. Use the --event and --sobject
flags to change these default values. This example generates a trigger that fires before and after an insert into the Account object.

sf apex generate trigger --name myTrigger --event 'before insert,after insert' --sobject
Account --output-dir force-app/main/default/triggers

The command generates two files.

• myTrigger.trigger-meta.xml—metadata file

• myTrigger.trigger—Apex trigger source file

Use the project deploy start command to deploy the new Apex trigger to your org.

sf project deploy start --metadata ApexTrigger:myTrigger --target-org myscratch

SEE ALSO:

Apex Developer Guide: Triggers

Trailhead: Apex Triggers

VS Code Command: SFDX: Create Apex Trigger

Create a Custom Object

You can use Salesforce CLI to generate the metadata files for new custom objects in your local Salesforce DX project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

252

Create an Apex TriggerDevelopment

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_dev_guide.htm
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/apex-overview.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_triggers.htm
https://trailhead.salesforce.com/en/modules/apex_triggers
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/apex-overview.html

2. Run the interactive schema generate sobject command. You must specify a label for your new custom object with the
--label flag. The command uses this label to provide intelligent suggestions for other object properties, such as its API name
and plural label.

sf schema generate sobject --label "New Object"

Answer all the questions about your new object, such as the location of the generated files in your Salesforce DX project and whether
to enable various object properties.

After you create your custom object:

• Create a custom field on your new object with the interactive schema generate field command, which generates the
necessary metadata files in your project. You can also use the command to create a custom field on a standard object, such as
Account.

• Create a custom tab for your new object with the schema generate tab command.

Then deploy your new custom object to your org.

sf project deploy start --metadata CustomObject:NewObject__c --target-org myscratch

The first time you deploy your new custom object to a source-tracking org, the org creates additional properties and sets new defaults
on it. For this reason, we recommend that you immediately retrieve the custom object so your local source files are updated with this
new information.

SEE ALSO:

Salesforce Help: Fields Required for Creating Custom Objects

Salesforce Help: Custom Field Types

Salesforce Help: Custom Field Attributes

Execute Anonymous Apex

You can execute an anonymous block of Apex code in an org with the apex run Salesforce CLI command.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Run the apex run command with no flags to open an interactive shell. At the prompt, enter all your Apex code; press CTRL-D
when you're finished. Your code is then executed in a single execute anonymous request in the specified org, or the default org if
you don’t specify one.

sf apex run --target-org myscratch

This output shows an example of executing the Apex code system.debug ('Hello world!');

Start typing Apex code. Press the Enter key after each line, then press CTRL+D when
finished.
system.debug ('Hello world!');
Compiled successfully.
Executed successfully.

58.0 APEX_CODE,DEBUG;APEX_PROFILING,INFO
Execute Anonymous: system.debug ('Hello world!');
14:23:06.174
(174742273)|USER_INFO|[EXTERNAL]|0058H000005QWcE|test-ux9lpg9jyyqt@example.com|(GMT-07:00)
Pacific Daylight Time (America/Los_Angeles)|GMT-07:00

253

Execute Anonymous ApexDevelopment

https://help.salesforce.com/s/articleView?id=platform.dev_objectcreate.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.custom_field_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.custom_field_types.htm&type=5&language=en_US

14:23:06.174 (174785450)|EXECUTION_STARTED
14:23:06.174 (174792639)|CODE_UNIT_STARTED|[EXTERNAL]|execute_anonymous_apex
14:23:06.174 (175417814)|USER_DEBUG|[1]|DEBUG|Hello world!
14:23:06.175 (175529797)|CUMULATIVE_LIMIT_USAGE
14:23:06.175 (175529797)|LIMIT_USAGE_FOR_NS|(default)|
Number of SOQL queries: 0 out of 100
Number of query rows: 0 out of 50000
Number of SOSL queries: 0 out of 20
Number of DML statements: 0 out of 150
Number of Publish Immediate DML: 0 out of 150
Number of DML rows: 0 out of 10000
Maximum CPU time: 0 out of 10000
Maximum heap size: 0 out of 6000000
Number of callouts: 0 out of 100
Number of Email Invocations: 0 out of 10
Number of future calls: 0 out of 50
Number of queueable jobs added to the queue: 0 out of 50
Number of Mobile Apex push calls: 0 out of 10

14:23:06.175 (175529797)|CUMULATIVE_LIMIT_USAGE_END

14:23:06.174 (175598235)|CODE_UNIT_FINISHED|execute_anonymous_apex
14:23:06.174 (175617689)|EXECUTION_FINISHED

Use the --file flag to execute Apex code in a file rather than interactively.

sf apex run --file ~/test.apex

SEE ALSO:

Apex Developer Guide: Anonymous Blocks

VS Code Command: SFDX: Execute Anonymous Apex with Currently Selected Text | Editor Contents

Run Apex Tests

When you’re ready to test changes to your source code, you can run Apex tests in an org using Salesforce CLI on the command line. You
can also run Apex tests from Salesforce Extensions for VS Code or from within third-party continuous integration tools, such as Jenkins
or CircleCI.

Minimum User Permissions and Settings Required
The user running Apex tests must have these user permissions in the org:

• View Setup and Configuration

• API Enabled

Also ensure that the Enable Streaming API setting is enabled in the org’s user interface. The setting is enabled by default.

See User Permissions and Configure User Interface Settings for details.

254

Run Apex TestsDevelopment

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_anonymous_block.htm
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/apex-writing.html#anonymous-apex
https://help.salesforce.com/articleView?id=platform.admin_userperms.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=xcloud.customize_ui_settings.htm&type=5&language=en_US

Run All Apex Tests and View Results
This command runs all Apex tests in the specified org asynchronously, which is the default behavior.

sf apex run test --target-org myscratch

The command outputs the apex get test command with a job ID that you can then run to view the full results. For example:

sf apex get test --test-run-id 7078HzRMVV --target-org myscratch

For more examples, see the help for the commands by running sf apex run test --help and sf apex get test
--help CLI commands, or read the Salesforce CLI Reference, which contains the same information as the help output.

Determine Code Coverage in Orgs With Large Volumes of Apex Code
Before deploying Apex classes and triggers to your production org, or including them in an AppExchange managed package, you must
write unit tests that cover 75% of the total Apex code in your org. You can retrieve information about your current code coverage
percentage using one of these tools:

• Salesforce CLI: Specify the --code-coverage flag of the apex run test command. Or

• VS Code: Check the retrieve-test-code-coverage setting.

Both methods produce a report with detailed information about the code coverage of all Apex classes in your org.

To improve the performance for large test runs, check the Store Only Aggregate Code Coverage setting in your org from Setup >
Apex Test Execution > Options.... This setting improves the performance of gathering code coverage information for large orgs with
many Apex classes by turning off per-class code coverage. When the setting is checked, the Apex Code Coverage by Class table in the
Apex test results contains all Apex classes and triggers listed in ApexCodeCoverageAggregate, including classes that aren't
covered by the tests in the current Apex test run. You can drill down and check which classes aren’t covered, and then adjust your unit
tests to reach the required code coverage.

To minimize scrolling while viewing your code coverage information when you run only a handful of Apex tests, we recommend
unchecking the Store Only Aggregate Code Coverage setting. The Apex Code Coverage by Class table then shows only the Apex
classes and triggers covered by the current Apex test run. The calculation of per-class code coverage filters the entries in this table to
include only classes that were directly touched by the test methods in the run.

Here’s an example of how you can use the Store Only Aggregate Code Coverage setting to investigate and resolve code coverage
issues. A nightly build with the setting checked shows that the Class032 has only 57% code coverage.

255

Run Apex TestsDevelopment

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_apex_commands_unified.htm

Uncheck the setting and run the test on Class032 to get code coverage information for just that class. Use this information to write
more unit tests for the class with low coverage. As you keep checking the new code coverage percentage of Class032, you no longer
have to scroll through the long results of all your Apex tests.

256

Run Apex TestsDevelopment

Debug Apex

If you use Salesforce Extensions for Visual Studio Code (VS Code) for your development tasks, you have a choice of Apex Debugger
extensions. Whichever debugger you chose, you set breakpoints in your Apex classes and step through their execution to inspect
your code in real time to find bugs. You can run Apex tests in VS Code or on the command line.

Generate and View Apex Debug Logs

Apex debug logs can record database operations, system processes, and errors that occur when executing a transaction or running
unit tests in any authenticated org. Enable the Debug Log in Salesforce Extensions for VS Code, then view the logs with VS Code or
Salesforce CLI.

SEE ALSO:

Apex Developer Guide : Debugging, Testing, and Deploying Apex

Salesforce CLI Command Reference : Apex Commands

Test Anything Protocol (TAP)

VS Code Command: SFDX: Run Apex Tests | Test Suite

Debug Apex
If you use Salesforce Extensions for Visual Studio Code (VS Code) for your development tasks, you have a choice of Apex Debugger
extensions. Whichever debugger you chose, you set breakpoints in your Apex classes and step through their execution to inspect your
code in real time to find bugs. You can run Apex tests in VS Code or on the command line.

257

Debug ApexDevelopment

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_debug_test_deploy.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_apex_commands_unified.htm
https://testanything.org/
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/apex-testing.html

Apex Replay Debugger
Apex Replay Debugger is available for use without any additional licenses. To configure and use it, see Apex Replay Debugger.

Apex Interactive Debugger
You must have at least one available Apex Debugger session in your Dev Hub org. To purchase more sessions for an org, contact your
System Admin to open a case.

• Performance Edition and Unlimited Edition orgs include one Apex Debugger session.

• Apex Debuggers sessions aren’t available in Trial and Developer Edition orgs.

• You can purchase Apex Debugger sessions for Enterprise Edition orgs.

Enable the Apex Debugger in your scratch orgs by adding the DebugApex feature to your scratch org definition file:

"features": "DebugApex"

To configure and use it, see Apex Interactive Debugger.

ISV Customer Debugger (Salesforce Extensions for VS Code Only)
ISV Customer Debugger is part of the Apex Interactive Debugger (salesforcedx-vscode-apex-debugger) extension, so
you don’t have to install anything other than the Salesforce Extension Pack and its prerequisites. You can debug only sandbox orgs.

See ISV Customer Debugger in Salesforce Extensions for VS Code for details.

SEE ALSO:

Visual Studio Marketplace: Apex Replay Debugger extension

Visual Studio Marketplace: Apex Interactive Debugger extension

Generate and View Apex Debug Logs
Apex debug logs can record database operations, system processes, and errors that occur when executing a transaction or running unit
tests in any authenticated org. Enable the Debug Log in Salesforce Extensions for VS Code, then view the logs with VS Code or Salesforce
CLI.

1. In Salesforce Extensions for VS Code, prepare the org to generate logs and configure the debugger.

a. Log in to the org.

b. For Replay Debugger, run SFDX: Turn on Apex Debug Log for Replay Debugger.

c. Create a launch configuration file for Replay Debugger or Interactive Debugger.

2. After you run the tests, get a list of the debug logs.

sf apex list log --target-org myscratch

APPLICATION DURATION (MS) ID LOCATION SIZE (B) LOG USER OPERATION REQUEST
START TIME STATUS
─────────── ───────────── ─────── ───────── ──────── ───────── ─────────────── ───────
─────────── ───────
Unknown 1143 07L9Axx SystemLog 23900 User User ApexTestHandler Api
2017-09-05x Success

258

Generate and View Apex Debug LogsDevelopment

https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/replay-debugger.html
https://help.salesforce.com/articleView?id=000314082&type=1&mode=1&language=en_US
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/interactive-debugger.html
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/isv-debugger.html
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode-apex-replay-debugger
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode-apex-debugger
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/replay-debugger.html
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/interactive-debugger.html

3. View a debug log by passing its ID to the apex get log command.

sf apex get log --log-id 07L9A000000aBYGUA2

38.0
APEX_CODE,FINEST;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;WAVE,INFO;WORKFLOW,INFO
15:58:57.3
(3717091)|USER_INFO|[EXTERNAL]|0059A000000TwPM|test-ktjauhgzinnp@example.com|Pacific
Standard Time|GMT-07:00
15:58:57.3 (3888677)|EXECUTION_STARTED
15:58:57.3
(3924515)|CODE_UNIT_STARTED|[EXTERNAL]|01p9A000000FmMN|RejectDuplicateFavoriteTest.acceptNonDuplicate()
15:58:57.3 (5372873)|HEAP_ALLOCATE|[72]|Bytes:3
...

SEE ALSO:

Apex Developer Guide: Debug Log

259

Generate and View Apex Debug LogsDevelopment

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_debugging_debug_log.htm

CHAPTER 12 Build and Release Your App

When you finish writing your code, the next step is to deploy it. We offer different deployment options
based on your role and needs as a customer, system integrator, or independent software vendor (ISV)
partner.

In this chapter ...

• Build and Release
Your App with
Metadata API To learn about the benefits of the different development models, review these Trailhead modules:

• Org Development Model

• Package Development Model

• Quick Start: Unlocked Packages

• Unlocked Packages for Customers

You have several tooling options, based on how you decide to build and release yours apps.

Customers and Non-ISV Partners

• Agentforce Vibes IDE – A web-based integrated development environment that has all the power
and flexibility of Visual Studio Code, Salesforce Extensions for VS Code, and Salesforce CLI in your
web browser.

• Salesforce Extensions for VS Code – A set of extensions that come with rich tools for developing on
the Salesforce platform.

• Salesforce CLI – A command-line interface that simplifies development and build automation when
working with your Salesforce org

• Metadata API – An API for deploying, retrieving, creating, updatinge, or deleting customizations.

• DevOps Center – Change and release management for declarative and pro-code developers.

• Unlocked Packages – For customers who want to organize metadata into a package and deploy the
metadata (via packages) to different orgs.

ISV Partners

• Second-Generation Managed Packages

If you’re an ISV that develops apps and lists them on AppExchange, Salesforce recommends managed
packages.

Second-generation managed packaging (managed 2GP) ushers in a new way for AppExchange
partners to develop, distribute, and manage their apps and metadata. You can use managed 2GP
to organize your source, build small modular packages, integrate with your version control system,
and better utilize your custom Apex code. You can execute all packaging operations via Salesforce
CLI, or automate them using scripts.

260

https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://trailhead.salesforce.com/content/learn/modules/sfdx_dev_model
https://trailhead.salesforce.com/projects/quick-start-unlocked-packages
https://trailhead.salesforce.com/trails/sfdx_get_started/modules/unlocked-packages-for-customers
https://developer.salesforce.com/docs/platform/code-builder/guide/codebuilder-overview.html
https://developer.salesforce.com/docs/platform/sfvscode-extensions/guide/vscode-overview.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_use_cases_deploy_prod.htm
https://help.salesforce.com/s/articleView?id=platform.devops_center_setup.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm

For more information on managed 2GP packages, see the Second-Generation Managed Packaging
Developer Guide.

• First-Generation Managed Packages

Similar to managed 2GP, managed 1GP packages are used by ISVs to distribute their business apps
to customers via AppExchange.

If you’re familiar with first-generation managed packages and want to learn more about how 1GP
differs from 2GP, see Comparison of First- and Second-Generation Managed Packages.

For more information on managed 1GP packages, see Create a First-Generation Managed Package
using Salesforce DX.

261

Build and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/sfdx_dev_build_release.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/sfdx_dev_build_release.htm

Build and Release Your App with Metadata API

Develop and test your app in your sandboxes. Use Salesforce CLI or Salesforce Extensions for VS Code to retrieve and deploy your source.
This development work flow is called the org development model.

Develop and Test in a Sandbox Using the Org Development Model
Similar to change sets, the release artifact is a set of changed metadata to update in the production org. You can develop, test, and
deploy your changes using the project deploy commands. If you want to know more about this development model, see the
Org Development Model module in Trailhead.

Development and Release Environments
1. Develop and test: Each team member has their own Developer sandbox to create their assigned customization. Developer sandboxes

contain no production data.

2. Build release: Team members each migrate their customizations from their respective developer sandboxes to a shared Developer
Pro sandbox for integration. Developer Pro sandboxes don’t contain production data, but you can seed them with testing data.

3. Test release: For user-acceptance testing, the team uses a Partial sandbox to create a complete replica of production.

4. Release: After the release is in production, the team can use the Full sandbox to train users without the risk of altering production
data. A Full sandbox includes a copy of production data.

262

Build and Release Your App with Metadata APIBuild and Release Your App

https://trailhead.salesforce.com/content/learn/modules/org-development-model

What Tools Do I Need?

DescriptionTool

The Salesforce DX project contains the metadata and source files
that comprise your changes. A DX project has a specific project
structure and source format.

In addition to source files, the project contains a configuration file,
sfdx-project.json. This file contains project information

Salesforce DX project

and enables you to leverage Salesforce DX tools for many of your
development tasks.

After testing the changes, you create the deployment artifact, a
.zip file that contains changed files to deploy. Deploy the release

Deployment artifact

artifact to the full (staging) sandbox first, and then finally to
production. You can think of the deployment artifact as the
inbound change set. The changes don’t take effect until they are
deployed.

All changes are merged and stored in a source control system,
which contains the Salesforce DX project.

Source control system

You can use Salesforce CLI for every phase of the org development
life cycle. It improves productivity by providing a single interface
for all your development, testing, and automation use cases.

Salesforce CLI

Salesforce Extensions for VS Code is built on top of Salesforce CLI
and Visual Studio Code. Together, they are an integrated

Salesforce Extensions for VS Code

development environment for custom development on Lightning
Platform. You can run Salesforce CLI commands directly from the
command palette or terminal.

It’s still important to capture your changes externally using formal
change-tracking tools, such as a change list, a deployment run list,
and other project management tools.

Change management mechanisms

Considerations for Deploying Apex Code
To deploy Apex to production, unit tests of your Apex code must meet coverage requirements. Code coverage indicates how many
executable lines of code in your classes and triggers are covered by your test methods. Write test methods to test your triggers and
classes, and then run those tests to generate code coverage information.

If you don’t specify a test level when initiating a deployment, the default test execution behavior depends on the contents of your
deployment package.

• If your deployment package contains Apex classes or triggers, when you deploy to production, all tests are executed, except tests
that originate from a managed package.

• If your package doesn’t contain Apex code, no tests are run by default.

You can run tests for a deployment of non-Apex components. You can override the default test execution behavior by setting the test
level in your deployment options. Test levels are enforced regardless of the types of components present in your deployment package.

263

Build and Release Your App with Metadata APIBuild and Release Your App

We recommend that you run all local tests in your development environment, such as a sandbox, before deploying to production.
Running tests in your development environment reduces the number of tests required in a production deployment.

Develop and Test Changes Locally

Develop changes in source format, deploying to and retrieving from your Developer sandbox.

Build and Test the Release Artifact

After your team has finished its development tasks, transition to the build release phase to integrate your changes in a Developer
Pro sandbox. Then build the release artifact.

Test the Release Artifact in a Staging Environment

Stage the changes and run regression tests in a Full sandbox.

Release Your App to Production

Now that all your tests have passed in the Full sandbox, you’re ready to deploy to production.

Cancel a Metadata Deployment

You can cancel a metadata deployment from Salesforce CLI and specify a wait time for the command to complete.

Develop and Test Changes Locally
Develop changes in source format, deploying to and retrieving from your Developer sandbox.

These steps provide the high-level work flow.

1. Create a DX project.

A DX project has a specific structure and configuration files that Salesforce DX tooling requires. See Create a Salesforce DX Project.

2. Create a source control repository or use an existing one.

If you’re using an existing repo, be sure it has the required DX configuration files. See Salesforce DX Project Structure and Source
Format.

3. Authorize the Developer sandbox.

See Authorize an Org Using a Browser.

4. Perform development tasks in your developer sandbox.

5. Retrieve the changes from the developer sandbox.

If your sandbox is source tracked, changes are automatically identified. To retrieve just the changed metadata:

sf project retrieve start

If your sandbox isn’t source tracked, or want to retrieve metadata that hasn’t changed, or you want to retrieve many changes, you
can use a manifest (package.xml).

sf project retrieve start --manifest path/to/package.xml

Run sf project retrieve start --help for all command options with examples.

6. Commit the changes to the source control repository.

Next: Deploy all changes the team has made to the first testing environment to test those changes. See Salesforce CLI Reference: deploy
Commands.

264

Develop and Test Changes LocallyBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_deploy_commands_unified.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_deploy_commands_unified.htm

Build and Test the Release Artifact
After your team has finished its development tasks, transition to the build release phase to integrate your changes in a Developer Pro
sandbox. Then build the release artifact.

Here are the high-level steps in the work flow to create the release artifact.

1. Pull the changes from the repo so your local project contains all the changes your team has made.

2. Authorize the Developer Pro sandbox.

3. Run the deploy command that mimics what you’ll deploy to production, for example:

sf project source deploy --manifest manifest/package.xml --target-org dev-pro-sandbox
\
--test-level RunSpecifiedTests --tests TestMyCode

4. Open the sandbox.

5. Perform testing.

6. If the testing passes, continue to the test release phase where you deploy the release artifact to the partial sandbox. Then perform
user-acceptance testing.

After the testing passes, move to the release phase and perform regression tests in the Full sandbox.

Test the Release Artifact in a Staging Environment
Stage the changes and run regression tests in a Full sandbox.

After you have made all your changes based on the integration testing, the next step is to stage the changes in a Full sandbox. The
process of deploying changes to the Full sandbox is similar to the process you used to deploy changes to your Developer Pro sandbox.
This phase includes regression testing and mimics how you release the changes to production.

These steps provide the high-level work flow.

1. Authorize the Full sandbox.

2. (Optional) If you made any changes based on your testing in the Developer Pro sandbox, create a release artifact (.zip). If not, use
the existing release artifact.

3. To validate the deployment without saving the components in the target org, run all local (regression) tests. A validation enables
you to verify the results of tests that would be executed during a deployment, but doesn’t commit any changes.

sf project deploy validate --manifest manifest/package.xml --target-org full-sandbox
--test-level RunLocalTests

4. Test the actual production deployment steps in the staging sandbox. Set up the same quick deploy that you plan to execute against
the production org.

sf project deploy validate --manifest manifest/package.xml --target-org full-sandbox
--test-level RunSpecifiedTests

This command returns a job ID that you reference in the quick deploy.

5. Next, test the quick deploy using the job ID returned in the previous step.

sf project deploy quick --target-org full-sandbox --job-id jobID

After you validate a deployment, you have 10 days to perform the quick deployment to production.

265

Build and Test the Release ArtifactBuild and Release Your App

Release Your App to Production
Now that all your tests have passed in the Full sandbox, you’re ready to deploy to production.

1. In your deployment run list, complete any pre-deployment tasks.

2. Authorize your production org.

3. Set up the quick deploy by validating the deployment.

sf project deploy validate --source-dir force-app --target-org prod-org --test-level
RunLocalTests

This command returns a job ID that you reference in the quick deploy.

4. After the tests are run, verify that all the Apex tests have passed. Be sure that the tests cover at least 75% of the code being deployed.

5. Run the quick deploy:

sf project deploy quick --target-org prod-org --job-id jobID

6. Open the production org, then perform any post-deployment tasks listed in the deployment run list.

Cancel a Metadata Deployment
You can cancel a metadata deployment from Salesforce CLI and specify a wait time for the command to complete.

To cancel your most recent deployment, run project deploy cancel --use-most-recent. You can cancel earlier
deployments by using the --job-id <JOBID> flag to specify the deployment that you want to cancel.

sf project deploy cancel --job-id <jobid>

The default wait time for the cancel command to complete and display its results in the terminal window is 33 minutes. If the command
isn’t completed by the end of the wait period, the CLI returns control of the terminal window to you. You can adjust the wait time as
needed by specifying the number of minutes in the --wait flag, as shown in the following example:

sf project deploy cancel --wait 20 --use-most-recent

Curious about the status of a canceled deployment? Run a deployment report.

sf project deploy report --use-most-recent

266

Release Your App to ProductionBuild and Release Your App

CHAPTER 13 Unlocked Packages

Salesforce offers different types of packages, and unlocked packages are especially suited for internal
business apps. Unless you plan to distribute an app on AppExchange, an unlocked package is the right
package type for most use cases. You can use unlocked packages to organize your existing metadata,
package an app, extend an app that you’ve purchased from AppExchange, or package new metadata.

In this chapter ...

• What’s an Unlocked
Package?

