salesforce

Second-Generation Managed
Packaging Developer Guide

Version 66.0, Spring ‘26

Last updated: January 30, 2026

© Copyright 2000-2026 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc,, as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Second-Generation Managed Packages 1
What's a Second-Generation Managed Package? i 3
Why Switch to Second-Generation Managed Packaging? 3
Comparison of First- and Second-Generation Managed Packages 5
Set Up Your Development Environment o 6
Enable Dev Hub and Second-Generation Managed Packaging 6
Limited Access License for Package Developers i 7
Add a Limited Access Userfo Your DevHub Org 8
Assign Second-Generation Managed Packaging User Permissions 8
Before You Create Second-Generation Managed Packages 9
Know Your Orgs for Second-Generation Managed Packages 9
Link a NamespacetoaDevHUb Org 10
Namespaces for Second-Generation Managed Packages n
Create and Register Your Namespace for Second-Generation Managed Packages n
Key Concepts in Second-Generation Managed Packagingooo oo 12
How Manageability Rules and Ancestry Impact Upgrades for Second-Generation Managed
PACKAGES .« . . 13
Which Package Types Can Your Package Depend On? 14
Scratch Orgs and Package Development 15
How Scratch Orgs Fit in the Package Development Workflow 16
Scratch Org Definition Files vs Org Shape in Package Development 17
When to Use Scratch Org Snapshots in Package Development 18
Create a Package Version Based on a Scratch Org Snapshot 19
Get Access to Scratch Orgs That Have Agentfforce 20
Scratch Org Allocations for Salesforce Partners 22
Manage Scratch Orgs fromthe DevHub Orgo .. 22
Supported Scratch Org Editions for Partners 23
Workflow for Second-Generation Managed Packages 23
Components Available in Second-Generation Managed Packages 25
Account Plan Objective Measure Calculation Definition 4
Account Relationship ShareRule 42
Action Link Group Template 43
Action PlanTemplateo 44
Actionable List Definition 45
Actionable List Key Performance Indicator Definition 46
Activation Platform 47
AffinityScoreDefinition 49
Agent ACHON .« .. oL 50

Agent TOPIC . . .o o 51

Contents

AL APPIICAtION .« .« . 52
Al Application Config 53
AlUsecaseDefiniion 55
ANGIYHCS © oo 56
Analytics Visudlization 56
ANalytics WOrKSPACE .« . . e e e e e e e e e 57
APEX ClOSS . o oo 58
Apex Sharing REASON 60
APEX THGQEN « . o oot 61
App Framework Template Bundle 62
Application Subtype Definition 63
AssessmentConfiguration 64
ASSesSSMentQUESTION oo 64
AssessmentQUESTIONSET e 65
AUra COmMPONENT .« . oot 66
Batch Calc Job Definition 67
Batch Process Job Definition 68
Benefit ACON e 69
Bot Templateo e 70
Branding Set 72
Briefcase Definition e 73
Building Energy Intensity Record Type Configuration 74
BUSINESS ProCesso 75
Business Process Groupt e 76
Business Process Type Definition o 77
Care Benefit Verify Setfingso 77
Care Limit Type . . . oo e 79
Care Request Configuration 80
Care System Field MappINg oo oot 81
Channel Layout 82
Chatter EXIENSION oo 83
Claim Financial SEtNGS . . .« o oo vt 83
CommunicationChannelType 84
Community Template Definition 85
Community Theme Definition 86
Compact Layout . . . oo e 87
Conditional Formatting Ruleset 88
Connected AP . . oot 89
Context Definition e 9N
Contract TYPE .« . o oo e 92
Conversation Channel Definition 93
Conversation Vendor Info oo 94
CORS AllOWIISt . o e 95

CSP Trusted Site . . . o o ot e 96

Contents

Custom Application e 98
Custom Button or Linko oo 99
Custom Console COMPONENtS oottt 100
Custom Field on Standard or Custom Object 101
Custom Field on Custom Metadata Typet 102
Custom Field Display 103
Custom Help Menu Section 104
Custom INdeXo 104
Custom Label 105
Custom Metadata Type Records 106
Custom Metadata TYPE 107
Custom Notification Type i e 107
Custom ObJeCt . . . oot 109
Custom Object Translation e 10
Custom PermisSiono e m
Custom Tab . .o N2
Dashboard e N4
DataCalclnsightTemplate e N5
Data Connector Ingest APl o e 16
Data Connector S3 e nz
Data Kit Object Dependencyt 18
Data Kit Object Template e n9
DataObjectBuildOrgTemplate 120
Data Package Kit Definition 121
Data Package Kit Object 123
Data SOUICEo 124
Data Source Bundle Definition 125
Data Source Objectot 126
Data Src Data Model Field Mapo 127
Data Stream Definition 128
Data Stream Templateot 130
DataWeaveResource e 131
Decision Matrix Definition 132
Decision Matrix Definition Version 133
Decision Table 134
Decision Table Dataset Linko oot 135
Digital EXPENENCE o oot 136
Digital Experience Bundle 137
Decision Table 139
Disclosure Definition e 140
Disclosure Definition Version e 11
DISCIOSUIE TYPE .« .« o ottt e 142
Discovery Al Model e 143

Discovery Goal e 144

Contents

Discovery STory e 145
DOCUMENT L o e 146
Document Generation Setting e 146
Eclair GeoDatao 147
Email Template (Classic)o 148
Email Template (Lightning)o 149
Embedded Service Config 150
Embedded Service Menu Setingso oo 151
Enablement Measure Definition 152
Enablement Program Definition 153
Enablement Program Task Subcategory 155
Entilement Template 156
ESignature Config 157
ESignature Envelope Config 158
Bvent Relay oo 159
Explainability Action Definition 160
Explainability Action Version e 161
Explainability Message Template e 161
Expression Set Definition 162
Expression Set Definition Version e 164
Expression Set Object Alias 165
Expression Set Message TOKeNttt e 166
External Auth Identity Provider 167
External Client App Canvas Seftingso 168
External Client App Header o e 170
External Client App Nofification Seftings o Y4l
External Client App OAuth Seftings 172
External Client App Push Seftings 173
External Credential 174
External Data CONNeCtort 176
External Data SOUICE oot 177
External Data Transport Field Template o 178
External Data Transport Field 179
External Data Transport Object Template 181
External Data Transport Object o o 182
External Document Storage Configuration 183
External SErviceso 184
Feature Parameter Boolean 185
Feature Parameter Date e 186
Feature Parameter Infeger e 188
FieldMappingConfig o o e 189
Field Set . . o o 192
Field Source Target Relationship o 193

FlOW oo 194

Contents

FIOW COtegory . . . o oottt 196
Flow Definition 197
Flow Test .« e 198
Folder . .. e 199
FUBL TYPE .« o oot 201
Fuel Type Sustainability Unit of Measureo i 202
Fundraising Configo oo 203
Gateway Provider Payment Method Type o i 204
GenAiPlannerBundle e 205
Generative AlPrompt Template 206
Global Picklist 207
Home Page Componentt e 208
Home Page Layouto e 209
Identity Verification Proc Def 210
Inbound Network Connection n
IndustriestinsteinFeatureSeftings 212
IntegrationProviderDef 213
Invocable Action Extension 214
LearningAchievementConfig 215
Learning ltem Type e 216
Lefterhead 217
Life Science Config Categoryottt 218
Life Science ConfigRecord 219
Lightning Bolto e 220
Lightning Message Channel i 221
Lghtning Page . . . oo oo 222
Lghtning TYPe . o o oot e 223
Lightning Web Component 224
LSt VieW . o e 225
Live Chat Sensitive Data Rule 227
Loyalty Program Setup oo oot 228
Managed Content TYPEt 229
Marketing App EXIENSION e 230
Marketing App Extension Activity 231
Market Segment Definition 232
MktCalculatedinsightsObjectDef 233
MkiDataConnection 234
MkiDataTranObject 236
Named Credential 237
Object Source Target Mapt 239
OcrSampleDocuUmMeNnt e 240
OcrTemplate . . .o 24
Outbound Network Connection 242

Page Layout . . . oo 244

Contents

Path Assistanto 245
Payment Gateway Provider 246
Permission Set e 247
Permission Set GroupS . « .« oo ottt 248
Platform Cache o oo 249
Platform Event Channel 250
Platform Event Channel Member 250
Platform Event Subscriber Configuration oo L. 251
Pricing Action Parameters 252
Pricing ReCipe e 253
Procedure Output Resolution 254
PrOCESS . o i 255
Process Flow Migration 255
Product Aftribute Set 256
Product Specification Type 257
Product Specification Record Typeot 258
Prompts (In-App GUIdANCE)o o 259
QUICK ACHON . . . e 260
Recommendation Strategy e 261
Record Action Deployment e 261
Record Alert Data Source Expression Set Definition 263
RECOMA TYPE . o o ottt e 264
RedirectWhitelistUrl e 265
Referenced Dashboard e 266
Registered External Service 267
RelationshipGraphDefinition 268
Remote Site Setting e 269
REPOI .« . e 270
Report Type . . . e 27N
SEIVICEPIOCESS . . o o it 272
Slack App (Beta) . . . o oo 273
Service Catalog Category oo oo e e e e e e 274
Service Catalog Filter Criteria oo 275
Service Catalog Item Definition 276
Service Catalog Fuffillment Flow 277
Stationary Asset Environmental Source Record Type Configuration 278
SIOlIC RESOUICE .« . o o e 279
Streaming App Data Connector e 280
Sustainability UOM . . . 281
Sustainability UOM ConVersiont 282
Timeline Object Definition 283
Timesheet Template 285
Transaction Processing Type o ottt e 285

Translotion . ..o e 286

Contents

Ul Object Relation Config oo 287
User Access PoliCyo oot 288
Validation Ruleo 289
Vehicle Asset Emissions Source Record Type Configuration 291
View Definition (Beta)o e 292
Virtual Visit Config e 293
Visualforce Component 294
VisSUaforce Page 295
Wave Analytic Asset Collection 296
Wave Application 297
Wave COmMPONENT oo e 298
Wave Dataflowo 299
Wave Dashboard 300
Wave Dataset .« 301
WaVe LeNS .« . o e 302
Wave ReCiPe o 303
Wave Template Bundle 304
Wave Xmd . . .o 305
Web Store Template e 306
Workflow Alert . . 307
Workflow Field Update 308
Workflow Knowledge Publish 309
Workflow Outbound MesSsageo oottt e 310
Workflow Rule 3Mn
Workflow Task 312
Behavior of Specific Metadata in Second-Generation Managed Packages 314
Package Agentforce Metadata Components 315
Develop and Package Agent Templates Using Scratch Orgs 315
Package Data Cloud Metadata Components 319
Protected Components in Managed Packages i i ... 320
Set Up a Platform Cache Partition with Provider Free Capacity 321
Metadata Access iN Apex Codeottt 321
Permission Sets and Profile Seftings in Packages 322
Protecting Your Intellectual Property 327
Call Salesforce URLs Within a Packageo 327
Namespace-Based Visibility for Apex Classes in Second-Generation Managed
PACKAGES .« oot 329
Work with Services Outside of Salesforce 330
Package Connected Apps in Second-Generation Managed Packaging 331
Test and Respond to the New Order Save Behavior 331
Develop Second-Generation Managed Packageso 333
Create a Second-Generation Managed Package 334
View Package Details for a Second-Generation Managed Package 334

Create Versions of a Second-Generation Managed Package 335

Contents

Guidance for Package Version Numbering

View Details about a Second-Generation Managed Package Version

Project Configuration File for a Second-Generation Managed Package

Get Ready to Promote and Release a Second-Generation Managed Package Version
Specify a Package Ancestor in the Project File for a Second-Generation Managed
Package

Install and Uninstall Second-Generation Managed Packages

Use the Cll to Install a Second-Generation Managed Package

Use a URL to Install a Second-Generation Managed Package

Install Notifications for Unauthorized Managed Packages

Upgrade a Second-Generation Managed Package Version

Resolve Apex Test Failures

Run Apex on Package Install/Upgrade

Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts

Sample Script for Installing Second-Generation Managed Packages with
Dependencies
Uninstall a Second-Generation Managed Package

Prepare to Distribute Your Second-Generation Managed Package

Code Coverage for Second-Generation Managed Packages

Package Installation Key for Second-Generation Managed Packages

Release a Second-Generation Managed Package

Share Release Notes and Post-Install Instructions for Second-Generation Managed
Packages

Publishing Your App on AppExchange

Recommend a Specific Package Version to Your Subscribers

Push a Package Upgrade for Second-Generation Managed Packages

Schedule a Push Upgrade Using CLI

Schedule a Push Upgrade Using SOAP API for First- and Second-Generation Managed
Packages

Assign Access to New and Changed Features in First- and Second-Generation Managed
Packages

Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed
Packages

Push Upgrade Best Practices

Advanced Features for Second-Generation Managed Packages

Package Ancestors for Second-Generation Managed Packages

Patch Versions for Second-Generation Managed Packages

Create Dependencies Between Second-Generation Managed Packages
Considerations for Promoting Packages with Dependencies

Advanced Project Configuration Parameters for Second-Generation Managed
Packages

Second-Generation Managed Packaging Keywords

Contents

Target a Specific Release for Your Second-Generation Managed Packages During
Salesforce Release Transitions

Use Branches in Second-Generation Managed Packaging

Specify Unpackaged Metadata or Apex Access for Package Version Creation Tests for
Second-Generation Managed Packages

Package IDs and Aliases for Second-Generation Managed Packages

Avoid Namespace Collisions in Second-Generation Managed Packages

Remove Metadata Components from Second-Generation Managed Packages
Delete a Second-Generation Managed Package or Package Version

Frequently Used Packaging Operations for Second-Generation Managed Packages
Transfer a Second-Generation Managed Package to a Different Dev Hub

Contact Salesforce Partner Support to Enable Specific Packaging Features

Best Practices for Second-Generation Managed Packages
Manage Licenses for Managed Packages

Get Started with the License Management App

Lead and License Records in the License Management App
Modify a License Record

Refresh Licenses for a Managed Package

Extending the License Management App

Move the License Management App to Another Salesforce Org
Troubleshoot the License Management App

Best Practices for the License Management App

Troubleshoot Subscriber Issues

Manage Features in Second-Generation Managed Packages

Feature Parameter Metadata Types and Custom Obijects

Set Up Feature Parameters

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters
Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs

Best Practices for Feature Management

Considerations for Feature Management

Get Started with AppExchange App Analytics

App Analytics Use Cases

Enable App Analytics on Your Second-Generation Managed Package
Download Package Usage Logs, Package Usage Summaries, and Subscriber
Snapshots

Considerations for Custom Interactions

AppExchange App Analytics Best Practices

Package Usage Summaries

Package Usage Logs

Subscriber Snapshots

Test Custom Infegrations

AppExchange App Analytics Developer Cookbook

Gaps Between First-Generation and Second-Generation Managed Packaging

CHAPTER 1

Second-Generation Managed Packages

In this chapter ...

e What'sa

Second-Generation
Managed Package?

e SetUp Your
Development
Environment

e Before You Create

Second-Generation

Second-generation managed packaging (managed 2GP) ushers in a new way for AppExchange partners
to develop, distribute, and manage their apps and metadata. You can use managed 2GP packaging to
organize your source, build small modular packages, integrate with your version control system, and
better utilize your custom Apex code. With version control being the source of truth, there are no
packaging or patch orgs. You can execute all packaging operations via Salesforce CLI, or automate them
using scripts. Submit second-generation managed packages for security review, and list them on
AppExchange.

Use managed 2GP to create new managed packages. You can't currently migrate a first-generation
managed package to a second-generation managed package.

Managed Packages Another great way to learn about second-generation managed packages, is by taking the

« Scratch Orgs and Second-Generation Managed Packages Trailhead module.
Package @ Note: Second-generation managed packaging addresses the specific needs of AppExchange
Development

partners. If you're a customer or system integrator and you don't plan to distribute a package to
multiple customers, unlocked packaging is the preferred tool. You can use unlocked packages to
organize your existing metadata, package an app or extension, or package new metadata. See
Unlocked Packages for more information.

o Workflow for
Second-Generation
Managed Packages

e Components
Available in
Second-Generation
Managed Packages

e Behavior of Specific
Metadata in
Second-Generation
Managed Packages

e Develop
Second-Generation
Managed Packages

e Install and Uninstall
Second-Generation
Managed Packages

e Prepare to Distribute
Your
Second-Generation
Managed Package

e Push a Package
Upgrade for
Second-Generation
Managed Packages

e Advanced Features
for
Second-Generation
Managed Packages

https://trailhead.salesforce.com/content/learn/modules/second-generation-managed-packages
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm

Second-Generation Managed Packages

e Best Practices for
Second-Generation
Managed Packages

* Manage Licenses for
Managed Packages

e Manage Features in
Second-Generation
Managed Packages

e Get Started with
AppExchange App
Analytics

e Gaps Between
First-Generation and
Second-Generation
Managed Packaging

Second-Generation Managed Packages What's a Second-Generation Managed Package?

What's a Second-Generation Managed Package?

If your goal is to build an app and distribute it on AppExchange, you'll use managed packages to do both. Packaging is the container
that you fill with metadata, and it holds the set of related features, customizations, and schema that make up your app. A package can
include many different metadata components, and you can package a single component, an app, or library.

Each second-generation managed package follows a distinct lifecycle. As you develop your app, you add metadata to a package, and
create a new package version. While the package is continually evolving, each package version is an immutable artifact.

A package version contains the set of metadata and features associated with the package version at the moment it was created. As you
iterate on your package, and add, remove, or change the packaged metadata, you're likely to create many package versions along the
way.

You caninstall a package version in a scratch, sandbox, trial, developer edition, or production org. Your customers can install the package
into their org and when you release a new package version, your customers can upgrade to the latest version.

You can repeat the package development cycle any number of times. You can change metadata, create a package version, test the
package version, and distribute it to your customers via AppExchange.

Why Switch to Second-Generation Managed Packaging?

You've been using first-generation managed packages to develop your apps, so you're probably pretty familiar with what works
well, and what's a bit more painful than you'd like. And no doubt, you're aware that second-generation managed packages is our
newer technology, but maybe you aren't so sure why switching to second-generation managed packaging (managed 2GP) will
improve your package development experience. So let's talk about that.

Comparison of First- and Second-Generation Managed Packages

If you're familiar with first-generation managed packages (managed 1GP) and wonder how it's different from second-generation
managed packages (managed 2GP), here are some key distinctions.

Why Switch to Second-Generation Managed Packaging?

You've been using first-generation managed packages to develop your apps, so you're probably pretty familiar with what works well,
and what's a bit more painful than you'd like. And no doubt, you're aware that second-generation managed packages is our newer
technology, but maybe you aren't so sure why switching to second-generation managed packaging (managed 2GP) will improve your
package development experience. So let's talk about that.

Source-Driven Development

The source-driven development model used in managed 2GP is a big shift from the org-based development used in managed 1GP. Say
goodbye to packaging orgs as your source of truth. Instead, your source of truth with managed 2GP is the package metadata in your
version control system. And as you develop your managed 2GP package, you create and update your package metadata in a version
control system, not in an org.

Minimal Interaction with Salesforce Orgs

As you probably know well, with managed 1GP development, every package and patch version requires a unique Salesforce org, so it's
not uncommon for you to own 100s of Salesforce orgs in which your package metadata is deployed. Managing these orgs and their
credentials can become a nightmare.

Managed 2GP takes away the hassle of managing orgs, and instead you use a single org, the Dev Hub org, to manage all your packages.
And even when you do need to connect to your Dev Hub org you'll use Salesforce CLI (Command Line Interface) or a script to log in.

Second-Generation Managed Packages Why Switch to Second-Generation Managed Packaging?

By eliminating the need to manually log in and keep track of hundreds of packaging and patch orgs (and their login credentials), managed
2GP simplifies package development and promotes modern, programmatic Application Lifecycle Management (ALM).

API- and CLI-first Model

Unlike managed 1GP, which has only partial API coverage, you can perform every managed 2GP packaging operation using an APl or
CLI command. You can completely automate packaging operations and be more productive. Repeatable, scriptable, and track-able ALM
is truly possible with managed 2GP.

Flexible Versioning

Managed 1GP packaging follows a linear versioning model that requires you to build upon the previous package version. This approach
is very restrictive, and for metadata that can’t be removed from a package, you're stuck with that metadata in your managed 1GP.

Enter managed 2GP and flexible versioning. If you create a managed-released package version that you haven't yet distributed to a
customer, you can abandon that package version and select a previous package version as the ancestor you want to build upon. Flexible
versioning also allows you to use branches and do parallel package development. You can iterate fast, learn from, and move on from
any mistakes.

One Namespace Shared Across Multiple Packages

Managed 1GP packages require each package to have a unique namespace. This restriction can lead to a proliferation of global Apex
because sharing code among packages is only possible by declaring Apex classes and methods as global.

Managed 2GP changes the game by allowing multiple packages to share the same namespace. The @namespaceAccessible
annotation then lets you share public Apex classes and methods across all packages in the same namespace. By using public Apex, you
don'tincrease your global Apex footprint by exposing a global API.

Declarative Dependencies

In managed 2GP packaging, you specify dependencies among packages declarativelyina . json file. Which as you know, is a more
developer-friendly approach than how managed 1GP dependencies are declared.

Simplified Patch Versioning

Creating a patch version of a managed 2GP is as easy as creating a new major or minor package version. You use a Salesforce CLI command
and specify a non-zero number for the patch version number. And that's it!

Because your version control system is the source of truth for managed 2GP, creating patch versions is straightforward. We promise you
won't miss the laborious and error-prone patch org process of managed 1GP.

Avoid Having to Migrate Customers in the Future

As you may be aware, we're developing capabilities to migrate your managed 1GP packages to managed 2GP. However, when we
launch that capability, there’s work that you have to do to migrate your managed 1GP packages and customers from 1GP to 2GP. By
adopting managed 2GP today for your new packages, you avoid the hassle of migration in the future.

Second-Generation Managed Packages

Comparison of First- and Second-Generation Managed
Packages

Comparison of First- and Second-Generation Managed Packages

If you're familiar with first-generation managed packages (managed 1GP) and wonder how it's different from second-generation managed

packages (managed 2GP), here are some key distinctions.

Managed 1GP Packages

The packaging org is the source of truth for the metadata in your
package.

The packaging org owns the package. The metadata in the package
resides in the packaging org.

A packaging org can own only one managed package.

The namespace of the managed package is created in the
packaging org.

A namespace can be associated with only one package.

Global Apex is the only way to share code across packages.

Some packaging operations, like package create and package
uninstall, can't be automated.

Package versioning is linear.

Patch versions can only be created in specialized orgs called patch
orgs.

Managed 2GP Packages

Your version control system is the source of truth (source-driven
system) for the metadata in your package.

And unlike managed 1GP, managed 2GP doesn't use packaging
or patch orgs.

The Dev Hub owns the package, but the Dev Hub doesn't contain
the packaged metadata.

We recommend that you enable Dev Hub in your Partner Business
Org (PBO).

A Dev Hub can own one or more packages.

The namespace of a managed package is created in a namespace
org and linked to the Dev Hub. And you can associate multiple
namespaces to a single Dev Hub.

A namespace is linked to a managed 2GP when you run the s £
package create Salesforce CLI command. And you must
specify the namespace in the sfdx-project.json file.

See Namespaces for Second-Generation Managed Packages for
more details.

Multiple packages can use the same namespace.

Multiple packages using the same namespace can share code
using public Apex classes and methods with the
@namespaceAccessible annotation.

All packaging operations can be automated using Salesforce CLI.

Package versioning is flexible, and you can abandon unwanted
package versions. This flexible versioning allows you to use
branches and do parallel package development.

Patch versions are created using Salesforce CLI. The version control
system is the source of truth, and there are no patch orgs.

Despite these distinctions, managed 1GP and 2GP packages have many things in common. They share the key packaging concept of
associating metadata with a package. And they both allow you to iterate and create package and patch versions, which can be installed
and uninstalled in subscriber orgs. Both managed package types enable you to submit a package for AppExchange security review, and
list your package on AppExchange. And both managed package types can use the License Management App, Subscriber Support

Console, and Feature Management App.

Second-Generation Managed Packages

Set Up Your Development Environment

Second-generation managed packaging uses Salesforce DX developer tools. Ensure that you have the required tools and orgs installed
and enabled.

You use these tools for managed 2GP package development.

Salesforce CL, a rich set of commands to execute different packaging operations like package creation and package install
A source control system of your choosing
A Dev Hub org

Salesforce Extension for Visual Studio Code (optional), an IDE designed to facilitate the development of Salesforce components

Use the Dev Hub to Keep Track of Package Development

Your Dev Hub is the designated place to find and manage all your managed 2GP packages, scratch orgs, and namespaces. After you
enable the Dev Hub setting on a Salesforce org, that Dev Hub becomes the owner of every managed 2GP package you create.

All Salesforce 1SV and OEM partners should designate their Partner Business Org as their Dev Hub org. A Partner Business Org (PBO) is
the production org where Salesforce Partners run their business.

Enable Dev Hub and Second-Generation Managed Packaging

The Dev Hub lets you create and manage second-generation managed packages and scratch orgs. Your Dev Hub is the designated
place to find and manage all your managed 2GP packages, scratch orgs, and namespaces.

Limited Access License for Package Developers

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and
custom objects. Partner Business Orgs (PBO) include 100 Salesforce Limited Access - Free user licenses.

Add a Limited Access User to Your Dev Hub Org

Provide your developers access to the Dev Hub and Salesforce DX development tools by adding a user with Salesforce Limited Access
- Free license and the Limited Access user profile in your Dev Hub org. Then create and assign them a permission set to the required
Dev Hub objects.

Assign Second-Generation Managed Packaging User Permissions
To create second-generation managed packages and scratch orgs, developers require access to the Dev Hub org. We recommend

enabling the Dev Hub in your Partner Business Org (PBO). A Salesforce admin can create a permission set to grant appropriate
permissions to the required Dev Hub objects and system permission.

Enable Dev Hub and Second-Generation Managed Packaging

The Dev Hub lets you create and manage second-generation managed packages and scratch orgs. EDITIONS

Your Dev Hub is the designated place to find and manage all your managed 2GP packages, scratch
orgs, and namespaces.

Available in: Salesforce

After you enable the Dev Hub setting on a Salesforce org, that Dev Hub becomes the owner of Classic and Lightning
every managed 2GP package you create. All Salesforce ISV and OEM partners should designate their Experience

Partner Business Org (PBO) as their Dev Hub org.

Dev Hub available in:

To enable Dev Hub: Developer, Enterprise,

1.

Performance, and

Log in to your Partner Business Org. Unlimited Editions

Set Up Your Development Environment

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/tools/vscode/en/vscode-desktop/install

Second-Generation Managed Packages Limited Access License for Package Developers

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub. If you don't see Dev Hub in the Setup menu, make sure
that your org is one of the supported editions.

3. Select Enable Dev Hub. After you enable Dev Hub, you can't disable it.

4. Select Enable Unlocked Packages and Second-Generation Managed Packages. After you enable this setting, you can't disable
it.

If you choose to use a trial or Developer Edition org as your Dev Hub, consider these factors.

e When atrial or Developer Edition org expires, you lose access to all packages associated with that Dev Hub org.

e You're limited to creating up to six scratch orgs and package versions per day, with a maximum of three active scratch orgs.
e Trial orgs expire on their expiration date.

e Developer Edition orgs can expire due to inactivity.

e Ifapackage is associated with a non-production Dev Hub org, and that org expires or becomes inactive, the installed package can't
be updated, and new attempts to install the package may fail.

e Ifyou plan to create package versions or run continuous integration jobs, it's better to use your PBO as your Dev Hub because of
higher scratch org and package version limits.

The Dev Hub org instance determines where scratch orgs are created.

e Scratch orgs created from a Dev Hub org in Government Cloud are created on a Government Cloud instance.

e Scratch orgs created from a Dev Hub org in Public Cloud are created on a Public Cloud instance.

@ Nofe: You can't enable Dev Hub in a sandbox.

Limited Access License for Package Developers

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and custom
objects. Partner Business Orgs (PBO) include 100 Salesforce Limited Access - Free user licenses.

If the Salesforce Limited Access - Free license isn't already enabled in your PBO, log a case with Salesforce Partner Support to request up
to 100 licenses. A Salesforce admin can upgrade a Salesforce Limited Access - Free license to a standard Salesforce license at any time.

Certain developer features aren’t available with the Salesforce Limited Access - Free license.

e To provide the ability to create and manage org shapes, assign the Salesforce user license. The Salesforce Limited Access - Free
license isn't supported at this time.

e Users with the Salesforce Limited Access - Free license and View All Records permissions can create scratch orgs using an existing
org shape.

e Users with the Salesforce Limited Access - Free license and View All Records permissions can view scratch org snapshots created by
users other than themselves.

e The Salesforce Limited Access - Free license doesn't provide access to some Salesforce CLI commands, suchas sf 1limits api
display.

e Contact your Salesforce admin for API limits information.

If your developers need broader access, consider assigning the Salesforce license. For details, see Standard User Licenses in Salesforce
Help.

https://partners.salesforce.com
https://help.salesforce.com/s/articleView?id=platform.users_license_types_available.htm&type=5&language=en_US

Second-Generation Managed Packages Add a Limited Access User to Your Dev Hub Org

Add a Limited Access User to Your Dev Hub Org

Provide your developers access to the Dev Hub and Salesforce DX development tools by adding a user with Salesforce Limited Access
- Free license and the Limited Access user profile in your Dev Hub org. Then create and assign them a permission set to the required
Dev Hub objects.

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and custom
objects.

1. Create a user in your Dev Hub org.
a. InSetup, enter Users in the Quick Find box, then select Users.
b. Click New User.
Fill out the form.
d. Select Salesforce Limited Access - Free for User License, and then Limited Access User for Profile.
e. Afterfilling out the remaining information, click Save.

2. Create a permission set that provides your developer users with access to the required Dev Hub objects. For details, see Create and
Assign a Permission Set for Developer Users or Assign Second-Generation Managed Packaging User Permissions.

Assign Second-Generation Managed Packaging User Permissions

To create second-generation managed packages and scratch orgs, developers require access to the Dev Hub org. We recommend
enabling the Dev Hub in your Partner Business Org (PBO). A Salesforce admin can create a permission set to grant appropriate permissions
to the required Dev Hub objects and system permission.

To give developers access to the Dev Hub org, create a permission set that contains these required permissions:
e Object Settings > Scratch Org Info > Read, Create, and Delete
e Object Settings > Active Scratch Org > Read and Delete

e Object Settings > Namespace Registry > Read (to use a linked namespace in a scratch org)

To provide users with the ability to create second-generation managed packages and package versions, the permission set must also
contain:

e System Permissions > Create and Update Second-Generation Packages

This permission provides access to:

Salesforce CLI Command Tooling API Object (Create and Edit)
sf package create Package2

sf package version create Package2VersionCreateRequest

sf package version update Package2Version

If you choose to test your package in a scratch org, the Create and Update Second-Generation Packages permission is also required
when creating the scratch org if you specified an ancestor version in the sfdx-project. json file. Alternatively, use the
--noancestors flagwiththe sf org create command when you create the scratch org.

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm

Second-Generation Managed Packages Before You Create Second-Generation Managed Packages

Before You Create Second-Generation Managed Packages

When you use second-generation managed packaging, to be sure that you set it up correctly, verify the following.
Did you?

e Enable Dev Hub and Second-Generation Managed Packaging in your Partner Business Org (PBO)

e Install Salesforce CLI

e (reate and Register Your Namespace for Second-Generation Managed Packages

Developers who work with managed 2GP packages need a user license and permission set that provides access to the Dev Hub org. See
Limited Access License for Package Developers and Assign Second-Generation Managed Packaging User Permissions.

Know Your Orgs for Second-Generation Managed Packages

Some of the orgs that you use with second-generation managed packaging (managed 2GP) have a unique purpose.

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub
org.

Namespaces for Second-Generation Managed Packages

A namespace is a 1-15 character alphanumeric identifier that distinguishes your package and its contents from other packages in
your customer’s org. A namespace is assigned to a second-generation managed package (managed 2GP) at the time that it's created,
and can't be changed.

Create and Register Your Namespace for Second-Generation Managed Packages

With second-generation managed packaging (managed 2GP), you can share a single namespace with multiple packages. Since
sharing of code is much easier if your package shares the same namespace, we recommend that you use a single namespace for all
of your managed 2GP packages.

Key Concepts in Second-Generation Managed Packaging
Let's look at some key high-level concepts in second-generation managed packaging (managed 2GP).

How Manageability Rules and Ancestry Impact Upgrades for Second-Generation Managed Packages

Before you dive in and create your first second-generation managed package (managed 2GP), it's important to understand these
concepts, and how they affect each other.

Which Package Types Can Your Package Depend On?

Both second-generation managed packaging (managed 2GP) and unlocked packaging let you easily develop small interdependent
packages and share logic between them. If you design your app to rely on small modular packages, both package creation and
package installation are faster, and you're less likely to hit limits.

Know Your Orgs for Second-Generation Managed Packages

Some of the orgs that you use with second-generation managed packaging (managed 2GP) have a unique purpose.

Choose Your Dev Hub Org
Use the Dev Hub org for these purposes.

e Asowner of all second-generation managed packages
e Tolink your namespaces

e To authorize and runyour sf package Salesforce CLI commands

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_slalf_pkg_dev.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm

Second-Generation Managed Packages Link a Namespace to a Dev Hub Org

We recommend that your Partner Business Org is also your Dev Hub org. For important considerations about your Dev Hub org, see
Enable Dev Hub and Second-Generation Managed Packaging on page 6.

@ Note: The Dev Hub org against which you run the sf package create command becomes the owner of the package.
If the Dev Hub org expires or is deleted, packages owned by that Dev Hub:

e (an't be transferred to a different Dev Hub

e Stop working and new package versions can't be created

Namespace Org

The primary purpose of the namespace org is to acquire a namespace for your managed 2GP package.

After you create a namespace org and specify the namespace in it, open the Dev Hub org and link the namespace org to the Dev Hub
org.

Other Orgs

When you work with managed 2GP packages, you also use these orgs:

e Scratch orgs to develop and test your packages.

e Atarget orinstallation org in which you install the package.

SEE ALSO:
Link a Namespace to a Dev Hub Org
Scratch Org Allocations for Partners

Salesforce DX Developer Guide: Scratch Orgs

Link a Namespace to a Dev Hub Org
To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub org.
Complete these tasks before you link a namespace.

e Ifyou don't have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, you're good to go.

e Inthe Developer Edition org, create and register the namespace.

@ Important: Choose namespaces carefully. If you're trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don't choose a namespace that you want to use in the future for a production org or some other
real use case. After you associate a namespace with an org, you can't change it or reuse it.

1. Login to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.
O Tip: Make sure your browser allows pop-ups from your Dev Hub org.

a. From the App Launcher menu, select Namespace Registries.

b. Click Link Namespace.

2. Inthe window that pops up, log in to the Developer Edition org in which your namespace is registered using the org's System
Administrator's credentials.

10

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/isv_partner_scratch_org_allocations.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm

Second-Generation Managed Packages

You can't link orgs without a namespace: sandboxes, scratch orgs, patch orgs, and branch orgs require a namespace to be linked to
the Namespace Registry.

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries list view.

Namespaces for Second-Generation Managed Packages

A namespace is a 1-15 character alphanumeric identifier that distinguishes your package and its contents from other packages in your
customer’s org. A namespace is assigned to a second-generation managed package (managed 2GP) at the time that it's created, and
can't be changed.

When you specify a package namespace, every component added to a package has the namespace prefixed to the component AP
name. Let's say you have a custom object called Insurance_Agent with the APl name, Insurance Agent _c.Ifyouadd this
component to a package associated with the Acme namespace, the APl name becomes Acme Insurance Agent c.

@ Important: When creating a namespace, use something that's useful and informative to users. However, don't name a namespace
after a person (for example, by using a person's name, nickname, or private information).
When you work with namespaces, keep these considerations in mind.

* Youcandevelop more than one managed 2GP package and associate the packages with the same namespace. But a single managed
2GP package can't be associated with more than one namespace.

e If you work with more than one namespace, we recommend that you set up one project for each namespace.

e It's beneficial for managed 2GP packages to share the same namespace, but it's not required. Carefully consider your package and
namespace strategy. After a namespace is associated with a managed 2GP, the association can't be changed.

e There are scenarios where you may prefer to keep a managed 2GP package isolated from other managed 2GP packages you're
developing. For example, if you're developing a product that you intend to sell or spin off, having a unique namespace for that
package enables you to transfer the namespace with the package.

SEE ALSO:
Create and Register Your Namespace for Second-Generation Managed Packages
Link a Namespace to a Dev Hub Org

Avoid Namespace Collisions in Second-Generation Managed Packages

Create and Register Your Namespace for Second-Generation Managed
Packages

With second-generation managed packaging (managed 2GP), you can share a single namespace with multiple packages. Since sharing
of code is much easier if your package shares the same namespace, we recommend that you use a single namespace for all of your
managed 2GP packages.

To create a namespace:

1. Sign up for a new Developer Edition org.

In Setup, enter Package Manager in the Quick Find box, and select Package Manager.
In Namespace Settings, click Edit.

Enter a namespace and select Check Availability.

(Optional) Select a package to associate with this namespace , or select None, then click Review.

I U S o

Review your selections, and then click Save.

n

Namespaces for Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_collisions.htm

Second-Generation Managed Packages Key Concepts in Second-Generation Managed Packaging

To register a namespace:

1. Tolink the namespace that you created with your Dev Hub, use Namespace Registry. See Link a Namespace to a Dev Hub Org for
details.

2. Inthe sfdx-project. json file, specify your namespace using the namespace attribute. When you create a new 2GP package,
the package is associated with the namespace specified in the s fdx-project.json file.

SEE ALSO:
Namespaces for Second-Generation Managed Packages
Link a Namespace to a Dev Hub Org

Avoid Namespace Collisions in Second-Generation Managed Packages

Key Concepts in Second-Generation Managed Packaging

Let’s look at some key high-level concepts in second-generation managed packaging (managed 2GP).

What's the difference between... Details
An app, a package, and metadata? An app is a set of features that you're developing for your
customers.

Metadata is the technical representation of Salesforce features like
custom objects, Apex classes, and Lightning pages. An app is
composed of a set of metadata.

A package is the container for your app’s Salesforce metadata.
Packages are used to distribute the app that you build. When a
package is installed in an org, the app’s metadata is deployed to
the org.

A package and package version? Your app, and thus your package, evolves over time. Whenever
you change, add, or remove the metadata in your package, you
create a new package version. Each package version is an
immutable artifact, a static snapshot of your metadata at a specific
point in time. So while your package evolves continuously, you
take snapshots of it when it's in a stable state in the form of a
package version. Technically speaking, when we say “Install a
package,” we really mean install a specific package version.

A package install and package upgrade? A package install refers to the first time a version of the package is
installed in an org. When a package is installed, the metadata
associated with the package is deployed into the org.

A package upgrade refers to the installation of a new package
version in an org that already has a previous version of the package
installed. During a package upgrade, metadata changes are
deployed. An upgrade can include deploying new metadata,
modifying existing metadata, or deleting or deprecating metadata.
At any given point in time, an org can only ever have one version
of a package installed in that org.

12

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_namespaces.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_collisions.htm

Second-Generation Managed Packages How Manageability Rules and Ancestry Impact Upgrades
for Second-Generation Managed Packages

Is it possible to... Details

Push a package upgrade? Yes. Push upgrades enable you to upgrade packages installed in
subscriber orgs, without asking customers to install the upgrade
themselves. For more details, see Push a Package Upgrade.

Uninstall a package? Yes. When you uninstall managed 2GP packages, all components
in the package and any associated data is deleted from the org.
Before uninstalling a package, review these considerations.

Delete a package or package version? Yes. If you haven't promoted or distributed a specific package or
package version, you can delete the package or package version
from your Dev Hub org. For more details, see Delete a Managed
2GP Package or Package Version.

How Manageability Rules and Ancestry Impact Upgrades for
Second-Generation Managed Packages

Before you dive in and create your first second-generation managed package (managed 2GP), it'simportant to understand these concepts,
and how they affect each other.

e Manageability Rules
e Package Ancestry
e Package Upgrades

Manageability Rules
Each metadata component that you include in a managed 2GP package has certain rules that determine its behavior in a subscriber
org. Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is
installed in a subscriber’s org.

Manageability rules apply at both the component level and at the component attribute level. For example, manageability rules
determine whether you or the subscriber can delete a custom field, and more specifically whether either of you can edit the Field
Label, Default Value, or other attributes of the custom field. For all first- and second-generation managed packages, we enforce
manageability rules during package version creation. If you attempt to make a change that would break a manageability rule for
one of the metadata components in your package, your package version creation fails.

Package Ancestry
Second-generation managed packaging offers a flexible linear package versioning model by letting you break your linear versioning
and abandon a package version you no longer want to build upon. We call these versioning decisions package ancestry. When you
create a package version, you must also specify which package version is the ancestor.

In this quick glance at a package ancestry tree, version 1.2 and 1.5 have been abandoned. To dig deeper into this topic, see Package
Ancestors.

13

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/push_upgrade_intro_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_installed_pkgs_uninstall.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_deletion.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_deletion.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm

Second-Generation Managed Packages

N

o .

. '
1

C 1.2

. Ry

A .

-

e
’ .
! '
1
15)
. S
~ L4
~-'

000

How Manageability Rules and Ancestry Impact Package Upgrades
Both manageability rules and package ancestry impact package upgrades. During package upgrade we enforce the manageability
rule for each new and changed component in your package version. Depending on what you changed when you created the new
package version, some metadata is added to the org during package upgrade, other metadata is modified or deleted, and some
changes aren't applied at all.

For example, page layouts don't get updated during package upgrade, so if you change a page layout, only new customers receive
your modified page layout. When existing subscribers upgrade their package, they won't receive that change. Conversely, changes
to Apex code or the formula in a formula field are updated during a package upgrade.

Package ancestry determines the package upgrade path. This is a complex topic, and we have topics that go deeper into this subject.
At a high level the package version you designate as the ancestor determines whether a subscriber can upgrade to that version.
Subscribers can upgrade from one package version to another only if the ancestry tree is followed. To learn more, see Understanding
Package Upgrades with Ancestry.

SEE ALSO:
Package Ancestors for Second-Generation Managed Packages

Understanding Package Upgrades with Ancestry

Which Package Types Can Your Package Depend On?

Both second-generation managed packaging (managed 2GP) and unlocked packaging let you easily develop small interdependent
packages and share logic between them. If you design your app to rely on small modular packages, both package creation and package
installation are faster, and you're less likely to hit limits.

To develop small, modular packages, you create dependencies between your packages. A package dependency is when metadata
contained in one package depends on metadata contained in another package. These dependencies allow you to extend the functionality
of the base package with components and metadata in a separate extension package.

When working with packaging, only certain combinations of packages are supported.

14

Which Package Types Can Your Package Depend On?

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm

Second-Generation Managed Packages Scratch Orgs and Package Development

Can a Managed 1IGP Can a Managed 2GP Can an Unlocked Can an Unmanaged

Dependona... Dependona... Package Depend on Package Depend on
a.. a..
Managed 1GP Yes Yes Yes No
Managed 2GP No' Yes Yes No
Unlocked package Not recommended Not recommended Yes No
Unmanaged package Not recommended Not recommended Not recommended No

This dependency isn't supported, and we block the installation of managed 2GP packages in managed 1GP packaging orgs. We can
override this behavior on an individual basis. To share your scenario and request an override, log a case with Salesforce Partner Support.
We're investigating how to support this dependency scenario more broadly.

SEE ALSO:
Create Dependencies Between Second-Generation Managed Packages

Considerations for Promoting Packages with Dependencies

Scratch Orgs and Package Development

Scratch orgs are temporary Salesforce orgs intended for development and automation. They enable EDITIONS
source-driven deployments of Salesforce code and metadata. A scratch org is fully configurable,
allowing developers to emulate different Salesforce editions with various features and preferences.

Available in: Lightning
You can use a scratch org to develop the app you want to package, and you can also create scratch Experience

orgs to test out your package. Scratch orgs also help with contmu.ous |nt¢grat|on (Cl) processes to Available in: Developer,
autgmate package developmént steps. Forexample, ygu c.ould write a script that creates a package Enferprise, Performance,
version, creates a scratch org, installs the package version into the scratch org, runs Apex tests, and and Unlimited Editions
emails the test results to the release manager.

Enable Data Cloud for Scratch Orgs

To use Data Cloud components in scratch orgs or to add these components to a package, Data Cloud for Scratch Orgs must be enabled.
Log a case with Salesforce Partner Support and request that Data Cloud for Scratch Orgs be enabled on your Partner Business Org. Data
Cloud for Scratch Orgs is only available to scratch orgs associated with the Dev Hub in your Partner Business Org.

How Scratch Orgs Fit in the Package Development Workflow

Scratch orgs are an essential tool in both developing and testing the app you want to package. Scratch orgs also help with continuous
integration (Cl) processes to automate package development steps. For example, you could write a script that creates a package
version, creates a scratch org, installs the package version into the scratch org, runs Apex tests, and emails the test results to the
release manager.

Scratch Org Definition Files vs Org Shape in Package Development

The scratch org definition file is used when you create scratch orgs, and also when you create new package versions. The scratch
org definition file is a blueprint for your scratch org and defines the shape of the org you want for your package development work.

15

https://partners.salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_considerations_pkg_dependency.htm
https://partners.salesforce.com/

Second-Generation Managed Packages How Scratch Orgs Fit in the Package Development Workflow

When to Use Scratch Org Snapshots in Package Development

If the managed 2GP or unlocked package that you're building depends on one or more large packages, it can take a long time for
the package version creation CLI command to complete. Let’s talk about why that occurs, and how scratch org snapshots can
dramatically reduce how long it takes to create a new package version.

Create a Package Version Based on a Scratch Org Snapshot

If the dependent package your base package requires is stable, you can reduce the end-to-end package version creation time by
creating a scratch org snapshot.

Get Access to Scratch Orgs That Have Agentforce

Agentforce is a set of tools to create and customize Al agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done. Start your journey with Agentforce by testing
itin a scratch org.

Scratch Org Allocations for Salesforce Partners

To ensure optimal performance, Salesforce partners are allocated a set number of scratch orgs in their Partner Business Org (PBO).
These allocations determine how many scratch orgs you can create daily, and how many can be active at a given point.

Manage Scratch Orgs from the Dev Hub Org

You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

Supported Scratch Org Editions for Partners

Create partner edition scratch orgs from a Dev Hub partner business org.

How Scratch Orgs Fit in the Package Development Workflow

Scratch orgs are an essential tool in both developing and testing the app you want to package. Scratch orgs also help with continuous
integration (Cl) processes to automate package development steps. For example, you could write a script that creates a package version,
creates a scratch org, installs the package version into the scratch org, runs Apex tests, and emails the test results to the release manager.

Develop Your Package in a Scratch Org

When developing a package, it's preferable to use a namespaced scratch org. A namespaced scratch org prepends scratch org metadata
with the package namespace. This is true for both metadata you create in the scratch org, and any metadata you deploy to the scratch
org.

To create a namespaced scratch org, use your Dev Hub org to create the scratch org. Before you create the scratch org:

e Ensure that the namespace you plan to use is already associated with your Dev Hub org.

e Specify the namespace in your sfdx-project.json file.

e (reate a scratch org definition file and include any features, settings, or limits that your org needs.

When you create a scratch org both the namespace and ancestry information listed in sfdx-project.json file are pulled into
the scratch org. The ancestry information, specified as ancestorId or ancestorVersion inyour sfdx-project.json
file, seeds the scratch org with manageability rules, and later warns you if you attempt to change metadata in a way that's incompatible
with the specified ancestor version. This way, you learn of issues during development instead of during the creation of the next package
version.

To create a namespaced scratch org that includes ancestor information in the scratch org, run this CLI command.

sf org create scratch --target-dev-hub MyHub --definition-file
config/project-scratch-def.json

16

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm

Second-Generation Managed Packages Scratch Org Definition Files vs Org Shape in Package
Development

If you don't want the ancestor and manageability rules seeded into the scratch org, include the --no-ancestors flagwhen you
create the scratch org.

When you are ready to create a new package version, see Create Versions of a Second-Generation Managed Package.

Test Your Package in a Scratch Org

When testing your package, create a scratch org that doesn’t have a namespace. Use the ——no-namespace parameter when you
create the scratch org.

sf org create scratch --definition-file config/project-scratch-def.json --no-namespace
—--no-ancestors

After you create the scratch org, install the package into the scratch org, and begin testing.

Enable Data Cloud for Scratch Orgs

To use Data Cloud components in scratch orgs or to add these components to a package, Data Cloud for Scratch Orgs must be enabled.
Log a case with Salesforce Partner Support and request that Data Cloud for Scratch Orgs be enabled on your Partner Business Org. Data
Cloud for Scratch Orgs is only available to scratch orgs associated with the Dev Hub in your Partner Business Org.

SEE ALSO:
Salesforce DX Developer Guide: Create Scratch Orgs
Salesforce CLI Command Reference: org create scratch

Salesforce DX Developer Guide: Select the Salesforce Release for a Scratch Org

Scratch Org Definition Files vs Org Shape in Package Development

The scratch org definition file is used when you create scratch orgs, and also when you create new package versions. The scratch org
definition file is a blueprint for your scratch org and defines the shape of the org you want for your package development work.

Build Your Own Scratch Definition File

If you read How Scratch Orgs Fit in the Package Development Workflow on page 16 you might recall that the CLI command for creating
scratch orgs includes aflag called --definition-file.

sf org create scratch --target-dev-hub MyHub --definition-file
config/project-scratch-def.json

In this example, project-scratch-def. json is the scratch org definition file. To learn more about what can be specified in
this definition file, see Build Your Own Scratch Org Definition File in the Salesforce DX Developer Guide.

Similarly the CLI --definition-file flag can be used when creating a new package version.

sf package version create --package "Expenser App"
--definition-file config/project-scratch-def.json --code-coverage

When used in the package version create command,the scratch org definition file is used to specify the features, settings,
or limits that your package requires.

17

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_install_pkg_cli.htm
https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_create.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_create_scratch_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_version_selection.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm

Second-Generation Managed Packages When to Use Scratch Org Snapshots in Package Development

When to Use Org Shape

If you're developing managed packages to distribute on AppExchange, we expect that you know what features and settings your
packages depends on, and expect you to specify these requirements in a scratch org definition file. But there are scenarios like unlocked
packages, or if you're moving from 1GP to 2GP package development, where using Org Shape for Scratch Orgs can be useful.

During org shape creation, we capture the features, settings, edition, licenses, and limits of the specified source org. By using org shape
you don't have to manually list these items in the scratch org definition file.

@ Nofe: The source org you use for org shape can't be a sandbox or scratch org.

Later when you create a package version, specify the org ID for the source org in the scratch org definition file.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5"
}

For more detailed instructions on enabling and creating org shape, review Create a Scratch Org Based on an Org Shape in the Salesforce
DX Developer Guide.

If you're moving from managed 1GP package development to 2GP package development, creating an org shape of your 1GP packaging
org could be useful as you begin 2GP package development. Creating an org shape of your 1GP packaging org ensures that the features
required for your package metadata are specified.

SEE ALSO:
How Scratch Orgs Fit in the Package Development Workflow
Salesforce DX Developer Guide: Build Your Own Scratch Org Definition File
Salesforce DX Developer Guide: Create a Scratch Org Based on an Org Shape
Salesforce DX Developer Guide: Create a Scratch Org Based on an Org Shape

When to Use Scratch Org Snapshots in Package Development

If the managed 2GP or unlocked package that you're building depends on one or more large packages, it can take a long time for the
package version creation CLI command to complete. Let's talk about why that occurs, and how scratch org snapshots can dramatically
reduce how long it takes to create a new package version.

Whenyourunthe package version create CLIcommand, we create a scratch org behind the scenes. That scratch org serves
as a build org where we build your package. In the build org we install the dependent packages you specified, and deploy the package
metadata for the package version you're creating. If your dependent packages are large, the package install time for those dependent
packages extends the overall package creation time.

If the dependent packages that your base package requires are stable, you can reduce the end-to-end package version creation time
by creating a scratch org snapshot, and using that scratch org snapshot during package version creation.

A scratch org snapshot captures the state of a scratch org’s configuration so that you can use the snapshot to create scratch org replicas.
A snapshot is a point-in-time copy of a scratch org that includes installed packages, features, limits, licenses, metadata, and data. If you
install your dependent packages in the scratch org before you create the snapshot, and you specify the snapshot when you create a
new package version, the package build process bypasses these steps. Meaning, we don't install the dependent packages into the build
org, we use the snapshot instead. By not installing the dependent packages during package version creation, your package version
builds in a fraction of the time.

18

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_snapshots_intro.htm

Second-Generation Managed Packages Create a Package Version Based on a Scratch Org Snapshot

Keep in mind, the intention of scratch org snapshots in the package development cycle is to shorten the package creation time during
development. When you are ready to promote and release a package, you must create a new package version that doesn't rely on a
scratch org snapshot. Package versions created using scratch org snapshots can't be promoted to the released state.

@ Note: You can promote an unlocked package based on a snapshot. Only managed packages based on snapshots can't be
promoted to the released state.

SEE ALSO:
Create a Package Version Based on a Scratch Org Snapshot

Salesforce DX Developer Guide: Scratch Org Snapshots

Create a Package Version Based on a Scratch Org Snapshot

Ifthe dependent package your base package requires is stable, you can reduce the end-to-end package version creation time by creating
a scratch org snapshot.

If you haven't reviewed When to Use Scratch Org Snapshots in Package Development on page 18, review that topic before continuing.

There's more than one workflow you can follow when creating a package version based on a scratch org snapshot. You can start by
creating a scratch org, you can build your own scratch org definition file, or you can choose to use org shape to create a new scratch
org. Whichever path you choose, after the scratch org is created, you install all the dependent packages into it, and then take a snapshot
of the scratch org.

Sample Workflow

This workflow uses an org shape to create the initial scratch org where you'll install the stable dependent packages, and then create a
scratch org snapshot to create a package version.

1. Create the org shape.

sf org create shape --target-org source-orgl

2. Create a scratch org definition file that indicates the shape’s source org.

{

"orgName": "Salesforce",
"sourceOrg": "00DB1230400Ifx5"

3. Create a scratch org using the org shape.

sf org create scratch --duration-days 30 --no-namespace --no-ancestors --definition-file
config/scratch-def-with-shape-id.json --alias devl-with-shape

If your default Dev Hub org isn't the one that owns the org shape, indicate it on the command line.

4. Install the dependent packages.

sf package install --package 04txx --target-org devl-with-shape

5. Create a snapshot of the scratch org.

sf org create snapshot --name dhsnapshot --source-org devl-with-shape --target-dev-hub
dev-hub

19

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_snapshots_intro.htm

Second-Generation Managed Packages Get Access to Scratch Orgs That Have Agentforce

6. Create a new scratch org definition file and specify the snapshot name, then save the file.

{
"orgName": "Salesforce",
"snapshot": "dhsnapshot"

7. Create a package version using the org snapshot. This command is specifying the scratch org definition file that contains the snapshot
information in it.

sf package version create --package hc-extl --code-coverage --installation-key-bypass
—--async-validation --definition-file
scratch-def-with-snapshot-id.json

SEE ALSO:
When to Use Scratch Org Snapshots in Package Development
Salesforce DX Developer Guide: Create Org Shapes

Get Access to Scratch Orgs That Have Agentforce

Agentforce is a set of tools to create and customize Al agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done. Start your journey with Agentforce by testing it
in a scratch org.

If you don't already have a Partner Business Org (PBO), join the Salesforce Partner Community and request a PBO.

If you're new to creating scratch orgs, follow these steps to complete the one-time Dev Hub setup in your PBO. The Dev Hub is a feature
within an org that lets you create and manage scratch orgs, second-generation managed packages (2GP), and namespaces.

e Enable the Dev Hub and 2GP

e (reate a Developer Edition org using Environment Hub

e (reate a namespace in the Developer Edition org

e Link that namespace from your PBO. Linking the namespace lets you create 2GP packages that use that namespace.
e Authorize the Dev Hub org.

e (reate a Salesforce DX Project.

To create a scratch org with Agentforce and Prompt Builder enabled, use this sample project-scratch-def. json file (or
simply add the feature and setting shown in this sample to your existing scratch org definition file).

{

"orgName": "GenAI Scratch Org",
"edition": "Partner Developer",
"features": ["EinsteinlAIPlatform"],
"settings": {
"einsteinGptSettings" : {
"enableEinsteinGptPlatform" : true

}

To create a scratch org with the EinsteinTAIPlatform feature, the scratch org you create can be a Partner Developer, Partner Enterprise,
Developer, or Enterprise edition.

20

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_create.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_partner_join.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_partner_request_pbo.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/environment_hub_manage_create_org.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm

Second-Generation Managed Packages Get Access to Scratch Orgs That Have Agentforce

To create a scratch org, run this Salesforce CLI command. Update the definition-file name, alias, and target-dev-hub alias as needed.

sf org create scratch --definition-file config/my-agentforce-project-scratch-def.json
--alias MyNamespacedScratchOrg --set-default --target-dev-hub MyDevHubOrg

Scratch Orgs with both Agentforce and Data Cloud

For some use cases such as prompt templates that use RAG, Retrievers, or BYO LLM, a scratch org that has both GenAl and Data Cloud
functionality enabled is required.

Only include Data Cloud if it's required. Specifying Data Cloud in a scratch org significantly increases the time it takes for a scratch org
creation to complete.

@ Nofte: Including Data Cloud in a scratch org has a prerequisite. You must first open a case in the Salesforce Partner Community
to request for your PBO Dev Hub org to be granted permission to create Data Cloud scratch orgs. This request is only granted to

PBO orgs.
{
"orgName": "GenAI & Data Cloud Scratch Org",
"edition": "Partner Developer",
"features": ["CustomerDataPlatform", "CustomerDataPlatformLite","EinsteinlAIPlatform"],
"settings": {
"einsteinGptSettings" : {
"enableEinsteinGptPlatform" : true
}y
"customerDataPlatformSettings": {

"enableCustomerDataPlatform": true

}

Set up Agentforce in your Scratch Org

After your scratch org is created, follow these steps to start developing with Agentforce.
e (reate Agents manually in the scratch org.

e To use prompt templates with your Agent Actions, assign prompt template permissions.

SEE ALSO:
Packageable Agentforce Metadata
Trailhead: Quick Start: Build Your First Agent with Agentforce
Salesforce Help: Agentforce: Agents
Agentforce Developer Guide
Salesforce Help: The Building Blocks of Agents
Salesforce Help: Customize Your Agents with Topics and Actions
Salesforce Help: Considerations for Agents

Salesforce Help: Al Project Success

21

https://help.salesforce.com/s/articleView?id=sf.copilot_setup_enable.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_enable.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_packageable_agentforce_md.htm
https://trailhead.salesforce.com/content/learn/projects/quick-start-build-your-first-agent-with-agentforce
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/get-started.html
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics_actions.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.generative_ai_plan_project.htm&type=5&language=en_US

Second-Generation Managed Packages Scratch Org Allocations for Salesforce Partners

Scratch Org Allocations for Salesforce Partners

To ensure optimal performance, Salesforce partners are allocated a set number of scratch orgs in their Partner Business Org (PBO). These
allocations determine how many scratch orgs you can create daily, and how many can be active at a given point.

By default, Salesforce deletes scratch orgs and their associated ActiveScratchOrg records from your Dev Hub when a scratch org expires.
All partners get 100 Salesforce Limited Access - Free user licenses.

Active PBOs

e 150 active
e 300 daily

Trial PBOs

e 20 active
e 40 daily

Scratch Org Snapshot Allocations

The number of snapshots you can create (active and daily) is the same as the active scratch org allocation.

Package Version Creation Limits

The maximum number of package versions you can create per day is equal to the daily allocated scratch orgs. For example, if you're
allocated 300 daily scratch orgs, you're also allowed to create 300 package versions per day.

If you specify ——skipvalidation when creating a package version, the maximum number of package versions you can create
using skip validation is 500 per day.

Manage Scratch Orgs from the Dev Hub Org

You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

In the Dev Hub org, the ActiveScratchOrg standard object represents the scratch orgs that are currently in use. The ScratchOrglnfo
standard object represents the requests that were used to create scratch orgs and provides historical context.

1. Login tothe Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.
2. From the App Launcher, select Active Scratch Orgs to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. Todelete an active scratch org from the Active Scratch Orgs list view, choose Delete from the dropdown.

Deleting an active scratch org doesn't delete the request (ScratchOrglnfo) that created it, but it does free up a scratch org so that it
doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Infos from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

22

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_skip_validation.htm

Second-Generation Managed Packages Supported Scratch Org Editions for Partners

Deleting the request (ScratchOrglnfo) also deletes the active scratch org.

Supported Scratch Org Editions for Partners

Create partner edition scratch orgs from a Dev Hub partner business org.
Supported partner scratch org editions include:

e Partner Developer

e Partner Enterprise

e Partner Group

e Partner Professional

Indicate the partner edition in the scratch org definition file.
"edition": "Partner Enterprise",

If you attempt to create a partner scratch org and see this error, confirm that you're using an active partner business org. Contact the
Partner Community for further assistance.

ERROR: You don't have permission to create Partner Edition organizations.
To enable this functionality, please log a case in the Partner Community.

License limits for partner scratch orgs are similar to partner edition orgs created in Environment Hub. Get the details on the Partner
Community.

Workflow for Second-Generation Managed Packages

You can create and install a second-generation managed package (managed 2GP) directly from the command line.
Review and complete the steps in Before You Create Second-Generation Managed Packages before starting this workflow.
The basic managed 2GP workflow includes these steps. See specific topics for details about each step.

1. Create a DX project.

sf project generate --output-dir expense-manager-workspace --name expenser-app

2. Authorize the Dev Hub org.
sf org login web --set-default-dev-hub

When you perform this step, include the ---set-defaul t-dev-hub option. You canthen omit the Dev Hub username when
running subsequent Salesforce CLI commands.

O Tip: If you define an alias for each org you work with, it's easy to switch between different orgs from the command line. You
can authorize different orgs as you iterate through the package development cycle.

3. Create a scratch org and develop the app you want to package. You can use VS Code and the Setup Ul'in the scratch org to build
and retrieve the pieces you want to include in your package. Navigate to the expenser-app directory, and then run this command.

sf org create scratch --definition-file config/project-scratch-def.json

4. Verify that all package components are in the project directory where you want to create a package. If you're trying out the exact
steps and commands in this workflow, you must add at least one piece of metadata before you continue to the next step.

23

https://partners.salesforce.com/
https://partners.salesforce.com/s/education/general/Partner_Orgs
https://partners.salesforce.com/s/education/general/Partner_Orgs

Second-Generation Managed Packages Workflow for Second-Generation Managed Packages

"o

5. Inthe sfdx-project. json file, specify a namespace using the namespace attribute. For example: “namespace”: “exp-mgr”

If you specified a namespace when you created a Salesforce DX project in step one, you can skip this step. Before adding a namespace,
make sure that you've linked the namespace to your Dev Hub org.

6. From the Salesforce DX project directory, create the package.
sf package create --name "Expense Manager" --path force-app --package-type Managed
Your new managed 2GP package has the namespace you specified in the sfdx-project.json file.

@ Important: Afteryou create a package, you can't change or add a namespace, or change the Dev Hub the package is associated
with.

7. Reviewyour sfdx-project.json file. The CLI automatically updates the project file to include the package directory and
creates an alias based on the package name.

"packageDirectories": [
{
"path": "force-app",
"default": true,
"package": "Expense Manager",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT"

1,
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "51.0",
"packageAliases": {
"Expense Manager": "OHoxxx"

}

Notice the placeholder values for versionName and versionNumber. You can update these values, or indicate base packages
that this package depends on. Your project file displays the namespace you created.

Specify the features and org settings required for the metadata in your package using an external . json file, such as the scratch
org definition file. You can specify using the --definition-file flagwiththe sf package version create
command, or list the definition file in your sfdx-project.json file. See: Project Configuration File for a Second-Generation
Managed Package

8. Create a package version. This example assumes the package metadata is in the force-app directory.

sf package version create --package "Expense Manager" --code-coverage --installation-key
testl234 --wait 10

9. Install and test the package version in a scratch org. Use a different scratch org from the one you used in step three.

sf package install --package "Expense Manager@0.1.0-1" --target-org MyTestOrgl
--installation-key testl1234 --wait 10 --publish-wait 10

10. After the package is installed, open the scratch org to view the package.

sf org open --target-org MyTestOrgl

24

Second-Generation Managed Packages

Components Available in Second-Generation Managed
Packages

Package versions are beta until you promote them to a managed-released state. See: Release a Second-Generation Managed Package.

SEE ALSO:

Before You Create Second-Generation Managed Packages

Create and Register Your Namespace for Second-Generation Managed Packages

Project Configuration File for a Second-Generation Managed Package

Release a Second-Generation Managed Package

Components Available in Second-Generation Managed Packages

Each metadata component that you include in a second-generation managed package has certain rules that determine its behavior in
a subscriber org. Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version

is created and installed.

Before you review the details about the metadata components that can be included in a managed package, be sure you understand

the meaning of each manageability rule.

Table 1: Manageability Rules

Component Can Be Updated During Package Upgrade

Subscriber Can Delete Component

Package Developer Can Remove Component

If yes: The component can be updated during a package upgrade.
The component is first deployed to the subscriber org during the
initial package installation, and subsequent package upgrades
update the installed component.

If no: The component can't be updated during package upgrades.
Instead, it's only deployed to the subscriber org during the initial
package installation, and subsequent package upgrades don’t
update the component. Components in this category can typically
be modified by the admin in the subscriber org.

If yes: The subscriber or installer of the managed package can
delete the packaged component from their org. Deleted
components aren't reinstalled during a package upgrade.

If no: The subscriber or installer of the managed package can't
delete the packaged component from their org.

If yes: After the package that contains the component is promoted
and released, the package developer can choose to remove the
component in a future package version.

In most cases, removing components from a package version marks
the component as deprecated, and doesn't hard delete the
component from the subscriber org. These deprecated components
can be deleted by the admin of the subscriber org. For details about
which managed 2GP components are deprecated, see Remove
Metadata Components from Second-Generation Managed
Packages.

Torequest access to this feature, log a support case in the Salesforce
Partner Community.

25

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_before.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://partners.salesforce.com/partnerSupport
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Components Available in Second-Generation Managed

Packages

If no: After the package that contains the component is promoted
and released, the package developer can't remove the component
in a future package version.

Component Has IP Protection If yes: To protect the intellectual property of the developer, the

component’s metadata, such as Apex code or Custom Metadata
record information, is hidden in the installed org.

If no: The component is visible in the subscriber’s org.

Editable Properties After Package Promotion or Installation

Certain properties on metadata components are editable after the managed package is installed.

Only Package Developer Can Edit: The package developer can edit specific component properties. These properties are locked in
the subscriber’s org. During package upgrade, the changes made by the package developer are applied in the subscriber org. For
example, when you update the code in an Apex class or the custom permissions in a permission set, subscribers receive those
updates during their package upgrade.

Both Subscriber and Package Developer Can Edit: Both the subscriber and package developer can edit these component properties,
but developer changes are only applied to new subscriber installs. This approach prevents a package upgrade from overwriting
changes made by the subscriber. For example, the help text on a custom field, and the page layout of a custom object are editable
by both the subscriber and package developer. The subscriber can modify the page layout or help text, and trust that their changes
won't be overwritten by a future package upgrade.

Neither Subscriber or Package Developer Can Edit: After a package is promoted and released, these component properties are locked
and can't be edited by the package developer or the subscriber. For example, the APl names of packaged components are locked
and can't be edited after the package version is promoted and released.

Supported Components in Second-Generation Managed Packages

Account Plan Objective Measure Calculation Definition

Represents the definition of a target object, rollup field, and logic for calculating the current value of a sales account plan objective
measure.

Account Relationship Share Rule

Determines which object records are shared, how they're shared, the account relationship type that shares the records, and the level
of access granted to the records.

Action Link Group Template

Represents the action link group template. Action link templates let you reuse action link definitions and package and distribute
action links.

Action Plan Template

Represents an instance of an action plan template.

Actionable List Definition
Represents the data source definition details associated with an actionable list.

Actionable List Key Performance Indicator Definition
Represents the custom key performance indicators that are defined for a specific field in an object.

26

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Activation Platform
Represents the ActivationPlatform configuration, such as platform name, delivery schedule, output format, and destination folder.

AffinityScoreDefinition
Represents the affinity information used in calculations to analyze and categorize contacts for marketing purposes.

Agent Action

Represents an action, for use in Agentforce.
Agent Topic

Represents a topic, for use in Agentforce.

Al Application
Represents an instance of an Al application. For example, Einstein Prediction Builder.

Al Application Config
Represents additional prediction information related to an Al application.

AlUsecaseDefinition
Represents a collection of fields in a Salesforce org used to define a machine learning use case and get real-time predictions.

Analytics
Analytics components include analytics applications, dashboards, dataflows, datasets, lenses, recipes, and user XMD.

Analytics Visualization
Represents a Tableau Next visualization.

Analytics Workspace
Represents a Tableau Next workspace.

Apex Class

Represents an Apex Class. An Apex class is a template or blueprint from which Apex objects are created. Classes consist of other
classes, user-defined methods, variables, exception types, and static initialization code.

Apex Sharing Reason

Represents an Apex sharing reason, which is used to indicate why sharing was implemented for a custom object.

Apex Trigger

Represents an Apex trigger. A trigger is Apex code that executes before or after specific data manipulation language (DML) events
occur, such as before object records are inserted into the database, or after records have been deleted.

App Framework Template Bundle

Represents the app framework template bundle. Use these templates for Data Cloud and Tableau Next assets.

Application Subtype Definition
Represents a subtype of an application within an application domain.

AssessmentConfiguration

Represents a configuration for Assessment component. An AssessmentConfiguration entry indicates configuration for user flows
such as sending out emails or reminder actions on assessments initiated by the patient.

AssessmentQuestion
Represents the container object that stores the questions required for an assessment.

AssessmentQuestionSet
Represents the container object for Assessment Questions.

27

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Aura Component

Represents an Aura definition bundle. A bundle contains an Aura definition, such as an Aura component, and its related resources,
such as a JavaScript controller. The definition can be a component, application, event, interface, or a tokens collection.

Batch Calc Job Definition

Represents a Data Processing Engine definition.

Batch Process Job Definition
Represents the details of a Batch Management job definition.

Benefit Action
Represents details of an action that can be triggered for a benefit.

Bot Template
Represents the configuration details for a specific Einstein Bot template, including dialogs and variables.

Branding Set

Represents the definition of a set of branding properties for an Experience Builder site, as defined in the Theme panel in Experience
Builder.

Briefcase Definition

Represents a briefcase definition. A briefcase makes selected records available for specific users and groups to view when they're
offline in the Salesforce Field Service mobile app for iOS and Android.

Building Energy Intensity Record Type Configuration

Represents the setup object that contains the mapping between the Building Energy Intensity Record record type and internal
enums. You can primarily use this object for calculations across different record types.

Business Process

The BusinessProcess metadata type enables you to display different picklist values for users based on their profile.

Business Process Group
Represents the surveys used to track customers’ experiences across different stages in their lifecycle.

Business Process Type Definition
Define the types of business processes that are applied to a rule.

Care Benefit Verify Settings
Represents the configuration settings for benefit verification requests.

Care Limit Type
Defines the characteristics of limits on benefit provision.

Care Request Configuration
Represents the details for a record type such as service request, drug request, or admission request. One or more record types can
be associated with a care request.

Care System Field Mapping
Represents a mapping from source system fields to Salesforce target entities and attributes.

Channel Layout
Represents the metadata associated with a communication channel layout.

Chatter Extension
Represents the metadata used to describe a Rich Publisher App that's integrated with the Chatter publisher.

Claim Financial Settings
Represents the configuration settings for Insurance Claim Financial Services.

28

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

CommunicationChannelType
Represents the type of communication channel, such as WhatsApp and SMS, to use for referral promotions.

Community Template Definition
Represents the definition of an Experience Builder site template.

Community Theme Definition
Represents the definition of a theme for an Experience Builder site.

Compact Layout
Represents the metadata associated with a compact layout.

Conditional Formatting Ruleset

Represents a set of rules that define the style and visibility of conditional field formatting on Dynamic Forms-enabled Lightning page
field instances.

Connected App

Represents a connected app configuration. A connected app enables an external application to integrate with Salesforce using APIs
and standard protocols, such as SAML, OAuth, and OpenlD Connect.

Context Definition

A context definition defines the relationship between the nodes and the attributes within each node. For efficient data access, users
can use nodes and attributes to easily access the relevant data from the mapped data source. Various Salesforce products offer
predefined context definitions based on their use case.

Contract Type

A contract type is used to group contracts so that they exhibit similar characteristics. For example, the lifecycle states, the people
who access, the templates and clauses used.

Conversation Channel Definition

Represents the conversation channel definition that's implemented for Interaction Service for Bring Your Own Channel and Bring
Your Own Channel for CCaaS messaging channels.

Conversation Vendor Info

This setup object connects the partner vendor system to the Service Cloud feature.

CORS Allowlist
Represents an origin in the CORS allowlist.

CSP Trusted Site

Represents a trusted URL. For each CspTrustedSite component, you can specify Content Security Policy (CSP) directives and permissions
policy directives.

Custom Application

Represents a custom application.

Custom Button or Link

Represents a custom link defined in a home page component.

Custom Console Components

Represents a custom console component (Visualforce page) assigned to a CustomApplication that is marked as a Salesforce console.
Custom console components extend the capabilities of Salesforce console apps.

Custom Field on Standard or Custom Object

Represents the metadata associated with a field. Use this metadata type to create, update, or delete custom field definitions on
standard or custom objects.

29

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Custom Field on Custom Metadata Type
Represents a custom fields on the custom metadata type.

Custom Field Display
Represents the CustomFieldDisplay view type assigned to product attribute custom fields.

Custom Help Menu Section

Represents the section of the Lightning Experience help menu that the admin added to display custom, org-specific help resources
for the org. The custom section contains help resources added by the admin.

Custom Index

Represents an index used to increase the speed of queries.

Custom Label

The Customlabels metadata type allows you to create custom labels that can be localized for use in different languages, countries,
and currencies.

Custom Metadata Type Records

Represents a record of a custom metadata type.

Custom Metadata Type

Represents a record of a custom metadata type.

Custom Notification Type

Represents the metadata associated with a custom notification type.

Custom Object

Represents a custom object that stores data unique to an org or an external object that maps to data stored outside an org.
Custom Object Translation

This metadata type allows you to translate custom objects for a variety of languages.

Custom Permission

Represents a permission that grants access to a custom feature.

Custom Tab

Represents a custom tab. Custom tabs let you display custom object data or other web content in Salesforce.

Dashboard

Represents a dashboard. Dashboards are visual representations of data that allow you to see key metrics and performance at a glance.
DataCalcInsightTemplate

Represents the object template for data calculations and insights of Data Cloud objects in DataCalclnsightTemplate. These objects
are added inside the data kit.

Data Connector Ingest API

Represents the connection information specific to Ingestion API.

Data Connector S3

Represents the connection information specific to Amazon S3.

Data Kit Object Dependency

Represent the object dependencies and relationships between different objects in Data Kit Object Dependency. These objects are
added inside the data kit.

Data Kit Object Template
Represents the object in Data Kit Object Template. This object template is added inside the data kit.

30

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

DataObjectBuildOrgTemplate
Represents the output objects of the components the user includes in a data kit.

Data Package Kit Definition
Represents the top-level Data Kit container definition. Content objects can be added after the Data Kit is defined.

Data Package Kit Object
Represents the object in Data Kit Content Object. These objects are added inside the data kit.

Data Source
Used to represent the system where the data was sourced.

Data Source Bundle Definition
Represents the bundle of streams that a user adds to a data kit.

Data Source Object
Represents the object from where the data was sourced.

Data Src Data Model Field Map
Represents the entity that's used to store the design-time bundle-level mappings for the data source fields and data model fields.

Data Stream Definition
Contains Data Ingestion information such as Connection, APl and File retrieval settings.

Data Stream Template
Represents the data stream that a user adds to a data kit.

DataWeaveResource

Represents the DataWeaveScriptResource class that is generated for all DataWeave scripts. DataWeave scripts can be directly invoked
from Apex.

Decision Matrix Definition

Represents a definition of a decision matrix.

Decision Matrix Definition Version
Represents a definition of a decision matrix version.

Decision Table
Represents the information about a decision table.

Decision Table Dataset Link

Represents the information about a dataset link associated with a decision table. In a dataset link, select an object for whose records,
the decision table must provide an outcome.

Digital Experience

Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s
content items.

Digital Experience Bundle

Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s
content items.

Decision Table

Represents the information about a decision table.

Disclosure Definition

Represents information that defines a disclosure type, such as details of the publisher or vendor who created or implemented the
report.

31

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Disclosure Definition Version
Represents the version information about the disclosure definition.

Disclosure Type
Represents the types of disclosures that are done by an individual or an organization and the associated metadata.

Discovery Al Model
Represents the metadata associated with a model used in Einstein Discovery.

Discovery Goal
Represents the metadata associated with an Einstein Discovery prediction definition.

Discovery Story
Represents the metadata associated with a story used in Einstein Discovery.

Document
Represents a Document. All documents must be in a document folder, such as sampleFolder/TestDocument.

Document Generation Setting
Represents an org's settings for automatic document generation from templates.

Eclair GeoData

Represents an Analytics custom map chart. Custom maps are user-defined maps that are uploaded to Analytics and are used just
as standard maps are. Custom maps are accessed in Analytics from the list of maps available with the map chart type.

Email Template (Classic)

Use email templates to increase productivity and ensure consistent messaging. Email templates with merge fields let you quickly
send emails that include field data from Salesforce records.

Email Template (Lightning)

Represents a template for an email, mass email, list email, or Sales Engagement email.

Embedded Service Config
Represents a setup node for creating an Embedded Service for Web deployment.

Embedded Service Menu Settings

Represents a setup node for creating a channel menu deployment. Channel menus list the ways in which customers can contact
your business.

Enablement Measure Definition

Represents an Enablement measure, which specifies the job-related activity that a user performs to complete a milestone or outcome
in an Enablement program. A measure identifies a source object and optional related objects, with optional field filters and filter
logic, for tracking the activity.

Enablement Program Definition

Represents an Enablement program, which includes exercises and measurable milestones to help users such as sales reps achieve
specific outcomes related to your company’s revenue goals.

Enablement Program Task Subcategory

Represents a custom exercise type that an Enablement admin adds to an Enablement program in Program Builder. A custom exercise
type also requires a corresponding EnblProgramTaskDefinition record for Program Builder and corresponding Learningltem and
LearningltemType records for when users take the exercise in the Guidance Center.

Entitlement Template

Represents an entitlement template. Entitlement templates are predefined terms of customer support that you can quickly add to
products.

32

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

ESignature Config

Using the Electronic Signature Configuration setup, the system admin must define the required configurations to support the
e-signature APIs and UL

ESignature Envelope Config

Using the Electronic Signature Envelope Config the system admin can define the default reminders and expiry for the envelopes
submitted for eSignature.

Event Relay

Represents an event relay that you can use to send platform events and change data capture events from Salesforce to Amazon
EventBridge.

Explainability Action Definition

Define where the metadata for your Decision Explainer business rules are stored in Public Sector Solutions.

Explainability Action Version

Define and store versions of the explainability actions used by your Decision Explainer business rules in Public Sector Solutions.

Explainability Message Template
Represents information about the template that contains the decision explanation message for a specified expression set step type.

Expression Set Definition
Represents an expression set definition.

Expression Set Definition Version
Represents a definition of an expression set version.

Expression Set Object Alias
Represents information about the alias of the source object that's used in an expression set.

Expression Set Message Token

Represents a token that's used in an explainability message template. The token can be replaced with an expression set version
resource that the template is used in. This object is available in APl version 59.0 and later.

External Auth Identity Provider
Represents the external auth identity provider that obtains OAuth tokens for callouts that use named credentials.

External Client App Canvas Settings
Represents an external client app's canvas app settings.

External Client App Header
Represents the header file for an external client application configuration.

External Client App Notification Settings
Represents the settings configuration for the external client app’s notifications plugin.

External Client App OAuth Settings
Represents the settings configuration for the external client app’s OAuth plugin.

External Client App Push Settings
Represents the settings configuration for the external client app’s push notification plugin.

External Credential
Represents the details of how Salesforce authenticates to the external system.

External Data Connector
Used to represent the object where the data was sourced.

33

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

External Data Source

Represents the metadata associated with an external data source. Create external data sources to manage connection details for
integration with data and content that are stored outside your Salesforce org.

External Data Transport Field Template

Represents the definition of a Data Cloud schema field.

External Data Transport Field

Use ExternalDataTranField to add a field to the ExternalDataTranObject in your managed packages. ExternalDataTranObject is a Data
Cloud schema object.

External Data Transport Object Template

Represents the definition of a Data Cloud schema object.

External Data Transport Object
To include a Data Cloud schema object in your managed packages, add ExternalDataTranObject.

External Document Storage Configuration

Represents configuration, which admin makes in setup to specify the drive, path, and named credential to be used for storing
documents on external drives.

External Services

Represents the External Service configuration for an org.

Feature Parameter Boolean

Represents a boolean feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Feature Parameter Date

Represents a date feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Feature Parameter Integer

Represents an integer feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

FieldMappingConfig

Represents the configuration for fields mapped between a source object and one or more destination objects and fields. This object
is available in APl version 63.0 and later.

Field Set

Represents a field set. A field set is a grouping of fields. For example, you could have a field set that contains fields describing a user's
first name, middle name, last name, and business title.

Field Source Target Relationship

Stores the relationships between a data model object (DMO) and its fields. For example, the Individual.ld field has a one-to-many
relationship (1:M) with the ContactPointEmail Partyld field.

Flow

Represents the metadata associated with a flow. With Flow, you can create an application that navigates users through a series of
pages to query and update records in the database. You can also execute logic and provide branching capability based on user input
to build dynamic applications.

Flow Category
Represents a list of flows that are grouped by category.

34

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Flow Definition
Represents the flow definition’s description and active flow version number.

Flow Test

Represents the metadata associated with a flow test. Before you activate a record-triggered flow, you can test it to verify its expected
results and identify flow run-time failures.

Folder

Represents a folder.

Fuel Type
Represents a custom fuel type in an org.

Fuel Type Sustainability Unit of Measure

Represents a mapping between the custom fuel types and their corresponding unit of measure (UOM) values defined by a customer
inan org.

Fundraising Config

Represents a collection of settings to configure the fundraising product.

Gateway Provider Payment Method Type

Represents an entity that allows integrators and payment providers to choose an active payment to receive an order's payment data
rather than allowing the Salesforce Order Management platform to select a default payment method.

Gen Ai Planner Bundle

Represents a planner for an agent or agent template. It's a container for all the topics and actions used to interact with a large
language model (LLM).

Generative Al Prompt Template

Represents a generative Al prompt template, for use in Agentforce.

Global Picklist

Represents the metadata for a global picklist value set, which is the set of shared values that custom picklist fields can use. A global
value setisn't a field itself. In contrast, the custom picklist fields that are based on a global picklist are of type ValueSet.

Home Page Component

Represents the metadata associated with a home page component. You can customize the Home tab in Salesforce Classic to include
components such as sidebar links, a company logo, a dashboard snapshot, or custom components that you create. Use to create,
update, or delete home page component definitions.

Home Page Layout

Represents the metadata associated with a home page layout. You can customize home page layouts and assign the layouts to
users based on their user profile.

Identity Verification Proc Def

Represents the definition of the identity verification process.

Inbound Network Connection

Represents a private connection between a third-party data service and a Salesforce org. The connection is inbound because the
callouts are coming into Salesforce.

IndustriesEinsteinFeatureSettings

Represents the settings for enabling the Industries Einstein feature.

IntegrationProviderDef
Represents an integration definition associated with a service process. Stores data for the Industries: Send Apex Async Request and
Industries: Send External Async Request invocable actions.

35

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Invocable Action Extension
Represents extended metadata for Apex classes that are used as invocable actions or data types. This allows developers to specify
how to present the action's inputs without writing custom code.

LearningAchievementConfig
Represents the mapping details between a Learning Achievement type and a Learning Achievement record type.

Learning ltem Type

Represents a custom exercise type that an Enablement user takes in an Enablement program in the Guidance Center. A custom
exercise type also requires a corresponding Learningltem record for the Guidance Center and corresponding EnblProgramTaskDefinition
and EnblProgramTaskSubCategory records for when admins create a program in Program Builder.

Letterhead

Represents formatting options for the letterhead in an email template. A letterhead defines the logo, page color, and text settings
for your HTML email templates. Use letterheads to ensure a consistent look and feel in your company’s emails.

Life Science Config Category
Represents the category that a Life Sciences configuration record is organized into.

Life Science Config Record

Represents a configuration record for Life Sciences. This object is a child of Life Science Config Category.

Lightning Bolt

Represents the definition of a Lightning Bolt Solution, which can include custom apps, flow categories, and Experience Builder
templates.

Lightning Message Channel

Represents the metadata associated with a Lightning Message Channel. A Lightning Message Channel represents a secure channel
to communicate across Ul technologies, such as Lightning Web Components, Aura Components, and Visualforce.

Lightning Page

Represents the metadata associated with a Lightning page. A Lightning page represents a customizable screen made up of regions
containing Lightning components.

Lightning Type

Represents a custom Lightning type. Use this type to override the default user interface to create a customized appearance of
responses on the custom agent’s action input and output. Deploy this bundle to your organization to implement the overrides.

Lightning Web Component
Represents a Lightning web component bundle. A bundle contains Lightning web component resources.

List View
ListView allows you to see a filtered list of records, such as contacts, accounts, or custom objects.

Live Chat Sensitive Data Rule
Represents a rule for masking or deleting data of a specified pattern. Written as a regular expression (regex). Use this object to mask
or delete data of specified patterns, such as credit card, social security, or phone and account numbers.

Loyalty Program Setup

Represents the configuration of a loyalty program process including its parameters and rules. Program processes determine how
new transaction journals are processed. When new transaction journals meet the criteria and conditions for a program process,
actions that are set up in the process are triggered for the transaction journals.

Managed Content Type

Represents the definition of custom content types for use with Salesforce CMS. Custom content types are displayed as forms with
defined fields.

36

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Marketing App Extension
Represents an integration with a third-party app or service that generates prospect external activity.

Marketing App Extension Activity

Represents an Activity Type, which is a prospect activity that occurs in a third-party app and can be used in Account Engagement
automations.

Market Segment Definition

Represents the field values for MarketSegmentDefinition. MarketSegmentDefinition is used to store the exportable metadata of a
segment, such as segment criteria and other attributes. Developers can create segment definition packages, pass segment definition
in the form of data build tool (DBT), and publish it on AppExchange for subscriber organizations to install and instantiate these
segments.

MktCalculatedInsightsObjectDef

Represents Calculated Insight definition such as expression.

MktDataConnection

Represents the connection information of an external connector that can ingest data to Data Cloud, read data from the source, or
write data to the source in Data Cloud.

MktDataTranObject

An entity that is used to deliver (aka transport) information from the source to a target (target will be called a landing entity).This
can be the schema of a file, API, Event, or other means of transporting data, such as SubscriberFile1.csv, or SubscriberCDCEvent.
Named Credential

Represents a named credential, which specifies the URL of a callout endpoint and its required authentication parameters in one
definition. A named credential can be specified as an endpoint to simplify the setup of authenticated callouts.

Object Source Target Map

Contains the object-level mappings between the source and the target objects. The source and target objects can be an
MktDatalakeObject or an MktDataModelObject. For example, an Email source object can be mapped to the ContactPointEmail
object.

OcrSampleDocument

Represents the details of a sample document or a document type that's used as a reference while extracting and mapping information
from a customer form.

OcrTemplate

Represents the details of the mapping between a form and a Salesforce object using Intelligent Form Reader.

Outbound Network Connection

Represents a private connection between a Salesforce org and a third-party data service. The connection is outbound because the
callouts are going out of Salesforce.

Page Layout

Represents the metadata associated with a page layout.

Path Assistant

Represents Path records.

Payment Gateway Provider

Represents the metadata associated with a payment gateway provider.

Permission Set

Represents a set of permissions that's used to grant more access to one or more users without changing their profile or reassigning
profiles. You can use permission sets to grant access but not to deny access.

37

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Permission Set Groups

Represents a group of permission sets and the permissions within them. Use permission set groups to organize permissions based
on job functions or tasks. Then, you can package the groups as needed.

Platform Cache

Represents a partition in the Platform Cache.

Platform Event Channel
Represents a channel that you can subscribe to in order to receive a stream of events.

Platform Event Channel Member

Represents an entity selected for Change Data Capture notifications on a standard or custom channel, or a platform event selected
on a custom channel.

Platform Event Subscriber Configuration

Represents configuration settings for a platform event Apex trigger, including the batch size, the trigger's running user, and parallel
subscription settings.

Pricing Action Parameters

Represents a pricing action associated to a context definition and a pricing procedure.

Pricing Recipe

Represents one out of various data models or sets of entities of a particular cloud that'll be consumed by the pricing data store during
design and run time.

Procedure Output Resolution

Represents the pricing resolution for an pricing element determined using strategy name and formula.

Process

Use Flow instead.

Process Flow Migration

Represents a process's migrated criteria and the resulting migrated flow.
Product Attribute Set

Represents the ProductAttribute information being used as and attribute such as color_g, size_c.

Product Specification Type

Represents the type of product specification provided by the user to make the product terminology unique to an industry. A product
specification type is associated with a product specification record type.

Product Specification Record Type

Represents the relationship between industry-specific product specifications and the product record type.

Prompts (In-App Guidance)
Represents the metadata related to in-app guidance, which includes prompts and walkthroughs.

Quick Action
Represents a specified create or update quick action for an object that then becomes available in the Chatter publisher.

Recommendation Strategy

Represents a recommendation strategy. Recommendation strategies are applications, similar to data flows, that determine a set of
recommendations to be delivered to the client through data retrieval, branching, and logic operations.

Record Action Deployment
Represents configuration settings for the Actions & Recommendations, Action Launcher, and Bulk Action Panel components.

38

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Record Alert Data Source Expression Set Definition
Represents information about the data source for a record alert and the association with an expression set definition.

Record Type

Represents the metadata associated with a record type. Record types let you offer different business processes, picklist values, and
page layouts to different users. Use this metadata type to create, update, or delete record type definitions for a custom object.
RedirectWhitelistUrl

Represents a trusted URL that's excluded from redirection restrictions when the redirectionWarning or redirectBlockModeEnabled
field on the SessionSettings Metadata type is set to true.

Referenced Dashboard
Represents the ReferencedDashboard object in CRM Analytics. A referenced dashboard stores information about an externally
referenced dashboard.

Registered External Service
Represents a registered external service, which provides an extension or integration.

RelationshipGraphDefinition
Represents a definition of a graph that you can configure in your organization to traverse object hierarchies and record details, giving
you a glimpse of how your business works.

Remote Site Setting
Represents a remote site setting.

Report
Represents a custom report.

Report Type

Represents the metadata associated with a custom report type. Custom report types allow you to build a framework from which
users can create and customize reports.

ServiceProcess

Represents a process created in Service Process Studio and its associated attributes.

Slack App (Beta)

Represents a Slack app.

Service Catalog Category

Represents the grouping of individual catalog items in Service Catalog.

Service Catalog Filter Criteria

Represents an eligibility rule that determines if a Service Catalog user has access to a catalog item.
Service Catalog Item Definition

Represents the entity associated with a specific, individual service available in the Service Catalog.
Service Catalog Fulfillment Flow

Represents the flow associated with a specific catalog item in the Service Catalog.

Stationary Asset Environmental Source Record Type Configuration

Represents the setup object that contains the mapping between the Stationary Asset Environmental Source record type and internal
enums. You can primarily use this object for calculations across different record types.

Static Resource
Represents a static resource file, often a code library in a ZIP file.

39

Second-Generation Managed Packages Components Available in Second-Generation Managed
Packages

Streaming App Data Connector

Represents the connection information specific to Web and Mobile Connectors.

Sustainability UOM

Represents information about the additional unit of measure values defined by a customer.

Sustainability UOM Conversion

Represents information about the unit of measure conversion for the additional fuel types defined by a customer.
Timeline Object Definition

Represents the container that stores the details of a timeline configuration. You can use this resource with Salesforce objects to see
their records' related events in a linear time-sorted view.

Timesheet Template

Represents a template for creating time sheets in Field Service.

Transaction Processing Type

Represents the processing constraint settings for a transaction processing request.

Translation

Add translations to your managed packages.

Ul Object Relation Config

Represents the admin-created configuration of the object relation Ul component.

User Access Policy

Represents a user access policy.

Validation Rule

Represents a validation rule, which is used to verify that the data a user enters in a record is valid and can be saved.
Vehicle Asset Emissions Source Record Type Configuration

Represents the setup object that contains the mapping between the Vehicle Asset Emissions Source record type and internal enums.
You can primarily use this object for calculations across different record types.

View Definition (Beta)
Represents a view definition on a Slack app.

Virtual Visit Config
Represents an external video provider configuration, which relays events from Salesforce to the provider.

Visualforce Component
Represents a Visualforce component.

Visualforce Page
Represents a Visualforce page.

Wave Analytic Asset Collection
A collection of CRM Analytics assets.

Wave Application
A CRM Analytics application.

Wave Component
A CRM Analytics dashboard component.

Wave Dataflow
A CRM Analytics data prep dataflow.

40

Second-Generation Managed Packages Account Plan Objective Measure Calculation Definition

Wave Dashboard
A CRM Analytics dashboard.

Wave Dataset
A CRM Analytics dataset.

Wave Lens
A CRM Analytics lens.

Wave Recipe
A CRM Analytics data prep recipe.

Wave Template Bundle
A CRM Analytics template bundle.

Wave Xmd
The extended metadata for CRM Analytics dataset fields and their formatting for dashboards and lenses.

Web Store Template
Represents a configuration for creating commerce stores.

Workflow Alert
WorkflowAlert represents an email alert associated with a workflow rule.

Workflow Field Update
WorkflowFieldUpdate represents a workflow field update.

Workflow Knowledge Publish
WorkflowKnowledgePublish represents Salesforce Knowledge article publishing actions and information.

Workflow Outbound Message
WorkflowOutboundMessage represents an outbound message associated with a workflow rule.

Workflow Rule
This metadata type represents a workflow rule.

Workflow Task
This metadata type references an assigned workflow task.

Account Plan Obijective Measure Calculation Definition

Represents the definition of a target object, rollup field, and logic for calculating the current value of a sales account plan objective
measure.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

4

Second-Generation Managed Packages Account Relationship Share Rule

Package Developer Can Remove Component From Package No

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e Description, DeveloperName, MasterlLabel, RollupType, Status, TargetField, TargetObject
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: AccountPlanObjMeasCalcDef

Component Type in 1GP Package Manager Ul: Account Plan Objective Measure Calculation Definition

Documentation
Sales Account Plan Objectives, Measures, and Calculation Definitions

Account Relationship Share Rule

Determines which object records are shared, how they're shared, the account relationship type that shares the records, and the level of
access granted to the records.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Name

42

https://help.salesforce.com/s/articleView?id=sales.account_plans_objective_measures.htm&type=5&language=en_US

Second-Generation Managed Packages Action Link Group Template

e Developer Name

e Description

e Account Relationship Type

e Access Level

e Object Type

e Account to Criteria Field

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: AccountRelationshipShareRule

Use Case
To share data between external accounts.

License Requirements
Orgs with Digital Experiences enabled can use this package.

Documentation
Salesforce Help: Account Relationships and Account Relationship Data Sharing Rules

Action Link Group Template

Represents the action link group template. Action link templates let you reuse action link definitions and package and distribute action
links.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

43

https://help.salesforce.com/s/articleView?id=platform.networks_partner_account_relationships_and_sharing.htm&type=5&language=en_US

Second-Generation Managed Packages Action Plan Template

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ActionLinkGroupTemplate

Component Type in 1GP Package Manager Ul: Action Link Group Template

Documentation
Salesforce Help: Action Link Templates

Action Plan Template

Represents an instance of an action plan template.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

44

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=platform.action_link_group_template.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Actionable List Definition

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All attributes

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ActionPlanTemplate

Documentation
Salesforce Help: Action Plans

Actionable List Definition

Represents the data source definition details associated with an actionable list.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All attributes

Both Package Developer and Subscriber Can Edit

45

https://help.salesforce.com/s/articleView?id=ind.fsc_action_plans.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Actionable List Key Performance Indicator Definition

e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ActionableListDefinition

Component Type in 1GP Package Manager Ul: ActionableListDefinition

Documentation
Salesforce Help: Actionable Segmentation

Actionable List Key Performance Indicator Definition

Represents the custom key performance indicators that are defined for a specific field in an object.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes, Supported in both 1GP and 2GP packages.
Component Has IP Protection No

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All attributes

Both Package Developer and Subscriber Can Edit

e All attributes

Neither Package Developer or Subscriber Can Edit

46

https://help.salesforce.com/s/articleView?id=ind.actionable_segmentation.htm&type=5&language=en_US
https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Activation Platform

e None

More Information

Feature Name
Metadata Name: ActnblListKeyPrfmindDef

Component Type in 1GP Package Manager Ul: ActnblListKeyPrfmIndDef

License Requirements
Actionable Segmentation

Documentation
Salesforce Help: Create Custom Key Performance Indicators

Salesforce Help: ActnblListKeyPrfmIndDef

Activation Platform

Represents the ActivationPlatform configuration, such as platform name, delivery schedule, output format, and destination folder.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e DataConnector
e Description

e LogoUrl

e MasterLabel

e QOutputFormat
e RefreshMode

47

https://help.salesforce.com/s/articleView?id=ind.create_custom_kpis.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/sforce_api_objects_actnbllistkeyprfminddef.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Activation Platform

° Type

Both Package Developer and Subscriber Can Edit

e Enabled (only subscriber editable)

e IncludeSegmentNames (only subscriber editable)
Neither Package Developer or Subscriber Can Edit

e ID

e QutputGrouping

e PeriodicRefreshFrequency

e RefreshFrequency

More Information
Feature Name
Metadata Name: ActivationPlatform
Component Type in 1GP Package Manager Ul: ActivationPlatform

Use Case
Allows ISVs to specify capabilities of their Activation Platform integrations and publish it on AppExchange for subscriber organizations
to install and instantiate instances of the platform as a disparate activation target.

Considerations When Packaging
Some upgrade scenarios are not support:

e Adding a new required field

e Removing a previously supported ID type

e Removing a previously supported optional field or required field

e (Changing a previously supported field property from optional to required

Some update scenarios are supported and don't automatically cascade to Activation Target or Activations created before the upgrade
installations:

e Adding anewID type

e Adding of a new optional field

e Adding a new hidden field

e Value change on a previously supported hidden field

To apply updates to future Activation run jobs, the user must edit and resave all Activation Targets created before the upgrade.
Developers provide post-install instructions informing the subscriber of this required action anytime a change is made in a new
version release.

License Requirements
Data Cloud enabled orgs can access this package.

Post Install Steps
An admin from the subscriber org enables the activation platform to start using this platform in Activation creations.

Documentation
Metadata API Developer Guide: ActivationPlatform

48

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_activationplatform.htm

Second-Generation Managed Packages

AffinityScoreDefinition

AffinityScoreDefinition

Represents the affinity information used in calculations to analyze and categorize contacts for marketing purposes.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes
No
Yes

No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e AffinityScoreType

e NumberOfMonths

e NumberOfRanges

e SourceFieldApiNamelList

e TargetFieldApiNameList

e ScoreRangelList

Both Package Developer and Subscriber Can Editv
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: AffinityScoreDefinition

Documentation

® Fundraising Metadata API Types: AffinityScoreDefinitions

49

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.nonprofit_cloud.meta/nonprofit_cloud/fundraising_affinityscoredefinition_metadata_api.htm

Second-Generation Managed Packages Agent Action

e Salesforce Help: Set Up RRM Scoring

e Salesforce Help: Scoring Frameworks Help Increase Fundraising Success

Agent Action

Represents an action, for use in Agentforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No (However, actions can incorporate flows or Apex code that do

have IP protection.)

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e |sConfirmationRequired

e MasterLabel

Action Input Fields:

e (CopilotAction.IsUserinput

e Description

e [sPll

e Properties (Inherited from invocationTarget like flows or Apex code.)
e Title (Inherited from invocationTarget like flows or Apex code.)

e Required

e Lightning.Type

Action Output Fields:

e Description

50

https://help.salesforce.com/s/articleView?id=sfdo.npc_fr_set_up_configure_fundraising.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.npc_fr_scoring_frameworks_help_increase_fundraising_success.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages

e (opilotAction.IsDisplayable

o [Pl

e (CopilotAction.IsUsedByPlanner

e Properties (Inherited from invocationTarget like flows or Apex code.)

e Title (Inherited from invocationTarget like flows or Apex code.)
Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName
® InvocationTarget

¢ InvocationTargetType

More Information

Feature Name
Metadata Name: GenAiFunction

Component Type in 1GP Package Manager Ul: Generative Al Function Definition

Use Case
Provide actions that customers can add to their own topics and agents.

Considerations When Packaging

When creating an Agent Action of type Apex, the Apex class, invocable Apex method, and any invocable Apex variables must all be
marked as global. If any of these are public or private, the Apex method won't appear in the list of options to add to the Agent
Action, and won't be invoked by an Agent at runtime.

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: Agentforce Actions

Metadata API Developer Guide: GenAiFunction

Agent Topic

Represents a topic, for use in Agentforce.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes

51

Agent Topic

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaifunction.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_actions.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaifunction.htm

Second-Generation Managed Packages Al Application

Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e MasterLabel

e Scope

e AiPluginUtterances

e GenAiFunctions

e GenAiPluginlnstructions

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e DeveloperName

e PluginType

More Information

Feature Name
Metadata Name: GenAiPlugin

Component Type in 1GP Package Manager Ul: Generative Al Plugin Definition

Use Case
Provide topics that customers can add to their own agents. Actions can be added to topics.

Considerations When Packaging

Subscribers can't edit which actions are associated with a managed-installed topic. Instead, subscribers must manually create a copy
of the topic and then assign actions to their copy of the topic. We're working to improve this experience.

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: Agentforce Topics

Al Application

Represents an instance of an Al application. For example, Einstein Prediction Builder.

52

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaiplugin.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics.htm&language=en_US

Second-Generation Managed Packages Al Application Config

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Type

Both Package Developer and Subscriber Can Edit

e Status
e Externalld
e MIExternalld

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: AlApplication

Considerations When Packaging

AlApplication is the parent entity for all Einstein configuration entities. Packaging of Einstein features must always begin with the
selection of one or more AlApplications. To create a package with ML Prediction Definition, select the parent AlApplication (Type =
PredictionBuilder). To create a package with ML Recommendation Definition, select the parent AlApplication (Type =
RecommendationBuilder). Packaging automatically analyzes the relationships and includes the associated MLPredictionDefinitions,
MLRecommendationDefinitions, and MLDataDefinitions necessary to fully define the Einstein configuration.

Documentation
Metadata API Developer Guide: AlApplication

Salesforce Help: Einstein Prediction Builder

Salesforce Help: Einstein Recommendation Builder

Al Application Config

Represents additional prediction information related to an Al application.

53

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_aiapplication.htm
https://help.salesforce.com/s/articleView?id=sales.custom_ai_prediction_builder_lm.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.custom_ai_recommendation_builder.htm&type=5&language=en_US

Second-Generation Managed Packages Al Application Config

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e AlApplicationld

Both Package Developer and Subscriber Can Edit

e Rank

e IsInsightReasonEnabled

e IsInsightReasonEnabled
e AlScoringMode

e Externalld
Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: AlApplicationConfig

Considerations When Packaging

AlApplicationConfig is always associated with an AlApplication. Packaging of Einstein features must always begin with the selection
of one or more AlApplications. To create a package with Al Application Config, select the parent AlApplication. Packaging automatically
analyzes the relationships and includes the associated MLApplicationConfig, MLPredictionDefinition, MLRecommendationDefinitions,
and MLDataDefinitions necessary to fully define the Einstein configuration.

Documentation
Metadata API Developer Guide: AlApplicationConfig

Salesforce Help: Einstein Prediction Builder

Salesforce Help: Einstein Recommendation Builder

54

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_aiapplicationconfig.htm
https://help.salesforce.com/s/articleView?id=sales.custom_ai_prediction_builder_lm.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.custom_ai_recommendation_builder.htm&type=5&language=en_US

Second-Generation Managed Packages AlUsecaseDefinition

AlUsecaseDefinition

Represents a collection of fields in a Salesforce org used to define a machine learning use case and get real-time predictions.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All the AlUsecaseDefinition fields

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: AlUsecaseDefinition

Component Type in 1GP Package Manager Ul: AlUsecaseDefinition

Use Case
Al Usecase Definition lets you ship data that can be used to set up use cases for which you want to generate real-time predictions.
This data includes machine learning models and feature extractors required to generate the real-time predictions.

License Requirements
This feature is available with the CRM Plus license and the use case-related product’s CRM license.

Documentation
Industries Common Resources Developer Guide: Al Accelerator

55

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/ai_accelerator.htm

Second-Generation Managed Packages Analytics

Salesforce Help: Al Accelerator

Analytics

Analytics components include analytics applications, dashboards, dataflows, datasets, lenses, recipes, and user XMD.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation

Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes (Analytics Dataflow only).

All other analytics components can't be updated.

Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (Analytic snapshot only). Supported in managed 2GP packages
only.

All other analytics components can't be removed.

Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

More Information
To include analytics components in a managed 2GP package, include EinsteinAnalyticsPlus in your scratch org definition file.
To enable analytics in a 1GP packaging org, see Basic CRM Analytics Platform Setup in Salesforce Help.

For more details, see CRM Analytics Packaging Considerations.

Analytics Visualization

Represents a Tableau Next visualization.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

56

https://help.salesforce.com/s/articleView?id=ind.ai_accelerator.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_einsteinanalyticsplus
https://help.salesforce.com/s/articleView?id=analytics.bi_help_setup_basic.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=analytics.bi_packaging_considerations.htm&type=5&language=en_US

Second-Generation Managed Packages Analytics Workspace

Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e Description

Neither Package Developer or Subscriber Can Edit

e Full Name
e |5 Original
e \ersion

More Information

Feature Name
Metadata Name: AnalyticsVisualization

Component Type in 1GP Package Manager Ul: Analytics Visualization

License Requirements
Tableau Next Admin or Tableau Next Analyst permission sets

Documentation
For more information on Tableau Next visualizations, see Build Insightful Visualizations in Tableau Next in Salesforce Help.

Analytics Workspace

Represents a Tableau Next workspace.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

57

https://help.salesforce.com/s/articleView?id=analytics.tua_create_viz.htm&language=en_US

Second-Generation Managed Packages Apex Class

e Label

Both Package Developer and Subscriber Can Edit
e Description

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: AnalyticsWorkspace

Component Type in 1GP Package Manager Ul: Analytics Workspace

License Requirements
Tableau Next Admin or Tableau Next Analyst permission sets

Documentation
For more information on Tableau Next workspaces, see Tableau Next Workspaces in Salesforce Help.

Apex Class

Represents an Apex Class. An Apex class is a template or blueprint from which Apex objects are created. Classes consist of other classes,
user-defined methods, variables, exception types, and static initialization code.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (if not set to global access).

Supported in both 1GP and 2GP packages.

Component Has IP Protection Yes

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

58

https://help.salesforce.com/s/articleView?id=analytics.tua_workspace.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Apex Class

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e API Version
e (Code

Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: ApexClass

Component Type in 1GP Package Manager Ul: Apex Class
Considerations When Packaging

e Any Apex that is included as part of a package must have at least 75% cumulative test coverage. Each trigger must also have
some test coverage. When you upload your package to AppExchange, all tests are run to ensure that they run without errors. In
addition, all tests are run when the package is installed in the installer's org. If any test fails, the installer can decide whether to
install the package.

e Managed packages receive a unique namespace. This namespace is prepended to your class names, methods, variables, and so
on, which helps prevent duplicate names in the installer’s org.

* Inasingletransaction, you can only reference 10 unique namespaces. For example, suppose that you have an object that executes
a class in a managed package when the object is updated. Then that class updates a second object, which in turn executes a
different class in a different package. Even though the first package didn't access the second package directly, the access occurs
in the same transaction. It's therefore included in the number of namespaces accessed in a single transaction.

e Ifyou're exposing any methods as Web services, include detailed documentation so that subscribers can write external code
that calls your Web service.

e Ifan Apex class references a custom label and that label has translations, explicitly package the individual languages desired to
include those translations in the package.

e Ifyoureference a custom object’s sharing object (such as MyCustomObject__share) in Apex, you add a sharing model dependency
to your package. Set the default org-wide access level for the custom object to Private so other orgs can install your package
successfully.

e The code contained in an Apex class, trigger, or Visualforce component that's part of a managed package is obfuscated and
can't be viewed in an installing org. The only exceptions are methods declared as global. You can view global method signatures
in an installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view
their packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

* Youcanusethe deprecated annotation in Apex to identify global methods, classes, exceptions, enums, interfaces, and
variables that can't be referenced in later releases of a managed package. So you can refactor code in managed packages as the
requirements evolve. After you create another package version as Managed - Released, new subscribers that install the latest
package version can't see the deprecated elements, while the elements continue to function for existing subscribers and AP
integrations.

e Apex code that refers to Data Categories can't be uploaded.

59

Second-Generation Managed Packages

Apex Sharing Reason

e Before deleting Visualforce pages or global Visualforce components from your package, remove all references to public Apex
classes and public Visualforce components. After removing the references, upgrade your subscribers to an interim package

version before you delete the page or global component.

Usage Limits

The maximum number of class and trigger code units in a deployment of Apex s 7500. For more information, see Execution Governors

and Limits in the Apex Developer Guide.

Documentation

Second-Generation Managed Packaging Developer Guide: Namespace-Based Visibility for Apex Classes in Second-Generation Managed

Packages

First-Generation Managed Packaging Developer Guide: About APl and Dynamic Apex Access in Packages

First-Generation Managed Packaging Developer Guide:Using Apex in Group and Professional Editions

Apex Sharing Reason

Represents an Apex sharing reason, which is used to indicate why sharing was implemented for a custom object.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes
No
No

No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Reason Label

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Reason Name

More Information

Feature Name
Metadata Name: SharingReason

Component Type in 1GP Package Manager Ul: Apex Sharing Reason

60

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_gov_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_gov_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/about_client_security_profile.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/dev_packages_apex_ge_pe.htm

Second-Generation Managed Packages Apex Trigger

Considerations When Packaging
Apex sharing reasons can be added directly to a package, but are only available for custom objects.

Documentation
Metadata API Developer Guide: SharingReason

Apex Trigger

Represents an Apex trigger. A trigger is Apex code that executes before or after specific data manipulation language (DML) events occur,
such as before object records are inserted into the database, or after records have been deleted.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e APl Version
e (Code

Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: ApexTrigger

61

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_apexsharingreason.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages App Framework Template Bundle

Component Type in 1GP Package Manager Ul: Apex Trigger

Documentation
Apex Developer Guide: Triggers

App Framework Template Bundle

Represents the app framework template bundle. Use these templates for Data Cloud and Tableau Next assets.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

e MaxAppCount

Both Package Developer and Subscriber Can Edit
e Description

e TemplateBadgelcon

Neither Package Developer or Subscriber Can Edit

e AssetVerion

e TemplateType

More Information

Feature Name
Metadata Name: AppFrameworkTemplateBundle

Component Type in 1GP Package Manager Ul: App Framework Template Bundle

Considerations When Packaging
Data Cloud and Tableau Next assets are installed in subscriber orgs via templates using the AppFrameworkTemplateBundle. The
template framework supports the data sync and orchestration needed for visualization assets, along with customizations for each
org.

62

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_triggers.htm

Second-Generation Managed Packages Application Subtype Definition

License Requirements
Tableau Included App Manager permission set

Application Subtype Definition

Represents a subtype of an application within an application domain.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Label

e Developer Name

e Description

e Application Usage Type

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ApplicationSubtypeDefinition

Documentation
Industries Common Resources Developer Guide: AssessmentSubtypeDefinition

63

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/tooling_api_objects_applicationsubtypedefinition.htm

Second-Generation Managed Packages AssessmentConfiguration

AssessmentConfiguration

Represents a configuration for Assessment component. An AssessmentConfiguration entry indicates configuration for user flows such
as sending out emails or reminder actions on assessments initiated by the patient.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in managed 1GP packages only.
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All but DeveloperName

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: AssessmentConfiguration

Component Type in 1GP Package Manager Ul: AssessmentConfiguration

Documentation
Health Cloud Developer Guide: AssessmentConfiguration

AssessmentQuestion

Represents the container object that stores the questions required for an assessment.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

64

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_assessmentconfiguration.htm

Second-Generation Managed Packages

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

AssessmentQuestionSet

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes
No
Yes

No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e All except DeveloperName

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: AssessmentQuestion

Documentation

Industries Common Resources Developer Guide: AssessmentQuestion

AssessmentQuestionSet

Represents the container object for Assessment Questions.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade

Subscriber Can Delete Component From Org

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes

No

65

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_assessmentquestion.htm

Second-Generation Managed Packages Aura Component

Package Developer Can Remove Component From Package Yes

Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All except DeveloperName

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: AssessmentQuestionSet

Documentation
Industries Common Resources Developer Guide: AssessmentQuestionSet

Aura Component

Represents an Aura definition bundle. A bundle contains an Aura definition, such as an Aura component, and its related resources, such
as a JavaScript controller. The definition can be a component, application, event, interface, or a tokens collection.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

You can build Lightning components using two programming models: the Lightning Web Components model, and the original Aura
Components model.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.

66

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_assessmentquestionset.htm

Second-Generation Managed Packages Batch Calc Job Definition
Component Has IP Protection No

When a package developer removes an Aura or Lightning web component from a package, the component remains in a subscriber’s
org after they install the upgraded package. The administrator of the subscriber's org can delete the component, if desired. This behavior
is the same for a Lightning web component or an Aura component with a public or global access value.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e APIVersion

e Description

e [abel

e Markup

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Aura Component
Metadata Name: AuraDefinitionBundle

Component Type in 1GP Package Manager Ul: Aura Component Bundle

Documentation
Lightning Aura Components Developer Guide

Batch Calc Job Definition

Represents a Data Processing Engine definition.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No

67

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.lightning.meta/lightning/

Second-Generation Managed Packages Batch Process Job Definition

Component Has IP Protection Yes, except templates

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Entire Data Processing Engine definition

Both Package Developer and Subscriber Can Edit
e [abel

e Description

e Status

Neither Package Developer or Subscriber Can Edit
e APIName

e URL

More Information

Feature Name
Metadata Name: BatchCalcJobDefinition

Component Type in 1GP Package Manager Ul: Batch Calculation Job Definition

Use Case
Data Processing Engine helps you transform data that's available in your Salesforce org and write back the transformation results as
new or updated records. You can transform the data for standard and custom objects using Data Processing Engine definitions.

License Requirements
Either Financial Services Cloud, Manufacturing Cloud, Loyalty Management, Net Zero Cloud, or Rebate Management

Data Pipelines

Documentation
Salesforce Help: Data Processing Engine

Batch Process Job Definition

Represents the details of a Batch Management job definition.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

68

https://help.salesforce.com/s/articleView?id=ind.dpe_intro.htm&type=5&language=en_US

Second-Generation Managed Packages Benefit Action

Package Developer Can Remove Component From Package No

Component Has IP Protection Yes, except templates

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Entire Batch Management job

Both Package Developer and Subscriber Can Edit

e Label

e Description

e Status
Neither Package Developer or Subscriber Can Edit

e APIName
e URL

More Information

Feature Name
Metadata Name: BatchProcessJobDefinition

Component Type in 1GP Package Manager Ul: Batch Process Job Definition

Use Case
Automate the processing of records in scheduled flows with Batch Management. With Batch Management, you can process a high
volume of standard and custom object records.

License Requirements
Either Loyalty Management, Manufacturing Cloud, or Rebate Management

System Administrator Profile

Documentation
Salesforce Help: Batch Management

Benefit Action

Represents details of an action that can be triggered for a benefit.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

69

https://help.salesforce.com/s/articleView?id=ind.concept_batch_management.htm&type=5&language=en_US

Second-Generation Managed Packages Bot Template

Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes, except templates

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Entire Benefit Action record
Both Package Developer and Subscriber Can Edit
e Label

e Description

e Status
Neither Package Developer or Subscriber Can Edit

e APIName
e URL

More Information

Feature Name
Metadata Name: BenefitAction

Component Type in 1GP Package Manager Ul: Benefit Action

Use Case
Benefit Actions are actions that can be triggered for a loyalty program benefit.

License Requirements
Loyalty Management permission set license

Documentation
Salesforce Help: Benefit Action

Bot Template

Represents the configuration details for a specific Einstein Bot template, including dialogs and variables.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org Yes

70

https://help.salesforce.com/s/articleView?id=xcloud.benefit_actions.htm&type=5&language=en_US

Second-Generation Managed Packages Bot Template

Package Developer Can Remove Component From Package Yes

Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Bot Dialog Groups

e Bot Dialogs

e (Conversation Context Variables

e (Conversation Languages

e (Conversation Definition Goals

e Conversation System Dialogs

e (Conversation Variables

e Description

e Entry Dialog

* |con

e Main Menu Dialog

e Label

e MIDomain

e Rich Content Enabled

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: BotTemplate

Component Type in 1GP Package Manager Ul: Bot Template

Documentation
Salesforce Help: Create an Einstein Bot Template

Salesforce Help: Create a Template from an Einstein Bot
Salesforce Help: Package an Einstein Bot Template

Metadata API Developer Guide: BotTemplate

71

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=service.bots_service_create_new_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=service.bots_service_create_template_bot.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=service.bots_service_create_package_template.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_bottemplate.htm

Second-Generation Managed Packages Branding Set

Branding Set

Represents the definition of a set of branding properties for an Experience Builder site, as defined in the Theme panel in Experience
Builder.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

@ Notfe: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

e brandingSetProperty

e description

® masterLabel

° lype

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: BrandingSet

Relationship to Other Components
BrandingSet can't be added to a package by itself. BrandingSet is included automatically in a package if it's referenced by another
object in the package, such as CommunityThemeDefinition, LightningExperienceTheme, or EmbeddedServiceMenuSettings.

Documentation
Salesforce Help: Use Branding Sets in Experience Builder

72

https://help.salesforce.com/s/articleView?id=experience.community_designer_brandsets.htm&type=5&language=en_US

Second-Generation Managed Packages Briefcase Definition

Briefcase Definition

Represents a briefcase definition. A briefcase makes selected records available for specific users and groups to view when they're offline
in the Salesforce Field Service mobile app for iOS and Android.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package No

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Entire briefcase

Both Package Developer and Subscriber Can Edit
e Active

Neither Package Developer or Subscriber Can Edit

e Full Name

More Information

Feature Name
Metadata Name: BriefcaseDefinition

Component Type in 1GP Package Manager Ul: Briefcase Definition

Considerations When Packaging
As a best practice, package Briefcase Definition with IsActive set to false. If you package Briefcase Definition with IsActive set to true,
the package installation fails if installing the package exceeds any limits.

Usage Limits
All Briefcase Builder limits apply to a Briefcase Definition package.

Relationship to Other Components
After you install the package, assign the briefcase to the application that the briefcase's data is for.

Documentation
Salesforce Help: Briefcase Builder

73

https://help.salesforce.com/s/articleView?id=xcloud.briefcase_builder_limits_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.briefcase_builder_overview.htm&type=5&language=en_US

Second-Generation Managed Packages Building Energy Intensity Record Type Configuration

Building Energy Intensity Record Type Configuration

Represents the setup object that contains the mapping between the Building Energy Intensity Record record type and internal enums.
You can primarily use this object for calculations across different record types.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: BldgEnrgyIntensityCnfg

Component Type in 1GP Package Manager Ul: Building Energy Intensity Record Type Configuration

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new stationary asset types for end users.

License Requirements
e Net Zero Cloud Growth license or Net Zero Cloud Starter license
e Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

e Net Zero Cloud
e Manage Carbon Accounting

e Manage Building Energy Intensity

74

Second-Generation Managed Packages Business Process

Documentation
e Salesforce Help: Set Up Record Types for Net Zero Cloud
e Salesforce Help: Benchmark Building Energy Intensity Data

Business Process

The BusinessProcess metadata type enables you to display different picklist values for users based on their profile.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
e Only Package Developer Can EditNone
e Both Package Developer and Subscriber Can EditAll attributes

e Neither Package Developer or Subscriber Can EditNone

More Information

Feature Name
Metadata Name: BusinessProcess

Use Case
You can use this component to define different picklist values that you associate with record types.

Relationship to Other Components
Record types of corresponding entities.

Documentation
Salesforce Help: Tailor Business Processes to Different Users Using Record Types

75

https://help.salesforce.com/s/articleView?id=ind.netzero_setup_record_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_manager_manage_bei.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=platform.customize_recordtype.htm&type=5&language=en_US

Second-Generation Managed Packages Business Process Group

Business Process Group

Represents the surveys used to track customers’ experiences across different stages in their lifecycle.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All Business Process Group fields including Business Process Definition and Business Process Feedback.
Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e Developer Name

e Customer Satisfaction Metric

More Information

Feature Name
Metadata Name: BusinessProcessGroup

Component Type in 1GP Package Manager Ul: Business Process Group

Use Case
Business Process Group lets you ship groupings relevant to survey metrics that are captured as part of any purchase or product
lifecycle. For a specific business process group, you can define different stages and associate relevant questions from one or more
surveys for reporting purposes.

License Requirements
This feature is available with the Feedback Management - Growth license.

Relationship to Other Components
This feature can be used in conjunction with Surveys and Survey Invitation Rules Flow types, and their corresponding dependencies.

Documentation
Metadata API Developer Guide: BusinessProcessGroup

Salesforce Help: Track Satisfaction Across a Customer's Lifecycle

76

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_businessprocessgroup.htm
https://help.salesforce.com/s/articleView?id=xcloud.task_customer_lifecycle_maps.htm&type=5&language=en_US

Second-Generation Managed Packages Business Process Type Definition

Business Process Type Definition

Define the types of business processes that are applied to a rule.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Label

e Developer Name

e Description

e Application Usage Type

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: BusinessProcessTypeDefinition

Care Benefit Verify Settings

Represents the configuration settings for benefit verification requests.

77

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Care Benefit Verify Settings

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e MasterLabel

e ServiceApexClass

e ServiceNamedCredential

e UriPath

e isDefault

e GeneralPlanServiceTypeCode

e ServiceTypeSourceSystem

e OrganizationName

e DefaultNpi

e (CodeSetType

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: CareBenefitVerifySettings

Component Type in 1GP Package Manager Ul: Care Benefit Verification Settings

Use Case
Provides out-of-the-box configuration settings for benefit verification requests in Health Cloud.

License Requirements
Industries Health Cloud

Relationship to Other Components
CareBenefitVerifySettings can contain ApexClass as well as NamedCredentials.

78

Second-Generation Managed Packages Care Limit Type

Documentation
Health Cloud Developer Guide: CareBenefitVerifySettings

Care Limit Type

Defines the characteristics of limits on benefit provision.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e LimitType

e MetricType

e MasterLabel

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: CareLimitType

Component Type in 1GP Package Manager Ul: Care Limit Type

Use Case
Provide the characteristics of limits on benefit provision in Health Cloud.

License Requirements
Industries Health Cloud Add On or an org with a Health Cloud Financial Data Platform license

Documentation
Health Cloud Developer Guide: CarelLimitType

79

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carebenefitverifysettings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carelimittype.htm

Second-Generation Managed Packages Care Request Configuration

Care Request Configuration

Represents the details for a record type such as service request, drug request, or admission request. One or more record types can be
associated with a care request.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e MasterLabel

e (areRequestType

e (areRequestRecordType

e (areRequestRecords

e IsDefaultRecordType

Both Package Developer and Subscriber Can Edit
® [sActive

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: CareRequestConfiguration

Component Type in 1GP Package Manager Ul: Care Request Configuration

Use Case
Provides the details for a record type such as a service request, drug request, or admission request in Health Cloud.

License Requirements
Industries Health Cloud Add On an org with a Health Cloud Utilization Mgmt Platform license

Relationship to Other Components
Ensure that the record type specified in the Case Record Type field in CareRequestConfiguration is available in the subscriber org.
Otherwise, the package must include the record type.

80

Second-Generation Managed Packages Care System Field Mapping

Documentation
Health Cloud Developer Guide: CareRequestConfiguration

Care System Field Mapping

Represents a mapping from source system fields to Salesforce target entities and attributes.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e External ID Field

e s Active

e [abel

e Source System

e Target Object

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: CareSystemFieldMapping

Component Type in 1GP Package Manager Ul: Care System Field Mapping

Use Case
Provides an out-of-the-box mapping for an external system to Salesforce for the Care Program Enrollment or Remote Monitoring
features in Health Cloud.

License Requirements
Industries Health Cloud

81

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carerequestconfiguration.htm

Second-Generation Managed Packages Channel Layout

Documentation
Health Cloud Developer Guide: CareSystemFieldMapping

Channel Layout

Represents the metadata associated with a communication channel layout.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: Channellayout

Component Type in 1GP Package Manager Ul: Communication Channel Layout

Considerations When Packaging
ChannellLayout can only be installed in Salesforce Classic orgs with Knowledge enabled.

ChannelLayout includes the article type * kawv, which is not supported by Lightning Knowledge.

If you try to install ChannellLayout into an org with Lightning Knowledge enabled, this message is displayed: “When Lightning
Knowledge is enabled, you can't add an article type”.

License Requirements
Enable Knowledge in Salesforce Classic orgs.

Documentation
Salesforce Knowledge Developer Guide: Channellayout

82

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/sforce_api_objects_caresystemfieldmapping.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.knowledge_dev.meta/knowledge_dev/meta_articletype_channellayout.htm

Second-Generation Managed Packages

Chatter Extension

Chatter Extension

Represents the metadata used to describe a Rich Publisher App that's integrated with the Chatter publisher.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

First-Generation Managed Packages (1GP)
Yes
No
No

Yes

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Description

e Header Text

e Hover Text

* |con

e Name

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e Composition CMP

e Render CMP

e Type

More Information

Feature Name
Metadata Name: ChatterExtension

Documentation
Metadata APl Developer Guide: ChatterExtension

Object Reference for the Salesforce Platform: ChatterExtension

Claim Financial Settings

Represents the configuration settings for Insurance Claim Financial Services.

83

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_chatterextensions.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_chatterextension.htm

Second-Generation Managed Packages CommunicationChannelType

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e (laim Coverage Pending Authority Status
e (laim Coverage Payment Detail Pending Authority Status
e (laim Pending Authority Status

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ClaimFinancialSettings

Documentation
Salesforce Help: Claim Financial Settings

CommunicationChannelType

Represents the type of communication channel, such as WhatsApp and SMS, to use for referral promotions.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No

84

https://help.salesforce.com/s/articleView?id=ind.insurance_finauth_claim_financial_settings.htm&language=en_US

Second-Generation Managed Packages Community Template Definition

Package Developer Can Remove Component From Package No

Component Has IP Protection Yes

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e APIName

More Information

Feature Name
Metadata Name: CommunicationChannelType

Use Case
Use WhatsApp as a communication channel for referral promotions.

License Requirements
Referral Marketing permission set license

Documentation
Salesforce Help: Communication Assets

Community Template Definition

Represents the definition of an Experience Builder site template.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

85

https://help.salesforce.com/s/articleView?id=mktg.referral_promotion_wizard_step_content.htm&type=5&language=en_US

Second-Generation Managed Packages Community Theme Definition

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Al

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CommunityTemplateDefinition

Component Type in 1GP Package Manager Ul: Lightning Community Template

Use Case
Share or distribute your Experience Builder site templates.

License Requirements
Customize Application user permission

Create and Set Up Experiences user permission
View Setup and Configuration user permission

Relationship to Other Components
If you add CommunityTemplateDefinition to a package, you must also add CommunityThemeDefinition to the package.

Documentation
Salesforce Help: Export a Customized Experience Builder Template for a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

Community Theme Definition

Represents the definition of a theme for an Experience Builder site.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

86

https://help.salesforce.com/s/articleView?id=experience.community_builder_export_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.community_builder_export_package.htm&type=5&language=en_US

Second-Generation Managed Packages Compact Layout

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Al

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CommunityThemeDefinition

Component Type in 1GP Package Manager Ul: Lightning Community Theme

Use Case
Share or distribute your Experience Builder site themes.