• Package-Based
Development Model

Unlocked packages follow a source-driven development model. The source of truth of the metadata
contained in the package is your version control system, not what’s in an org. This model brings with it
all the benefits of modern source-driven development models.• Before You Create

Unlocked Packages
Note: If you’re an AppExchange partner that plans to distribute your app to customers via
AppExchange, use second-generation managed packaging. See Second-Generation Managed
Packages for more information.

• Know Your Orgs

• Create
Org-Dependent
Unlocked Packages

• Workflow for
Unlocked Packages

• Configure Unlocked
Packages

• How We Handle
Profile Settings in
Unlocked Packages

• Develop Unlocked
Packages

• Push a Package
Upgrade for
Unlocked Packages

• Install an Unlocked
Package

• Migrate Deprecated
Metadata from
Unlocked Packages

• Uninstall an
Unlocked Package

• Transfer an Unlocked
Package to a
Different Dev Hub

267

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm

What’s an Unlocked Package?

If you’re new to packaging, think of a package as a container that you fill with metadata. It contains a set of related features, customizations,
and schema. Unlocked packages help you add, edit, and remove metadata in your org in a trackable way. You can apply your metadata
to multiple orgs, and upgrade your Salesforce apps easier and faster. Unlocked packages are especially suited for internal business apps.

Unlocked packages differ from managed packages, which have manageability rules that determine the behavior of each metadata
component in the package. With an unlocked package, you have a lot of flexibility. Your admins can make changes directly in production
in response to emergency change requests because metadata in unlocked packages can be modified in a production org.

At the same time, this flexibility comes with responsibility. Ensure that you have the proper governance in place to prevent cases where
package updates overwrite changes that admins make directly in production. You can avoid this issue by ensuring that your admins
communicate with your development team whenever they edit any packaged metadata directly in the production org.

Each unlocked package has a distinct lifecycle. When you add metadata to an existing unlocked package, you create a new package
version. While the package is continually evolving, each package version is an immutable artifact that never changes.

A package version contains the specific metadata and features associated with the package version at the time it was created. As you
iterate on your package, and add, remove, or change the packaged metadata, you create many package versions.

You can install a package version in a scratch, sandbox, trial, Developer Edition, or production org. Installing a package version is similar
to deploying metadata. Each package version has a version number, and subscribers can install a new package version into their org
through a package upgrade.

Note: Because package versions are immutable, they can also be used as artifacts for Continuous Integration (CI) and Continuous
Delivery (CD) processes.

You can repeat the package development cycle any number of times. You can change metadata, create a package version, test the
package version, and finally install the package to a production org. This distinct app development lifecycle lets you control exactly what,
when and how your metadata is rolled out. In the installed org, you can inspect which metadata came from which package and the set
of all metadata associated with a specific package.

Package-Based Development Model

To demonstrate the power of unlocked packages, here’s how packaging works in the traditional development model. For most production
orgs, metadata traditionally is contained in two buckets: a set of managed packages installed from AppExchange, and unpackaged
metadata.

Customers often invest in Salesforce customizations to support business processes and extend the power of the Salesforce platform. In
the development model, your Salesforce org’s monolith of unpackaged metadata contains all the metadata that belongs to a custom
app or extension. Because that metadata isn’t isolated or organized, it can be difficult to understand, upgrade, and maintain.

In the package development model, you can organize your unpackaged metadata in your production org into well-defined packages.
And you can use Salesforce DX projects to organize your source into package directories with everything managed in a version control
system of your choice. Your end goal is to create packages using those directories that are versionable, easy to maintain, update, install,
and upgrade.

Unlocked packages allow you to declare multi-level dependencies on one or many managed and unlocked packages, which keeps your
packages small and modular. You can use the command line to execute unlocked packaging operations, or you can include
packaging-specific Salesforce CLI commands in a script and automate your package development.

268

What’s an Unlocked Package?Unlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm

Before You Create Unlocked Packages

When you use unlocked packaging, to be sure that you set it up correctly, verify the following.

Did you?

• Enable Dev Hub in Your Org

• Enable Second-Generation Managed Packaging

• Install Salesforce CLI

Note: Unlocked packaging is available with these licenses: Salesforce or Salesforce Limited Access - Free (partners only).

Developers who work with unlocked packages need the correct permission set in the Dev Hub org. Developers need either the System
Administrator profile or the Create and Update Second-Generation Packages permission. For more information, see Add Salesforce DX
Users.

The maximum number of unlocked package versions that you can create from a Dev Hub per day is the same as your daily scratch org
allocation. To request a limit increase, contact Salesforce Customer Support.

Scratch orgs and packages count separately, so creating an unlocked package doesn’t count against your daily scratch org limit. To view
your scratch org limits, use the CLI:

sf limits api display

For more information on scratch org limits, see Scratch Orgs.

Know Your Orgs

Some of the orgs that you use with unlocked packaging have a unique purpose.

Choose Your Dev Hub Org
Use the Dev Hub org for these purposes.

When you create an unlocked package using Salesforce CLI, you associate the package with a specific Dev Hub org. When you’re ready
to define and create a package for production use, be sure to create the package using the Dev Hub in one of your production orgs.

The Dev Hub org is the owner of all unlocked packages you create, and is used:

• To link your namespaces if you want to create namespaced unlocked packages

• To authorize and run your sf package commands

If an unlocked package is associated with a non-production Dev Hub org, and that org expires or becomes inactive, the installed package
can't be updated, and new attempts to install the package may fail.

Namespace Org
If you are using a namespace, you must create an org for the sole purpose of specifying the namespace for your package. We refer to
this org as your namespace org.. If you want to use the namespace strictly for testing, choose a disposable namespace.

After you create a namespace org and use it to specify your namespace, open your Dev Hub org and link the namespace org to your
Dev Hub org.

269

Before You Create Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_secondgen_pkg.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm

Other Orgs
When you work with packages, you also use these orgs:

• You can create scratch orgs on the fly to use while testing your packages.

• The target or installation org is where you install the package.

Create Org-Dependent Unlocked Packages

USER PERMISSIONS

To create packages:
• Create and Update

Second-Generation
Packages

Org-dependent unlocked packages are a variation of unlocked packages that allow you to create
packages that depend on unpackaged metadata in the org where you plan to install the package
(installation org).

Untangling your production org metadata can be a daunting project. But now you have a solution
that enables you to package metadata without completely accounting for all metadata dependencies:
org-dependent unlocked packages. When you use org-dependent unlocked packages, metadata
validation occurs during package installation, instead of during package version creation.

Longstanding and large production orgs often accumulate large amounts of metadata that are difficult to modularize when adopting
a package-based Application Lifecycle Management (ALM) approach. Instead, you can package metadata that depends on unpackaged
metadata in the installation org.

Note: Org-dependent unlocked packages are a variation of unlocked packages, and not a separate package type. They follow
the same package development steps, and use the same supported metadata types as unlocked packages.

To create an org-dependent unlocked package, specify the orgdependent CLI parameter on the sf package create CLI
command.

sf package create -t Unlocked -r force-app -n MyPackage --org-dependent

Org Dependent Unlocked PackagesUnlocked PackagesScenario

No. These packages are designed for specific
production and sandbox orgs. You can install

YesBuild once, install anywhere

them only in orgs that contain the metadata that
the package depends on.

Occurs during package installationOccurs during package version creationDependency validation

NoYesCan depend on other packages

NoYesRequires dependencies to be
resolved to create the package

See the unlocked packaging channel of the
Metadata Coverage Report.

See the unlocked packaging channel of the
Metadata Coverage Report.

Supported metadata types

Use a sandbox that contains the dependent
metadata. Consider enabling Source Tracking in

Use scratch orgs to develop and test your
unlocked packages.

Recommended development
and testing environment

Sandboxes to develop your org-dependent
unlocked package. Then, test the package in a
sandbox org before installing it in your production
org.

270

Create Org-Dependent Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_workflow.htm
https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_sandboxes_source_tracking.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_sandboxes_source_tracking.htm

Org Dependent Unlocked PackagesUnlocked PackagesScenario

We don’t calculate code coverage, but we
recommend that you ensure the Apex code in
your package is well tested.

Before you can promote and release an unlocked
package, the Apex code must meet a minimum
75% code coverage requirement.

Code coverage requirement

To review which of your packages are org-dependent unlocked packages, use sf package list --verbose.

Workflow for Unlocked Packages

You can create and install an unlocked package directly from the Salesforce command line.

Review and complete the steps in Before You Create Unlocked Packages before starting this workflow.

The basic workflow includes these steps. See specific topics for details about each step.

1. Create a DX project.

sf project generate --output-dir expense-manager-workspace --name expenser-app

2. Authorize the Dev Hub org, and create a scratch org.

sf org login web --set-default-dev-hub --alias MyDevHub

When you perform this step, include the --set-default-dev-hub option. You can then omit the Dev Hub username when
running subsequent Salesforce CLI commands.

Tip: If you define an alias for each org you work with, it’s easy to switch between different orgs from the command line. You
can authorize different orgs as you iterate through the package development cycle.

3. Create a scratch org and develop the package. You can use VS Code and the Setup UI in the scratch org to build and retrieve the
pieces you want to include in your package. Navigate to the expenser-app directory, and then run this command.

sf org create scratch --definition-file config/project-scratch-def.json --alias MyTestOrg1
--duration-days 30

4. Verify that all package components are in the project directory where you want to create a package.

5. From the Salesforce DX project directory, create the package.

sf package create --name "Expense Manager" --path force-app
--package-type Unlocked

6. Review your sfdx-project.json file. The CLI automatically updates the project file to include the package directory and
creates an alias based on the package name.

{
"packageDirectories": [

{
"path": "force-app",
"default": true,
"package": "Expense Manager",
"versionName": "ver 0.1",

271

Workflow for Unlocked PackagesUnlocked Packages

"versionNumber": "0.1.0.NEXT"
}

],
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "59.0",
"packageAliases": {

"Expense Manager": "0Hoxxx"
}

}

Notice the placeholder values for versionName and versionNumber.

Specify the features and org settings required for the metadata in your package using an external .json file, such as the scratch org
definition file. You can specify using the --definition-file flag with the sf package version create command,
or list the definition file in your sfdx-project.json file. See: Project Configuration File for Unlocked Packages

7. Create a package version. This example assumes the package metadata is in the force-app directory.

sf package version create --package "Expense Manager" --installation-key test1234 --wait
10

8. Install and test the package version in a scratch org. Use a different scratch org from the one you used in step three.

sf package install --package "Expense Manager@0.1.0-1" --target-org MyTestOrg1
--installation-key test1234 --wait 10 --publish-wait 10

9. After the package is installed, open the scratch org to view the package.

sf org open --target-org MyTestOrg1

Package versions are beta until you promote them to a managed-released state. See: Release an Unlocked Package.

Configure Unlocked Packages

You include an entry in the sfdx-project.json file for each package to specify its alias, version details, dependencies, features,
and org settings. From the command line, you can also set or change options, such as specifying an installation key, update the package
name, or add a description.

Project Configuration File for Unlocked Packages

The project configuration file is a blueprint for your project. The settings in the file create an outline of your package and determine
the package attributes and package contents.

Unlocked Packaging Keywords

A keyword is a variable that you can use to specify a package version number.

Package Installation Key

To ensure the security of the metadata in your package, you must specify an installation key when creating a package version.
Package creators provide the key to authorized subscribers so they can install the package. Package installers provide the key during
installation, whether installing the package from the CLI or from a browser. An installation key is the first step during installation.
The key ensures that no package information, such as the name or components, is disclosed until the correct installation key is
supplied.

272

Configure Unlocked PackagesUnlocked Packages

Extract Dependency Information from Unlocked Packages

For an installed unlocked package, you can now run a simple SOQL query to extract its dependency information. You can also create
a script to automate the installation of unlocked packages with dependencies.

Understanding Namespaces

A namespace is a 1-15 character alphanumeric identifier that distinguishes your package and its contents from other packages in
your org.

Share Release Notes and Post-Install Instructions

Share details about what’s new and changed in a released unlocked package with your users.

Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked Packages)

Best Practices for Unlocked Packages

We suggest that you follow these best practices when working with unlocked packages.

Package IDs and Aliases for Unlocked Packages

During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a package or
package version, Salesforce CLI creates a package alias based on the package name, and stores that name in the
sfdx-project.json file. When you run CLI commands or write scripts to automate packaging workflows, it’s often easier to
reference the package alias, instead of the package ID or package version ID.

Frequently Used Unlocked Packaging Operations

Project Configuration File for Unlocked Packages
The project configuration file is a blueprint for your project. The settings in the file create an outline of your package and determine the
package attributes and package contents.

Here are the parameters you can specify in the project configuration file.

Default if Not SpecifiedRequired?Name

None. Assign permission sets and permission set licenses to the
user in context when your Apex tests run at package version
creation.

"apexTestAccess": {
"permissionSets": [

NoapexTestAccess

"Permission_Set_1",
"Permission_Set_2"
],
"permissionSetLicenses": [
"SalesConsoleUser"
]
}

See Specify Unpackaged Metadata or Apex Access for Apex Tests
(Unlocked Packages)

273

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

None. If your package has an associated branch, but your package
dependency is associated with a different branch, use this format.

"dependencies": [
{

Nobranch

"package": "pkgB",
"versionNumber":

"1.3.0.LATEST",
"branch": "featureC"
}
]

If your package has an associated branch, but your package
dependency doesn’t have an associated branch, use this format.

"dependencies": [
{
"package": "pkgB",
"versionNumber":

"1.3.0.LATEST",
"branch": ""
}
]

See Use Branches in Unlocked Packaging

False. Enables the calculation of the package’s indirect
dependencies. A package can have multilevel dependencies where

NocalculateTransitiveDependencies

pkgC depends on pkgB, and pkgB depends on pkgA. By default,
you list all of a package’s dependencies, including indirect
(transitive) dependencies. When
calculateTransitiveDependencies is set to true,
you specify a package’s direct dependencies only, and the indirect
dependencies are calculated for you. See the dependencies
parameter’s description for example configurations in the
sfdx-project.json file.

calculateTransitiveDependencies also enables you
to generate a hierarchical graph of a package version’s
dependencies. To generate the dependencies graph, run the
package version displaydependencies CLI
command. See package version displaydependencies in the
Salesforce CLI Command Reference.

true

Indicates the default package directory. Use the sf project
retrieve command to copy metadata from your scratch org
to your default package directory.

Yes, if you’ve
specified more than
one package
directory

default

274

Project Configuration File for Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_version_displaydependencies_unified

Default if Not SpecifiedRequired?Name

There can be only one package directory in which the default is
set to true.

None. A reference to an external .json file used to specify the
features and org settings required for the metadata of your package,
such as the scratch org definition.

Example:

"definitionFile":
"config/project-scratch-def.json",

NodefinitionFile

None. Specify the dependencies on other packages.

To specify dependencies for unlocked packages within the same
Dev Hub, use either the package version alias or a combination of
the package name and the version number.

"dependencies": [
{

Nodependencies

"package": "MyPackageName@0.1.0.1"
}

]

"dependencies": [
{

"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

}
]

To specify dependencies for unlocked packages outside of the Dev
Hub use:

"dependencies": [
{

"package": "OtherOrgPackage@1.2.0"
}

]

Note: You can use the LATEST keyword for the version
number to set the dependency.

To denote dependencies with package IDs instead of package
aliases, use:

• The 0Ho ID if you specify the package ID along with the
version number

• The 04t ID if you specify only the package version ID

If the package has more than one dependency, provide a
comma-separated list of packages in the order of installation. For
example, if a package depends on the package Expense Manager

275

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

- Util, which in turn depends on the package External Apex Library,
the package dependencies are:

"dependencies": [
{

"package" : "External Apex Library -
1.0.0.4"

},
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

}
]

If you set the calculateTransitiveDependencies
parameter to true, you specify the package’s direct dependencies
only, and the indirect (transitive) dependencies are calculated for
you.

For example, if calculateTransitiveDependencies
is enabled and the package depends on the package Expense
Manager - Util, which in turn depends on the package External
Apex Library, the package dependency is:

"dependencies": [
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

}
]

See: Extract Dependency Information from Unlocked Packages and
Considerations for Promoting Packages with Dependencies

False. Setting this parameter to true ensures that user licenses
associated with profiles in unlocked packages are retained during

NoincludeProfileUserLicenses

package version creation. By default, unlocked packages remove
profile information not pertinent to the packaged metadata.

"packageDirectories": [
{
"package": "PackageA",
"path": "common",
"versionName": "ver 0.1",
"versionNumber":

"0.1.0.NEXT",
"default": false,

"includeProfileUserLicenses": true
}

276

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

]

None. A 1–15 character alphanumeric identifier that distinguishes
your package and its contents from packages of other developers.

nonamespace

The package name specified in the project json file.Yespackage

Salesforce CLI updates the project file with aliases when you create
a package or package version. You can also manually update this

YespackageAliases

section for existing packages or package versions. You can use the
alias instead of the cryptic package ID when running CLI sf
package commands.

If you don’t specify a path, Salesforce CLI uses a placeholder when
you create a package.

Yespath

None. A URL to post-install instructions for subscribers.NopostInstallUrl

None. A URL to release notes.NoreleaseNotesUrl

None.NoseedMetadata

Specify the path to your seedMetadata directory.

Seed metadata is available to standard value sets only. If your
package depends on standard value sets, you can specify a seed
metadata directory that contains the value sets.

Example:

"packageDirectories": [
{

"seedMetadata": {
"path":

"my-unpackaged-seed-directory"
}

},
]

None. See Specify Unpackaged Metadata or Apex Access for Apex
Tests (Unlocked Packages)

NounpackagedMetadata

None.NoversionDescription

If not specified, the CLI uses versionNumber as the version
name.

NoversionName

The versionNumber field sets the version number that is assigned
the next time you create a new version. Version numbers are

YesversionNumber

formatted as MAJOR.MINOR.PATCH.BUILD. For example, 1.2.1.8.
To avoid creating multiple package versions with the same

277

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

MAJOR.MINOR.PATCH.BUILD number, you must increment the
versionNumber before creating a new package version.

To automatically increment the build number to the next available
build for the package, use the keyword NEXT (1.2.1.NEXT).

Alternatively, when you create a new package version, you can set
the version number using the --versionNumber flag in the
CLI.

For more details, see Guidance for Version Numbering.

When you specify a parameter using Salesforce CLI, it overrides the value listed in the project definition file.

The Salesforce DX project definition file is a JSON file located in the root directory of your project. Use the sf project generate
CLI command to generate a project file that you can build upon. Here’s how the parameters in packageDirectories appear.

{
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Summer ‘24",
"versionDescription": "Welcome to Summer 2024 Release of Expense Manager Util

Package",
"versionNumber": "4.7.0.NEXT",
"definitionFile": "config/scratch-org-def.json"

},
{

"path": "exp-core",
"default": false,
"package": "Expense Manager",
"versionName": "v 3.2",
"versionDescription": "Summer 2024 Release",
"versionNumber": "3.2.0.NEXT",
"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/summer-2024-release-notes.html",
"definitionFile": "config/scratch-org-def.json",
"dependencies": [

{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

},
{

"package" : "External Apex Library - 1.0.0.4"
}

]

278

Project Configuration File for Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_version_guidance.htm

}
],
"packageAliases": {

"Expense Manager - Util": "0HoB00000004CFpKAM",
"External Apex Library@1.0.0.4": "04tB0000000IB1EIAW",
"Expense Manager": "0HoB00000004CFuKAM"}

}

What If I Don’t Want My Salesforce DX Project Automatically Updated?
In some circumstances, you don’t want to have automatic updates to the sfdx-project.json file. When you require more control,
use these environment variables to suppress automatic updates to the project file.

Set This Environment Variable to TrueFor This Command

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_CREATEsf package create

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_VERSION_CREATEsf package version create

Unlocked Packaging Keywords
A keyword is a variable that you can use to specify a package version number.

You can use keywords to automatically increment the value of the package build numbers, ancestor version numbers, set the package
dependency to the latest version, or the latest released and promoted version.

ExampleUse the Keyword

"dependencies": [
{

LATEST to specify the latest version of the package dependency
when you create a package version.

"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

}
]

"versionNumber": "1.2.0.NEXT"
NEXT to increment the build number to the next available for the
package version.

If you don’t use NEXT, and you also forget to update the version
number in your sfdx-project.json file, the new package
version uses the same number as the previous package version.
Although we don’t enforce uniqueness on package version
numbers, every package version is assigned a unique subscriber
package version ID (starts with 04t).

"dependencies": [
{

RELEASED to specify the latest promoted and released version of
the package dependency when you create a package version.

"package": "pkgB",
"versionNumber": "2.1.0.RELEASED"

279

Unlocked Packaging KeywordsUnlocked Packages

ExampleUse the Keyword

}
]

"packageDirectories": [
{

HIGHEST to automatically set the package ancestor to the highest
promoted and released package version number.

Use only with ancestor version or ancestor ID. "path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "HIGHEST"
},

"packageDirectories": [
{

NONE in the ancestor version or ancestor ID field.

Ancestry defines package upgrade paths. If the package ancestor
is set to NONE, an existing customer can’t upgrade to that package
version.

"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "NONE"
},

Package Installation Key
To ensure the security of the metadata in your package, you must specify an installation key when creating a package version. Package
creators provide the key to authorized subscribers so they can install the package. Package installers provide the key during installation,
whether installing the package from the CLI or from a browser. An installation key is the first step during installation. The key ensures
that no package information, such as the name or components, is disclosed until the correct installation key is supplied.

To set the installation key, add the --installation-key parameter to the command when you create the package version. This
command creates a package and protects it with the installation key.

sf package version create --package "Expense Manager" --installation-key "JSB7s8vXU93fI"

Supply the installation key when you install the package version in the target org.

sf package install --package "Expense Manager" --installation-key "JSB7s8vXU93fI”

Change the Installation Key for an Existing Package Version
You can change the installation key for an existing package version with the sf package version update command.

sf package version update --package "Expense Manager@1.2.0-4" --installation-key
“HIF83kS8kS7C”

Create a Package Version Without an Installation Key
If you don’t require security measures to protect your package metadata, you can create a package version without an installation key.

sf package version create --package "Expense Manager" --directory common \
--tag 'Release 1.0.0' --installation-key-bypass

280

Package Installation KeyUnlocked Packages

Check Whether a Package Version Requires an Installation Key
To determine whether a package version requires an installation key, use either the sf package version list or sf package
version report CLI command.

Extract Dependency Information from Unlocked Packages
For an installed unlocked package, you can now run a simple SOQL query to extract its dependency information. You can also create a
script to automate the installation of unlocked packages with dependencies.

The SubscriberPackageVersion Tooling API object now provides dependency information. Using a SOQL query on SubscriberPackageVersion,
you can identify the packages on which your unlocked package has a dependency. You can get the (04t) IDs and the correct install order
for those packages.

Example: Package B has a dependency on package A. Package D depends on packages B and C. Here’s a sample
sfdx-project.json that you would have specified while creating a package version. Package D dependencies are noted
as packages A, B, and C.

{
"packageDirectories": [

{
"path": "pkg-a-workspace",
"package": "pkgA",
"versionName": "ver 4.9",
"versionNumber": "4.9.0.NEXT",
"default": true

},
{

"path": "pkg-b-workspace",
"package": "pkgB",
"versionName": "ver 3.17",
"versionNumber": "3.17.0.NEXT",
"default": false,
"dependencies": [

{
"package": "pkgA",
"versionNumber": "3.3.0.LATEST"

}
]

},
{

"path": "pkg-c-workspace",
"package": "pkgC",
"versionName": "ver 2.1",
"versionNumber": "2.1.0.NEXT",
"default": false

},
{

"path": "pkg-d-workspace",
"package": "pkgD",
"versionName": "ver 1.1",
"versionNumber": "1.1.0.NEXT",
"default": false,
"dependencies": [

281

Extract Dependency Information from Unlocked PackagesUnlocked Packages

{
"package": "pkgA",
"versionNumber": "3.3.0.LATEST"

},
{

"package": "pkgB",
"versionNumber": "3.12.0.LATEST"

},
{

"package": "pkgC",
"versionNumber": "2.1.0.LATEST"

}
]

}
],
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "44.0",
"packageAliases": {

"pkgA": "0HoB00000008Oq6KAE",
"pkgB": "0HoB00000008OqBKAU",
"pkgC": "0HoB00000008OqGKAU",
"pkgD": "0HoB00000008OqGKAQ"

}
}

Before installing pkgD (with ID=04txx000000082hAAA), use this SOQL query to determine its dependencies. The username is
typically the target subscriber org where the unlocked package is to be installed.

sf data query -u {USERNAME} -t
-q "SELECT Dependencies FROM SubscriberPackageVersion

WHERE Id='04txx000000082hAAA'" --json

You see this output when you run the query, with the (04t) IDs for pkgA, pkgB, and pkgC in that order.