License Requirements
Customize Application user permission

Create and Set Up Experiences user permission
View Setup and Configuration user permission

Relationship to Other Components
CommunityThemeDefinition must contain a BrandingSet.

CommunityThemeDefinition can be added to a package without a CommunityTemplateDefinition, but Community TemplateDefinition
must contain a CommunityThemeDefinition to be added to a package.

Documentation
Salesforce Help: Export a Customized Experience Builder Theme for a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

Compact Layout

Represents the metadata associated with a compact layout.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.

87

https://help.salesforce.com/s/articleView?id=experience.community_builder_export_theme.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.community_builder_export_package.htm&type=5&language=en_US

Second-Generation Managed Packages Conditional Formatting Ruleset

Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Allattributes

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CompactLayout

Component Type in 1GP Package Manager Ul: Compact Layout

Documentation
Metadata API Developer Guide: CompactlLayout

Conditional Formatting Ruleset

Represents a set of rules that define the style and visibility of conditional field formatting on Dynamic Forms-enabled Lightning page
field instances.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

88

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_compactlayout.htm

Second-Generation Managed Packages Connected App

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e (Conditional formatting ruleset

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: UiFormatSpecificationSet

Component Type in 1GP Package Manager Ul: Ul Format Specification Set

Relationship to Other Components
You can only assign a conditional formatting ruleset to a field on a Dynamic Forms-enabled Lightning page.

Documentation
Salesforce Help: Conditional Field Formatting in Lightning App Builder

Metadata API Developer Guide: UiFormatSpecificationSet

Connected App

Represents a connected app configuration. A connected app enables an external application to integrate with Salesforce using APls and
standard protocols, such as SAML, OAuth, and OpenID Connect.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

89

https://help.salesforce.com/s/articleView?id=platform.conditional_formatting_overview.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_uiformatspecificationset.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e Access Method

e (Canvas App URL

e (allback URL

e Connected App Name
e (Contact Email

e (Contact Phone

e Description

e |con URL

e Info URL

e Trusted IP Range

e Locations

* Logolmage URL

e OAuth Scopes

Both Package Developer and Subscriber Can Edit

e ACSURL

e EntityID

e [P Relaxation

e Mobile Start URL

e Permitted Users

e Refresh Token Policy

e SAML Attributes

e Service Provider Certificate
e Start URL

e Subject Type

Neither Package Developer or Subscriber Can Edit

e APIName

e (reated Date/By

e Consumer Key

e Consumer Secret

e Installed By

e Installed Date

e last Modified Date/By

e Version

More Information

Connected App

For details on packaging a connected app in 2GP managed packages, see Package Connected Apps in Second-Generation Managed

Packaging in the Second-Generation Managed Packaging Developer Guide.

90

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_connected_app.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_connected_app.htm

Second-Generation Managed Packages Context Definition

e Subscribers orinstallers of a package can't delete a connected app by itself, they can only uninstall the package. When a developer
deletes a connected app from a package, the connected app is deleted in the subscriber’s org during a package upgrade.

e To publish updates for a connected app that's part of a managed package, you typically push a new managed package version
and upgrade subscriber orgs to the new version. But if you update a connected app’s PIN Protect settings, it's not necessary to
push a new managed package upgrade. After saving changes to PIN Protect settings, these updates are automatically published
to subscriber orgs.

e The following connected app settings can't be updated with managed package patches.

Mobile App settings

Push messaging, including Apple, Android, and Windows push notifications

Canvas App settings
SAML settings

To update these settings, publish a new package version.

e Ifyou push upgrade a package containing a connected app whose OAuth scope or IP ranges have changed from the previous
version, the upgrade fails. This security feature blocks unauthorized users from gaining broad access to a customer org by
upgrading an installed package. A customer can still perform a pull upgrade of the same package. This upgrade is allowed
because it's with the customer’s knowledge and consent.

e For connected apps created before Summer '13, the existing install URL is valid until you package and upload a new version.
After you upload a new version of the package with an updated connected app, the install URL no longer works.

SEE ALSO:

Package Connected Apps in Second-Generation Managed Packaging

Context Definition

A context definition defines the relationship between the nodes and the attributes within each node. For efficient data access, users can
use nodes and attributes to easily access the relevant data from the mapped data source. Various Salesforce products offer predefined
context definitions based on their use case.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Only if the component doesn't contain any active context
definitions.

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package No

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

91

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_connected_app.htm

Second-Generation Managed Packages Contract Type

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e Standard Context Definitions

More Information

Feature Name
Metadata Name: ContextDefinition

Component Type in 1GP Package Manager Ul: Context Definition

Documentation
Industries Common Resources Developer Guide: Context Definition

Salesforce Help: Context Service

Contract Type

A contract type is used to group contracts so that they exhibit similar characteristics. For example, the lifecycle states, the people who
access, the templates and clauses used.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Both Package Developer and Subscriber Can Edit
e Is Default
e Sub Types
Neither Package Developer or Subscriber Can Edit

e Name

92

https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_contextdefinition.htm
https://help.salesforce.com/s/articleView?id=ind.context_service_context_definitions.htm&type=5&language=en_US

Second-Generation Managed Packages Conversation Channel Definition

More Information

Feature Name
Metadata Name: ContractType

Use Case
Allows admin users to modify Contract Type properties.

License Requirements
CLM Admin Permission Set (CLM User PSL).

Documentation
Salesforce Contracts Developer Guide: ContractType

Conversation Channel Definition

Represents the conversation channel definition that's implemented for Interaction Service for Bring Your Own Channel and Bring Your
Own Channel for CCaaS messaging channels.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Connected App

e Description

e [abel

e Name

Both Package Developer and Subscriber Can Edit

e None

93

https://developer.salesforce.com/docs/atlas.en-us.260.0.clm_developer_guide.meta/clm_developer_guide/meta_contracttype.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Conversation Vendor Info

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ConversationChannelDefinition

Component Type in 1GP Package Manager Ul: ConversationChannelDefinition

Use Case
To enable and set up Bring Your Own Channel, integrating third-party messaging services with Salesforce.

To enable and set up Bring Your Own Channel for Contact Center as a Service (CCaa$), integrating a third party CCaa$S provider with
Salesforce.

License Requirements
Service Cloud license with Digital Engagement add-on license

Post Install Steps
Set up and enable Bring Your Own Channel or Bring Your Own Channel for CCaaS.

Relationship to Other Components
Linked to ConversationVendorinfo.

Documentation
Salesforce Developer Documentation: Bring Your Own Channel

Salesforce Developer Documentation: Bring Your Own Channel for CCaa$
Salesforce Help: Set Up Bring Your Own Channel
Salesforce Help: Set Up Bring Your Own Channel for CCaaS

Conversation Vendor Info

This setup object connects the partner vendor system to the Service Cloud feature.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes

94

https://developer.salesforce.com/docs/service/messaging-partner/overview
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/overview
https://help.salesforce.com/s/articleView?id=service.partner_messaging_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=service.byoc_ccaas_setup.htm&type=5&language=en_US

Second-Generation Managed Packages CORS Allowlist

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ConversationVendorinfo

Component Type in 1GP Package Manager Ul: ConversationVendorinfo

Use Case
Include information about a Service Cloud Voice implementation.

License Requirements
Enable Service Cloud Voice in your org.

Documentation
Service Cloud Voice for Partner Telephony Developer Guide: ConversationVendorlnfo

Object Reference for the Salesforce Platform: ConversationVendorlnfo

CORS Allowlist

Represents an origin in the CORS allowlist.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

95

https://developer.salesforce.com/docs/atlas.en-us.260.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/sforce_api_objects_conversationvendorinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_conversationvendorinfo.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages CSP Trusted Site

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Url pattern

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CorsWhitelistOrigin

Component Type in 1GP Package Manager Ul: CORS Allowed Origin List

Use Case
Customers can add a URL pattern that includes an HTTPS protocol and a domain name. Including a port number is optional. The
wildcard character (*) is supported only for the second-level domain name, for example, https://* .example.com.

Documentation
Salesforce Help: Enable CORS for OAuth Endpoints

Salesforce Help: Configure Salesforce CORS Allowlist

CSP Trusted Site

Represents a trusted URL. For each CspTrustedSite component, you can specify Content Security Policy (CSP) directives and permissions
policy directives.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

96

https://help.salesforce.com/s/articleView?id=xcloud.remoteaccess_oauth_endpoints_cors.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.extend_code_cors.htm&type=5&language=en_US

Second-Generation Managed Packages CSP Trusted Site

Both Package Developer and Subscriber Can Edit
® context

e description

e endpointUrl

e isActive

e isApplicableToConnectSrc
e isApplicableToFontSrc

e isApplicableToFrameSrc

e isApplicableTolmgSrc

e isApplicableToMediaSrc

e isApplicableToStyleSrc

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CspTrustedSite

Component Type in 1GP Package Manager Ul: CspTrustedSite

Use Case
The Lightning Component framework uses Content Security Policy (CSP) to impose restrictions on content. The main objective of
CSPis to help prevent cross-site scripting (XSS) and other code injection attacks. If your package includes sites or pages that load
content from an external (non-Salesforce) server or via a WebSocket connection, add the external server as a CSP trusted site. Each
CSP trusted site can apply to Experience Cloud sites, Lightning Experience pages, custom Visualforce pages, or all three.

Considerations When Packaging
When you include the CspTrustedSite component in a package, the permissions for the third-party APIs and Websocket connections
apply to sites and pages across the org. Because this component modifies security, we don’t recommend including CspTrustedSite
components in packages. Instead, we recommend that you instruct customers to use the CSP Trusted Sites Setup page or the
CSPTrustedSites metadata API type to add the URLs to their allowlist as part of activating your package. If you choose to include
CspTrustedSite components in your package, disclose this change prominently in your package documentation to ensure that your
customers are aware of the security modification.

You can't load JavaScript resources from a third-party site, even if it's a CSP Trusted Site. To use a JavaScript library from a third-party
site,add it to a static resource, and then add the static resource to your component. After the library is loaded from the static resource,
you can use it as normal.

CSPisn't enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

Usage Limits
CspTrustedSite components are available in APl version 39.0 and later. Multiple properties and enumeration values are available in
later API versions. For details, see CspTrustedSite in the Metadata API Developer Guide.

For Experience Builder sites, if the HTTP header size is greater than 8 KB, the directives are moved from the CSP header to the <meta>
tag. To avoid errors from infrastructure limits, ensure that the HTTP header size doesn't exceed 3 KB per context.

Relationship to Other Components
This component can be used only in conjunction with an Aura or Lightning Web Runtime (LWR) page for an Experience Cloud site,
a Lightning Page, or a Visualforce page.

97

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://caniuse.com

Second-Generation Managed Packages Custom Application

Documentation
Salesforce Help: Manage CSP Trusted Sites

Metadata API Developer Guide: CspTrustedSites

Custom Application

Represents a custom application.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Show in Lightning Experience (Salesforce Classic only)

e Selected Items (Lightning Experience only)

e Utility Bar (Lightning Experience only)

Both Package Developer and Subscriber Can Edit

e Allattributes, except App Name and Show in Lightning Experience (Salesforce Classic only)

e Al attributes, except Developer Name, Selected Items, and Utility Bar (Lightning Experience only)
Neither Package Developer or Subscriber Can Edit

e App Name (Salesforce Classic only)

e Developer Name (Lightning Experience only)

98

https://help.salesforce.com/s/articleView?id=xcloud.security_trusted_urls_manage.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_csptrustedsite.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Custom Button or Link

More Information

Feature Name
Metadata Name: CustomApplication

Documentation
Metadata API Developer Guide: CustomApplication

Custom Button or Link

Represents a custom link defined in a home page component.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Behavior

e Button or Link URL

e Content Source

e Description

e Display Checkboxes

e Label

e Link Encoding

Both Package Developer and Subscriber Can Edit
e Height

e Resizeable

99

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customapplication.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Custom Console Components

e Show Address Bar

e Show Menu Bar

e Show Scrollbars

e Show Status Bar

e Show Toolbars

e Width

e Window Position

Neither Package Developer or Subscriber Can Edit
e Display Type

e Name

More Information

Feature Name
Metadata Name: WebLink, CustomPageWebLink

Documentation
Salesforce Help: Custom Buttons and Links

Custom Console Components

Represents a custom console component (Visualforce page) assigned to a CustomApplication that is marked as a Salesforce console.
Custom console components extend the capabilities of Salesforce console apps.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

A package that has a custom console component can only be installed in an org with the Service Cloud license or Sales Console permission

enabled.
Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

100

https://help.salesforce.com/s/articleView?id=platform.customize_enterprise.htm&type=5&language=en_US
https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Custom Field on Standard or Custom Obiject

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CustomApplicationComponent

Component Type in 1GP Package Manager Ul: Custom Console Component

Documentation
Metadata API Developer Guide: CustomApplicationComponent

Salesforce Help: Create Console Components in Salesforce Classic

Custom Field on Standard or Custom Object

Represents the metadata associated with a field. Use this metadata type to create, update, or delete custom field definitions on standard
or custom objects.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

101

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customapplicationcomponent.htm
https://help.salesforce.com/s/articleView?id=service.console2_components_create_overview.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e Auto-Number Display Format
e Decimal Places

e Description

e Default Value

e Field Label
e Formula
e Length

e Lookup Filter
e Related List Label
e Required

e Roll-Up Summary Filter Criteria

Both Package Developer and Subscriber Can Edit

e (hatter Feed Tracking
e Help Text

e Mask Type

e Mask Character

e Sharing Setting

e Sort Picklist Values

e Track Field History

Neither Package Developer or Subscriber Can Edit

e (hild Relationship Name
e Data Type

e External ID

e Field Name

e Roll-Up Summary Field
e Roll-Up Summary Object
e Roll-Up Summary Type

e Unique

More Information

Custom Field on Custom Metadata Type

e Developers can add required and universally required custom fields to managed packages as long as they have default values.

e Auto-number type fields and required fields cant be added after the object is included in a Managed - Released package.

e Subscriber orgs can't install roll-up summary fields that summarize detail fields set to protected.

Custom Field on Custom Metadata Type

Represents a custom fields on the custom metadata type.

Second-Generation Managed Packages

Component Manageability Rules

Custom Field Display

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.
Packageable In:
Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

Custom Field Display

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes
No
No

No

Represents the CustomFieldDisplay view type assigned to product attribute custom fields.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP)
Yes
No
No

No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e None
Both Package Developer and Subscriber Can Edit

e Description
e Master Label

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CustomFieldDisplay

103

Second-Generation Managed Packages Custom Help Menu Section

License Requirements
A B2B Commerce or D2C Commerce license and access to Commerce objects is required.

Documentation
Salesforce Help: Create Attributes for Product Variations in Commerce Cloud

Custom Help Menu Section

Represents the section of the Lightning Experience help menu that the admin added to display custom, org-specific help resources for
the org. The custom section contains help resources added by the admin.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

More Information

Feature Name
Metadata Name: CustomHelpMenuSection

Documentation
Metadata API Developer Guide: CustomHelpMenuSection

Custom Index

Represents an index used to increase the speed of queries.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No

Subscriber Can Delete Component From Org No

104

https://help.salesforce.com/s/articleView?id=commerce.comm_config_att_set.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customhelpmenusection.htm

Second-Generation Managed Packages Custom Label

Package Developer Can Remove Component From Package No. It can only be removed if the associated custom field is
removed.
Component Has IP Protection No

More Information

Feature Name
Metadata Name: CustomIndex

Component Type in 1GP Package Manager Ul: Custom Index

Considerations When Packaging
Subscribers can remove the custom index using Metadata API only.

Documentation
Best Practices for Deployments with Large Data Volumes: Indexes

Custom Label

The Customlabels metadata type allows you to create custom labels that can be localized for use in different languages, countries, and
currencies.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e (ategory
e Short Description

105

https://developer.salesforce.com/docs/atlas.en-us.260.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_infrastructure_indexes.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Custom Metadata Type Records

e Value
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: CustomLabels

Considerations When Packaging
If a label is translated, the language must be explicitly included in the package for the translations to be included in the package.
Subscribers can override the default translation for a custom label.

This component can be marked as protected. For more details, see Protected Components in thefirst-Generation Managed Packaging
Developer Guide.

Documentation
Metadata API Developer Guide: CustomLabels

Custom Metadata Type Records

Represents a record of a custom metadata type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in managed 1GP if protected, and managed 2GP

whether protected or not.

Component Has IP Protection Yes

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

106

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customlabels.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Custom Metadata Type

More Information

Feature Name
Metadata Name: CustomObject

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging

Developer Guide.

Usage Limits
Deprecated custom metadata type records count against the subscriber’s org limit. When removing custom metadata type records
from a second-generation managed package, encourage subscribers to delete the deprecated records from their org. If the subscriber
org reaches their org limit for custom metadata type records, package upgrades that include new custom metadata type records
fail. For details see Custom Metadata and Allocations and Usage Calculations in Salesforce Help.

Documentation
Salesforce Help: Package Custom Metadata Types and Records

Custom Metadata Type

Represents a record of a custom metadata type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes

More Information

Second-generation managed packages (2GP) include the fields and records for custom metadata types that you add. You can't add
fields directly to an existing package after the package version is promoted. If you create multiple packages that share a namespace,
then layouts and records can be in separate packages. Custom fields on the custom metadata type must be in the same package.

You can add fields to a custom metadata type by publishing an extension to the existing package, creating an entity relationship field,
and mapping the field to the custom metadata type in your extension. See Add Custom Metadata Type Fields to Existing Packages.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Custom Notification Type

Represents the metadata associated with a custom notification type.

107

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://help.salesforce.com/s/articleView?id=platform.custommetadatatypes_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.custommetadatatypes_package_install.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.custommetadatatypes_add_fields_packages.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Second-Generation Managed Packages

Component Manageability Rules

Custom Notification Type

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation

Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component

removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Desktop, Mobile

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CustomNotificationType

Component Type in 1GP Package Manager Ul: Custom Notification Type

License Requirements
Database.com editions don't have permission to access this component.

Usage Limits

You can package up to 500 custom notification types, but keep in mind that subscriber orgs are limited to a total of 500 custom

notification types. The subscriber org limit is shared across namespaces.
A subscriber org can execute up to 10,000 notification actions per hour.

Documentation
Salesforce Help: Create and Send Custom Desktop or Mobile Notifications

Salesforce Help: Considerations for Processes that Send Custom Notifications

108

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=platform.notif_builder_custom.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.process_limits_customnotification.htm&type=5&language=en_US

Second-Generation Managed Packages Custom Object

Custom Obiject

Represents a custom object that stores data unique to an org or an external object that maps to data stored outside an org.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e [abel

e Plural Label

e Record Name

e Record Name Display Format
e Starts with a Vowel Sound
Both Package Developer and Subscriber Can Edit
e Allow Activities

e Allow Reports

e Available for Customer Portal
e (Context-Sensitive Help Setting
e Default Sharing Model

e Development Status

e Enable Divisions

e Enhanced Lookup

e Grant Access Using Hierarchy

109

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Custom Object Translation

e Search Layouts

e Track Field History

Neither Package Developer or Subscriber Can Edit
e Object Name

e Record Name Data Type

More Information

Feature Name
Metadata Name: CustomObject

Component Type in 1GP Package Manager Ul: Custom Object
Considerations When Packaging

If a developerenablesthe A11ow Reports or Allow Activities attributesonapackaged custom object, the subscriber’s
org also has these features enabled during a package upgrade. After it's enabled in a Managed - Released package, the developer
and the subscriber can't disable these attributes.

Standard button and link overrides are also packageable.

In your extension package, if you want to access history information for custom objects contained in the base package, work with
the base package owner to:

1. Enable history tracking in the release org of the base package.
2. Create a new version of the base package.
3. Install the new version of the base package in the release org of the extension package to access the history tracking info.

As a best practice, don't enable history tracking for custom objects contained in the base package directly in the extension package’s
release org. Doing so can result in an error when you install the package and when you create patch orgs for the extension package.

This component can be marked as protected. For more details, see Protected Components and Hide Custom Objects and Custom
Permissions in Your Subscribers’ Orgs in the First-Generation Managed Packaging Developer Guide.

Documentation
Metadata API Developer Guide: CustomObject

Custom Obiject Translation

This metadata type allows you to translate custom objects for a variety of languages.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No

110

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/customobject.htm

Second-Generation Managed Packages Custom Permission

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All attributes except Description of WorkflowTask, Help of CustomField, PicklistValueTranslation, and MasterLabel of LayoutSection.
Both Package Developer and Subscriber Can Edit

e Description of WorkflowTask
e Help of CustomField
e PicklistValueTranslation

e MasterLabel of LayoutSection
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CustomObjectTranslation

Relationship to Other Components
When you create a first-generation managed package and add the Translation component, the Custom Object Translation component
is automatically added to your package.

When you create a second-generation managed package, you must add Custom Object Translation to your package, even if you've
already added the Translation component.

Documentation
Metadata API Developer Guide: CustomObjectTranslation

Custom Permission

Represents a permission that grants access to a custom feature.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

m

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customobjecttranslation.htm

Second-Generation Managed Packages Custom Tab

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e Connected App

e Description

Label

e Name

Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: CustomPermission

Component Type in 1GP Package Manager Ul: Custom Permission

Considerations When Packaging
If you deploy a change set with a custom permission that includes a connected app, the connected app must already be installed
in the destination org.

This component can be marked as protected. For more details, see Protected Components and Hide Custom Objects and Custom
Permissions in Your Subscribers’ Orgs in the First-Generation Managed Packaging Developer Guide.

Documentation
Metadata API Developer Guide: CustomPermission

Custom Tab

Represents a custom tab. Custom tabs let you display custom object data or other web content in Salesforce.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

N2

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_custompermission.htm

Second-Generation Managed Packages Custom Tab

Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e Encoding

e Has Sidebar
e Height

e Label

e S-control

e Splash Page Custom Link

e Type

e URL

e Width

Both Package Developer and Subscriber Can Edit
e Tab Style

Neither Package Developer or Subscriber Can Edit

e Tab Name

More Information

Feature Name
Metadata Name: CustomTab

Considerations When Packaging

e The tab style for a custom tab must be unigue within your app. However, it doesn't have to be unique within the org where it's
installed. A custom tab style doesn't conflict with an existing custom tab in the installer's environment.

e Toprovide custom tab names in different languages, from Setup, in the Quick Find box, enter Rename Tabs and Labels,
then select Rename Tabs and Labels.

Documentation
Metadata API Developer Guide: CustomTab

13

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_tab.htm

Second-Generation Managed Packages Dashboard

Dashboard

Represents a dashboard. Dashboards are visual representations of data that allow you to see key metrics and performance at a glance.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e Allattributes except Dashboard Unique Name
Neither Package Developer or Subscriber Can Edit

e Dashboard Unique Name

More Information

Feature Name
Metadata Name: Dashboard

Type in 1GP Package Manager Ul: Dashboard

Considerations When Packaging
Developers of managed packages must consider the implications of introducing dashboard components that reference reports
released in a previous version of the package. If the subscriber deleted the report or moved the report to a personal folder, the
dashboard component referencing the report is dropped during the installation. Also, if the subscriber has modified the report, the
report results can impact what displays in the dashboard component. As a best practice, release a dashboard and the related reports
in the same version.

114

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages DataCalclinsightTemplate

Documentation
Metadata API Developer Guide: Dashboard

DataCalclnsightTemplate

Represents the object template for data calculations and insights of Data Cloud objects in DataCalclnsightTemplate. These objects are
added inside the data kit.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Supported in 1GP packages only.
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataCalcInsightTemplate

Component Type in 1GP Package Manager Ul: Calculated Insight Template

Use Case
DataCalclnsightTemplate represents the data calculations and insights for objects of a Data Cloud schema field the user includes in
a data kit.

15

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_dashboard.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Data Connector Ingest API

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. A calculated insight template is added to a package when you add a data
calculation and insight into a data kit, and package that data kit. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Connector Ingest API

Represents the connection information specific to Ingestion API.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: DataConnectoringestApi

Component Type in 1GP Package Manager Ul: Adding DataStreamDefinition brings in DataConnectorlngestApi for Ingestion API
DataStreams.

116

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages Data Connector S3

Use Case
This component is part of the Ingestion APl Data stream metadata that is packaged and installed in subscriber.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Documentation
Salesforce Help: Ingestion API

Data Connector S3

Represents the connection information specific to Amazon S3.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Delimiter

e FileNameWildCard

e |ImportFromDirectory

e S3AccessKey

e S3BucketName

e S3SecretKey

Neither Package Developer or Subscriber Can Edit

e DeveloperName

n7

https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-ingestion-api.html

Second-Generation Managed Packages Data Kit Object Dependency

More Information

Feature Name
Metadata Name: DataConnectorS3

Use Case
This includes the bucket details for the S3 connector in Data Cloud.

Considerations When Packaging
To package this component, first add it to a data kit. For more information about data kits, see Data Kits in Salesforce Help.

Credentials are encrypted and need “IsDevinternal” permission for the encryption service.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Documentation
Salesforce Help:.Data Connector S3

Data Kit Object Dependency

Represent the object dependencies and relationships between different objects in Data Kit Object Dependency. These objects are added
inside the data kit.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Supported in 1GP packages only.

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.

Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

118

https://help.salesforce.com/s/articleView?id=data.c360_a_data_package_kits.htm&type=5&language=en_US
https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-gcs-connector.html
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Data Kit Object Template

Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataKitObjectDependency

Component Type in 1GP Package Manager Ul: Data Kit Object Dependency

Use Case
DataKitObjectDependency represents the relationship of objects of a Data Cloud schema field the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit and then add
that data kit to a package. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Kit Object Template

Represents the object in Data Kit Object Template. This object template is added inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Supported in 1GP packages only.
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

19

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages DataObjectBuildOrgTemplate

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataKitObjectTemplate

Component Type in 1GP Package Manager Ul: Data Kit Object Dependency

Use Case
DataKitObjectTemplate represents the objects the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit, and then add
that data kit to a package. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

DataObjectBuildOrgTemplate

Represents the output objects of the components the user includes in a data kit.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Supported in 1GP packages only.

Subscriber Can Delete Component From Org No

120

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages Data Package Kit Definition

Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataObjectBuildOrgTemplate

Component Type in 1GP Package Manager Ul: DataObjectBuildOrgTemplate
Use Case
Supports extension packages that reference the output of any object.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the data object build org template to a data kit, and then add that
data kit to a package. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.
Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Package Kit Definition

Represents the top-level Data Kit container definition. Content objects can be added after the Data Kit is defined.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

121

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages Data Package Kit Definition

Component Is Updated During Package Upgrade Yes. Supported in 1GP packages only.
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e description

e developerName

e isDeployed

e isEnabled

e masterlLabel

e versionNumber

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataPackageKitDefinition

Component Type in 1GP Package Manager Ul: Data Package Kit Definition

Use Case
Represents the top-level data kit container definition. Content objects can be added after the data kit is defined.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataPackageKitDefinition

Data Cloud Developer Guide: Packages and Data Kits
Salesforce Help: Packaging in Data Cloud

122

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datapackagekitdefinition.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages

Data Package Kit Object

Data Package Kit Object

Represents the object in Data Kit Content Object. These objects are added inside the data kit.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes (supported only in 1GP packages)
No
Yes (supported only in 1GP packages)

No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e parentDataPackageKitDefinitionName

o referenceObjectName

e referenceObjectType

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataPackageKitObject

Component Type in 1GP Package Manager Ul: Data Package Kit Object

Use Case
Represents an object in a data kit.

License Requirements

For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

123

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US

Second-Generation Managed Packages Data Source

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataPackageKitObject

Data Cloud Developer Guide: Packages and Data Kits
Salesforce Help: Packaging in Data Cloud

Data Source

Used to represent the system where the data was sourced.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e DataSourceStatus

e ExternalRecordldentifier

e lastDataChangeStatusDateTime

e lastDataChangeStatusErrorCode

Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: DataSource

Use Case
DataSource gives the lineage information of the datastream.

124

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datapackagekitobject.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages Data Source Bundle Definition

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
Create DataStream using ui-api or the Data Cloud App.

Relationship to Other Components
This isn't a top-level entity. AddDataStreamDefinition or DataKitDefinition to pick up DataSource.

Documentation
Salesforce Help: Connection Tasks in Data Cloud

Data Source Bundle Definition

Represents the bundle of streams that a user adds to a data kit.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes (supported only in 1GP packages)
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (supported only in 1GP packages)
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e dataPlatform
e isMultiDeploymentSupported

* masterLabel

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

125

https://help.salesforce.com/s/articleView?id=data.c360_a_connection_tasks.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Data Source Object

More Information

Feature Name
Metadata Name: DataSourceBundleDefinition

Component Type in 1GP Package Manager Ul: Data Source Bundle Definition

Use Case
Represents the data stream data sources that a user adds to a data kit.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. A data source bundle definition is added to a package when you add a
data stream to a data kit and package that data kit. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataSourceBundleDefinition

Data Cloud Developer Guide: Packages and Data Kits
Salesforce Help: Packaging in Data Cloud

Data Source Object

Represents the object from where the data was sourced.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e DataObjectType

126

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datasourcebundledefinition.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages Data Src Data Model Field Map

e DataSource

e ExternalRecordld

More Information

Feature Name
Metadata Name: DataSourceObject

Use Case
DataSourceObject contains specific information about the source of the data like filename, table names.

Considerations When Packaging
DataSourceObject pulls in child DataSourceField entity records when packaged with DataKitDefinition.

License Requirements
Customer 360 Audiences Corporate (cdpPsl) licenses must be available on both package developer org and subscriber org.

Post Install Steps
Create a DataStream via ui-api or using the Data Cloud App.

Relationship to Other Components
This isn't a top-level entity. Add DataStreamDefinition or DataKitDefinition to pick up DataSourceObject.

Documentation
Salesforce Help: Connection Tasks in Data Cloud

Data Src Data Model Field Map

Represents the entity that's used to store the design-time bundle-level mappings for the data source fields and data model fields.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes (supported only in 1GP packages)
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (supported only in 1GP packages)
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

127

https://help.salesforce.com/s/articleView?id=data.c360_a_connection_tasks.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Data Stream Definition

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e masterLabel
e sourceField
e targetField

e versionNumber

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataSrcDataModelFieldMap

Component Type in 1GP Package Manager Ul: Data Source Data Model Field Mapping

Use Case
Represents the entity that contains design-time bundle-level mappings for the data source fields and data model field:s.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. Data model field mappings are added to a package when you add a data
stream and any associated mappings to a data kit and package that data kit. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataSrcDataModelFieldMap

Data Cloud Developer Guide: Packages and Data Kits
Salesforce Help: Packaging in Data Cloud

Data Stream Definition

Contains Data Ingestion information such as Connection, APl and File retrieval settings.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

128

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datasrcdatamodelfieldmap.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages

Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

AreHeadersIncludedInTheFiles
Bulkingest

Description
IsLimitedToNewFiles

IsMissingFileFailure

Both Package Developer and Subscriber Can Edit

None

Neither Package Developer or Subscriber Can Edit

DataConnectionGCS
DataConnectorType
DataExtractField
DataExtractMethod
DataExtractField
DataPlatformDataSetBundle
FileNameWildcard
MktDatalakeObject
MktDataTranObject

More Information

Feature Name

Metadata Name: DataStreamDefinition

Component Type in 1GP Package Manager Ul: DataStreamDefinition

Use Case

DataStreamDefinition is the starting point for packaging a Datastream and its mappings.

Considerations When Packaging
Data Cloud admin user can install or upgrade the package. Admin User or Data Aware Specialist User can create Datastreams out of

the installed package.

License Requirements
Customer 360 Audiences Corporate (cdpPsl) licenses must be available on both package developer org and subscriber org. CDP

Admin User can install,upgrade, or uninstall the package.

Post Install Steps

Create the DataStream via ui-api or using the Data Cloud App.

129

Data Stream Definition

Second-Generation Managed Packages Data Stream Template

Documentation

Metadata API Developer Guide: DataStreamDefinition

Data Stream Template

Represents the data stream that a user adds to a data kit.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation

Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes (supported only in 1GP packages)
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (supported only in 1GP packages)
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after

they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

datalmportRefreshFrequency
dataSourceBundleDefinition
dataSourceObject
objectCategory
refreshFrequency
refreshHours

refreshMode

Both Package Developer and Subscriber Can Edit

None

Neither Package Developer or Subscriber Can Edit

None

130

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datastreamdefinition.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages DataWeaveResource

More Information

Feature Name
Metadata Name: DataStreamTemplate

Component Type in 1GP Package Manager Ul: Data Stream Template

Use Case
Represents the data stream that a user adds to a data kit.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. A data stream template is added to a package when you add a data stream
to a data kit and package that data kit. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataStreamTemplate

Data Cloud Developer Guide: Packages and Data Kits
Salesforce Help: Packaging in Data Cloud

DataWeaveResource

Represents the DataWeaveScriptResource class that is generated for all DataWeave scripts. DataWeave scripts can be directly invoked
from Apex.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (if not set to global access).
Component Has IP Protection Yes

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

131

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datastreamtemplate.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Decision Matrix Definition

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e API Version

e DataWeave Script

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DataWeaveResource

Component Type in 1GP Package Manager Ul: DataWeaveResource

Use Case
Include MuleSoft DataWeave scripts to read and parse data from one format, transform it, and export it in a different format directly
from Apex.

Considerations When Packaging
There’s a maximum of 50 DataWeave scripts per org.

Documentation
Apex Developer Guide: DataWeave in Apex.

Decision Matrix Definition
Represents a definition of a decision matrix.

@ Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Only if the component is inactive.
Subscriber Can Delete Component From Org Yes. Only if the component is inactive.
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

132

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/DataWeaveInApex.htm
https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/

Second-Generation Managed Packages Decision Matrix Definition Version

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Type

e GroupKey

e SubGroupKey

Both Package Developer and Subscriber Can Edit
® versions

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DecisionMatrixDefinition

Component Type in 1GP Package Manager Ul: Decision Matrix Definition

Use Case
Decision matrices are lookup tables that match input values to a matrix row and return the row’s output values. Expression sets and
various digital procedures can call decision matrices. Decision matrices accept JSON input from, and return JSON output to the digital
processes that call the matrices. Decision matrices are useful for implementing complex rules in a systematic, readable manner.

Documentation
Industries Common Resources Developer Guide: Decision Matrix Definition

Salesforce Help: Decision Matrices

Salesforce Help: Decision Matrix Migration Considerations

Decision Matrix Definition Version
Represents a definition of a decision matrix version.

@ Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

133

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_decisionmatrixdefinition.htm
https://help.salesforce.com/s/articleView?id=ind.decision_matrices.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.decision_matrix_migration_considerations.htm&type=5&language=en_US
https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/

Second-Generation Managed Packages Decision Table

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Only if the component is inactive.
Subscriber Can Delete Component From Org Yes. Only if the component is inactive.
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e columns

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DecisionMatrixDefinitionVersion

Component Type in 1GP Package Manager Ul: Decision Matrix Definition Version

Post Install Steps
After migrating a decision matrix version, upload the row data to the active version manually. The row data isn't migrated as part of
the migration.

Relationship to Other Components
A DecisionMatrixDefinitionVersion is a child of DecisionMatrixDefinition, and can't exist without the parent DecisionMatrixDefinition.

Documentation
Industries Common Resources Developer Guide: Decision Matrix Definition

Salesforce Help: Decision Matrices

Salesforce Help: Decision Matrix Migration Considerations

Decision Table

Represents the information about a decision table.

134

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_decisionmatrixdefinition.htm
https://help.salesforce.com/s/articleView?id=ind.decision_matrices.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.decision_matrix_migration_considerations.htm&type=5&language=en_US

Second-Generation Managed Packages Decision Table Dataset Link

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes, except templates

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Decision Table

Both Package Developer and Subscriber Can Edit

e Label

e Description

e Status
Neither Package Developer or Subscriber Can Edit

e APIName
e URL

More Information

Feature Name
Metadata Name: DecisionTable

Component Type in 1GP Package Manager Ul: Decision Table

Use Case
Decision tables read business rules and decide the outcome for records in your Salesforce org or for the values that you specify.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Decision Tables

Decision Table Dataset Link

Represents the information about a dataset link associated with a decision table. In a dataset link, select an object for whose records,
the decision table must provide an outcome.

135

https://help.salesforce.com/s/articleView?id=ind.concept_decision_table.htm&type=5&language=en_US

Second-Generation Managed Packages Digital Experience

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package No

Component Has IP Protection Yes, except templates

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Dataset Link record
Both Package Developer and Subscriber Can Edit
e Label

e Description

e Status
Neither Package Developer or Subscriber Can Edit

e APIName
e URL

More Information

Feature Name
Metadata Name: DecisionTableDatasetLink

Use Case
In a dataset link, you can map the decision table’s input fields with fields of different standard or custom objects.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Add Dataset Links to a Decision Table

Digital Experience

Represents a text-based code structure of your organization's workspaces, organized by workspace type, and each workspace’s content
items.

136

https://help.salesforce.com/s/articleView?id=ind.task_decision_table_dataset_link.htm&type=5&language=en_US

Second-Generation Managed Packages Digital Experience Bundle

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e (Content Title
e (Content Body

e Content Folder

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DigitalExperience

Use Case
To move Digital Experience metadata Content from one org to another

Post Install Steps
After the package is installed, publish the site to make it available to customers.

Documentation
Salesforce Help: CMS Content

Digital Experience Bundle

Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s content
items.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

137

https://help.salesforce.com/s/articleView?id=xcloud.community_managed_content_content_creation.htm&type=5&language=en_US

Second-Generation Managed Packages Digital Experience Bundle

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e labels
e Description

e Content

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DigitalExperienceBundle

Use Case
Share or distribute the content of an enhanced workspace in Salesforce CMS, including images, documents, and news articles. In
Marketing Cloud, you can package the content of general and marketing workspaces, including landing pages, forms, and emails
(and their associated images and branding).

Considerations When Packaging
Enhanced LWR sites are unsupported.

In marketing workspaces, the default data graph, personalization recommenders, personalization points, and decisions aren'tincluded
in the bundle. If the workspace includes emails with personalized content that's based on these objects, then:

e Any merge field or repeater that uses the default data graph or a personalization recommender from the source org is broken
in the target org.

e Any dynamic content variations of email components are removed and only the default variations appear in the email.

Post Install Steps
After the package is installed, publish the workspace content to make it available to customers.

Documentation
Salesforce Help: Salesforce CMS

Salesforce Help: Marketing Cloud
Metadata API Developer Guide: DigitalExperienceBundle

138

https://help.salesforce.com/s/articleView?id=xcloud.community_managed_content_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=products.mktg_main.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_digitalexperiencebundle.htm

Second-Generation Managed Packages Decision Table

Decision Table

Represents the information about a decision table.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes, except templates

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Decision Table
Both Package Developer and Subscriber Can Edit
e [abel

e Description

e Status

Neither Package Developer or Subscriber Can Edit
e APIName

e URL

More Information

Feature Name
Metadata Name: DecisionTable

Component Type in 1GP Package Manager Ul: Decision Table

Use Case
Decision tables read business rules and decide the outcome for records in your Salesforce org or for the values that you specify.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Decision Tables

139

https://help.salesforce.com/s/articleView?id=ind.concept_decision_table.htm&type=5&language=en_US

Second-Generation Managed Packages Disclosure Definition

Disclosure Definition

Represents information that defines a disclosure type, such as details of the publisher or vendor who created or implemented the report.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: DisclosureDefinition

Component Type in 1GP Package Manager Ul: Disclosure Definition

Use Case
You can use this component to define a disclosure type, such as details of the publisher or vendor who created or implemented the
report.

License Requirements
e Net Zero Cloud Growth license
e Disclosure and Compliance Hub permission set license

e Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

e Manage Disclosure and Compliance Hub

140

Second-Generation Managed Packages

Documentation

Disclosure Definition Version

e Salesforce Help: Disclosure and Compliance Hub

Disclosure Definition Version

e Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

e Metadata APl Developer Guide:DisclosureDefinition

Represents the version information about the disclosure definition.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade

Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes
No
No

No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

DisclosureDefinition
Description

IsActive

VersionNumber
OmniScriptCnfgApiName
IsCurrentVersion

DisclosureDefCurrVer

Both Package Developer and Subscriber Can Edit

None

Neither Package Developer or Subscriber Can Edit

None

More Information

Feature Name

Metadata Name: DisclosureDefinitionVersion

Component Type in 1GP Package Manager Ul: Disclosure Definition Version

141

https://help.salesforce.com/articleView?id=ind.netzero_setup_disclosure_and_compliance_hub.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ind.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_disclosuredefinition.htm

Second-Generation Managed Packages Disclosure Type

Use Case
You can use this component to define the version information about the disclosure definition.

License Requirements
e Net Zero Cloud Growth license
e Disclosure and Compliance Hub permission set license
e Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

e Manage Disclosure and Compliance Hub
Documentation

e Salesforce Help: Disclosure and Compliance Hub
e Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

e Metadata APl Developer Guide:DisclosureDefinitionVersion

Disclosure Type

Represents the types of disclosures that are done by an individual or an organization and the associated metadata.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All attributes

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

142

https://help.salesforce.com/articleView?id=ind.netzero_setup_disclosure_and_compliance_hub.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ind.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_disclosuredefinitionversion.htm

Second-Generation Managed Packages Discovery Al Model

More Information

Feature Name
Metadata Name: DisclosureType

Component Type in 1GP Package Manager Ul: Disclosure Type

Use Case
You can use this component to create types of disclosures that are done by an individual or an organization.

License Requirements
e Net Zero Cloud Growth license
e Disclosure and Compliance Hub permission set license

e Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

e Manage Disclosure and Compliance Hub
Documentation

e Salesforce Help: Disclosure and Compliance Hub
e Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

e Metadata APl Developer Guide:DisclosureType

Discovery Al Model

Represents the metadata associated with a model used in Einstein Discovery.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

143

https://help.salesforce.com/articleView?id=ind.netzero_setup_disclosure_and_compliance_hub.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ind.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_disclosuretype.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Discovery Goal

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e All attributes except Discovery Al Model Unique Name
Neither Package Developer or Subscriber Can Edit

e Discovery Al Model Unique Name

More Information

Feature Name
Metadata Name: DiscoveryAlModel

Documentation
Metadata API Developer Guide: DiscoveryAlModel

Discovery Goal

Represents the metadata associated with an Einstein Discovery prediction definition.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

144

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_discoveryaimodel.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Discovery Story

Both Package Developer and Subscriber Can Edit
e Al attributes except Discovery Goal Unique Name
Neither Package Developer or Subscriber Can Edit

e Discovery Goal Unique Name

More Information

Feature Name
Metadata Name: DiscoveryGoal

Documentation
Metadata API Developer Guide: DiscoveryGoal

Discovery Story

Represents the metadata associated with a story used in Einstein Discovery.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e All attributes except Discovery Story Unique Name

Neither Package Developer or Subscriber Can Edit

145

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_discoverygoal.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Document

e Discovery Story Unique Name

More Information

Feature Name
Metadata Name: DiscoveryStory

Documentation
Metadata API Developer Guide: DiscoveryStory

Document

Represents a Document. All documents must be in a document folder, such as sampleFolder/TestDocument.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

More Information

Feature Name
Metadata Name: Document

Component Type in 1GP Package Manager Ul: Document

Documentation
Metadata API Developer Guide: Document

Document Generation Setting

Represents an org's settings for automatic document generation from templates.

146

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_discoverystory.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_document.htm

Second-Generation Managed Packages

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade

Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

Eclair GeoData

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

No
No
No

No

Editable Properties After Package Promotion or Installation

B

oth Package Developer and Subscriber Can Edit
Document Template Library Name
Generation Mechanism
Guest Access Named Credential
Label

Preview Type

Neither Package Developer or Subscriber Can Edit

APl Name

More Information

F

eature Name
Metadata Name: DocumentGenerationSetting

Use Case

Allows admin users to modify document generation properties.

License Requirements

DocGen Designer (Permission Set License)

Documentation

Metadata API Developer Guide: DocumentGenerationSetting

Eclair GeoData

Represents an Analytics custom map chart. Custom maps are user-defined maps that are uploaded to Analytics and are used just as
standard maps are. Custom maps are accessed in Analytics from the list of maps available with the map chart type.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

147

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_documentgenerationsetting.htm

Second-Generation Managed Packages Email Template (Classic)

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e All attributes except Eclair GeoData Unique Name

Neither Package Developer or Subscriber Can Edit

e Eclair GeoData Unique Name

More Information

Feature Name
Metadata Name: EclairGeoData

Documentation
Metadata API Developer Guide: EclairGeoData

Email Template (Classic)

Use email templates to increase productivity and ensure consistent messaging. Email templates with merge fields let you quickly send
emails that include field data from Salesforce records.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No

148

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_eclairgeodata.htm

Second-Generation Managed Packages Email Template (Lightning)

Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e Allattributes except Email Template Name

Neither Package Developer or Subscriber Can Edit

e Email Template Name

Email Template (Lightning)

Represents a template for an email, mass email, list email, or Sales Engagement email.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)

Component Is Updated During Package Upgrade No

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only. However, 1GP packages

created in Email Template Builder can't be removed.

Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

149

https://partners.salesforce.com/partnerSupport
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Embedded Service Config

e None
Neither Package Developer or Subscriber Can Edit
e All attributes

More Information

These packaging considerations apply to Lightning email templates, including email templates created in Email Template Builder.

e Foremail templates created in Email Template Builder before the Spring 21 release, attachments aren’t automatically added to the
package. Open and resave these templates to turn the attachments into content assets, which are then automatically added to the
package.

e Enhanced email template folders have these behaviors:

- Ifa package includes an enhanced email template folder, the target organization must have enhanced folders enabled for the
deploy to succeed.

- Ifan email template is in a subfolder, adding the root folder to a package doesn’t automatically add the email template to the
package. If the email template is in the root folder, it's automatically added to the package.

-~ You can't package an email template in the default public and private folders.

e Formerge fields based on custom fields that are used in the Recipients prefix (for leads and contacts), we add references to those
merge fields. If the custom field is renamed, the reference in the template isn't updated. Edit the custom merge field to use the new
field name and update the reference.

@ Note: An email template created in Email Template Builder can't be edited after it's downloaded. To edit the template, clone it.

When upgrading a package that has Email Template Builder email templates, only the associated FlexiPage is updated. After
downloading the new version of the template, clone it to see the changes.

Embedded Service Config

Represents a setup node for creating an Embedded Service for Web deployment.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

150

Second-Generation Managed Packages Embedded Service Menu Settings

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: EmbeddedServiceConfig

Documentation
Metadata API Developer Guide: EmbeddedServiceConfig

Salesforce Help: Embedded Chat

Embedded Service Menu Settings

Represents a setup node for creating a channel menu deployment. Channel menus list the ways in which customers can contact your
business.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

151

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_embeddedserviceconfig.htm
https://help.salesforce.com/s/articleView?id=service.snapins_chat_overview.htm&type=5&language=en_US

Second-Generation Managed Packages Enablement Measure Definition

More Information

Feature Name
Metadata Name: EmbeddedServiceMenuSettings

Documentation
Metadata API Developer Guide: EmbeddedServiceMenuSettings

Salesforce Help: Channel Menu Setup

Enablement Measure Definition

Represents an Enablement measure, which specifies the job-related activity that a user performs to complete a milestone or outcome
in an Enablement program. A measure identifies a source object and optional related objects, with optional field filters and filter logic,
for tracking the activity.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All but Status and DeveloperName

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

152

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_embeddedservicemenusettings.htm
https://help.salesforce.com/s/articleView?id=service.embedded_chat_channel_menu.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Enablement Program Definition

More Information

Feature Name
Metadata Name: EnablementMeasureDefinition

Use Case
Include this component in a package with a program if the program has outcomes or milestones.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required. For Partner Enablement programs in supported
Experience Cloud sites, a supported Partner Relationship Management (PRM) add-on license is also required.

Usage Limits
See Enablement Limits.

Relationship to Other Components
An Enablement measure is used within an Enablement program. Package the Enablement Measure Definition component with the
Enablement Program Definition component. Or, package the Enablement Measure Definition component separately. Each measure
references a source object and optional related objects.

Documentation

e Salesforce Help: Sales Programs and Partner Tracks with Enablement
e Metadata APl Developer Guide: EnablementMeasureDefinition

e Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

Enablement Program Definition

Represents an Enablement program, which includes exercises and measurable milestones to help users such as sales reps achieve specific
outcomes related to your company’s revenue goals.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

153

https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=slack.prm_support_license_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enablementmeasuredefinition.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html

Second-Generation Managed Packages Enablement Program Definition

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e All'but DeveloperName

Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information
Feature Name
Metadata Name: EnablementProgramDefinition
Use Case
Include this component in a package when you want to move a program from one org to another.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required. For Partner Enablement programs in supported
Experience Cloud sites, a supported Partner Relationship Management (PRM) add-on license is also required.

Usage Limits
See Enablement Limits.

Relationship to Other Components
An Enablement program can contain other items that are related to other packageable components. Package the Enablement
Program Definition component with other appropriate components.

e Exercises that reference Digital Experiences content. Package the Digital Experience component.
e Exercises that reference assessment surveys. Package the Flow component.

e Custom exercise types that reference user-defined content. Package the Learning ltem Type and Enablement Program Task
Subcategory components.

e Measures that track job-related activity using specific objects. Package the Enablement Measure Definition component.
Documentation

e Salesforce Help: Sales Programs and Partner Tracks with Enablement

e Metadata APl Developer Guide: EnablementMeasureDefinition

e Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

154

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=slack.prm_support_license_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enablementmeasuredefinition.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html

Second-Generation Managed Packages Enablement Program Task Subcategory

Enablement Program Task Subcategory

Represents a custom exercise type that an Enablement admin adds to an Enablement program in Program Builder. A custom exercise
type also requires a corresponding EnblProgramTaskDefinition record for Program Builder and corresponding Learningltem and
LearningltemType records for when users take the exercise in the Guidance Center.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All but DeveloperName

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: EnblProgramTaskSubCategory

Use Case
Include this component in a package with a program if the program has a custom exercise type.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required.

155

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html

Second-Generation Managed Packages Entitlement Template

@ Important: Custom exercises aren’t compatible with Partner Enablement programs.

Usage Limits
See Enablement Limits.

Relationship to Other Components
The Enablement Program Task Subcategory component requires a corresponding Learning Item Type component. Both components
are used with custom exercise types in Enablement programs. Package both of these components with an Enablement Program
Definition component.

Documentation

Salesforce Help: Sales Programs and Partner Tracks with Enablement
Metadata API Developer Guide: EnblProgramTaskSubCategory
Metadata APl Developer Guide: LearningltemType

Object Reference for the Salesforce Platform: EnblProgramTaskDefinition
Object Reference for the Salesforce Platform: Learningltem

Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

Sales Programs and Partner Tracks with Enablement Developer Guide: Implement Custom Exercise Types for Enablement Programs

Entitlement Template

Represents an entitlement template. Entitlement templates are predefined terms of customer support that you can quickly add to
products.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

156

https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enblprogramtasksubcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_learningitemtype.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_enblprogramtaskdefinition.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_learningitem.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-custom-exercises-intro.html

Second-Generation Managed Packages ESignature Config

More Information

Feature Name
Metadata Name: EntitlementTemplate

Documentation
Metadata API Developer Guide: EntitlementTemplate

Salesforce Help: Set Up an Entitlement Template

ESignature Config

Using the Electronic Signature Configuration setup, the system admin must define the required configurations to support the e-signature
APIs and Ul.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Both Package Developer and Subscriber Can Edit
e (Config Type

e (onfig Value

e Description

e Group Type

e \endor

Neither Package Developer or Subscriber Can Edit
e DeveloperName

e MasterLabel

More Information

Feature Name
Metadata Name: ESignatureConfig

Use Case
Allows users to get the electronic signatures on their documents.

157

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_entitlementtemplate.htm
https://help.salesforce.com/s/articleView?id=service.entitlements_setting_up_templates.htm&type=5&language=en_US

Second-Generation Managed Packages ESignature Envelope Config

License Requirements

DocGen Designer (Permission Set License)

ESignature Envelope Config

Using the Electronic Signature Envelope Config the system admin can define the default reminders and expiry for the envelopes submitted
for eSignature.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation

Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Both Package Developer and Subscriber Can Edit

Expiration Enabled

Expiration Period

Expiration Warning Period

First Reminder Period

Reminder Enabled

Reminder Interval Period

Target Object Name

Vendor

Vendor Account Identifier

Vendor Default Notification Enabled

Neither Package Developer or Subscriber Can Edit

DeveloperName
MasterLabel

More Information

Feature Name

Metadata Name: ESignatureEnvelopeConfig

158

Second-Generation Managed Packages Event Relay

Use Case
Allows users to get the electronic signatures and notifications on their documents.

License Requirements
DocGen Designer (Permission Set License)

Documentation
Metadata API Developer Guide: ESignatureEnvelopeConfig

Event Relay

Represents an event relay that you can use to send platform events and change data capture events from Salesforce to Amazon
EventBridge.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
® Label

® RelayOption

® State

Neither Package Developer or Subscriber Can Edit
® DestinationResourceName

® EventChannel

® UsageType

More Information

Feature Name
Metadata Name: EventRelayConfig

Component Type in 1GP Package Manager Ul: Event Relay

159

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_esignatureenvelopeconfig.htm

Second-Generation Managed Packages Explainability Action Definition

Documentation

Metadata API Developer Guide: EventRelayConfig

Explainability Action Definition

Define where the metadata for your Decision Explainer business rules are stored in Public Sector Solutions.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation

Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after

they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

None

Both Package Developer and Subscriber Can Edit

Label

Description

Developer Name
Business Process Type
Application Type

Action Log Schema Type
Application Subtype

Neither Package Developer or Subscriber Can Edit

None

More Information

Feature Name

Metadata Name: ExplainabilityActionDefinition

160

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_eventrelayconfig.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Explainability Action Version

Explainability Action Version

Define and store versions of the explainability actions used by your Decision Explainer business rules in Public Sector Solutions.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e [abel

e Active

e Description

e Explainability Action Definition

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExplainabilityActionVersion

Explainability Message Template

Represents information about the template that contains the decision explanation message for a specified expression set step type.

161

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages

Component Manageability Rules

Expression Set Definition

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade

Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

No
Yes

Yes

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

None

Both Package Developer and Subscriber Can Edit

Label

Message

Name

Result Type

Default

Expression Set Step Type

Neither Package Developer or Subscriber Can Edit

None

More Information

Feature Name

Metadata Name: ExplainabilityMsgTemplate

Documentation
Industries Common Resources Developer Guide: ExplainabilityMsgTemplate

Salesforce Help: Create Explainability Message Templates

Expression Set Definition

Represents an expression set definition.

162

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_explainabilitymsgtemplate.htm
https://help.salesforce.com/s/articleView?id=ind.create_explainability_message_templates.htm&type=5&language=en_US

Second-Generation Managed Packages Expression Set Definition

@ Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Only if the component doesn’t contain any active versions.
Subscriber Can Delete Component From Org Yes. Only if the component doesn’t contain any active versions.
Package Developer Can Remove Component From Package Yes. Only if the component doesn’t contain any active versions.

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e versions

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExpressionSetDefinition

Component Type in 1GP Package Manager Ul: ExpressionSet Definition

Relationship to Other Components
To use this component, any expression set version dependencies such as decision matrices, decision tables, object field aliases, and
subexpressions must be present in the target org.

Documentation
Industries Common Resources Developer Guide: Expression Set Definition

Salesforce Help: Expression Set Migration Considerations

163

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_expressionsetdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.expression_set_migration_considerations.htm&type=5&language=en_US

Second-Generation Managed Packages Expression Set Definition Version

Expression Set Definition Version
Represents a definition of an expression set version.

@ Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes. Only if the component is in an inactive state.
Subscriber Can Delete Component From Org Yes. Only if the component is in an inactive state.
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e variables

® steps

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExpressionSetDefinitionVersion

Component Type in 1GP Package Manager Ul: Expression Set Definition Version

Relationship to Other Components
This component can be used only if the ExpressionSetDefinition to which this ExpressionSetDefinitionVersion component belongs
is present in the target org.

164

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Expression Set Object Alias

To use this component, any expression set version dependencies such as decision matrices, decision tables, object field aliases, and
subexpressions must be present in the target org.

Documentation
Industries Common Resources Developer Guide: Expression Set Definition Version

Salesforce Help: Expression Set Migration Considerations

Expression Set Object Alias

Represents information about the alias of the source object that's used in an expression set.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e mappings.sourceFieldName

* mappings fieldAlias

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e objectApiName

e usagelype

e dataType

More Information

Feature Name
Metadata Name: ExpressionSetObjectAlias

Component Type: Expression Set Object Alias

Use Case
Expression set object aliases allow you to use object fields as variables in expression sets. Aliases are relevant and user-friendly names
that are created for underlying source object fields. Field aliases are grouped under an object alias.

165

https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_expressionsetdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.expression_set_migration_considerations.htm&type=5&language=en_US

Second-Generation Managed Packages Expression Set Message Token

Documentation
Industries Common Resources Developer Guide: ExpressionSetObjectAlias

Salesforce Help: Object Variables in Expression Sets

Expression Set Message Token

Represents a token that's used in an explainability message template. The token can be replaced with an expression set version resource
that the template is used in. This object is available in APl version 59.0 and later.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Master Label

e Developer Name

e Description

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExpressionSetMessageToken

166

https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_expressionsetobjectalias.htm
https://help.salesforce.com/s/articleView?id=ind.object_variables_in_expression_sets.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages External Auth Identity Provider

Component Type in 1GP Package Manager Ul: ExpressionSetMessageToken

Documentation
Industries Common Resources Developer Guide: ExpressionSetMessageToken

Salesforce Help: Create Expression Set Message Tokens

External Auth Identity Provider

Represents the external auth identity provider that obtains OAuth tokens for callouts that use named credentials.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

@ Nofe: In addition to these properties, the Description, ParameterName, ParameterType, ParameterValue, and SequenceNumber
properties have the same editability as the ExternalAuthldentityProviderParameters they're included in.

Only Package Developer Can Edit
e AuthenticationFlow
e AuthenticationProtocol
e Description
e [abel
Both Package Developer and Subscriber Can Edit
e ExternalAuthldentityProviderParameter
- AuthorizeUrl
- ClientAuthentication
- Description

- |dentityProviderOptions

167

https://developer.salesforce.com/docs/atlas.en-us.250.0.industries_reference.meta/industries_reference/tooling_api_objects_expressionsetmessagetoken.htm
https://help.salesforce.com/s/articleView?id=ind.task_create_expression_set_message_tokens.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages External Client App Canvas Settings

- ParameterName

- ParameterType

- ParameterValue

— RefreshRequestBodyParameter
- RefreshRequestHttpHeader

- RefreshRequestQueryParameter
- SequenceNumber

- StandardExternalldentityProvider
- TokenRequestBodyParameter

— TokenRequestHttpHeader

- TokenRequestQueryParameter
~ TokenUrl

- UserlnfoUrl

Neither Package Developer or Subscriber Can Edit

e FullName

More Information

Feature Name
Metadata Name: ExternalAuthldentityProvider

Component Type in 1GP Package Manager Ul: External Auth Identity Provider

Considerations When Packaging
Though external auth identity providers are represented by metadata, the standard Metadata APl can't fully expose and render
sensitive information like tokens in plain text. This means that sensitive values such as client secrets aren't included in packages.

Package upgrades delete any additional custom request parameters that subscribers add after installing the package. Alert subscribers
that they must recreate custom parameters.

Package developers can only create parameters and delete existing parameters. After package installation, subscribers don't receive
updated parameter values from package upgrades.

Relationship to Other Components
A callout to an external system references a named credential, which in turn links to an external credential. For external credentials
that use OAuth 2.0 authentication, external auth identity providers obtain the OAuth tokens necessary for outbound callouts.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide
Metadata API Developer Guide: External AuthldentityProvider

External Client App Canvas Settings

Represents an external client app's canvas app settings.

168

https://help.salesforce.com/s/articleView?id=xcloud.named_credentials_about.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalauthidentityprovider.htm

Second-Generation Managed Packages External Client App Canvas Settings

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All properties

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExtlICIntAppCanvasSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can't be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Appsin a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
External Client App plugins like the canvas plugin include two types of configurations: settings and policies. All settings are determined
by the external client app developer and can't be edited by the admin for the subscriber org. Admin-controlled configurations are
called policies. ExtICIntAppCanvasSettings contains all of the packageable configurations for the External Client Apps canvas plugin.

Documentation
Salesforce Help: External Client Apps

Metadata API Developer Guide: ExtICIntAppCanvasSettings

Canvas Developer Guide: Introducing Canvas

169

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_extlclntappcanvassettings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.platform_connect.meta/platform_connect/canvas_framework_intro.htm

Second-Generation Managed Packages External Client App Header

External Client App Header

Represents the header file for an external client application configuration.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e All properties

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExternalClientApplication

Considerations When Packaging
Unlike most metadata, External Client Apps can't be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Appsinamanaged 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
ExternalClientApplication is the header file for an external client app. This defines the basic configurations of the external client app,
including whether the external client app can be packaged or if it is developed for local use only.

ExtlCIntAppGlobalOauthSettings includes sensitive information for the External Client Apps OAuth plugin, like OAuth consumer
credentials that can't be packaged or added to source control. ExtICIntAppOauthSettings includes packageable configurations. All
settings are determined by the developer and can't be edited by the admin. Admin-controlled configurations are called policies and
are included in ExtICIntAppOauthConfigurablePolicies.

Documentation
Salesforce Help: External Client Apps

Salesforce Help: Configure Packageable External Client Apps

170

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US

Second-Generation Managed Packages External Client App Notification Settings

External Client App Notification Settings

Represents the settings configuration for the external client app’s notifications plugin.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All properties

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExtlCIntAppNotificationSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can't be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Appsina managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
ExtICIntAppNotificationSettings contains all of the packageable configurations for the External Client Apps notifications plugin.

Documentation
Salesforce Help: External Client Apps

ExtICIntAppNotificationSettings

171

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_extlclntappnotificationsettings.htm

Second-Generation Managed Packages External Client App OAuth Settings

External Client App OAuth Settings

Represents the settings configuration for the external client app’s OAuth plugin.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e All properties

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExtlCIntAppOauthSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can't be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Appsina managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
External Client App plugins like the OAuth plugin include two types of configurations: settings and policies. All settings are determined
by the external client app developer and can't be edited by the admin for the subscriber org. Admin-controlled configurations are
called policies.

ExtlCIntAppQauthSettings contains all of the packageable configurations for the External Client Apps OAuth plugin. Sensitive
information, like OAuth consumer credentials that can't be packaged or added to source control, are stored in the

172

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US

Second-Generation Managed Packages External Client App Push Settings

ExtICIntAppGlobalOauthSettings. Policies are saved in ExtlCIntAppOauthConfigurablePolicies, which is not packaged but is generated
with default values at runtime.

Documentation
Salesforce Help: External Client Apps

External Client App Push Settings

Represents the settings configuration for the external client app’s push notification plugin.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All properties

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExtICIntAppPushSettings

Considerations When Packaging

Unlike most metadata, External Client Apps can't be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Appsinamanaged 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

173

https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US

Second-Generation Managed Packages External Credential

To deploy ExtICIntAppPushSettings retrieved from the Dev Hub org, delete androidPushConfig or applePushConfig from the metadata
file.

Relationship to Other Components

External Client App plugins like the push notification plugin include two types of configurations: settings and policies. All settings
are determined by the external client app developer and can't be edited by the admin for the subscriber org. Admin-controlled
configurations are called policies.

ExtlCIntAppPushSettings contains all of the packageable configurations for the External Client Apps push notifcation plugin. Sensitive
information, like APNS or Firebase consumer credentials that can't be packaged or added to source control, are stored in the
ExtlCIntAppApplePushConfig and ExtlCIntAppAndroidPushConfig, respectively. Policies are saved in
ExtlCIntAppSamliConfigurablePolicies, which is not packaged but is generated with default values at runtime.

Documentation
Salesforce Help: External Client Apps

ExtICIntAppPushSettings

External Credential

Represents the details of how Salesforce authenticates to the external system.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

@ Note: Inaddition to these properties, the Description, ParameterGroup, ParameterName, ParameterValue, and SequenceNumber
properties have the same editability as the ExternalCredentialParameters they're included in.