"Dependencies":{"Ids":[
{"subscriberPackageVersionId":"04txx000000080vAAA"},
{"subscriberPackageVersionId":"04txx000000082XAAQ"},
{"subscriberPackageVersionId":"04txx0000000AiGAAU"}]}

Understanding Namespaces
A namespace is a 1-15 character alphanumeric identifier that distinguishes your package and its contents from other packages in your
org.

When you specify a package namespace, every component added to a package has the namespace prefixed to the component API
name. Let’s say you have a custom object called Insurance_Agent with the API name, Insurance_Agent__c. If you add this
component to a package associated with the Acme namespace, the API name becomes Acme__Insurance_Agent__c.

You can choose to create unlocked packages with or without a specific namespace. A namespace is assigned to a package at the time
that it’s created and can’t be changed.

282

Understanding NamespacesUnlocked Packages

Use Namespace Packages IfUse No-Namespace Packages If

You’re new to packaging and you’re adopting packages in several
stages. Using a namespace prefix such as Acme__ can help you

You want to migrate metadata from your org’s monolith of
unpackaged metadata to unlocked packages. Creating a

identify what’s packaged and what’s still unpackaged metadata in
your production orgs

no-namespace package gives you more control over how you
organize and distribute parts of an application.

You have more than one development team. A namespace can
ensure your API names don’t collide with another team.

In general, working with a single namespace is easier, and you can
easily share code across packages that share a namespace.

You want to retain the API name of previously unpackaged
metadata elements.

Important: When creating a namespace, use something that’s useful and informative to users. However, don’t name a namespace
after a person (for example, by using a person's name, nickname, or private information).

When you work with namespaces, keep these considerations in mind.

• You can develop more than one unlocked package with the same namespace but you can associate each package with only a single
namespace.

• If you work with more than one namespace, we recommend that you set up one project for each namespace.

• If you have unlocked packages and managed packages in the same namespace, make sure to enable debug logging at the namespace
level so that you can capture logs from Apex classes across packages.

Create and Register Your Namespace

With unlocked packages, you can share a single namespace with multiple packages. Since sharing of code is much easier if your
package shares the same namespace, we recommend that if use namepaces, you use a single namespace for your namespaced
unlocked packages.

Avoid Namespace Collisions

Namespaces impact the combination of package types you can install in an org.

Namespace-Based Visibility for Apex Classes in Unlocked Packages

The @namespaceAccessible makes public Apex in a package available to other packages that use the same namespace.
Without this annotation, Apex classes, methods, interfaces, and properties defined in an unlocked package aren’t accessible to the
other packages with which they share a namespace. Apex that is declared global is always available across all namespaces, and
needs no annotation.

Create and Register Your Namespace
With unlocked packages, you can share a single namespace with multiple packages. Since sharing of code is much easier if your package
shares the same namespace, we recommend that if use namepaces, you use a single namespace for your namespaced unlocked packages.

To create a namespace:

1. Sign up for a new Developer Edition org.

2. In Setup, enter Package Manager in the Quick Find box, and select Package Manager.

3. In Namespace Settings, click Edit.

4. Enter a namespace and select Check Availability.

5. (Optional) Select a package to associate with this namespace , or select None, then click Review.

283

Understanding NamespacesUnlocked Packages

https://help.salesforce.com/s/articleView?id=xcloud.code_add_users_debug_log.htm&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.code_add_users_debug_log.htm&language=en_US

6. Review your selections, and then click Save.

To register a namespace:

1. To link the namespace that you created with your Dev Hub, use Namespace Registry. See Link a Namespace to a Dev Hub for details.

2. In the sfdx-project.json file, specify your namespace using the namespace attribute. When you create a new unlocked
package, the package is associated with the namespace specified in the sfdx-project.json file.

Avoid Namespace Collisions
Namespaces impact the combination of package types you can install in an org.

To understand how namespaces affect the types of packages you can install in a namespaced or no-namespace org, review this table.

First-generation
Managed Package
(1GP)

Second-generation
Managed Package
(2GP)

Namespaced
Unlocked Package

No-namespace
Unlocked Package

Installation Org

Pass.

If the namespace of the
1GP is different from the

Pass (scratch orgs)

If the namespace of the
2GP is different from the

Pass.

If the namespace of the
unlocked package is

Fail.

You can’t install a
no-namespace unlocked

Org with a namespace

For example, a 1GP
packaging org, 1GP patch

namespace of the org,namespace of the scratchdifferent from thepackage in an org with a
namespace.

org, Developer Edition
org with namespace, or a
scratch org with
namespace

you can install one or
many packages.

Fail.

org, you can install one or
many packages.

Fail (1GP packaging and
patch orgs).

namespace of the org,
you can install one or
many packages.

If the namespace of the
1GP is the same as theTo prevent 1GP packages

from depending on 2GP namespace of the org,
packages, we block the you can’t install the 1GP

into the org.installation of 2GP
packages in a 1GP
packaging or patch org.
We also block the
installation of 2GP
packages in Developer
Edition (DE) orgs that
have an associated
namespace, unless it’s a
DE scratch org.

Pass.

Can install one or many
1GP packages.

Pass.

Can install one or many
2GP packages.

Pass.

Can install one or many
namespaced unlocked
packages.

Pass.

Can install one or many
no-namespace unlocked
packages.

Org without a
namespace

To understand how namespaces affect the combination of packages that can be installed into one org, review this table.

284

Understanding NamespacesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

First-generation Managed
Package (1GP) with
Namespace Y

Second-generation
Managed Package (2GP)
with Namespace Y

Unlocked Package with
Namespace Y

Namespace and Package
Type

Pass.

If each 1GP uses a unique
namespace, you can install

Pass.

If the 1GP and 2GP use a unique
namespace, you can install them
in the same org.

Pass.

If the 1GP and unlocked package
use unique namespaces, you
can install them in the same org.

First-generation Managed
Package (1GP) with
namespace X

multiple 1GP packages in the
same org.

Fail.

If the 1GP packages share a
namespace, you can’t install
them in the same org.

Fail.

If the 1GP and 2GP share a
namespace, you can’t install
them in the same org.

Fail.

If the 1GP and unlocked package
share a namespace, you can’t
install them in the same org.

First-generation Managed
Package (1GP) with
namespace Y

Pass.

If the 1GP packages use unique
namespaces, you can install

Pass.

You can install multiple 2GP
packages with unique

Pass.

You can install a 2GP and a
namespaced unlocked package

Second-generation Managed
Package (2GP) with
namespace X

multiple 1GP packages in the
same org.

namespaces, or the same
namespace.

in the same org. The packages
can share a namespace or use
unique namespaces.

Fail.

If the 1GP and 2GP share a
namespace, you can’t install
them in the same org.

Pass.

You can install multiple 2GP
packages with the same
namespace in the same org.

Pass.

You can install a 2GP and a
namespaced unlocked package
in the same org. The packages
can share a namespace or use
unique namespaces.

Second-generation Managed
Package (2GP) with
namespace Y

Namespaces and Package Dependencies
A namespaced unlocked package can’t depend on an unlocked package without a namespace.

Namespace-Based Visibility for Apex Classes in Unlocked Packages
The @namespaceAccessible makes public Apex in a package available to other packages that use the same namespace. Without
this annotation, Apex classes, methods, interfaces, and properties defined in an unlocked package aren’t accessible to the other packages
with which they share a namespace. Apex that is declared global is always available across all namespaces, and needs no annotation.

Considerations for Apex Accessibility Across Packages

• A Lightning component outside the package can access a public Apex method installed from a no-namespace unlocked package.
The component can be installed from another package or created in the org. For accessing Apex methods, a no-namespace unlocked
package is treated the same as an unmanaged package.

• You can't use the @namespaceAccessible annotation for an @AuraEnabled Apex method.

• You can add or remove the @namespaceAccessible annotation at any time, even on managed and released Apex code.
Make sure that you don’t have dependent packages relying on the functionality of the annotation before adding or removing it.

285

Understanding NamespacesUnlocked Packages

• When adding or removing @namespaceAccessible Apex from a package, consider the impact to users with installed versions
of other packages that reference this package’s annotation. Before pushing a package upgrade, ensure that no user is running a
package version that would fail to fully compile when the upgrade is pushed.

This example shows an Apex class marked with the @namespaceAccessible annotation. The class is accessible to other packages
within the same namespace. The first constructor is also visible within the namespace, but the second constructor isn’t.

// A namespace-visible Apex class
@namespaceAccessible
public class MyClass {

private Boolean bypassFLS;

// A namespace-visible constructor that only allows secure use
@namespaceAccessible
public MyClass() {

bypassFLS = false;
}

// A package private constructor that allows use in trusted contexts,
// but only internal to the package
public MyClass (Boolean bypassFLS) {

this.bypassFLS = bypassFLS;
}
@namespaceAccessible
protected Boolean getBypassFLS() {

return bypassFLS;
}

}

Share Release Notes and Post-Install Instructions
Share details about what’s new and changed in a released unlocked package with your users.

Share details about what’s new and changed in an unlocked package with your users. You can specify a release notes URL to display on
the package detail page in the user’s org. And you can share instructions about using your package by specifying a post install URL. The
release notes and post install URLs display on the Installed Packages page in Setup, after a successful package installation. For users who
install packages using an installation URL, the package installer page displays a link to release notes. And users are redirected to your
post install URL following a successful package installation or upgrade.

Specify the postInstallUrl and releaseNotesUrl attributes in the packageDirectories section for the package.

"packageDirectories": [
{

"path": "expenser-schema",
"default": true,
"package": "Expense Schema",
"versionName": ""ver 0.3.2"",
"versionNumber": "0.3.2.NEXT",
"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/winter-2020-release-notes.html"
},
],
{
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",

286

Share Release Notes and Post-Install InstructionsUnlocked Packages

"sourceApiVersion": "47.0",
"packageAliases": {

"Expenser Schema": "0HoB00000004CzHKAU",
"Expenser Schema@0.1.0-1": "04tB0000000719qIAA"

}
}

You can also use the --post-install-url and the --release-notes-url Salesforce CLI parameters with the sf
package version create command. The CLI parameters override the URLs specified in the sfdx-project.json file.

Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked
Packages)

Specify Unpackaged Metadata for Package Version Creation Tests
Specify the path to the unpackaged metadata in your sfdx-project.json file.

In this example, metadata in the my-unpackaged-directory is available for test runs during the package version creation of
the TV_unl package.

"packageDirectories": [
{

"path": "force-app",
"package": "TV_unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"
}

},
]

The unpackagedMetadata attribute is intended for metadata that isn’t part of your package. You can’t include the same metadata
in both an unpackaged directory and a packaged directory.

Manage Apex Access for Package Version Creation Tests
Sometimes the Apex tests that you write require a user to have certain permission sets or permission set licenses. Use the
apexTestAccess setting to assign permission sets and permission set licenses to the user in whose context your Apex tests get
run at package version creation.

"packageDirectories": [
{

"path": "force-app",
"package": "TV_unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"
},

287

Specify Unpackaged Metadata or Apex Access for Apex
Tests (Unlocked Packages)

Unlocked Packages

"apexTestAccess": {
"permissionSets": [

"Permission_Set_1",
"Permission_Set_2"

],
"permissionSetLicenses": [

"SalesConsoleUser"
]

}

},
]

Note: To assign user licenses, use the runAs Method. User licenses can't be assigned in the sfdx-project.json file.

Best Practices for Unlocked Packages
We suggest that you follow these best practices when working with unlocked packages.

• We recommend that you work with only one Dev Hub, and enable Dev Hub in a production org.

• The Dev Hub org against which you run the sf package create command becomes the owner of the package. If the Dev
Hub org associated with a package expires or is deleted, its packages no longer work.

• Use care in deciding how to utilize namespaces. For most customers, we recommend working with no namespace or a single
namespace to avoid unnecessary complexity in managing components. If you’re test-driving unlocked packages, use a test namespace.

Use real namespaces only when you’re ready to embark on a development path headed for release in a production org.

Note: You can’t install a no-namespace, unlocked package into any org with a namespace (for example, a scratch org with
a namespace).

• Include the --tag option when you use the sf package version create and sf package version update
commands. This option helps you keep your version control system tags in sync with specific package versions.

• Create user-friendly aliases for packaging IDs, and include those aliases in your Salesforce DX project file and when running CLI
packaging commands. See: Package IDs and Aliases for Unlocked Packages.

Package IDs and Aliases for Unlocked Packages
During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a package or
package version, Salesforce CLI creates a package alias based on the package name, and stores that name in the sfdx-project.json
file. When you run CLI commands or write scripts to automate packaging workflows, it’s often easier to reference the package alias,
instead of the package ID or package version ID.

Package aliases are stored in the sfdx-project.json file as name-value pairs, in which the name is the alias and the value is the
ID. You can modify package aliases for existing packages and package versions in the project file.

At the command line, you also see IDs for things like package members (a component in a package) and requests (like a sf package
version create request).

Note: As a shortcut, the documentation sometimes refers to an ID by its three-character prefix. For example, a package version
ID always starts with 04t.

Here are the most commonly used IDs.

288

Best Practices for Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_testing_tools_runas.htm

DescriptionShort ID NameID Example

Use this ID when contacting Salesforce for
packaging or security review support. To

Subscriber Package ID033J0000dAb27uxVRE

locate this ID for your package, run sf
package list --verbose against
the Dev Hub that owns the package.

Use this ID to install a package version.
Returned by sf package version
create.

Subscriber Package Version ID04t6A0000004eytQAA

Use this ID on the command line to create
a package version. Or enter it into the

Package ID0Hoxx00000000CqCAI

sfdx-project.json file and use the
directory name. Generated by sf
package create.

Use this ID to view the status and monitor
progress for a specific request to create a

Version Creation Request ID08cxx00000000BEAAY

package version such as sf package
version create report

Frequently Used Unlocked Packaging Operations
For a complete list of Salesforce CLI packaging commands, see: Salesforce Command Line Reference Guide.

What it DoesSalesforce CLI command

Creates a package. When you create a package, you specify its
package type and name, among other things.

sf package create

Creates a package version.sf package version create

Installs a package version in a scratch, sandbox, or production org.sf package install

Removes a package that has been installed in an org. This process
deletes the metadata and data associated with the package.

sf package uninstall

Changes the state of the package version from beta to the
managed-released state.

sf package version promote

Creates a scratch org.sf org create scratch

Opens an org in the browser.sf org open

289

Frequently Used Unlocked Packaging OperationsUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference.htm

How We Handle Profile Settings in Unlocked Packages

During package version creation for unlocked or second-generation managed packages, the build system inspects the contents of all
profiles in the DX project directory, not just the directory specified in the path, and preserves only the profile settings that are directly
related to the metadata in the package. The profile itself, and any profile settings unrelated to the package’s metadata are discarded
from the package.

During package installation, the preserved profile settings are applied only to existing profiles in the subscriber org. The profile itself isn’t
installed in the subscriber org.

To control which profile settings are included, use the scopeProfiles parameter in the project configuration file.

Note: Packages that contain only profiles and no additional metadata aren’t allowed and fail during package version creation.

This installation option is available
via…

The packaged profile settings are
applied to...

When you select…

The System Administrator profile in the
subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile.

Install for Admins Only • The package installer page

• Salesforce CLI sf package
install command

The default behavior for CLI-based package
installs is to install for admins only.

The System Administrator profile and all
cloned profiles in the subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile, and all cloned profiles.

Install for All Users • The package installer page

• Salesforce CLI sf package
install command

To install for all users via the CLI, include the
security type parameter.

Standard profiles can’t be modified.
sf package install
--security-type AllUsers

Specific profiles in the subscriber org. This
selection lets the person installing your

Install for Specific Profiles • The package installer page

Not available for CLI-based package
installations.

package determine how to map the profile
settings you packaged to specific profiles in
their org.

To test the behavior of your packaged profile, install your package in a scratch org.

1. From Setup, enter Profile in the Quick Find box, and then locate and inspect the profiles you selected during package installation.

2. Check whether your profile settings have been applied to that profile.

Repeat this step for any other profile you expect to contain your profile settings. Don’t look for the profile name you created; we
apply profile settings to existing profiles in the subscriber org.

Whenever possible, use package permission sets instead of profile settings. Subscribers who install your package can easily assign your
permission set to their users.

290

How We Handle Profile Settings in Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://help.salesforce.com/s/articleView?id=platform.standard_profiles.htm&type=5&language=en_US

Note: During a push upgrade, some profile settings related to Apex classes and field-level security aren’t automatically assigned
to the System Admin profile. To ensure that user access is set up correctly after a push upgrade, communicate with your customer.
Make sure they review and update their profile settings after a push upgrade.

Retain License Settings in Unlocked Packages
By default, license settings in profiles are removed during package creation. To retain these settings, specify the
includeProfileUserLicenses parameter in your sfdx-project.json file. In this scenario, the license settings are
retained and applied to the profiles in the subscriber org that are selected during package installation.

"packageDirectories": [
{

"package": "PackageA",
"path": "common",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": false,
includeProfileUserLicenses: true

}
]

Develop Unlocked Packages

A package is a top-level container that holds important details about the app or package: the package name, description, and associated
namespace.

You supply the package details in the package descriptor section of your sfdx-project.json project configuration file.

Create and Update an Unlocked Package

When you’re ready to test or share your package, use the sf package create command to create a package.

Create New Versions of an Unlocked Package

A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes
and track what’s different each time you release or deploy a specific set of changes.

Guidance for Package Version Numbering

Use package versions to evolve your managed package, and release subsequent package versions without breaking existing package
users. Every package version is a fixed snapshot of the package contents and related metadata.

Code Coverage for Unlocked Packages

Before you can promote and release an unlocked package, the Apex code must meet a minimum 75% code coverage requirement.
You can install package versions that don't meet code coverage requirements only in scratch orgs and sandboxes.

Considerations for Promoting Packages with Dependencies

If your company is developing a package that has a package dependency, ask yourself these questions before promoting (releasing)
a new package version.

Release an Unlocked Package

Each new package version is marked as beta when its created. As you develop your package, you may create several package versions
before you create a version that is ready to be released and installed in production orgs.

291

Develop Unlocked PackagesUnlocked Packages

Update an Unlocked Package Version

You can update most properties of a package version from the command line. For example, you can change the package version
name or description. One important exception is that you can’t change the release status.

Hard-Deleted Components in Unlocked Packages

When these components are removed from an unlocked package, they're hard deleted from the target install org during the package
upgrade.

Delete an Unlocked Package or Package Version

Use the sf package version delete and sf package delete to delete packages and package versions that you
no longer need.

View Package Details

View the details of previously created packages and package versions from the command line.

Create and Update an Unlocked Package
When you’re ready to test or share your package, use the sf package create command to create a package.

If you are using a namespace, specify the package namespace in the sfdx-project.json file. To learn more, see Understanding
Namespaces.

To create the package, change to the project directory. The name becomes the package alias, which is automatically added to the project
file. You can choose to designate an active Dev Hub org user to receive email notifications for Apex gacks, and install, upgrade, or uninstall
failures associated with your packages.

sf package create --name "Expenser App" --package-type Unlocked --path \
"expenser-main" --target-dev-hub my-hub --error-notification-username me@devhub.org

The output is similar to this example.

sfdx-project.json has been updated.
Successfully created a package. 0HoB00000004CzHKAU
=== Ids
NAME VALUE
────────── ──────────────────
Package Id 0HoB00000004CzHKAU

Metadata Limits in Unlocked Packages

LimitMetadata in package

10,000 filesNumber of Metadata Files

600 MBTotal Metadata File Size

Update the Package
To update the name, description, or the user to receive error notifications of an existing package, use this command.

sf package update --package "Expense App" --name "Expense Manager App" \
--description "New Description" --error-notification-username me2@devhub.org

292

Create and Update an Unlocked PackageUnlocked Packages

Note: You can’t change the package namespace or package type after you create the package.

Create New Versions of an Unlocked Package
A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes and
track what’s different each time you release or deploy a specific set of changes.

Before you create a package version, first verify package details, such as the package name, dependencies, and update the versionNumber
parameter in the sfdx-project.json file. Verify that the metadata you want to change or add in the new package version is in
the package’s main directory.

When you create a package version, you have three options regarding how package validations are handled.

• (Default) Complete all validations of dependencies, package ancestors, and metadata before the package version is returned.

• Perform validations asynchronously.

• Skip validation on the package version.

Create an Unlocked Package Version (Default Option)
Create the package version with this command. Specify the package alias or ID (0Ho). You can also include a scratch definition file that
contains a list of features and setting that the metadata of the package version depends on.

sf package version create --package "Expenser App" --installation-key “HIF83kS8kS7C” \
--definitionfile config/project-scratch-def.json --code-coverage --wait 10

Note: When creating a package version, specify a --wait time to run the command. If the package version is created within
that time, the sfdx-project.json file is automatically updated with the package version information. If not, you must
manually edit the project file.

It can be a long-running process to create a package version, depending on the package size and other variables. You can easily view
the status and monitor progress.

sf package version create report --package-create-request-id 08cxx00000000YDAAY

The output shows details about the request.

=== Package Version Create Request
NAME VALUE
───────────────────────────── ────────────────────
Version Create Request Id 08cB00000004CBxIAM
Status InProgress
Package Id 0HoB00000004C9hKAE
Package Version Id 05iB0000000CaaNIAS
Subscriber Package Version Id 04tB0000000NOimIAG
Tag git commit id 08dcfsdf
Branch
CreatedDate 2024-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NOimIAG

You can find the request ID (08c) in the initial output of sf package version create.

293

Create New Versions of an Unlocked PackageUnlocked Packages

Depending on the size of the package and other variables, the create request can take several minutes. When you have more than one
pending request to create package versions, you can view a list of all requests with this command.

sf package version create list --created-last-days 0

Details for each request display as shown here (IDs and labels truncated).

=== Package Version Create Requests [3]
ID STATUS PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===
08c... Error 0Ho...
08c... Success 0Ho... 05i... 04t... 2024-06-22 12:07
08c... Success 0Ho... 05i... 04t... 2024-06-23 14:55

Async Validation
Async validation creates a new package version before completing package validations. If your development team is using continuous
integration (CI) scripts, you can leverage async validation to get an installable artifact sooner so you can start post-package creation
steps.

To specify async validation, include the - -async-validation parameter.

sf package version create --async-validation <rest of command syntax>

Sample Command-Line Output

Version create.... Create version status: PerformingValidations
The validations for this package version are in progress, but you can now begin testing
this package version.
To determine whether all package validations complete successfully, run "sf package version
create report --package-create-request-id 08cxx", and review the Status.
Async validated package versions can be promoted only if all validations complete
successfully.
Successfully created the package version [08cxx. Subscriber Package Version Id: 04txx
Package Installation URL:
https://login.salesforce.com/packaging/installPackage.apexp?p0=04txx
As an alternative, you can use the "sf package:install" command.

The command-line output provides you a package creation request ID that starts with 08c. To confirm whether all package validations
complete successfully, use the 08cxx ID when and run sf package version create report
--package-create-request-id 08cxx. Then validate that the Status is listed as Success. Async validated package
versions can be promoted only if all validations complete successfully.

Skip Validation
Skips validation of dependencies, package ancestors, and metadata during package version creation. Skipping validation significantly
reduces the time it takes to create a new package version, but package versions created using skip validation can’t be promoted to the
released state.

sf package version create --skip-validation <rest of command syntax>

Note: You can't specify both skip validation and code coverage, because code coverage is calculated during validation.

You also can't specify both skip validation and async validation at the same time.

294

Create New Versions of an Unlocked PackageUnlocked Packages

Use Keyword NEXT to Ensure Package Version Numbers Are Unique
To ensure your version number is unique, use the keyword NEXT when you set the version number in your sfdx-project.json
file.

For example, "versionNumber": "1.2.0.NEXT".

If you don’t use NEXT, and you also forget to update the version number in your sfdx-project.json file, the new package
version uses the same number as the previous package version. Although we don’t enforce uniqueness on package version numbers,
every package version is assigned a unique subscriber package version ID (starts with 04t).

How Many Package Versions Can I Create Per Day?
Run this command to see how many package versions you can create per day and how many you have remaining.

sf limits api display

Look for the Package2VersionCreates entry.

NAME REMAINING MAXIMUM
───────────────────────────────────── ───────── ─────────
Package2VersionCreates 23 50

Simplify Unlocked Package Development by Creating and Specifying an Org Shape

If your package’s metadata depends on a complex set of features, settings, or licenses, it can be difficult to declaratively specify these
dependencies in a scratch org definition file. Instead, create an org shape of your production org, or another development org, and
specify that source org’s ID in your scratch org definition file. During package creation, we mimic the source org’s environment when
we build and validate your package’s metadata.

Use Branches in Unlocked Packaging

Development teams who use branches in their source control system (SCS), often build package versions based on the metadata
in a particular branch of code.

Target a Specific Release for Your Unlocked Packages During Salesforce Release Transitions

During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of
which Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your
Dev Hub org was on.

Simplify Unlocked Package Development by Creating and Specifying an Org Shape
If your package’s metadata depends on a complex set of features, settings, or licenses, it can be difficult to declaratively specify these
dependencies in a scratch org definition file. Instead, create an org shape of your production org, or another development org, and
specify that source org’s ID in your scratch org definition file. During package creation, we mimic the source org’s environment when
we build and validate your package’s metadata.

Before using this feature, get familiar with how Org Shape for Scratch Orgs works.

Then enable the scratch org setting in your source org, generate the org shape, and edit your scratch org definition file to include the
org name and 15-character source org ID.

{
"orgName": "Acme",

295

Create New Versions of an Unlocked PackageUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_enable_org_shape.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_create_shape.htm

"sourceOrg": "00DB1230400Ifx5"
}

Use Branches in Unlocked Packaging
Development teams who use branches in their source control system (SCS), often build package versions based on the metadata in a
particular branch of code.

To identify which branch in your SCS a package version is based on, tag your package version with a branch name using --branch
attribute in this Salesforce CLI command.

sf package version create --branch featureA

You can specify any alphanumeric value up to 240 characters as the branch name.

You can also specify the branch name in the package directories section of the sfdx-project.json file.

"packageDirectories": [
{

"path": "util",
"default": true,
"package": "pkgA",
"versionName": "Spring ‘21",
"versionNumber": "4.7.0.NEXT",
"branch": "featureA"

}]

When you specify a branch, the package alias for that package version is automatically appended with the branch name. You can view
the package alias in the sfdx.project.json file.

"packageAliases": {
"pkgA@1.0.0.4-featureA":"04tB0000000IB1EIAW"}

Keep in mind that version numbers increment within each branch, and not across branches. For example, you could have two or more
beta package versions with the version number 1.3.0.1.

Package Version AliasBranch Name

pkgA@1.3.0-1-featureAfeatureA

pkgA@1.3.0-1-featureBfeatureB

pkgA@1.3.0-1Not specified

Although more than one beta package version can have the same version number, there can be only one promoted and released
package version for a given major.minor.patch package version.

Package Dependencies and Branches
By default, your package can have dependencies on other packages in the same branch. For package dependencies based on packages
in other branches, explicitly set the branch attribute in the sfdx.project.json file.

296

Create New Versions of an Unlocked PackageUnlocked Packages

Use this formatTo specify a package dependency

"dependencies": [
{

Using the branch attribute

"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": "featureC"

}]

"dependencies": [
{

Using the most recent promoted and released version of package

"package": "pkgB",
"versionNumber": "2.1.0.RELEASED"

}]

"dependencies": [
{

If your package has an associated branch, but the dependent
package doesn’t have a branch

"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": ""

}]

"dependencies": [
{

Using the package alias

"package": "pkgB@2.1.0-1-featureC"
}]

Target a Specific Release for Your Unlocked Packages During Salesforce Release
Transitions
During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of which
Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your Dev Hub
org was on.

To create a package version based on a preview or previous Salesforce release version, create a scratch org definition file that includes
either:

{
"release": "previous"

}

or

{
"release": "preview"

}

In the sfdx-project.json file, set the sourceApiVersion to correspond with the release version of the package version
you’re creating. If you are targeting a previous release, any sourceApiVersion value below the current release is accepted.

297

Create New Versions of an Unlocked PackageUnlocked Packages

Then when you create your package version, specify the scratch org definition file.

sf package version create --package pkgA --definition-file config/project-scratch-def.json

Preview start date is when sandbox instances are upgraded. Preview end date is when all instances are on the GA release.

Preview End DatePreview Start DateRelease Version

February 21, 2026January 11, 2026Spring ’26

June 13, 2026May 10, 2026Summer ’26

October 10, 2026August 30, 2026Winter ’27

Guidance for Package Version Numbering
Use package versions to evolve your managed package, and release subsequent package versions without breaking existing package
users. Every package version is a fixed snapshot of the package contents and related metadata.

While the format for package version number is predetermined, how you determine a version number, and whether you enforce
uniqueness on package version numbers is left to package developers. The format for package version numbers is
MAJOR.MINOR.PATCH.BUILD. Every package version has both a version number that you determine (for example, 2.2.0.1), and a unique
subscriber package version ID (starts with 04t) that is auto-assigned when you create the package version.

Before you promote a particular MAJOR.MINOR.PATCH package version, it’s possible to create multiple package versions that have unique
04t IDs, but all share the same version number, for example 2.2.0.1. There are a few approaches you can take to ensure each package
version number is unique. Keep reading to learn more, but let’s start by learning how to specify a package version number.

How Do I Specify the Package Version Number?
The versionNumber attribute in your sfdx-project.json project configuration file determines the version number that is
assigned the next time you create a managed 2GP version. Before creating a new package version, you must manually increment this
attribute in the project file. If you don't increment the versionNumber, then you can wind up with multiple package versions with the
same version number, but unique subscriber package version IDs (starts with 04t).

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Summer ‘24",
"versionDescription": "Summer 2024 Expense Manager Util Package",
"versionNumber": "2.2.0.1",
"definitionFile": "config/scratch-org-def.json"

},

298

Guidance for Package Version NumberingUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

Use the Keyword NEXT to Enforce Unique Build Numbers
As best practice, don’t create multiple package versions that have the same MAJOR.MINOR.PATCH.BUILD version number. An easy way
to ensure the build portion of your version number is unique is to use the keyword NEXT when you set the version number in your
sfdx-project.json file. This way, you don’t have to manually increment the version number when you want to create a new
package version.

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Summer ‘24",
"versionDescription": "Summer 2024 Expense Manager Util Package",
"versionNumber": "2.2.0.NEXT",
"definitionFile": "config/scratch-org-def.json"

},

Use the CLI Flag to Override a Package Version Number
You can also override the version number listed in your project file, by using the --version-number flag when you create a new
package version.

sf package version create -p "my2gp" -–version-number 2.2.0.NEXT <rest of command syntax>

By using the keyword NEXT with the --version-number flag in the CLI, you ensure the build portion of the version number is
unique.

Note: Keep in mind, the --version-number flag doesn't update your sfdx-project.json. To keep the VersionNumber
in the project file current, update it manually.

What Happens to Version Numbering After You Promote a Package Version?
After you promote a package version with a specific MAJOR.MINOR.PATCH version you can’t continue to create package versions that
use that same MAJOR.MINOR.PATCH version number. If you attempt to do so, you receive an error message.

How Do I Determine Whether to Use a New Major, Minor, or Patch Version?
While there are restrictions on what changes are allowed in a patch version, determining what qualifies as a major or minor change is
largely up to you. When introducing major changes, increase the major version number, and increase the minor version number when
making smaller improvements.

Code Coverage for Unlocked Packages
Before you can promote and release an unlocked package, the Apex code must meet a minimum 75% code coverage requirement. You
can install package versions that don't meet code coverage requirements only in scratch orgs and sandboxes.

299

Code Coverage for Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_patch_version.htm

Important: Unlocked package versions that were promoted to the released state before Winter ‘21 aren’t subject to code coverage
requirements.

To compute code coverage using Salesforce CLI, use the --code-coverage parameter when you run the sf package
version create command.

Package version creation can take longer to complete when code coverage is being computed, so consider when in the development
cycle to include the code coverage parameter. You can choose to skip code coverage, and you can skip all validation by specifying the
--skip-validation parameter. You can promote package versions only if they’re validated and meet code coverage requirements.

View code coverage information for a package version using sf package version list with the --verbose parameter,
or the sf package version report command in Salesforce CLI.

We don’t calculate code coverage for org-dependent unlocked packages.

Considerations for Promoting Packages with Dependencies
If your company is developing a package that has a package dependency, ask yourself these questions before promoting (releasing) a
new package version.

Are you:

• Developing the base and extension package in parallel?

• Specifying skip validation when creating new package versions?

• Using the keywords LATEST or RELEASED when specifying the package dependency?

If you answered no to all these questions, your package doesn't have any tricky dependency scenarios and you can promote it when it's
ready. If you answered yes to any of these questions, keep reading.

Specifying Skip Validation
When you create a package version and specify skip validation, the version is created without validating dependencies, package ancestors,
or metadata.

If you develop your base package using skip validation, test your extension package using either a stable and previously promoted
version of the base package, or a non-skip validated base package version.

Most importantly, if you’re developing a version of your base package and extension package in parallel, ensure that you:

• First promote the base package version.

• Then specify the promoted package version in the dependency section of your extension package using the keyword RELEASED.

• Finally, create the extension package version.

After testing the extension package version, you then promote it. This process ensures that the extension package version that you
promote to the released state has as its dependency the promoted base package version.

Using the Keyword LATEST or RELEASED
A keyword is a variable that you can use to specify a package version number. The keyword LATEST maps to the most recently created
package version, which might not be the same as the promoted and released package version.

The keyword RELEASED maps to the promoted and released package version.

For example: If you create versions 1.0.0.1, 1.0.0.2, and 1.0.0.3, and promote version 1.0.0.2, then 1.0.0.RELEASED = 1.0.0.2, but 1.0.0.LATEST
= 1.0.0.3.

300

Considerations for Promoting Packages with DependenciesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm

Example
Your company created a base package called PkgBase, and an extension package called PkgExtn.

PkgBase is under active development, and the development team is creating versions that specify --skip-validation.

PkgExtn version 2.3 is under active development and references its dependency on PkgBase by using the following definition in the
sfdx-project.json.

{
"path": "pkg-extension",
"default": false,
"package": "PkgExtn",
"versionName": "v 2.3",
"versionDescription": "Winter 2025",
"versionNumber": "2.3.0.NEXT",
"dependencies": [

{
"package": "PkgBase",
"versionNumber": "1.1.0.LATEST"

},

Before promoting version 2.3 of PkgExtn, you must test it using the promoted version 1.1.0 of PkgBase. Update the PkgExtn dependency
section of your sfdx-project.json and change the dependency from 1.1.0.LATEST to 1.1.0.RELEASED. If the tests succeed, then
create a new version of PkgExtn and ensure it works as expected with the promoted base package version.

Release an Unlocked Package
Each new package version is marked as beta when its created. As you develop your package, you may create several package versions
before you create a version that is ready to be released and installed in production orgs.

Before you promote the package version, ensure that the user permission, Promote a package version to released, is enabled in the
Dev Hub org associated with the package. Consider creating a permission set with this user permission, and then assign the permission
set to the appropriate user profiles.

When you’re ready to release, use sf package version promote.

sf package version promote --package "Expense Manager@1.3.0-7"

If the command is successful, a confirmation message appears.

Successfully promoted the package version, ID: 04tB0000000719qIAA to released.

After the update succeeds, view the package details.

sf package version report --package "Expense Manager@1.3.0.7"

Confirm that the value of the Released property is true.

=== Package Version
NAME VALUE
────────────────────────────── ───────────────────
Name ver 1.0
Alias Expense Manager-1.0.0.5
Package Version Id 05iB0000000CaahIAC
Package Id 0HoB0000000CabmKAC

301

Release an Unlocked PackageUnlocked Packages

Subscriber Package Version Id 04tB0000000NPbBIAW
Version 1.0.0.5
Description update version
Branch
Tag git commit id 08dcfsdf
Released true
Created Date 2018-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NPbBIAW

You can promote and release only once for each package version number, and you can’t undo this change.

Update an Unlocked Package Version
You can update most properties of a package version from the command line. For example, you can change the package version name
or description. One important exception is that you can’t change the release status.

If the most recent package version has been released, increment either the major, minor, or patch version number for the next package
version you create.

Package version numbers use the format major.minor.patch.build. For example, if you released package 1.0.0.2, you could use 1.1.0.0,
2.0.0.0, or 1.0.1.0 for the next package version.

Example:

sf package version update --package "Your Package Alias"

Hard-Deleted Components in Unlocked Packages
When these components are removed from an unlocked package, they're hard deleted from the target install org during the package
upgrade.

• AccountForecastSettings

• AcctMgrTargetSettings

• ActionableListDefinition

• ActionPlanTemplate

• AccountingFieldMapping

• AccountingModelConfig

• AdvAccountForecastSet

• AdvAcctForecastDimSource

• AdvAcctForecastPeriodGroup

• AIApplicationConfig

• AIUsecaseDefinition

• AnalyticSnapshot

• ApexClass

• ApexComponent

• ApexPage

• ApexTrigger

• ApplicationRecordTypeConfig

302

Update an Unlocked Package VersionUnlocked Packages

• ApplicationSubtypeDefinition

• AppointmentAssignmentPolicy

• AssessmentQuestion

• AssessmentQuestionSet

• AssistantContextItem

• AssistantSkillQuickAction

• AssistantSkillSobjectAction

• AssistantVersion

• AuraDefinitionBundle

• BatchCalcJobDefinition

• BatchProcessJobDefinition

• BenefitAction

• BldgEnrgyIntensityCnfg

• BrandingSet

• BriefcaseDefinition

• BusinessProcessGroup

• BusinessProcessTypeDefinition

• CareBenefitVerifySettings

• CareLimitType

• CareProviderSearchConfig

• CareRequestConfiguration

• ChannelObjectLinkingRule

• ClaimFinancialSettings

• ClauseCatgConfiguration

• CompactLayout

• ContractType

• ConversationVendorInfo

• CustomApplication

• CustomPageWebLink

• CustomPermission

• CustomTab

• Dashboard

• DecisionMatrixDefinition

• DecisionMatrixDefinitionVersion

• DecisionTable

• DecisionTableDatasetLink

• DisclosureDefinition

• DisclosureDefinitionVersion

• DisclosureType

• DiscoveryAIModel

303

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• DiscoveryGoal

• Document

• DocumentGenerationSetting

• DocumentType

• EmailServicesFunction

• EmailTemplate

• EmbeddedServiceBranding

• EmbeddedServiceConfig

• EmbeddedServiceLiveAgent

• EmbeddedServiceMenuSettings

• ESignatureConfig

• ESignatureEnvelopeConfig

• ExplainabilityActionDefinition

• ExplainabilityActionVersion

• ExplainabilityMsgTemplate

• ExpressionSetDefinition

• ExpressionSetDefinitionVersion

• ExpressionSetObjectAlias

• ExternalAIModel

• ExternalClientApplication

• ExtlClntAppMobileSettings

• ExtlClntAppOauthSettings

• ExternalDataSrcDescriptor

• ExternalServiceRegistration

• FeatureParameterBoolean

• FeatureParameterDate

• FeatureParameterInteger

• FieldRestrictionRule

• FieldServiceMobileExtension

• FlexiPage

• Flow

• FuelType

• FuelTypeSustnUom

• GatewayProviderPaymentMethodType

• HomePageComponent

• HomePageLayout

• IdentityVerificationProcDef

• InstalledPackage

• IntegrationHubSettings

• IntegrationHubSettingsType

304

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• IntegrationProviderDef

• Layout

• Letterhead

• LicenseDefinition

• LightningComponentBundle

• LightningExperienceTheme

• LightningMessageChannel

• LightningOnboardingConfig

• ListView

• LiveChatAgentConfig

• LiveChatButton

• LiveChatSensitiveDataRule

• LocationUse

• LoyaltyProgramSetup

• MarketingAppExtActivity

• MarketingAppExtension

• MatchingRule

• MfgProgramTemplate

• MLDataDefinition

• MLPredictionDefinition

• NamedCredential

• NetworkBranding

• ObjectHierarchyRelationship

• OcrSampleDocument

• OcrTemplate

• OmniDataTransform

• OmniIntegrationProcedure

• OmniScript

• OmniUiCard

• PaymentGatewayProvider

• PermissionSet

• PermissionSetGroup

• PermissionSetLicense

• PipelineInspMetricConfig

• PlatformEventSubscriberConfig

• ProductAttributeSet

• ProductSpecificationTypeDefinition

• Profile

• QuickAction

• RecordAlertCategory

305

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• RecordAlertDataSource

• RegisteredExternalService

• RelatedRecordAssocCriteria

• RelationshipGraphDefinition

• RemoteSiteSetting

• Report

• ReportType

• RestrictionRule

• SalesAgreementSettings

• SchedulingRule

• SchedulingObjective

• ScoreCategory

• ServiceAISetupDefinition

• ServiceAISetupField

• ServiceProcess

• SharingReason

• SharingRecalculation

• SlackApp

• StaticResource

• StnryAssetEnvSrcCnfg

• SustainabilityUom

• SustnUomConversion

• SvcCatalogCategory

• SvcCatalogFulfillmentFlow

• SvcCatalogItemDef

• TimelineObjectDefinition

• UIObjectRelationConfig

• UserAccessPolicy

• UserLicense

• UserProfileSearchScope

• ValidationRule

• VehicleAssetEmssnSrcCnfg

• ViewDefinition

• VirtualVisitConfig

• WaveApplication

• WaveComponent

• WaveDashboard

• WaveDataflow

• WaveDataset

• WaveLens

306

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• WaveRecipe

• WaveTemplateBundle

• WaveXmd

• WebLink

• WebStoreTemplate

• WorkflowAlert

• WorkflowFieldUpdate

• WorkflowFlowAction

• WorkflowOutboundMessage

• WorkflowRule

• WorkflowTask

All other components are marked as deprecated when removed from an unlocked package. An admin can choose to remove deprecated
components. If the package is uninstalled, all components, including the deprecated components previously associated with the package,
are deleted from the org.

Delete an Unlocked Package or Package Version
Use the sf package version delete and sf package delete to delete packages and package versions that you no
longer need.

To delete a package or package version, users need the Delete Second-Generation Packages user permission. Before you delete a package,
first delete all associated package versions.

Can I delete released packages and
package versions?

Can I delete beta packages and
package versions?

Package Type

NoYesSecond-Generation Managed Packages

YesYesUnlocked Packages

Considerations for Deleting a Package or Package Version

• Deletion is permanent.

• Attempts to install a deleted package version will fail.

• Before deleting, ensure that the package or package version isn’t referenced as a dependency.

Examples:

$ sf package delete -p "Your Package Alias"

$ sf package delete -p 0Ho...

$ sf package version delete -p "Your Package Version Alias"

$ sf package version delete -p 04t...

These CLI commands can’t be used with first-generation managed packages or package versions. To delete a first-generation managed
package, see View Package Details in the First-Generation Managed Packaging Developer Guide.

307

Delete an Unlocked Package or Package VersionUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_viewing_package_details.htm

View Package Details
View the details of previously created packages and package versions from the command line.

To display a list of all packages in the Dev Hub org, use this command.

sf package list --target-dev-hub my-hub

You can view the namespace, package name, ID, and other details in the output.

Name Id Alias Description Type
─────────────── ────────────────── ────────────── ─────────── ─────────── ───────
Expenser App 0HoB00000004CzRKAU Expenser App Unlocked
Expenser Logic 0HoB00000004CzMKAU Expenser Logic Unlocked
Expenser Schema 0HoB00000004CzHKAU Expenser Schema Unlocked

Include optional parameters to filter the list results based on the modification date, creation date, and to order by specific fields or
package IDs. To limit the details, use --concise. To show expanded details, use --verbose.

To display a list of all package versions in the Dev Hub org, use this command.

sf package version list --target-dev-hub my-hub

You can view the namespace, version name, and other details in the output.

Package Name Namespace Version Sub Pkg Ver Id Alias
Installation Key Released
─────────────── ────────── ─────── ─────────────────── ───────────────────────
───────────────── ───────
Expenser Schema 0.1.0.1 04tB0000000719qIAA Expenser Schema@0.1.0-1 false

true
Expenser Schema 0.2.0.1 04tB000000071AjIAI Expenser Schema@0.2.0-1 false

true
Expenser Schema 0.3.0.1 04tB000000071AtIAI Expenser Schema@0.3.0-1 false

false
Expenser Schema 0.3.0.2 04tB000000071AyIAI Expenser Schema@0.3.0-2 false

true
Expenser Schema 0.3.1.1 04tB0000000KGU6IAO Expenser Schema@0.3.1-1 false

false
Expenser Schema 0.3.1.2 04tB0000000KGUBIA4 Expenser Schema@0.3.1-2 false

true
Expenser Schema 0.3.2.1 04tB0000000KGUQIA4 Expenser Schema@0.3.2-1 false

true
Expenser Logic 0.1.0.1 04tB0000000719vIAA Expenser Logic@0.1.0-1 false

true
Expenser App 0.1.0.1 04tB000000071A0IAI Expenser App@0.1.0-1 false

true

Push a Package Upgrade for Unlocked Packages

Push upgrades enable you to upgrade packages installed in orgs, without asking org admins to install the upgrade themselves. You can
choose which orgs receive a push upgrade, what version the package is upgraded to, and when you want the upgrade to occur. Push
upgrades are particularly helpful if you need to push a change for a hot bug fix.

308

View Package DetailsUnlocked Packages

Use Salesforce CLI or SOAP API to initiate the push upgrade, track the status of each job, and review error messages if any push upgrades
fail.

The CLI push upgrade commands are available to second-generation managed packages and unlocked packages. For unlocked packages,
push upgrades are enabled by default.

Table 5: Package Types and Push Upgrade Options

Push Upgrade using UI?Push Upgrade using API?Push Upgrade using CLI?Package Type

NoYesYes2GP

YesYesNo1GP

NoYesYesUnlocked

Push Upgrade Considerations for Unlocked Packages
• You can include new and changed features, or remove features during a push upgrade.

• When a push upgrade is installed, the Apex in the package is compiled.

• You can use push upgrades even if the package version requires a password.

Schedule a Push Upgrade Using CLI

Use Salesforce CLI commands to schedule, abort, or view details about your push upgrade requests. Push upgrades let you upgrade
second-generation managed packages installed in subscriber orgs, without asking customers to install the upgrade themselves.

Schedule a Push Upgrade Using CLI
Use Salesforce CLI commands to schedule, abort, or view details about your push upgrade requests. Push upgrades let you upgrade
second-generation managed packages installed in subscriber orgs, without asking customers to install the upgrade themselves.

The push upgrade feature is available to unlocked packages and second-generation managed packages only. To push a package upgrade
for a second-generation managed package, that package must have already passed the AppExchange security review.

Push upgrades for unlocked packages are enabled by default. To enable push upgrades for your second-generation managed package,
log a case with Salesforce Partner Support.

To initiate a push upgrade for an unlocked or second-generation managed package, the Create and Update Second-Generation Packages
user permission is required.

There are several aspects to scheduling a push upgrade for a package. At a high-level these include:

• Identifying the subscriber orgs and the org IDs that you want to upgrade

• Scheduling the push upgrade

• Tracking the progress and completion of the push upgrade

In some scenarios you may also need to abort a scheduled push upgrade, or analyze errors that occurred. Let’s review each of these
steps in more detail.

Determine the Orgs to Be Upgraded
There isn't a dedicated push-upgrade CLI command for this action, instead let's look at how to use the CLI data query command.

309

Schedule a Push Upgrade Using CLIUnlocked Packages

Push upgrades must be done in the context of the Dev Hub org that owns the package. To confirm the set of packages owned by a
specific Dev Hub org, run the package list command.

Then authorize to the Dev Hub org that is the owner of the package are upgrading.

sf org login web --set-default-dev-hub

If you're preparing to push a package upgrade, we assume your development environment is set up, if you aren't certain, review Set Up
Your Development Environment.

Here are three example queries you can use to retrieve a list of subscriber orgs that are eligible for a package upgrade. To review the
possible fields that can be queried, see PackageSubscriber in the Object Reference for the Salesforce Platform.

Each query requires either a subscriber package ID (starts with 033), or a subscriber package version ID (starts with 04t). To retrieve the
subsciber package ID, use the package list command and specify the --verbose flag. To retrieve the subscriber package version ID,
use the package version list command.