Only Package Developer Can Edit

e Label

e AuthenticationProtocol

174

https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_extlclntapppushsettings.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages External Credential

e ExternalCredentialParameters

- AuthProtocolVariant

Both Package Developer and Subscriber Can Edit
e Description
e ExternalCredentialParameters
- AuthHeader
- AuthProvider (only subscriber editable in 2GP)
- AuthProviderUrl
- AuthProviderUrlQueryParameter
- AuthParameter
- AwsStsPrincipal (only for external credentials that use AWS Signature v4 authentication with STS)
— Description
- JwtBodyClaim
- JwtHeaderClaim
-~ NamedPrincipal
-~ PerUserPrincipal
- SequenceNumber

- SigningCertificate (only subscriber editable in 2GP)

Neither Package Developer or Subscriber Can Edit

e FullName

More Information

Feature Name
Metadata Name: ExternalCredential

Considerations When Packaging
Though named and external credentials are represented by metadata, the standard Metadata APl can't fully expose the definition
of a credential and render sensitive information like tokens in plain text. This means that packaged named credentials don't include
the access tokens or certificates that are needed to perform authenticated callouts. You can create the external credential’s principal
or populate its tokens or certificates in the Ul or via the Connect API.

In managed 1GP packages, external credentials that use the OAuth 2.0 authentication protocol must reference an authentication
provider to capture the details of the authorization endpoint. If you add an external credential that references an authentication
provider, the authentication provider is added to the package. See Authentication Providers for information on which elements of
an authentication provider are and aren’t packageable.

In managed 2GP packages, if an external credential uses an authentication provider to capture the details of the authorization
endpoint, you can't include the reference to the authentication provider in the package. If the external credential references an
authentication provider, you must recreate the authentication provider in the subscriber org and add it to the external credential.

Post Install Steps
After installing an external credential from a managed or unmanaged package, you must:

e (reate the external credential’s principal or populate its tokens or certificates in the Ul or via the Connect API.

e Give permission sets and profiles access to the principals of the external credential. See Enable External Credential Principals.

175

https://help.salesforce.com/s/articleView?id=experience.sso_authentication_providers.htm&type=5&language=en_US

Second-Generation Managed Packages External Data Connector

e Reauthenticate to the external system.
- ForaNamed Principal, the admin must go to Setup > Named Credential > External Credential to authenticate.

— Fora Per User Principal, each user must go to My Personal Information > External Credential to authenticate.

Relationship to Other Components
ExternalCredential can be added to a package without a NamedCredential, but NamedCredential must be packaged with an
ExternalCredential.

The named credential defines a callout endpoint and an HTTP transport protocol, while the external credential represents the details
of how Salesforce authenticates to an external system via an authentication protocol. Each named credential must be mapped to
at least one external credential.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide
Metadata API Developer Guide: ExternalCredential

External Data Connector

Used to represent the object where the data was sourced.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e DataConConfiguration

e DataConnectionStatus

e DataConnectorType

e DataPlatform

176

https://help.salesforce.com/s/articleView?id=xcloud.named_credentials_about.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalcredential.htm

Second-Generation Managed Packages External Data Source

e ExternalRecordld

More Information

Feature Name
Metadata Name: ExternalDataConnector

Component Type in 1GP Package Manager Ul: Adding DataStreamDefinition or DataKitDefinition brings ExternalDataConnector for
S3 data streams.

Use Case
This component holds reference to Source Data Connector Metadata.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Relationship to Other Components

This isn't a top-level entity. Add DataStreamDefinition or DataKitDefinition to pick up this entity.

External Data Source

Represents the metadata associated with an external data source. Create external data sources to manage connection details for
integration with data and content that are stored outside your Salesforce org.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Type

Both Package Developer and Subscriber Can Edit
e Auth Provider

e C(ertificate

e Custom Configuration

177

Second-Generation Managed Packages External Data Transport Field Template

e Endpoint
e |dentity Type
e QOAuth Scope

e Password
e Protocol
e Username

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: ExternalDataSource

Component Type in 1GP Package Manager Ul: External Data Source
Considerations When Packaging

e Afterinstalling an external data source from a managed or unmanaged package, the subscriber must reauthenticate to the
external system.

- For password authentication, the subscriber must reenter the password in the external data source definition.

— For OAuth, the subscriber must update the callback URL in the client configuration for the authentication provider, then
reauthenticate by selecting Start Authentication Flow on Save on the external data source.

e Certificates aren't packageable. If you package an external data source that specifies a certificate, make sure that the subscriber
org has a valid certificate with the same name.

Documentation
Metadata API Developer Guide: ExternalDataSource

External Data Transport Field Template

Represents the definition of a Data Cloud schema field.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes (supported only in 1GP packages)
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (supported only in 1GP packages)
Component Has IP Protection No

178

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externaldatasource.htm

Second-Generation Managed Packages External Data Transport Field

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e DataSourceField

e ExternalDataTranField

e ExternalName

e |sDataRequired

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExtDataTranFieldTemplate

Component Type in 1GP Package Manager Ul: External Data Transport Field Template

Use Case
ExtDataTranFieldTemplate represents the definition of a Data Cloud schema field the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit and then add
that data kit to a package. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

External Data Transport Field

Use ExternalDataTranField to add a field to the ExternalDataTranObject in your managed packages. ExternalDataTranObject is a Data
Cloud schema object.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes

179

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages

Package Developer Can Remove Component From Package

Component Has IP Protection

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e length
e Precision
e Scale

e [sDataRequired

e ExternalName

e PrimarylndexOrder

e DateFormat

e (CreationType

e MktDataTranField

e Sequence

e IsimplicitFilteringRequired

e ExtDataTranFieldTemplate

e |sCurrencylsoCode

Both Package Developer and Subscriber Can Edit
e CustomFieldDatatypes

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExternalDataTranField

Use Case

No

Yes

External Data Transport Field

This component holds reference to ExternalDataTranObject metadata and represents the fields in the ExternalDataTranObject.

License Requirements
Data Cloud must be provisioned.

Post Install Steps

You must to create a data stream via ui-api or by using the Data Cloud App.

Relationship to Other Components

This isn't a top-level entity. Add DataStreamDefinition to pick up this entity. This entity’s parent is ExternalDataTranObject.

Documentation
Metadata API Developer Guide: ExternalDataTranField

180

https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_externaldatatranobject.htm#subtype_ExternalDataTranField

Second-Generation Managed Packages External Data Transport Object Template

External Data Transport Object Template

Represents the definition of a Data Cloud schema object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes (supported only in 1GP packages)
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes (supported only in 1GP packages)
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e DataSourceObject
e ExternalDataTranObject

e ExternalName

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExtDataTranObjectTemplate

Component Type in 1GP Package Manager Ul: External Data Transport Object Template

Use Case
ExtDataTranObjectTemplate represents the definition of a Data Cloud schema object the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport object template to a data kit and then
add that data kit to a package. You can't directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

181

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US

Second-Generation Managed Packages

Documentation

External Data Transport Object

Data Cloud Developer Guide: Packages and Data Kits
Salesforce Help: Packaging in Data Cloud

External Data Transport Object

Toinclude a Data Cloud schema object in your managed packages, add ExternalDataTranObject.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade

Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP)
No

Yes

Yes

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

AvailabilityStatus
CreationType
MktDataTranObject
ObjectCategory
ExtDataTranObjectTemplate

Both Package Developer and Subscriber Can Edit

None

Neither Package Developer or Subscriber Can Edit

None

More Information

Feature Name

Metadata Name: ExternalDataTranObject

Use Case
ExternalDataTranObject contains specific schema event information that is used to describe events for ingestion via Data Cloud
Ingestion API, Web, and Mobile connectors. This object is related to many child schema fields, ExternalDataTranField.

License Requirements

Data Cloud must be provisioned.

182

https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Second-Generation Managed Packages External Document Storage Configuration

Post Install Steps
You must create a data stream via ui-api or by using the Data Cloud App.

Relationship to Other Components
This isn't a top-level entity. Add DataStreamDefinition to pick up this entity. This entity’s parent is ExternalDataConnector.

Documentation
Data Cloud Integration Guide: Mobile and Web SDK Schema Quick Guide for Data Cloud

Data Cloud Integration Guide: Requirements for Ingestion APl Schema File

Metadata API Developer Guide: ExternalDataTranObject

External Document Storage Configuration

Represents configuration, which admin makes in setup to specify the drive, path, and named credential to be used for storing documents
on external drives.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Target Object

e Record Type

e External Document Storage Identifier

e Document Path

e Named Credential

e Storage Drive Type

Neither Package Developer or Subscriber Can Edit
e DeveloperName

e MasterLabel

183

https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-mobile-web-sdk-schema-quick-guide.html
https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-ingestion-api-schema-req.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_externaldatatranobject.htm

Second-Generation Managed Packages External Services

More Information

Feature Name
Metadata Name: ExternalDocStorageConfig

Use Case
Represents the configuration that the admin makes in Setup to specify the drive, path, and named credential to be used for storing
the documents on external drives.

License Requirements
Microsoft Word 365

Documentation
Salesforce Help: Configure External Document Storage for Contracts

External Services

Represents the External Service configuration for an org.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org Yes (If there are no dependencies on the External Services
registration and its actions from flows or other features)

Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.

Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description
e label

e Schema

e Schema URL

Both Package Developer and Subscriber Can Edit

184

https://help.salesforce.com/s/articleView?id=ind.sf_contracts_Configure_External_Document_Storage_for_Contracts.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Feature Parameter Boolean

e Named Credential
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ExternalServiceRegistration

Component Type in 1GP Package Manager Ul: ExternalServiceRegistration

Considerations When Packaging
Package developers must add named credential components to the External Services registration package. A subscriber can also
create a named credential in Salesforce. However, the subscriber must use the same name as the named credential specified in the
External Services registration that references it.

Create named credentials manually or with Apex. Be sure to add the named credential to a package so that subscriber orgs can
install it. When a subscriber org installs a named credential, it can use the Apex callouts generated by the External Services registration
process.

Usage Limits
Salesforce Help: External Services System Limits

Documentation
Metadata API Developer Guide: ExternalServiceRegistration

Salesforce Help: External Services

Feature Parameter Boolean

Represents a boolean feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No. See note.
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

185

https://help.salesforce.com/s/articleView?id=platform.external_services_schema_def_limits.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalserviceregistration.htm
https://help.salesforce.com/s/articleView?id=platform.external_services.htm&type=5&language=en_US

Second-Generation Managed Packages Feature Parameter Date

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Master Label

e Value (When Data Flow Direction is setto LMO to Subscriber)
Both Package Developer and Subscriber Can Edit

e Value (When Data Flow Direction is setto Subscriber to LMO)
Neither Package Developer or Subscriber Can Edit

e FullName

e Data Type

e Data Flow Direction

More Information

Feature Name
Metadata Name: FeatureParameterBoolean

Component Type in 1GP Package Manager Ul: Feature Parameter Boolean

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app's features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can't be registered
with the LMA, there are aspects of feature parameters that can't be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can't test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterBoolean

Create Feature Parameters for Your Second-Generation Managed Package
Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

Feature Parameter Date

Represents a date feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and track
activation metrics in subscriber orgs that install your package.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

186

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_featureparameterboolean.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

Second-Generation Managed Packages

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Feature Parameter Date

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

No. See note.
No
No

No

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of

these changes require a package upgrade.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e Master Label

e Value (When Data Flow Direction is setto LMO to Subscriber)

Both Package Developer and Subscriber Can Edit

e Value (When Data Flow Direction is set to Subscriber to LMO)

Neither Package Developer or Subscriber Can Edit
e FullName
e Data Type

e Data Flow Direction

More Information

Feature Name
Metadata Name: FeatureParameterDate

Component Type in 1GP Package Manager Ul: Feature Parameter Date

Use Case

Use LMO-to-Subscriber feature parameters to enable and disable your app's features, or use Subscriber-to-LMO feature parameters

to track customer preferences and activation metrics.

Considerations When Packaging

Feature parameters are an extension of the License Management App (LMA), and because beta package versions can't be registered
with the LMA, there are aspects of feature parameters that can't be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can't test any Subscriber-to-LMO feature parameter values in

a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterDate

Create Feature Parameters for Your Second-Generation Managed Package

187

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_featureparameterdate.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm

Second-Generation Managed Packages Feature Parameter Integer

Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

Feature Parameter Integer

Represents an integer feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No. See note.
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Master Label

e Value (When Data Flow Direction is setto LMO to Subscriber)
Both Package Developer and Subscriber Can Edit

e Value (When Data Flow Direction is setto Subscriber to LMO)
Neither Package Developer or Subscriber Can Edit

e Full Name

e Data Type

e Data Flow Direction

More Information

Feature Name
Metadata Name: FeatureParameterinteger

Component Type in 1GP Package Manager Ul: Feature Parameter Integer

188

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

Second-Generation Managed Packages FieldMappingConfig

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app’s features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can't be registered
with the LMA, there are aspects of feature parameters that can't be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can't test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterinteger

Create Feature Parameters for Your Second-Generation Managed Package
Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

FieldMappingConfig

Represents the configuration for fields mapped between a source object and one or more destination objects and fields. This object is
available in APl version 63.0 and later.

@ Important: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Supported Calls

create (), delete (), describeSObjects (), query (), retrieve (), update (), upsert ()

Special Access Rules

This object is available only if the Fundraising Access license is enabled and the Fundraising User system permission is assigned to users.

Fields

Field Details

Description Type
textarea
Properties

Create, Defaulted on create, Filter, Group, Nillable, Sort, Update

Description
The description of the field mapping configuration.

DeveloperName

Type
string

189

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_featureparameterinteger.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

Second-Generation Managed Packages FieldMappingConfig

Field Details

Properties
Create, Filter, Group, Sort, Update

Description
The ungiue name for FieldMappingConfig.

Language

Type
picklist
Properties
Create, Defaulted on create, Filter, Group, Nillable, Restricted picklist, Sort, Update
Description
The language of the FieldMappingConfig.
Possible values are:
e da—-Danish
* de—German
® en US—English
e es—Spanish
* es_MxX—Spanish (Mexico)
e fi—Finnish
e fr—French
e it—ltalian
®* ja—Japanese
e ko—Korean
* nl NL—Dutch
¢ no—Norwegian
e pt BR—Portuguese (Brazil)
e ru—~Russian
e sv—>Swedish
e th—Thai
e zh CN—Chinese (Simplified)
e zh TW—Chinese (Traditional)
MasterLabel Type
string
Properties
Create, Filter, Group, Sort, Update
Description
Label for the FieldMappingConfig.
NamespacePrefix Type
string

190

Second-Generation Managed Packages FieldMappingConfig

Field Details

Properties
Filter, Group, Nillable, Sort

Description
The namespace prefix associated with this object. Each Developer Edition organization that
creates a managed package has a unique namespace prefix. Limit: 15 characters. You can
refer to a component in a managed package by using the
namespacePrefix componentName notation.

The namespace prefix can have one of the following values:

e In Developer Edition organizations, the namespace prefix is set to the namespace prefix
of the organization for all objects that support it. There is an exception if an object is in
an installed managed package. In that case, the object has the namespace prefix of the
installed managed package. This field’s value is the namespace prefix of the Developer
Edition organization of the package developer.

* In organizations that are not Developer Edition organizations, NamespacePrefix
is only set for objects that are part of an installed managed package. There is no
namespace prefix for all other objects.

ProcessType Type
picklist

Properties
Create, Defaulted on create, Filter, Group, Nillable, Restricted picklist, Sort, Update

Description
Specifies the type of process that the field mapping configuration supports.

Possible values are:

® ChangeRequest
® GiftEntry

® TIncident

® Problem

The default value is GiftEntry.

SourceObjectId Type
picklist

Properties
Create, Filter, Group, Restricted picklist, Sort, Update

Description
The ID of the source object for all of the fields mapped in the configuration.

Possible values are:

® GiftEntry

191

Second-Generation Managed Packages Field Set

Field Set

Represents a field set. A field set is a grouping of fields. For example, you could have a field set that contains fields describing a user's
first name, middle name, last name, and business title.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e [abel

e Available fields

Both Package Developer and Subscriber Can Edit
e Selected fields (only subscriber editable)
Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: FieldSet

Component Type in 1GP Package Manager Ul: Field Set

Considerations When Packaging
Field sets in installed packages perform different merge behaviors during a package upgrade:

192

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Field Source Target Relationship

If a package developer: Then in the package upgrade:

Changes a field from Unavailable to Available for the Field The modified field is placed at the end of the upgraded field set
Set or In the Field Set in whichever column it was added to.

Adds a field The new field is placed at the end of the upgraded field set in
whichever column it was added to.

Changes afield from Available for the Field Set or In the Field The field is removed from the upgraded field set.
Set to Unavailable

Changes afield from In the Field Set to Available for the Field The change isn't reflected in the upgraded field set.
Set (or vice versa)

@ Nofte: Subscribers aren't notified of changes to their installed field sets. The developer must notify users of changes to released
field sets through the package release notes or other documentation. Merging has the potential to remove fields in your field
set.

When a field set is installed, a subscriber can add or remove any field.

Documentation
Metadata API Developer Guide: FieldSet

Field Source Target Relationship

Stores the relationships between a data model object (DMO) and its fields. For example, the Individual.ld field has a one-to-many
relationship (1:M) with the ContactPointEmail Partyld field.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

193

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_fieldset.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Flow

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e (reationType

e DeveloperName

e MasterLabel

e RelationshipCardinality

e SourceField

e TargetField

Both Package Developer and Subscriber Can Edit
e lastDataChangeStatusDateTime

e lastDataChangeStatusErrorCode

e Status

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: FieldSrcTrgtRelationship

Component Type in 1GP Package Manager Ul: Field Source Target Relationship

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: FieldSrcTrgtRelationship

Flow

Represents the metadata associated with a flow. With Flow, you can create an application that navigates users through a series of pages
to query and update records in the database. You can also execute logic and provide branching capability based on user input to build
dynamic applications.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org Yes

Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.

Component Has IP Protection Yes, except a flow that is a template or overridable.

194

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_fieldsrctrgtrelationship.htm

Second-Generation Managed Packages Flow

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Entire flow

Both Package Developer and Subscriber Can Edit
e Flow Label

e Description

e Status

Neither Package Developer or Subscriber Can Edit
e Flow APl Name

e URL

More Information
Feature Name
Metadata Name: Flow

Use Case
To repeat a business process automatically such as creating an account when some criteria are met or sending an email every week,
build a flow to save time and resources

Considerations When Packaging

e When you upload a package or package version, the active flow version is included. If the flow has no active version, the latest
version is packaged.

e To update a managed package with a different flow version, activate that version and upload the package again. Or deactivate
all versions of the flow, make sure the latest flow version is the one to distribute, and then upload the package.

* Ina packaging org, you can't delete a flow after you upload it to a released or beta first-generation managed package. You can
only delete a flow version from a packaging org after you upload it to a released or beta first-generation managed package, if:

- Salesforce Customer Support activated the Managed Component Deletion permission.
- The flow version is not the most recently packaged version of the flow.
— The flow version is not active.
- The flow version is not the only version.
® Youcan't delete a flow from an installed package. To remove a packaged flow from your org, deactivate it and then uninstall
the package.

e Ifyou have multiple versions of a flow installed from multiple unmanaged packages, you can't remove only one version by
uninstalling its package. Uninstalling a package—managed or unmanaged—that contains a single version of the flow removes
the entire flow, including all versions.

® Youcan'tinclude flows in package patches.

195

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Flow Category

e Anactive flowin apackage is active after it's installed. The previous active version of the flow in the destination org is deactivated
in favor of the newly installed version. Any in-progress flows based on the now-deactivated version continue to run without
interruption but reflect the previous version of the flow. The same behavior is true even if the destination org deactivated the
flow. Future active versions of the flow that are packaged activate the flow during package upgrade.

e Upgrading a managed package in your org installs a new flow version only if there’s a newer flow version from the developer.
After several upgrades, you can end up with multiple flow versions.

e A package version can contain only one flow version per flow. If you install a managed package version that contains a flow,
only the active flow version is deployed. If the flow has no active version, the latest version is deployed.

e Ifyouinstall a flow from an unmanaged package that has the same name but a different version number as a flow in your org,
the newly installed flow becomes the latest version of the existing flow. However, if the packaged flow has the same name and
version number as a flow already in your org, the package install fails. You can't overwrite a flow.

e Aflow can be modified if it's deployed in a managed package or between a package developer org and a subscriber org where
either org has a namespace and the other doesn't have a namespace.

e Flow Builder can't open a flow that is installed from a managed package, unless the flow is a template or overridable.

® Youcan't create a package that contains flows invoked by both managed and unmanaged package pages. As a workaround,
create two packages, one for each type of component. For example, suppose that you want to package a customizable flow
invoked by a managed package page. Create one unmanaged package with the flow that users can customize. Then create
another managed package with the Visualforce page referencing the flow (including namespace) from the first package.

e When you translate a flow from a managed package, the flow’s Master Definition Name doesn’t appear on the Translate page
orthe Override page. To update the translation for the Master Definition Name, edit the flow label and then update the translation
from the Translate page.

e Ifany of the following elements are used in a flow, packageable components that they reference aren't included in the package
automatically. To deploy the package successfully, manually add those referenced components to the package.

— Post to Chatter
- Send Email

— Submit for Approval

e Ifaflow references a Lightning component that depends on a CSP Trusted Site, the trusted site isn't included in the package or
change set automatically.

Usage Limits
Salesforce Help: General Flow Limits

Relationship to Other Components
The associated Flow Definition component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow

Salesforce Help: Packaging Considerations for Flows
Salesforce Help: Considerations for Deploying Flows with Packages

Salesforce DX Developer Guide: Hard-Deleted Components in Unlocked Packages

Flow Category

Represents a list of flows that are grouped by category.

196

https://help.salesforce.com/s/articleView?id=platform.flow_considerations_limit.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_visual_workflow.htm
https://help.salesforce.com/s/articleView?id=platform.flow_considerations_packaging.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.flow_considerations_packaging.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_hard_deleted_components.htm

Second-Generation Managed Packages Flow Definition

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e |abel

e description

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: FlowCategory

Use Case
To reuse flow-based automated processes, group the flows into a flow category, and then add one or more flow categories to a
Lightning Bolt Solution.

License Requirements
Customize Application user permission

View Setup and Configuration user permission

Relationship to Other Components
You can use FlowCategory only as part of a Lightning Bolt Solution.

Documentation
Salesforce Help: Add Flows to a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

Flow Definition

Represents the flow definition’s description and active flow version number.

197

https://help.salesforce.com/s/articleView?id=experience.community_builder_export_flow_category.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.community_builder_export_package.htm&type=5&language=en_US

Second-Generation Managed Packages Flow Test

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Active Version Number

e Description

e Master Label

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: Flow Definition

Component Type in 1GP Package Manager Ul: Flow Definition

Use Case
Include this component when you use managed 1GP to package flows.

Considerations When Packaging
Considerations for Deploying Flows with Packages

Relationship to Other Components
The associated Flow component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow Definition

Salesforce Help: Flow Builder

Flow Test

Represents the metadata associated with a flow test. Before you activate a record-triggered flow, you can test it to verify its expected
results and identify flow run-time failures.

198

https://help.salesforce.com/s/articleView?id=platform.flow_considerations_packaging.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_flowdefinition.htm
https://help.salesforce.com/s/articleView?id=platform.flow.htm&type=5&language=en_US

Second-Generation Managed Packages

Component Manageability Rules

Folder

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes
No
No

No

Editable Properties After Package Promotion or Installation\

Only Package Developer Can Edit

e All properties

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e APIName

More Information

Feature Name
Metadata Name: FlowTest

Component Type in 1GP Package Manager Ul: FlowTest

Use Case

Include this component when you use managed 1GP to package flow tests.

Usage Limits
Salesforce Help: Considerations for Testing Flows

Relationship to Other Components

The associated Flow component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow Test

Salesforce Help: Testing Your Flow

Folder

Represents a folder.

199

https://help.salesforce.com/s/articleView?id=platform.flow_considerations_feature_testing.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_flowtest.htm
https://help.salesforce.com/s/articleView?id=platform.flow_concepts_testing.htm&type=5&language=en_US

Second-Generation Managed Packages Folder

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e All attributes except Folder Unigue Name
Neither Package Developer or Subscriber Can Edit

e Folder Unique Name

More Information

e Five different folder metadata types can be packaged:
- DashboardFolder
-~ DocumentFolder
- EmailFolder (available for Salesforce Classic email templates only)
- EmailTemplateFolder
-~ ReportFolder
e Components that Salesforce stores in folders, such as documents, can't be added to packages when stored in personal and unfiled
folders. Put documents, reports, and other components that Salesforce stores in folders in one of your publicly accessible folders.

e Components such as documents, email templates, reports, or dashboards are stored in new folders in the installer's org using the
publisher’s folder names. Give these folders names that indicate they're part of the package.

e Ifanew report, dashboard, document, or email template is installed during an upgrade, and the folder containing the component
was deleted by the subscriber, the folder is re-created. Any components in the folder that were previously deleted aren't restored.

e The name of a component contained in a folder must be unique across all folders of the same component type, excluding personal
folders. Components contained in a personal folder must be unique within the personal folder only.

200

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages

Documentation
Metadata API Developer Guide: Folder

Fuel Type

Represents a custom fuel type in an org.

Component Manageability Rules

Fuel Type

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Yes
No
No

No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: FuelType

Component Type in 1GP Package Manager Ul: Fuel Type

License Requirements

e Net Zero Cloud Growth license or Net Zero Cloud Starter license

e Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

e Net Zero Cloud

e Manage Carbon Accounting

201

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_folder.htm

Second-Generation Managed Packages Fuel Type Sustainability Unit of Measure

Documentation

e Salesforce Help: Create a Custom Fuel Type

Fuel Type Sustainability Unit of Measure

Represents a mapping between the custom fuel types and their corresponding unit of measure (UOM) values defined by a customer in
an org.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: FuelTypeSustnUom

Component Type in 1GP Package Manager Ul: Fuel Type Sustainability Unit of Measure
License Requirements

e Net Zero Cloud Growth license or Net Zero Cloud Starter license

e Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

e Net Zero Cloud

e Manage Carbon Accounting

202

https://help.salesforce.com/s/articleView?language=en_US&id=sf.netzero_admin_create_custom_fuel_type.htm

Second-Generation Managed Packages Fundraising Config

Documentation

e Salesforce Help: Associate a Custom Fuel Type with a Unit of Measure

Fundraising Config

Represents a collection of settings to configure the fundraising product.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation

Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

LapsedUnpaidTrxnCount
HouseholdSoftCreditRole
IsHshldSoftCrAutoCrea
InstallmentExtDayCount
DonorMatchingMethod
FailedTransactionCount
ShouldCreateRcrSchdTrxn
ShouldClosePaidRcrCmt

Both Package Developer and Subscriber Can Edit

None

Neither Package Developer or Subscriber Can Edit

None

203

https://help.salesforce.com/s/articleView?id=ind.netzero_admin_associate_custom_fuel_type_with_unitofmeasure.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Gateway Provider Payment Method Type

More Information

Feature Name
Metadata Name: FundraisingConfig

License Requirements
Fundraising Access (Permission Set License)

Documentation
Metadata API Developer Guide: FundraisingConfig

Gateway Provider Payment Method Type

Represents an entity that allows integrators and payment providers to choose an active payment to receive an order's payment data
rather than allowing the Salesforce Order Management platform to select a default payment method.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e Allfields

More Information

Feature Name
Metadata Name: GatewayProviderPaymentMethodType

License Requirements
Salesforce Order Management, B2B Commerce, or B2C Commerce (for B2B2C Commerce) licenses are required. These licenses enable
the Payment Platform org permission required to use payments objects.

204

https://developer.salesforce.com/docs/atlas.en-us.260.0.nonprofit_cloud.meta/nonprofit_cloud/npc_fundraising_api_objects_fundraisingconfig.htm

Second-Generation Managed Packages Gen Ai Planner Bundle

Documentation
Salesforce Help: Processing Payments with Payment Gateways

Gen Ai Planner Bundle

Represents a planner for an agent or agent template. It's a container for all the topics and actions used to interact with a large language
model (LLM).

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e (apabilities
e Description
e MasterlLabel

Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: GenAiPlannerBundle

Component Type in 2GP Package Manager Ul: Generative Al Planner Bundle

205

https://help.salesforce.com/s/articleView?id=sales.blng_payment_gateways.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaiplannerbundle.htm

Second-Generation Managed Packages Generative Al Prompt Template

Use Case
Represents a planner for an agent or agent template. It's a container for all the topics and actions used to interact with a large
language model (LLM).

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: The Building Blocks of Agents

Generative Al Prompt Template

Represents a generative Al prompt template, for use in Agentforce.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Template Active Version

Both Package Developer and Subscriber Can Edit
e Template Description

Neither Package Developer or Subscriber Can Edit
e Prompt Template Name

e Prompt Template Version

More Information

Feature Name
Metadata Name: GenAlPromptTemplate

206

https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Global Picklist

Component Type in 1GP Package Manager Ul: Generative Al Prompt Template

Use Case
To package prompt templates created from Prompt Builder for Generative Al use cases.

Considerations When Packaging
See Considerations for Packaging Prompt Templates.

License Requirements
Generative Al SKUs are needed to provision Prompt Builder in the org.

Documentation
Metadata APl Developer Guide: GenAiPromptTemplate

Global Picklist

Represents the metadata for a global picklist value set, which is the set of shared values that custom picklist fields can use. A global value
setisn't a field itself. In contrast, the custom picklist fields that are based on a global picklist are of type ValueSet.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information

Feature Name
Metadata Name: Global Value Set

Component Type in 1GP Package Manager Ul: Global Value Set

Considerations When Packaging
When explicitly referencing a picklist value in code, keep in mind that picklist values for a custom field can be renamed, added,
edited, or deleted by subscribers.

Picklist field values can be added or deleted in the developer’s org. Changes to standard picklists can't be packaged and deployed
to subscriber orgs, and picklist values deleted by the developer are still available in the subscriber’s org. If there are differences
between the package and the target org, or if there are dependencies on new values from features such as PathAssistant, the deploy
fails. To change values in subscriber orgs, you must manually add or modify the values in the target subscriber org.

Updating picklist values in unlocked packages isn't supported. Manually add or modify the values in the target subscriber org.

207

https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaiprompttemplate.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Home Page Component

Package upgrades retain dependent picklist values that are saved in a managed custom field.
Global value sets can be added to developer and subscriber orgs. Global value sets have these behaviors during a package upgrade.

e Label and APl names for field values don't change in subscriber orgs.

e New field values aren't added to the subscriber orgs.

e Active and inactive value settings in subscriber orgs don't change.

e Default values in subscriber orgs don't change.

e Global value set label names change if the package upgrade includes a global value set label change.

Documentation
Salesforce Help: Create a Global Picklist Value Set

Salesforce Help: Make Your Custom Picklist Field Values Global

Home Page Component

Represents the metadata associated with a home page component. You can customize the Home tab in Salesforce Classic to include
components such as sidebar links, a company logo, a dashboard snapshot, or custom components that you create. Use to create, update,
or delete home page component definitions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Body

e Component Position

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e Name

208

https://help.salesforce.com/s/articleView?id=platform.fields_creating_global_picklists.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.fields_promote_picklists.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Home Page Layout
e Type

More Information

Feature Name
Metadata Name: HomePageComponent

Component Type in 1GP Package Manager Ul: Home Page Component
Relationship to Other Components

When you package a custom home page layout, all the custom home page components included on the page layout are automatically
added. Standard components such as Messages & Alerts aren't included in the package and don't overwrite the installer's Messages
& Alerts. To include a message in your custom home page layout, create an HTML Area type custom Home tab component containing
your message. From Setup, in the Quick Find box, enter Home Page Components,then select Home Page Components.
Then add the message to your custom home page layout.

Documentation
Metadata API Developer Guide: HomePageComponent

Home Page Layout

Represents the metadata associated with a home page layout. You can customize home page layouts and assign the layouts to users
based on their user profile.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e All attributes except Layout Name

209

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_homepagecomponent.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Identity Verification Proc Def

Neither Package Developer or Subscriber Can Edit

e LayoutName

More Information

Feature Name
Metadata Name: HomePagel ayout

Component Type in 1GP Package Manager Ul: Home Page Layout
Considerations When Packaging

After they're installed, your custom home page layouts are listed with all the subscriber's home page layouts. Distinguish them by
including the name of your app in the page layout name.

Documentation
Metadata API Developer Guide: HomePagelayout

Identity Verification Proc Def

Represents the definition of the identity verification process.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e MasterLabel

e SearchlayoutType

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Name

210

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_homepagelayouts.htm

Second-Generation Managed Packages Inbound Network Connection

More Information

Feature Name
Metadata Name: IdentityVerificationProcDef

Component Type in 1GP Package Manager Ul: Identity Verification Process Definition

Use Case
Links the configuration for Identity Verification to a flow.

License Requirements
Industries Health Cloud, Industries Sales Excellence, and Industries Service Excellence licenses.

Actionable Segmentation Engagement, Industries Sales Excellence, Industry Service Excellence or Health Cloud Platform Permission
set license is required to use this metadata type.

Relationship to Other Components
An Identity Verification Process Field record looks up to an Identity Verification Process Details record, which in turn looks up to an
Identity Verification Process Definition record.

Documentation
Health Cloud Developer Guide: |dentityVerificationProcDef

Inbound Network Connection

Represents a private connection between a third-party data service and a Salesforce org. The connection is inbound because the callouts
are coming into Salesforce.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

You can only delete connections that are in an unprovisioned state.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

@ Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

n

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/meta_identityverificationprocdef.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages

Both Package Developer and Subscriber Can Edit

Neither Package Developer or Subscriber Can Edit

AWS VPC Endpoint ID
Connection Type
Developer Name
Description

Link ID

Master Label

Region

Source IP Ranges

Status

None

More Information

Feature Name

Metadata Name: InboundNetworkConnection

IndustriesEinsteinFeatureSettings

Component Type in 1GP Package Manager Ul: Inbound Network Connection

Considerations When Packaging

Packaged connections are installed as unprovisioned. Alert subscribers about how to provision connections after package installation.

If a developer changes the Region of a packaged connection that is subscriber-provisioned, the upgrade fails for the subscriber. Alert
subscribers about tearing down the connection before updating the Region field. As a best practice, avoid changing the Region of

a packaged connection unless necessary.

License Requirements

This feature is available with the Private Connect license.

Documentation
Salesforce Help: Secure Cross-Cloud Integrations with Private Connect

IndustriesEinsteinFeatureSettings

Salesforce Help: Establish an Inbound Connection with AWS

Represents the settings for enabling the Industries Einstein feature.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade

Subscriber Can Delete Component From Org

Second-Generation Managed Packages (2GP)
Yes

Yes

212

https://help.salesforce.com/s/articleView?id=xcloud.private_connect_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.private_connect_inbound_aws.htm&type=5&language=en_US

Second-Generation Managed Packages IntegrationProviderDef

Package Developer Can Remove Component From Package No

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

o Al

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: IndustriesEinsteinFeatureSettings

Documentation
Salesforce Help: Intelligent Document Reader

Salesforce Help: Intelligent Form Reader

IntegrationProviderDef

Represents an integration definition associated with a service process. Stores data for the Industries: Send Apex Async Request and
Industries: Send External Async Request invocable actions.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All other fields

Both Package Developer and Subscriber Can Edit

23

https://help.salesforce.com/s/articleView?id=ind.intelligent_document_reader.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.form_reader.htm&type=5&language=en_US

Second-Generation Managed Packages

Neither Package Developer or Subscriber Can Edit

StringValue
IntegerValue
DateTimeValue
DateValue
PercentageValue
DoubleValue

IsTrueOrFalseValue

FullName

More Information

IntegrationProviderDef

Metadata Name: IntegrationProviderDef

Invocable Action Extension

Component Type in 1GP Package Manager Ul: IntegrationProviderDef

Documentation

Invocable Action Extension

IntegrationProviderDef in Metadata API Developer Guide.

Represents extended metadata for Apex classes that are used as invocable actions or data types. This allows developers to specify how

to present the action's inputs without writing custom code.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP)
Yes
No
No

No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

Both Package Developer and Subscriber Can Edit

Neither Package Developer or Subscriber Can Edit

All properties

None

214

Second-Generation Managed Packages LearningAchievementConfig

e None

More Information

Feature Name
Metadata Name: InvocableActionExtension

Use Case
To control ordering, grouping, and conditional visibility of action input parameters. Other uses will be available in the future.

Considerations When Packaging
The maximum number of files that can be included in a package is 10,000. Invocable Action Extensions can significantly affect the
file count, as each extended Apex class adds five additional extension files. Each extension file also increases package version, creation
and installation times. If you receive an error regarding too many files or the installation takes too long, consider breaking your
package into a set of dependent packages. For more details, see Create Dependencies Between Second-Generation Managed
Packages.

Relationship to Other Components
This component is paired with an Apex Invocable Action.

Documentation
Metadata API Developer Guide: InvocableActionExtension

LearningAchievementConfig

Represents the mapping details between a Learning Achievement type and a Learning Achievement record type.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All but DeveloperName

Both Package Developer and Subscriber Can Editv

e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

25

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm

Second-Generation Managed Packages Learning ltem Type

More Information

Feature Name
Metadata Name: LearningAchievementConfig

Documentation
Education Cloud Developer Guide

Learning Item Type

Represents a custom exercise type that an Enablement user takes in an Enablement program in the Guidance Center. A custom exercise
type also requires a corresponding Learningltem record for the Guidance Center and corresponding EnblProgramTaskDefinition and
EnblProgramTaskSubCategory records for when admins create a program in Program Builder.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All but DeveloperName

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: LearningltemType

216

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Letterhead

Use Case
Include this component in a package with a program if the program has a custom exercise type.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required.

@ Important: Custom exercises aren't compatible with Partner Enablement programs.

Usage Limits
See Enablement Limits.

Relationship to Other Components
The Learning Item Type component requires a corresponding Enablement Program Task Subcategory component. Both components
are used with custom exercise types in Enablement programs. Package both of these components with an Enablement Program
Definition component.

Documentation
e Salesforce Help: Sales Programs and Partner Tracks with Enablement
e Metadata APl Developer Guide: EnblProgramTaskSubCategory
e Metadata APl Developer Guide: LearningltemType
e Object Reference for the Salesforce Platform: EnblProgramTaskDefinition
e Object Reference for the Salesforce Platform: Learningltem

e Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

e Sales Programs and Partner Tracks with Enablement Developer Guide: Implement Custom Exercise Types for Enablement Programs

Letterhead

Represents formatting options for the letterhead in an email template. A letterhead defines the logo, page color, and text settings for
your HTML email templates. Use letterheads to ensure a consistent look and feel in your company’s emails.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

217

https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enblprogramtasksubcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_learningitemtype.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_enblprogramtaskdefinition.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_learningitem.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-custom-exercises-intro.html

Second-Generation Managed Packages Life Science Config Category

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e All attributes except Letterhead Name

Neither Package Developer or Subscriber Can Edit

e |Letterhead Name

More Information

Feature Name
Metadata Name: Letterhead

Documentation
Metadata API Developer Guide: Letterhead

Life Science Config Category

Represents the category that a Life Sciences configuration record is organized into.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

@ Notfe: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

218

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_letterhead.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Life Science Config Record

Only Package Developer Can Edit

e (ategorylLabel

e DeveloperName

e MasterLabel

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e (ategoryType

More Information

Feature Name
Metadata Name: LifeSciConfigCategory

Component Type in 1GP Package Manager Ul Life Science Config Category

Considerations When Packaging
When packaging the LifeSciConfigCategory component, the DeveloperName must match the Category.

License Requirements
Industries Life Sciences Cloud with the Life Sciences Cloud for Customer Engagement Add-on license and the Life Sciences Customer
Engagement managed package.

Relationship to Other Components
This component defines the category of the configuration defined in a child LifeSciConfigRecord component.

Documentation
Life Sciences Cloud Developer Guide: LifeSciConfigCategory

Life Science Config Record

Represents a configuration record for Life Sciences. This object is a child of Life Science Config Category.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

219

https://developer.salesforce.com/docs/atlas.en-us.260.0.life_sciences_dev_guide.meta/life_sciences_dev_guide/meta_lifesciconfigcategory.htm

Second-Generation Managed Packages Lightning Bolt

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

@ Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

* [sActive

e |sOrglevel

e MasterLabel

e ParentConfigRecordld

e Type

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e DeveloperName

e LifeSciConfigCategoryld

More Information

Feature Name
Metadata Name: LifeSciConfigRecord

Component Type in 1GP Package Manager Ul: Life Science Config Record

Use Case
This component holds the configuration records for Life Sciences Cloud for Customer Engagement application.

Considerations When Packaging

e You must package the LifeSciConfigRecord component with its parent LifeSciConfigCategory component.

e The component must be in the inactive state.

License Requirements
Industries Life Sciences Cloud with the Life Sciences Cloud for Customer Engagement Add-on license and the Life Sciences Customer
Engagement managed package.

Post Install Steps
For the configuration to work, make the component active by setting IsActive to true.

Relationship to Other Components
A LifeSciConfigRecord is a child of LifeSciConfigCategory, and can't exist without the parent LifeSciConfigCategory.

Documentation
Life Sciences Cloud Developer Guide: LifeSciConfigRecord

Lightning Bolt

Represents the definition of a Lightning Bolt Solution, which can include custom apps, flow categories, and Experience Builder templates.

220

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.life_sciences_dev_guide.meta/life_sciences_dev_guide/meta_lifesciconfigrecord.htm

Second-Generation Managed Packages Lightning Message Channel

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information

Feature Name
Metadata Name: LightningBolt

Component Type in 1GP Package Manager Ul: Lightning Bolt

Documentation
Metadata API Developer Guide: LightningBolt

Lightning Message Channel

Represents the metadata associated with a Lightning Message Channel. A Lightning Message Channel represents a secure channel to
communicate across Ul technologies, such as Lightning Web Components, Aura Components, and Visualforce.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes

221

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_lightningbolt.htm

Second-Generation Managed Packages Lightning Page

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information

Feature Name
Metadata Name: LightningMessageChannel

Component Type in 1GP Package Manager Ul: Lightning Message Channel

Considerations When Packaging
To pass the AppExchange Security Review, the i sExposed attribute must be setto false.

Documentation
Metadata API Developer Guide: Lightning Message Channel

Lightning Web Components Developer Guide: Create a Message Channel

Lightning Page

Represents the metadata associated with a Lightning page. A Lightning page represents a customizable screen made up of regions
containing Lightning components.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Lightning page

Both Package Developer and Subscriber Can Edit

e None

222

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_lightningmessagechannel.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_message_channel_intro
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Lightning Type

Neither Package Developer or Subscriber Can Edit

e None

@ Nofe: You must have the Manage Prompt Templates permission to successfully package Lightning pages that reference prompt
templates. Without this permission, package creation succeeds, but the prompt template isn't included in the package.

More Information

Feature Name
Metadata Name: FlexiPage

Documentation
Metadata API Developer Guide: Flexipage

Lightning Type

Represents a custom Lightning type. Use this type to override the default user interface to create a customized appearance of responses
on the custom agent’s action input and output. Deploy this bundle to your organization to implement the overrides.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: LightningTypeBundle

223

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_flexipage.htm

Second-Generation Managed Packages Lightning Web Component

Component Type in 1GP Package Manager Ul: Lightning Type

Documentation
Metadata API Developer Guide: LightningTypeBundle

Lightning Web Component

Represents a Lightning web component bundle. A bundle contains Lightning web component resources.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

You can build Lightning components using two programming models: the Lightning Web Components model, and the original Aura
Components model.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

When a package developer removes an Aura or Lightning web component from a package, the component remains in a subscriber’s
org after they install the upgraded package. The administrator of the subscriber’s org can delete the component, if desired. This behavior
is the same for a Lightning web component or an Aura component with a public or global access value.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e APl Version

e Description

e isExposed (can only change from false to true)

e Label
e Markup
e Targets

e targetConfigs
e targetConfig
e property

224

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_lightningtypebundle.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages List View

You can't make certain changes to <property> tags on a custom component that's used in a managed package or an Experience
Builder site. For more information, see Considerations for configuring a component for Experience Builder in the Lightning Web Components
Developer Guide.

Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e Name

More Information

Lightning Web Component
Metadata Name: LightningComponentBundle

Component Type in 1GP Package Manager Ul: Lightning Web Component Bundle

Considerations When Packaging
Licensing Considerations:

Lightning Web Components don't automatically enforce managed package licensing. Lightning Web Components in a managed
package can be seen and used by users who don't have active licenses for that managed package. These Lightning Web Components
can also be seen and used after a trial of that managed package expires.

AppExchange partners are responsible for enforcing package licensing in their Lightning Web Components. We recommend using
an Apex controller that calls either the UserInfo.isCurrentUserLicensed(namespace) or
UserInfo.isCurrentUserLicensedForPackage(packagelD) methods, and only rendering the component if true is returned.

Considerations When Using 1 sExposed:

If isExposed isfalse, the package developer can remove configuration targets and a public (@api) property from a component.
The component isn't available to other namespaces or to Salesforce builders like Lightning App Builder and Experience Builder.

If isExposed istrue and the component is in a published managed package, the package developer can’t remove configuration
targets or a public (@api) property from a component. This restriction is enforced even if the target or public property was added
after the most recent publication of the package.

If isExposed is true, the component is available to other namespaces, including namespaces outside of a published managed
package.

If isExposed istrueanda Targets valueis also provided, the component is available to Salesforce builders such as Lightning
App Builder and Experience Builder.

When you delete a Lightning Web Component with an isExposed value of true, we recommend a two-stage process to ensure
that the deleted component has no dependencies on the other items in the package. See Remove Components from
Second-Generation Managed Packages for details.

Documentation
Lightning Web Components Developer Guide

Lightning Web Components Developer Guide: Add Components to Managed Packages

Lightning Web Components Developer Guide: Delete Components from Managed Packages

List View

ListView allows you to see a filtered list of records, such as contacts, accounts, or custom objects.

225

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-community-builder.html#considerations
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_methods_system_userinfo.htm#apex_System_UserInfo_isCurrentUserLicensed
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_methods_system_userinfo.htm#apex_System_UserInfo_isCurrentUserLicensedForPackage
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-packaging-add.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-packaging-delete.html

Second-Generation Managed Packages List View

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Allattributes except View Unique Name
Neither Package Developer or Subscriber Can Edit

e View Unique Name

More Information

Feature Name
Metadata Name: ListView

Component Type in 1GP Package Manager Ul: List View

Considerations When Packaging
If a subscriber removes a packaged listview from their production org, that listview is deprecated, but not deleted. If that subscriber
org later creates a sandbox org, and upgrades the package in the sandbox org, the removed listview persists in the sandbox org. To
remove the listview from the sandbox, package subscribers can click £x and select Delete.

Relationship to Other Components
List views associated with queues can't be included in a managed package or an unlocked package.

Documentation
Metadata API Developer Guide: ListView

226

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_listview.htm

Second-Generation Managed Packages Live Chat Sensitive Data Rule

Live Chat Sensitive Data Rule

Represents a rule for masking or deleting data of a specified pattern. Written as a regular expression (regex). Use this object to mask or
delete data of specified patterns, such as credit card, social security, or phone and account numbers.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade No

Subscriber Can Delete Component From Org Yes

Package Developer Can Remove Component From Package Yes, Supported in 1GP Packages only
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: LiveChatSensitiveDataRule

Component Type in 1GP Package Manager Ul: Sensitive Data Rules

Documentation
Metadata API Developer Guide: LiveChatSensitiveDataRule

227

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_livechatsensitivedatarule.htm

Second-Generation Managed Packages Loyalty Program Setup

Loyalty Program Setup

Represents the configuration of a loyalty program process including its parameters and rules. Program processes determine how new
transaction journals are processed. When new transaction journals meet the criteria and conditions for a program process, actions that
are set up in the process are triggered for the transaction journals.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes, except templates

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Loyalty Program Process records

Both Package Developer and Subscriber Can Edit

e Label

e Description

e Status
Neither Package Developer or Subscriber Can Edit

e APIName
e URL

More Information

Feature Name
Metadata Name: LoyaltyProgramSetup

Component Type in 1GP Package Manager Ul: Loyalty Program Setup

Use Case
Promotion setup allows loyalty program managers to create loyalty program processes.

License Requirements
Loyalty Management permission set license

Documentation
Salesforce Help: Create Processes with Promotion Setup

228

https://help.salesforce.com/s/articleView?id=https://help.salesforce.com/s/articleView?id=xcloud.promotion_setup.htm&type=5&language=en_US

Second-Generation Managed Packages Managed Content Type

Managed Content Type

Represents the definition of custom content types for use with Salesforce CMS. Custom content types are displayed as forms with defined
fields.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e (ontent
e Description

e Labels
Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ManagedContentType

Use Case
Share or distribute custom content types for use in enhanced workspaces in Salesforce CMS.

Considerations When Packaging
Installed content types are available only to enhanced CMS workspaces.

To refer to an installed content type when using Connect REST API, you must use the content type’s fully qualified name. Installed
content types are available only to enhanced CMS workspace resources.

Documentation
Metadata API Developer Guide: ManagedContentType

Connect REST API Developer Guide: Enhanced CMS Workspaces Resources
CMS Developer Guide: Create Custom Content Type Sample

229

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_managedcontenttype.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.chatterapi.meta/chatterapi/connect_resources_managed_content_enhanced_resources.htm
https://developer.salesforce.com/docs/platform/cms/guide/cms-dev-create-custom-content-type-sample.html

Second-Generation Managed Packages Marketing App Extension

Marketing App Extension

Represents an integration with a third-party app or service that generates prospect external activity.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e DeveloperName

e MasterLabel

e Description

Both Package Developer and Subscriber Can Edit
e [sActive

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: MarketingAppExtension

Component Type in 1GP Package Manager Ul: Marketing App Extension

Use Case
Partners and ISVs can provide integrations with third-parties so Account Engagement customers can enhance their automations.

Considerations When Packaging
Marketing app extensions require an associated action type component to function. The related component activity type isn't
supported for packaging.

License Requirements
This feature is available in Plus, Advanced, or Premium editions of Account Engagement. To work with marketing app extensions,
users must be a Salesforce admin or have the required permissions to access Marketing Setup.

230

https://help.salesforce.com/s/articleView?id=mktg.pardot_admin_marketing_admin.htm&type=5&language=en_US

Second-Generation Managed Packages Marketing App Extension Activity

Usage Limits
The number of active extensions, activities, and actions the end user can have at one time depends on their edition of Account
Engagement.

e Plus—10 active extensions, with 10 active activities and 10 active actions per active extension

e Advanced—20 active extensions, with 20 active activities and 20 active actions per active extension
e Premium—30 active extensions, with 30 active activities and 30 active actions per active extension
For more on limits, see Considerations for Working with Marketing App Extensions.

Post Install Steps
To receive data, the extension must be activated for automations and have a business unit assignment.

Relationship to Other Components
The extension requires an associated action type component to function.

Documentation
This component is part of Account Engagement’s extensibility feature set.

e Salesforce Help: Automate Data Sharing with Third-Party Apps
e Developer Guide: Work with Extensibility Features

Marketing App Extension Activity

Represents an Activity Type, which is a prospect activity that occurs in a third-party app and can be used in Account Engagement
automations.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e MasterLabel

e Description

Both Package Developer and Subscriber Can Edit
® |sActive

Neither Package Developer or Subscriber Can Edit

e DeveloperName

231

https://help.salesforce.com/s/articleView?id=mktg.pardot_extensions_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_extensibility_parent.htm&type=5&language=en_US
https://developer.salesforce.com/docs/marketing/pardot/guide/extensibility-features-overview.html

Second-Generation Managed Packages Market Segment Definition

e EndpointUrl
e MarketingAppExtension

More Information
Feature Name
Metadata Name: MarketingAppExtActivity
Component Type in 1GP Package Manager Ul: Marketing App Extension

Use Case
Partners and ISVs can use Activities to submit external prospect engagement data to Marketing Cloud Account Engagement.

Considerations When Packaging
This component is included when the parent component MarketingAppExtension on page 230 is added to a package. The related
component MarketingAppExtActivity isn't supported for packaging.

License Requirements
This feature is available in Plus, Advanced, or Premium editions of Account Engagement. To work with marketing app extensions
and related components, users must be a Salesforce admin or have the required permissions to access Marketing Setup.

Usage Limits
The number of active extensions, activities, and actions the end user can have at one time depends on their edition of Account
Engagement.

e Plus—10 active activities per active extension

e Advanced—20 active activities per active extension

e Premium—30 active activities per active extension

For more information, see Considerations for Working with Marketing App Extensions.

Post Install Steps
To receive data, the activity and its related extension must be activated for automations.

Relationship to Other Components
This component is a child of the MarketingAppExtension on page 230 component. Activities interact with Marketing Cloud Account
Engagement features that support external activities. For more information, see Capture External Prospect Activity.

Documentation
This component is part of Account Engagement’s extensibility feature set.

e Salesforce Help: Automate Data Sharing with Third-Party Apps
e Developer Guide: Work with Extensibility Features

Market Segment Definition

Represents the field values for MarketSegmentDefinition. MarketSegmentDefinition is used to store the exportable metadata of a segment,
such as segment criteria and other attributes. Developers can create segment definition packages, pass segment definition in the form
of data build tool (DBT), and publish it on AppExchange for subscriber organizations to install and instantiate these segments.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

232

https://help.salesforce.com/s/articleView?id=mktg.pardot_admin_marketing_admin.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_extensions_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_external_activity_parent.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_extensibility_parent.htm&type=5&language=en_US
https://developer.salesforce.com/docs/marketing/pardot/guide/extensibility-features-overview.html

Second-Generation Managed Packages

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

MktCalculatedinsightsObjectDef

First-Generation Managed Packages (1GP)
Yes
No
Yes

No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

® Yes, applicable for all properties.

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: MarketSegmentDefinition

Component Type in 1GP Package Manager Ul: Market Segment Definition

MktCalculatedinsightsObjectDef

Represents Calculated Insight definition such as expression.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

First-Generation Managed Packages (1GP)
Yes
No
No

No

233

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages MktDataConnection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

BuilderExpression

e (alculatedinsightCreationType
e Description

e Expression

e [abel

Both Package Developer and Subscriber Can Edit
e (alculatedinsightObjectDefinitionStatus

e Description
Neither Package Developer or Subscriber Can Edit

e DeveloperName

More Information

Feature Name
Metadata Name: MktCalcInsightObjectDef

Component Type in 1GP Package Manager Ul: MktCalclnsightObjectDef.

Use Case
Defines CDP calculated insight for easy creation on subscriber organizations.

Considerations When Packaging
To package this component, first add it to a data kit. For more information about data kits, see Data Kits in Salesforce Help.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to go to the Calculated Insights object home in Customer Data Platform, click New action and select Create from a
Package.

Relationship to Other Components
Calculated Insight Component is tied to the Data Model Object component. The Calculated Insight component must have Data
Model Object dependencies available on the subscriber organization that are used in the Calculated Insight.

Documentation
Metadata API Developer Guide: MktCalcInsightObjectDef

MktDataConnection

Represents the connection information of an external connector that can ingest data to Data Cloud, read data from the source, or write
data to the source in Data Cloud.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

234

https://help.salesforce.com/s/articleView?id=data.c360_a_data_package_kits.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_mktcalcinsightobjectdef.htm

Second-Generation Managed Packages MktDataConnection

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit

e masterLabel

e Parameters
- paramName
- value

e (redentials

-~ credentialName

- value

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: MktDataConnection

Component Type in 1GP Package Manager Ul: Data Connection

Use Case
To reuse connection parameters.

Considerations When Packaging
Connection credentials are excluded from the package. Available parameters are defined in Connector Metadata which is exposed
from Connect API.

License Requirements
Data Cloud must be provisioned. For more information, see Data Cloud: Access and Provisioning.

Usage Limits
The number of connections per connector type can be up to 200.

Post Install Steps
After you create the connection, it will be in INACTIVE state, you must manually activate the connection.

235

https://help.salesforce.com/s/articleView?id=000396444&type=1&language=en_US

Second-Generation Managed Packages MktDataTranObject

Relationship to Other Components
Must be used with Data Stream and Activation.

Documentation
Salesforce Help: Third-Party Data Cloud Connectors

MkiDataTranObiject

An entity that is used to deliver (aka transport) information from the source to a target (target will be called a landing entity).This can
be the schema of a file, API, Event, or other means of transporting data, such as SubscriberFile1.csv, or SubscriberCDCEvent.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e (reationType

e DataSource

e DataSourceObject

e DeveloperName

e ObjectCategory

* Status

Both Package Developer and Subscriber Can Edit
e DataConnector

Neither Package Developer or Subscriber Can Edit

e None

236

https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-data-cloud-integrations.html
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Named Credential

More Information

Feature Name
Metadata Name: MktDataTranObject

Component Type in 1GP Package Manager Ul It's not a top-level component, it can only be spidered in when customer selects some
other component. You won't be able to add this component directly to the package.

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: MktDataTranObject

Named Credential

Represents a named credential, which specifies the URL of a callout endpoint and its required authentication parameters in one definition.
A named credential can be specified as an endpoint to simplify the setup of authenticated callouts.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation

@ Nofe: In addition to these properties, the Description, ParameterName, ParameterValue, and SequenceNumber properties have
the same editability as the NamedCredentialParameters they're included in.

Only Package Developer Can Edit

e [abel

e NamedCredentialType

e [egacy Named Credentials only (deprecated and unsupported in future releases)

-~ Endpoint (deprecated)

237

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_mktdatatranobject.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Named Credential

Both Package Developer and Subscriber Can Edit
e (alloutOptions

- AllowMergeFieldsinBody

- AllowMergeFieldsinHeader

— GenerateAuthorizationHeader

e NamedCredentialParameters
- AllowedManagedPackageNamespaces (only subscriber editable)
- Authentication
- (lientCertificate (only subscriber editable in 2GP)
- HttpHeader
-~ OutboundNetworkConnection
- U

e [egacy Named Credentials only (deprecated and unsupported in future releases)
— AuthProvider (deprecated)
— AuthTokenEndpointUrl (deprecated)
- AwsAccessKey, AwsAccessSecret, AwsRegion, and AwsService (all deprecated)
- Certificate (deprecated)
- JwtAudience, JwtFormulaSubject, Jwtlssuer, JwtSigningCertificateld, JwtTextSubject, and JwtValidityPeriodSeconds (all deprecated)
- QauthRefreshToken, OauthScope, and OathToken (all deprecated)
-~ OutboundNetworkConnectionld (deprecated)
-~ Password (deprecated)
- PrincipalType (deprecated)
—~ Protocol (deprecated)

-~ Username (deprecated)

Neither Package Developer or Subscriber Can Edit

e FullName

More Information

Feature Name
Metadata Name: NamedCredential

Considerations When Packaging

Certificates aren't packageable. If a certificate needs access to an external system, an administrator must upload one to the subscriber
org and reference it in the named credential.

Relationship to Other Components
You must package NamedCredential with the associated ExternalCredential component.

The named credential defines a callout endpoint and an HTTP transport protocol, while the external credential represents the details
of how Salesforce authenticates to an external system via an authentication protocol. Each named credential must be mapped to
at least one external credential.

238

Second-Generation Managed Packages Object Source Target Map

Legacy Named Credentials

@ Important: In Winter 23, Salesforce introduced an improved named credential that is extensible and customizable. We
strongly recommend that you use this preferred credential instead of legacy named credentials. For information on extensible,
customizable named credentials, see Named Credentials and External Credentials. Legacy named credentials are deprecated
and will be discontinued in a future release.

After installing a named credential from a managed or unmanaged package, the subscriber must reauthenticate to the external
system.

e For password authentication, the subscriber reenters the password in the named credential definition.

e For OAuth, the subscriber updates the callback URL in the client configuration for the authentication provider and then
reauthenticates by selecting Start Authentication Flow on Save on the named credential.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide
Metadata API Developer Guide: NamedCredential

Obiject Source Target Map

Contains the object-level mappings between the source and the target objects. The source and target objects can be an MktDatalakeObject
or an MktDataModelObject. For example, an Email source object can be mapped to the ContactPointEmail object.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e (reationType

e DeveloperName

239

https://help.salesforce.com/s/articleView?id=nc_named_creds_and_ext_creds.htm&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.named_credentials_about.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_namedcredential.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages OcrSampleDocument

* MasterLabel

e ParentObject

e SequenceNbr

e SourceObject

e TargetObject

Both Package Developer and Subscriber Can Edit

e lastDataChangeStatusDateTime
e lastDataChangeStatuskrrorCode

e Status
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ObjectSourceTargetMap

Component Typein 1GP Package Manager Ul: It's not a top-level component, it can only be spidered in when customer selects some
other component. You won't be able to add this component directly to the package.

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: ObjectSourceTargetMap

OcrSampleDocument

Represents the details of a sample document or a document type that's used as a reference while extracting and mapping information
from a customer form.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org Yes

Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

240

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_objectsourcetargetmap.htm

Second-Generation Managed Packages OcrTemplate

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Al

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
OcrSampleDocument

Component Type in 1GP Package Manager Ul: OcrSampleDocument

Use Case
Migrate sample documents created with the Intelligent Form Reader or Intelligent Document Reader feature.

Considerations When Packaging
If you update the package by deleting OcrSampleDocumentFields associated with the OCRTemplate, the OcrSampleDocumentFields
are not deleted.

License Requirements
AWSTextract1000LimitAddOn-1 for the Intelligent Form Reader feature or IntelligentDocumentReaderAddOn-1 for the Intelligent
Document Reader feature.

Relationship to Other Components
DocumentType, ContentAsset, and OcrTemplate (Optional)

Documentation
Metadata API Developer Guide: OcrSampleDocument

OcrTemplate

Represents the details of the mapping between a form and a Salesforce object using Intelligent Form Reader.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org Yes

Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.

24

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_ocrsampledocument.htm

Second-Generation Managed Packages Outbound Network Connection

Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

o Al

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
OcrTemplate

Component Type in 1GP Package Manager Ul: OcrTemplate

Use Case
Migrate Mappings created with the Intelligent Form Reader or Intelligent Document Reader feature.

Considerations When Packaging
OcrTemplate has a dependency on OcrSampleDocument. Before deploying the package, make sure to either include
OcrSampleDocument in the package or deploy a package that contains OcrSampleDocument.

License Requirements
AWSTextract1000LimitAddOn-1 for the Intelligent Form Reader feature or IntelligentDocumentReaderAddOn-1 for the Intelligent
Document Reader feature.

Relationship to Other Components
DocumentType and OcrSampleDocument

Documentation
Metadata API Developer Guide: OcrTemplate

Outbound Network Connection

Represents a private connection between a Salesforce org and a third-party data service. The connection is outbound because the
callouts are going out of Salesforce.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

242

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_ocrtemplate.htm

Second-Generation Managed Packages Outbound Network Connection

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: You can only delete connections that are in an unprovisioned state.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

@ Notfe: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

e Connection Type

e Developer Name

e Description

e Master Label

e Region

e Service Name

Both Package Developer and Subscriber Can Edit

e Status

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: OutboundNetworkConnection

Component Type in 1GP Package Manager Ul: Outbound Network Connection
Considerations When Packaging
e Packaged connections are installed as unprovisioned. Alert subscribers about how to provision connections after package installation.

e Ifadeveloper changes the Region or Service Name of a packaged connection that is subscriber-provisioned, the upgrade fails for
the subscriber. Alert subscribers about tearing down the connection before you update the Region or Service Name fields. As a best
practice, avoid changing the Region or Service Name of a packaged connection unless necessary.

e Ifyoupackage a Named Credential that references an Outbound Network Connection, the referenced Outbound Network Connection
component is automatically added to the package.

243

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages

License Requirements
This feature is available with the Private Connect license.

Documentation

Page Layout

Salesforce Help: Secure Cross-Cloud Integrations with Private Connect

Salesforce Help: Establish an Outbound Connection with AWS

Page Layout

Represents the metadata associated with a page layout.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

No
Yes
Yes. Supported in both 1GP and 2GP packages

No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e All attributes except Page Layout Name
Neither Package Developer or Subscriber Can Edit

* Page Layout Name

More Information

Feature Name
Metadata Name: Layout

244

https://help.salesforce.com/s/articleView?id=xcloud.private_connect_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.private_connect_outbound_aws.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Path Assistant

Considerations
The page layout of the person uploading a package is the layout used for Group and Professional Edition orgs and becomes the
default page layout for Enterprise, Unlimited, Performance, and Developer Edition orgs.