Query Example 1:

Compile a list of all orgs that have a specific package installed. This query requires the subscriber package ID (starts with 033).

sf data query --target-org myDevHub --query "SELECT OrgKey, OrgName, OrgType, InstanceName,
MetadataPackageId, MetadataPackageVersionId FROM PackageSubscriber WHERE MetadataPackageId
= '033xxxxxxxxxxxxxxx'" --result-format json

If you copy and paste this query, update the target org and the subscriber package ID, before running the command. The target org is
the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

Query Example 2:

Compile a list of orgs that have a specific package version installed, and pipe that output to a CSV file.

sf data query --target-org myDevHub --query "SELECT OrgKey, OrgName, OrgType FROM
PackageSubscriber WHERE MetadataPackageVersionId = '04t…'" --result-format csv

If you copy and paste this query, update the target org and the subscriber package version ID, before running the command. The target
org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

This query returns as CSV file that you can use when scheduling the push upgrade. Before specifying the file in the package
push-upgrade schedule command, remove the first line of the CSV file. The CSV file can contain one org ID per line only.

Query Example 3:

Compile a list of all orgs that have a package version lower than version 2.7 installed. This query requires two separate steps.

Note: A single package has both a package ID (starts with 0Ho) and a subscriber package ID (starts with 033). For part one of this
two-part query, you must specify the 0Ho ID. If you run the package list command with the --verbose flag, you can
determine both the 033 and 0Ho ID for a package. For more details on package IDs, see Package IDs and Aliases for
Second-Generation Managed Packages.

First, query the Package2Version object to find all versions of your package that are numerically lower than the specified version (2.7).

sf data query --target-org admin@packaging.com --use-tooling-api --query "SELECT
SubscriberPackageVersionId FROM Package2Version WHERE Package2Id = '0HoPACKAGEIDxxxx' AND
(MajorVersion < 2 OR (MajorVersion = 2 AND MinorVersion < 7))"

If you copy and paste this query, update the target org, the Package ID (starts with 0Ho), and the major and minor version before running
the command. The target org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

Note the SubscriberPackageVersionId values (starts with 04t) returned by this query.

310

Schedule a Push Upgrade Using CLIUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_list_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_dev_environment.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_dev_environment.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_list_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_version_list_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_tooling.meta/api_tooling/tooling_api_objects_package2version.htm

Next, query the PackageSubscriber object using the subscriber package version IDs (starts with 04t) from the previous step.

sf data query --target-org myDevHub --query "SELECT OrgKey FROM PackageSubscriber WHERE
MetadataPackageVersionId IN ('04tID1', '04tID2', '04tID_etc')" --result-format csv >out.txt

If you copy and paste this query, update the target org and the subscriber package version IDs (starts with 04t) before running the
command. The target org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

If you created a CSV file in this step and plan to use the file to schedule your push upgrade, you must remove the first line of the file so
that it contains a list of org IDs only.

Schedule a Package Push Upgrade
After you have the org IDs for the subscribers you're upgrading, you can schedule the push upgrade. Review these examples of the flags
you might include with the package push-upgrade schedule command. For more details on this command, see the
Salesforce CLI Command Reference.

When scheduling a push upgrade you have a choice about how to specify the orgs you want upgraded. You can use either flag:

• --org-file and provide a CSV file of all the orgs to be upgraded, or

• --org-list and specify a comma-separated list of org IDs in the command line when you run the push upgrade CLI command

If using a org file, it must contain one org ID per line only.

Examples for package push-upgrade schedule

Schedule a push upgrade that initiates at a specified time with a list of org IDs:

sf package push-upgrade schedule --package 04txyz --start-time "2024-12-06T21:00:00"
--org-list 00DAxx, 00DBx

Schedule a push upgrade that initiates as soon as possible using a list of orgs in a CSV file:

sf package push-upgrade schedule --package 04txyz --org-file upgrade-orgs.csv

Note: If you don't specify the --start-time flag, the push upgrade begins as soon as resources are available. When specfiying
a start time, schedule during off peak hours. Specify start time in UTC.

Retrieve Details about Scheduled Package Push Upgrades
Use the package push-upgrade list or package push-upgrade report commands to retrieve details about push
upgrades that have been scheduled or completed for a package.

Examples for package push-upgrade list:

List all package push upgrade requests for a specified package:

sf package push-upgrade list --package 033xyz --target-dev-hub myDevHub

List all package push upgrade requests for a specified package scheduled in the last 30 days:

sf package push-upgrade list --package 033xyz --scheduled-last-days 30 --target-dev-hub
myDevHub

List all package push upgrade requests with a status of Failed. This status occurs if the push upgrade fails for one or more orgs.

sf package push-upgrade list --package 033xyz –-status Failed

311

Schedule a Push Upgrade Using CLIUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_push-upgrade_schedule_unified

List all package push upgrade requests with a status of Succeeded:

sf package push-upgrade list --package 033xyz –-status Succeeded

Generate a report about a specific push upgrade request:

sf package push-upgrade report --push-request-id 0DVxyz --target-dev-hub myDevHub

The package push-upgrade list command displays these fields: push request ID, package version ID, package version
number, status of the push upgrade request, push upgrade request scheduled start date and time, the number of orgs scheduled for
push upgrade, the number of orgs that were successfully upgraded, the number of orgs that failed to be upgraded, and push upgrade
request created date and time.

The package push-upgrade report command provides additional information, including error details.

Cancel a Pending Package Push Upgrade Request
If your push upgrade request has a status of either Created or Pending you can cancel the push upgrade by running the package
push-upgrade abort command. To retrieve the status of your push upgrade request, run either package push-upgrade
list or package push-upgrade report.

To cancel a specified push upgrade request:

sf package push-upgrade abort --push-request-id 0DVxyz

Retrieve Error Messages for a Package Push Upgrade
There isn't a dedicated push upgrade CLI command for this retrieving error message, instead let's look at how to use the CLI data
query command. Use this example query to retrieve error messages stored in the PackagePushError object.

Example:

sf data query --query "SELECT Id, PackagePushJobId, PackagePushJob.SubscriberOrganizationKey,
ErrorDetails, ErrorMessage, ErrorSeverity, ErrorTitle, ErrorType FROM PackagePushError
WHERE PackagePushJob.PackagePushRequestId='$PUSH_REQUEST_ID'" --target-org myDevHub

Install an Unlocked Package

Install unlocked packages using the CLI or the browser. You can install package versions in a scratch org, sandbox org, DE org, or production
org.

Install Packages with the CLI

If you’re working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch
org or target subscriber org.

Install Unlocked Packages from a URL

Install unlocked packages from the CLI or from a browser, similar to how you install managed packages.

Upgrade a Version of an Unlocked Package

A package upgrade occurs when you install a new package version into an org that has a previous version of that package installed.

Sample Script for Installing Unlocked Packages with Dependencies

Use this sample script as a basis to create your own script to install packages with dependencies. This script contains a query that
finds dependent packages and installs them in the correct dependency order.

312

Install an Unlocked PackageUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagepusherror.htm

Install Packages with the CLI
If you’re working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch org or
target subscriber org.

Before you install a package to a scratch org, run this command to list all the packages and locate the ID or package alias.

sf package version list

Identify the version you want to install. Enter this command, supplying the package alias or package ID (starts with 04t).

sf package install --package "Expense Manager@1.2.0-12" --target-org jdoe@example.com

By default, the package install command provides admins access to the installed package. To provide access to all users, specify
--security-type AllUsers when you run the package install command.

If you’ve already set the scratch org with a default username, enter just the package version ID.

sf package install --package "Expense Manager@1.2.0-12"

Note: If you’ve defined an alias (with the -a parameter), you can specify the alias instead of the username for --target-org.

The CLI displays status messages regarding the installation.

Waiting for the subscriber package version install request to get processed. Status =
InProgress Successfully installed the subscriber package version: 04txx0000000FIuAAM.

Control Package Installation Timeouts
When you issue a sf package install command, it takes a few minutes for a package version to become available in the target
org and for installation to complete. To allow sufficient time for a successful install, use these parameters that represent mutually exclusive
timers.

• --publish-wait defines the maximum number of minutes that the command waits for the package version to be available
in the target org. The default is 0. If the package is not available in the target org in this time frame, the install is terminated.

Setting --publish-wait is useful when you create a new package version and then immediately try to install it to target orgs.

Note: If --publish-wait is set to 0, the package installation immediately fails, unless the package version is already
available in the target org.

• --wait defines the maximum number of minutes that the command waits for the installation to complete after the package is
available. The default is 0. When the --waitinterval ends, the install command completes, but the installation continues until it
either fails or succeeds. You can poll the status of the installation using sf package install report.

Note: The --wait timer takes effect after the time specified by --publish-wait has elapsed. If the
--publish-wait interval times out before the package is available in the target org, the --wait interval never starts.

For example, consider a package called Expense Manager that takes five minutes to become available on the target org, and 11 minutes
to install. The following command has publish-wait set to three minutes and wait set to 10 minutes. Because Expense Manager
requires more time than the set publish-wait interval, the installation is aborted at the end of the three-minute publish-wait
interval.

sf package install --package "Expense Manager@1.2.0-12" --publish-wait 3 --wait 10

The following command has publish-wait set to six minutes and wait set to 10 minutes. If not already available, Expense
Manager takes five minutes to become available on the target org. The clock then starts ticking for the 10-minute wait time. At the

313

Install Packages with the CLIUnlocked Packages

end of 10 minutes, the command completes because the wait time interval has elapsed, although the installation is not yet complete.
At this point, sf package install report indicates that the installation is in progress. After one more minute, the installation
completes and sf package install report indicates a successful installation.

sf package install --package "Expense Manager@1.2.0-12" --publish-wait 6 --wait 10

SEE ALSO:

Salesforce CLI Command Reference package install

Salesforce Help: Determine Which Users Can Access a Package

Install Unlocked Packages from a URL
Install unlocked packages from the CLI or from a browser, similar to how you install managed packages.

If you create packages from the CLI, you can derive an installation URL for the package by adding the subscriber package ID to your Dev
Hub URL. You can use this URL to test different deployment or installation scenarios.

For example, if the package version has the subscriber package ID, 04tB00000009oZ3JBI, add the ID as the value of apvId.

https://MyDomainName.lightning.force.com/packagingSetupUI/ipLanding.app?apvId=04tB00000009oZ3JBI

Anyone with the URL and a valid login to a Salesforce org can install the package.

To install the package:

1. In a browser, enter the installation URL.

2. Enter your username and password for the Salesforce org in which you want to install the package, and then click Login.

3. If the package is protected by an installation key, enter the installation key.

4. For a default installation, click Install.

A message describes the progress. You receive a confirmation message when the installation is complete.

SEE ALSO:

Salesforce Help: Determine Which Users Can Access a Package

Upgrade a Version of an Unlocked Package
A package upgrade occurs when you install a new package version into an org that has a previous version of that package installed.

To upgrade a package, use the package install CLI command

sf package install --package 04t... --target-org me@example.com

For more examples and details about this command, see package install in the Salesforce CLI Command Reference.

When you perform a package upgrade, here’s what to expect for metadata changes.

When you upgrade to a new unlocked package version, you choose whether to require successful compilation of all Apex in the org
and package (--apex-compile all), or only the Apex in the package (--apex-compile package).

• Metadata introduced in the new version is installed as part of the upgrade.

• If an upgraded component has the same API name as a component already in the target org, the component is overwritten with
the changes.

• If a component in the upgrade was deleted from the target org, the component is re-created during the upgrade.

314

Install Unlocked Packages from a URLUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified
https://help.salesforce.com/s/articleView?id=xcloud.pkg_subscriber_determine_access.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.pkg_subscriber_determine_access.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified

• Metadata that was removed in the new package version is also removed from the target org as part of the upgrade. Removed
metadata is metadata not included in the current package version install, but present in the previous package version installed in
the target org. If metadata is removed before the upgrade occurs, the upgrade proceeds normally. Some examples where metadata
is deprecated and not deleted are:

– User-entered data in custom objects and fields are deprecated and not deleted. Admins can export such data if necessary.

– An object such as an Apex class is deprecated and not deleted if it’s referenced in a Lightning component that is part of the
package.

• In API version 45.0 and later (Salesforce CLI version 45.0.9 or later), you can specify what happens to removed metadata during
package upgrade. Use the sf package install command’s -t | --upgrade-type parameter, specifying one of these
values:

– Delete specifies to delete all removed components, except for custom objects and custom fields, that don’t have dependencies.

– DeprecateOnly specifies that all removed components must be marked deprecated. The removed metadata exists in the
target org after package upgrade, but is shown in the UI as deprecated from the package. This option is useful when migrating
metadata from one package to another.

– Mixed (the default) specifies that some removed components are deleted, and other components are marked deprecated.
For more information on hard-deleted components, see Hard-Deleted Components in Unlocked Packages.

It's possible to install a lower package version on top of a higher package version, but seriously consider this scenario before attempting
it. This is not the same as a rollback, which isn't possible.

Note: For package installs into production orgs, or any org that has Apex Compile on Deploy enabled, the platform compiles all
Apex in the org after the package install or upgrade operation completes. This approach assures that package installs and upgrades
don’t impact the performance of an org, and is done even if --apex-compile package is specified.

Sample Script for Installing Unlocked Packages with Dependencies
Use this sample script as a basis to create your own script to install packages with dependencies. This script contains a query that finds
dependent packages and installs them in the correct dependency order.

Sample Script

Note: Be sure to replace the package version ID and scratch org user name with your own specific details.

#!/bin/bash

The execution of this script stops if a command or pipeline has an error.

For example, failure to install a dependent package will cause the script

to stop execution.

set -e

Specify a package version id (starts with 04t)

If you know the package alias but not the id, use sf package version list to find it.

315

Sample Script for Installing Unlocked Packages with
Dependencies

Unlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_deploying.htm

PACKAGE=04tB0000000NmnHIAS

Specify the user name of the subscriber org.

USER_NAME=test-bvdfz3m9tqdf@example.com

Specify the timeout in minutes for package installation.

WAIT_TIME=15

echo "Retrieving dependencies for package Id: "$PACKAGE

Execute soql query to retrieve package dependencies in json format.

RESULT_JSON=`sf data query -u $USER_NAME -t -q "SELECT Dependencies FROM
SubscriberPackageVersion WHERE Id='$PACKAGE'" --json`

Parse the json string using python to test whether the result json contains a list of
ids or not.

DEPENDENCIES=`echo $RESULT_JSON | python -c 'import sys, json; print
json.load(sys.stdin)["result"]["records"][0]["Dependencies"]'`

If the parsed dependencies is None, the package has no dependencies. Otherwise, parse
the result into a list of ids.

Then loop through the ids to install each of the dependent packages.

if [["$DEPENDENCIES" != 'None']]; then

DEPENDENCIES=`echo $RESULT_JSON | python -c '

import sys, json

ids = json.load(sys.stdin)["result"]["records"][0]["Dependencies"]["ids"]

dependencies = []

for id in ids:

dependencies.append(id["subscriberPackageVersionId"])

print " ".join(dependencies)

'`

316

Sample Script for Installing Unlocked Packages with
Dependencies

Unlocked Packages

echo "The package you are installing depends on these packages (in correct dependency
order): "$DEPENDENCIES

for id in $DEPENDENCIES

do

echo "Installing dependent package: "$id

sf package install --package $id -u $USER_NAME -w $WAIT_TIME --publish-wait 10

done

else

echo "The package has no dependencies"

fi

After processing the dependencies, proceed to install the specified package.

echo "Installing package: "$PACKAGE

sf package install --package $PACKAGE -u $USER_NAME -w $WAIT_TIME --publish-wait 10

exit 0;

Migrate Deprecated Metadata from Unlocked Packages

You can deprecate metadata in an unlocked package, move that metadata to a new package, and then install the new package in your
production org.

As you create more unlocked packages, you can refactor your package and move metadata from one unlocked package to another
unlocked package if necessary.

To move production metadata from package A to package B, follow these steps.

1. Identify the metadata to be moved from package A to package B.

2. Remove the metadata from package A, create a version, and release the package.

3. Add the metadata to package B, create a version, and release the package.

4. In your production org, upgrade package A.

5. In your production org, install package B.

Your metadata is now a part of package B in your production org.

317

Migrate Deprecated Metadata from Unlocked PackagesUnlocked Packages

Uninstall an Unlocked Package

You can uninstall a package from an org using Salesforce CLI or from the Setup UI. When you uninstall unlocked packages, all components
in the package, as well as any deprecated components previously associated with the package, are deleted from the org.

To use the CLI to uninstall a package from the target org, authorize the Dev Hub org and run this command.

sf package uninstall --package "Expense Manager@2.3.0-5"

You can also uninstall a package from the web browser. Open the Salesforce org where you installed the package.

sf org open -u me@my.org

Then uninstall the package.

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click Uninstall next to the package that you want to remove.

3. Determine whether to save and export a copy of the package’s data, and then select the corresponding radio button.

4. Select Yes, I want to uninstall and click Uninstall.

Considerations on Uninstalling Packages
• If you’re uninstalling a package that includes a custom object, all components on that custom object are also deleted. Deleted items

include custom fields, validation rules, custom buttons, and links, workflow rules, and approval processes.

• You can’t uninstall a package whenever a component not included in the uninstall references any component in the package. For
example:

– When an installed package includes any component on a standard object that another component references, Salesforce prevents
you from uninstalling the package. An example is a package that includes a custom user field with a workflow rule that gets
triggered when the value of that field is a specific value. Uninstalling the package would prevent your workflow from working.

– When you’ve installed two unrelated packages that each include a custom object and one custom object component references
a component in the other, you can’t uninstall the package. An example is if you install an expense report app that includes a
custom user field and create a validation rule on another installed custom object that references that custom user field. However,
uninstalling the expense report app prevents the validation rule from working.

– When an installed folder contains components you added after installation, Salesforce prevents you from uninstalling the package.

– When an installed letterhead is used for an email template you added after installation, Salesforce prevents you from uninstalling
the package.

– When an installed package includes a custom field that’s referenced by Einstein Prediction Builder or Case Classification, Salesforce
prevents you from uninstalling the package. Before uninstalling the package, edit the prediction in Prediction Builder or Case
Classification so that it no longer references the custom field.

• You can’t uninstall a package that removes all active business and person account record types. Activate at least one other business
or person account record type, and try again.

• You can’t uninstall a package if a background job is updating a field added by the package, such as an update to a roll-up summary
field. Wait until the background job finishes, and try again.

Transfer an Unlocked Package to a Different Dev Hub

You can transfer the ownership of an unlocked package from one Dev Hub org to another.

318

Uninstall an Unlocked PackageUnlocked Packages

Note: This package transfer feature is available only to unlocked packages and second-generation managed packages. Dev Hub
orgs aren’t used with first-generation managed packages or unmanaged packages, so this feature doesn’t apply to those package
types.

Request a Package Transfer to a Different Dev Hub
Start by logging a case with Salesforce Customer Support, and provide the following details:

Subject: Unlocked Package Transfer to a different Dev Hub

Description:

In the description, list:

• Subscriber package ID of the package you’re transferring. This ID starts with 033.

To verify the 033 ID of your package, run the sf package list command with the -–verbose flag on the source Dev
Hub org.

• Dev Hub org ID for the source org.

• Dev Hub org ID for the destination org. The destination Dev Hub org can’t be a Developer Edition org or a trial org.

• (Optional) Namespace of the package being transferred. If the package is a no-namespace unlocked package, skip this step.

• Acknowledge that you’ve reviewed and completed the steps listed in the Prepare to Transfer Your Package section,
including linking your namespace to the destination Dev Hub, and clearing your Apex Error Notification User.

If you’re transferring more than one package, file a separate case for each package.

After your case has been reviewed and approved, someone from Salesforce Customer Support will contact you to arrange a time to
initiate the package transfer.

Note: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren’t permitted.

Prepare to Transfer Your Package
Here’s how you can help ensure a smooth package transfer.

• If the package you’re transferring has a namespace, keep the namespace linked to the source Dev Hub. Before the package transfer,
the namespace must be linked to both the source and destination Dev Hub orgs.

• Before the package transfer process is initiated, ensure all push upgrades or package version creation processes have completed.

• Delete package versions that are no longer needed.

• If specified, clear the package’s Error Notification User using the sf package update
--error-notification-username= command. If you’re transferring the package to a Dev Hub org you own, you can
set the Error Notification User to a user in the destination Dev Hub after the package transfer is complete. Note: Specifying
--error-notification-username= with no value after the equals sign clears any previously set username.

During the Package Transfer Process
All push upgrades or package version creation processes must be complete before the package transfer process is initiated. Salesforce
Customer Support will alert you about the date the package transfer will occur.

319

Transfer an Unlocked Package to a Different Dev HubUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm

After the Package Transfer Is Complete
Run sf package list and verify that the package is no longer associated with your Dev Hub.

Impact of Package Transfers on Package IDs

After package transfer is complete
…

ID starts withID Type

This ID remains the same.033Subscriber Package ID

This ID remains the same.04tSubscriber Package Version ID

The transferred package receives a new and
unique package ID.

0HoPackage ID

Update Your Package Project File
Before you create new packages or package versions on your Dev Hub, update your sfdx-project.json file and remove all
references to the transferred package from the package directory and package alias sections.

If you have packages in your Dev Hub that depend on the package that you’re transferring, update the package dependency section in
your sfdx-project.json file to explicitly specify the 04t ID of the transferred package that you depend on.

For example, if you transferred pkgA to a different Dev Hub, and your sfdx-project.json file lists the package dependency like
this.

"dependencies": [
{

"package": "pkgA"
"versionNumber": "2.0.0.LATEST"

}
]

Update the dependency to either specify the 04t ID of pkgA.

"dependencies": [
{

"package": "04tB0000000UzH5IAK"
}

]

Or specify the dependency using a package alias.

"dependencies": [
{

"package": "pkgA2.0.0-1"
}

"packageAliases": {
"pkgA2.0.0-1": "04tB0000000UzH5IAK"

}
]

320

Transfer an Unlocked Package to a Different Dev HubUnlocked Packages

What Package History Is Transferred?
When a package is transferred, all package versions, and all lines of ancestry are transferred. Upgrade paths aren’t affected.

Regardless of whether the package transfer occurred between two Dev Hub orgs you own, or the package was transferred externally to
a Dev Hub you don’t own, we transfer the package version history.

We transfer:

• Package name, namespace, type, and IDs. One exception is that the transferred package gets a new 0Ho ID.

• Package version info. This includes all the info that is typically displayed when you run the sf package version list or
sf package version report command.

We don’t transfer:

• Push upgrade history.

• Package version create requests.

• The username of the Dev Hub user who received Apex and other types of error notifications. This optional user is set using
--error-notification-username.

• Deleted package versions.

Take Ownership of an Unlocked Package Transferred from a Different Dev Hub

You can take ownership of an unlocked package that is transferred from another Dev Hug org.

Take Ownership of an Unlocked Package Transferred from a Different Dev
Hub
You can take ownership of an unlocked package that is transferred from another Dev Hug org.

To initiate a package transfer from your Dev Hub org, see Transfer an Unlocked Package to a Different Dev Hub.

Note: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren’t permitted.

Receive a Package Transfer
Link the namespace of the package you’re receiving to your Dev Hub org. See Link a Namespace to a Dev Hub Org in the Salesforce DX
Developer Guide. If the package isn’t associated with a namespace, skip this step.

After the Package Transfer Is Complete
After the package transfer is complete, you’ll be notified by Salesforce Customer Support.

To verify that the transferred package is associated with your Dev Hub, run sf package list.

Impact of Package Transfers on Package IDs

After package transfer is complete
…

ID starts withID Type

This ID remains the same.033Subscriber Package ID

321

Take Ownership of an Unlocked Package Transferred from
a Different Dev Hub

Unlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

After package transfer is complete
…

ID starts withID Type

This ID remains the same.04tSubscriber Package Version ID

The transferred package receives a new and
unique package ID.

0HoPackage ID

Update Your Package Project File
Open and review the contents of the sfdx-project.json file associated with the transferred package.

Open and review the contents of any scratch org definition files associated with the transferred package. Definition files help in setting
up your scratch orgs during development. Use the –definition-file parameter to specify a definition file when you create a
new package version.

If the package directories section lists additional packages that weren’t transferred to you, remove those references from the
sfdx-project.json file.

Next, review the package alias section of the sfdx-project.json file, and remove any references to package aliases that aren’t
associated with the package that was transferred.

Update the package alias of the transferred package to specify its 0Ho package ID.

Before You Create a New Package Version
Similar to how you go about creating new package versions, you must update the sfdx-project.json file, and update the
version number.

To designate a Dev Hub user to receive email notifications for unhandled Apex exceptions, and install, upgrade, or uninstall failures
associated with your package, run the sf package update command, and use the --error-notification-username
parameter.

What Package History Is Transferred?
We transfer:

• Package name, namespace, type, and IDs. One exception is that the transferred package gets a new 0Ho ID.

• Package version info. This includes all the info that is typically displayed when you run the sf package version list or
sf package version report command.

We don’t transfer:

• Push upgrade history.

• Package version create requests.

• The username of the Dev Hub user who received Apex and other types of error notifications.

• Deleted package versions.

322

Take Ownership of an Unlocked Package Transferred from
a Different Dev Hub

Unlocked Packages

CHAPTER 14 Continuous Integration

Continuous integration (CI) is a software development practice in which developers regularly integrate
their code changes into a source code repository. To ensure that the new code does not introduce bugs,
automated builds and tests run before or after developers check in their changes.

In this chapter ...

• Continuous
Integration Using
CircleCI Many third-party CI tools are available for you to choose from. Salesforce DX easily integrates into these

tools so that you can set up continuous integration for your Salesforce applications.

SEE ALSO:

Salesforce Help: Install and Configure DevOps Center

Salesforce Help: Manage and Release Changes Easily and Collaboratively with DevOps Center

• Continuous
Integration Using
Jenkins

• Continuous
Integration with
Travis CI

• Sample CI Repos for
Org Development
Model

• Sample CI Repos for
Package
Development Model

323

https://help.salesforce.com/s/articleView?id=platform.devops_center_setup.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.devops_center_overview.htm&type=5&language=en_US

Continuous Integration Using CircleCI

CircleCI is a commonly used integration tool that integrates with your existing version control system to push incremental updates to
the environments you specify. CircleCI can be used as a cloud-based or on-premise tool. These instructions demonstrate how to use
GitHub, CircleCI, and your Dev Hub org for continuous integration.

Configure Your Environment for CircleCI

Before integrating your existing CircleCI framework, configure your Dev Hub org and CircleCI project.

Connect CircleCI to Your DevHub

Authorize CircleCI to push content to your Dev Hub org via a connected app.

SEE ALSO:

CircleCI

The sfdx-circleci-package Github Repo

The sfdx-circleci-org Github Repo

Configure Your Environment for CircleCI
Before integrating your existing CircleCI framework, configure your Dev Hub org and CircleCI project.

1. Set up your GitHub repository with CircleCI. You can follow the sign-up steps on the CircleCI website to access your code on GitHub.

2. Install the Salesforce CLI, if you haven’t already.

3. Follow Authorize an Org Using the JWT Flow for your Dev Hub org, if you haven’t already.

4. Encrypt your server key.

a. First, generate a key and initialization vector (iv) to encrypt your server.key file locally. CircleCI uses the key and iv to decrypt
your server key in the build environment.

Run the following command in the directory containing your server.key file. For the <passphrase> value, enter a
word of your own choosing to create a unique key.

openssl enc -aes-256-cbc -k <passphrase> -P -md sha1 -nosalt

The key and iv value display in the output.

key=****24B2
iv =****DA58

b. Note the key and iv values, you need them later.

c. Encrypt the server.key file using the newly generated key and iv values. Run the following command in the directory
containing your server.key file, replacing <key> and <iv> with the values from the previous step.

openssl enc -nosalt -aes-256-cbc -in server.key -out server.key.enc -base64 -K <key>
-iv <iv>

Note: Use the key and iv values only once, and don't use them to encrypt more than the server.key. While you can
reuse this pair to encrypt other things, it is considered a security violation to do so.

324

Continuous Integration Using CircleCIContinuous Integration

http://www.circleci.com/
https://github.com/forcedotcom/sfdx-circleci-package
https://github.com/forcedotcom/sfdx-circleci-org
https://circleci.com/docs/first-steps/
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm

You generate a new key and iv value every time you run the command in step a. In other words, you can't regenerate the same
pair. If you lose these values you must generate new ones and encrypt again.

Next, you’ll store the key, iv, and contents of server.key.enc as protected environment variables in the CircleCI UI. These values
are considered secret, so take the appropriate precautions to protect them.

Connect CircleCI to Your DevHub
Authorize CircleCI to push content to your Dev Hub org via a connected app.

1. Make sure that you have Salesforce CLI installed. Check by running sf version and confirm that you see version information.
If you don't have it installed, see Install Salesforce CLI.

2. Confirm you can perform a JWT-based authorization from the directory containing your server.key file. Run the following
command from the directory containing your server.key (replace <your_consumer_key> and <your_username>
values where indicated).

sf org login jwt --client-id <your_consumer_key> --jwt-key-file server.key --username
<your_username> --set-default-dev-hub

3. Fork the sfdx-circleci repo into your GitHub account using the Fork link at the top of the page.

4. Create a local directory for this project and clone your forked repo locally into the new directory. Replace <git_username>
with your own GitHub username.

git clone https://github.com/<git_username>/sfdx-circleci.git

5. Retrieve the generated consumer key from your JWT-Based Authorization connected app. From Setup, in the Quick Find box, enter
App, and then select App Manager. Select View in the row-menu next to the connected app.

6. In the CircleCI UI, you see a project named sfdx-circleci. In the project settings, store the consumer key in a CircleCI environment
variable named HUB_CONSUMER_KEY. For more information, see the CircleCI documentation Setting an Environment Variable
in a Project.

7. Store the username that you use to access your Dev Hub in a CircleCI environment variable named HUB_SFDX_USER using the
CircleCI UI.

8. Store the key and iv values from Encrypt Your Server Key in CircleCI environment variables named DECRYPTION_KEYand
DECRYPTION_IV, respectively. When you finish setting the environment variables, your project screen looks like the following
image.

325

Connect CircleCI to Your DevHubContinuous Integration

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm#sfdx_setup_install_cli
http://help.github.com/fork-a-repo/
https://github.com/forcedotcom/sfdx-circleci
https://circleci.com/docs/env-vars/#setting-an-environment-variable-in-a-project
https://circleci.com/docs/env-vars/#setting-an-environment-variable-in-a-project

Note: In the directory containing your server.key file, use the command rm server.key to remove the
server.key. Never store keys or certificates in a public place.

You’re ready to go! Now when you commit and push a change, your change kicks off a CircleCI build.

• Contribute to the repository – If you find any issues or opportunities for improving this repository, fix them! Feel free to contribute
to this project, fork this repository, and then change the content. After you make your changes, share them with the community by
sending a pull request. See How to send pull requests for more information about contributing to GitHub projects.

• Report issues – If you find any issues with this demo that you can't fix, feel free to report them in the issues section of this repository.

Continuous Integration Using Jenkins

Jenkins is an open-source, extensible automation server for implementing continuous integration and continuous delivery. You can
easily integrate Salesforce DX into the Jenkins framework to automate testing of Salesforce applications against scratch orgs.

To integrate Jenkins, we assume:

• You are familiar with how Jenkins works. You can configure and use Jenkins in many ways. We focus on integrating Salesforce DX
into Jenkins multibranch pipelines.

• The computer on which the Jenkins server is running has access to your version control system and to the repository that contains
your Salesforce application.

Configure Your Environment for Jenkins

Before integrating your Dev Hub and scratch orgs into your existing Jenkins framework, configure your Jenkins environment. Our
example assumes that you’re working in a package development model.

326

Continuous Integration Using JenkinsContinuous Integration

http://help.github.com/fork-a-repo/
http://help.github.com/send-pull-requests/
https://github.com/forcedotcom/sfdx-circleci/issues

Jenkinsfile Walkthrough

The sample Jenkinsfile shows how to integrate your Dev Hub and scratch orgs into a Jenkins job. The sample uses Jenkins Multibranch
Pipelines. Every Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Salesforce
applications. The walkthrough highlights Salesforce CLI commands to create a scratch org, upload your code, and run your tests.

Sample Jenkinsfile

A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate
Salesforce CLI commands to automate testing of your Salesforce applications using scratch orgs.

SEE ALSO:

Jenkins

Pipeline-as-code with Multibranch Workflows in Jenkins

Configure Your Environment for Jenkins
Before integrating your Dev Hub and scratch orgs into your existing Jenkins framework, configure your Jenkins environment. Our example
assumes that you’re working in a package development model.

1. In your Dev Hub org, create a connected app as described by the JWT-based authorization flow. This step includes obtaining or
creating a private key and digital certificate.

Make note of your consumer key (sometimes called a client ID) when you save the connected app. You need the consumer key to
set up your Jenkins environment. Also have available the private key file used to sign the digital certificate.

2. On the computer that’s running the Jenkins server, do the following.

a. Download and install Salesforce CLI.

b. Store the private key file as a Jenkins Secret File using the Jenkins Admin Credentials interface. Make note of the new entry’s ID.

You later reference this Credentials entry in your Jenkinsfile.

c. Set the following variables in your Jenkins environment.

• SF_USERNAME—The username for the Dev Hub org, such as juliet.capulet@myenvhub.com.

• SF_INSTANCE_URL—The login URL of the Salesforce instance that hosts the Dev Hub org. The default is
https://login.salesforce.com. We recommend that you update this value to the My Domain login URL for the Dev Hub org.
You can find an org’s My Domain login URL on the My Domain page in Setup.

• SF_CONSUMER_KEY—The consumer key that was returned after you created a connected app in your Dev Hub org.

• SERVER_KEY_CREDENTALS_ID—The credentials ID for the private key file that you stored in the Jenkins Admin Credentials
interface.

• PACKAGE_NAME-The name of your package, such as My Package.

• PACKAGE_VERSION-The version of your package, which starts with 04t.

• TEST_LEVEL-The test level for your package, such as RunLocalTests.

The names for these environment variables are just suggestions. You can use any name as long as you specify it in the
Jenkinsfile.

You can also optionally set the SF_AUTOUPDATE_DISABLE variable to true to disable auto-update of Salesforce CLI. CLI
auto-update can interfere with the execution of a Jenkins job.

3. Set up your Salesforce DX project so that you can create a scratch org.

327

Configure Your Environment for JenkinsContinuous Integration

https://jenkins.io/
https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin

4. (Optional) Install the Custom Tools Plugin into your Jenkins console, and create a custom tool that references Salesforce CLI. The
Jenkins walkthrough assumes that you created a custom tool named toolbelt in the /usr/local/bin directory, which is the
directory in which Salesforce CLI is installed.

SEE ALSO:

Authorize an Org Using the JWT Flow

Salesforce CLI Setup Guide

Jenkins: Credentials Binding Plugin

Project Setup

Jenkinsfile Walkthrough
The sample Jenkinsfile shows how to integrate your Dev Hub and scratch orgs into a Jenkins job. The sample uses Jenkins Multibranch
Pipelines. Every Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Salesforce applications.
The walkthrough highlights Salesforce CLI commands to create a scratch org, upload your code, and run your tests.

This walkthrough relies on the sfdx-jenkins-package Jenkinsfile. We assume that you’re familiar with the structure of the Jenkinsfile,
Jenkins Pipeline DSL, and the Groovy programming language. This walkthrough demonstrates implementing a Jenkins pipeline using
Salesforce CLI and scratch orgs. See the CLI Command Reference regarding the commands used.

This workflow most closely corresponds to Jenkinsfile stages.

• Define Variables

• Check Out the Source Code

• Wrap All Stages in a withCredentials Command

• Wrap All Stages in a withEnv Command

• Authorize Your Dev Hub Org and Create a Scratch Org

• Push Source and Assign a Permission Set

• Run Apex Tests

• Delete the Scratch Org

• Create a Package

• Create a Scratch Org and Display Info

• Install Package, Run Unit Tests, and Delete Scratch Org

Define Variables
Use the def keyword to define the variables required by Salesforce CLI commands. Assign each variable the corresponding environment
variable that you previously set in your Jenkins environment.

def SF_CONSUMER_KEY=env.SF_CONSUMER_KEY
def SERVER_KEY_CREDENTALS_ID=env.SERVER_KEY_CREDENTALS_ID
def TEST_LEVEL='RunLocalTests'
def PACKAGE_NAME='0Ho1U000000CaUzSAK'
def PACKAGE_VERSION
def SF_INSTANCE_URL = env.SF_INSTANCE_URL ?: "https://MyDomainName.my.salesforce.com"

Define the SF_USERNAME variable, but don’t set its value. You do that later.

def SF_USERNAME

328

Jenkinsfile WalkthroughContinuous Integration

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin
https://github.com/forcedotcom/sfdx-jenkins-package/blob/master/Jenkinsfile

Although not required, we assume that you used the Jenkins Global Tool Configuration to create the toolbelt custom tool that
points to the CLI installation directory. In your Jenkinsfile, use the tool command to set the value of the toolbelt variable to
this custom tool.

def toolbelt = tool 'toolbelt'

You can now reference the Salesforce CLI executable in the Jenkinsfile using ${toolbelt}/sf.

Check Out the Source Code
Before testing your code, get the appropriate version or branch from your version control system (VCS) repository. In this example, we
use the checkout scm Jenkins command. We assume that the Jenkins administrator has already configured the environment to
access the correct VCS repository and check out the correct branch.

stage('checkout source') {
// when running in multi-branch job, one must issue this command
checkout scm

}

Wrap All Stages in a withCredentials Command
You previously stored the JWT private key file as a Jenkins Secret File using the Credentials interface. Therefore, you must use the
withCredentials command in the body of the Jenkinsfile to access the secret file. The withCredentials command
lets you name a credential entry, which is then extracted from the credential store and provided to the enclosed code through a variable.
When using withCredentials, put all stages within its code block.

This example stores the credential ID for the JWT key file in the variable SERVER_KEY_CREDENTALS_ID. You defined the
SERVER_KEY_CREDENTALS_ID earlier and set it to its corresponding environment variable. The withCredentials command
fetches the contents of the secret file from the credential store and places the contents in a temporary location. The location is stored
in the variable server_key_file. You use the server_key_file variable with the org login jwt command to specify
the private key securely.

withCredentials([file(credentialsId: SERVER_KEY_CREDENTALS_ID, variable: 'server_key_file')])

all stages will go here
}

Wrap All Stages in a withEnv Command
When running Jenkins jobs, it’s helpful to understand where files are being stored. There are two main directories to be mindful of: the
workspace directory and the home directory. The workspace directory is unique to each job while the home directory is the same for
all jobs.

The withCredentials command stores the JWT key file in the Jenkins workspace during the job. However, Salesforce CLI auth
commands store authentication files in the home directory; these authentication files persist outside of the duration of the job.

This setup isn’t a problem when you run a single job but can cause problems when you run multiple jobs. So, what happens if you run
multiple jobs using the same Dev Hub or other Salesforce user? When the CLI tries to connect to the Dev Hub as the user you authenticated,
it fails to refresh the token. Why? The CLI tries to use a JWT key file that no longer exists in the other workspace, regardless of the
withCredentials for the current job.

If you set the home directory to match the workspace directory using withEnv, the authentication files are unique for each job.
Creating unique auth files per job is also more secure because each job has access only to the auth files it creates.

329

Jenkinsfile WalkthroughContinuous Integration

When using withEnv, put all stages within its code block,

withEnv(["HOME=${env.WORKSPACE}"]) {
all stages will go here

}

Note: If you don’t use a pipeline or you run commands outside of a pipeline stage, add a home environment specification to your
script: export HOME=$WORKSPACE.

Authorize Your Dev Hub Org and Create a Scratch Org
This sfdx-jenkins-package example uses two stages: one stage to authorize the Dev Hub org and another stage to create a
scratch org.

// ---
// Authorize the Dev Hub org with JWT key and give it an alias.
// ---

stage('Authorize DevHub') {
rc = command "${toolbelt}/sf org login jwt --instance-url ${SF_INSTANCE_URL} --client-id

${SF_CONSUMER_KEY} --username ${SF_USERNAME} --jwt-key-file ${server_key_file}
--set-default-dev-hub --alias HubOrg"

if (rc != 0) {
error 'Salesforce dev hub org authorization failed.'

}
}

// ---
// Create new scratch org to test your code.
// ---

stage('Create Test Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg --set-default

--definition-file config/project-scratch-def.json --alias ciorg --wait 10 --duration-days
1"

if (rc != 0) {
error 'Salesforce test scratch org creation failed.'

}
}

Use org login jwt to authorize your Dev Hub org.

You’re required to run this step only one time, but we suggest you add it to your Jenkinsfile and authorize each time you run
the Jenkins job. This way you’re always sure that the Jenkins job isn’t aborted due to lack of authorization. There’s typically little harm in
authorizing multiple times, but keep in mind that the API call limit for your scratch org’s edition still applies.

Use the flags of the org login jwt command to provide information about the Dev Hub org that you’re authorizing. The values
for the --client-id, --username, and --instance-url flags are the SF_CONSUMER_KEY, HubOrg, and SF_INSTANCE_URL
environment variables you previously defined, respectively. The value of the --jwt-key-file flag is the server_key_file
variable that you set in the previous section using the withCredentials command. The --set-default-dev-hub flag
specifies that this HubOrg is the default Dev Hub org for creating scratch orgs.

Note: It’s a best practice to have a unique authentication file for each Jenkins job using the withEnv wrapper. But it’s possible
to authorize a Dev Hub on your Jenkins machine instead. The advantage is that your authentication is set centrally on your machine

330

Jenkinsfile WalkthroughContinuous Integration

for any Jenkins job you run. The disadvantage is security: Every job has access to all authenticated users whether you want them
to or not.

If you do want to auth to your Dev Hub on your Jenkins machine, follow these steps:

• On the Jenkins machine as the Jenkins user, authorize to your Dev Hub using any of the org login commands.

• In your Jenkinsfile, remove the withCredentials, withEnv, and org login jwt statements.

Use the org create scratch CLI command to create a scratch org. In the example, the CLI command uses the
config/project-scratch-def.json file (relative to the project directory) to create the scratch org. The --json flag
specifies the output as JSON format. The --set-default flag sets the new scratch org as the default.

The Groovy code that parses the JSON output of the org create scratch command extracts the username that was auto-generated
as part of the org creation. This username, stored in the SF_USERNAME variable, is used with the CLI commands that push source, assign
a permission set, and so on.

Push Source and Assign a Permission Set
Let’s populate your new scratch org with metadata. This example uses the project deploy start command to deploy your
source to the org. The source includes all the pieces that make up your Salesforce application: Apex classes and test classes, permission
sets, layouts, triggers, custom objects, and so on.

// ---
// Push source to test scratch org.
// ---

stage('Push To Test Scratch Org') {
rc = command "${toolbelt}/sf project deploy start --target-org ciorg"
if (rc != 0) {

error 'Salesforce push to test scratch org failed.'
}

}

Recall the SF_USERNAME variable that contains the auto-generated username that was output by the org create scratch
command in an earlier stage. The code uses this variable as the argument to the --target-org flag to specify the username for
the new scratch org.

The project deploy start command deploys all the Salesforce-related files that it finds in your project. Add a .forceignore
file to your repository to list the files that you don’t want pushed to the org.

Run Apex Tests
Now that your source code and test source are pushed to the scratch org, run the apex run test command to run Apex tests.

// ---
// Run unit tests in test scratch org.
// ---

stage('Run Tests In Test Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org ciorg --wait 10 --result-format

tap --code-coverage --test-level ${TEST_LEVEL}"
if (rc != 0) {

error 'Salesforce unit test run in test scratch org failed.'

331

Jenkinsfile WalkthroughContinuous Integration

}
}

You can specify various flags to the apex run test CLI command. In the example:

• The --test-level ${TEST_LEVEL} flag runs all tests in the scratch org, except tests that originate from installed managed
packages. You can also specify RunLocalTests to run only local tests, RunSpecifiedTests to run only certain Apex tests
or suites or RunAllTestsInOrg to run all tests in the org.

• The --result-format tap flag specifies that the command output is in Test Anything Protocol (TAP) format. The test results
that are written to a file are still in JUnit and JSON formats.

• The --target-org ciorg flag specifies the username for accessing the scratch org (the value in SF_USERNAME).

The apex run test command writes its test results in JUnit format.

Delete the Scratch Org
Salesforce reserves the right to delete a scratch org a specified number of days after it was created. You can also create a stage in your
pipeline that uses org delete scratch to explicitly delete your scratch org when the tests complete. This cleanup ensures better
management of your resources.

// ---
// Delete package install scratch org.
// ---

stage('Delete Package Install Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg --no-prompt"
if (rc != 0) {

error 'Salesforce package install scratch org deletion failed.'
}

}

Create a Package
Now, let’s create a package. If you’re new to packaging, you can think about a package as a container that you fill with metadata. It
contains a set of related features, customizations, and schema. You use packages to move metadata from one Salesforce org to another.
After you create a package, add metadata and create a new package version.

// ---
// Create package version.
// ---

stage('Create Package Version') {
if (isUnix()) {

output = sh returnStdout: true, script: "${toolbelt}/sf package version create
--package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg"

} else {
output = bat(returnStdout: true, script: "${toolbelt}/sf package version create

--package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg").trim()

output = output.readLines().drop(1).join(" ")
}

332

Jenkinsfile WalkthroughContinuous Integration

// Wait 5 minutes for package replication.
sleep 300

def jsonSlurper = new JsonSlurperClassic()
def response = jsonSlurper.parseText(output)

PACKAGE_VERSION = response.result.SubscriberPackageVersionId

response = null

echo ${PACKAGE_VERSION}
}

Create a Scratch Org and Display Info
Remember when you created a scratch org earlier? Now let’s create a scratch org to install your package into, and display info about
that scratch org.

// ---
// Create new scratch org to install package to.
// ---

stage('Create Package Install Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg --set-default

--definition-file config/project-scratch-def.json --alias installorg --wait 10
--duration-days 1"

if (rc != 0) {
error 'Salesforce package install scratch org creation failed.'

}
}

// ---
// Display install scratch org info.
// ---

stage('Display Install Scratch Org') {
rc = command "${toolbelt}/sf org display --target-org installorg"
if (rc != 0) {

error 'Salesforce install scratch org display failed.'
}

}

Install Package, Run Unit Tests, and Delete Scratch Org
To finish up, install your package in your scratch org, run unit tests, then delete the scratch org. That’s it!

// ---
// Install package in scratch org.
// ---

stage('Install Package In Scratch Org') {

333

Jenkinsfile WalkthroughContinuous Integration

rc = command "${toolbelt}/sf package install --package ${PACKAGE_VERSION} --target-org
installorg --wait 10"

if (rc != 0) {
error 'Salesforce package install failed.'

}
}

// ---
// Run unit tests in package install scratch org.
// ---

stage('Run Tests In Package Install Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org installorg --result-format tap

--code-coverage --test-level ${TEST_LEVEL} --wait 10"
if (rc != 0) {

error 'Salesforce unit test run in pacakge install scratch org failed.'
}

}

// ---
// Delete package install scratch org.
// ---

stage('Delete Package Install Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg --no-prompt"
if (rc != 0) {

error 'Salesforce package install scratch org deletion failed.'
}

}

SEE ALSO:

Sample Jenkinsfile

Pipeline-as-code with Multibranch Workflows in Jenkins

TAP: Test Anything Protocol

Configure Your Environment for Jenkins

Salesforce CLI Command Reference

Sample Jenkinsfile
A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate Salesforce
CLI commands to automate testing of your Salesforce applications using scratch orgs.

The Jenkinsfile Walkthrough topic uses this sfdx-jenkins-package Jenkinsfile as an example.

#!groovy

import groovy.json.JsonSlurperClassic

node {

334

Sample JenkinsfileContinuous Integration

https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://testanything.org/
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://github.com/forcedotcom/sfdx-jenkins-package/blob/master/Jenkinsfile

def SF_CONSUMER_KEY=env.SF_CONSUMER_KEY
def SF_USERNAME=env.SF_USERNAME
def SERVER_KEY_CREDENTALS_ID=env.SERVER_KEY_CREDENTALS_ID
def TEST_LEVEL='RunLocalTests'
def PACKAGE_NAME='0Ho1U000000CaUzSAK'
def PACKAGE_VERSION
def SF_INSTANCE_URL = env.SF_INSTANCE_URL ?: "https://login.salesforce.com"

def toolbelt = tool 'toolbelt'

// ---
// Check out code from source control.
// ---

stage('checkout source') {
checkout scm

}

// ---
// Run all the enclosed stages with access to the Salesforce
// JWT key credentials.
// ---

withEnv(["HOME=${env.WORKSPACE}"]) {

withCredentials([file(credentialsId: SERVER_KEY_CREDENTALS_ID, variable:
'server_key_file')]) {

// ---
// Authorize the Dev Hub org with JWT key and give it an alias.
// ---

stage('Authorize DevHub') {
rc = command "${toolbelt}/sf org login jwt --instance-url ${SF_INSTANCE_URL}

--client-id ${SF_CONSUMER_KEY} --username ${SF_USERNAME} --jwt-key-file ${server_key_file}
--set-default-dev-hub --alias HubOrg"

if (rc != 0) {
error 'Salesforce dev hub org authorization failed.'