Package page layouts alongside complimentary record types if the layout is being installed on an existing object. Otherwise, manually
apply the installed page layouts to profiles.

If a page layout and a record type are created as a result of installing a package, the uploading user’s page layout assignment for
that record type is assigned to that record type for all profiles in the subscriber org, unless a profile is mapped during an install or
upgrade.

Documentation
Metadata API Developer Guide: Layout

Path Assistant

Represents Path records.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e [sActive field

Neither Package Developer or Subscriber Can Edit

e SobjectType, SobjectProcessField, and RecordType

245

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_layouts.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Payment Gateway Provider

More Information

Feature Name
Metadata Name: PathAssistant

Component Type in 1GP Package Manager Ul: Path Assistant

Documentation
Metadata API Developer Guide: PathAssistant

Payment Gateway Provider

Represents the metadata associated with a payment gateway provider.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e Allfields

More Information

Feature Name
Metadata Name: PaymentGatewayProvider

License Requirements
Salesforce Order Management, B2B Commerce, or B2C Commerce (for B2B2C Commerce) licenses are required. These licenses enable
the Payment Platform org permission required to use payments objects.

Documentation
Salesforce Help: Processing Payments with Payment Gateways

246

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_pathassistant.htm
https://help.salesforce.com/s/articleView?id=sales.blng_payment_gateways.htm&type=5&language=en_US

Second-Generation Managed Packages Permission Set

Permission Set

Represents a set of permissions that's used to grant more access to one or more users without changing their profile or reassigning
profiles. You can use permission sets to grant access but not to deny access.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e [abel

e Custom object permissions
e Custom field permissions

e Apex class access settings

e Visualforce page access settings

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: PermissionSet

247

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Permission Set Groups

Component Type in 1GP Package Manager Ul: Permission Set

Documentation
Metadata API Developer Guide: PermissionSet

Permission Set Groups

Represents a group of permission sets and the permissions within them. Use permission set groups to organize permissions based on
job functions or tasks. Then, you can package the groups as needed.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e Permission Set Group Components (Developer can add and remove while Subscriber can add)
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: PermissionSetGroup

Component Type in 1GP Package Manager Ul: Permission Set Group

Considerations When Packaging
Don't assume that a subscriber's permission set group is the same as what the developer has specified. Although developers can
define the permission set group and what permission sets can go into it, subscribers can add additional permission sets or mute
permissions.

Relationship to Other Components
This feature can only be used in conjunction with Permission Sets.

248

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_permissionset.htm

Second-Generation Managed Packages

Documentation
Salesforce Help: Permission Set Groups

Platform Cache

Represents a partition in the Platform Cache.

Component Manageability Rules

Platform Cache

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

No
No
No

No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e Master Label
e Description

e Default Partition

Both Package Developer and Subscriber Can Edit
e Organization Capacity

e Trial Capacity

Neither Package Developer or Subscriber Can Edit

e Developer Name

More Information

Feature Name
Metadata Name: PlatformCachePartition

Component Type in 1GP Package Manager Ul: Platform Cache Partition

Documentation

Set Up a Platform Cache Partition with Provider Free Capacity

Metadata APl Developer Guide: PlatformCachePartition

Apex Developer Guide: Platform Cache Partitions

249

https://help.salesforce.com/s/articleView?id=platform.perm_set_groups.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/data_platform_cache_setup_provider_capacity.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_platformcachepartition.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_cache_partition_setup.htm

Second-Generation Managed Packages Platform Event Channel

Platform Event Channel

Represents a channel that you can subscribe to in order to receive a stream of events.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

More Information

Feature Name
Metadata Name: PlatformEventChannel

Component Type in 1GP Package Manager Ul: Platform Event Channel

Documentation
Metadata API Developer Guide: PlatformEventChannel

SEE ALSO:

Change Data Capture Developer Guide: Compose Streams of Change Data Capture Notifications with Custom Channels

Platform Event Channel Member

Represents an entity selected for Change Data Capture notifications on a standard or custom channel, or a platform event selected on
a custom channel.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes

250

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_platformeventchannel.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.change_data_capture.meta/change_data_capture/cdc_custom_channel.htm

Second-Generation Managed Packages Platform Event Subscriber Configuration

Component Has IP Protection No

More Information

Feature Name
Metadata Name: PlatformEventChannelMember

Component Type in 1GP Package Manager Ul: Platform Event Channel Member
Considerations When Packaging

e Asof Winter 22, installing a managed package that contains Change Data Capture entity selections no longer causes an installation
error. Before Winter 22, installing a managed package that contained Change Data Capture entity selections that were over the
default allocation caused package installation errors.

e To package Change Data Capture entity selections, create a custom channel through the PlatformEventChannel metadata type.
Then add entity selections to the custom channel through the PlatformEventChannelMember metadata type.

Documentation
Metadata API Developer Guide: PlatformEventChannelMember

SEE ALSO:

Change Data Capture Developer Guide: Compose Streams of Change Data Capture Notifications with Custom Channels

Platform Event Subscriber Configuration

Represents configuration settings for a platform event Apex trigger, including the batch size, the trigger's running user, and parallel
subscription settings.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No

@ Note: PlatformEventSubscriberConfig is tied to an Apex
trigger. If the package developer removes the Apex trigger,
PlatformEventSubscriberConfig is also removed.

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

251

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_platformeventchannelmember.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.change_data_capture.meta/change_data_capture/cdc_custom_channel.htm

Second-Generation Managed Packages Pricing Action Parameters

e batchSize

® numPartitions

e partitionKey

e platformEventConsumer

Both Package Developer and Subscriber Can Edit
® user

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: PlatformEventSubscriberConfig

Component Type in 1GP Package Manager Ul: Platform Event Subscriber Configuration

Use Case
Override the default running user and batch size of a platform event Apex trigger.

Relationship to Other Components
PlatformEventSubscriberConfig is tied to an Apex trigger.

Documentation
Platform Events Developer Guide: Configure the User and Batch Size for Your Platform Event Trigger

Platform Events Developer Guide: Platform Event Processing at Scale with Parallel Subscriptions for Apex Triggers

Pricing Action Parameters

Represents a pricing action associated to a context definition and a pricing procedure.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

252

https://developer.salesforce.com/docs/atlas.en-us.260.0.platform_events.meta/platform_events/platform_events_trigger_config.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.platform_events.meta/platform_events/platform_events_ps.htm

Second-Generation Managed Packages Pricing Recipe

Both Package Developer and Subscriber Can Edit
e Pricing Action Parameters Name
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: PricingActionParameters

Component Type in 1GP Package Manager Ul: PricingActionParameters

License Requirements
Salesforce Pricing permissions

Relationship to Other Components
All the components that pricing depends on are packaged along with the Pricing Action Parameters component.

Documentation
Salesforce Help: Pricing Action Parameters in Salesforce Pricing

Pricing Recipe

Represents one out of various data models or sets of entities of a particular cloud that'll be consumed by the pricing data store during
design and run time.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

253

https://help.salesforce.com/s/articleView?id=ind.pricing_pricing_action_parameters.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Procedure Output Resolution

Both Package Developer and Subscriber Can Edit
e Recipe Name
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: PricingRecipe

Component Type in 1GP Package Manager Ul: PricingRecipe

Considerations When Packaging
There are two prerequisites currently. All the associated contexts aren’t exported. For decision tables, while exporting, column
additions made to the associated objects aren't refreshed during export.

License Requirements
Salesforce Pricing permissions

Relationship to Other Components
All the components that pricing is dependent on are packaged along with the pricing recipe.

Documentation
Salesforce Help: Pricing Recipes

Procedure Output Resolution

Represents the pricing resolution for an pricing element determined using strategy name and formula.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Active Checkbox

Both Package Developer and Subscriber Can Edit

e None

254

https://help.salesforce.com/s/articleView?language=en_US&id=sf.pricing_pricing_recipes.htm

Second-Generation Managed Packages Process

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ProcedureOutputResolution

Component Type in 1GP Package Manager Ul: ProcedureOutputResolution

Use Case
To determine the best price for a product if a pricing rule produces multiple outcomes.

License Requirements
Salesforce Pricing permissions

Documentation
Salesforce Help: Procedure Output Resolution

Process

Use Flow instead.

See Flow

Process Flow Migration

Represents a process's migrated criteria and the resulting migrated flow.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection Yes

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit

e None

255

https://help.salesforce.com/s/articleView?id=ind.pricing_procedure_output_resolution.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_flow

Second-Generation Managed Packages Product Attribute Set

Neither Package Developer or Subscriber Can Edit

e Description
e Label

e Name

More Information

Feature Name
Metadata Name: ProcessFlowMigration

Component Type in 1GP Package Manager Ul: Process Flow Migration
Use Case

Include this component only if you've used Migrate to Flow tool and wish to have pending Scheduled Actions from migrated
Processes converted into pending Flow Scheduled Paths in subscriber orgs. This occurs after the migrated Flow is activated in the
subscriber org.

Considerations When Packaging

When packaging a Flow that was migrated from a Process, this component is added automatically. When adding a Flow that was
migrated from a Process to a change set, this component would need to be added manually.

Relationship to Other Components
Flows

Documentation
Salesforce Help: Migrate Processes and Workflows to Flow

Product Attribute Set

Represents the ProductAttribute information being used as and attribute such as color_c, size_c.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

256

https://help.salesforce.com/s/articleView?id=platform.flow_migrate_to_flow.htm&type=5&language=en_US

Second-Generation Managed Packages Product Specification Type

Both Package Developer and Subscriber Can Edit
e Description

e Master Label

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ProductAttributeSet

License Requirements
A B2B Commerce or D2C Commerce license and access to Commerce objects is required.

Usage Limits
An org can have a maximum of 100 product attribute sets.

For each product attribute set, you can have a maximum of five associated product attribute set items.

Documentation
Salesforce Help: Product Variations and Attributes

Metadata API Developer Guide: ProductAttributeSet

Product Specification Type

Represents the type of product specification provided by the user to make the product terminology unique to an industry. A product
specification type is associated with a product specification record type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e [abel
e Description

Both Package Developer and Subscriber Can Edit

257

https://help.salesforce.com/s/articleView?id=commerce.comm_var_att_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_productattributeset.htm

Second-Generation Managed Packages Product Specification Record Type

e None
Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: ProductSpecificationType

Component Type in 1GP Package Manager Ul: ProductSpecificationType

License Requirements
Only Salesforce Admins can set up the product specification type. To create and edit product specification type, the Product Catalog
Management Designer permission set is required. To view product specification type, the Product Catalog Management Viewer
permission set is required.

Documentation
Salesforce Help: Product Specification

Salesforce Help: Create Product Specification Type and Product Specification Record Type

Product Specification Record Type

Represents the relationship between industry-specific product specifications and the product record type.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e Label

e Record Type

e Product Specification Type

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

258

https://help.salesforce.com/s/articleView?id=ind.product_catalog_product_specification.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.product_catalog_create_product_specification_type_and_product_specification_record_type.htm&type=5&language=en_US

Second-Generation Managed Packages Prompts (In-App Guidance)

e Name

e |s Commercial

More Information

Feature Name
Metadata Name: ProductSpecificationRecType

Component Type in 1GP Package Manager Ul: ProductSpecificationRecType

License Requirements
Only Salesforce admins can set up the product specification record type. To create and edit product specification record type, the
Product Catalog Management Designer permission set is required. To view product specification record type, the Product Catalog
Management Viewer permission set is required.

Documentation
Salesforce Help: Product Specification

Salesforce Help: Create Product Specification Type and Product Specification Record Type

Prompts (In-App Guidance)

Represents the metadata related to in-app guidance, which includes prompts and walkthroughs.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

More Information

Feature Name
Metadata Name: Prompt

Component Type in 1GP Package Manager Ul: Prompt
Considerations When Packaging

For 2GP packages, ensure that the scratch org definition file includes the GuidanceHubAllowed and Enablement features.
See Build Your Own Scratch Org Definition File in the Salesforce DX Developer Guide.

License Requirements
Enablement Admin permission set and Enablement permission set license are required.

259

https://help.salesforce.com/s/articleView?id=ind.product_catalog_product_specification.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.product_catalog_create_product_specification_type_and_product_specification_record_type.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm

Second-Generation Managed Packages Quick Action

Documentation
Metadata API Developer Guide: Prompt

Salesforce Help: Guidelines for In-App Guidance in Managed Packages

Quick Action

Represents a specified create or update quick action for an object that then becomes available in the Chatter publisher.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Field Overrides

Both Package Developer and Subscriber Can Edit

e Al attributes except Field Overrides

@ Nofe: You can only modify managed package quick action layouts in Salesforce Setup. You can't make changes using Metadata
API.

Neither Package Developer or Subscriber Can Edit

More Information

Feature Name
Metadata Name: QuickAction

Component Type in 1GP Package Manager Ul: Quick Action

260

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_prompt.htm
https://help.salesforce.com/s/articleView?id=sales.customhelp_iag_packages.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Recommendation Strategy

Documentation
Salesforce Help: Quick Actions

Recommendation Strategy

Represents a recommendation strategy. Recommendation strategies are applications, similar to data flows, that determine a set of
recommendations to be delivered to the client through data retrieval, branching, and logic operations.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package No

Component Has IP Protection Yes, except templates

More Information

Feature Name
Metadata Name: RecommendationStrategy

Component Type in 1GP Package Manager Ul: Recommendation Strategy

Use Case
You can use this component to create personalized recommendations for end users. A recommendation displays contextually in
Salesforce and prompts the end user to accept or reject the suggestion. When an end user accepts or rejects the recommendation,
Salesforce automates a process, such as creating or updating a record.

Considerations When Packaging
When you package a recommendation strategy, you must manually add object dependencies, such as recommendation,
recommendationReaction, and flow.

Usage Limits
An admin must select an object dependency for Recommendation and RecommendationReaction because object dependencies
aren't added automatically.

Documentation
Salesforce Help: Einstein Next Best Action

Record Action Deployment

Represents configuration settings for the Actions & Recommendations, Action Launcher, and Bulk Action Panel components.

261

https://help.salesforce.com/s/articleView?id=platform.actions_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.einstein_next_best_action.htm&type=5&language=en_US

Second-Generation Managed Packages Record Action Deployment

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e (Channel Configurations

e Deployment Contexts

e HasGuidedActions

e HasRecommendations

e Label

e Recommendations

e Selectableltems

e ShouldLaunchActionOnReject

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: RecordActionDeployment

Component Type in 1GP Package Manager Ul: RecordAction Deployment

Considerations When Packaging
If the record action deployment component uses flows, quick actions, objects, or Next Best Action recommendations, include them
in the package too.

262

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages

Documentation
Metadata APl Developer Guide: RecordActionDeployment

Record Alert Data Source Expression Set Definition

Salesforce Help: Create an Actions & Recommendations Deployment

Record Alert Data Source Expression Set Definition

Represents information about the data source for a record alert and the association with an expression set definition.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

First-Generation Managed Packages (1GP)
Yes
No
No

No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e All other fields

Both Package Developer and Subscriber Can Edit
e ExpressionSetDefinition

e ExpressionSetObject

® IsActive

e RecordAlertDataSource

Neither Package Developer or Subscriber Can Edit

e FullName

e Metadata

More Information

RecAlrtDataSrcExpSetDef
Metadata Name: RecAlrtDataSrcExpSetDef

Component Type in 1GP Package Manager Ul: RecAlrtDataSrcExpSetDef

Documentation

RecAlrtDataSrcExpSetDef in Financial Services Cloud Developer Guide.

263

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_recordactiondeployment.htm
https://help.salesforce.com/s/articleView?id=service.console_lex_guided_action_deployment.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.financial_services_cloud_object_reference.meta/financial_services_cloud_object_reference/sforce_api_objects_recalrtdatasrcexpsetdef.htm

Second-Generation Managed Packages Record Type

Record Type

Represents the metadata associated with a record type. Record types let you offer different business processes, picklist values, and page
layouts to different users. Use this metadata type to create, update, or delete record type definitions for a custom object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e Record Type Label

Both Package Developer and Subscriber Can Edit
e Active

e Business Process

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: RecordType

Component Type in 1GP Package Manager Ul: Record Type
Considerations When Packaging

e Ifrecord types are included in the package, the subscriber’s org must support record types to install the package.

264

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages RedirectWhitelistUrl

e When a new picklist value is installed, it's associated with all installed record types according to the mappings specified by the
developer. A subscriber can change this association.

e Referencingan object’s record type field in a report’s criteria—for example, Account Record Type—causesadependency.

e Summarizing by an object’s record type field in a report’s criteria—for example, Account Record Type—causesa
dependency.

e Ifan object’s record type field is included as a column in a report, and the subscriber’s org isn't using record types on the object
or doesn't support record types, the column is dropped during installation.

e Ifyouinstall a custom report type that includes an object’s record type field as a column, that column is dropped if the org
doesn't support record types or the object doesn't have record types defined.

Documentation
Metadata API Developer Guide: RecordType

RedirectWhitelistUrl

Represents a trusted URL that's excluded from redirection restrictions when the redirectionWarning or redirectBlockModeEnabled field
on the SessionSettings Metadata type is set to true.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Ur

Neither Package Developer or Subscriber Can Edit

e None

265

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_recordtype.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Referenced Dashboard

More Information

Feature Name
Metadata Name: RedirectWhitelistUrl

Component Type in 1GP Package Manager Ul: RedirectWhitelistUrl

Use Case
Customers can use a Salesforce security setting to specify what happens when a user clicks a hyperlink that redirects to an untrusted
URL outside the salesforce.com domain. The customer can choose to block these redirections or alert the user that the link is taking
them outside the Salesforce domain. The URLs in RedirectWhiteListURL are considered trusted for the purpose of that security setting.

If the Experience Cloud site pages, Lightning Experience pages, or custom Visualforce pages in your package include hyperlinks to
URLs outside the salesforce.com domain, use RedirectWhitelistURL to ensure that users can access those hyperlinks.

Considerations When Packaging
When you include a RedirectWhitelistURL in a package, the URLs are trusted for redirections across Salesforce. Because this component
modifies the security of the org, we don't recommend that you include RedirectWhitelistURL in packages. Instead, instruct customers
to use the Trusted URLs for Redirects Setup page or the RedirectWhitelistURL Metadata APl type to add the URLs to their allowlist
as part of activating your package. If you choose to include RedirectWhitelistURL components in your package, disclose this change
prominently in your package documentation to ensure that your customers are aware of the security modification.

Usage Limits
The RedirectWhiteListURL component is available in APl version 48.0 and later.

Relationship to Other Components
This component can be used only in conjunction with an Aura or Lightning Web Runtime (LWR) page for an Experience Cloud site,
a Lightning Page, or a Visualforce Page.

Documentation
Metadata API Developer Guide: RedirectWhitelistUrl

Salesforce Help: Manage Redirections to External URLs

Metadata API Developer Guide: SecuritySettings]

Referenced Dashboard

Represents the ReferencedDashboard object in CRM Analytics. A referenced dashboard stores information about an externally referenced
dashboard.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

266

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_redirectwhitelisturl.htm
https://help.salesforce.com/s/articleView?id=xcloud.security_external_redirects.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_securitysettings.htm

Second-Generation Managed Packages Registered External Service

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e [abel

Both Package Developer and Subscriber Can Edit

e Description

Neither Package Developer or Subscriber Can Edit

e Application

e Embed URL

e Template Asset Source Name

e Visibility

More Information

Feature Name
Metadata Name: ReferencedDashboard

License Requirements
Enables Tableau Dashboards in CRM Analytics

Registered External Service

Represents a registered external service, which provides an extension or integration.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

267

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages RelationshipGraphDefinition

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Allattributes

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: RegisteredExternalService

Component Type in 1GP Package Manager Ul: RegisteredExternalService

Documentation
Object Reference for the Salesforce Platform: RegisteredExternalService

RelationshipGraphDefinition

Represents a definition of a graph that you can configure in your organization to traverse object hierarchies and record details, giving
you a glimpse of how your business works.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

268

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_registeredexternalservice.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Remote Site Setting

e All properties

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: RelationshipGraphDefinition

Component Type in 1GP Package Manager Ul: RelationshipGraphDefinition

Documentation
Metadata APl Developer Guide: RelationshipGraphDefinition

Remote Site Setting

Represents a remote site setting.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade No
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None
Both Package Developer and Subscriber Can Edit
e All attributes except Remote Site Name

Neither Package Developer or Subscriber Can Edit

269

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_relationshipgraphdefinition.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages

e Remote Site Name

More Information

Feature Name
Metadata Name: RemoteSiteSettings

Documentation
Metadata API Developer Guide: RemoteSiteSettings

Report

Represents a custom report.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org
Package Developer Can Remove Component From Package

Component Has IP Protection

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

No
Yes
Yes. Supported in both 1GP and 2GP packages.

No

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Allattributes except Report Unique Name
Neither Package Developer or Subscriber Can Edit

e Report Unique Name

More Information

Feature Name
Metadata Name: Report

270

Report

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_remotesitesetting.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Report Type

Component Type in 1GP Package Manager Ul: Report

Considerations When Packaging
If a report includes elements that can't be packaged, those elements are dropped or downgraded, or the package creation fails. For
example:

e Hierarchy drill-downs are dropped from activity and opportunities reports.

e Filters on unpackageable fields are automatically dropped (for example, in filters on standard object record types).

e Package upload fails if a report includes filter logic on an unpackageable field (for example, in filters on standard object record
types).

e Lookupvaluesonthe Select Campaign field of standard campaign reports are dropped.

e Reports are dropped from packages if they've been moved to a private folder or to the Unfiled Public Reports folder.

e When a package is installed into an org that doesn’t have Chart Analytics 2.0:

- Combination charts are downgraded instead of dropped. For example, a combination vertical column chart with a line added
is downgraded to a simple vertical column chart. A combination bar chart with more bars is downgraded to a simple bar
chart.

-~ Unsupported chart types, such as donut and funnel, are dropped.

Documentation
Metadata API Developer Guide: Report

Report Type

Represents the metadata associated with a custom report type. Custom report types allow you to build a framework from which users
can create and customize reports.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 2GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

271

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_report.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages ServiceProcess

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e All attributes except Development Status and Report Type Name
Both Package Developer and Subscriber Can Edit

e Development Status

Neither Package Developer or Subscriber Can Edit

e Report Type Name

More Information

Feature Name
Metadata Name: ReportType

Component Type in 1GP Package Manager Ul: Custom Report Type

Considerations When Packaging
A developer can edit a custom report type in a managed package after it's released, and can add new fields. Subscribers automatically
receive these changes when they install a new version of the managed package. However, developers can’t remove objects from
the report type after the package is released. If you delete a field in a custom report type that's part of a managed package, and the
deleted field is part of bucketing or used in grouping, an error message appears.

Documentation
Metadata API Developer’s Guide: ReportType

ServiceProcess

Represents a process created in Service Process Studio and its associated attributes.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e All other fields
Both Package Developer and Subscriber Can Edit

272

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_reporttype.htm

Second-Generation Managed Packages Slack App (Beta)

e Status

e Description

e ServiceProcessAttribute

e ServiceProcessDependency

e ServiceProcessltemGroup
Neither Package Developer or Subscriber Can Edit

e FullName

More Information

ServiceProcess
Metadata Name: ServiceProcess

Component Type in 1GP Package Manager Ul: ServiceProcess

Documentation
ServiceProcess in Metadata API Developer Guide.

Slack App (Beta)

Represents a Slack app.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection Yes

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e AppKey, AppToken, ClientKey, ClientSecret, SigningSecret, BotScopes, UserScopes, Config, IntegrationUser, DefaultUser
Both Package Developer and Subscriber Can Edit

273

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Service Catalog Category

e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: SlackApp

Component Type in 1GP Package Manager Ul Slack App

Use Case
Represents configuration of a Slack application

License Requirements
Connect to Slack Permission

Relationship to Other Components
Slack apps reference handlers (Apex classes) and view definition components.

Documentation
Apex SDK for Slack Developer Guide

Service Catalog Category

Represents the grouping of individual catalog items in Service Catalog.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e ParentCategory

Both Package Developer and Subscriber Can Edit
e SortOrder

* [sActive

e Image

274

https://developer.salesforce.com/docs/platform/salesforce-slack-sdk/overview

Second-Generation Managed Packages Service Catalog Filter Criteria

Neither Package Developer or Subscriber Can Edit

e FullName

More Information

Feature Name
Metadata Name: SvcCatalogCategory

Component Type in 1GP Package Manager Ul: Service Catalog Category

Use Case
Group your service catalog items together by associating them with a catalog category.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Post Install Steps
Categories appear in the Service Catalog user Ul only if they contain active items.

Documentation
Salesforce Help: Create a Catalog Category

Service Catalog Filter Criteria

Represents an eligibility rule that determines if a Service Catalog user has access to a catalog item.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allfields

Both Package Developer and Subscriber Can Edit

e Allfields

Neither Package Developer or Subscriber Can Edit

275

https://help.salesforce.com/s/articleView?id=service.esc_create_a_catalog_category.htm&type=5&language=en_US

Second-Generation Managed Packages Service Catalog ltem Definition

e FullName

More Information

Feature Name
Metadata Name: SvcCatalogFilterCriteria

Component Type in 1GP Package Manager Ul: Service Catalog Item Definition

Use Case
Use the filter criteria to filter on catalog items.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Relationship to Other Components
Service catalog filter criteria are related to a catalog item definition.

Documentation
Salesforce Help: Create a Catalog Category

Service Catalog Item Definition

Represents the entity associated with a specific, individual service available in the Service Catalog.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

* Flow

Both Package Developer and Subscriber Can Edit
e Status

e Description

e InternalNotes

* |mage

276

https://help.salesforce.com/s/articleView?id=service.esc_create_a_catalog_category.htm&type=5&language=en_US

Second-Generation Managed Packages Service Catalog Fulfillment Flow

e IsFeatured
e IsPublic
Neither Package Developer or Subscriber Can Edit

e FullName

More Information

Feature Name
Metadata Name: SvcCatalogltemDef

Component Type in 1GP Package Manager Ul: Service Catalog Item Definition

Use Case
Create a service catalog item that employees can request in the Service Catalog user Ul.

Considerations When Packaging
Subscribers can't change properties stored in the catalog item fulfillment flow unless they make a clone of the item and its related
flow.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Usage Limits
The org can have only 1000 SvcCatalogltemDefs, including those items installed from a managed package.

Post Install Steps
If the item was installed in draft mode, it must be activated before employees can see it in the Service Catalog user Ul.

Relationship to Other Components
SvcCatalogltemDef requires a relationship with a catalog category.

Documentation
Salesforce Help: Create a Catalog Item

Service Catalog Fulfillment Flow

Represents the flow associated with a specific catalog item in the Service Catalog.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

277

https://help.salesforce.com/s/articleView?id=service.esc_create_a_catalog_item.htm&type=5&language=en_US

Second-Generation Managed Packages Stationary Asset Environmental Source Record Type
Configuration

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description
e Flow

e con

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e FullName

More Information

Feature Name
Metadata Name: SvcCatalogFulfillmentFlow

Component Type in 1GP Package Manager Ul: Service Catalog Fulfillment Flow

Use Case
Make a screen flow available in the Service Catalog builder. You can also use SvcCatalogFulfillmentFlow metadata to describe the
flow and its inputs in the builder, enabling a clicks-not-code experience for providing inputs to the flow.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Post Install Steps
Fulfillment flows appear in the Service Catalog builder only if the underlying screen flow is active in the org.

Relationship to Other Components
SvcCatalogFulfillmentFlow must be related to a FlowDefinition.

SvcCatalogFulfillmentFlow can have related SvcCatalogFulfillFlowltem records.

Documentation
Salesforce Help: Catalog Item Fulfillment Flows

Stationary Asset Environmental Source Record Type Configuration

Represents the setup object that contains the mapping between the Stationary Asset Environmental Source record type and internal
enums. You can primarily use this object for calculations across different record types.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

278

https://help.salesforce.com/s/articleView?id=service.esc_catalog_item_fulfillment_flows.htm&type=5&language=en_US

Second-Generation Managed Packages Static Resource

Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: StnryAssetEnvSrcCnfg

Component Type in 1GP Package Manager Ul: Stationary Asset Environmental Source Record Type Configuration

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new stationary asset types for end users.

License Requirements
e Net Zero Cloud Growth license or Net Zero Cloud Starter license
e Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

e Net Zero Cloud

e Manage Carbon Accounting
Documentation

e Salesforce Help: Set Up Record Types for Net Zero Cloud

e Salesforce Help: Create a Stationary Asset Environmental Source Record

Static Resource

Represents a static resource file, often a code library in a ZIP file.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

279

https://help.salesforce.com/s/articleView?id=ind.netzero_setup_record_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_manager_create_building_asset.htm&type=5&language=en_US

Second-Generation Managed Packages Streaming App Data Connector

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP and 2GP packages.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e File

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: StaticResource

Component Type in 1GP Package Manager Ul: Static Resource

Documentation
Metadata API Developer Guide: StaticResource

Streaming App Data Connector

Represents the connection information specific to Web and Mobile Connectors.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

280

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_staticresource.htm

Second-Generation Managed Packages Sustainability UOM

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit
e Appldentifier

e DataConnectorType

e StreamingAppDataConnectorType

More Information

Feature Name
Metadata Name: StreamingAppDataConnector

Use Case
The StreamingAppDataConnector is included in a package when you add a data stream (DataStreamDefinition). You need this
component if you want to package a web or mobile data stream.

Post Install Steps
The package doesn't contain any connection information. The package subscriber must create the connection in their subscriber
org and then select that connection when they deploy the data kit.

Documentation
Data Cloud Reference Guide: Capture Web Interactions

Data Cloud Reference Guide: Integrate your Mobile Applications

Sustainability UOM

Represents information about the additional unit of measure values defined by a customer.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

281

https://developer.salesforce.com/docs/atlas.en-us.c360a_api.meta/c360a_api/c360a_api_salesforce_interactions_web_sdk.htm
https://developer.salesforce.com/docs/atlas.en-us.c360a_api.meta/c360a_api/c360a_api_engagement_mobile_sdk.htm

Second-Generation Managed Packages Sustainability UOM Conversion

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: SustainabilityUom

Component Type in 1GP Package Manager Ul: Sustainability Unit of Measure
License Requirements
e Net Zero Cloud Growth license or Net Zero Cloud Starter license

e Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

e Net Zero Cloud
e Manage Carbon Accounting
Documentation

e Salesforce Help: Create Custom Units of Measure

Sustainability UOM Conversion

Represents information about the unit of measure conversion for the additional fuel types defined by a customer.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

282

https://help.salesforce.com/s/articleView?id=ind.netzero_admin_create_custom_unitsofmeasure.htm&type=5&language=en_US

Second-Generation Managed Packages Timeline Object Definition

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: SustnUomConversion

Component Type in 1GP Package Manager Ul: Sustainability Unit of Measure Conversion
License Requirements

e Net Zero Cloud Growth license or Net Zero Cloud Starter license

e Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

e Net Zero Cloud
e Manage Carbon Accounting
Documentation

e Salesforce Help: Create a Unit of Measure Conversion for a Custom Fuel Type

Timeline Object Definition

Represents the container that stores the details of a timeline configuration. You can use this resource with Salesforce objects to see their
records' related events in a linear time-sorted view.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

283

https://help.salesforce.com/s/articleView?id=ind.netzero_admin_create_unitofmeasure_conversion_for_custom_fuel_type.htm&type=5&language=en_US

Second-Generation Managed Packages

Packageable In:

Component Is Updated During Package Upgrade
Subscriber Can Delete Component From Org

Package Developer Can Remove Component From Package

Component Has IP Protection

Timeline Object Definition

First-Generation Managed Packages (1GP)
Yes

No

Yes. Supported in 1GP packages only.

No

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e [abel

e FullName
e Definition
e [sActive

Both Package Developer and Subscriber Can Edit

e [abel

e FullName
e Definition
* [sActive

Neither Package Developer or Subscriber Can Edit

e BaseObject

More Information

Feature Name
Metadata Name: TimelineObjectDefinition

Component Type in 1GP Package Manager Ul: Timeline Object Definition

Use Case
Provides out-of-the-box Timeline object definitions.

License Requirements

Industries Health Cloud or any other License that has Timeline Permission enabled in them.

Legacy Component

There’s a legacy Timeline component in the Health Cloud Package which is being deprecated in favor of this component.

Documentation
Health Cloud Developer Guide: TimelineObjectDefinition

284

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/meta_timelineobjectdefinition.htm

Second-Generation Managed Packages Timesheet Template

Timesheet Template

Represents a template for creating time sheets in Field Service.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package Yes. Supported in 1GP packages only.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information

Feature Name
Metadata Name: TimesheetTemplate

Transaction Processing Type

Represents the processing constraint settings for a transaction processing request.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

285

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Translation

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e Allattributes

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: TransactionProcessingType

Component Type in 1GP Package Manager Ul: Transaction Processing Type

Consideration When Uninstalling
TransactionProcessingType records associated with the package are deleted from the org upon uninstallation. If sales transactions,
such as quotes or orders, reference these records, recreate them with the same DeveloperName. Otherwise, those sales transaction
records become corrupt.

Documentation
TransactionProcessingType

Translation

Add translations to your managed packages.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit
e Allattributes

Both Package Developer and Subscriber Can Edit

286

https://developer.salesforce.com/docs/atlas.en-us.260.0.revenue_lifecycle_management_dev_guide.meta/revenue_lifecycle_management_dev_guide/tooling_api_objects_transactionprocessingtype.htm

Second-Generation Managed Packages Ul Object Relation Config

e None
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: Translation

Relationship to Other Components
When you add this component to a first-generation managed package, the Custom Object Translation component is automatically
added to your package.

For details on how subscribers can override translations after installing a package, see Override Translations in Second-Generation
Managed Packages and Unlocked Packages in the Salesforce DX Developer Guide.

Considerations When Packaging (Betal)

Enable Language Extension Packages in Dev Hub to create language extension packages that contain translations of components in
other packages.

@ Note: This feature is a Beta Service. Customer may opt to try such Beta Service in its sole discretion. Any use of the Beta Service
is subject to the applicable Beta Services Terms provided at Agreements and Terms.

Language extension packages can only contain translations: Translations and CustomObjectTranslations. If a base package includes
components that can’t be translated, those components aren't included when you create a language extension package.

To remove translations delivered by a package extension, uninstall the base package and all related extensions, then reinstall the base
package and any other desired extensions. Otherwise, translations delivered by the extension remain until you uninstall all packages
with that namespace.

Ul Object Relation Config

Represents the admin-created configuration of the object relation Ul component.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

287

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/entering_translated_terms_in_packages.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/entering_translated_terms_in_packages.htm

Second-Generation Managed Packages User Access Policy

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Reference Name
e Developer Name

e IsActive

Both Package Developer and Subscriber Can Edit
® |sActive

Neither Package Developer or Subscriber Can Edit
e (ContextObject

More Information

Feature Name
Metadata Name: UlObjectRelationConfig

Component Type in 1GP Package Manager Ul: Ul Object Relation Configuration

Use Case
Provides out-of-the-box relationship card configuration in Health Cloud.

License Requirements
Industries Health Cloud, Industries Insurance, or Industries Automotive licenses

Documentation
Salesforce Help: Set Up Provider Relationship Cards to Show Practitioner Information

User Access Policy

Represents a user access policy.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes

288

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=ind.admin_provider_cards.htm&type=5&language=en_US

Second-Generation Managed Packages Validation Rule

Component Has IP Protection No

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.
Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e Name

e label

e User Criteria Filters

e Actions

Both Package Developer and Subscriber Can Edit
e Order (only subscriber editable)

e Status (only subscriber editable)

e Trigger Type (only subscriber editable)
Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: UserAccessPolicy

Component Type in 1GP Package Manager Ul: User Access Policy

Usage Limits
User access policies have their status set to Design when installed and can be activated by the subscriber. Subscribers can have up
to 200 active policies at one time.

Post Install Steps
The subscriber can activate user access policies so that they run automatically when a user record matching the policy’s user criteria
is created, updated, or both.

Documentation
Metadata API Developer Guide: UserAccessPolicy

Salesforce Help: User Access Policies

Validation Rule

Represents a validation rule, which is used to verify that the data a user enters in a record is valid and can be saved.

289

https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_useraccesspolicy.htm
https://help.salesforce.com/s/articleView?id=platform.perm_user_access_policies.htm&type=5&language=en_US

Second-Generation Managed Packages Validation Rule

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e Error Condition Formula

e Error Location

e Error Message

Both Package Developer and Subscriber Can Edit
e Active

Neither Package Developer or Subscriber Can Edit

e Rule Name

More Information

Feature Name
Metadata Name: ValidationRule

Component Type in 1GP Package Manager Ul: Validation Rule

Considerations When Packaging
For custom objects that are packaged, any associated validation rules are implicitly packaged as well.

Documentation
Metadata API Developer Guide: ValidationRule

290

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_validationformulas.htm

Second-Generation Managed Packages Vehicle Asset Emissions Source Record Type Configuration

Vehicle Asset Emissions Source Record Type Configuration

Represents the setup object that contains the mapping between the Vehicle Asset Emissions Source record type and internal enums.
You can primarily use this object for calculations across different record types.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Allattributes

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: VehicleAssetEmssnSrcCnfg

Component Type in 1GP Package Manager Ul: Vehicle Asset Emissions Source Record Type Configuration

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new vehicle asset types for end users.

License Requirements
e Net Zero Cloud Growth license or Net Zero Cloud Starter license
e Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

e Net Zero Cloud

e Manage Carbon Accounting

291

Second-Generation Managed Packages View Definition (Beta)

Documentation

e Salesforce Help: Set Up Record Types for Net Zero Cloud

e Salesforce Help: Create a Vehicle Asset Emissions Source Record

View Definition (Beta)

Represents a view definition on a Slack app.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Only Package Developer Can Edit

e TargetType, Content, Description

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e None

More Information

Feature Name
Metadata Name: ViewDefinition

Component Type in 1GP Package Manager Ul: View Definition

Use Case
Represents a view within a Slack application

292

https://help.salesforce.com/s/articleView?id=ind.netzero_setup_record_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_manager_create_vehicle_asset.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Virtual Visit Config

License Requirements
Connect to Slack Permission

Relationship to Other Components
View definitions are referenced by Slack apps.

Documentation
Apex SDK for Slack Developer Guide

Virtual Visit Config

Represents an external video provider configuration, which relays events from Salesforce to the provider.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)
Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e ComprehendServiceType

e ExperienceCloudSiteUrl

e ExternalRoleldentifier

e [abel

e MessagingRegion

e NamedCredential

e StorageBucketName

e UsageType

e VideoCallApptTypeValue

e VideoControlRegion

e VisitRegion

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Name

293

https://developer.salesforce.com/docs/platform/salesforce-slack-sdk/overview

Second-Generation Managed Packages Visualforce Component

More Information

Feature Name
Metadata Name: VirtualVisitConfig

Documentation
Salesforce Help: Virtual Care

Visualforce Component

Represents a Visualforce component.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection Yes

If a developer removes a public Visualforce component from a new version of your 1GP managed package, the component is removed
from the subscriber’s org upon upgrade. If the Visualforce component is global, it remains in the subscriber org until the administrator
deletes it.

For 2GP packages, Visualforce components are hard deleted, and only components that aren’t marked as global can be removed from
a package.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e APl Version

e Description

e Label

e Markup

Both Package Developer and Subscriber Can Edit

e None

Neither Package Developer or Subscriber Can Edit

294

https://help.salesforce.com/s/articleView?id=ind.admin_virtual_care.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Visualforce Page

e Name

More Information

Feature Name
Metadata Name: ApexComponent

Documentation
Visualforce Components

Visualforce Page

Represents a Visualforce page.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in 1GP and 2GP packages.
Component Has IP Protection No

If a developer removes a public Visualforce component from a new version of your package, the component is removed from the
subscriber’s org upon upgrade. If the Visualforce component is global, it remains in the subscriber org until the administrator deletes it.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e APl Version
e Description
e Label

e Markup

Both Package Developer and Subscriber Can Edit
e None
Neither Package Developer or Subscriber Can Edit

e Name

295

https://help.salesforce.com/s/articleView?id=platform.pages_custom_components.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Wave Analytic Asset Collection

More Information

Feature Name
Metadata Name: ApexPage

Component Type in 1GP Package Manager Ul: Visualforce Page

Wave Analytic Asset Collection

A collection of CRM Analytics assets.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and

promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Folder
* [tems
e Label

Both Package Developer and Subscriber Can Editv
e (Color
e Description

e Shares
Neither Package Developer or Subscriber Can Edit

e (Collection Type

296

https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Wave Application

More Information

Feature Name
Metadata Name: WaveAnalyticAssetCollection

Component Type in 1GP Package Manager Ul: Wave Analytic Asset Collection

Use Case
Represents a collection of CRM Analytics assets.

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Documentation
Salesforce Help: Curate and Share Insights with Collections

Wave Application

A CRM Analytics application.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

297

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://help.salesforce.com/s/articleView?id=analytics.bi_home_collections&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Wave Component

e Assetlcon

e Description

e Shares

Neither Package Developer or Subscriber Can Edit
e Folder

e Template Origin

e Template Version

More Information

Feature Name
Metadata Name: WaveApplication

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Component
A CRM Analytics dashboard component.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

298

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Wave Dataflow

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e Description

Neither Package Developer or Subscriber Can Edit

e Application

e Template Asset Source Name

More Information

Feature Name
Metadata Name: WaveComponent

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dataflow
A CRM Analytics data prep dataflow.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

299

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Wave Dashboard

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e Description

Neither Package Developer or Subscriber Can Edit

e Application

e Dataflow Type

More Information

Feature Name
Metadata Name: WaveDataflow

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dashboard

A CRM Analytics dashboard.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

300

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Wave Dataset

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e Description

Neither Package Developer or Subscriber Can Edit

e Application

e Date Version

e Template Asset Source Name

More Information

Feature Name
Metadata Name: WaveDashboard

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dataset
A CRM Analytics dataset.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

301

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Wave Lens

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e Description

Neither Package Developer or Subscriber Can Edit

e Application

e Template Asset Source Name

e Type

More Information

Feature Name
Metadata Name: WaveDataset

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Lens
A CRM Analytics lens.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

302

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Second-Generation Managed Packages Wave Recipe

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e Description

e \Visualization Type

Neither Package Developer or Subscriber Can Edit
e Application

e Datasets

e Template Asset Source Name

More Information

Feature Name
Metadata Name: Wavelens

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Recipe
A CRM Analytics data prep recipe.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes
Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

303

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Second-Generation Managed Packages Wave Template Bundle

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e [abel

Both Package Developer and Subscriber Can Edit

e Description

e Security Predicate

e Target Dataset Alias

Neither Package Developer or Subscriber Can Edit

e Application
e Dataflow
e Format

e Template Asset Source Name

More Information

Feature Name
Metadata Name: Wave Recipe

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Template Bundle
A CRM Analytics template bundle.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org Yes
Package Developer Can Remove Component From Package Yes

304

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Second-Generation Managed Packages Wave Xmd

Component Has IP Protection No

Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit

e Assetlcon

e Description

Neither Package Developer or Subscriber Can Edit

e Asset Version

e Template Type

More Information

Feature Name
Metadata Name: WaveTemplateBundle

Considerations When Packaging
Analytics assets are installed in subscriber orgs via Analytics Templates using the WaveTemplateBundle. The template framework
supports the data sync and orchestration needed for visualization assets, along with customizations for each org. For more information,
see the Analytics Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Xmd

The extended metadata for CRM Analytics dataset fields and their formatting for dashboards and lenses.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org Yes

305

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Second-Generation Managed Packages Web Store Template

Package Developer Can Remove Component From Package Yes

Component Has IP Protection No

@ Notfe: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Label

Both Package Developer and Subscriber Can Edit
e Dates

e Dimensions

e Measures

e Organizations

e Wave Visualization

Neither Package Developer or Subscriber Can Edit
e Application

e Dataset

e Dataset Connector

e Dataset Fully Qualified Name

e Origin

° Type

More Information

Feature Name
Metadata Name: WaveXmd

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Web Store Template

Represents a configuration for creating commerce stores.

306

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Second-Generation Managed Packages Workflow Alert

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package No
Component Has IP Protection No

More Information

Feature Name
Metadata Name: WebStoreTemplate

Documentation
Metadata APl Developer Guide: WebStoreTemplate

Workflow Alert

WorkflowAlert represents an email alert associated with a workflow rule.

Component Manageability Rules
@ Notfe: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP)

Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package Yes. Both protected and non-protected components can be
removed.

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

307

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_webstoretemplate.htm

Second-Generation Managed Packages Workflow Field Update

Both Package Developer and Subscriber Can Edit

Additional Emails

e Email Template

e From Email Address

e Recipients

Neither Package Developer or Subscriber Can Edit

e Description

More Information

Feature Name
Metadata Name: Workflow

e Salesforce prevents you from uploading workflow alerts that have a public group, partner user, or role recipient. Change the recipient
to a user before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the installer
can customize it as necessary.

e You can package workflow rules and associated workflow actions, such as email alerts and field updates. However, any time-based
triggers aren't included in the package. Notify your installers to set up any time-based triggers that are essential to your app.

e References to a specific user in workflow actions, such as the email recipient of a workflow email alert, are replaced by the user
installing the package. Sometimes workflow actions referencing roles, public groups, account team, opportunity team, or case team
roles aren’t uploaded.

e References to an org-wide address, such asthe From email address of a workflow email alert, are reset to Current User
during installation.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Field Update

WorkflowFieldUpdate represents a workflow field update.

Component Manageability Rules
@ Notfe: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages. Both protected

and non-protected components can be removed.

308

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Second-Generation Managed Packages Workflow Knowledge Publish

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e Field Value

e Formula Value

Both Package Developer and Subscriber Can Edit
e Lookup

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: Workflow

Component Type in 1GP Package Manager Ul: Workflow Field Update

e Salesforce prevents you from uploading workflow field updates that change an Owner field to a queue. Change the updated field
value to a user before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the
installer can customize it as necessary.

e Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a
standard or managed-installed object.

e You can package workflow rules and associated workflow actions, such as email alerts and field updates. However, any time-based
triggers aren't included in the package. Notify your installers to set up any time-based triggers that are essential to your app.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Knowledge Publish

WorkflowKnowledgePublish represents Salesforce Knowledge article publishing actions and information.

Component Manageability Rules

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: First-Generation Managed Packages (1GP)
Component Is Updated During Package Upgrade Yes

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package Yes, if protected

309

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Second-Generation Managed Packages Workflow Outbound Message

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Action

e Description

e Unique Name

Both Package Developer and Subscriber Can Edit
e None

Neither Package Developer or Subscriber Can Edit

e Object Name

More Information

Feature Name
Metadata Name: WorkflowKnowledgePublish

Component Type in 1GP Package Manager Ul: Knowledge Action

Considerations When Packaging
WorkflowKnowledgePublish can only be installed in Salesforce Classic orgs with Knowledge enabled.
WorkflowKnowledgePublish includes the article type * kawv, which is not supported by Lightning Knowledge.

If you try to install WorkflowKnowledgePublish into an org with Lightning Knowledge enabled, this message is displayed: When
Lightning Knowledge is enabled, you can't add an article type.

License Requirements
Salesforce Classic orgs with Knowledge enabled can use this package.

Documentation
Salesforce Help: Create Workflow Actions for Knowledge

Workflow Outbound Message

WorkflowOutboundMessage represents an outbound message associated with a workflow rule.

Component Manageability Rules

@ Notfe: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

310

https://help.salesforce.com/s/articleView?id=service.knowledge_actions_create.htm&type=5&language=en_US

Second-Generation Managed Packages Workflow Rule

Subscriber Can Delete Component From Org No

Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages. Both protected
and non-protected components can be removed.

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description

e Endpoint URL

e Fields to Send

e Send Session ID

Both Package Developer and Subscriber Can Edit
e Userto Send As

Neither Package Developer or Subscriber Can Edit

e Name

More Information

Feature Name
Metadata Name: Workflow

Component Type in 1GP Package Manager Ul: Workflow Outbound Message

Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a standard
or managed-installed object.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Rule

This metadata type represents a workflow rule.

Component Manageability Rules

@ Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes

3an

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Second-Generation Managed Packages Workflow Task

Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages.
Component Has IP Protection No

@ Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e Description
e Evaluation Criteria

® Rule Criteria

Both Package Developer and Subscriber Can Edit
e Active

Neither Package Developer or Subscriber Can Edit

e Rule Name

More Information
e Feature Name:
Metadata Name: Workflow
Component Type in 1GP Package Manager Ul: Workflow Rule
e Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a

standard or managed-installed object.

e Developers can associate or disassociate workflow actions with a workflow rule at any time. These changes, including disassociation,
are reflected in the subscriber’s org upon install. In managed packages, a subscriber can't disassociate workflow actions from a
workflow rule if it was associated by the developer.

e Oninstall, all workflow rules newly created in the installed or upgraded package, have the same activation status as in the uploaded
package.

e You can't package workflow rules with time triggers.

Workflow Task

This metadata type references an assigned workflow task.

312

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Workflow Task

Component Manageability Rules
@ Nofe: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Packageable In: Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Component Is Updated During Package Upgrade Yes
Subscriber Can Delete Component From Org No
Package Developer Can Remove Component From Package Yes. Supported in both 1GP and 2GP packages. Both protected

and non-protected components can be removed.

Component Has IP Protection No

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

e None

Both Package Developer and Subscriber Can Edit
e AssignTo

e Comments

e DueDate

e Priority

e Record Type

e Status

Neither Package Developer or Subscriber Can Edit

e Subject

More Information

Feature Name
Metadata Name: Workflow

Component Type in 1GP Package Manager Ul: Workflow Task

e Salesforce prevents you from uploading workflow tasks that are assigned to a role. Change the Assigned To field to a user
before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the installer can
customize it as necessary.

e Thiscomponent can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

313

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Second-Generation Managed Packages Behavior of Specific Metadata in Second-Generation
Managed Packages

Behavior of Specific Metadata in Second-Generation Managed
Packages

Learn how profiles and namespace visibility are handled for second-generation managed packages.

Package Agentforce Metadata Components
Bring the power of conversational Al to your apps with Agentforce.

Develop and Package Agent Templates Using Scratch Orgs

At a high-level, agents are distributed by ISVs as agent templates. To package an agent template you first create and test an agent
in a namespaced scratch org, retrieve the agent to your Salesforce DX project, generate an agent template from the agent using
Salesforce CLI, and finally package the agent template.

Package Data Cloud Metadata Components

Utilize the power of Data Cloud in your apps by including Data Cloud metadata in your managed packages. Working with Data Cloud
metadata has some unique requirements. Review these details to understand how to work with Data Cloud metadata in your
packages.

Protected Components in Managed Packages

Developers can mark certain components as protected. Protected components can't be linked to or referenced by components
created in a subscriber org. A developer can delete a protected component in a future release without worrying about failing
installations. However, after a component is marked as unprotected and is released globally, the developer can't delete it.

Set Up a Platform Cache Partition with Provider Free Capacity

Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through
a capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Metadata Access in Apex Code

Use the Metadata namespace in Apex to access metadata in your package.

Permission Sets and Profile Settings in Packages

Permission sets, permission set groups, and profile settings are all ways to grant permissions and other access settings to a package.
Only use a profile setting if permission sets don't support the specific access you need to grant. In all other instances, use permission
sets or permission set groups.

Protecting Your Intellectual Property

The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check
for malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

Call Salesforce URLs Within a Package

The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all
possible URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex
DomainCreator classto get the corresponding hostname. This method allows your package to work in all orgs, regardless of
the org type and My Domain settings.

Namespace-Based Visibility for Apex Classes in Second-Generation Managed Packages

The @NamespaceAccessible makes public Apexin a package available to other packages that use the same namespace.
Without this annotation, Apex classes, methods, interfaces, and properties defined in a second-generation managed package aren’t
accessible to the other packages with which they share a namespace. Apex that is declared global is always available across all
namespaces, and needs no annotation.

Work with Services Outside of Salesforce

314

Second-Generation Managed Packages Package Agentforce Metadata Components

Package Connected Apps in Second-Generation Managed Packaging
Add a connected app to a second-generation managed package.

Test and Respond to the New Order Save Behavior

To make sure custom application logic works accurately on records associated with the Order object, turn on the Enable New Order
Save Behavior setting, and test the behavior. We recommend that you support both the new and old order save behavior during
testing.

Package Agentforce Metadata Components

Bring the power of conversational Al to your apps with Agentforce.
Before you add Agentforce metadata to your package:

e Review the setup steps in Get Access to Scratch Orgs That Have Agentforce.

e (reate youragent’sactions and topics in the Agentforce Asset Library. See Create a Custom Agent Action and Create a Custom Topic
for instructions. Any agent action or topic that will be packaged must be in the Agentforce Asset Library.

Table 2: Packageable Agentforce Metadata

Feature Name Metadata Name Available in ... More Information
Agent Actions GenAiFunction Managed 2GP and Managed Agent Action
1GP
Agent Topics GenAiPlugin Managed 2GP and Managed Agent Topic
1GP
Prompt Templates GenAiPromptTemplate Managed 2GP and Managed Prompt Template
1GP
Agent Templates BotTemplate, Managed 2GP and Managed Bot Template, Gen Al Planner
GenAiPlannerBundle 1GP Bundle
SEE ALSO:

Get Access to Scratch Orgs That Have Agentforce

Salesforce Help: Considerations for Packaging Prompt Templates
Trailhead: Quick Start: Build Your First Agent with Agentforce
Salesforce Help: Agentforce: Agents

Agentforce Developer Guide

Salesforce Help: The Building Blocks of Agents

Salesforce Help: Customize Your Agents with Topics and Actions
Salesforce Help: Considerations for Agents

Salesforce Help: Al Project Success

Develop and Package Agent Templates Using Scratch Orgs

At a high-level, agents are distributed by ISVs as agent templates. To package an agent template you first create and test an agent in a
namespaced scratch org, retrieve the agent to your Salesforce DX project, generate an agent template from the agent using Salesforce
CLI, and finally package the agent template.

315

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_custom.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics_add_custom.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaifunction
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiplugin
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiprompttemplate
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_bot_template
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiplannerbundle
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiplannerbundle
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&language=en_US
https://trailhead.salesforce.com/content/learn/projects/quick-start-build-your-first-agent-with-agentforce
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/get-started.html
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics_actions.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.generative_ai_plan_project.htm&type=5&language=en_US

Second-Generation Managed Packages

@ Important: If you're packaging an agent template in October 2025 or later, follow the workaround instructions for packaging
agent templates. Due to a known issue with packaging local actions and topics, you must package agent templates using the

Develop and Package Agent Templates Using Scratch Orgs

workaround instructions at this time.

Workflow for Agent Template Development

6. In test org, create
agent from the agent
template.

3. Use Salesforce CLI
to generate an agent
template from your
agent.

Use Salesforce CLI
to create a beta
package version.

5. Install package
version in a test org.

1. From a namespaced 2. Use Salesforce CLI
scratch org, develop to retrieve agent
and test an agent. metadata.

H4.

Agent and Agent Template Metadata

To package an agent template it helps to first understand the metadata types that make up an agent and an agent template.
Agents are defined by these major metadata types.

e Bot

e BotVersion

e GenAiPlannerBundle

The GenAiPlannerBundle type in turn defines the agent's topics and actions. The agent generate template Salesforce CLI
command brings together the metadata files for these three types and generates a BotTemplate file for a specific agent (Bot and
BotVersion). You then use the BotTemplate file, and the GenAiPlannerBundle file, to package the agent template in a managed package.

316

https://help.salesforce.com/s/issue?id=a02Ka00000ji2nu
https://help.salesforce.com/s/issue?id=a02Ka00000ji2nu

Second-Generation Managed Packages Develop and Package Agent Templates Using Scratch Orgs

Agent Agent Template
Metadata Metadata

Not packageable Packageable
in a managed package in a managed package

GenAiPlannerBundle C LI cre a’[eS

sf agent generate template
GenAiPlannerBundle

BotTemplate

BotVersion

Create an Agent

Create and test your agent.

From Setup in your scratch org, enter Agents in the Quick Find box, and select Agentforce Agents. Then locate and enable the
Agentforce setting and refresh the page.

1. Click New Agent, and then select an agent type.
2. Follow the guided setup steps, and then click Create.
For more guidance, see the documentation for the agent type you chose. For details about creating an agent, see Set Up Your Agent.

Agentforce-enabled scratch orgs have access to the Agentforce Testing Center. For more detailed information on testing your agents
directly in your DX project, see Test an Agent with Agentforce DX in the Agentforce Developer Guide.

Set Up Your Salesforce DX Project and Scratch Org
To set up a Salesforce DX project and scratch org, you must already have a namespace and scratch org ready to use.

For guidance on obtaining a namespace or an Agentforce-enabled scratch org, see Get Access to Scratch Orgs with Agentforce Enabled.

@ Nofe: To package BotTemplate metadata, you must first enable Einstein Chatbot in your Dev Hub org. You must also specify this
metadata in your project-scratch-def.json file.

317

https://help.salesforce.com/s/articleView?id=ai.agent_setup_explore_types.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.agent_parent_setup.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.agent_testing_center.htm&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/agent-dx-test.html
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_einstein.htm

Second-Generation Managed Packages Develop and Package Agent Templates Using Scratch Orgs

1. Ifyou're using an existing Salesforce DX project that contains Apex classes, flows, or prompt templates for your agent, deploy them
to the scratch org.

sf project deploy start --source-dir force-app --target-org MyNamespacedScratchOrg

2. Open the scratch org.

sf org open

Develop Your Agentforce Package
After you have built and tested your agent, you are ready to start packaging it.

1. Retrieve the relevant metadata into your Salesforce DX project.
sf project retrieve start --metadata Agent:My Awesome Agent —--target-org
MyNamespacedScratchOrg

2. Create an agent template metadata source file.

In this example, we are generating an agent template from a Bot metadata file in your DX project that corresponds to the
My Awesome Agent agent. A single Bot can have multiple BotVersions. Use the ——agent-version flag to specify the
version.

sf agent generate template --agent-file
force-app/main/default/bots/My Awesome Agent/My Awesome Agent.bot-meta.xml --agent-version
1

For more details onthe agent generate template command,see the Salesforce CLI Reference Guide.

3. Deploy the agent template metadata source file to your scratch org.

sf project deploy start --source-dir force-app --target-org MyNamespacedScratchOrg

4. When you're satisfied with your agent template, remove the following metadata from your package directory.

a. The GenAiPlannerBundle file that was part of your original agent. This file was used to create a new, separate GenAiPlannerBundle
file for your agent template and is not necessary to package. Remove the GenAiPlannerBundle file that does not have “Template”
in the name.

b. The Bot and BotVersion. Removing these metadata types prevents errors during packaging, since agents aren't packageable.

@ Nofe: To package prompt templates, you must assign permissions in the sfdx-project.json file. See Packaging
Considerations for Prompt Templates.

5. Afteryou've tested youragent, create a new package version that contains the template and all dependencies. Possible dependencies
include: topics, actions, Apex classes, flows, and prompt templates.

sf package version create --package "Agentforce App" --installation-key “HIF83kS8kS7C”
-—definition-file config/project-scratch-def.json --code-coverage —--wait 10

After a subscriber installs your package in their Agentforce-enabled org, they can use the Agentforce Ul to create an agent from your
template.

318

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_agent_commands_unified.htm#cli_reference_agent_generate_template_unified
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm

Second-Generation Managed Packages Package Data Cloud Metadata Components

&« ﬁ Agentforce Builder New Agent ? Help v
oo (o) D
Steps Learn About Agents
Select an agent
1 Select an agent This determines your agent's role and what they do.

Agents are autonomous Al assistants that
specialize in specific use cases. They
increase productivity and reduce the
workload on teams by automating routine
tasks and assisting with complex ones.

[Q Search J How do agents work?
Show Me More

@ Create from a Template *: Create with Gen Al

What are some benefits of agents?

Agent for Setup ISV Agent Template Show Me More
Simplify administrative tasks with Agent for Get more from our app with our brand new agent,
Setup. Customize and manage your org and designed to make your life easier by...

quickly find documentation with Agent for Setup.

SEE ALSO:
Get Access to Scratch Orgs That Have Agentforce
Package Agentforce Metadata Components
Salesforce Help: Agentforce: Agents
Agentforce Developer Guide

Salesforce Help: The Building Blocks of Agents

Package Data Cloud Metadata Components

Utilize the power of Data Cloud in your apps by including Data Cloud metadata in your managed packages. Working with Data Cloud
metadata has some unique requirements. Review these details to understand how to work with Data Cloud metadata in your packages.

Enable Data Cloud for Scratch Orgs

To create scratch orgs or package Data Cloud components, you must have Dev Hub enabled in your Partner Business Org. Then, you
can request that Data Cloud for Scratch Orgs be enabled by logging a case with Salesforce Partner Support. Data Cloud for Scratch Orgs
is only available to scratch orgs associated with the Dev Hub in your Partner Business Org.

Create Dedicated Data Cloud Packages

When creating a managed package with Data Cloud metadata, you must isolate the Data Cloud metadata from the other Salesforce
metadata by creating separate packages that contain only Data Cloud metadata. Then create package dependencies between your
dedicated Data Cloud package and any related packages.

Add Data Cloud Metadata to a Data Kit

When packaging Data Cloud metadata, you must add the metadata to a data kit, and then add the data kit to the managed package.
Data kits streamline the package creation and installation process. For more details, see Packages and Data Kits in the Data Cloud Developer
Guide.

319

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_packageable_agentforce_md.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/get-started.html
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&type=5&language=en_US
https://partners.salesforce.com
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html

Second-Generation Managed Packages Protected Components in Managed Packages

Data Cloud One Companion Connected Orgs

Packages can't be installed on orgs that are connected to Data Cloud as Data Cloud One companion orgs. When Data Cloud customers
install a managed package containing Data Cloud metadata, they must install the package in their Data Cloud home org. For customers
using Data Cloud One, any package installed into data spaces shared with a companion org are automatically installed into the companion
org. Companion orgs automatically receive package updates when the package in the home org is upgraded.

These package-related actions can't be initiated in companion connected orgs, and must instead be initiated in the Data Cloud One
home org.

e Installing a managed package
e Uninstalling a managed package
e Deleting package metadata

e Receiving a package push upgrade

SEE ALSO:
Data Cloud Developer Guide: Get Started with Data Cloud Development
Data Cloud Developer Guide: Workflow for Data Cloud Second-Generation Managed Packages
Data Cloud Developer Guide: Metadata Components for Data Cloud Cheat Sheet
Salesforce Help: Connect Salesforce CRM Orgs to Data Cloud

Protected Components in Managed Packages

Developers can mark certain components as protected. Protected components can't be linked to or referenced by components created
in a subscriber org. A developer can delete a protected component in a future release without worrying about failing installations.
However, after a component is marked as unprotected and is released globally, the developer can't delete it.

Developers can mark these components as protected in managed packages.
e Custom labels

e Custom links (for Home page only)

e Custom metadata types

e Custom objects

e Custom permissions

e Custom settings

e Workflow alerts

e Workflow field updates

e Workflow outbound messages

e Workflow tasks

320

https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/get-started.html
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/data-cloud-2gp-workflow.html
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/component-cheatsheet.html
https://help.salesforce.com/s/articleView?id=data.c360_a_connect_salesforce_orgs.htm&type=5&language=en_US

Second-Generation Managed Packages Set Up a Platform Cache Partition with Provider Free Capacity

Considerations for Protected Custom Obijects in Subscriber Sandboxes

When a subscriber creates either a full or partial sandbox copy using a template, protected custom objects don't display in the list of
objects to copy. As a result, data contained in the records of protected custom objects isn't copied to these sandboxes. If a full sandbox
is created without selecting a sandbox template, data from protected custom objects is copied to the sandbox.

SEE ALSO:

Hide Custom Objects and Custom Permissions in Your Subscribers' Orgs

Set Up a Platform Cache Partition with Provider Free Capacity

Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through a
capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Follow the steps here to allocate the Provider Free capacity to a Platform Cache partition before adding it to your managed package.

@ Note: If a Platform Cache partition is already part of your managed package, you can choose to edit the existing partition and
allocate the Provider Free capacity to it.

Create a partition from the Platform Cache page and then set it up to use the Provider Free capacity

1. From Setup, in the Quick Find box, enter P1at form Cache, and then select Platform Cache.

Asthe Provider Free capacity is automatically enabled in all Developer edition orgs, the Org’s Capacity Breakdown donut chart shows
the Provider Free capacity.

2. C(lick New Platform Cache Partition.

3. Inthe Label box, enter a name for the partition. The name can contain alphanumeric characters only and must be unique in your
org.