}
}

// ---
// Create new scratch org to test your code.
// ---

stage('Create Test Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg

--set-default --definition-file config/project-scratch-def.json --alias ciorg --wait 10
--duration-days 1"

if (rc != 0) {

335

Sample JenkinsfileContinuous Integration

error 'Salesforce test scratch org creation failed.'
}

}

// ---
// Display test scratch org info.
// ---

stage('Display Test Scratch Org') {
rc = command "${toolbelt}/sf org display --target-org ciorg"
if (rc != 0) {

error 'Salesforce test scratch org display failed.'
}

}

// ---
// Push source to test scratch org.
// ---

stage('Push To Test Scratch Org') {
rc = command "${toolbelt}/sf project deploy start --target-org ciorg"
if (rc != 0) {

error 'Salesforce push to test scratch org failed.'
}

}

// ---
// Run unit tests in test scratch org.
// ---

stage('Run Tests In Test Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org ciorg --wait 10

--result-format tap --code-coverage --test-level ${TEST_LEVEL}"
if (rc != 0) {

error 'Salesforce unit test run in test scratch org failed.'
}

}

// ---
// Delete test scratch org.
// ---

stage('Delete Test Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg

--no-prompt"
if (rc != 0) {

error 'Salesforce test scratch org deletion failed.'
}

}

336

Sample JenkinsfileContinuous Integration

// ---
// Create package version.
// ---

stage('Create Package Version') {
if (isUnix()) {

output = sh returnStdout: true, script: "${toolbelt}/sf package version
create --package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg"

} else {
output = bat(returnStdout: true, script: "${toolbelt}/sf package version

create --package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg").trim()

output = output.readLines().drop(1).join(" ")
}

// Wait 5 minutes for package replication.
sleep 300

def jsonSlurper = new JsonSlurperClassic()
def response = jsonSlurper.parseText(output)

PACKAGE_VERSION = response.result.SubscriberPackageVersionId

response = null

echo ${PACKAGE_VERSION}
}

// ---
// Create new scratch org to install package to.
// ---

stage('Create Package Install Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg

--set-default --definition-file config/project-scratch-def.json --alias installorg --wait
10 --duration-days 1"

if (rc != 0) {
error 'Salesforce package install scratch org creation failed.'

}
}

// ---
// Display install scratch org info.
// ---

stage('Display Install Scratch Org') {
rc = command "${toolbelt}/sf org display --target-org installorg"
if (rc != 0) {

error 'Salesforce install scratch org display failed.'
}

337

Sample JenkinsfileContinuous Integration

}

// ---
// Install package in scratch org.
// ---

stage('Install Package In Scratch Org') {
rc = command "${toolbelt}/sf package install --package ${PACKAGE_VERSION}

--target-org installorg --wait 10"
if (rc != 0) {

error 'Salesforce package install failed.'
}

}

// ---
// Run unit tests in package install scratch org.
// ---

stage('Run Tests In Package Install Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org installorg

--result-format tap --code-coverage --test-level ${TEST_LEVEL} --wait 10"
if (rc != 0) {

error 'Salesforce unit test run in pacakge install scratch org failed.'

}
}

// ---
// Delete package install scratch org.
// ---

stage('Delete Package Install Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg

--no-prompt"
if (rc != 0) {

error 'Salesforce package install scratch org deletion failed.'
}

}
}

}
}

def command(script) {
if (isUnix()) {

return sh(returnStatus: true, script: script);
} else {

return bat(returnStatus: true, script: script);

338

Sample JenkinsfileContinuous Integration

}
}

SEE ALSO:

Jenkinsfile Walkthrough

Continuous Integration with Travis CI

Travis CI is a cloud-based continuous integration (CI) service for building and testing software projects hosted on GitHub.

For help with setting up Travis CI, see:

• Sample Travis CI repo for Org Development model

• Sample Travis CI repo for Package Development model

SEE ALSO:

sfdx-travisci Sample GitHub Repo

Travis CI

Sample CI Repos for Org Development Model

Get started quickly with CI by cloning a sample repository from your vendor of choice. Each repo has a sample configuration file and a
comprehensive README.md with step-by-step information.

These sample repositories support the org development model. This model uses Salesforce CLI, a source control system, and sandboxes
during the application life cycle. To determine if this model is right for you, head over and earn your badge by completing the Org
Development Model module.

Link to GitHub RepositoryVendor

https://github.com/forcedotcom/sfdx-appveyor-orgAppVeyor

https://github.com/forcedotcom/sfdx-bamboo-orgBamboo

https://github.com/forcedotcom/sfdx-bitbucket-orgBitbucket

https://github.com/forcedotcom/sfdx-circleci-orgCircleCI

https://github.com/forcedotcom/sfdx-gitlab-orgGitLab

https://github.com/forcedotcom/sfdx-jenkins-orgJenkins

https://github.com/forcedotcom/sfdx-travisci-orgTravisCI

Sample CI Repos for Package Development Model

Get started quickly with CI by cloning a sample repository from your vendor of choice. Each repo has a sample configuration file and a
comprehensive README.md with step-by-step information.

339

Continuous Integration with Travis CIContinuous Integration

https://github.com/forcedotcom/sfdx-travisci-org
https://github.com/forcedotcom/sfdx-travisci-package
https://github.com/forcedotcom/sfdx-travisci
https://travis-ci.org/
https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://github.com/forcedotcom/sfdx-appveyor-org
https://github.com/forcedotcom/sfdx-bamboo-org
https://github.com/forcedotcom/sfdx-bitbucket-org
https://github.com/forcedotcom/sfdx-circleci-org
https://github.com/forcedotcom/sfdx-gitlab-org
https://github.com/forcedotcom/sfdx-jenkins-org
https://github.com/forcedotcom/sfdx-travisci-org

These sample repositories support the package development model. This model uses Salesforce CLI, a source control system, scratch
orgs for development, and sandboxes for testing and staging. To determine if this model is right for you, head over and earn your badge
by completing the Package Development Model module.

Link to GitHub RepositoryVendor

https://github.com/forcedotcom/sfdx-appveyor-packageAppVeyor

https://github.com/forcedotcom/sfdx-bamboo-packageBamboo

https://github.com/forcedotcom/sfdx-bitbucket-packageBitbucket

https://github.com/forcedotcom/sfdx-circleci-packageCircleCI

https://github.com/forcedotcom/sfdx-gitlab-package

CI/CD template for Salesforce/Apex apps:

GitLab

https://gitlab.com/sfdx/sfdx-cicd-template

https://github.com/forcedotcom/sfdx-jenkins-packageJenkins

https://github.com/forcedotcom/sfdx-travisci-packageTravisCI

340

Sample CI Repos for Package Development ModelContinuous Integration

https://trailhead.salesforce.com/content/learn/modules/sfdx_dev_model
https://github.com/forcedotcom/sfdx-appveyor-package
https://github.com/forcedotcom/sfdx-bamboo-package
https://github.com/forcedotcom/sfdx-bitbucket-package
https://github.com/forcedotcom/sfdx-circleci-package
https://github.com/forcedotcom/sfdx-gitlab-package
https://gitlab.com/sfdx/sfdx-cicd-template
https://github.com/forcedotcom/sfdx-jenkins-package
https://github.com/forcedotcom/sfdx-travisci-package

CHAPTER 15 Troubleshoot Salesforce DX

Here are some tips to help you troubleshoot issues.

SEE ALSO:

Salesforce Trailblazer Community

In this chapter ...

• Resolve Common
Authorization Errors

• Error: No default dev
hub found

• Unable to Work After
Failed Org
Authorization

• Error: The consumer
key is already taken

• CLI Version
Information

341

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HTp1

Resolve Common Authorization Errors

Errors sometimes occur when you run either org login web or org login jwt to log into and authorize an org. Here are
some of the more common errors, what they mean, and what you can do to try to fix them.

Before you begin, update to the most recent version of Salesforce CLI and check if you still see the issue. Salesforce releases a new CLI
version every week.

If you installed Salesforce CLI using the installers, run this command.

sf update

If you installed using npm, run this command.

npm install --global @salesforce/cli

For each error, we provide this information:

• Error text: Literal text of the error.

• Error name: The name of the error, which is also displayed in the error message.

• What it likely means: While it’s often difficult to determine precisely what happened in your environment, we make a best guess
about what it could be.

• Recommended fixes: One or more things you can try to fix the problem, with the one most likely to work listed first.

• NOT RECOMMENDED: Actions you should never take.

org login web Errors
These errors can occur when you run org login web to authorize an org by logging into it using a web browser.

Error: authentication failure
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: invalid_grant::authentication failure

• Error name: AuthCodeExchangeError

• What it likely means: You don’t have permission to access the org. The problem can stem from an issue with the connected app,
settings, org settings, or with a customization, such as a guest flow that must run before authorization.

• Recommended fixes:

– Use the most recent version of Salesforce CLI and its core plugins. To verify, run the doctor command.

– Make sure that the org is configured to allow API access, and that you specifically have API access to the org. Both settings are
required to run any CLI command that involves an org.

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format. To
find your org's instance URL, log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain
URL. See My Domain Login and Application URL Formats with Enhanced Domains.

– Check that your connected app settings are correct, especially if you created your own rather than use the default Salesforce CLI
connected app. See Create a Connected App in Your Org.

342

Resolve Common Authorization ErrorsTroubleshoot Salesforce DX

https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm

Error: unable to get local issuer certificate
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: request to
https://test.salesforce.com//services/oauth2/token failed, reason: unable to get
local issuer certificate

• Error name: AuthCodeExchangeError or AuthCodeUsernameRetrievalError

• What it likely means: Node.js can’t find the certificate that it uses for HTTPS traffic in the certificate store on the local computer.
The problem can be related to a proxy, firewall, or VPN that’s between the client and server. For example, the proxy could be
configured for "deep inspection" in which the proxy swaps the SSL certificate with its own certificate to allow it to inspect traffic,
and the proxy certificate is causing the error.

• Recommended fixes:

– Set the NODE_EXTRA_CA_CERTS environment variable to include expected certificates.

– If using a proxy, make sure that the HTTPS_PROXY and HTTP_PROXY environment variables are set properly.

– Check the proxy settings for specific certificate behavior.

• NOT RECOMMENDED:

– Don’t set NODE_TLS_REJECT_UNAUTHORIZED=0, which disables certificate verification for Salesforce CLI requests and
allows man-in-the-middle attacks.

– Don’t set the strict-ssl=false npm configuration setting. This setting allows npm to use HTTP rather than HTTPS and
allows unencrypted traffic and man-in-the-middle attacks.

Error: grant type not supported
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: unsupported_grant_type::grant type not supported

• Error name: AuthCodeExchangeError

• What it likely means: The OAuth 2.0 endpoint doesn’t support the grant_type value passed to it. If you're using the default Salesforce
CLI connected app, this error usually means that you're using the wrong instance URL to log in. If you’re using a different connected
app, check to see if it’s configured correctly for the grant types used by the CLI.

• Recommended fixes:

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format. To
find your org's instance URL, log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain
URL. See My Domain Login and Application URL Formats with Enhanced Domains.

– Don't use a Lightning URL for your instance URL. For example, use https://MyDomainName.my.salesforce.com
and not https://MyDomainName.lightning.force.com.

– Make sure you always use https, and not http, for all URLs.

– Make sure that the org is configured to allow API access, and that you specifically have API access to the org. Both settings are
required to run any CLI command that involves an org.

– Check that the clock on your local computer is accurate. If too much time (over 3 minutes) passes between the auth code
generation and the request for an access token, an error like this can occur.

– If you're using a custom connected app rather than the default Salesforce CLI one, check that the settings are correct. See Create
a Connected App in Your Org.

343

org login web ErrorsTroubleshoot Salesforce DX

https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm

Error: ECONNRESET
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: request to
https://test.salesforce.com//services/oauth2/token failed, reason: read ECONNRESET

• Error name: AuthCodeExchangeError

• What it likely means: Your org reset the connection.

• Recommended fixes:

– Rerun the org login web command. This error is sometimes temporary and simply reauthorizing the org fixes it.

– Use the most recent version of Salesforce CLI and its core plugins. To verify, run the doctor command.

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format. To
find your org's instance URL, log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain
URL. See My Domain Login and Application URL Formats with Enhanced Domains.

Error: ETIMEDOUT
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: request to
https://test.salesforce.com//services/oauth2/token failed, reason: connect ETIMEDOUT

• Error name: AuthCodeExchangeError

• What it likely means: The connection to your org timed out.

• Recommended fixes:

– Rerun the org login web command. This error is sometimes temporary and simply reauthorizing the org fixes it.

– Use the most recent version of Salesforce CLI and its core plugins. To verify, run the doctor command.

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format. To
find your org's instance URL, log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain
URL. See My Domain Login and Application URL Formats with Enhanced Domains.

Error: self-signed certificate in certificate chain
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: request to
https://login.salesforce.com//services/oauth2/token failed, reason: self-signed
certificate in certificate chain

• Error name: AuthCodeExchangeError or AuthCodeUsernameRetrievalError

• What it likely means: During certificate verification, Node.js encountered a certificate that can't be chained to a root certificate in
the local trust store, or the root certificate is not locally trusted. The problem can be related to a proxy, firewall, or VPN that’s between
the client and server. For example, the proxy could be configured for "deep inspection" in which the proxy swaps the SSL certificate
with its own certificate to allow it to inspect traffic, and the proxy certificate is causing the error.

• Recommended fixes:

– Don't trust any unknown certificates.

– Make sure all certificates are properly created.

– Make sure that the certificates you're using are trusted within the trust store or added to the NODE_EXTRA_CA_CERTS
environment variable.

344

org login web ErrorsTroubleshoot Salesforce DX

https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US

– If using a proxy, make sure that the HTTPS_PROXY and HTTP_PROXY environment variables are set properly.

– Check the proxy settings for specific certificate behavior.

• NOT RECOMMENDED:

– Don’t set NODE_TLS_REJECT_UNAUTHORIZED=0, which disables certificate verification for Salesforce CLI requests and
allows man-in-the-middle attacks.

– Don’t set the strict-ssl=false npm configuration setting. This setting allows npm to use HTTP rather than HTTPS and
allows unencrypted traffic and man-in-the-middle attacks.

Error: IP restricted
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: ip restricted

• Error name: AuthCodeExchangeError

• What it likely means: The org has IP restrictions enabled. If Salesforce CLI attempts to log in and authorize an org from an IP address
that isn't allowed, then this error is thrown.

• Recommended fix: If the IP address that Salesforce CLI uses is known and allowed, update your org's Trusted IP Ranges.

Error: ENOTFOUND
• Error text: Invalid client credentials. Verify the OAuth client secret and ID. Error

authenticating with auth code due to: request to
https://login.salesforce.com/services/oauth2/token failed, reason: getaddrinfo
ENOTFOUND login.salesforce.com

• Error name: AuthCodeExchangeError or AuthCodeUsernameRetrievalError

• What it likely means: The domain name couldn't be resolved within the time limit. The error could be caused by an incorrect
instance URL, a DNS issue, or a proxy issue.

• Recommended fixes:

– Use the most recent version of Salesforce CLI and its core plugins. To verify, run the doctor command.

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format. To
find your org's instance URL, log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain
URL. See My Domain Login and Application URL Formats with Enhanced Domains.

– Don't use a Lightning URL for your instance URL. For example, use https://MyDomainName.my.salesforce.com
and not https://MyDomainName.lightning.force.com.

– Make sure you can use a command-line tool, such as nslookup, to resolve the domain manually from the same computer
from which you're running the org login web command.

– If using a proxy, make sure that the HTTPS_PROXY and HTTP_PROXY environment variables are set properly.

org login jwt Errors
These errors can occur when you run org login jwt to authorize an org by logging into it with the JWT flow.

345

org login jwt ErrorsTroubleshoot Salesforce DX

https://help.salesforce.com/s/articleView?id=xcloud.security_networkaccess.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US

Error: user hasn't approved this consumer
• Error text: We encountered a JSON web token error, which is likely not an issue with

Salesforce CLI. Here’s the error: Error authenticating with JWT. Errors encountered:
user hasn't approved this consumer

• Error name: JwtGrantError

• What it likely means: Your connected app settings aren't configured correctly or a new connected app hasn't finished replicating.

• Recommended fixes:

– Use the most recent version of Salesforce CLI and its core plugins. To verify, run the doctor command.

– If you recently created the connected app, wait a few minutes for it to finish replicating and then try to authorize again.

– Check that your connected app settings are correct, especially if you created your own rather than used the default Salesforce
CLI connected app. See Create a Connected App in Your Org. In particular, on the main page where you manage the connected
app:

• Set Permitted Users to Admin approved users are pre-authorized.

• Add the profile of the user you want to authorize by clicking Manage Profiles.

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format.
You can specify the instance URL either with the --instance-url command flag or the SF_AUDIENCE_URL environment
variable, although SF_AUDIENCE_URL isn't usually needed for production environments. To find your org's instance URL,
log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain URL. See My Domain Login
and Application URL Formats with Enhanced Domains.

– Don't use a Lightning URL for your instance URL. For example, use https://MyDomainName.my.salesforce.com
and not https://MyDomainName.lightning.force.com.

Error: client identifier invalid
• Error text: We encountered a JSON web token error, which is likely not an issue with

Salesforce CLI. Here’s the error: Error authenticating with JWT. Errors encountered:
client identifier invalid

• Error name: JwtGrantError

• What it likely means: The OAuth client ID (also called consumer key) that you passed to the command's --client-id flag
doesn’t match the one specified in the connected app.

• Recommended fixes:

– Use the most recent version of Salesforce CLI and its core plugins. To verify, run the doctor command.

– Make sure that the client ID and client secret that are configured in your connected app settings match the values you passed
to the org login jwt command.

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format.
You can specify the instance URL either with the --instance-url command flag or the SF_AUDIENCE_URL environment
variable, although SF_AUDIENCE_URL isn't usually needed for production environments. To find your org's instance URL,
log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain URL. See My Domain Login
and Application URL Formats with Enhanced Domains.

– Don't use a Lightning URL for your instance URL. For example, use https://MyDomainName.my.salesforce.com
and not https://MyDomainName.lightning.force.com.

346

org login jwt ErrorsTroubleshoot Salesforce DX

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm
https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US

Error: ENOENT
• Error text: We encountered a JSON web token error, which is likely not an issue with

Salesforce CLI. Here’s the error: ENOENT: no such file or directory, open
'/workspace/my-repository/server.key'

• Error name: JwtGrantError

• What it likely means: The private JWT key file that you specified with the --jwt-key-file flag of the org login jwt
either doesn't exist or it's in a different location. This issue typically occurs in CI (continuous integration) environments where the
private JWT key file is accessible for only specific actions.

• Recommended fix: Make sure that the private JWT key file exists in the specified location and is accessible by all Salesforce CLI
commands that interact with an org, because these commands must authenticate before they can send API requests.

Error: HTML response
• Error text: Data Not Available webpage. “The data you were trying to access could not be

found. It may be due to another user deleting the data or a system error. If you
know the data is not deleted but cannot access it, please look at our support page”

• Error name: JwtGrantError

• What it likely means: The org is temporarily down for maintenance or isn't yet ready for API requests.

• Recommended fixes: This error is probably temporary. Wait a few minutes and retry. If this error happens regularly, contact Salesforce
Customer Support.

Error: audience is invalid
• Error text: We encountered a JSON web token error, which is likely not an issue with

Salesforce CLI. Here’s the error: Error authenticating with JWT. Errors encountered:
audience is invalid [audience=https://login.salesforce.com
login=https://test.salesforce.com/]

• Error name: JwtGrantError

• What it likely means: This error usually occurs with other errors such as user hasn't approved this consumer. This
error can also indicate that you used the incorrect instance URL with the command.

• Recommended fixes:

– Use the most recent version of Salesforce CLI and its core plugins. To verify, run the doctor command.

– Use the correct instance URL when logging in to the org, and make sure that it’s in the correct enhanced My Domain format.
You can specify the instance URL either with the --instance-url command flag or the SF_AUDIENCE_URL environment
variable, although SF_AUDIENCE_URL isn't usually needed for production environments. To find your org's instance URL,
log into it, go to the Setup > Company Settings > My Domain page, and see Current My Domain URL. See My Domain Login
and Application URL Formats with Enhanced Domains.

– Don't use a Lightning URL for your instance URL. For example, use https://MyDomainName.my.salesforce.com
and not https://MyDomainName.lightning.force.com.

– If using a proxy, make sure that the HTTPS_PROXY and HTTP_PROXY environment variables are set properly.

347

org login jwt ErrorsTroubleshoot Salesforce DX

https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_url_formats.htm&type=5&language=en_US

– If you see additional errors, check this topic for troubleshooting information about those errors.

SEE ALSO:

Authorize an Org Using a Browser

Authorize an Org Using the JWT Flow

Salesforce Help: OAuth 2.0 Web Server Flow for Web App Integration

Salesforce Help: Set Trusted IP Ranges for Your Organization

Error: No default dev hub found

You see this error when you try to create a scratch org due to an authorization issue.

Let’s say you successfully authorize a Dev Hub org using the --set-default-dev-hub flag. The username associated with the
org is your default Dev Hub username. You then successfully create a scratch org without using the --target-dev-hub flag. But
when you try to create a scratch org another time using the same CLI command, you get this error:

Error (1): No default dev hub found. Use -v or --target-dev-hub to specify an environment.

What happened?

Answer: You’re no longer in the directory where you ran the authorization command. The directory from which you use the
--set-default-dev-hub flag matters.

If you run the authorization command from the root of your project directory, the target-dev-hub config variable is set locally.
The value applies only when you run the command from the same project directory. If you change to a different directory and run org
create scratch, the local setting of the default Dev Hub org no longer applies and you get an error.

Solve the problem by doing one of the following.

• Set target-dev-hub globally so that you can run org create scratch from any directory.

sf config set target-dev-hub=<devhubusername> --global

• Run org create scratch from the same project directory where you authorized your Dev Hub org.

• Use the --target-dev-hub flag with org create scratch to run it from any directory.

sf target-dev-hub --definition-file <file> --target-dev-hub <devhubusername> --alias
my-scratch-org

• To check whether you’ve set configuration values globally or locally, use this command and check the Location column.

sf config list

SEE ALSO:

How Salesforce Developer Experience (DX) Tooling Changes the Way You Work

Unable to Work After Failed Org Authorization

Sometimes you try to authorize a Dev Hub org or a scratch org using the Salesforce CLI or an IDE, but you don’t successfully log in to
the org. The port remains open for the stray authorization process, and you can’t use the CLI or IDE. To proceed, end the process manually.

348

Error: No default dev hub foundTroubleshoot Salesforce DX

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm
https://help.salesforce.com/s/articleView?id=xcloud.remoteaccess_oauth_web_server_flow.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.security_networkaccess.htm&type=5&language=en_US

macOS or Linux
To recover from a failed org authorization on macOS or Linux, use a terminal to kill the process running on port 1717.

1. From a terminal, run:

lsof -i tcp:1717

2. In the results, find the ID for the process that’s using the port.

3. Run:

kill -9 <the process ID>

Windows
To recover from a failed org authorization on Windows, use the Task Manager to end the Node process.

1. Press Ctrl+Alt+Delete, then click Task Manager.

2. Select the Process tab.

3. Find the process named Node.

Note: If you’re a Node.js developer, you can have several running processes with this name.

4. Select the process that you want to end, and then click End Process.

Error: The consumer key is already taken

Let’s say you run project retrieve start on an org in which you’ve created a connected app. When you try to deploy the
retrieved source to a different org, the deploy fails with the error The consumer key is already taken. What happened?

Connected apps include a consumer key that a website or app uses to identify itself to Salesforce. Consumer keys must be unique across
the entire Salesforce ecosystem. When you try to deploy the retrieved (and unchanged) source file associated with the connected app
to a new org, the deploy fails due to duplicate consumer keys.