4. Inthe Description box, enteran optional description for the partition.
5. Inthe Capacity section, allocate separate capacities for session cache and org cache from the available Provider Free capacity.
6. Save the new Platform Cache partition.

You can add this new Platform Cache partition to your managed package. When a security-reviewed managed package with Platform
Cache partition is installed on the subscriber org, the Provider Free capacity is allocated and automatically made available to the installed
partition. The managed package can start using the Platform Cache partition; no post-install script or manual allocation is required.

@ Nofe: If the managed package is not AppExchange-certified and security-reviewed, the Provider Free capacity resets to zero and
will not be allocated to the installed Platform Cache partition.

When a Platform Cache partition with Provider Free capacity is installed in a subscriber org, the Provider Free capacity allocated is

non-editable. The provider free capacity of one installed partition can't be used for any other partition.

O Tip: After you install a Platform Cache partition with Provider Free capacity, you can edit the partition and make additional
allocations from the available platform cache capacity of the org.

Metadata Access in Apex Code

Use the Metadata namespace in Apex to access metadata in your package.

Your package may need to retrieve or modify metadata during installation or update. The Metadata namespace in Apex provides
classes that represent metadata types, as well as classes that let you retrieve and deploy metadata components to the subscriber org.
These considerations apply to metadata in Apex:

321

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg2_dev/fma_hide_custom_objects_permissions.htm

Second-Generation Managed Packages

Permission Sets and Profile Settings in Packages

® You can create, retrieve, and update metadata components in Apex code, but you can't delete components.

e You can currently access records of custom metadata types and page layouts in Apex.

e Managed packages not approved by Salesforce can't access metadata in the subscriber org, unless the subscriber org enables the
Allow metadata deploy by Apex from non-certified Apex package version org preference. Use this org preference when
doing test or beta releases of your managed packages.

If your package accesses metadata during installation or update, or contains a custom setup interface that accesses metadata, you must
notify the user. For installs that access metadata, notify the user in the description of your package. The notice should let customers
know that your package has the ability to modify the subscriber org’s metadata.

You can write your own notice, or use this sample:

This package can access and change metadata outside its namespace in the Salesforce

org where it’s installed.

Salesforce verifies the notice during the security review.

For more information, see Metadata in the Apex Developer Guide.

Permission Sets and Profile Settings in Packages

Permission sets, permission set groups, and profile settings are all ways to grant permissions and EDITIONS
other access settings to a package. Only use a profile setting if permission sets don't support the

specific access you need to grant. In all other instances, use permission sets or permission set groups.

@ Important: Where possible, we changed noninclusive terms to align with our company
value of Equality. We maintained certain terms to avoid any effect on customer

implementations.

Behavior

What permissions and settings
are included?

Permission Sets

Assigned custom apps
Custom object permissions
External object permissions
Custom field permissions

Custom metadata types
permissions

Custom permissions

Custom settings
permissions

Custom tab visibility
settings

Apex class access
Visualforce page access
External data source access

Record types

@ Note: Although

permission sets include
standard tab visibility

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Permission sets are
available in: Contact

Profile Settings Manager, Professional,
Group, Enterprise,

e Assigned custom apps Performance, Unlimited,

e Assigned connected apps Developer, and

) Database.com Editions
e Tab settings

e Page layout assignments
® Record type assignments
e Custom field permissions

e (Custom metadata type
permissions

e Custom object permissions
e (Custom permissions

e Custom settings
permissions

e External object permissions
e Apex class access
e Visualforce page access

e External data source access

322

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_metadata.htm

Second-Generation Managed Packages Permission Sets and Profile Settings in Packages

Behavior Permission Sets Profile Settings

settings, these settings can't be
packaged as permission set
components.

If a permission set includes an
assigned custom app, it's possible
that a subscriber can delete the app.
In that case, when the package is
later upgraded, the assigned custom
app is removed from the permission

set.
Can they be upgraded in managed Yes. Profile settings are applied to existing
packages? profiles in the subscriber’s org on install or
upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied.
Can subscribers edit them? No. Yes.
Can you clone or create them? Yes. However, if a subscriber clones a Yes. Subscribers can clone any profile that
permission set or creates one that's based includes permissions and settings related
on a packaged permission set, it isn't to packaged components.

updated in subsequent upgrades. Only the
permission sets included in a package are

upgraded.
Do they include standard object No. Also, you can'tinclude object No.
permissions? permissions for a custom object in a

master-detail relationship where the master
is a standard object.

Do they include user permissions? No. No.

Are they included in the installation wizard? No. Subscribers must assign permission sets Yes. Profile settings are applied to existing
after installation. profiles in the subscriber’s org on install or
upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied. Affected components
(listed with the developerName) can include
new:

e Fields (CustomField)

e Objects (CustomObject),

e Tabs (CustomTab)

e Apps (CustomApplication)
e Apex classes (ApexClass)
e Apex pages (ApexPage)

e layouts (Layout)

323

Second-Generation Managed Packages Permission Sets and Profile Settings in Packages

Behavior Permission Sets Profile Settings

e Record types (RecordType)

e Custom permissions
(CustomPermission)

e Custom settings (CustomSetting)

e Custom metadata types
(CustomMetadata)

What are the user license requirements? A permission set is only installed if the None. In a subscriber org, the installation
subscriber org has at least one user license overrides the profile settings, not their user
that matches the permission set. For licenses.
example, permission sets with the Salesforce
Platform user license aren't installed in an
org that has no Salesforce Platform user
licenses. If a subscriber later acquires a
license, the subscriber must reinstall the
package to get the permission sets
associated with the newly acquired license.

Permission sets with no user license are
always installed. If you assign a permission
set that doesn't include a user license, the
user's existing license must allow its enabled
settings and permissions. Otherwise, the
assignment fails.

How are they assigned to users? Subscribers must assign packaged Profile settings are applied to existing
permission sets afterinstalling the package. profiles.

Can permission sets in an extension package Same behavior as for permission sets.
grant access to objects installed in a base

package?

A permission set in the extension package
can't modify access permissions for either
the parent objects in the base package or
the associated child objects in the extension
package.

Best Practices

e Ifusersneed access to apps, standard tabs, page layouts, and record types, don't use permission sets as the sole permission-granting
model for your app.

e (reate packaged permission sets that grant access to the custom componentsin a package, but not standard Salesforce components.

Permission Set Groups
You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set
groups can be updated when you upgrade the package.

324

Second-Generation Managed Packages

Custom Profile Settings

Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify
custom object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your
custom profiles with existing non-standard profiles. Permissions in your custom profile that are related to new components created
as part of the install or upgrade are added to the existing profile. The security settings associated with standard objects and existing
custom objects in an installer's organization are unaffected.

How We Handle Profile Settings in Second-Generation Managed Packages

During package version creation for unlocked or second-generation managed packages, the build system inspects the contents of
all profiles in the DX project directory, not just the directory specified in the path, and preserves only the profile settings that are
directly related to the metadata in the package. The profile itself, and any profile settings unrelated to the package’s metadata are
discarded from the package.

Permission Set Groups

You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set groups
can be updated when you upgrade the package.

Keep these considerations in mind when you organize permission sets into groups to include in your managed packages:

@ Important: You can'tinclude object permissions for standard objects in managed packages. During package installation, all

object permissions for standard objects are ignored, and aren't installed in the org.

Also:

You can't add permission sets constrained by a permission set license to managed or unmanaged packages.
You can only package permissions for metadata that's included in your package.

You can add or remove permission sets in permission set groups as part of a package upgrade. Subscribers can also modify the
permission set groups by muting permissions or adding or removing local permissions sets. Subscribers can't remove included
permission sets from the permission set groups in the managed package.

SEE ALSO:

Salesforce Help: Create a Permission Set Group

Salesforce Help: Permission Set Group Considerations

Custom Profile Settings

Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify custom
object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your custom profiles
with existing non-standard profiles. Permissions in your custom profile that are related to new components created as part of the install
or upgrade are added to the existing profile. The security settings associated with standard objects and existing custom objects in an
installer's organization are unaffected.

Consider these tips when creating custom profiles for apps you want to publish.

Give each custom profile a name that identifies the profile as belonging to the app. For example, if you're creating a Human Resources
app named “HR2GO,” a good profile name would be "HR2GO Approving Manager.”

If your custom profiles have a hierarchy, use a name that indicates the profile’s location in the hierarchy. For example, name a
senior-level manager’s profile "HR2GO Level 2 Approving Manager.”

Avoid custom profile names that can be interpreted differently in other organizations. For example, the profile name "HR2GO Level
2 Approving Manager” is open to less interpretation than “Sr. Manager.”

325

Permission Sets and Profile Settings in Packages

https://help.salesforce.com/s/articleView?id=platform.perm_set_groups_create.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.perm_set_groups_considerations.htm&type=5&language=en_US

Second-Generation Managed Packages

Permission Sets and Profile Settings in Packages

e Provide a meaningful description for each profile. The description displays to the user installing your app.

Alternatively, you can use permission sets to maintain control of permission settings through the upgrade process. Permission sets
contain a subset of profile access settings, including object permissions, field permissions, Apex class access, and Visualforce page access.
These permissions are the same as those available on profiles. You can add a permission set as a component in a package.

@ Nofte: In packages, assigned apps and tab settings aren't included in permission set components.

How We Handle Profile Settings in Second-Generation Managed Packages

During package version creation for unlocked or second-generation managed packages, the build system inspects the contents of all
profiles in the DX project directory, not just the directory specified in the path, and preserves only the profile settings that are directly
related to the metadata in the package. The profile itself, and any profile settings unrelated to the package’s metadata are discarded

from the package.

During package installation, the preserved profile settings are applied only to existing profiles in the subscriber org. The profile itself isn't

installed in the subscriber org.

To control which profile settings are included, use the scopeProfiles parameter in the project configuration file.

@ Note: Packages that contain only profiles and no additional metadata aren't allowed and fail during package version creation.

When you select...

Install for Admins Only

Install for All Users

Install for Specific Profiles

The packaged profile settings are
applied to...

The System Administrator profile in the
subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile.

The System Administrator profile and all
cloned profiles in the subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile, and all cloned profiles.

Standard profiles can't be modified.

Specific profiles in the subscriber org. This
selection lets the person installing your
package determine how to map the profile
settings you packaged to specific profilesin
their org.

To test the behavior of your packaged profile, install your package in a scratch org.

This installation option is available
via...

e The package installer page

e Salesforce CLI sf package
install command

The default behavior for CLI-based package
installs is to install for admins only.

e The package installer page

e Salesforce CLI sf package
install command

Toinstall for all users via the CLI, include the
security type parameter.

sf package install
--security-type AllUsers

e The package installer page

Not available for CLI-based package
installations.

1. From Setup, enter Profile inthe Quick Find box, and then locate and inspect the profiles you selected during package installation.

2. Check whether your profile settings have been applied to that profile.

326

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://help.salesforce.com/s/articleView?id=platform.standard_profiles.htm&type=5&language=en_US

Second-Generation Managed Packages Protecting Your Intellectual Property

Repeat this step for any other profile you expect to contain your profile settings. Don't look for the profile name you created; we
apply profile settings to existing profiles in the subscriber org.

Whenever possible, use package permission sets instead of profile settings. Subscribers who install your package can easily assign your
permission set to their users.

@ Note: During a push upgrade, some profile settings related to Apex classes and field-level security aren’t automatically assigned
to the System Admin profile. To ensure that user access is set up correctly after a push upgrade, communicate with your customer.
Make sure they review and update their profile settings after a push upgrade.

Protecting Your Intellectual Property

The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check for
malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

To protect your intellectual property, consider the following:

e Only publish package components that are your intellectual property and that you have the rights to share.
e After your components are available on AppExchange, you can't recall them from anyone who has installed them.

e Theinformation in the components that you package and publish might be visible to customers. Use caution when adding your
code to a formula, Visualforce page, or other component that you can't hide in your app.

e The code contained in an Apex class, trigger, Lightning, or Visualforce component that's part of a managed package is obfuscated
and can't be viewed in aninstalling org. The only exceptions are methods declared as global. You can view global method signatures
in an installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view their
packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

e Ifacustom setting is contained in a managed package, and the Visibility is specified as Protected, the custom setting isn't
contained in the list of components for the package on the subscriber’s org. All data for the custom setting is hidden from the
subscriber.

Call Salesforce URLs Within a Package

The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all possible
URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex DomainCreator
class to get the corresponding hostname. This method allows your package to workin all orgs, regardless of the org type and My Domain
settings.

The formats for My Domain URLs vary between production and sandbox orgs. With partitioned domains, hostname formats also vary
for demo, Developer Edition, free, patch, and scratch orgs, plus Trailhead playgrounds. For example, there are currently two possible
formats for sandbox My Domain login hostname formats and ten possible Visualforce hostname formats. For more information, see My
Domain URL Formats and Partitioned Domains in Salesforce Help.

In general, use relative URLs whenever possible within your packages. If a full URL is required, use the System.DomainCreator
Apex class to get the URL's hostname.

@ Note: The System.DomainCreator Apex class is available in APl version 54.0 and later.

Use the My Domain Login URL for Logins

All Salesforce orgs have a My Domain, an org-specific subdomain for the URLs that Salesforce hosts for that org. Customers have the
option to prevent user and SOAP APl logins from the generic 1ogin.salesforce.com and test.salesforce.com
hostnames. When those options are enabled, logins require the My Domain login URL.

327

https://help.salesforce.com/s/articleView?id=products.domain_name_app_url_changes.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_app_url_changes.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_partitioned_domains.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_DomainCreator.htm

Second-Generation Managed Packages Call Salesforce URLs Within a Package

To get the My Domain login URL format for an org, use the getOrgMyDomainHostname () method of the
System.DomainCreator Apexclass.

//Get the My Domain login hostname
String myDomainHostname = DomainCreator.getOrgMyDomainHostname () ;

In this case, in a production org with a My Domain name of mycompany, myDomainHostname returns
mycompany.my.salesforce.com

Use Relative URLs

Whenever possible, we recommend that you use a relative URL, which only includes the path within your packages.

For example, assume that you want to add a link on the Visualforce page with a URL of
https://MyDomainName--PackageName.vf.force.com/apex/myCases toa Visualforce page with the URL,
https://MyDomainName--PackageName.vf.force.com/apex/newCase.In this case, use the relative path when
referencing the page: /apex/newCase.

Generate Hostnames for Full URLs

Sometimes a full URL is required. For example, when your package delivers a Visualforce page that includes content delivered by your
package. If your package includes full URLs, use the System.DomainCreator Apex classto get the associated hostnames.
Otherwise, users can experience issues with your package functionality.

For example, to return the hostname for Visualforce pages, use the getVisualforceHostname (packageName) method of
the System.DomainCreator Apex class.

//Define the name of your package as a string
String packageName = 'abcpackage';

//Get the Visualforce hostname
String vfHostname = DomainCreator.getVisualforceHostname (packageName) ;

//Build the URL for creating a new case
System.URL vfNewCaseUrl = new URL('https', vfHostname, '/apex/newCase');

In this example, in a production org with enhanced domains and a My Domain name of mycompany, vfNewCaseUrl returns
https://mycompany--abcpackage.vf.force.com/apex/newCase

Get Part of a Domain

If you find code in your package that parses a known URL or domain to get a value, we recommend that you update that code to use
one of the newer Apex classes. Code that assumes a specific URL format can fail.

If you need a hostname, assess whether you can use the System.DomainCreator class.
If you need that value for another reason, use the Apex System.DomainParser or System. Domain class instead.

In this example, we parse a known URL to get the domain type, the org’s My Domain name, and the package name.

//Parse a known URL
System.Domain domain = DomainParser.parse ('https://mycompany--abcpackage.vf.force.com');

//Get the domain type
System.DomainType domainType = domain.getDomainType (); // Returns VISUALFORCE DOMAIN

328

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_DomainParser.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_Domain.htm

Second-Generation Managed Packages Namespace-Based Visibility for Apex Classes in
Second-Generation Managed Packages

//Get the org’s My Domain name
String myDomainName = domain.getMyDomainName (); // Returns mycompany

//Get the package name
String packageName = domain.getPackageName (); // Returns abcpackage

Namespace-Based Visibility for Apex Classes in Second-Generation
Managed Packages

The @NamespaceAccessible makespublic Apexinapackage available to other packages that use the same namespace. Without
this annotation, Apex classes, methods, interfaces, and properties defined in a second-generation managed package aren't accessible
to the other packages with which they share a namespace. Apex that is declared global is always available across all namespaces, and
needs no annotation.

Considerations for Apex Accessibility Across Packages

* Youcantusethe @NamespaceAccessible annotationforan @AuraEnabled Apexmethodoran @ InvocableMethod
Apex method.

® Youcanadd orremove the @NamespaceAccessible annotation at any time, even on managed and released Apex code.
Make sure that you don't have dependent packages relying on the functionality of the annotation before adding or removing it.

e When adding or removing @NamespaceAccessible Apex from a package, consider the impact to customers with installed
versions of other packages that reference this package’s annotation. Before pushing a package upgrade, ensure that no customer
is running a package version that would fail to fully compile when the upgrade is pushed.

e Ifapublicinterface is declared as @NamespaceAccessible, then all interface members inherit the annotation. Individual
interface members can't be annotated with @NamespaceAccessible.

e Ifapublic or protected variable or method is declared as @NamespaceAccessible, its defining class must be either global or
public with the @NamespaceAccessible annotation.

e Ifapublic or protected inner class is declared as @NamespaceAccessible, its enclosing class must be either global or public
with the @NamespaceAccessible annotation.

This example shows an Apex class marked with the @NamespaceAccessible annotation. The classis accessible to other packages
within the same namespace. The first constructor is also visible within the namespace, but the second constructor isn't.

// A namespace-visible Apex class
@NamespaceAccessible
public class MyClass {

private Boolean bypassFLS;

// A namespace-visible constructor that only allows secure use
@NamespaceAccessible
public MyClass () {

bypassFLS = false;

// A package private constructor that allows use in trusted contexts,
// but only internal to the package
public MyClass (Boolean bypassFLS) {
this.bypassFLS = bypassFLS;
}

@NamespaceAccessible

329

Second-Generation Managed Packages Work with Services Outside of Salesforce

protected Boolean getBypassFLS() |
return bypassFLS;

SEE ALSO:
Namespaces for Second-Generation Managed Packages
Create and Register Your Namespace for Second-Generation Managed Packages

Link a Namespace to a Dev Hub Org

Work with Services Outside of Salesforce

You might want to update your Salesforce data when changes occur in another service. Likewise, you might also want to update the
data in a service outside of Salesforce based on changes to your Salesforce data. For example, you might want to send a mass email to
more contacts and leads than Salesforce allows. You can use an external mail service that allows users to build a recipient list of names
and email addresses using the contact and lead information in your Salesforce organization.

An app built on the Salesforce Platform can connect with a service outside of Salesforce in many ways. For example, you can:
e create a custom link or custom formula field that passes information to an external service.
e use the Platform APIs to transfer data in and out of Salesforce.

e use an Apex class that contains a Web service method.

Warning: Don't store usernames and passwords within any external service.

Provisioning a Service External to Salesforce

If your app links to an external service, users who install the app must be signed up to use the service. Provide access in one of two ways:

e Access by all active users in an organization with no real need to identify an individual

e Access on a per user basis where identification of the individual is important

The Salesforce service provides two globally unique IDs to support these options. The user ID identifies an individual and is unique across
all organizations. User IDs are never reused. Likewise, the organization ID uniquely identifies the organization.

Avoid using email addresses, company names, and Salesforce usernames when providing access to an external service. Usernames can
change over time and email addresses and company names can be duplicated.

If you're providing access to an external service, we recommend the following:

e Use Single Sign-On (SSO) techniques to identify new users when they use your service.

e Foreach point of entry to your app, such as a custom link or web tab, include the user ID in the parameter string. Have your service
examine the user ID to verify that the user ID belongs to a known user. Include a session ID in the parameter string so that your
service can read back through the Lightning Platform APl and validate that this user has an active session and is authenticated.

e Offer the external service for any known users. For new users, display an alternative page to collect the required information.

e Don't store passwords for individual users. Besides the obvious security risks, many organizations reset passwords on a regular basis,
which requires the user to update the password on your system as well. We recommend designing your external service to use the
user ID and session ID to authenticate and identify users.

e Ifyour application requires asynchronous updates after a user session has expired, dedicate a distinct administrator user license for
this.

330

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_namespaces.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm

Second-Generation Managed Packages Package Connected Apps in Second-Generation Managed
Packaging

Package Connected Apps in Second-Generation Managed Packaging
Add a connected app to a second-generation managed package.

Nofte: Consider using External Client Apps instead. External Client Apps are the new and improved generation of connected apps.
For details, see Package External Client Apps In Second-Generation Managed Packages

Prerequisites: Create a connected app.

1. Create afirst-generation managed package (1GP) and add the connected app. It's fine if the connected app is the only component
in the package. Use the same namespace as the 2GP package for the 1GP package.

Take note of the version number of the connected app; you'll use this number later.

2. From your packaging org, upload the 1GP package to create a package version.
3. Promote the 1GP version to the released state.

Promoting the 1GP version allows the connected app to be included in a second-generation managed package. You don't need to
install the 1GP version into an org.

4. Navigate to the source for your connected app, or pull the source from the org where the connected app is being developed.

5. Create a source .xml file in your 2GP directory and reference the connected app you want to include. See the Sample Source File
section.

6. Create a second-generation managed package and add in the source code for the connected app. Add the source code manually.
Youcantuse sf project retrieve start orthe retrieve () Metadata APl call to add the source code.

@ Example: Sample Source File

<ConnectedApp xmlns="http://soap.sforce.com/2006/04/metadata™>
<developerName>db 0110 ns4 A Connected App</developerName>
<label>A Connected App</label>
<version>1.0</version>

</ConnectedApp>

The developerName is the combination of your namespace (db_0110_ns4) and the name of your connected app
(A_Connected_App).

The version specified in the source file is the version number of the connected app. Use decimal formatting when specifying
the version number. The version number must match the version number of the connected app before it was added to the 1GP
managed package.

@ Note: When you add a connected app to a 1GP package, and upload the package, the version number of the connected
appis auto incremented. For example, when version 4.0 of a connected app is added to a 1GP package, the package version
increments the version number of the connected app from 4.0 to 5.0. When creating the source file for your 2GP package,
specify the version number of the connected app before it was uploaded into a 1GP package, in this case, 4.0.

Test and Respond to the New Order Save Behavior

To make sure custom application logic works accurately on records associated with the Order object, turn on the Enable New Order
Save Behavior setting, and test the behavior. We recommend that you support both the new and old order save behavior during testing.

The Enable New Order Save Behavior setting helps Salesforce correctly evaluate custom application logic on records associated with
the Order object.

331

https://help.salesforce.com/s/articleView?id=release-notes.rn_packaging_external_client_app.htm&release=250&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm
https://help.salesforce.com/s/articleView?id=sales.new_order_save_behavior_setup.htm&type=5&language=en_US

Second-Generation Managed Packages Test and Respond to the New Order Save Behavior

If you create any type of package that includes the Order object, the installed package sometimes doesn't work. If a subscriber org relies
on a different order save behavior than their installed packages, the installed packages sometimes don't work. To ensure the expected
behavior, test Enable New Order Save Behavior with your installed packages.

After Enable New Order Save Behavior is selected, Salesforce evaluates and runs these customizations whenever an update to an order
item record changes the parent order record.

e Order and order item validation rules

e Order and order item Apex triggers and classes

e Order and order item flows and processes

@ Nofte: Enable New Order Save Behavior affects all package types: unlocked, unmanaged, first-generation managed package (1GP),
and second-generation managed package (2GP).

You can install packages that support old Order Save Behavior on subscriber orgs where New Order Save Behavior is enabled. However,
you must verify that your package works with the new order save behavior.

After you verify that your package works with the new order save behavior and that all your packages associated with your Dev Hub org
work with the new order save behavior, you can choose to enable the update in your Dev Hub org. We recommend that you support
both the new and old order save behavior during your testing.

Test Unmanaged and First-Generation Managed Packages

e From Setup, in the Quick Find box, enter Release Updates, and select Release Updates. Locate the Enable New Order Save
Behavior tile, and select Enable Test Run.

e Test the impact of the new behavior when an order or order item is edited. Review any custom application logic such as validation
rules, Apex triggers and classes, workflow rules, flows, and processes.

e To show that your package is compatible with both new and old order save conditions, from Setup, in the Quick Find box, enter
Package. Select the package that you tested and select Upload.

e Locate the Package Requirements section and disable New Order Save Behavior.
When this setting is disabled and the release update is enabled, subscriber orgs using either the new or old order save behavior can
install your package.

Test Unlocked and Second-Generation Managed Packages

e After creating a scratch org, enable the Release Update in it. From Setup, in the Quick Find box, enter Release Updates,and
then select Release Updates. Locate the Enable New Order Save Behavior tile, and select Enable Test Run.

e Test the impact of the new behavior when an order or order item is edited. Review any custom application logic such as validation
rules, Apex triggers and classes, workflow rules, flows, and processes.

When you're ready to create a package version, specify the order save behavior in the definition file.

Table 3: Order Save Behavior Options

To Specify Set Features in Scratch Org Definition File To
Old Order Save Behavior {
"features": [],
"settings": {
"orderSettings": {
"enableOrders": true

}

332

Second-Generation Managed Packages

To Specify

New Order Save Behavior

New and Old Order Save Behavior

Develop Second-Generation Managed Packages

Set Features in Scratch Org Definition File To

"features":
"settings":

"settings":

["OrderSavelLogicEnabled"],
{

"orderSettings": {
"enableOrders": true

"features": ["OrderSaveBehaviorBoth"],

{

"orderSettings": {
"enableOrders": true

Develop Second-Generation Managed Packages

Ready to get started? Create your first second-generation managed package, and then update and create new versions of your package.

Create a Second-Generation Managed Package

A package is a top-level container that holds important details about the app or package: the package name, description, and
associated namespace. When you're ready to test or share your package, usethe s£ package create Salesforce CLIcommand
to create a package.

View Package Details for a Second-Generation Managed Package

View the details of previously created second-generation managed packages from the command line.

Create Versions of a Second-Generation Managed Package

A package version is a fixed snapshot of the package contents and related metadata. The package version is an installable,immutable
artifact that lets you manage changes and track what's different each time you release or deploy a specific set of changes.
Guidance for Package Version Numbering

Use package versions to evolve your managed package, and release subsequent package versions without breaking existing package
users. Every package version is a fixed snapshot of the package contents and related metadata.

View Details about a Second-Generation Managed Package Version

Retrieve details about second-generation managed package versions that are in progress, or have already been created.

Project Configuration File for a Second-Generation Managed Package

The project configuration file is a blueprint for your project. The settings in the file create an outline of your managed 2GP package
and determine the package attributes and package contents.

Get Ready to Promote and Release a Second-Generation Managed Package Version

By now it's likely that you've already created many different versions of your managed 2GP package and tested them. When you
have a package version that you're ready to distribute, promoting the package version is the next step.

333

Second-Generation Managed Packages Create a Second-Generation Managed Package

Specify a Package Ancestor in the Project File for a Second-Generation Managed Package

When you create a second-generation managed package version you specify a package ancestorin your sfdx-project.json
file. We require that the package ancestor you specify is the highest promoted package version number for that package. You can
either update the ancestor version number each time you create a package version, or you can use a keyword.

Create a Second-Generation Managed Package

A package is a top-level container that holds important details about the app or package: the package name, description, and associated
namespace. When you're ready to test or share your package, use the sf package create Salesforce CLI command to create a
package.

To create a package, change to the project directory in the CLI. The package name you enter becomes the package alias, and is automatically
added to the project file. You can choose to designate an active Dev Hub org user to receive email notifications for Apex gacks, and
install, upgrade, or uninstall failures associated with your packages. For definitions of each parameter shown here, see sf package create
in the Salesforce CLI Reference Guide.

sf package create --name "Expenser App" --package-type Managed \
--path "expenser-main" --target-dev-hub my-hub --error-notification-username \
me@devhub.org

The package details you supply when you create a package are automatically added to your sfdx-project.json project
configuration file.

Metadata Limits in Second-Generation Managed Packages

Metadata in package Limit
Number of Metadata Files 10,000 files
Total Metadata File Size 600 MB

Update Details about a Package
To update the name or description of an existing package, use this command.

sf package update --package "Expense App" --name "Expense Manager App" \
--description "The Winter ’21 release is packed with an exciting set of features.™ \
-—error-notification-username me2@devhub.org

@ Note: You can't change the package namespace or package type after you create the package.

After you promote at least one package version to the released state, you can also use the sf package update CLIcommand to
recommend a specific version of the package to your subscribers. See Recommend a Specific Package Version to Your Subscribers on
page 363 for more information.

View Package Details for a Second-Generation Managed Package

View the details of previously created second-generation managed packages from the command line.

334

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_create_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

Second-Generation Managed Packages Create Versions of a Second-Generation Managed Package

To display a list of all packages in the Dev Hub org, use this command.
sf package list --target-dev-hub my-hub

You can view the namespace, package name, ID, and other details in the output.

Namespace Prefix Name Id Alias Description Type

db exp manager Expenser App 0OHoBOOOOOOO4CzRKAU Expenser App Managed
db exp manager Expenser Logic 0HoB0O0O0O0OO0O04CzMKAU Expenser Logic Managed
db exp manager Expenser Schema OHoBOOOOOOO4CzHKAU Expenser Schema Managed

Include optional parameters to filter the list results based on the modification date, creation date, and to order by specific fields or
package IDs. To limit the details, use --concise.

To show expanded details, use —-verbose The verbose parameter displays these additional details.

e (reated By
e Error Notification Username

e Subscriber Package ID

Create Versions of a Second-Generation Managed Package

A package version is a fixed snapshot of the package contents and related metadata. The package version is an installable, immutable
artifact that lets you manage changes and track what's different each time you release or deploy a specific set of changes.

Before you create a package version, first verify package details, such as the package name, dependencies, and update the versionNumber
parameter in the sfdx-project. json file. Verify that the metadata you want to change or add in the new package version is in
the package’s main directory.

O Tip: Review Advanced Project Configuration Parameters for Second-Generation Managed Packages on page 382 for optional
features that you can enable in the new package version.
When you create a package version, you have three options regarding how package validations are handled.

e (Default) Complete all validations of dependencies, package ancestors, and metadata before the package version is returned.
e Perform validations asynchronously.

e Skip validation on the package version.

Create a Managed 2GP Package Version (Default Option)

Create the package version with this command. Specify the package alias or ID (OHo). You can also include a scratch definition file that
contains a list of features and settings that the metadata of the package version depends on.

sf package version create --package "Expenser App" --installation-key “HIF83kS8kS7C” \
--definition-file config/project-scratch-def.json --code-coverage --wait 10

@ Notfe: When creating a package version, specify a ——wait time to run the command. If the package version is created within
that time, the sfdx-project. json fileis automatically updated with the package version information. If not, you must
manually edit the project file.

335

Second-Generation Managed Packages Create Versions of a Second-Generation Managed Package

It can be a long-running process to create a package version, depending on the package size and other variables. You can easily view
the status and monitor progress.

sf package version create report --package-create-request-id 08cxx00000000YDAAY
The output shows details about the request.

=== Package Version Create Request

NAME VALUE

Version Create Request Id 08cB00000004CBxIAM
Status InProgress

Package Id 0HoBOOOOOOO04CO9hKAE
Package Version Id 051iB0000000CaaNIAS
Subscriber Package Version Id 04tB000000ONOImIAG

Tag git commit id 08dcfsdf
Branch

CreatedDate 2024-05-08 09:48

Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NOimIAG

You can find the request ID (08¢) in the initial output of sf package version create.

Depending on the size of the package and other variables, the create request can take several minutes. When you have more than one
pending request to create package versions, you can view a list of all requests with this command.

sf package version create list --created-last-days 0
Details for each request display as shown here (IDs and labels truncated).

=== Package Version Create Requests [3]

ID STATUS PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===
08c... Error OHo...

08c... Success OHo... 05i... 04t... 2024-06-22 12:07
08c... Success OHo... 05i... 04t... 2024-06-23 14:55

Async Validation

Async validation creates a new package version before completing package validations. If your development team is using continuous
integration (Cl) scripts, you can leverage async validation to get an installable artifact sooner so you can start post-package creation
steps.

To specify async validation, include the - -async-validation parameter,
sf package version create --async-validation <rest of command syntax>
Sample Command-Line Output

Version create.... Create version status: PerformingValidations

The validations for this package version are in progress, but you can now begin testing
this package version.

To determine whether all package validations complete successfully, run "sf package version
create report --package-create-request-id 08cxx", and review the Status.

Async validated package versions can be promoted only if all validations complete
successfully.

Successfully created the package version [08cxx. Subscriber Package Version Id: 04txx

Package Installation URL:

336

Second-Generation Managed Packages Guidance for Package Version Numbering

https://login.salesforce.com/packaging/installPackage.apexp?p0=04txx
As an alternative, you can use the "sf package:install" command.

The command-line output provides you a package creation request ID that starts with 08c. To confirm whether all package validations
complete successfully, use the 08cxx ID when and run sf package version create report
--package-create-request-id 08cxx.Then validate thatthe Status islisted as Success. Async validated package
versions can be promoted only if all validations complete successfully.

Skip Validation

Skips validation of dependencies, package ancestors, and metadata during package version creation. Skipping validation significantly
reduces the time it takes to create a new package version, but package versions created using skip validation can't be promoted to the
released state.

sf package version create —--skip-validation <rest of command syntax>

@ Nofe: You can't specify both skip validation and code coverage, because code coverage is calculated during validation.

You also can't specify both skip validation and async validation at the same time.

Update Details about a Managed 2GP Package Version

You can update most properties of a package version from the command line. For example, you can change the package version name
or description. One important exception is that you can't change the release status.

In this example, we're adding the tag parameter and specifying the git commit ID associated with this package version.
sf package version update --package "Expenser App@l.3.0-5" --tag "git commit id 08dcfsdf"
After the update is complete, you'll see output that looks like

Successfully updated the package version. 04tBO000000KPhnIAG

How Many Managed 2GP Package Versions Can | Create Per Day?
Run this command to see how many package versions you can create per day and how many you have remaining.
sf limits api display

Look for the Package2VersionCreates entry.

NAME REMAINING MAXIMUM

Package2VersionCreates 23 50

Guidance for Package Version Numbering

Use package versions to evolve your managed package, and release subsequent package versions without breaking existing package
users. Every package version is a fixed snapshot of the package contents and related metadata.

While the format for package version number is predetermined, how you determine a version number, and whether you enforce
uniqueness on package version numbers is left to package developers. The format for package version numbers is

337

Second-Generation Managed Packages Guidance for Package Version Numbering

MAJOR.MINOR.PATCH.BUILD. Every package version has both a version number that you determine (for example, 2.2.0.1), and a unique
subscriber package version ID (starts with 04t) that is auto-assigned when you create the package version.

Before you promote a particular MAJOR. MINOR.PATCH package version, it's possible to create multiple package versions that have unique
04t IDs, but all share the same version number, for example 2.2.0.1. There are a few approaches you can take to ensure each package
version number is unique. Keep reading to learn more, but let’s start by learning how to specify a package version number.

How Do | Specify the Package Version Number?

The versionNumber attribute in your sfdx-project.json project configuration file determines the version number that is
assigned the next time you create a managed 2GP version. Before creating a new package version, you must manually increment this
attribute in the project file. If you don't increment the versionNumber, then you can wind up with multiple package versions with the
same version number, but unique subscriber package version IDs (starts with 04t).

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [
{

"path": "util",

"default": true,

"package": "Expense Manager - Util",

"versionName": "Summer ‘24",

"versionDescription": "Summer 2024 Expense Manager Util Package",
"versionNumber": "2.2.0.1",

"definitionFile": "config/scratch-org-def.json"

Use the Keyword NEXT to Enforce Unique Build Numbers

As best practice, don't create multiple package versions that have the same MAJOR.MINOR.PATCH.BUILD version number. An easy way
to ensure the build portion of your version number is unique is to use the keyword NEXT when you set the version number in your
sfdx-project.json file. This way, you don't have to manually increment the version number when you want to create a new
package version.

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{

"path": "util",

"default": true,

"package": "Expense Manager - Util",

"versionName": "Summer ‘24",

"versionDescription”: "Summer 2024 Expense Manager Util Package",
"versionNumber": "2.2.0.NEXT",

"definitionFile": "config/scratch-org-def.json"

338

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

Second-Generation Managed Packages View Details about a Second-Generation Managed Package
Version
Use the CLI Flag to Override a Package Version Number

You can also override the version number listed in your project file, by using the --version-number flag when you create a new
package version.

sf package version create -p "my2gp" --version-number 2.2.0.NEXT <rest of command syntax>

By using the keyword NEXT with the —-version-number flagin the CLI, you ensure the build portion of the version number is
unique.

@ Note: Keepinmind,the —-—version-number flagdoesn'tupdate your s fdx-project.json.Tokeep the VersionNumber
in the project file current, update it manually.

What Happens to Version Numbering After You Promote a Package Version?

After you promote a package version with a specific MAJOR.MINOR.PATCH version you can't continue to create package versions that
use that same MAJOR.MINOR.PATCH version number. If you attempt to do so, you receive an error message.

How Do | Determine Whether to Use a New Maijor, Minor, or Patch Version?

While there are restrictions on what changes are allowed in a patch version, determining what qualifies as a major or minor change is
largely up to you. When introducing major changes, increase the major version number, and increase the minor version number when
making smaller improvements.

View Details about a Second-Generation Managed Package Version

Retrieve details about second-generation managed package versions that are in progress, or have already been created.

View Status and Progress Details for a Managed 2GP Package Version

Depending on the package size and other variables, creating a package version can be a long-running process. You can easily view the
status and monitor progress using this report command.

sf package version create report --package-create-request-id 08cxx00000000YDAAY
The output shows details about the request.

=== Package Version Create Request

NAME VALUE

Version Create Request Id 08cB00000004CBxIAM
Status InProgress

Package Id OHoBOOOOOOO04CO9hKAE
Package Version Id 05iB0000000CaaNIAS
Subscriber Package Version Id 04tB0O00000ONOImIAG

Tag git commit id 08dcfsdf
Branch

CreatedDate 2018-05-08 09:48

Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NOimIAG

You can find the request ID (08c) in the initial output of sf package version create.

339

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_patch_version.htm

Second-Generation Managed Packages

If you have more than one pending request to create package versions, you can view a list of all requests with this command.

sf package version create list --created-last-days 0

Details for each request display as shown here (IDs and labels truncated).

=== Package Version Create Requests [3]

ID STATUS
08c... Error

08c... Success
08c... Success

PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===

OHo...
OHo... 05i... 04t... 2022-06-22 12:07
OHo... 05i... 04t... 2022-06-23 14:55

Retrieve List of all Package Versions Associated with a Dev Hub Org

To display a list of all package versions in the Dev Hub org, use this command.

sf package version list --target-dev-hub my-hub

You can view the namespace, version name, and other details in the output.

Package Name
Installation Key Released

Namespace Version Sub Pkg Ver Id Alias

Expenser
false
Expenser
false
Expenser
false
Expenser
false
Expenser
false
Expenser
false
Expenser
false
Expenser
false
Expenser
false

Schema

Schema

Schema

Schema

Schema

Schema

Schema

Logic

App

db exp manager 0.1.0.1 04tB0O0000007199IAA Expenser Schema@0.1.0-1
true

db exp manager 0.2.0.1 04tBO00000071AjIAI Expenser Schema@0.2.0-1
true

db exp manager 0.3.0.1 04tBO00000071AtIAI Expenser Schema@0.3.0-1
false

db exp manager 0.3.0.2 04tB000000071AyIAI Expenser Schema@0.3.0-2
true

db exp manager 0.3.1.1 04tBO000000KGU6IAO Expenser Schema@0.3.1-1
false

db exp manager 0.3.1.2 04tB0O00O000OKGUBIA4 Expenser Schema@0.3.1-2
true

db exp manager 0.3.2.1 04tBO000000KGUQIA4 Expenser Schema@0.3.2-1
true

db exp manager 0.1.0.1 04tB0000000719vIAA Expenser Logic@0.1.0-1
true

db exp manager 0.1.0.1 04tB0O00000071A0IAI Expenser App@0.1.0-1
true

To view details about a specific package, include --package parameter whenyourun sf package version list.

To show expanded details, use ——verbose The verbose parameter displays these additional details.

e Ancestor

e Ancestor Version

e Branch

e Build Duration in Seconds

e (Code Coverage

e (Code Coverage Met

e (reated By

340

View Details about a Second-Generation Managed Package

Version

Second-Generation Managed Packages Project Configuration File for a Second-Generation Managed
Package

e (reated Date

e Description

e Installation URL

e language

e Managed Metadata Removed
e Metadata File Size

e Number of Metadata Files
e Package ID

e Package Version ID

e Release Version

e Tag

e Validation Skipped

e WasTransferred

Project Configuration File for a Second-Generation Managed Package
The project configuration file is a blueprint for your project. The settings in the file create an outline of your managed 2GP package and
determine the package attributes and package contents.

Here are some of the parameters you can specify in the project configuration file. For additional parameters, see Advanced Project
Configuration Parameters for Second-Generation Managed Packages.

Name Details

ancestorld Required? It depends on whether you've already promoted a
package version of this package. If yes, you must specify either the
ancestorld or ancestorVersion. If no, this parameter isn't required.

Default if Not Specified: None

None. The ID of the immediate parent in the package ancestry tree
of the package version you're creating. The ancestorId
requires the 04t of the package version, or an alias to the package
version. When specifying ancestors, you can use either
ancestorId or ancestorVersion

Example:

"ancestorId": "Expenser Logic@0.1.0-1"

For more information, see Specify a Package Ancestor in the Project
File for a Second-Generation Managed Package.

ancestorVersion Required? It depends on whether you've already promoted a
package version of this package. If yes, you must specify either the
ancestorld or ancestorVersion. If no, this parameter isn't required.

Default if Not Specified: None

The version number of the immediate parent in the package
ancestry tree of the package version you're creating.

341

Second-Generation Managed Packages

Name

default

definitionFile

namespace

package

packageAliases

Project Configuration File for a Second-Generation Managed
Package

Details

Specify the ancestor version using the format of
major.minor.patch.build. When specifying ancestors, you can use
either ancestorId or ancestorVersion

Example:
"ancestorVersion": "0.1.0.1"

For more information, see Specify a Package Ancestor in the Project
File for a Second-Generation Managed Package.

Required? Yes, if you've specified more than one package directory
Default if Not Specified: true

Indicates the default package directory. When metadata is retrieved
from a development org (scratch org or source-tracked sandbox)
using sf project retrieve,it'splacedin the default
package directory.

There can be only one package directory in which the default is
set to true.

Required? No
Default if Not Specified: None

Areferencetoanexternal . json file used to specify the features
and org settings required for the metadata of your package, such
as the scratch org definition.

Example:

"definitionFile":
"config/project-scratch-def.json",

Required? Yes
Default if Not Specified: None

A 1-15 character alphanumeric identifier that distinguishes your
package and its contents from packages of other developers.

Required? Yes
Default if Not Specified: None

The package name is specified in the project json file.

Required? No

Default if Not Specified: Salesforce CLI updates this file with the
aliases when you create a package or package version. You can
also manually update this section for existing packages or package
versions. You can use the alias instead of the cryptic package ID
when running CLI sf package commands.

342

Second-Generation Managed Packages

Name

path

seedMetadata

versionDescription

versionName

versionNumber

Project Configuration File for a Second-Generation Managed
Package

Details

Required? Yes
Default if Not Specified: None.

Specify the location that contains the package metadata in the
--path attribute of sf package create Salesforce CLI
command.

Required? No
Default if Not Specified: None.
Specify the path to your seedMetadata directory.

Seed metadata is available to standard value sets only. If your
package depends on standard value sets, you can specify a seed
metadata directory that contains the value sets.

Example:

"packageDirectories": [
{
"seedMetadata": {
"path":
"my-unpackaged-seed-directory"
}
}o

Required? No
Default if Not Specified: None

Required? No

Default if Not Specified: If not specified, the CLI uses
versionNumber asthe version name.

Required? Yes
Default if Not Specified: None

The versionNumber field sets the version number that is assigned
the next time you create a 2GP version. Version numbers are
formatted as MAJOR.MINOR.PATCH.BUILD. For example, 1.2.1.8.
To avoid creating multiple package versions with the same
MAJOR.MINOR.PATCH.BUILD number, you must increment the
versionNumber before creating a new package version.

To automatically increment the build number to the next available
build for the package, use the keyword NEXT (1.2.1.NEXT).

Alternatively, when you create a new package version, you can set
the version number using the --versionNumber flagin the
CLI.

For more details, see Guidance for Version Numbering.

343

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_version_guidance.htm

Second-Generation Managed Packages Project Configuration File for a Second-Generation Managed
Package

When you specify a parameter using Salesforce CLI, it overrides the value listed in the project definition file.

The Salesforce DX project definition file is a JSON file is located in the root directory of your project. Usethe sf project generate
CLI command to generate a project file that you can build upon. Here’s how the parameters in packageDirectories appear.

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{

"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Summer ‘24",
"versionDescription”: "Welcome to Summer 2024 Release of Expense Manager Util
Package",
"versionNumber": "4.7.0.NEXT",
"definitionFile": "config/scratch-org-def.json"
}y
{
"path": "exp-core",
"default": false,
"package": "Expense Manager",
"versionName": "v 3.2",
"versionDescription": "Summer 2024 Release",
"versionNumber": "3.2.0.NEXT",
"ancestorVersion": "3.0.0.7",
"definitionFile": "config/scratch-org-def.json",
"dependencies": [
{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"
I
{
"package" : "External Apex Library - 1.0.0.4"
}
]
}
1,
"packageAliases": {
"Expense Manager - Util": "OHoBOOOOOOO4CFpKAM",
"External Apex Library@1.0.0.4": "04tBOOOOOOOIBIEIAW",
"Expense Manager": "OHoBOOOOOOO4CFuKAM"}

What If | Don't Want My Salesforce DX Project Automatically Updated?

In some circumstances, you don’t want to have automatic updatesto the sfdx-project. json file. When you require more control,
use these environment variables to suppress automatic updates to the project file.

344

Second-Generation Managed Packages Get Ready to Promote and Release a Second-Generation
Managed Package Version

For This Command Set This Environment Variable to True

sf package create SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_CREATE

sf package version create SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_VERSION_CREATE
SEE ALSO:

Advanced Project Configuration Parameters for Second-Generation Managed Packages

Get Ready to Promote and Release a Second-Generation Managed
Package Version

By now it's likely that you've already created many different versions of your managed 2GP package and tested them. When you have
a package version that you're ready to distribute, promoting the package version is the next step.

Each package version you create is a beta version, unless you promote it to the managed-released state. Beta versions can be installed
in only scratch orgs and sandboxes. After you install a beta version into an org, you can't later upgrade that installed beta version. Keep
this in mind when you select which org to install and test your beta package version. If you use this sandbox as part of your release
pipeline, then using a disposable scratch org is a better option to test your beta package.

A beta package version must pass a 75% code coverage requirement before it can be promoted. To learn more, see Code Coverage for
Second-Generation Managed Packages.

To promote a package version to the released state, runthe sf package version promote Salesforce CLI command. For
step-by-step instructions on promoting a package version, see Release a Second Generation Managed Package.

After a package version is promoted, you can install it in either a production org or development orgs, and can be distributed to your
customers.

For every minor package version, you can promote only one beta version. For example, if you create several beta versions of package
version 2.3, only one of those versions can be promoted. After promoting package version 2.3, start your new development using version
number 2.4.

After a package version is promoted to the released state, you can't reverse the promotion. If you discover you don't want to distribute
a version you promoted, you can't reverse that version back to the beta state. To ensure that that version isn't inadvertently shared and
installed in a customer org, we recommend you use the sf package version update Salesforce CLI command and set the
installation key to something cryptic and difficult to guess.

SEE ALSO:
Considerations for Promoting Packages with Dependencies
Release a Second-Generation Managed Package

Code Coverage for Second-Generation Managed Packages

Specify a Package Ancestor in the Project File for a Second-Generation
Managed Package

When you create a second-generation managed package version you specify a package ancestor in your sfdx-project.json
file. We require that the package ancestor you specify is the highest promoted package version number for that package. You can either
update the ancestor version number each time you create a package version, or you can use a keyword.

345

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_adv_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_code_coverage.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_code_coverage.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_considerations_pkg_dependency.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_code_coverage.htm

Second-Generation Managed Packages Specify a Package Ancestor in the Project File for a
Second-Generation Managed Package

Here are three different ways to set the package ancestor.

Use the HIGHEST Keyword (Recommended)

Use the keyword HIGHEST with either the ancestorId or ancestorVersion attribute inthe sfdx-project.json file.
This keyword automatically sets the ancestor to the highest promoted package version number.

"packageDirectories": [

{

"path": "util",

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "HIGHEST"

bo

This keyword makes it easy to set your package ancestor to use linear versioning, until you have a reason to break from linear versioning.

Use the Ancestor Version Attribute

Setthe ancestorVersion attributeinthe sfdx-project. json file to the package version’s major.minor.patch number.
This approach requires you to update the ancestor version number every time the major, minor, or patch value changes.

"packageDirectories": [

{

"path": "util",

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": “4.6.0”

by

Use the Ancestor ID Attribute

Setthe ancestorId attributeinthe sfdx-project. json file toeither the 04t ID or the package version’s alias. This approach
requires you to update the ancestor version number every time you create a package version.

"packageDirectories": [

{

"path": "util",

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorId": "04tBO000000CWwnIAE"
by

"packageDirectories": [

{

"path": "util",

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorId": "expense-manager@4.6.0.1"

by

@ Nofe: Only package versions that have been promoted to managed-released state, can be listed as an ancestor.

346

Second-Generation Managed Packages Install and Uninstall Second-Generation Managed Packages

Override Linear Package Ancestry Behavior

To break from linear package versioning, specify a package ancestor that isn't the highest promoted package version and use the
Salesforce CLI parameter —-skip-ancestor-check when you create a package version.

sf package version create --package "Expenser App" --skip-ancestor-check

The CLI parameter indicates that you're intentionally choosing to specify a package version that isn't the highest promoted package
version.

You can choose to not specify a package ancestor by using the keyword, NONE, with eitherthe ancestorId or ancestorVersion
attribute in the sfdx-project.jsonfile.

"packageDirectories": [

{

"path": "util",

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "NONE"

by
Because package ancestors determine package upgrade paths, existing customers can’t upgrade to a package version that is created
without a specified ancestor. Use NONE if you don't plan to promote the package version you're creating.

If you've already promoted a previous package version, and you set the ancestor to NONE on a new package version associated with
the same package, include --skip-ancestor-check when you create that package version. When you create your first package
version, you can also set the ancestor to NONE and specify --skip-ancestor-check.

What to Remember about Package Ancestry

e Package ancestry determines whether existing packages can be upgraded to newer package versions. If you're breaking from linear
versioning, or plan to abandon a package version that is installed in customer orgs, consider how your existing customers will be
impacted, and whether an upgrade path is available to them.

e If you abandon a package version, delete the version using the Salesforce CLI command sf package version delete.

Ifyou aren't able to delete the package version, then update the package version’s installation key so the abandoned package version
can't be inadvertently installed. Use sf package version update to update the installation key.

Install and Uninstall Second-Generation Managed Packages

Use a disposable scratch org to test your second-generation managed packages (managed 2GP). You can install or uninstall a managed
2GP package using a Salesforce CLI command, or from the Setup page. Because you can't upgrade a beta package version, be sure you
don'tinstall it in a sandbox that you use in your release pipeline, such as UAT or staging.

Use the CLI to Install a Second-Generation Managed Package
If you're working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch
org or target subscriber org.

Use a URL to Install a Second-Generation Managed Package
Install a second-generation managed package from a browser.

347

Second-Generation Managed Packages Use the Cll to Install a Second-Generation Managed Package

Install Notifications for Unauthorized Managed Packages
When you distribute a managed package that AppExchange Partner Program hasn't authorized, we notify customers during the
installation process. The notification is removed after the package is approved.

Upgrade a Second-Generation Managed Package Version
A package upgrade occurs when you install a new package version into an org that has a previous version of that package installed.

Resolve Apex Test Failures
Package installs or upgrades may fail for not passing Apex test coverage. However, some of these failures can be ignored. For example,
a developer might write an Apex test that makes assumptions about a subscriber's data.

Run Apex on Package Install/Upgrade

App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you
can use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick
off a batch operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It
must be an Apex class that is a member of the package.

Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts

Customize a second-generation managed package (managed 2GP) install or upgrade by specifying an Apex post install script to
run automatically after a subscriber installs or upgrades a managed 2GP package. You can also specify an Apex uninstall script to
run automatically when a subscriber uninstalls a managed 2GP package.

Sample Script for Installing Second-Generation Managed Packages with Dependencies
Use this sample script as a basis to create your own script to install second-generation managed packages with dependencies. This
script contains a query that finds dependent packages and installs them in the correct dependency order.

Uninstall a Second-Generation Managed Package

You can uninstall a second-generation managed package from an org using Salesforce CLI or from the Setup Ul. When you uninstall
second-generation managed packages, all components in the package, including any deprecated components that were previously
associated with the package, are deleted from the org.

Use the CLI to Install a Second-Generation Managed Package

If you're working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch org or
target subscriber org.

Before you install a second-generation managed package (managed 2GP) in a scratch org, run this command to list all the packages
and locate the ID or package alias.

sf package version list
Identify the version you want to install. Enter this command, supplying the package alias or package ID (starts with 04t).
sf package install --package "Expense Manager@l.2.0-12" --target-org jdoe@example.com

By default, the package install command provides admins access to the installed package. To provide access to all users, specify
--security-type AllUsers whenyou run the package install command.

If you've already set the scratch org with a default username, enter just the package version ID.

sf package install --package "Expense Manager@l.2.0-12"

@ Nofte: Ifyou've defined an alias (with the —a parameter), you can specify the alias instead of the username for --target-org.

348

Second-Generation Managed Packages Use a URL to Install a Second-Generation Managed Package

The CLI displays status messages regarding the installation.

Waiting for the subscriber package version install request to get processed. Status =
InProgress Successfully installed the subscriber package version: 04txx0000000FIuAAM.

Control Managed 2GP Package Installation Timeouts

Whenyouissuea sf package install command,ittakesafew minutesfora package version to become available in the target
org and for installation to complete. To allow sufficient time for a successful install, use these parameters that represent mutually exclusive
timers.

® -—-publish-wait definesthe maximum number of minutes that the command waits for the package version to be available
in the target org. The default is 0. If the package is not available in the target org in this time frame, the install is terminated.

Setting ——publish-wait is useful when you create a new package version and then immediately try to install it to target orgs.

@ Nofe: If --publish-wait issetto 0, the package installation immediately fails, unless the package version is already
available in the target org.

* -—-wait defines the maximum number of minutes that the command waits for the installation to complete after the package is
available. The default is 0. When the --wait interval ends, the install command completes, but the installation continues until it either
fails or succeeds. You can poll the status of the installation using sf package install report.

@ Nofe: The —-wait timer takes effect after the time specified by —-publish-wait haselapsed. If the
--publish-wait interval times out before the package is available in the target org, the —-wait interval never starts.

For example, consider a package called Expense Manager that takes five minutes to become available on the target org, and 11 minutes
toinstall. The following command has publish-wait settothree minutesand wait setto 10 minutes. Because Expense Manager
requires more time than the set publish-wait interval, theinstallation is aborted at the end of the three-minute publish-wait
interval.

sf package install --package "Expense Manager@1.2.0-12" --publish-wait 3 --wait 10

The following command has publish-wait setto six minutesand wait setto 10 minutes. If not already available, Expense
Manager takes five minutes to become available on the target org. The clock then starts ticking for the 10-minute wait time. At the
end of 10 minutes, the command completes because the wa it time interval has elapsed, although the installation is not yet complete.
Atthispoint, sf package install report indicatesthattheinstallationisin progress. After one more minute, the installation
completesand sf package install report indicates a successful installation.

sf package install --package "Expense Manager@l1.2.0-12" --publish-wait 6 --wait 10

SEE ALSO:
Salesforce CLI Command Reference package install

Salesforce Help: Determine Which Users Can Access a Package

Use a URL to Install a Second-Generation Managed Package

Install a second-generation managed package from a browser.

If you create packages from the CLI, you can derive an installation URL for the package by adding the subscriber package ID to your Dev
Hub URL. You can use this URL to test different deployment or installation scenarios.

For example, if the package version has the subscriber package ID, 04tB00000009073JBI, add the ID as the value of apvld.

349

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified
https://help.salesforce.com/s/articleView?id=xcloud.pkg_subscriber_determine_access.htm&type=5&language=en_US

Second-Generation Managed Packages Install Notifications for Unauthorized Managed Packages

https://MyDomainName.lightning. force.com/packagingSetupUI/ipLanding.app?apvId=04tB000000090Z3JBI
Anyone with the URL and a valid login to a Salesforce org can install the package.

To install the package:

1. Ina browser, enter the installation URL.

2. Enter your username and password for the Salesforce org in which you want to install the package, and then click Login.

3. Ifthe package is protected by an installation key, enter the installation key.

4. Fora defaultinstallation, click Install.

A message describes the progress. You receive a confirmation message when the installation is complete.

SEE ALSO:

Salesforce Help: Determine Which Users Can Access a Package

Install Notifications for Unauthorized Managed Packages

When you distribute a managed package that AppExchange Partner Program hasn't authorized, we notify customers during the installation
process. The notification is removed after the package is approved.

3. 222 2

o Install for Admins Only Install for All Users Install for Specific Profiles...

i

A You're installing a Non-Salesforce Application that is not authorized for distribution as part of Salesforce’s
AppExchange Partner Program. @

{ I acknowledge that I'm installing a Non-Salesforce Application that is not authorized for distribution as part of

Salesforce’s AppExchange Partner Program.

The notification appears when customers configure the package installation settings (1). Before customers install the package, they must
confirm that they understand that the package isn't authorized for distribution (2).

The notification displays when a managed package:

e Has never been through security review or is under review
e Didn't pass the security review

e Isn't authorized by AppExchange Partner Program for another reason

If the AppExchange Partner Program approves the package, it's authorized for distribution, and the notification is removed. When you
publish a new version of the package, it's automatically authorized for distribution.

For information about the AppExchange Partner Program and its requirements, visit the Salesforce Partner Community.

350

https://help.salesforce.com/s/articleView?id=xcloud.pkg_subscriber_determine_access.htm&type=5&language=en_US
https://partners.salesforce.com/s/education/general/Partner_Program

Second-Generation Managed Packages Upgrade a Second-Generation Managed Package Version

Upgrade a Second-Generation Managed Package Version

A package upgrade occurs when you install a new package version into an org that has a previous version of that package installed.
When you perform a package upgrade, here’s what to expect for metadata changes.

e Metadata introduced in the new version is installed as part of the upgrade.
e Metadata modified in the new version is updated as part of the upgrade.

e Metadata removed in the new version is either deprecated or deleted as part of the upgrade.

To upgrade a package, use the package install CLI command
sf package install --package 04t... --target-org melexample.com

For more examples and details about this command, see package install in the Salesforce CLI Command Reference.
Beta packages aren't upgradeable. To install a new beta package or released version, first uninstall the beta package.

To upgrade a package version, the new version must be a direct descendent of the package version installed in your org. See Specify a
Package Ancestor in the Project File for a Second-Generation Managed Package for more information.

SEE ALSO:

Salesforce CLI Command Reference package install

Resolve Apex Test Failures

Package installs or upgrades may fail for not passing Apex test coverage. However, some of these failures can be ignored. For example,
a developer might write an Apex test that makes assumptions about a subscriber's data.

If your install fails due to an Apex test failure, check for the following:

e Make sure that you're staging all necessary data required for your Apex test, instead of relying on subscriber data that exists.

e Ifasubscriber creates a validation rule, required field, or trigger on an object referenced by your package, your test might fail if it
performs DML on this object. If this object is created only for testing purposes and never at runtime, and the creation fails due to
these conflicts, you might be safe to ignore the error and continue the test. Otherwise, contact the customer and determine the
impact.

Run Apex on Package Install/Upgrade

App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you can
use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick off a batch
operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It must be an Apex
class that is a member of the package.

The post install script is invoked after tests have been run, and is subject to default governor limits. It runs as a special system user that
represents your package, so all operations performed by the script appear to be done by your package. You can access this user by using
UserInfo. You can only see this user at runtime, not while running tests.

If the script fails, the install/upgrade is aborted. Any errors in the script are emailed to the user specified in the Notify on Apex Error
field of the package. If no user is specified, the install/upgrade details are unavailable.

The post install script has the following additional properties.

e It can initiate batch, scheduled, and future jobs.

351

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified

Second-Generation Managed Packages Run Apex on Package Install/Upgrade

e |tcan'taccess Session IDs.

e It can only perform callouts using an async operation. The callout occurs after the script is run and the install is complete and
committed.

e Itcan't call another Apex class in the package if that Apex class usesthe with sharing or inherit sharing keyword.
These keywords can prevent the package from successfully installing. To learn more, see the Apex Developer Guide.

Nofe: You can't run a post install script in a new trial organization provisioned using Trialforce. The script only runs when a
subscriber installs your package in an existing organization.

How Does a Post Install Script Work?
A post install script is an Apex class that implements the TnstallHandler interface.

Example of a Post Install Script

Specifying a Post Install Script
After you've created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

How Does a Post Install Script Work?

A post install script is an Apex class that implements the InstallHandler interface.

This interface has a single method called onTInstall that specifies the actions to be performed on installation.

global interface InstallHandler {
void onInstall (InstallContext context)

}

The onInstall method takes a context object as its argument, which provides the following information.

e The org ID of the organization in which the installation takes place.
e The user ID of the user who initiated the installation.

e The version number of the previously installed package (specified using the Version class). This is always a three-part number,
such as 1.2.0.

e Whether the installation is an upgrade
e Whether the installation is a push

The context argument is an object whose type is the InstallContext interface. This interface is automatically implemented by
the system. The following definition of the InstallContext interface shows the methods you can call on the context argument.

global interface InstallContext {
ID organizationId();
ID installerId();
Boolean isUpgrade () ;
Boolean isPush{();
Version previousVersion();

}

Version Methods and Class

You can use the methodsinthe System.Version classto get the version of a managed package and to compare package versions.
A package version is a number that identifies the set of components in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every non-patch release. Major and minor number increases always use a patch number of 0.

352

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_classes_keywords_sharing.htm

Second-Generation Managed Packages

Run Apex on Package Install/Upgrade

The following are instance methods for the System.Version class.

Method Arguments

Return Type Description

compareTo System.Version version Integer Compares the current version with the specified

major

minor

patch

version and returns one of the following values:

e Zeroifthe current package version is equal
to the specified package version

e Anlnteger value greater than zero if the
current package version is greater than the
specified package version

e AnInteger value less than zero if the
current package version is less than the
specified package version

If a two-part version is being compared to a
three-part version, the patch numberis ignored
and the comparison is based only on the major
and minor numbers.

Integer Returns the major package version of the calling
code.

Integer Returns the minor package version of the
calling code.

Integer Returns the patch package version of the calling
code or nul1 if there's no patch version.

The System class contains two methods that you can use to specify conditional logic, so different package versions exhibit different

behavior.

® System.requestVersion:Returnsatwo-partversion that contains the major and minor version numbers of a package.Using
this method, you can determine the version of an installed instance of your package from which the calling code is referencing your
package. Based on the version that the calling code has, you can customize the behavior of your package code.

® System.runAs (System.Version):Changesthe current package version to the package version specified in the argument.

When a subscriber has installed multiple versions of your package and writes code that references Apex classes or triggers in your
package, they must select the version they're referencing. You can execute different code paths in your package’s Apex code based on
the version setting of the calling Apex code making the reference. You can determine the calling code’s package version setting by
callingthe System.requestVersion method in the package code.

Example of a Post Install Script

The following sample post install script performs these actions on package install/upgrade.

e If the previous version is null, that is, the package is being installed for the first time, the script:

-~ Creates a new Account called Newco and verifies that it was created.

- Creates a new instance of the custom object Survey, called Client Satisfaction Survey.

- Sends an email message to the subscriber confirming installation of the package.