You have a few options to work around this problem.

• Remove the connected app source file from your project before you deploy your source to the new org. As a result, the connected
app isn’t created. The connected app source file is named something like
force-app/main/default/connectedApps/MyConnApp.connectedApp-meta.xml.

• Update the file for the connected app and change the value of the <consumerKey> element to a unique value. Here’s a snippet
of a sample connected app file that shows the <consumerKey> element.

<?xml version="1.0" encoding="UTF-8"?>
<ConnectedApp xmlns="http://soap.sforce.com/2006/04/metadata">

<contactEmail>john@doecompany.com</contactEmail>
<contactPhone>5556789</contactPhone>
<label>MyConnApp</label>
<oauthConfig>

<callbackUrl>http://localhost:1717/OauthRedirect</callbackUrl>
<consumerKey>3MVG9PG9sFc71i9n55UWbx2</consumerKey>

349

Error: The consumer key is already takenTroubleshoot Salesforce DX

<isAdminApproved>false</isAdminApproved>
...

SEE ALSO:

Salesforce Help: Connected Apps

CLI Version Information

Use these commands to view version information about Salesforce CLI.

sf plugins --core // Version of the CLI and all installed plug-ins
sf --version // CLI version

350

CLI Version InformationTroubleshoot Salesforce DX

https://help.salesforce.com/s/articleView?id=xcloud.connected_app_overview.htm&type=5&language=en_US

CHAPTER 16 Limitations for Salesforce DX

Here are some known issues you could run into while using Salesforce DX.

For the latest known issues, visit the Trailblazer Community’s Known Issues page and the issues tab in
the Salesforce CLI’s main GitHub repo.

Salesforce CLI

Can’t Import Record Types Using Salesforce CLI
Description: We don't support RecordType when running the data tree import command.

Workaround: None.

Limited Support for Shell Environments on Windows
Description: Salesforce CLI is tested on the Command Prompt (cmd.exe) and Powershell. There
are known issues in the Cygwin and Min-GW environments, and with Windows Subsystem for Linux
(WSL). Until these environments are tested and supported in a future release, we recommend that
you use a supported shell.

Workaround: None.

Dev Hub and Scratch Orgs

Salesforce CLI Sometimes Doesn’t Recognize Scratch Orgs with Communities
Description: Sometimes, but not in all cases, the Salesforce CLI doesn’t acknowledge the creation
of scratch orgs with the Communities feature. You can’t open the scratch org using the CLI, even
though the scratch org is listed in Dev Hub.

Workaround: You can try this workaround, although it doesn’t fix the issue in all cases. Delete the
scratch org in Dev Hub, then create a new scratch org using the CLI. Deleting and recreating scratch
orgs counts against your daily scratch org limits.

Error Occurs If You Pull a Community and Deploy It
Description: The error occurs because the scratch org doesn’t have the required guest license.

Workaround: In your scratch org definition file, if you specify the Communities feature, also specify
the Sites feature.

351

https://success.salesforce.com/issues_index?tag=Salesforce%20DX
https://github.com/forcedotcom/cli/issues
https://github.com/forcedotcom/cli/issues

Source Management

ERROR: Entity of type 'RecordType' named 'Account.PersonAccount' cannot be found
Description: Although you can turn on Person Accounts in your scratch org by adding the feature
to your scratch org definition, running project deploy start or project deploy
retrieve results in an error.

Workaround: None.

project convert source Doesn’t Add Post-Install Scripts to package.xml
Description: If you run project convert source, package.xml doesn’t include the
post install script.

Workaround: To fix this issue, choose one of these methods:

• Manually add the <postInstallClass> element to the package.xml in the metadata
directory that project convert source produces.

• Manually add the element to the package in the release org or org to which you are deploying
the package.

Must Manually Enable Feed Tracking in an Object's Metadata File
Description: If you enable feed tracking on a standard or custom object, then run project
retrieve start, feed tracking doesn't get enabled.

Workaround: In your Salesforce DX project, manually enable feed tracking on the standard or
custom object in its metadata file (-meta.xml) by adding
<enableFeeds>true</enableFeeds>.

Unable to Push Lookup Filters to a Scratch Org
Description: When you execute the project deploy start command to deploy the source
of a relationship field that has a lookup filter, you sometimes get this error:

duplicate value found: <unknown> duplicates value on record with
id: <unknown> at line num, col num.

Workaround: None.

Deployment

Compile on Deploy Can Increase Deployment Times in Scratch Orgs
Description: If your deployment times for Apex code are slow, your scratch org might have the
enableCompileOnDeploy setting set to true.

Workaround:To turn it off, set it to false (the default) or delete the setting from the scratch org
definition.

{
"orgName": "My Company",
"edition": "Developer",
"features": [],
"settings": {
"lightningExperienceSettings": {

"enableS1DesktopEnabled": true
},
"apexSettings": {

352

Limitations for Salesforce DX

"enableCompileOnDeploy": false
}

}
}

Managed First-Generation Packages

When You Install a Package in a Scratch Org, No Tests Are Performed
Description: If you include tests as part of your continuous integration process, those tests don’t
run when you install a package in a scratch org.

Workaround: You can manually execute tests after the package is installed.

New Terminology in CLI for Managed Package Password
Description: When you use the CLI to add an installation key to a package version or to install a
key-protected package version, the flag name of the key is --installationkey. When you
view a managed package version in the Salesforce user interface, the same package attribute is
called “Password”. In the API, the corresponding field name, “password”, is unchanged.

Workaround: None.

Managed Second-Generation Packages

Protected Custom Metadata and Custom Settings are Visible to Developers in a Scratch Org If
Installed Packages Share a Namespace

Description: Use caution when you store secrets in your second-generation packages using protected
custom metadata or protected custom settings. You can create multiple second-generation packages
with the same namespace. However, when you install these packages in a scratch org, these secrets
are visible to any of your developers that are working in a scratch org with a shared namespace. In
the future, we might add a “package-protected” keyword to prevent access to package secrets in
these situations.

Workaround: None.

Unlocked Packages

Protected Custom Metadata and Custom Settings are Visible to Developers in a Scratch Org If
Installed Packages Share a Namespace

Description: Use caution when you store secrets in your unlocked packages using protected custom
metadata or protected custom settings. You can create multiple unlocked packages with the same
namespace. However, when you install these packages in a scratch org, these secrets are visible to
any of your developers that are working in a scratch org with a shared namespace. In the future, we
might add a “package-protected” keyword to prevent access to package secrets in these situations.

Workaround: None.

353

Limitations for Salesforce DX

	How Salesforce Developer Experience (DX) Tooling Changes the Way You Work
	Get Started by Using a Sample Repo
	Get Started by Creating a New DX Project
	Get an Org to Play With and Set It as Your Dev Hub
	Install the Salesforce Platform Development Tools
	Create a Salesforce DX Project
	Authorize Your Dev Hub and Create a Scratch Org
	Make a Change in Your Scratch Org And Retrieve It to Your Project
	Create an Apex Class and Deploy it To the Scratch Org
	Create a Lightning Web Component and Deploy it to the Scratch Org
	Deploy All Customizations To a Sandbox
	Add Project Files to Your VCS
	Next Steps

	Create an Application
	Migrate or Import Existing Source
	Release Notes

	Provide Developers Access to Salesforce DX Tools
	Select and Enable a Dev Hub Org
	Enable Unlocked Packaging
	Enable Einstein Chatbot Features in Scratch Orgs
	Enable Language Extension Packages (Beta)

	Enable Source Tracking in Sandboxes
	Enable Source Tracking for All Developer and Developer Pro Sandboxes
	Enable Source Tracking in a Specific Sandbox

	Add Salesforce DX Users
	Determine Which License to Assign to Dev Hub Users
	Add a System Administrator or Standard User to Your Dev Hub Org
	Add a Developer User to Your Dev Hub Org
	Add a Limited Access User to Your Dev Hub Org
	Create and Assign a Permission Set to Developer Users

	Project Setup
	Sample Repository on GitHub
	Create a Salesforce DX Project
	Salesforce DX Project Structure and Source Format
	Decomposed Metadata Types

	How to Exclude Source When Syncing
	Create a Salesforce DX Project from Existing Source
	Convert Files in Metadata Format to Source Format
	Salesforce DX Usernames and Orgs
	Link a Namespace to a Dev Hub Org
	Salesforce DX Project Configuration
	Multiple Package Directories
	Replace Strings in Code Before Deploying or Packaging
	Test String Replacements

	Authorization
	Authorize an Org Using a Browser
	Authorize an Org Using the JWT Flow
	Authorize a Scratch Org Using the JWT Flow

	Create a Private Key and Self-Signed Digital Certificate
	Create an External Client App in Your Org
	Get and Use the Consumer Key and Secret

	Create a Connected App in Your Org
	Use the Default Connected App Securely
	Use an Existing Access Token
	Authorize an Org Using Its SFDX Authorization URL
	Authorization Information for an Org
	Log Out of an Org

	Metadata Coverage
	Scratch Orgs
	Supported Scratch Org Editions and Allocations
	Build Your Own Scratch Org Definition File
	Scratch Org Features
	AccountInspection
	AccountingSubledgerGrowthEdition
	AccountingSubledgerStarterEdition
	AccountingSubledgerUser
	AddCustomApps:<value>
	AddCustomObjects:<value>
	AddCustomRelationships:<value>
	AddCustomTabs:<value>
	AddDataComCRMRecordCredit:<value>
	AddInsightsQueryLimit:<value>
	AdditionalFieldHistory:<value>
	AdmissionsConnectUser
	AdvisorLinkFeature
	AdvisorLinkPathwaysFeature
	AIAttribution
	AllUserIdServiceAccess
	AnalyticsAdminPerms
	AnalyticsAppEmbedded
	ApexGuruCodeAnalyzer
	API
	ArcGraphCommunity
	Assessments
	AssetScheduling:<value>
	AssociationEngine
	AuthorApex
	B2BCommerce
	B2BLoyaltyManagement
	B2CCommerceGMV
	B2CLoyaltyManagement
	B2CLoyaltyManagementPlus
	BatchManagement
	BenefitManagement
	BigObjectsBulkAPI
	BillingAdvanced
	Briefcase
	BudgetManagement
	BusinessRulesEngine
	BYOCCaaS
	BYOOTT
	CacheOnlyKeys
	CalloutSizeMB:<value>
	CampaignInfluence2
	CascadeDelete
	CaseClassification
	CaseWrapUp
	CGAnalytics
	ChangeDataCapture
	Chatbot
	ChatterEmailFooterLogo
	ChatterEmailFooterText
	ChatterEmailSenderName
	CloneApplication
	CMSMaxContType
	CMSMaxNodesPerContType
	CMSUnlimitedUse
	Communities
	CompareReportsOrgPerm
	ConAppPluginExecuteAsUser
	ConcStreamingClients:<value>
	ConnectedAppCustomNotifSubscription
	ConnectedAppToolingAPI
	ConsentEventStream
	ConsolePersistenceInterval:<value>
	ContactsToMultipleAccounts
	ContractApprovals
	ContractManagement
	ContractMgmtInd
	CoreCpq
	CPQ
	CustomerDataPlatform
	CustomerDataPlatformLite
	CustomerExperienceAnalytics
	CustomFieldDataTranslation
	CustomNotificationType
	DataComDnbAccounts
	DataComFullClean
	DataMaskUser
	DataProcessingEngine
	DebugApex
	DecisionTable
	DefaultWorkflowUser
	DeferSharingCalc
	DevelopmentWave
	DeviceTrackingEnabled
	DevOpsCenter
	DisableManageIdConfAPI
	DisclosureFramework
	Division
	DocGen
	DocGenDesigner
	DocGenInd
	DocumentChecklist
	DocumentReaderPageLimit
	DSARPortability
	DurableClassicStreamingAPI
	DurableGenericStreamingAPI
	DynamicClientCreationLimit
	EAndUDigitalSales
	EAndUSelfServicePortal
	EAOutputConnectors
	EASyncOut
	EdPredictionM3Threshold
	EdPredictionTimeout
	EdPredictionTimeoutBulk
	EdPredictionTimeoutByomBulk
	EducationCloud: <value>
	Einstein1AIPlatform
	EinsteinAnalyticsPlus
	EinsteinArticleRecommendations
	EinsteinBuilderFree
	EinsteinDocReader
	EinsteinRecommendationBuilder
	EinsteinSalesRepFdbk
	EinsteinSearch
	EinsteinVisits
	EinsteinVisitsED
	EmbeddedLoginForIE
	EmpPublishRateLimit:<value>
	EnablePRM
	EnableManageIdConfUI
	Enablement
	EnableSetPasswordInApi
	EncryptionStatisticsInterval:<value>
	EncryptionSyncInterval:<value>
	EnergyAndUtilitiesCloud
	Entitlements
	ERMAnalytics
	EventLogFile
	EntityTranslation
	ExcludeSAMLSessionIndex
	Explainability
	ExpressionSetMaxExecPerHour
	ExternalIdentityLogin
	FieldAuditTrail
	FieldService:<value>
	FieldServiceAppointmentAssistantUser:<value>
	FieldServiceDispatcherUser:<value>
	FieldServiceLastMileUser:<value>
	FieldServiceMobileExtension
	FieldServiceMobileUser:<value>
	FieldServiceSchedulingUser:<value>
	FinanceLogging
	FinancialServicesCommunityUser:<value>
	FinancialServicesInsuranceUser
	FinancialServicesUser:<value>
	FlowSites
	ForceComPlatform
	ForecastEnableCustomField
	FSCAlertFramework
	FSCServiceProcess
	Fundraising
	GenericStreaming
	GenStreamingEventsPerDay:<value>
	Grantmaking
	GuidanceHubAllowed
	HealthCloudAddOn
	HealthCloudEOLOverride
	HealthCloudForCmty
	HealthCloudMedicationReconciliation
	HealthCloudPNMAddOn
	HealthCloudUser
	HighVelocitySales
	HighVolumePlatformEventAddOn
	HLSAnalytics
	HoursBetweenCoverageJob:<value>
	IdentityProvisioningFeatures
	IgnoreQueryParamWhitelist
	IndustriesActionPlan
	IndustriesBranchManagement
	IndustriesCompliantDataSharing
	IndustriesMfgAdvncdAccFrcs
	IndustriesMfgPartnerVisitMgmt
	IndustriesMfgProgram
	IndustriesMfgRebates
	IndustriesMfgTargets
	IndustriesManufacturingCmty
	IndustriesMfgAccountForecast
	InsightsPlatform
	InsuranceCalculationUser
	InsuranceClaimMgmt
	InsurancePolicyAdmin
	IntelligentDocumentReader
	InvestigativeCaseManagement
	InvoiceManagement
	Interaction
	IoT
	JigsawUser
	Knowledge
	LegacyLiveAgentRouting
	LightningSalesConsole
	LightningScheduler
	LightningServiceConsole
	LiveAgent
	LiveMessage
	LongLayoutSectionTitles
	LoyaltyAnalytics
	LoyaltyEngine
	LoyaltyManagementStarter
	LoyaltyMaximumPartners:<value>
	LoyaltyMaximumPrograms:<value>
	LoyaltyMaxOrderLinePerHour:<value>
	LoyaltyMaxProcExecPerHour:<value>
	LoyaltyMaxTransactions:<value>
	LoyaltyMaxTrxnJournals:<value>
	Macros
	MarketingCloud
	MarketingUser
	MaterialityAssessment
	MaxActiveDPEDefs:<value>
	MaxApexCodeSize:<value>
	MaxAudTypeCriterionPerAud
	MaxCustomLabels:<value>
	MaxDatasetLinksPerDT:<value>
	MaxDataSourcesPerDPE:<value>
	MaxDecisionTableAllowed:<value>
	MaxFavoritesAllowed:<value>
	MaxFieldsPerNode:<value>
	MaxInputColumnsPerDT:<value>
	MaxLoyaltyProcessRules:<value>
	MaxNodesPerDPE:<value>
	MaxNoOfLexThemesAllowed:<value>
	MaxOutputColumnsPerDT:<value>
	MaxSourceObjectPerDSL:<value>
	MaxStreamingTopics:<value>
	MaxUserNavItemsAllowed:<value>
	MaxUserStreamingChannels:<value>
	MaxWishlistsItemsPerWishlist
	MaxWishlistsPerStoreAccUsr
	MaxWritebacksPerDPE:<value>
	MedVisDescriptorLimit:<value>
	MinKeyRotationInterval
	MobileExtMaxFileSizeMB:<value>
	MobileSecurity
	MobileVoiceAndLLM
	MultiLevelMasterDetail
	MutualAuthentication
	MyTrailhead
	NonprofitCloudCaseManagementUser
	NumPlatformEvents:<value>
	ObjectLinking
	OmnistudioMetadata
	OmnistudioRuntime
	OmnistudioDesigner
	OrderManagement
	OrderSaveLogicEnabled
	OrderSaveBehaviorBoth
	OutboundMessageHTTPSession
	OutcomeManagement
	PardotScFeaturesCampaignInfluence
	PersonAccounts
	PipelineInspection
	PlatformCache
	PlatformConnect:<value>
	PlatformEncryption
	PlatformEventsPerDay:<value>
	ProcessBuilder
	ProductsAndSchedules
	ProductCatalogManagementAddOn
	ProductCatalogManagementViewerAddOn
	ProductCatalogManagementPCAddOn
	ProgramManagement
	ProviderFreePlatformCache
	ProviderManagement
	PSSAssetManagement
	PublicSectorAccess
	PublicSectorApplicationUsageCreditsAddOn
	PublicSectorSiteTemplate
	RateManagement
	RecordTypes
	RefreshOnInvalidSession
	RevSubscriptionManagement
	S1ClientComponentCacheSize
	SalesCloudEinstein
	SalesforceContentUser
	SalesforceFeedbackManagementStarter
	SalesforceHostedMCP
	SalesforceIdentityForCommunities
	SalesforcePricing
	SalesUser
	SAML20SingleLogout
	SCIMProtocol
	ScvMultipartyAndConsult
	SecurityEventEnabled
	SentimentInsightsFeature
	ServiceCatalog
	ServiceCloud
	ServiceCloudVoicePartnerTelephony
	ServiceUser
	SessionIdInLogEnabled
	SFDOInsightsDataIntegrityUser
	SharedActivities
	Sites
	SocialCustomerService
	StateAndCountryPicklist
	StreamingAPI
	StreamingEventsPerDay:<value>
	SubPerStreamingChannel:<value>
	SubPerStreamingTopic:<value>
	SurveyAdvancedFeatures
	SustainabilityCloud
	SustainabilityApp
	TalentRecruitmentManagement
	TCRMforSustainability
	TimelineConditionsLimit
	TimelineEventLimit
	TimelineRecordTypeLimit
	TimeSheetTemplateSettings
	TransactionFinalizers
	UsageManagement
	VolunteerManagement
	WaveMaxCurrency
	WavePlatform
	Workflow
	WorkflowFlowActionFeature
	WorkplaceCommandCenterUser
	WorkThanksPref

	Scratch Org Settings

	Create a Scratch Org Based on an Org Shape
	Enable Org Shape for Scratch Orgs
	Org Shape Permissions
	Create and Manage Org Shapes
	Scratch Org Definition for Org Shape
	Troubleshoot Org Shape

	Create Scratch Orgs
	Scratch Org Snapshots
	Get Started with Scratch Org Snapshots
	Enable Scratch Org Snapshots in the Dev Hub Org
	Assign a License and Permissions to Snapshot Users

	Salesforce CLI Snapshot Commands
	Create a Scratch Org Snapshot
	Create a Snapshot for Use with Namespaced Scratch Orgs
	Create a Scratch Org Based on a Snapshot
	Create a Package Version Based on a Snapshot
	Manage and Maintain Your Snapshots

	Select the Salesforce Release for a Scratch Org
	Deploy Source From Your Project to the Scratch Org
	Retrieve Source from the Scratch Org to Your Project
	Scratch Org Users
	Create a Scratch Org User
	User Definition File for Customizing a Scratch Org User
	Generate or Change a Password for a Scratch Org User

	Manage Scratch Orgs from the Dev Hub Org
	Scratch Org Error Codes

	Sandboxes
	Authorize Your Production Org
	Create a Sandbox Definition File
	Create, Clone, or Refresh a Sandbox

	Track Changes Between Your Project and Org
	Manage Source Tracking for Your org
	Preview Changes Identified by Source Tracking
	Deploy and Retrieve Changes Identified by Source Tracking
	Retrieve Changes to Profiles with Source Tracking

	Resolve Conflicts Between Your Local Project and Org
	Best Practices
	Performance Considerations of Source Tracking

	Work with Data
	Work With Small Datasets
	Work With Large Datasets
	Work With Individual Records
	Run a SOQL or SOSL Query
	Upload a File to Your Org

	Salesforce DX MCP Server and Tools (Beta)
	Quick Start Using the VS Code With Copilot MCP Client (Beta)
	Install and Configure the Salesforce DX MCP Server (Beta)
	Add the Salesforce DX MCP Server to Your MCP Client (Beta)
	Configure the Salesforce DX MCP Server for Your Environment (Beta)
	Manage the Salesforce DX MCP Server (Beta)

	Use the Core Salesforce DX MCP Tools (Beta)

	Development
	Develop Against Any Org
	Assign a Permission Set
	Create Lightning Apps and Aura Components
	Create Lightning Web Components
	Create an Apex Class
	Create an Apex Trigger
	Create a Custom Object
	Execute Anonymous Apex
	Run Apex Tests
	Debug Apex
	Generate and View Apex Debug Logs

	Build and Release Your App
	Build and Release Your App with Metadata API
	Develop and Test Changes Locally
	Build and Test the Release Artifact
	Test the Release Artifact in a Staging Environment
	Release Your App to Production
	Cancel a Metadata Deployment

	Unlocked Packages
	What’s an Unlocked Package?
	Package-Based Development Model
	Before You Create Unlocked Packages
	Know Your Orgs
	Create Org-Dependent Unlocked Packages
	Workflow for Unlocked Packages
	Configure Unlocked Packages
	Project Configuration File for Unlocked Packages
	Unlocked Packaging Keywords
	Package Installation Key
	Extract Dependency Information from Unlocked Packages
	Understanding Namespaces
	Create and Register Your Namespace
	Avoid Namespace Collisions
	Namespace-Based Visibility for Apex Classes in Unlocked Packages

	Share Release Notes and Post-Install Instructions
	Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked Packages)
	Best Practices for Unlocked Packages
	Package IDs and Aliases for Unlocked Packages
	Frequently Used Unlocked Packaging Operations

	How We Handle Profile Settings in Unlocked Packages
	Develop Unlocked Packages
	Create and Update an Unlocked Package
	Create New Versions of an Unlocked Package
	Simplify Unlocked Package Development by Creating and Specifying an Org Shape
	Use Branches in Unlocked Packaging
	Target a Specific Release for Your Unlocked Packages During Salesforce Release Transitions

	Guidance for Package Version Numbering
	Code Coverage for Unlocked Packages
	Considerations for Promoting Packages with Dependencies
	Release an Unlocked Package
	Update an Unlocked Package Version
	Hard-Deleted Components in Unlocked Packages
	Delete an Unlocked Package or Package Version
	View Package Details

	Push a Package Upgrade for Unlocked Packages
	Schedule a Push Upgrade Using CLI

	Install an Unlocked Package
	Install Packages with the CLI
	Install Unlocked Packages from a URL
	Upgrade a Version of an Unlocked Package
	Sample Script for Installing Unlocked Packages with Dependencies

	Migrate Deprecated Metadata from Unlocked Packages
	Uninstall an Unlocked Package
	Transfer an Unlocked Package to a Different Dev Hub
	Take Ownership of an Unlocked Package Transferred from a Different Dev Hub

	Continuous Integration
	Continuous Integration Using CircleCI
	Configure Your Environment for CircleCI
	Connect CircleCI to Your DevHub

	Continuous Integration Using Jenkins
	Configure Your Environment for Jenkins
	Jenkinsfile Walkthrough
	Sample Jenkinsfile

	Continuous Integration with Travis CI
	Sample CI Repos for Org Development Model
	Sample CI Repos for Package Development Model

	Troubleshoot Salesforce DX
	Resolve Common Authorization Errors
	org login web Errors
	org login jwt Errors

	Error: No default dev hub found
	Unable to Work After Failed Org Authorization
	Error: The consumer key is already taken
	CLI Version Information

	Limitations for Salesforce DX