353

Second-Generation Managed Packages Run Apex on Package Install/Upgrade

e If the previous version is 1.0, the script creates a new instance of Survey called "Upgrading from Version 1.0".
e Ifthe package is an upgrade, the script creates a new instance of Survey called "Sample Survey during Upgrade”.

e Ifthe upgrade is being pushed, the script creates a new instance of Survey called "Sample Survey during Push”.

public class PostInstallClass implements InstallHandler {
global void onInstall (InstallContext context) {
if (context.previousVersion() == null) {
Account a = new Account (name='Newco') ;
insert (a);

Survey c obj = new Survey c(name='Client Satisfaction Survey');
insert obj;

User u = [Select Id, Email from User where Id =:context.installerID()];
String toAddress= u.Email;
String[] toAddresses = new String[]{toAddress};
Messaging.SingleEmailMessage mail =
new Messaging.SingleEmailMessage () ;
mail.setToAddresses (toAddresses) ;
mail.setReplyTo ('support@package.dev');
mail.setSenderDisplayName ('My Package Support');
mail.setSubject ('Package install successful');
mail.setPlainTextBody ('Thanks for installing the package.');

Messaging.sendEmail (new Messaging.Email([] { mail });
}
else
if (context.previousVersion () .compareTo (new Version(1l,0)) == 0) {
Survey c obj = new Survey c(name='Upgrading from Version 1.0");

insert (obj);
}
if (context.isUpgrade()) {
Survey c obj = new Survey c(name='Sample Survey during Upgrade');
insert obj;
}
if (context.isPush()) {
Survey c obj = new Survey c(name='Sample Survey during Push');
insert obj;

}

}

You can testa postinstall script using the new testInstall methodofthe Test class. This method takes the following arguments.

e Aclassthatimplements the TnstallHandler interface.
e A Version object that specifies the version number of the existing package.

e An optional Boolean value thatis t rue if the installation is a push. The defaultis false.

This sample shows how to test a post install script implemented in the PostInstallClass Apex class.

@isTest
static void testInstallScript() {
PostInstallClass postinstall = new PostInstallClass();
Test.testInstall (postinstall, null);
Test.testInstall (postinstall, new Version(l,0), true);
List<Account> a = [Select id, name from Account where name ='Newco'];

354

Second-Generation Managed Packages Customize Second-Generation Managed Package Installs
and Uninstalls Using Scripts

System.assertEquals(l, a.size (), 'Account not found');

Specifying a Post Install Script

After you've created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

The class selection is also available via the Metadata APl as Package .postInstallClass. Thisisrepresented in package.xmlas
a <postInstallClass>foo</postInstallClass> element.

SEE ALSO:

Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts

Customize Second-Generation Managed Package Installs and Uninstalls
Using Scripts

Customize a second-generation managed package (managed 2GP) install or upgrade by specifying an Apex post install script to run
automatically after a subscriber installs or upgrades a managed 2GP package. You can also specify an Apex uninstall script to run
automatically when a subscriber uninstalls a managed 2GP package.

For more information, see Run Apex on Package Install/Upgrade and Run Apex on Package Uninstall.

Specify post install and uninstall scripts in the sfdx-project.jsonfile.

"packageDirectories": [

{

"path": "expenser-schema",
"default": true,
"package": "Expense Schema",
"versionName": ""ver 0.3.2"",
"versionNumber": "0.3.2.NEXT",
"postInstallScript": "PostInstallScript",
"uninstallScript": "UninstallScript",
"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/winter-2020-release-notes.html"
}y
1,
{
"namespace": "db exp manager",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "47.0",
"packageAliases": {
"Expenser Schema": "OHoB0O0O0OOOOO4CzHKAU",
"Expenser Schema@0.1.0-1": "04tB0O000000719gIAA"

}

You can also use the ——-post-install-script andthe ——uninstall-script Salesforce CLI parameters with the sf
package version create command. The CLI parameters override the scripts specified in the sfdx-project.json
file.

@ Nofte: Include the Apex classes for your post-install and uninstall scripts with the metadata in your package.

355

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_customize_installs.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/apex_post_install_script.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/apex_uninstall_script.htm

Second-Generation Managed Packages Sample Script for Installing Second-Generation Managed
Packages with Dependencies

You can designate an active Dev Hub org user to receive email notifications for Apex gacks, and install, upgrade, or uninstall failures
associated with your packages. In Salesforce CLIrun sf package create --error-notification-username
me@devhub.orgor sf package update --error-notification-username me@devhub.org.InToolingAPI,
use the PackageErrorUsername field on the Package2 object.

Sample Script for Installing Second-Generation Managed Packages with
Dependencies

Use this sample script as a basis to create your own script to install second-generation managed packages with dependencies. This script
contains a query that finds dependent packages and installs them in the correct dependency order.

Sample Script

@ Note: Be sure to replace the package version ID and scratch org user name with your own specific details.

#!/bin/bash

The execution of this script stops if a command or pipeline has an error.
For example, failure to install a dependent package will cause the script
to stop execution.

set -e

Specify a package version id (starts with 04t)
If you know the package alias but not the id, use sf package version list to find it.

PACKAGE=04tB0000000NmnHIAS

Specify the user name of the subscriber org.

USER_NAME=test-bvdfz3m9tgdf@example.com

Specify the timeout in minutes for package installation.

WAIT_TIME:15
echo "Retrieving dependencies for package Id: "S$SPACKAGE
Execute sogl query to retrieve package dependencies in json format.

RESULT JSON='sf data query -u $USER NAME -t -g "SELECT Dependencies FROM
SubscriberPackageVersion WHERE Id='$PACKAGE'" --json’

356

Second-Generation Managed Packages Sample Script for Installing Second-Generation Managed
Packages with Dependencies

Parse the json string using python to test whether the result json contains a list of
ids or not.

DEPENDENCIES="echo $RESULT JSON | python -c 'import sys, json; print
json.load(sys.stdin) ["result"] ["records"] [0] ["Dependencies"]"'"

If the parsed dependencies is None, the package has no dependencies. Otherwise, parse
the result into a list of ids.

Then loop through the ids to install each of the dependent packages.

if [["SDEPENDENCIES" != 'None']]; then

DEPENDENCIES="echo $RESULT_JSON | python -c '
import sys, json
ids = json.load(sys.stdin) ["result"] ["records"][0] ["Dependencies"] ["ids"]
dependencies = []
for id in ids:
dependencies.append (id["subscriberPackageVersionId"])

print " ".join (dependencies)

echo "The package you are installing depends on these packages (in correct dependency
order) : "S$SDEPENDENCIES

for id in $DEPENDENCIES
do
echo "Installing dependent package: "$id
sf package install --package $id -u $USER NAME -w SWAIT TIME --publish-wait 10

done

else

echo "The package has no dependencies"

fi

357

Second-Generation Managed Packages Uninstall a Second-Generation Managed Package

After processing the dependencies, proceed to install the specified package.
echo "Installing package: "S$SPACKAGE

sf package install --package $SPACKAGE -u $USER NAME -w SWAIT TIME --publish-wait 10

exit 0;

Uninstall a Second-Generation Managed Package

You can uninstall a second-generation managed package from an org using Salesforce CLI or from the Setup Ul. When you uninstall
second-generation managed packages, all components in the package, including any deprecated components that were previously
associated with the package, are deleted from the org.

To use the CLI to uninstall a package from the target org, authorize the Dev Hub org and run this command.

sf package uninstall --package "Expense Manager@2.3.0-5"

You can also uninstall a package from the web browser. Open the Salesforce org where you installed the package.
sf org open -u me@my.org

Then uninstall the package.

1. From Setup, enter Tnstalled Packages inthe Quick Find box, then select Installed Packages.

2. (lick Uninstall next to the package that you want to remove.

3. Determine whether to save and export a copy of the package’s data, and then select the corresponding radio button.
4

Select Yes, | want to uninstall and click Uninstall.

Considerations on Uninstalling Packages

e Ifyou're uninstalling a package that includes a custom object, all components on that custom object are also deleted. Deleted items
include custom fields, validation rules, custom buttons, and links, and approval processes.

® Youcan't uninstall a package whenever a component not included in the uninstall references any component in the package. For
example:

-~ Whenaninstalled package includes any component on a standard object that another component references, Salesforce prevents
you from uninstalling the package. An example is a package that includes a custom user field with a workflow rule that gets
triggered when the value of that field is a specific value. Uninstalling the package would prevent your workflow from working.

- Whenyou'veinstalled two unrelated packages that each include a custom object and one custom object component references
a component in the other, you can’t uninstall the package. An example is if you install an expense report app that includes a
custom user field and create a validation rule on another installed custom object that references that custom user field. However,
uninstalling the expense report app prevents the validation rule from working.

- Whenaninstalled folder contains components you added after installation, Salesforce prevents you from uninstalling the package.

- Whenaninstalled letterhead is used for an email template you added after installation, Salesforce prevents you from uninstalling
the package.

358

Second-Generation Managed Packages Prepare to Distribute Your Second-Generation Managed
Package

-~ Whenaninstalled package includes a custom field that's referenced by Einstein Prediction Builder or Case Classification, Salesforce
prevents you from uninstalling the package. Before uninstalling the package, edit the prediction in Prediction Builder or Case
Classification so that it no longer references the custom field.

e You can't uninstall a package that removes all active business and person account record types. Activate at least one other business
or person account record type, and try again.

® Youcan'tuninstall a package if a background job is updating a field added by the package, such as an update to a roll-up summary
field. Wait until the background job finishes, and try again.

SEE ALSO:

Salesforce CLI Command Reference package uninstall

Prepare to Distribute Your Second-Generation Managed Package

Before you release a version of your second-generation managed package, ensure that you understand the code coverage requirements,
release logistics, and how to publish your app on AppExchange.

Code Coverage for Second-Generation Managed Packages

Before you can release and distribute a second-generation managed package version on AppExchange, the Apex code must meet
a minimum 75% code coverage requirement. And every Apex Trigger in a package needs test coverage.

Package Installation Key for Second-Generation Managed Packages

To ensure the security of the metadata in your second-generation managed package, you must specify an installation key when
creating a package version. Package creators provide the key to authorized subscribers so they can install the package. Package
installers provide the key during installation, whether installing the package from the CLI or from a browser. An installation key is
the first step during installation. The key ensures that no package information, such as the name or components, is disclosed until
the correct installation key is supplied.

Release a Second-Generation Managed Package

Each new second-generation managed package version is marked as beta when created. As you develop your package, you may
create several package versions before you create a version that is ready to be released and distributed. Only released package
versions can be listed on AppExchange and installed in customer orgs.

Share Release Notes and Post-Install Instructions for Second-Generation Managed Packages

Share details with your subscribers about what's new and changed in a released second-generation managed package.

Publishing Your App on AppExchange

If you've published a first-generation managed package, you'll notice the process for publishing a second-generation managed
package (managed 2GP) is different. After you link your Dev Hub org to the AppExchange partner console, all your released managed
2GP package versions are visible in the partner console.

Recommend a Specific Package Version to Your Subscribers
You can choose to recommend that your subscribers upgrade to a specific, released version of your package.

Code Coverage for Second-Generation Managed Packages

Before you can release and distribute a second-generation managed package version on AppExchange, the Apex code must meet a
minimum 75% code coverage requirement. And every Apex Trigger in a package needs test coverage.

359

https://developer.salesforce.com/docs/atlas.en-us.250.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_uninstall_unified

Second-Generation Managed Packages Package Installation Key for Second-Generation Managed
Packages

To compute code coverage using Salesforce CLI, use the --code-coverage parameter whenyourunthe sf package
version create command.

Package version creation often takes longer to complete when code coverage is being computed, so consider when to include the code
coverage parameter. You can create beta package versions without computing code coverage, but these beta versions can't be promoted.

If you try to promote a beta package version to managed-released and the version was created without specifying code coverage, or
the code coverage in the package version is less than 75%, the package promotion fails. Code coverage is calculated during package
version validation. If you skip validation using the ——skip-validation parameter, code coverage isn't calculated for that package
version.

View code coverage information for a package version using sf package version list withthe --verbose parameter,
or sf package version report command in Salesforce CLI.

Package Installation Key for Second-Generation Managed Packages

To ensure the security of the metadata in your second-generation managed package, you must specify an installation key when creating
a package version. Package creators provide the key to authorized subscribers so they can install the package. Package installers provide
the key during installation, whether installing the package from the CLI or from a browser. An installation key is the first step during
installation. The key ensures that no package information, such as the name or components, is disclosed until the correct installation
key is supplied.

To set the installation key, add the --installation-key parameter to the command when you create the package version. This
command creates a package and protects it with the installation key.

sf package version create --package "Expense Manager" --installation-key "JSB7s8vXU93fI"
Supply the installation key when you install the package version in the target org.

sf package install --package "Expense Manager" --installation-key "JSB7s8vXU93fI”

Change the Installation Key for an Existing Package Version
You can change the installation key for an existing package version with the sf package version update command.

sf package version update --package "Expense Manager@l.2.0-4" --installation-key
“HIF83kS8kS7C”

Create a Package Version Without an Installation Key
If you don't require security measures to protect your package metadata, you can create a package version without an installation key.

sf package version create --package "Expense Manager" --installation-key-bypass

Check Whether a Package Version Requires an Installation Key

To determine whether a package version requires an installation key, use the sf package version list CLIcommand.

360

Second-Generation Managed Packages

Release a Second-Generation Managed Package

Each new second-generation managed package version is marked as beta when created. As you develop your package, you may create
several package versions before you create a version that is ready to be released and distributed. Only released package versions can be
listed on AppExchange and installed in customer orgs.

Before you promote the package version, ensure that the user permission, Promote a package version to released, is enabled in the
Dev Hub org associated with the package. Consider creating a permission set with this user permission, and then assign the permission
set to the appropriate user profiles.

When you're ready to release, use sf package version promote.
sf package version promote --package "Expense Manager@1l.3.0-7"
If the command is successful, a confirmation message appears.
Successfully promoted the package version, ID: 04tBO000000719gIAA to released.
After the update succeeds, view the package details.
sf package version report --package "Expense Manager@l.3.0.7"
Confirm that the value of the Released property is true.

=== Package Version

NAME VALUE

Name ver 1.0

Alias Expense Manager-1.0.0.5
Package Version Id 05iB0000000CaahIAC
Package Id 0HoB0O000000CabmKAC
Subscriber Package Version Id 04tBO0000O0OONPLBIAW
Version 1.0.0.5

Description update version

Branch

Tag git commit id 08dcfsdf
Released true

Created Date 2021-05-08 09:48

Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NPLBIAW

You can promote and release only one time for each package version number, and you can’t undo this change.

Share Release Notes and Post-Install Instructions for Second-Generation
Managed Packages

Share details with your subscribers about what's new and changed in a released second-generation managed package.

You can specify a release notes URL to display on the package detail page in the subscriber’s org. And you can share instructions about
using your package by specifying a post install URL. The release notes and post install URLs display on the Installed Packages page in
Setup, after a successful package installation. For subscribers who install packages using an installation URL, the package installer page
displays a link to release notes. And subscribers are redirected to your post install URL following a successful package installation or
upgrade.

361

Release a Second-Generation Managed Package

Second-Generation Managed Packages

Publishing Your App on AppExchange

Specify the postInstallUrl and releaseNotesUrl attributesin the packageDirectories section for the package.

"packageDirectories": [
{
"path": "expenser-schema",
"default": true,
"package": "Expense Schema",
"versionName": ""ver 0.3.2"",
"versionNumber": "0.3.2.NEXT",

"postInstallScript": "PostInstallScript",

"uninstallScript": "UninstallScript",

"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/winter-2020-release-notes.html"

by
1,
{

"namespace": "db exp manager",

"sfdcLoginUrl": "https://login.salesforce.com",

"sourceApiVersion": "47.0",
"packageAliases": {

"Expenser Schema": "OHoB0O0O0O0OO0O04CzHKAU",
"04tBO000000719gIAA"

"Expenser Schema@0.1.0-1":
}

You can also use the ——post-install-url andthe -—-release-notes-url Salesforce CLI parameters with the s £
package version create command. The CLI parameters override the URLs specified in the sfdx-project.json file.

Publishing Your App on AppExchange

If you've published a first-generation managed package, you'll notice the process for publishing a second-generation managed package
(managed 2GP) is different. After you link your Dev Hub org to the AppExchange partner console, all your released managed 2GP package

versions are visible in the partner console.

Tolistan app on AppExchange, it must pass the AppExchange security review. For more information, see Pass the AppExchange Security

Review in the ISVforce Guide.

Link Dev Hub to the AppExchange Partner Console

e Loginto the Salesforce Partner Community.
e Select the Publishing tab

e (lick Technologies

e (lickOrg

¢ (lick Connect Technology, and Org

e (lick Connect Org and Allow, and enter the login credentials for your Dev Hub org.

Register Your Managed 2GP Package

e From the Solutions tab, locate the package version you want to register, and click Register Package. Registering a package links

the package to your license management app.

e Enter the login credentials for the Dev Hub org associated with the package in the modal window.

e Setthedefault license behavior for the package, including trial length, and number of seats included with the license, and click Save.

362

https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_manage_licenses.htm

Second-Generation Managed Packages Recommend a Specific Package Version to Your Subscribers

Packages that share a namespace can be associated with the same License Management Org (LMO), or you can associate the packages
with different LMOs.

SEE ALSO:
ISVforce Guide: Create or Edit Your AppExchange Listing
ISVforce Guide: Pass the AppExchange Security Review

Recommend a Specific Package Version to Your Subscribers

You can choose to recommend that your subscribers upgrade to a specific, released version of your package.

When you set a package version as the recommended version, your subscribers see an Upgrade to Recommended Version option
on the Installed Packages page in their org.

Installed Packages

Action Package Name Publisher Version Number

Uninstall | Upgrade to Recommended Version | % Example2GPE Salesforce 01

To set a package’s recommended version, run the sf package update CLIcommand and specify the package version in the
--recommended-version-id flag. This example sets PackageA@1 . 0 as the recommended version.

sf package update --package 0OHo.. --target-dev-hub devhub@example.com
--recommended-version-id PackageA@l.0

Keep in mind these requirements and considerations for setting a recommended version:

e You can set one recommended version per package.

e Only released package versions can be set as the recommended version.

e The recommended version is not required to be the latest, released version of a package.

e When you update the recommended version, the new version that you set must be a descendant of the previous version in the
package ancestry. If the package versions don't share an ancestry tree, you'll get an error when you try to update the package’s
recommended version. To bypass this error, you can use the sf package update CLI command’s
--skip-ancestor-check flag.

SEE ALSO:
Release a Second-Generation Managed Package

Salesforce CLI Command Reference: package update

Push a Package Upgrade for Second-Generation Managed Packages

Push upgrades enable you to upgrade second-generation managed packages installed in subscriber orgs, without asking customers to
install the upgrade themselves. You can choose which orgs receive a push upgrade, what version the package is upgraded to, and when
you want the upgrade to occur. Push upgrades are helpful if you need to push a change for a hot bug fix.

Use Salesforce CLI or SOAP APl to initiate the push upgrade, track the status of each job, and review error messages if any push upgrades
fail.

The push upgrade feature is only available to first- and second-generation managed packages that have passed the AppExchange
security review. The CLI push upgrade commands are available to second-generation managed packages and unlocked packages. To

363

https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_publish_listings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_update_unified

Second-Generation Managed Packages Schedule a Push Upgrade Using CLI

enable push upgrades for your managed package, log a case with Salesforce Partner Support on page 403. For details on the security
review process, see Pass the AppExchange Security Review in the /SVforce Guide.

Table 4: Package Types and Push Upgrade Options

Package Type Push Upgrade using CLI? Push Upgrade using API? Push Upgrade using UI?
2GP Yes Yes No
1GP No Yes Yes
Unlocked Yes Yes No

Push Upgrade Considerations for Second-Generation Managed Packages

e You can push upgrades to packages that have passed AppExchange security review only.
e The same manageability rules for package version upgrades are applicable to push upgrades.
e When a push upgrade is installed, the Apex in package is compiled.

e Push upgrades can be used even if the package version requires a password.

Schedule a Push Upgrade Using CLI

Use Salesforce CLI commands to schedule, abort, or view details about your push upgrade requests. Push upgrades let you upgrade
second-generation managed packages installed in subscriber orgs, without asking customers to install the upgrade themselves.

Schedule a Push Upgrade Using SOAP API for First- and Second-Generation Managed Packages
After you've created an updated version of your package, you can automatically deploy it to customers using a push upgrade.

Assign Access to New and Changed Features in First- and Second-Generation Managed Packages

Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages
Automate the assignment of new components to existing users of a package.

Push Upgrade Best Practices

Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

Schedule a Push Upgrade Using CLI

Use Salesforce CLI commands to schedule, abort, or view details about your push upgrade requests. Push upgrades let you upgrade
second-generation managed packages installed in subscriber orgs, without asking customers to install the upgrade themselves.

The push upgrade feature is available to unlocked packages and second-generation managed packages only. To push a package upgrade
for a second-generation managed package, that package must have already passed the AppExchange security review.

Push upgrades for unlocked packages are enabled by default. To enable push upgrades for your second-generation managed package,
log a case with Salesforce Partner Support.

To initiate a push upgrade for an unlocked or second-generation managed package, the Create and Update Second-Generation Packages
user permission is required.

There are several aspects to scheduling a push upgrade for a package. At a high-level these include:

364

https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm

Second-Generation Managed Packages Schedule a Push Upgrade Using CLI

e |dentifying the subscriber orgs and the org IDs that you want to upgrade
e Scheduling the push upgrade
e Tracking the progress and completion of the push upgrade

In some scenarios you may also need to abort a scheduled push upgrade, or analyze errors that occurred. Let's review each of these
steps in more detail.

Determine the Orgs to Be Upgraded
Thereisn'ta dedicated push-upgrade CLIcommand for this action, instead let's look athow to use the CLI data querycommand.

Push upgrades must be done in the context of the Dev Hub org that owns the package. To confirm the set of packages owned by a
specific Dev Hub org, runthe package 1ist command.

Then authorize to the Dev Hub org that is the owner of the package are upgrading.

sf org login web --set-default-dev-hub

If you're preparing to push a package upgrade, we assume your development environment is set up, if you aren't certain, review Set Up
Your Development Environment.

Here are three example queries you can use to retrieve a list of subscriber orgs that are eligible for a package upgrade. To review the
possible fields that can be queried, see PackageSubscriber in the Object Reference for the Salesforce Platform.

Each query requires either a subscriber package ID (starts with 033), or a subscriber package version ID (starts with 04t). To retrieve the
subsciber package ID, use the package list command and specify the ——verbose flag. To retrieve the subscriber package version ID,
use the package version list command.

Query Example 1:
Compile a list of all orgs that have a specific package installed. This query requires the subscriber package ID (starts with 033).

sf data query --target-org myDevHub --query "SELECT OrgKey, OrgName, OrgType, InstanceName,
MetadataPackageId, MetadataPackageVersionId FROM PackageSubscriber WHERE MetadataPackageld
= '033xxxXXXXXXXXXXXxX'" --result-format json

If you copy and paste this query, update the target org and the subscriber package ID, before running the command. The target org is
the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.
Query Example 2:

Compile a list of orgs that have a specific package version installed, and pipe that output to a CSV file.

sf data query --target-org myDevHub --query "SELECT OrgKey, OrgName, OrgType FROM
PackageSubscriber WHERE MetadataPackageVersionId = '04t..'" --result-format csv

If you copy and paste this query, update the target org and the subscriber package version ID, before running the command. The target
org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

This query returns as CSV file that you can use when scheduling the push upgrade. Before specifying the file in the package
push-upgrade schedule command, remove the first line of the CSV file. The CSV file can contain one org ID per line only.

Query Example 3:

Compile a list of all orgs that have a package version lower than version 2.7 installed. This query requires two separate steps.
@ Nofe: A single package has both a package ID (starts with OHo) and a subscriber package ID (starts with 033). For part one of this
two-part query, you must specify the OHo ID. If you run the package list command with the ——verbose flag, you can

determine both the 033 and OHo ID for a package. For more details on package IDs, see Package IDs and Aliases for
Second-Generation Managed Packages.

365

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_list_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_dev_environment.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_dev_environment.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_list_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_version_list_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm

Second-Generation Managed Packages Schedule a Push Upgrade Using CLI

First, query the Package2Version object to find all versions of your package that are numerically lower than the specified version (2.7).

sf data query --target-org admin@packaging.com --use-tooling-api --query "SELECT
SubscriberPackageVersionId FROM Package2Version WHERE Package2Id = 'OHoPACKAGEIDxxxx' AND
(MajorVersion < 2 OR (MajorVersion = 2 AND MinorVersion < 7))"

If you copy and paste this query, update the target org, the Package ID (starts with OHo), and the major and minor version before running
the command. The target org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.
Note the SubscriberPackageVersionId values (starts with 04t) returned by this query.

Next, query the PackageSubscriber object using the subscriber package version IDs (starts with 04t) from the previous step.

sf data query --target-org myDevHub --query "SELECT OrgKey FROM PackageSubscriber WHERE
MetadataPackageVersionId IN ('04tID1', '04tID2', '04tID etc')" --result-format csv >out.txt

If you copy and paste this query, update the target org and the subscriber package version IDs (starts with 04t) before running the
command. The target org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

If you created a CSV file in this step and plan to use the file to schedule your push upgrade, you must remove the first line of the file so
that it contains a list of org IDs only.

Schedule a Package Push Upgrade

After you have the org IDs for the subscribers you're upgrading, you can schedule the push upgrade. Review these examples of the flags
you might include with the package push-upgrade schedule command. For more details on this command, see the
Salesforce CLI Command Reference.

When scheduling a push upgrade you have a choice about how to specify the orgs you want upgraded. You can use either flag:

e -—-org-file and provide a CSV file of all the orgs to be upgraded, or

e --org-1list and specify acomma-separated list of org IDs in the command line when you run the push upgrade CLI command
If using a org file, it must contain one org ID per line only.

Examples for package push-upgrade schedule

Schedule a push upgrade that initiates at a specified time with a list of org IDs:

sf package push-upgrade schedule --package 04txyz --start-time "2024-12-06T21:00:00"
--org-list O0ODAxx, 00DBx

Schedule a push upgrade that initiates as soon as possible using a list of orgs ina CSV file:

sf package push-upgrade schedule --package 04txyz --org-file upgrade-orgs.csv

@ Note: Ifyoudon'tspecify the -—start-time flag, the push upgrade begins as soon as resources are available. When specfiying
a start time, schedule during off peak hours. Specify start time in UTC.

Retrieve Details about Scheduled Package Push Upgrades

Usethe package push-upgrade list or package push-upgrade report commandsto retrieve detailsabout push
upgrades that have been scheduled or completed for a package.

Examples for package push-upgrade list:

List all package push upgrade requests for a specified package:

sf package push-upgrade list --package 033xyz --target-dev-hub myDevHub

366

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_tooling.meta/api_tooling/tooling_api_objects_package2version.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_push-upgrade_schedule_unified

Second-Generation Managed Packages Schedule a Push Upgrade Using SOAP API for First- and
Second-Generation Managed Packages

List all package push upgrade requests for a specified package scheduled in the last 30 days:

sf package push-upgrade list --package 033xyz --scheduled-last-days 30 --target-dev-hub
myDevHub

List all package push upgrade requests with a status of Failed. This status occurs if the push upgrade fails for one or more orgs.
sf package push-upgrade list --package 033xyz —--status Failed

List all package push upgrade requests with a status of Succeeded:

sf package push-upgrade list --package 033xyz —--status Succeeded

Generate a report about a specific push upgrade request:
sf package push-upgrade report --push-request-id 0DVxyz --target-dev-hub myDevHub

The package push-upgrade list command displays these fields: push request ID, package version ID, package version
number, status of the push upgrade request, push upgrade request scheduled start date and time, the number of orgs scheduled for
push upgrade, the number of orgs that were successfully upgraded, the number of orgs that failed to be upgraded, and push upgrade
request created date and time.

The package push-upgrade report command provides additional information, including error details.

Cancel a Pending Package Push Upgrade Request

If your push upgrade request has a status of either Created or Pending you can cancel the push upgrade by running the package
push-upgrade abort command.To retrieve the status of your push upgrade request, run either package push-upgrade
listor package push-upgrade report

To cancel a specified push upgrade request:

sf package push-upgrade abort --push-request-id 0DVxyz

Retrieve Error Messages for a Package Push Upgrade

There isn't a dedicated push upgrade CLI command for this retrieving error message, instead let's look at how to use the CLI data
query command. Use this example query to retrieve error messages stored in the PackagePushError object.

Example:

sf data query --query "SELECT Id, PackagePushJobld, PackagePushJob.SubscriberOrganizationKey,
ErrorDetails, ErrorMessage, ErrorSeverity, ErrorTitle, ErrorType FROM PackagePushError
WHERE PackagePushJob.PackagePushRequestId='$PUSH REQUEST ID'" --target-org myDevHub

Schedule a Push Upgrade Using SOAP API for First- and Second-Generation
Managed Packages

After you've created an updated version of your package, you can automatically deploy it to customers using a push upgrade.
For code samples and more detailed steps, see SOAP API object documentation linked in each step.

1. Authenticate to your Dev Hub org.

2. Query MetadataPackage to verify package details.

3. Query MetadataPackageVersion to verify the package version to use for the push upgrade.

367

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagepusherror.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api.meta/api/sforce_api_calls_login.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_metadatapackage.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_metadatapackageversion.htm

Second-Generation Managed Packages Assign Access to New and Changed Features in First- and
Second-Generation Managed Packages

4. Query PackageSubscriber to retrieve details about subscriber orgs such as the org ID and installed package version. To retrieve
information about more than 2,000 subscribers, use SOAP APl queryMore () call.

5. CreateaPackagePushRequest object. Specify the PackageVersionId and ScheduledStartTime (optional). fyou omit
the ScheduledStartTime, the push begins when you set the PackagePushRequest's status to Pending.

6. Create a PackagePushJob for each subscriber and associate it with the PackagePushRequest you created in the previous
step.

7. Schedule the push upgrade by changing the status of the PackagePushRequest t0 Pending.

@ Note: Scheduled push upgrades begin as soon as resources are available on the Salesforce instance, which is either at or after
the start time you specify. In certain scenarios, the push upgrade could start a few hours after the scheduled start time.

Assign Access to New and Changed Features in First- and
Second-Generation Managed Packages

Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

If the push upgrade includes: We recommend you:

New features Notify admins about the changes the upgrade introduces, and ask
them to assign permissions to all users of the package.

This approach allows admins to choose when to make the new
features available.

Enhancements to existing features Include a post-install script in the package that assigns permissions

to the new components or new fields automatically.

This approach ensures that current users of the package can
continue using features without interruption.

@ Note: Post-install scripts aren't available to unlocked
packages.

Sample Post Install Script for a Push Upgrade for First- and
Second-Generation Managed Packages

Automate the assignment of new components to existing users of a package.

@ Nofte: Post-install scripts can be used with first and second-generation managed packages only.

For more information on writing a post-install Apex script, see Run Apex on Package Install/Upgrade on page 351.

In this sample script, the package upgrade contains new Visualforce pages and a new permission set that grants access to those pages.
The script performs the following actions.

e Gets the Id of the Visualforce pages in the old version of the package
e Gets the permission sets that have access to those pages

e Gets the list of profiles associated with these permission sets

368

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api.meta/api/sforce_api_calls_querymore.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagepushrequest.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagepushjob.htm

Second-Generation Managed Packages Sample Post Install Script for a Push Upgrade for First- and
Second-Generation Managed Packages

e Gets the list of users who have those profiles assigned

e Assigns the permission set in the new package to those users

global class PostInstallClass implements InstallHandler {
global void onInstall (InstallContext context) {

//Get the Id of the Visualforce pages
List<ApexPage> pagesList = [SELECT Id FROM ApexPage WHERE NamespacePrefix =
'TestPackage' AND Name = 'vfpagel'];

//Get the permission sets that have access to those pages

List<SetupEntityAccess> setupEntityAccessList = [SELECT Id,
ParentId, SetupEntityId, SetupEntityType FROM SetupEntityAccess
WHERE SetupEntityId IN :pagesList];

Set<ID> PermissionSetList = new Set<ID> ();

for (SetupEntityAccess sea : setupEntityAccessList) {
PermissionSetList.add (sea.ParentId);

}

List<PermissionSet> PermissionSetWithProfileIdList =
[SELECT id, Name, IsOwnedByProfile, Profile.Name,
ProfileId FROM PermissionSet WHERE IsOwnedByProfile = true
AND Id IN :PermissionSetList];

//Get the list of profiles associated with those permission sets

Set<ID> ProfileList = new Set<ID> ();

for (PermissionSet per : PermissionSetWithProfileIdList) ({
Profilelist.add(per.Profileld);

//Get the list of users who have those profiles assigned
List<User> UserList = [SELECT id FROM User where ProfileId IN :Profilelist];

//Assign the permission set in the new package to those users

List<PermissionSet> PermissionSetToAssignList = [SELECT id, Name
FROM PermissionSet WHERE Name='TestPermSet' AND
NamespacePrefix = 'TestPackage'];

PermissionSet PermissionSetToAssign = PermissionSetToAssignList[0];

List<PermissionSetAssignment> PermissionSetAssignmentList = new
List<PermissionSetAssignment> () ;

for (User us : UserList) {
PermissionSetAssignment psa = new PermissionSetAssignment () ;
psa.PermissionSetId = PermissionSetToAssign.id;
psa.Assigneeld = us.id;
PermissionSetAssignmentList.add (psa);

}

insert PermissionSetAssignmentList;

// Test for the post install class
@isTest
private class PostInstallClassTest {

369

Second-Generation Managed Packages Push Upgrade Best Practices

@isTest

public static void test() {
PostInstallClass myClass = new PostInstallClass();
Test.testInstall (myClass, null);

Push Upgrade Best Practices

Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

Plan, Test, and Communicate

Share an upgrade timeline plan with your customers so they know when you'll upgrade, and how often.

Plan when you want to push upgrades to your customers’ orgs. Keep in mind that most customers don’t want changes around their
month-end, quarter-end, and year-end or audit cycles. Do your customers have other critical time periods when they don’t want
any changes to their org? For example, there might be certain times when they don't have staff available to verify changes or perform
any required post-installation steps.

Schedule push upgrades during your customers’ off-peak hours, such as late evening and night. Have you considered time zone
issues? Do you have customers outside the United States who have different off-peak hours? You can schedule push upgrades to
any number of customer organizations at a time. Consider grouping organizations by time zone, if business hours vary widely across
your customer base.

Don't schedule push upgrades close to Salesforce-planned maintenance windows. In most cases, it might be better to wait 3-4
weeks after a major Salesforce release before you push major upgrades.

Test, test, and test! Since you're pushing changes to the organization instead of the customer pulling in changes, there’s a higher
bar to ensure the new version of your app works well in all customer configurations.

Stagger Your Push Upgrades

Don't push changes to all customers at once. It's important to ensure that you have sufficient resources to handle support cases if
there are issues. Also, it's important that you discover possible issues before your entire customer base is affected.

Push to your own test organizations first to confirm that the push happens seamlessly. Log in to your test organization after the push
upgrade and test to see that everything works as expected.

When applicable, push to the sandbox organizations of your customers first before pushing to their production organizations. Give
them a week or more to test, validate, and fix in the sandbox environment before you push to their production organizations.

Push upgrades to small batches of customer production organizations initially. For example, if you have 1,000 customers, push
upgrades to 50 or 100 customers at a time, at least the first few times. After you have confidence in the results, you can upgrade
customers in larger batches.

Focus on Customer Trust

You're responsible for ensuring that your customers’ organizations aren't adversely affected by your upgrade. Avoid making changes
to the package, such as changes to validation rules or formula fields, that might break external integrations made by the customer.
If for some reason you do, test and communicate well in advance. Please keep in mind that you can impact customer data, not just
metadata, by pushing an upgrade that has bugs.

Write an Apex test on install to do basic sanity testing to confirm that the upgraded app works as expected.

370

Second-Generation Managed Packages Advanced Features for Second-Generation Managed
Packages

e Ifyou're enhancing an existing feature, use a post-install script to automatically assign new components to existing users using
permission sets.

e Ifyou're adding a new feature, don't auto-assign the feature to existing users. Communicate and work with the admins of the
customer org so they can determine who should have access to the new feature, and the timing of the rollout.

Advanced Features for Second-Generation Managed Packages

After you're comfortable with creating second-generation managed packages, learn about these advanced features to customize your
package development processes.

Package Ancestors for Second-Generation Managed Packages
Second-generation managed packaging (managed 2GP) offers a flexible package versioning model that lets you break your linear
versioning and abandon a package version you no longer want to build upon. We call these versioning decisions package ancestry.

Patch Versions for Second-Generation Managed Packages

Patch versions are a way to fix small issues with your second-generation managed package without introducing major feature
changes. Customers who are using an older version of your package can install a patch and not be forced to upgrade to a new major
package version.

Create Dependencies Between Second-Generation Managed Packages

To avoid monolithic package development practices, plan to develop smaller, modular packages that group similar functionality
and components. You can then define the dependencies between these packages. A package dependency is when metadata
contained in one package depends on metadata contained in another package. For example, defining dependencies allow you to
extend the functionality of a base package with components and metadata located in a separate package.

Considerations for Promoting Packages with Dependencies

If your company is developing a package that has a package dependency, ask yourself these questions before promoting (releasing)
a new package version.

Advanced Project Configuration Parameters for Second-Generation Managed Packages

As your managed 2GP package development becomes more complex, consider including these optional parameters in your
sfdx-project.json file.

Second-Generation Managed Packaging Keywords

A keyword is a variable that you can use to specify a package version number.

Target a Specific Release for Your Second-Generation Managed Packages During Salesforce Release Transitions

During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of
which Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your
Dev Hub org was on.

Use Branches in Second-Generation Managed Packaging

Development teams who use branches in their source control system (SCS), often build package versions based on the metadata
in a particular branch of code.

Specify Unpackaged Metadata or Apex Access for Package Version Creation Tests for Second-Generation Managed Packages

For scenarios where you require metadata that isn't part of your second-generation managed package, but is necessary for Apex
test runs, you can specify the path containing unpackaged metadatain the sfdx-project. jsonfile. The unpackaged metadata
isn't included in the package and isn't installed in subscriber orgs.

37

Second-Generation Managed Packages Package Ancestors for Second-Generation Managed
Packages

Package IDs and Aliases for Second-Generation Managed Packages

During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a
second-generation managed package or package version, Salesforce CLI creates a package alias based on the package name, and
stores that name in the packageAliases section of the sfdx-project.json file. When you run CLI commands or write scripts
to automate packaging workflows, it's often easier to reference the package alias, instead of the package ID or package version ID.

Avoid Namespace Collisions in Second-Generation Managed Packages
Namespaces impact the combination of package types that you can install in an org.

Remove Metadata Components from Second-Generation Managed Packages
Remove metadata components such as Apex classes that you no longer want in your second-generation managed packages.

Delete a Second-Generation Managed Package or Package Version
Usethe sf package version delete and sf package deletecommandstodelete packagesand package versions
that you no longer need.

Frequently Used Packaging Operations for Second-Generation Managed Packages

Transfer a Second-Generation Managed Package to a Different Dev Hub

You can transfer the ownership of a second-generation managed package (managed 2GP) from one Dev Hub org to another. These
transfers can occur either internally between two Dev Hub orgs your company owns, or you can transfer a package externally to
another Salesforce Partner or ISV. This change provides a way to sell a second-generation managed package to a different company.

Contact Salesforce Partner Support to Enable Specific Packaging Features
Certain packaging features can only be enabled by Salesforce Partner Support.

Package Ancestors for Second-Generation Managed Packages

Second-generation managed packaging (managed 2GP) offers a flexible package versioning model that lets you break your linear
versioning and abandon a package version you no longer want to build upon. We call these versioning decisions package ancestry.

@ Nofe: Only package versions that have been promoted to the managed-released state can be specified as a package ancestor.

When package versioning is linear, the package version number (formatted as major.minor.patch.build) always increments to an increasing
number. For example, looking at just the major and minor version numbers, linear versioning looks something like 1.0 1.1 1.2 2.0.
The next package version created in this linear versioning example must be higher than 2.0.

How Managed 2GP Package Versioning Affects Package Upgrades

Before we dig into package ancestry and how managed 2GP lets you break your linear versioning, let’s clarify how package versioning
impacts package upgrades. Let’s use our previous example of a package version history that looks like this, 1.0 1.1 1.2 2.0. A customer
could install version 1.0 and upgrade through each of the subsequent package versions, or they could skip versions and upgrade from
1.0t0 2.0. As long as they upgrade from a lower package version number to a higher package version number, the package upgrade
succeeds.

But what if during your development process you create a package version that you don't want to build upon? Managed 2GP lets you
break free from linear versioning and select a different package version to build upon.

Say your team creates version 1.0, then 1.1, then 1.2 and oops! 1.2 made a mess of 1.1. Not a problem. When you create a package
version, you specify which package version is the ancestor. So you abandon 1.2, and make 1.1 the ancestor of 1.3. And this process can
be repeated. For example, the illustration shows how to abandon 1.5, and build 1.6 off 1.4.

372

Second-Generation Managed Packages

Package Ancestors for Second-Generation Managed
Packages

e~

o .

o '
1

C 1.2

. Ry

A .

-

e
’ .
! '
1

15)
. S
~ L4
~.—

000

This more complex and tree-like versioning has the added benefit of making it possible for two or more development teams to do

parallel package development.

With Great Power Comes Great Responsibility

The flexibility to break from linear versioning is powerful. But remember that if abandoned versions like 1.2 and 1.5 are installed in
customer orgs, those customers no longer have an upgrade path. Packages can only upgrade along the ancestry line. For example, you

can upgrade from version 1.1 to 1.7, but not from version 1.5t0 1.7.

Patch Versions and Package Ancestry

You can't specify a patch version, such as 1.0.2, as a direct ancestor of a non-patch version. Instead, use the

keyword “ancestorVersion"

"HIGHEST”, or specify a non-patch version as the ancestor. Installed patch versions inherit

the upgrade path of the non-patch version with the same major and minor number. For example, patch version 1.0.3 has the same

upgrade path as 1.0.0.

Understanding Package Upgrades with Ancestry

Review how package ancestry impacts which package version upgrades are allowed.

View Package Ancestry

Use Salesforce CLI commands to quickly confirm your package’s ancestor, or to create a visualization of the package ancestry tree.

SEE ALSO:
Understanding Package Upgrades with Ancestry

View Package Ancestry

Namespace-Based Visibility for Apex Classes in Second-Generation Managed Packages

373

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_patch_version.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_view_ancestors.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm

Second-Generation Managed Packages

Understanding Package Upgrades with Ancestry

Package Ancestors for Second-Generation Managed
Packages

Review how package ancestry impacts which package version upgrades are allowed.

Refer to this table and the package ancestry tree to understand whether your subscribers can upgrade between these 2GP package

versions.

Example Package Ancestry Tree

1.0

1.1

= = =~
(o] ~ o

1.2 1.3
1.4

1.5

1.3.1

1.3.3

Upgrade From
1.1

132

1.3.1

Upgrade To
1.7

134

374

Will This Package Upgrade Succeed?

Yes

Yes. Both 1.3.2 and 1.3.4 are patch versions
within the same major and minor version.
You're allowed to upgrade between patch
versions that share the same major and
minor version.

Yes. 1.3.1is a patch version. Because
upgrading from 1.3 to 1.7 is allowed, you
can also upgrade from 1.3xto 1.7.

No. These two versions don't share an
ancestry path.

No. These two versions don't share an
ancestry path.

Second-Generation Managed Packages Package Ancestors for Second-Generation Managed

Packages
Upgrade From Upgrade To Will This Package Upgrade Succeed?
14 133 No. Downgrading an installed package isn't
allowed.
1.0 1.8 Yes

View Package Ancestry

Use Salesforce CLI commands to quickly confirm your package’s ancestor, or to create a visualization of the package ancestry tree.

View Package Ancestor Details in Salesforce CLI

Usethe sf package version report or sf package version list commandtoviewthenameand versionnumber
of the package ancestor.

Output from sf package version report command.

Package Version
Name Value
Name ver 8.2
Subscriber Package Version Id @4txxB8880840TBAMM
Package Id BHoxxBBABRA4G2YCAE
Version 8.2.8.1
Description
Branch
Tag
Released false
L S . T L | £ -
Ancestor B4TxxBBBBA84MNMALE
Ancestor Version 8.1.8.2
 ———— i} -
Code Coverage Met false

Output from sf package version list command.

Validation Skipped | Ancestor Ancestor Version

B4xx0000004M10AA) 0.7.0.1

Visualize Package Ancestry

Usethe displayancestry CLIcommand to create visualizations of your package or package version's ancestry tree. You can view
the visualization in Salesforce CLI or use the dot-code parameter to generate output that can be used in graph visualization software.

Use sf package version displayancestry to quickly visualize your package ancestry and understand the possible
package upgrade paths.

3 sfdx
8.1.
8.

force:package:version:displayancestry ——package AHoxx@BABAALVAODCAL
2
2
.2.
2
2
2

.1

RPN WD®

P = R

MDD WM e
P

375

Second-Generation Managed Packages Patch Versions for Second-Generation Managed Packages

% sfdx force:package:version:displayancestry ——package B4txx@B0RARLGKTLAAN
8.2.8.2 -» 8.1.8.1 (root)

a.

-m»—immwwwm

Tro D@8

ND D W
B

To generate dotcode output, specify sf package version displayancestry --dot-code.

Patch Versions for Second-Generation Managed Packages

Patch versions are a way to fix small issues with your second-generation managed package without introducing major feature changes.
Customers who are using an older version of your package can install a patch and not be forced to upgrade to a new major package
version.

Package versions follow a major.minor.patch.build number format. Any package version number that contains a non-zero patch number
is a patch version. For example, 1.1.2.5 is a patch version, but 1.1.0.4 isn't.

Patch versions are intended for small changes like a fixing a bug. You can't:

e Add package components.

e Delete existing package components.

e (Change the APl and dynamic Apex access controls.

e Deprecate any Apex code.

e Add new Apex class relationships, such as extends.

e Add Apex access modifiers, such as virtual or global.

e Add features, settings, package dependencies, or web services.

e (Change a component from protected to global.

e (Change the visibility of CustomSettings or CustomMetadataType from protected to public.

When creating a patch version, you must specify the package ancestor. The major and minor numbers of the patch version and the
package ancestor must match. And the specified package ancestor must be managed-released.

You can specify another patch version as the package ancestor of a patch version. But you can't specify a patch version as a direct ancestor
of a non-patch version. Instead, use the keyword “ancestorVersion" : "HIGHEST”,or specify a non-patch version as the
ancestor.

Installed patch versions inherit the upgrade path of the non-patch version with the same major and minor number. For example, patch
version 1.0.3 has the same upgrade path as 1.0.0. See Specify a Package Ancestor in the Project File for a Second-Generation Managed
Package for more information about how to specify a package ancestor.

When you create a patch version, the patch automatically inherits the features and settings defined in the package ancestor’s scratch
org definition file. To create a patch, follow the same steps as you do when you create a package version, and increment the patch
number.

376

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm

Second-Generation Managed Packages Create Dependencies Between Second-Generation Managed
Packages

@ Note: To enable patch versioning, log a case with Salesforce Partner Support on page 403 and request that patch versioning be
enabled in the org where you created the namespace for this package. Patch versioning is available to only to packages that have
passed AppExchange security review.

SEE ALSO:
Specify a Package Ancestor in the Project File for a Second-Generation Managed Package

Second-Generation Managed Packaging Keywords

Create Dependencies Between Second-Generation Managed Packages

To avoid monolithic package development practices, plan to develop smaller, modular packages that group similar functionality and
components. You can then define the dependencies between these packages. A package dependency is when metadata contained in
one package depends on metadata contained in another package. For example, defining dependencies allow you to extend the
functionality of a base package with components and metadata located in a separate package.

How to Specify a Managed 2GP Package Dependency
Nofe: To understand which combination of managed 2GP and managed 1GP package dependencies are supported, see Which
Package Types Can Your Package Depend On?.

To specify dependencies between managed packages associated with the same Dev Hub, use either the package version alias or a
combination of the package name and the version number.

Example 1:
"dependencies": [
{
"package": "MyPackageName@0.1.0.1"
}
]
Example 2:
"dependencies": [
{
"package": "MyPackageName",
"versionNumber": "1.0.0.RELEASED"

]
To specify a dependency on a managed package that isn't associated with your Dev Hub:

"dependencies": [

{

"package": "04txxx"
}
]

@ Nofe: You can use the RELEASED keyword for the version number to set the dependency.

To denote dependencies with package IDs instead of package aliases, use:

e The 0Ho ID if you specify the package ID along with the version number

377

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_ancestors.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm

Second-Generation Managed Packages Create Dependencies Between Second-Generation Managed
Packages

e The 04t IDif you specify only the package version ID

Specifying Multiple Package Dependencies
If your package has more than one dependency, provide a comma-separated list of packages in the order of installation.

For example, if your package depends on the package Expense Manager - Util, which in turn depends on the package External Apex
Library, the package dependencies are:

"dependencies": [
{
"package" : "External Apex Library - 1.0.0.4"
by
{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

]

If the package has multilevel dependencies, you can optionally setthe calculateTransitiveDependencies parameterto
true inthe sfdx-project.json file. When calculateTransitiveDependencies is true, you can specify the
package's direct dependencies only, and the indirect (transitive) dependencies are calculated for you.

Forexample,if calculateTransitiveDependencies isenabledand the package dependson the package Expense Manager
- Util, which in turn depends on the package External Apex Library, the package dependency is:

"dependencies": [
{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

Which Types of Dependencies Are Supported?

Circular Dependencies
Circular dependencies among packages aren't supported.

A circular dependency occurs when pkgC depends on pkgB, pkgB depends on pkgA, and pkgA depends on pkgC.

Multi-level Dependencies
Multi-level package dependencies are supported.

A multi-level dependency occurs when pkgC depends on pkgB, and pkgB depends on pkgA.

378

Second-Generation Managed Packages Create Dependencies Between Second-Generation Managed

Packages
PkgB

By default, you list all dependencies atall levelsinthe sfdx-project. json file. Tospecify only the package’s direct dependencies
and have the indirect (transitive) dependencies calculated for you, you can optionally set
calculateTransitiveDependencies t0 true inthe sfdx-project.json file.

When calculateTransitiveDependencies isnotenabled, list all dependenciesin the sfdx-project.jsonfile
in the package installation order. In this example, pkgA must be installed first, followed by pkgB, and then pkgC. The dependencies
specified for pkgC are both pkgA and pkgB.

{
"packageDirectories": [
{

"path": "pkgA-wsp",
"default": true,
"package": "pkgA",
"versionName": "ver 1.3",
"versionNumber": "1.3.0.NEXT",
"ancestorVersion": "1.1.0.RELEASED"

"path": "pkgB-wsp",
"default": false,
"package": "pkgB",
"versionName": "ver 2.3",
"versionNumber": "2.3.0.NEXT",
"ancestorVersion": "2.0.0.RELEASED",
"dependencies": [

{

"package": "pkgA@l.1l.0.RELEASED"

"path": "pkgC-wsp",
"default": false,
"package": "pkgC",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"dependencies": [

{

"package": "pkgA@l.l1l.0.RELEASED"
by

379

Second-Generation Managed Packages Create Dependencies Between Second-Generation Managed
Packages

"package": "pkgB@2.0.0.RELEASED"

}

When calculateTransitiveDependencies issetto true, specify each package’s direct dependencies only. In this
example, pkgC depends on pkgB, pkgB depends on pkgA, and pkgC's indirect dependency on pkgA is calculated for you.

{
"packageDirectories": [
{

"path": "pkgA-wsp",
"default": true,
"package": "pkgA",
"versionName": "ver 1.3",
"versionNumber": "1.3.0.NEXT",
"ancestorVersion": "1.1.0.RELEASED"

"path": "pkgB-wsp",
"default": false,
"package": "pkgB",
"versionName": "ver 2.3",
"versionNumber": "2.3.0.NEXT",
"ancestorVersion": "2.0.0.RELEASED",
"dependencies": [

{

"package": "pkgA@l.1l.0.RELEASED"

"path": "pkgC-wsp",
"default": false,
"package": "pkgC",

"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"calculateTransitiveDependencies": true,
"dependencies": [
{
"package": "pkgB@2.0.0.RELEASED"

380

Second-Generation Managed Packages Considerations for Promoting Packages with Dependencies

The specified package version number also impacts the installation of package dependencies. Before pkgB can be installed, pkgA
version 1.1 or higher must first be installed. If this condition isn't met, the installation of pkgB fails.

SEE ALSO:
Advanced Project Configuration Parameters for Second-Generation Managed Packages
Which Package Types Can Your Package Depend On?

Considerations for Promoting Packages with Dependencies

Considerations for Promoting Packages with Dependencies

If your company is developing a package that has a package dependency, ask yourself these questions before promoting (releasing) a
new package version.

Are you:

e Developing the base and extension package in parallel?

e Specifying skip validation when creating new package versions?

e Using the keywords LATEST or RELEASED when specifying the package dependency?

If you answered no to all these questions, your package doesn't have any tricky dependency scenarios and you can promote it when it's
ready. If you answered yes to any of these questions, keep reading.

Specifying Skip Validation
When you create a package version and specify skip validation, the version is created without validating dependencies, package ancestors,

or metadata.

If you develop your base package using skip validation, test your extension package using either a stable and previously promoted
version of the base package, or a non-skip validated base package version.

Most importantly, if you're developing a version of your base package and extension package in parallel, ensure that you:

e First promote the base package version.
e Then specify the promoted package version in the dependency section of your extension package using the keyword RELEASED.

e Finally, create the extension package version.

After testing the extension package version, you then promote it. This process ensures that the extension package version that you
promote to the released state has as its dependency the promoted base package version.

Using the Keyword LATEST or RELEASED

Akeyword is a variable that you can use to specify a package version number. The keyword LATEST maps to the most recently created
package version, which might not be the same as the promoted and released package version.

The keyword RELEASED maps to the promoted and released package version.

Forexample: If you create versions 1.0.0.1,1.0.0.2,and 1.0.0.3, and promote version 1.0.0.2, then 1.0.0.RELEASED = 1.0.0.2, but 1.0.0.LATEST
=1.003.

Example

Your company created a base package called PkgBase, and an extension package called PkgExtn.

381

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_adv_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_considerations_pkg_dependency.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm

Second-Generation Managed Packages Advanced Project Configuration Parameters for
Second-Generation Managed Packages
PkgBase is under active development, and the development team is creating versions that specify --skip-validation.

PkgExtn version 2.3 is under active development and references its dependency on PkgBase by using the following definition in the
sfdx-project.json.

{

"path": "pkg-extension",
"default": false,
"package": "PkgExtn",
"versionName": "v 2.3",
"versionDescription": "Winter 2025",
"versionNumber": "2.3.0.NEXT",
"dependencies": [
{
"package": "PkgBase",
"versionNumber": "1.1.0.LATEST"

by

Before promoting version 2.3 of PkgExtn, you must test it using the promoted version 1.1.0 of PkgBase. Update the PkgExtn dependency
section of your sfdx-project.json and change the dependency from 1.1.0.LATEST to 1.1.0.RELEASED. If the tests succeed, then
create a new version of PkgExtn and ensure it works as expected with the promoted base package version.

SEE ALSO:
Create and Update Versions of a Second-Generation Managed Package
Get Ready to Promote and Release a Second-Generation Managed Package Version
Create Dependencies Between Second-Generation Managed Packages

Second-Generation Managed Packaging Keywords

Advanced Project Configuration Parameters for Second-Generation
Managed Packages

As your managed 2GP package development becomes more complex, consider including these optional parameters in your
sfdx-project.json file.

Name Details
apexTestAccess Required? No
Default if Not Specified: None

Assign permission sets and permission set licenses to the user in
context when your Apex tests run at package version creation.

"apexTestAccess": {

"permissionSets": [
"Permission Set 1",
"Permission_ Set 2"

1,

"permissionSetLicenses": [
"SalesConsoleUser"

382

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_get_ready_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm

Second-Generation Managed Packages

Name

branch

calculateTransitiveDependencies

Advanced Project Configuration Parameters for
Second-Generation Managed Packages

Details

}

See Specify Unpackaged Metadata or Apex Access for Package
Version Creation Tests for Second-Generation Managed Packages

Required? No
Default if Not Specified: None

If your package has an associated branch, but your package
dependency is associated with a different branch, use this format.

"dependencies": [
{
"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": "featureC"
}
]

If your package has an associated branch, but your package
dependency doesn't have an associated branch, use this format.

"dependencies": [
{
"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": ""
}

]

See Use Branches in Second-Generation Managed Packaging

Required? No
Default if Not Specified: false

Enables the calculation of the package’s indirect dependencies. A
package can have multiple levels of dependencies, where pkgC
depends on pkgB, and pkgB depends on pkgA, for example. By
default, you list all of a package’s dependencies, including indirect
(transitive) dependencies. When
calculateTransitiveDependencies issetto true,
you specify a package’s direct dependencies only, and the indirect
dependencies are calculated for you. See the dependencies
parameter’s description for example configurations in the
sfdx-project.json file.

calculateTransitiveDependencies alsoenablesyou
to generate a hierarchical graph of a package version’s
dependencies. To generate the dependencies graph, run the
package version displaydependencies CLI

383

Second-Generation Managed Packages

Name

dependencies

Advanced Project Configuration Parameters for
Second-Generation Managed Packages

Details

command. See package version displaydependencies in the
Salesforce CLI Command Reference.

Required? No
Default if Not Specified: None
Specify the dependencies on other packages.

To specify dependencies for managed packages within the same
Dev Hub, use either the package version alias or a combination of
the package name and the version number.

"dependencies": [
{
"package": "MyPackageName@l.1.0.1"
}
]
"dependencies": [
{
"package": "MyPackageName",
"versionNumber": "1.1.0.RELEASED"

]

To specify dependencies for managed packages outside of the Dev
Hub use:

"dependencies": [
{
"package": "04txxx"
}
]

To set the dependency, you can use the keywords RELEASED or
LATEST for the version number.

To denote dependencies with package IDs instead of package
aliases, use:

e The OHo IDif you specify the package ID along with the
version number

e The 04t IDifyou specify only the package version ID

If the package has more than one dependency, provide a
comma-separated list of packages in the order of installation. For
example, if a package depends on the package Expense Manager
- Util, which in turn depends on the package External Apex Library,
the package dependencies are:

"dependencies": [
{
"package" : "External Apex Library -
1.0.0.4"

384

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_version_displaydependencies_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm

Second-Generation Managed Packages Advanced Project Configuration Parameters for
Second-Generation Managed Packages

Name Details

by

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

]

Ifyousetthe calculateTransitiveDependencies
parameterto true,you specify the package's direct dependencies
only, and the indirect (transitive) dependencies are calculated for
you.

Forexample, if calculateTransitiveDependencies
is enabled and the package depends on the package Expense
Manager - Util, which in turn depends on the package External
Apex Library, the package dependency is:

"dependencies": [
{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

]
See: Considerations for Promoting Packages with Dependencies

postinstallScript Required? No
Default if Not Specified: None

An Apex script that runs automatically in the subscriber org after
the managed package is installed or upgraded.

postinstallURL Required? No
Default if Not Specified: None

A URL to post-install instructions for subscribers.

releaseNotesUrl Required? No
Default if Not Specified: None

A URL to release notes.

scopeProfiles Required? No
Default if Not Specified: false

The scopeProfiles parameter s a child of packageDirectories. [f you
set scopeProfiles to true for a package directory, profile settings
from only the package directory being packaged are included, and
profile settings outside of that package directory are ignored.

385

Second-Generation Managed Packages Second-Generation Managed Packaging Keywords

Name Details

When you set scopeProfiles to false (the default value), the new
package version includes relevant pieces of profile settings in any
package directory defined in sfdx-project.json.

unpackagedMetadata Required? No
Default if Not Specified: None

See Specify Unpackaged Metadata or Apex Access for Package
Version Creation Tests for Second-Generation Managed Packages.

uninstallScript Required? No
Default if Not Specified: None

An Apex script to run automatically in the subscriber org before
the managed package is uninstalled.

SEE ALSO:

Project Configuration File for a Second-Generation Managed Package

Second-Generation Managed Packaging Keywords

A keyword is a variable that you can use to specify a package version number.

You can use keywords to automatically increment the value of the package build numbers, ancestor version numbers, set the package
dependency to the latest version, or the latest released and promoted version.

Use the Keyword Example

LATEST to specify the latest version of the package dependency

. "dependencies": [
when you create a package version.

{
"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

NEXT to increment the build number to the next available for the

pad@gevemmn "versionNumber": "1.2.0.NEXT"

If you don't use NEXT, and you also forget to update the version
number inyour sfdx-project.json file, the new package
version uses the same number as the previous package version.
Although we don't enforce uniqueness on package version
numbers, every package version is assigned a unique subscriber
package version ID (starts with 04t).

RELEASED to specify the latest promoted and released version of

. "dependencies":
the package dependency when you create a package version. P [

{
"package": "pkgB",

386

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

Second-Generation Managed Packages

Target a Specific Release for Your Second-Generation

Managed Packages During Salesforce Release Transitions

Use the Keyword Example

"versionNumber": "2.1.0.RELEASED"
}

HIGHEST to automatically set the package ancestor to the highest

. "packageDirectories": [
promoted and released package version number. P g

{

Use only with ancestor version or ancestor ID. "path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "HIGHEST"

by

NONE in the ancestor version or ancestor ID field. .)
"packageDirectories": [

Ancestry defines package upgrade paths. If the package ancestor |

is set to NONE, an existing customer can't upgrade tothat package = "path": "util",

version. "package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "NONE"

by

Target a Specific Release for Your Second-Generation Managed Packages
During Salesforce Release Transitions

During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of which
Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your Dev Hub
0rg was on.

To create a package version based on a preview or previous Salesforce release version, create a scratch org definition file that includes
either:

{

"release": "previous"
or

"release": "preview"

}

Inthe sfdx-project.json file setthe sourceApivVersion to correspond with the release version of the package version
you're creating. If you are targeting a previous release, any sourceApiVersion value below the current release is accepted.

Then when you create your package version, specify the scratch org definition file.
sf package version create --package pkgA --definition-file config/project-scratch-def.json

Preview start date is when sandbox instances are upgraded. Preview end date is when all instances are on the GA release.

387

Second-Generation Managed Packages Use Branches in Second-Generation Managed Packaging

Release Version Preview Start Date Preview End Date
Spring 26 January 11, 2026 February 21,2026
Summer 26 May 10, 2026 June 13,2026
Winter '27 August 30, 2026 October 10, 2026

Use Branches in Second-Generation Managed Packaging

Development teams who use branches in their source control system (SCS), often build package versions based on the metadata in a
particular branch of code.

To identify which branch in your SCS a package version is based on, tag your package version with a branch name using --branch
attribute in this Salesforce CLI command.

sf package version create --branch featureA
You can specify any alphanumeric value up to 240 characters as the branch name.

You can also specify the branch name in the package directories section of the sfdx-project.json file.

"packageDirectories": [
{
"path": "util",
"default": true,
"package": "pkgA",

"versionName": "Spring ‘21",
"versionNumber": "4.7.0.NEXT",
"branch": "featureA"

H

When you specify a branch, the package alias for that package version is automatically appended with the branch name. You can view
the package alias in the sfdx.project.json file.

"packageAliases": {
"pkgAQRl.0.0.4-featureA":"04tBOO00O0OOIBIEIAW" }

Keep in mind that version numbers increment within each branch, and not across branches. For example, you could have two or more
beta package versions with the version number 1.3.0.1.

Branch Name Package Version Alias
featureA pkgA@1.3.0-1-featureA
featureB pkgA@1.3.0-1-featureB
Not specified pkgA@1.3.0-1

Although more than one beta package version can have the same version number, there can be only one promoted and released
package version for a given major.minor.patch package version.

388

Second-Generation Managed Packages Specify Unpackaged Metadata or Apex Access for Package
Version Creation Tests for Second-Generation Managed
Packages

Package Dependencies and Branches

By default, your package can have dependencies on other packages in the same branch. For package dependencies based on packages
in other branches, explicitly set the branch attribute in the sfdx.project.json file.

To specify a package dependency Use this format

Using the branch attribute _
"dependencies": [

{
"package": "pkgB",

"versionNumber": "1.3.0.LATEST",
"branch": "featureC"
H
Using the most recent promoted and released version of package)
"dependencies": [

{
"package": "pkgB",
"versionNumber": "2.1.0.RELEASED"

If your package has an associated branch, but the dependent

. "dependencies":
package doesn't have a branch P [

{
"package": "pkgB",

"versionNumber": "1.3.0.LATEST",
"branch": ""
}]
Using the package alias)
"dependencies": [
{
"package": "pkgB@2.1l.0-1l-featureC"

H

Specify Unpackaged Metadata or Apex Access for Package Version
Creation Tests for Second-Generation Managed Packages

For scenarios where you require metadata that isn't part of your second-generation managed package, but is necessary for Apex test
runs, you can specify the path containing unpackaged metadata in the sfdx-project. json file. The unpackaged metadata isn't
included in the package and isn't installed in subscriber orgs.

Specify Unpackaged Metadata for Package Version Creation Tests

Specify the path to the unpackaged metadata in your sfdx-project.jsonfile.

In this example, metadata in the my-unpackaged-directory is available for test runs during the package version creation of
the TV_unl package.

"packageDirectories": [

{

389

Second-Generation Managed Packages Package IDs and Aliases for Second-Generation Managed
Packages

"path": "force-app",
"package": "TV unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"

s
]

The unpackagedMetadata attributeisintended for metadata thatisn't part of your package. You can'tinclude the same metadata
in both an unpackaged directory and a packaged directory.

Manage Apex Access for Package Version Creation Tests

Sometimes the Apex tests that you write require a user to have certain permission sets or permission set licenses. Use the
apexTestAccess setting to assign permission sets and permission set licenses to the user in whose context your Apex tests get
run at package version creation.

"packageDirectories": [
{
"path": "force-app",
"package": "TV unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {
"path": "my-unpackaged-directory"
}y
"apexTestAccess": {
"permissionSets": [
"Permission_Set_ 1",
"Permission_Set 2"
]I
"permissionSetLicenses": [
"SalesConsoleUser"

by
]

@ Note: To assign user licenses, use the runAs Method. User licenses can't be assigned in the sfdx-project. jsonfile.

Package IDs and Aliases for Second-Generation Managed Packages

During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a second-generation
managed package or package version, Salesforce CLI creates a package alias based on the package name, and stores that name in the
packageAliases section of the sfdx-project. json file. When you run CLI commands or write scripts to automate packaging
workflows, it's often easier to reference the package alias, instead of the package ID or package version ID.

390

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_testing_tools_runas.htm

Second-Generation Managed Packages Avoid Namespace Collisions in Second-Generation Managed
Packages

Package aliases are stored inthe sfdx-project. json file as name-value pairs, in which the name is the alias and the value is the
ID. You can modify package aliases for existing packages and package versions in the project file.

At the command line, you also see IDs for things like package members (a component in a package) and requests (likea sf package
version create request).

@ Nofe: As a shortcut, the documentation sometimes refers to an ID by its three-character prefix. For example, a package version
ID always starts with 04t.

Here are the most commonly used IDs.

ID Example Short ID Name Description

033J0000dAb27uxVRE Subscriber Package ID Use this ID when contacting Salesforce for
packaging or security review support. To
locate this ID for your package, run s £
package list --verbose against
the Dev Hub that owns the package.

04t6A0000004eytQAA Subscriber Package Version 1D Use this ID to install a package version.
Returned by sf package version
Create.

OHoxx00000000CqCAl Package ID Use this ID on the command line to create

a package version. Or enter it into the
sfdx-project.json fileand usethe
directory name. Generated by sf
package create

08cxx00000000BEAAY Version Creation Request ID Use this ID to view the status and monitor
progress for a specific request to create a
package version such as sf package
version create report

Avoid Namespace Collisions in Second-Generation Managed Packages
Namespaces impact the combination of package types that you can install in an org.

@ Important: When sharing a namespace, be intentional about managing component names across packages within that namespace.
Ensure that packages associated with the same namespace don't include components with the same APl name. If two packages
include a component with the same APl name, you can't install these packages into the same org.

To understand how namespaces affect the types of packages you can install in a namespaced or no-namespace org, review this table.

Installation Org No-namespace Namespaced Second-generation First-generation
Unlocked Package Unlocked Package Managed Package Managed Package
(2GP) (1GP)
Org with a namespace Fail. Pass. Pass (scratch orgs). Pass.
Forexample, a 1GP You can'tinstall a Regardless of whether Regardless of whether If the namespace of the

packaging org, 1GP patch ' no-namespace unlocked = the namespace matches = the namespace matches = 1GP is different from the
org, Developer Edition package in anorgwitha oris different fromthe oris different fromthe ~ namespace of the org,
org with namespace,ora namespace.

391

Second-Generation Managed Packages

Installation Org No-namespace

Unlocked Package

scratch org with

namespace
Org without a Pass.
namespace You can install one or

many no-namespace
unlocked packages.

Avoid Namespace Collisions in Second-Generation Managed

Namespaced
Unlocked Package

0org’s namespace, you can
install one or many
namespaced unlocked
packages.

Pass.

You can install one or
many namespaced
unlocked packages.

Second-generation
Managed Package
(2GP)

scratch org’s namespace,
you can install one or
many 2GP packages.

Fail (1GP packaging and
patch orgs).

To prevent 1GP packages
from depending on 2GP
packages, we block the
installation of 2GP
packages ina 1GP
packaging or patch org.
We also block the
installation of 2GP
packages in Developer
Edition (DE) orgs that
have an associated
namespace, unless it's a
DE scratch org.

Pass.

You can install one or
many 2GP packages.

Packages

First-generation
Managed Package
(1GP)

you can install one or
many packages.

Fail.

If the namespace of the
1GP is the same as the
namespace of the org,
you can'tinstall the 1GP
into the org.

Pass.

You can install one or
many 1GP packages.

To understand how namespaces affect the combination of packages that can be installed into one org, review this table.

Second-generation
Managed Package (2GP)
with Namespace Y

If the TGP and 2GP use unique

Namespace and Package Unlocked Package with

Type Namespace Y

First-generation Managed Pass. Pass.
Package (1GP) with Ifthe 1GP and unlocked package
namespace X

First-generation Managed
Package (1GP) with
namespace Y

use unique namespaces, you
caninstall them in the same org.

Fail.

Ifthe 1GP and unlocked package
share a namespace, you can't
install them in the same org.

namespaces, you can install
them in the same org.

Fail.

If the TGP and 2GP share a
namespace, you can't install
them in the same org.

392

First-generation Managed
Package (1GP) with
Namespace Y

Pass.

If each 1GP uses a unique
namespace, you can install
multiple 1GP packages in the
same org.

Fail.

If the 1GP packages share a
namespace, you can't install
them in the same org.

Second-Generation Managed Packages Remove Metadata Components from Second-Generation
Managed Packages

Namespace and Package Unlocked Package with Second-generation First-generation Managed
Type Namespace Y Managed Package (2GP) Package (1GP) with
with Namespace Y Namespace Y
Second-generation Managed Pass. Pass. Pass.
Package (2GP) with You caninstall a 2GP and a You can install multiple 2GP If the 1GP and 2GP use unique
namespace X namespaced unlocked package = packages with unique namespaces, you can install
in the same org. The packages namespaces, or the same them in the same org.

can share a namespace or use namespace.
unique namespaces.

Second-generation Managed Pass. Pass. Fail.

Package (2GP) with You caninstall a 2GP and a You can install multiple 2GP If the 1GP and 2GP share a

namespace Y namespaced unlocked package packages with the same namespace, you can't install
in the same org. The packages namespace in the same org. them in the same org.

cansharea namespace or use
unique namespaces.

SEE ALSO:
Namespaces for Second-Generation Managed Packages
Create and Register Your Namespace for Second-Generation Managed Packages

Link a Namespace to a Dev Hub Org

Remove Metadata Components from Second-Generation Managed
Packages

Remove metadata components such as Apex classes that you no longer want in your second-generation managed packages.

Impact of Component Removal in Subscriber Orgs

During a package upgrade, only certain component types are hard deleted and removed from the subscriber org. Most metadata
components that were removed from a package version remain in the subscriber org after package upgrade and are marked as deprecated.
When a package is upgraded in the subscriber org, the Setup Audit Trail logs which components were removed. Admins of a subscriber
org can delete deprecated metadata. If the subscriber uninstalls the package, deprecated metadata that was previously associated with
the package is deleted.

You can remove these metadata components from second-generation managed packages.

Metadata Component Upon Package Upgrade, the Metadata Component is
Analytic Snapshot Marked as deprecated

Apex Class (excluding global Apex classes) Hard deleted

Apex Trigger Hard deleted

Aura Component Marked as deprecated

393

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_namespaces.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm

Second-Generation Managed Packages Remove Metadata Components from Second-Generation

Managed Packages

Metadata Component Upon Package Upgrade, the Metadata Component is
Compact Layout Marked as deprecated
Custom Application Marked as deprecated
Custom Application Component Marked as deprecated
Custom Field Marked as deprecated
Custom Labels Marked as deprecated

Custom Metadata Type Records

Marked as deprecated, if visible to the subscriber org; otherwise,

hard deleted.
Custom Object Marked as deprecated
Custom Permission Marked as deprecated
Custom Tab Marked as deprecated
Dashboard Marked as deprecated
Dashboard Folder Marked as deprecated
Document Marked as deprecated
External Auth Identity Provider Marked as deprecated
External Client App Header Hard deleted
External Client App Settings Hard deleted
External Credential Marked as deprecated
External Services Marked as deprecated
Field Set Marked as deprecated
Flow Marked as deprecated
Lightning Page Marked as deprecated
Lightning Web Component Marked as deprecated
List View Marked as deprecated
Named Credential Marked as deprecated
Page Layout Marked as deprecated
Permission Set Marked as deprecated
Platform Event Channel Hard deleted
Platform Event Channel Member Hard deleted
Profile Marked as deprecated
Quick Action Marked as deprecated

394

Second-Generation Managed Packages Remove Metadata Components from Second-Generation
Managed Packages

Metadata Component Upon Package Upgrade, the Metadata Component is
Record Type Marked as deprecated
Remote Site Setting Marked as deprecated
Report Marked as deprecated
Report Folder Marked as deprecated
Report Type Marked as deprecated
Sharing Reason Marked as deprecated
Static Resource Marked as deprecated
Validation Rule Marked as deprecated
Visualforce Component (excluding global components) Hard deleted
Visualforce Page Marked as deprecated
WeblLink (Custom Button or Custom Link) Marked as deprecated

Workflow Email Alert, Workflow Field Update, Workflow Outbound = Marked as deprecated
Message, Workflow Rule, Workflow Task

How to Remove Metadata Components

To request access to this feature, log a case with Salesforce Partner Support on page 403.

After your request is approved, remove the metadata component’s source file from your Salesforce DX project, and create a package
version. Test the new package version to ensure it's working properly without the removed metadata.

Before You Remove Metadata Components from Second-Generation Managed
Packages

To ensure you can successfully remove metadata components from a second-generation managed package, keep these details in mind.
e Request access to the feature, if you haven't already.
e Familiarize yourself with the list of metadata components that can be removed.

e Ensure that there aren't dependencies on the metadata you plan to remove. If any component in the package depends on or
references the component you're removing, the package version creation operation fails. After you remove a component, you can't
access any customizations that depend on the removed component.

Remove Metadata Dependencies Within a Package

If there are dependencies to the metadata component you plan to remove, resolve the dependency before removing the metadata
component.

For example, before deleting a custom field that is referenced in a page layout, edit the page layout and remove the reference to the
custom field. Then remove the custom field from your source file, and create a package version.

395

Second-Generation Managed Packages Remove Metadata Components from Second-Generation
Managed Packages

Some scenarios require a two-step approach to component removal. For example, let's say you plan to remove a Visualforce page that
contains a Visualforce component and replace it with a Lightning page that contains a Lightning component. Removing both the
Visualforce page and Visualforce component in a single upgrade could cause issues for your subscribers. These issues occur because
Visualforce components are deleted, and Visualforce pages are deprecated during package upgrade.

To avoid issues for your subscribers in this example, remove the reference to the Visualforce component from the Visualforce page,
create a package version, and push the upgrade. Then remove the Visualforce page from your package version, and push this upgrade
to subscribers.

Remove Dependencies Located in Other Packages

Before you remove a metadata component, first remove all references to the metadata, including references in other packages that
depend on that metadata component. For example, if you're removing a public Apex class, ensure your other packages aren't referencing
that class using the Apex @namespaceAccessible annotation.

In this section, PackageA refers to the package in which you plan to remove a metadata component. And PackageB is any package that
depends on the metadata you're removing from PackageA. If you have references to the metadata component or Apex class in PackageB,
follow these steps:

1. Remove the reference to the metadata component from PackageB.

2. Create a version of PackageB.

3. Push the new version of PackageB to your subscribers.

4. Repeat these steps if any other packages include a reference to the metadata you plan to remove from PackageA.

After you've removed all references to the metadata component, remove the metadata component’s source file from the Salesforce DX
project of PackageA. Then create a version of PackageA. Before pushing this upgrade to subscribers, test the new package version to
ensure it's working properly.

What to Consider Before Removing Metadata Components

In most cases, removing metadata components from a second-generation managed package marks the component as deprecated
and doesn't hard delete the component from the subscriber org. This approach to component removal ensures that package
upgrades don't disrupt a subscriber’s org.

What to Consider Before Removing Metadata Components

In most cases, removing metadata components from a second-generation managed package marks the component as deprecated and
doesn’t hard delete the component from the subscriber org. This approach to component removal ensures that package upgrades don't
disrupt a subscriber’s org.

But there's a scenario where a deprecated component can lead to a package upgrade issue. This issue only pertains to deprecated
components, and no action is needed for hard deleted components.

To see which components are deprecated and which are deleted, see Remove Metadata Components from Second-Generation Managed
Packages.

Here's an example scenario of how a deprecated component leads to a package upgrade issue.
1. Subscriber A installs version 1.0 of a managed package.
2. A package developer removes project__c custom object, and creates package version 2.0.

3. Subscriber A upgrades from version 1.0 to version 2.0, and project__c is now marked as deprecated in their org. Any integration
with project__c that the subscriber created continues to work.

4. The package developer continues to refine their app, and then releases several new versions.

396

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Second-Generation Managed Packages Delete a Second-Generation Managed Package or Package
Version
5. During development of version 5.0, the package developer adds a component named project__c to the package.
6. A new subscriber, Subscriber B, successfully installs version 5.0.

7. Subscriber A tries to upgrade to version 5.0, but the installation fails because the admin at Subscriber A never deleted project__c
from their org.

8. The package developer has two paths to unblock Subscriber A.
a. Ask Subscriber A to remove all references to project__c, and then delete the component from their org.

b. Remove project__c from the package and release a new package version.

To prevent this kind of API name collisions in your packages, here are some best practices.

Communicate within Your Team and Company
Before you remove any metadata, assess the impact to the package and to any packages that depend on that package. If you remove
metadata in one package, that action has the potential to break the functionality of a package that depends on the removed metadata.
Communicate within your team and company so that other developers are aware of this change.

Document Package Changes for Future Developers
If you internally document the major changes that your package undergoes, including the name of metadata components that were
removed, you can help alert future package developers about previously used APl names.

Communicate Changes with Your Subscribers
Educate your customers about the potential impact from any components you remove. In the Release Notes for your upgraded
package, list all components you've removed and notify customers of any necessary actions.

Delete a Second-Generation Managed Package or Package Version

Usethe sf package version delete and sf package delete commandsto delete packagesand package versions
that you no longer need.

To delete a package or package version, users need the Delete Second-Generation Packages user permission. Before you delete a package,
first delete all associated package versions.

Package Type Can | delete beta packages and Can | delete released packages and
package versions? package versions?

Second-Generation Managed Packages Yes No

Unlocked Packages Yes Yes

Considerations for Deleting a Package or Package Version
e Deletion is permanent.
e Attempts to install a deleted package version will fail.

e Before deleting, ensure that the package or package version isn't referenced as a dependency.

397

Second-Generation Managed Packages Frequently Used Packaging Operations for

Examples:

$ sf package
$ sf package
$ sf package

$ sf package

Second-Generation Managed Packages

delete -p "Your Package Alias"
delete -p OHo...
version delete -p "Your Package Version Alias"

version delete -p 04t...

These CLI commands can't be used with first-generation managed packages or package versions. To delete a first-generation managed
package, see View Package Details in the First-Generation Managed Packaging Developer Guide.

Frequently Used Packaging Operations for Second-Generation Managed

Packages

For a complete list of Salesforce CLI packaging commands, see: Salesforce Command Line Reference Guide.

Salesforce CLI command What it Does

sf package create Creates a package. When you create a package, you specify its

package type and name, among other things.

sf package version create Creates a package version
sf package install Installs a package version in a scratch, sandbox, or production org.
sf package uninstall Removes a package that has been installed in an org. This process

deletes the metadata and data associated with the package.

sf package version promote Changes the state of the package version from beta to the

managed-released state.

sf org create scratch Creates a scratch org.

sf org open

Opens an org in the browser.

Transfer a Second-Generation Managed Package to a Different Dev Hub

You can transfer the ownership of a second-generation managed package (managed 2GP) from one Dev Hub org to another. These
transfers can occur either internally between two Dev Hub orgs your company owns, or you can transfer a package externally to another
Salesforce Partner or ISV. This change provides a way to sell a second-generation managed package to a different company.

@ Note: Package transfers are only available for second-generation managed packages that have passed AppExchange security
review. If your managed 2GP package hasn't passed security review, consider creating a new managed 2GP using your preferred

Dev Hub.

The package transfer feature is also available to unlocked packages. Dev Hub orgs aren't used with first-generation managed
packages or unmanaged packages, so this feature doesn't apply to those package types.

398

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_viewing_package_details.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm

Second-Generation Managed Packages Transfer a Second-Generation Managed Package to a
Different Dev Hub

Request a Package Transfer to a Different Dev Hub
Start by logging a case with Salesforce Customer Support, and provide the following details.
Subject: Managed 2GP Package Transfer to a different Dev Hub
Description:
In the description, list:
e Subscriber package ID of the package you're transferring. This ID starts with 033.
To verify the 033 ID of your package, runthe sf package 1list commandwiththe --verbose flagon the source Dev Hub

org.

e Dev Hub org ID for the source org.
e Dev Hub org ID for the destination org. The destination Dev Hub org can't be a Developer Edition org or a trial org.
e Namespace of the package being transferred.

e Details about whether this package transfer is internal or external.

An external transfer occurs when you transfer a package to a Salesforce Partner or ISV who doesn’t work at your company.

e Acknowledge thatyou've reviewed and completed the steps listedinthe Prepare to Transfer Your Package section,
including linking your namespace to the destination Dev Hub, and clearing your Apex Error Notification User.

If you're transferring more than one package, file a separate case for each package.

After your case has been reviewed and approved, someone from Salesforce Customer Support will contact you to arrange a time to
initiate the package transfer.

@ Nofte: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren't permitted.

Package Transfers to External Customers

If you're transferring a package to another Salesforce Partner or ISV, provide:
e The source code and config settings needed to properly set up their Salesforce DX environment.
All config settings needed to properly set up the sfdx-project.json file,and a complete list of features and settings that

must be specified in their scratch org definition file.

e The login credentials to the namespace org. This information is required to link the package namespace to their Dev Hub org.

Prepare to Transfer Your Package

Here’s how you can help ensure a smooth package transfer.

e Keep the namespace linked to the source Dev Hub. Before the package transfer, the namespace must be linked to both the source
and destination Dev Hub orgs.

e Before the package transfer process is initiated, ensure all push upgrades or package version creation processes have completed.
e Delete package versions that are no longer needed.

e If specified, clear the package’s Error Notification User using the sf package update
—--error-notification-username= command. If you're transferring the package to a Dev Hub org that you own, you
can set the Error Notification User to a user in the destination Dev Hub after the package transfer is complete. Note: Specifying
--—error-notification-username= with no value after the equals sign clears any previously set username.

399

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm

Second-Generation Managed Packages Transfer a Second-Generation Managed Package to a
Different Dev Hub

During the Package Transfer Process

All push upgrades or package version creation processes must be complete before the package transfer process is initiated. Salesforce
Customer Support will alert you about the date the package transfer will occur.

After the Package Transfer Is Complete
Run sf package list and verify that the package is no longer associated with your Dev Hub.

If the transferred package is still visible in your CLI output, and the recipient of the package transfer indicates the package transfer
succeeded, log a case with Salesforce Customer Support to remove the association of the package with your Dev Hub org.

Next, unpublish your existing AppExchange listing for this package.

Impact of Package Transfers on Package IDs

ID Type ID starts with After package transfer is complete
Subscriber Package ID 033 This ID remains the same.

Subscriber Package Version ID 04t This ID remains the same.

Package ID OHo The transferred package receives a new and

unique package ID.

Update Your Package Project File

Before you create new packages or package versions on your Dev Hub, update your sfdx-project.json file and remove all
references to the transferred package from the package directory and package alias sections.

If you have packages in your Dev Hub that depend on the package that you're transferring, update the package dependency section in
your sfdx-project.json file to explicitly specify the 04t ID of the transferred package that you depend on.

For example, if you transferred pkgA to a different Dev Hub, and your s fdx-project.json filelists the package dependency like
this.

"dependencies": [
{
"package": "pkgA"
"versionNumber": "2.0.0.LATEST"

]
Update the dependency to either specify the 04t ID of pkgA.

"dependencies": [
{
"package": "04tBO0O0O0OOOOUzHS5IAK"
}

400

Second-Generation Managed Packages Transfer a Second-Generation Managed Package to a
Different Dev Hub

Or specify the dependency using a package alias.

"dependencies": [
{
"package": "pkgA2.0.0-1"
}
"packageAliases": {
"pkgA2.0.0-1": "04tBO0O0000O0UZzH5IAK"

}

What Package History Is Transferred?

When a package is transferred, all package versions, and all lines of ancestry are transferred. Customer upgrade paths aren't affected.

Regardless of whether the package transfer occurred between two Dev Hub orgs you own, or the package was transferred externally to
a Dev Hub you don't own, we transfer the package version history.

We transfer:

e Package name, namespace, type, and IDs. One exception is that the transferred package gets a new OHo ID.

e Package version info. This includes all the info that is typically displayed when you run the sf package version list or
sf package version report command.

We don't transfer:

e Push upgrade history.
e Package version create requests.

e The username of the Dev Hub user who received Apex and other types of error notifications. This optional user is set using

-—error-notification-username.

e Deleted package versions.

Take Ownership of a Second-Generation Managed Package Transferred from a Different Dev Hub
You can take ownership of a second-generation managed package that is transferred from another Dev Hug org.

Take Ownership of a Second-Generation Managed Package Transferred from a
Different Dev Hub
You can take ownership of a second-generation managed package that is transferred from another Dev Hug org.

To initiate a package transfer from your Dev Hub org, see Transfer a Second-Generation Managed Package to a Different Dev Hub.

@ Note: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren't permitted.

Transfers from External Customers

If you're receiving the package from another Salesforce Partner or ISV, make sure they provide the source code for the package, and an
outline for the config settings needed to properly set up your Salesforce DX environment.

Request all the configuration settings required to properly set up the sfdx-project.json file,and a complete list of features and
settings that must be specified in your scratch org definition file.

401

Second-Generation Managed Packages Transfer a Second-Generation Managed Package to a
Different Dev Hub

Also ensure that the company who is transferring the ownership of the package provides the login credentials for the namespace org
they used. This information is needed to link the package namespace to your Dev Hub org.

Receive a Package Transfer

For internal transfers, skip this step. Only log the case described in Transfer a Second-Generation Managed Package to a Different Dev
Hub .

If you're receiving a package from a different Salesforce Partner or ISV, start by linking the namespace of the package you are receiving
to your Dev Hub org. See Link a Namespace to a Dev Hub Org in the Salesforce DX Developer Guide.

Next, log a case with Salesforce Customer Support, and provide the:

e Dev Hub org ID for the source org.
e Subscriber package ID of the package you're receiving. This ID begins with 033.
e Dev Hub org ID for the destination org.

After the Package Transfer Is Complete
After the package transfer is complete, you'll be notified by Salesforce Customer Support.

To verify that the transferred package is associated with your Dev Hub, run sf package list.

Impact of Package Transfers on Package IDs

ID Type ID starts with After package transfer is complete
Subscriber Package ID 033 This ID remains the same.

Subscriber Package Version ID 04t This ID remains the same.

Package ID OHo The transferred package receives a new and

unique package ID.

Update Your Package Project File
Open and review the contents of the sfdx-project.json file that you received from the original package owner.

Open and review the contents of any scratch org definition files that you received from the original package owner. Definition files help
in setting up your scratch orgs during development. Use the ——definition-£ile parameter to specify a definition file when you
create a new package version.

If the package directories section lists additional packages that weren't transferred to you, remove those references from the
sfdx-project.json file.

Next, review the package alias section of the sfdx-project.json file,and remove any references to package aliases that aren’t
associated with the package that was transferred.

Update the package alias of the transferred package to specify its OHo package ID.

402

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

Second-Generation Managed Packages Contact Salesforce Partner Support to Enable Specific
Packaging Features

Before You Create a New Package Version

Similar to how you go about creating any new package versions, you must update the sfdx-project.json file, and update the
version number and ancestor ID. We recommend you set the ancestor ID to HIGHEST.

To designate a Dev Hub user to receive email notifications for unhandled Apex exceptions, and install, upgrade, or uninstall failures
associated with your package, runthe sf package update command,andusethe ——error-notification-username
parameter.

What Package History Is Transferred?

Regardless of whether the package transfer occurred between two Dev Hub orgs you own, or the package was transferred externally to
a Dev Hub you don't own, we transfer the package version history.

We transfer:

e Package name, namespace, type, and IDs. One exception is that the transferred package gets a new OHo ID.

e Package version info. This includes all the info that is typically displayed when you run the s package version list or
sf package version report command.

We don't transfer:

Push upgrade history.

e Package version create requests.

The username of the Dev Hub user who received Apex and other types of error notifications.

Deleted package versions.

Next Steps

You've verified that the package is associated with your Dev Hub, you've updated your sfdx-project.json file, and perhaps
you've even created a new package version. Congrats! There’s still a couple more items of business left to complete.

1. Register the transferred package with your License Management Org.
If this is an external transfer, log a case with Salesforce Customer Support and request provide both your LMO org ID, and the 033

package ID.

2. Publish Your Package on AppExchange

Contact Salesforce Partner Support to Enable Specific Packaging Features

Certain packaging features can only be enabled by Salesforce Partner Support.
To log a case for Salesforce Partner Support, follow these steps.

1. Log in to the Salesforce Partner Community.

2. (lick the question icon and then click Log a Case for Help.

3. Complete the Subject and Description fields

a. Afteryou enter a Description, a section called Pick a different product & topic will display.

4. For topic, select AppExchange & Managed Packages.

For Feature Management App enablement, select ISV Technology Request.

5. Provide any other required details, and then click Create Case.

403

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_publish_appexchange.htm
https://partners.salesforce.com/

Second-Generation Managed Packages Best Practices for Second-Generation Managed Packages

Best Practices for Second-Generation Managed Packages

We suggest that you follow these best practices when working with second-generation managed packages.

e We recommend that you work with only one Dev Hub, and enable Dev Hub in your partner business org.

e The Dev Hub org against which you runthe sf package create command becomes the owner of the package. If the Dev
Hub org associated with a package expires or is deleted, its packages no longer work.

® Includethe --tag optionwhenyouusethe sf package version create and sf package version update
commands. This option helps you keep your version control system tags in sync with specific package versions.

e (Create user-friendly aliases for packaging IDs, and include those aliases in your Salesforce DX project file and when running CLI
packaging commands. See: Package IDs and Aliases for Second-Generation Managed Packages.

e When adding components to your package, check the product documentation for that component to ensure that the product is
generally available (GA). If you choose to package a non-GA component, it may have limitations and isn't guaranteed to GA. This
scenario is particularly risky if the component can't be removed from a managed package.

Manage Licenses for Managed Packages

Use the License Management App (LMA) to manage leads and licenses for your AppExchange EDITIONS
solutions. By integrating the LMA into your sales and marketing processes, you can better engage
with prospects, retain existing customers, and grow your ISV business. The LMA is a managed Available in: both Salesforce
package that is installed in all partner business orgs (PBO) and includes custom objects that track Classic and Lightning
details on packages, package versions, and licenses. Experience

Available in: Enterprise,

Performance, and

Configure the LMA System Admin profile Get Started with the License Unlimited Editions
Management App on page 405

| need to... Permissions For details, see...

Bill subscribers or monitor Object Permissions: Read Lead and License Records in
license expiration the LMA
Convert trial subscriptionsinto Object Permissions: Edit Modify a License Record

paying customers

Customize the LMO Object Permissions: Edit Extend the LMA
Provision licenses to a Object Permissions: Edit Modify a License Record
subscriber
Support subscribers with Various permissions (see Assign | Troubleshoot Subscriber Issues
technical issues Permissions to the Subscriber

Support Console on page 408

for details)

@ Notfe: The LMA is available only in English.

The LMA is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility requirements, visit
https://partners.salesforce.com.

404

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_terms_relationships.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_terms_relationships.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_extend.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_subscriber_support_overview.htm
https://partners.salesforce.com

Second-Generation Managed Packages Get Started with the License Management App

Get Started with the License Management App
To start managing leads and licenses with the License Management App (LMA), complete these installation and configuration steps.

Lead and License Records in the License Management App
Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.

Modify a License Record
You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

Refresh Licenses for a Managed Package

To sync all license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also
resolve discrepancies between the number of licenses in a subscriber's org and the number displayed in the License Management
App (LMA). Refreshing is required when you move the LMA to a different org.

Extending the License Management App

The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to
manage leads and licenses, many partners also integrate it into their existing business processes.

Move the License Management App to Another Salesforce Org

You can move an LMA to a different org, but your package and license records don't automatically move with it. You must manually
relink your packages and refresh the licenses.

Troubleshoot the License Management App

If you're experiencing issues with the License Management App, review these troubleshooting tips.

Best Practices for the License Management App
Follow these best practices when you use the License Management App (LMA).

Troubleshoot Subscriber Issues

Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you're granted access, you can log in to the subscriber's org and view their
configuration and data to troubleshoot and resolve issues.

Get Started with the License Management App

To start managing leads and licenses with the License Management App (LMA), complete these EDITIONS
installation and configuration steps.

Available in: both Salesforce

Install the License Management App Classic and Lightning
The License Management App (LMA) is a managed package that is installed in all partner Experience

business orgs. The org that the LMA is installed in is called the License Management Org (LMO). Available in: Enterprise,
Associate a Package with the License Management App Performance, and

To receive lead and license records for your package, you connect your License Management Unlimited Editions

Org (LMOQ), your package, and the Salesforce Partner Console. Your LMQO is the Salesforce org
where the License Management App (LMA) is installed.
Configure Permissions for the License Management App

Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set
to assign user permissions.

405

Second-Generation Managed Packages Get Started with the License Management App

Install the License Management App

The License Management App (LMA) is a managed package that is installed in all partner business USER PERMISSIONS
orgs. The org that the LMA is installed in is called the License Management Org (LMO).

We strongly recommend that you use your partner business org (PBO) as your LMO. However, you To install packages:
can choose to install the LMA in another production org. Consider installing the LMA in an org that ¢ Eovinlood AppExchange
ackages

your company is already using to manage sales, billing, and marketing.

Commercial use of the LMA is prohibited in Developer and Partner Developer Edition orgs. Installing
the LMA in a Developer Edition org is allowed only if you're building integrations with the LMA and need an environment only for
development and testing purposes. You can install the LMA in Enterprise, Unlimited, or Performance Edition production orgs.

It's not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed in the same org as the LMA. If the org
in which you plan to install the LMA has either Slack or the DLRS package installed, uninstall them before you install the LMA. Alternatively,
install the LMA in a different org.

@ Nofe: To confirm whether your PBO already has the LMA installed, skip to step 4.

1. Toinstall the LMA in an org other than your PBO, log a case in the Partner Community. After we review the case, you receive an
email with an installation URL.

2. Login to the org where you want to install the LMA, and then go to the installation URL included in the email.

3. Choose which users can access the LMA, and then click Install.

4. Toconfirmthatthe LMAsinstalled, open the App Launcher. If the installation was successful, the License Management App appears
in the list of available apps.

Associate a Package with the License Management App

To receive lead and license records for your package, you connect your License Management Org USER PERMISSIONS
(LMO), your package, and the Salesforce Partner Console. Your LMO is the Salesforce org where the
License Management App (LMA) is installed. To manage licenses in the
Partner Community:
e Manage Listings

A single LMO can manage multiple 1GP and 2GP packages, but a package can be associated with
only one LMO.

1. Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the Partner Console.
a. Log in to the Partner Community, and select the Publishing tab.
b. Click Technologies > Orgs.
¢. Click Connect Technology, and then click Org.
d. Click Connect Org.

e. Logintothe org. Provide a username and a password with a security token appended. For example, if the password is ABC and
the token is 123, enter ABC123. Don't remember your token? Reset your security token.

For 1GP packages, enter the login credentials for the packaging org. Repeat this step for all your 1GP packages.

For 2GP packages, enter the login credentials for the Dev Hub org. When you connect the Dev Hub org, all the 2GP packages
owned by the Dev Hub org are linked to the Partner Console.

2. Select the Solutions tab.
3. Locate the package you want to register with the LMO. To register each package you own, repeat this step.

a. Click the down arrow to expand the list of versions for your package.

406

https://partners.salesforce.com
https://partners.salesforce.com/
https://help.salesforce.com/articleView?id=user_security_token.htm&type=5&language=en_US

Second-Generation Managed Packages Get Started with the License Management App

b. Click Register Package for the package version you want to register.

Package versions created after linking to your LMO inherit the association.

¢. Toregister the package, log in to your LMO.

4. Set the default behavior you want for your package license, and then click Save.

After the package is registered, a license is created when customers install it. You can view which packages are registered in the LMA.

Note: Beta package versions don't display in the LMA. Only managed-released package versions (1GP) and promoted package
versions (2GP) are visible in the LMA. Unlocked packages aren't supported.

SEE ALSO:

Salesforce Help: Reset Your Security Token

Configure Permissions for the License Management App

Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set to
assign user permissions.

Ensure that you:

e Install the LMA.

e Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the AppExchange Partner Console.
e Associate your package with the LMA.

1. Set object permissions for the license, package, and package version custom objects.

Custom Obiject Object Permissions

License To view license records:
Assign READ permissions
To modify license records:

Assign READ and EDIT permissions

Package To view package records:
Assign READ permissions
To modify package records:

Assign READ and EDIT permissions

Package Version To view package version records:
Assign READ permissions

We recommend leaving all package version records as read-only.

2. Setfield-level security in user profiles or permission sets.

407

https://help.salesforce.com/articleView?id=user_security_token.htm&type=5&language=en_US

Second-Generation Managed Packages Get Started with the License Management App

Custom Object Field-Level Permissions
License Make all fields read-only.
Package Make all fields read-only.
Package Version Make all fields read-only.

3. Add related lists to page layouts.

To enable... Add the Licenses related list to the...
License managers to view the licenses associated with a particular - Lead page layout

lead

LMA users to view the licenses associated with a particular Account page layout

account

LMA users to view the licenses associated with a particular Contact page layout

contact

Assign Permissions to the Subscriber Support Console
Create a permission set to provide users access to the Subscriber Support Console.

Assign Permissions to the Subscriber Support Console

Create a permission set to provide users access to the Subscriber Support Console.
@ Note: If you've already assigned these permissions via a profile or another permission set, you can skip this task.

1. From Setup, in the Quick Find box, enter Permission Sets,and select Permission Sets.

2. (lick New and enter your permission set information.

3. On the Permission Set Overview page, locate the Apps section, and select Visualforce Page Access.
a. Click Edit.

b. Add sfLma.LoginToPartnerBT and sfLma.SubscriberSupport to the list of Enabled Visualforce pages, and then click Save.

4. On the Permission Set Overview page, locate the System section, and select System Permissions. Click Edit.

a. Select Log in to Subscriber Organization, and click Save.

5. From Setup, in the Quick Find box, enter Profiles, and select Profiles.
a. Click Edit.
b. Under Custom App Settings, select License Management App.
¢. Under Custom Tab Settings, locate the Subscribers tab and select Default On.

d. Click Save.

408

Second-Generation Managed Packages Lead and License Records in the License Management App

Lead and License Records in the License Management App

Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.
The key objects in the LMA are Package, Lead, and License.

e Package—The LMA includes a Package custom object and a Package Version custom object. These objects display details about
each 1GP or 2GP package and package version you've listed on AppExchange.

e |ead —The Lead standard object gives you details about who installed your package, such as the installer's name, company, and
email address. Lead records created by the LMA are just like the ones you use elsewhere in Salesforce, except the lead source is
Package Installation. You can manually convert leads into accounts and contacts. When you convert a lead, the license record links
to the converted account or contact.

e License—The License custom object gives you control over how many users in the customer’s org can access your package and for
how long. Each license record links to a lead record and a package record.

To understand which actions you must take and which actions the LMA handles for you, review this table.

Action Who Takes This Step
Your package is installed by a new subscriber. Customer or prospect
Alead record is created with the customer’s name, company, and email address. LMA

Alicense record is created according to the values you specified when you registered the package. = LMA
The lead record is converted to account and contact records. (Optional) You (ISV partner)

Account and contact records are associated with the license record. LMA

@ Nofe: Lead assignment rules aren't triggered for leads created by the LMA.

Modify a License Record

You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

Warning: You can't use the LMA to modify licenses provisioned through AppExchange Checkout. To modify licenses provisioned
through Checkout, have your customers follow the instructions in Add or Remove Licenses from an AppExchange Checkout
Subscription.

1. Inthe LMA, locate the license.

2. (lick Modify License.

When the LMA is installed, the Edit button doesn't appear on the license page layout, and the Modify License button is included
instead. This setup is intentional. You must edit license records on the Modified License page, don't attempt to edit license records
directly.

3. Update the field values as needed.

Field Description
Expiration Enter the last day that the customer can access your package, or select Does not
expire.

409

https://help.salesforce.com/s/articleView?id=service.customize_leadrules.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_checkout_update_seats.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_checkout_update_seats.htm

Second-Generation Managed Packages Refresh Licenses for a Managed Package

Field Description

Seats Enter the number of licensed seats, or select Site License to make your package
available to all users in the customer’s org. You can allocate up to 99,000,000 seats.

Status Select a value from the dropdown.

e Trial—Lets the customer try your offering for up to 90 days. After the trial license
converts to an active license, it can't return to a trial state.

* Active—Letsthe customer use your package according to the license agreement.

e Suspended—Prohibits the customer from accessing your offering.

@ Note: When your offering is uninstalled, its status is set to Uninstalled, and the
license can't be edited.

4, C(lick Save.

Refresh Licenses for a Managed Package

To syncall license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also resolve
discrepancies between the number of licenses in a subscriber’s org and the number displayed in the License Management App (LMA).
Refreshing is required when you move the LMA to a different org.

@ Nofte: For each package, you can refresh licenses only one time per week.

1. From the LMA, select the Packages tab.
2. Open the package record.

3. (lick Refresh Licenses. In Lightning Experience, Refresh Licenses is located in the dropdown menu.

Extending the License Management App

The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to manage
leads and licenses, many partners also integrate it into their existing business processes.

The LMA includes these custom objects:
e License
e Package on page 411

e Package Version on page 411

You can add custom fields to the objects as long as you don't mark your custom fields as required.

Package and Package Version Object Fields

The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you've listed on AppExchange.

License Object Fields
Use the License custom object to set limits on how many users in the subscriber's org can use your app and for how long.

410

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_license_details.htm

Second-Generation Managed Packages

Extending the License Management App

Adding Custom Automation to License Management App Objects
Here are some examples of how you can use the License Management App (LMA) to grow your business and retain customers.

Package and Package Version Object Fields

The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you've listed on AppExchange.

To view details about a package record, from the LMA, select the Packages tab, and then select the package name. You can view package

versions in the Package Version related list.

Nofe: The LMA creates the package records, which contain critical information for tracking your licenses and packages. Treat
these fields as read-only and ensure that your object permissions protect package records.

Package Custom Obiject Fields

Developer Name
Developer Org ID

Last License Refresh
Latest Version

Lead Manager

Next Available Refresh
Owner

Package ID

Package Name

Package Version Object Fields
Package

Package Version Name
Release Date

Version Number

Version ID

License Object Fields

Description

The name of the org that owns the package. For 1GP, the org name is the packaging org.
For 2GP, it's the Dev Hub org.

The 18-character ID of the org that owns the package. For 1GP, the org ID is the packaging
org ID. For 2GP, it's the Dev Hub org ID.

The date when the License Refresh tool was last run.

The most recent package version you've released.

The owner of the lead records that the LMA creates when a customer installs your package.
The date when the License Refresh tool can be run again.

The LMA owns all package records.

The 18-character ID that identifies the package. This ID starts with 033.

The name you specified when you created the package.

Description

The package name and links to the package record’s detail page.
The name you specified when you created the package version.

The date you created this package version.

The version number in major.minor.patch format. For example, 3.1.0.

The 18-character ID of this package version.

Use the License custom object to set limits on how many users in the subscriber's org can use your app and for how long.

The License Management App (LMA) creates a license record every time your package is installed in an org. For example, if a subscriber
installs two of your 1GP packages and three of your 2GP packages, you have five license records for that subscriber in your LMA. If you

1M

Second-Generation Managed Packages

Extending the License Management App

deliver a 2GP app that is composed of multiple packages, a unique license record is created for each package in the app. You can allocate
up t0 99,000,000 seats per subscriber license.

To view details about a license record, select the Licenses tab in the LMA, and then select and open the license record.

License records are automatically created and contain critical information for tracking licenses. Do not directly edit the license record.
Instead, use the Modify License tool to change the expiration date, license status, and the number of licensed seats.

License Custom Object Fields
Account

Contact

Created By

Expiration Date
Install Date

Instance

Lead

License Name

Licensed Seats

License Status
License Type
Org Edition

Org Expiration Date

Org Status

Owner

Package Version
Package Version Number
Sandbox

Subscriber Org ID

Used Licenses

Description

Alookup field to the account record for a converted lead.

A lookup field to the contact record for a converted lead.
License records are always created by the LMA.

Displays the expiration date or Does not expire (default).
The date the subscriber installed this package version.

The Salesforce instance where the subscriber’s org resides.

The lead record that the LMA created when the package was installed. A lead represents
the user who owns the license.

If you convert the lead into an opportunity, the lead name is retained but the lead record
no longer exists.

An auto-generated number that represents an instance of a license. License names are in
the format of L-00001, and each new license is incremented by one.

Displays the numberoflicensesor Site License (default). When a packageisinstalled
inasandboxorg, Site License isthe default.If a free trial package is installed in a
sandbox org, the Site Licenseisapplied.

The type of license: Active, Suspended, Trial, or Uninstalled.
This is a legacy field and can be ignored.
The edition of the subscriber’s org.

Applies only if the subscriber installs your package in a trial org. Indicates the date when
the trial org expires. It isn't related to the package license expiration.

The status of the subscriber’s org: Active, Free, or Trial.

The LMA owns all license records. Don't edit this field.

Alookup field that links to the package version associated with this license.
The version number in major.minor.patch format. For example, 3.1.0.
Indicates whether the license is for a package installed in a sandbox org.
The 15-character ID representing the subscriber’s org.

Displays the number of users who have a license to the package.
This field is blank if:

e Acustomer uninstalled the package.

412

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm

Second-Generation Managed Packages Move the License Management App to Another Salesforce
Org
License Custom Object Fields Description

e Licensed Seats issetto Site License.

Adding Custom Automation to License Management App Objects

Here are some examples of how you can use the License Management App (LMA) to grow your EDITIONS
business and retain customers.

Available in: both Salesforce

Alert Sales Reps Before a License Expires E'OSSEC and Lightning
xperience

If you're managing licenses for several packages, it can be difficult to track the various expirations.

If a license expires accidentally, you could even lose a customer. To help your customers with Available in: Enterprise,

renewals, set up an Apex trigger or create a flow to email a sales rep on your team before the license Performance, and

expires. Unlimited Editions

Notify Customer-Retention Specialists When an Offering Is Uninstalled

If a customer uninstalls your offering, find out why. By speaking to the customer, you have an opportunity to restore the business
relationship or receive feedback that helps you improve your offering.

To notify a customer-retention specialist on your team, follow these high-level steps.
1. Create an email template for the notification.
2. Create a workflow rule with a filter that specifies that the License Status equals Uninstalled.

3. Associate the workflow rule with a workflow alert that sends an email to the retention specialist.

Move the License Management App to Another Salesforce Org
You can move an LMA to a different org, but your package and license records don't automatically USER PERMISSIONS

move with it. You must manually relink your packages and refresh the licenses.

It's not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed To install packages:

in the same org as the LMA. If the org in which you plan to install the LMA has either Slack or the * Download AppExchange
DLRS package installed, uninstall them before you install the LMA. Alternatively, install the LMA in Packages
a different org. To manage licenses in the

Partner Community:

1. To remove the association between the LMA and the org where it's currently installed, log a « Manage Listings

case with Salesforce Partner Support on page 403.
2. Install the LMA in the new org on page 406.
3. Associate your packages with the new org on page 406.

4. Refresh licenses for your packages on page 410.

413

Second-Generation Managed Packages Troubleshoot the License Management App

Troubleshoot the License Management App

If you're experiencing issues with the License Management App, review these troubleshooting tips. EDITIONS
Leads and Licenses Aren't Being Created in the License Management App Available in: both Salesforce
When a customer installs your package, leads and license records are created. If these records Clossic and Lightning
aren't being created, review these configurations in the License Management Org (LMO). If you Experience
resolve your issue using one of these recommendations, your missing licenses appear in the Available in: Enterprise,
LMA within a few days. Performance, and
Proxy User Has Deactivated Message in the LMA Unlimited Editions

If you're editing a license and see a “proxy user has deactivated” message, it's possible that the
subscriber org is locked, deleted, or disabled.

Leads and Licenses Aren‘t Being Created in the License Management App

When a customer installs your package, leads and license records are created. If these records aren’t being created, review these
configurations in the License Management Org (LMO). If you resolve your issue using one of these recommendations, your missing
licenses appear in the LMA within a few days.

Did the customer complete the package installation?
When a customer clicks Get it Now on your AppExchange listing, Salesforce counts this selection as an installation. However, the
customer can cancel the installation before it's completed, or the installation could have failed. If the installation doesn't finish, a
license isn't created.

Is State and Country picklist validation enabled?
To avoid state and country picklist-related lead failures, you have two options. Use the standard picklist integration values, or add
duplicate states and countries to your picklists.

Standard picklist integration values

To implement this option, use the Salesforce standard state and country picklists in your org, and leave the integration values as-is.
We recommend this option for most partners.

With this option, AppExchange leads propagate to your org with full state and country names, and the names match integration
values in the standard picklists.

Add duplicate states and countries to your picklists.

Implement this option if you have a requirement to use the two-letter state or country abbreviations in your org. For example, you
display abbreviations in the user interface or use them to integrate with other systems. Add duplicate states and countries to your
picklists with different integration values. Set one value to the two-letter state or country abbreviation. Set the other value to the
full state or country name. Make only the two-letter abbreviation picklist entries visible.

With this option, AppExchange leads propagate to your org with full state and country names, which match the full name integration
values in your org. You also have two-letter integration values to use as needed.

Does the lead or license object have a trigger?
Don'tuse before create or before update triggers on leads and licenses. Instead, use after triggers, or remove
all triggers. If a trigger fails, it can block license creation.

Does the lead or license record have a required custom field?
If yes, remove the requirement. The LMA doesn’t populate a required custom field, so it can prevent licenses or leads from being
created.

414

Second-Generation Managed Packages Best Practices for the License Management App

Is the lead manager a valid, active user?
If not, the LMA can't create leads and licenses.

Does the lead or license record have a validation rule?
Validation rules often block the creation of LMA lead or license records because the required field isn't there.

Does the lead or license have a workflow rule?
Workflow rules sometimes prevent leads and licenses from being created. Remove the workflow rule.

Was the lead converted to an account?
When leads are converted to accounts, they're no longer leads.

Are you using standard duplicate rules for leads?
When a customer installs your package, the LMA checks for existing leads and contacts. If an existing contact matches the customer
who installed your package, a lead record isn't created. To complete these checks, the LMA applies standard lead duplicate rules
and matching rules. If you prefer to have the LMA associate every license with a lead regardless of whether there’s an existing contact
match, customize the standard duplicate rule for leads and remove the matching rule for contacts.

Proxy User Has Deactivated Message in the LMA
If you're editing a license and see a “proxy user has deactivated” message, it's possible that the subscriber org is locked, deleted, or

disabled.

If you attempt to contact the subscriber and they aren't responsive, consider deleting the license record.

Best Practices for the License Management App

Follow these best practices when you use the License Management App (LMA).

e To take advantage of entitlements that are unique to AppExchange partners, use your partner business org as your License
Management Org.

e (Create alist view filter for leads created by installed packages. The filter helps your team separate subscriber-based leads from leads
coming from other sources.

e Use the APl to find licensed users. The isCurrentUserLicensed method determines if a user has a license to a managed
package. For more information, see the Apex Reference Guide.

e Treatthe LMA custom objects as read-only. Use the Modify License page to edit licenses. Don't attempt to directly or programmatically
edit license records.

e The LMA automatically creates package, package version, and license records. Customizations, such as adding required custom fields
or creating workflow rules, triggers, or validation rules that require custom fields, can prevent the LMA from working properly.

Troubleshoot Subscriber Issues

Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you're granted access, you can log in to the subscriber’s org and view their configuration
and data to troubleshoot and resolve issues.

To access the Subscriber Overview page, click the organization’s name from the Subscribers tab in the LMA.

@ Nofte: This feature is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility
requirements, see www.salesforce.com/partners.

415

https://help.salesforce.com/articleView?id=duplicate_rules_standard_lead_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=matching_rules_standard_contact_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=duplicate_prevention_map_of_tasks.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_methods_system_userinfo.htm
https://partners.salesforce.com

Second-Generation Managed Packages Troubleshoot Subscriber Issues

Request Login Access from Subscribers
To log in to a subscriber org, first request login access from the subscriber.

Log In to Subscriber Orgs
After your subscriber has granted you login access, you can log in to the subscriber org to troubleshoot the issue.

Debug Subscriber Orgs
After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger
sessions.

Request Login Access from Subscribers

To log in to a subscriber org, first request login access from the subscriber.

Ask the subscriber to enable either Grant Account Login Access or Grant Login Access. If they don't see your company listed, one
of the following applies.

e Asystem admin disabled the ability for non-admins to grant access.

e The user doesn't have a license for the package.

e The package is licensed to the entire org. In this scenario, only an admin with the Manage Users permission can grant access.

e The org setting Administrators Can Log in as Any User is enabled.

@ Notfe: When the org setting Administrators Can Log in as Any User is disabled, login access is granted for a limited amount
of time, and the subscriber can revoke access at any time.

Any changes you make while logged in as a subscriber are logged in the subscriber org’s audit trail.

Log In to Subscriber Orgs

After your subscriber has granted you login access, you can log in to the subscriber org to
troubleshoot the issue.
To log in to subscriber orgs:
Available in: Enterprise, Performance, and Unlimited Editions * Lloginto Subscriber Org

@ Note: You can only log in to orgs with a Salesforce Platform or full Salesforce license. You can't log in to subscriber orgs on
Government Cloud instances. It's also not possible to log into a scratch org using the log in to subscriber org feature.

Multi-Factor Authentication Required to Log In to a Subscriber Org

Starting in Spring 22, multi-factor authentication (MFA) is required when logging into the License Management Org (LMO). MFA is
required only for LMO users who require access to the Subscriber Support Console. This requirement provides subscribers an extra layer
of security by verifying the identity of the user accessing their org. You also have more control over which users log in to a subscriber
org.

Determine which users require access to the Subscriber Support Console, and then set up multi-factor authentication (MFA) for those
users.

Log In to a Subscriber Org

After you've logged in to the LMO using multi-factor authentication (MFA), and your subscriber has granted you login access, you're
ready to log in.

416

https://help.salesforce.com/s/articleView?id=xcloud.mfa_direct_login_user_perm.htm&type=5&language=en_US

Second-Generation Managed Packages Troubleshoot Subscriber Issues

-

In the License Management App (LMA), click the Subscribers tab.
To find a subscriber org, enter a subscriber name or org ID in the search box, and click Search.
Click the name of the subscriber org.

On the Org Details page, click Login next to a user's name. You have the same permissions as the user you logged in as.

o W

When you're finished troubleshooting, log out of the subscriber org.

@ Note: Some subscribers require MFA in addition to the MFA required for the LMO. Ask your subscriber if their org requires MFA
to log in. If so, your login attempt sends an MFA notification to your subscriber, and your login is blocked until your subscriber
responds to the notification. To ensure that your subscriber is available to respond to the MFA notification, consider coordinating
a specific login time.

Best Practices for Logging In

e (reate an audit trial that indicates when and why a subscriber org login has occurred. You can create an audit trail by logging a case
in your LMO before each subscriber org login.

e When you access a subscriber org, you're logged out of your LMO. To prevent your session from being automatically logged out of
your LMO when you log in to a subscriber org, use the org’s My Domain login URL.

e Allow only trusted support and engineering personnel to log in to a subscriber’s org. Because this feature can include full read/write
access to customer data and configurations, it's vital to your reputation to preserve their security.

e Control who has login access by giving the Log in to Subscriber Org user permission to specific support personnel via a profile or
permission set. See Assign Permissions to the Subscriber Org Console on page 408.

Debug Subscriber Orgs

After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger sessions.

Get Access to Debug Logs

You can debug your code by generating Apex debug logs that contain the output from your managed package. Using this log information,
you can troubleshoot issues that are specific to that subscriber.

To getaccess to a subscriber's Apex debug logs, you can either request login access from the subscriber, or use the License Management
App (LMA) to enable debug logs for a namespace.
@ Important: Note these important considerations for enabling subscriber debug logs for a namespace.

* When you enable debug logs for a namespace, the Apex code for the managed package becomes visible to the subscriber
org.

e Because multiple packages can share a namespace in second-generation managed packaging (2GP), enabling debug logs for
2GP means enabling logs for all managed packages in the namespace. For example, a subscriber is reporting issues with
Package A and you enable debug logs for the namespace that includes Package A. The subscriber also uses Package B and
Package C that are in the same namespace. By enabling debug logs for the namespace that includes Package A, you also
enable debug logs for Package B and Package C.

Follow these steps to enable debug logs for a namespace through the LMA.
1. Inthe LMA, click the Subscribers tab.
2. Search for the subscriber's name or org ID, then click the name of the subscriber org.

3. Inthe Packages & Licensing section, find the package that you want to troubleshoot.

417

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_requesting_login_access.htm

Second-Generation Managed Packages Manage Features in Second-Generation Managed Packages

4. Inthe Subscriber Debug Logs column, click Enable.
5. Review the confirmation message, then click OK.

After you enable debug logs, your Apex code remains visible to the subscriber org until you disable debug logs. To disable debug logs,
follow the same steps in the LMA.

Troubleshoot with Debug Logs

Afteryou get access to a subscriber’s debug logs or you enable debug logs for a namespace, get debug logs from the Developer Console.
1. From Setup of the subscriber’s org, in the Quick Find box, enter Debug Logs, and then select Debug Logs.

2. Launch the Developer Console.

3. Perform the operation, and view the debug log with your output.

Subscribers are unable to see the logs you set up or generate because they contain your unobfuscated Apex code.

You can also view and edit data contained in protected custom settings from your managed packages when logged in as a user.

Troubleshoot with the ISV Debugger

Each License Management Org can use one free ISV Customer Debugger session at a time. The ISV Customer Debugger is part of the
Salesforce Extensions for Visual Studio Code. You can use the ISV Customer Debugger only in sandbox orgs, so you can initiate debugging
sessions only from a customer’s sandbox.

For details, see the ISV Customer Debugger documentation.

Manage Features in Second-Generation Managed Packages

Take the License Management App (LMA) a step further by extending it with the Feature Management App (FMA).

Here at Salesforce, we sometimes run pilot programs, like the one we ran when we introduced Feature Management. Sometimes we
dark-launch features to see how they work in production before sharing them with you. Sometimes we make features available to select
orgs for limited-time trials. And sometimes we want to track activation metrics for those features.

With feature parameters, we're extending this functionality to you. Install the FMA in your License Management Org (LMO). The FMA
extends the License Management App, and like the LMA, it's a managed package.

Feature Parameter Metadata Types and Custom Objects

Feature parameters are represented as Metadata APl types in your package metadata, as records of custom objects in your LMO,
and as hidden records in your subscriber’s org.

Set Up Feature Parameters
Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features

Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or
disable new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period.
Assign values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those
values in your code.

418

https://developer.salesforce.com/tools/vscode
https://developer.salesforce.com/tools/vscode/en/apex/isv-debugger

Second-Generation Managed Packages Feature Parameter Metadata Types and Custom Objects

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters

Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

Hide Custom Objects and Custom Permissions in Your Subscribers” Orgs

Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the
pilot feature.

Best Practices for Feature Management
Here are some best practices when working with feature parameters.

Considerations for Feature Management
Keep these considerations in mind when working with feature parameters.

Feature Parameter Metadata Types and Custom Obijects

Feature parameters are represented as Metadata APl types in your package metadata, as records of custom objects in your LMO, and as
hidden records in your subscriber’s org.

Feature Parameter Fields

Feature parameters are represented as Metadata API types and store boolean, integer, or date values.

Thefirst time a subscriber installs your package, a FeatureParameter crecordiscreated in your LMO for each feature parameter.
The feature parameter records include these fields:

¢ FullName c

®* DataType c (Boolean, Integer,or Date)
® DataFlowDirection c¢

® Package c

¢ IntroducedInPackageVersion c

® Namespace Prefix c

@ Note: After a feature parameter is included and released in the package version, the data flow direction can't be changed.

Lifecycle of a Feature Parameter

Set Up the Feature Parameter
Start by defining your feature parameter in an XML file. Create one XML file for each feature parameter.

Depending on how you're using the feature parameter, you'll also write code that enables you to check access rights or collect usage
information after the parameter is set up.

Subscriber Installs Your Managed Package
When a subscriber installs or upgrades your package in their org, a FeatureParameter c record for each feature parameter
is created in the LMO. If these records were created during a previous installation or upgrade, this step is skipped.

419

Second-Generation Managed Packages Set Up Feature Parameters

During package installation, junction object records are created in both the subscriber org and your LMO. A junction object is a
custom object with two master-detail relationships. In this case, the relationships are between FeatureParameter c and
License _c inthe LMO. These records store the value of their associated feature parameter for the subscriber org.

Utilize Your Feature Parameters
Use the junction objects to override the feature parameters’ default values or to collect data. Depending on the value of each feature
parameter's DataFlowDirection c field,dataflowstothe subscriberorg (from the LMO) or to the LMO (from the subscriber
org). That data is stored in the junction object records.

Set Up Feature Parameters

Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Install and Set Up the Feature Management App in Your License Management Org

Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to
display related lists for your feature parameters.

Create Feature Parameters for Your Second-Generation Managed Package
To create a feature parameter for a 2GP managed package, create an individual XML file. Here are details on the file naming convention,
folder structure, and the attributes you use when creating feature parameters.

Install and Set Up the Feature Management App in Your License Management Org

Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to display
related lists for your feature parameters.

1. Torequest access to the FMA, log a support case in the Salesforce Partner Community. For product, specify Partner Programs &
Benefits. For topic, specify ISV Technology Request. The FMA extends the License Management App, so be sure to install the
LMA before requesting access to the FMA.

2. Toinstall the FMA, follow the instructions in your welcome email.
3. Add the Feature Parameters tab to your default view. For details, see Customize My Tabs in Salesforce Help.
4. Update your page layout for licenses.
Navigate to a license record’s detail page.
b. Click Edit Layout.
¢. Inthe Related Lists section of the License Page Layout Editor, add these lists.

e Feature Parameter Booleans
e Feature Parameter Dates

e Feature Parameter Integers

d. Foreach related list, add these columns.
e Data Flow Direction
e Feature Parameter Name
e FullName
e Master Label

° \Value

420

https://partners.salesforce.com
https://help.salesforce.com/articleView?id=user_userdisplay_tabs.htm&language=en_US

Second-Generation Managed Packages Set Up Feature Parameters

Create Feature Parameters for Your Second-Generation Managed Package

To create a feature parameter for a 2GP managed package, create an individual XML file. Here are details on the file naming convention,
folder structure, and the attributes you use when creating feature parameters.

Note: Feature parameters for managed 1GP packages are created in the packaging org’s Ul, see Create Feature Parameters in
Your Packaging Org in the First-Generation Managed Packaging Developer Guide for details.

A package can include up to 200 feature parameters.

Folder Structure
Feature parameters are stored as files in your Salesforce DX project folder.

Under the root force-app folder, create a folder and name it featureParameters. Store your feature parameter files in the feature
parameters folder. Each feature parameter you create must have its own separate file.

@ Note: It's not possible to create feature parameters using a scratch org’s user interface.

File Naming Convention
The naming format for feature parameter files is <name>. featureParameter<type>-meta.xml.
The name is the APl name of the feature parameter.

The type is the feature parameter type. Feature parameters can be booleans, integers, or dates.

Type File Name Format

Boolean .featureParameterBoolean-meta.xml
Date .featureParameterDate-meta.xml
Integer .featureParameterInteger-meta.xml

Feature Parameter Attributes
Feature parameters include these three fields.
Field Name Description

dataflowDirection Indicates which direction this parameter is transferring data.

Each feature parameter value gets transferred in one of two
directions:

e From your LMO to a subscriber org (LmoToSubscriber)

e From a subscriber org to your LMO (SubscriberToLmo)

masterlLabel The label of the feature parameter. This label displays in the app.

value The value of the feature parameter. Booleans, integers, and dates
are all valid values. Integer values can’t exceed nine digits.

@ Note: After a feature parameter is included and released in the package version, the data flow direction can't be changed.

421

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm

Second-Generation Managed Packages Use LMO-to-Subscriber Feature Parameters to Enable and
Disable Features

Examples of Feature Parameter file

AdvancedPricingEnabled.featureParameterBoolean-meta.xml

<FeatureParameterBoolean xmlns="http://soap.sforce.com/2006/04/metadata">
<dataflowDirection>SubscriberTolLmo</dataflowDirection>
<masterLabel>Advanced Pricing Enabled</masterLabel>
<value>true</value>

</FeatureParameterBoolean>

NumberofLedgers.featureParameterinteger-meta.xml

<?xml version="1.0" encoding="UTF-8"?>

<FeatureParameterInteger xmlns="http://soap.sforce.com/2006/04/metadata">
<dataflowDirection>SubscriberTolLmo</dataflowDirection>
<masterLabel>Number of Ledgers</masterLabel>
<value>7</value>

</FeatureParameterInteger>

ProjectActivationDate.featureParameterDate-meta.xml

<?xml version="1.0" encoding="UTF-8"7?>

<FeatureParameterDate xmlns="http://socap.sforce.com/2006/04/metadata">
<dataflowDirection>LmoToSubscriber</dataflowDirection>
<masterLabel>Date of Activation of the Project</masterLabel>
<value>2020-01-25</value>

</FeatureParameterDate>

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features

Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or disable
new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period. Assign
values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those values in your
code.

Assign Override Values in Your LMO
To override the default value of a feature parameter in a subscriber’s org, update the appropriate junction object record in your LMO.

Check LMO-to-Subscriber Values in Your Code
You can reference feature parameters in your code, just like you'd reference any other custom object.

Assign Override Values in Your LMO

To override the default value of a feature parameter in a subscriber's org, update the appropriate junction object record in your LMO.
1. Open the license record for a subscriber's installation of your package.

2. Intherelated list for Feature Parameter Booleans, Feature Parameter Integers, or Feature Parameter Dates, select the feature parameter
whose value you want to update.

3. Click Edit.
4. Setavalue.

5. Click Save.

422

Second-Generation Managed Packages Track Preferences and Activation Metrics with
Subscriber-to-LMO Feature Parameters

Check LMO-to-Subscriber Values in Your Code

You can reference feature parameters in your code, just like you'd reference any other custom object.

Use these Apex methods with LMO-to-subscriber feature parameters to check values in your subscriber’s org.

® System.FeatureManagement.checkPackageBooleanValue ('YourBooleanFeatureParameter') ;
® System.FeatureManagement.checkPackageDateValue ('YourDateFeatureParameter') ;

® System.FeatureManagement.checkPackageIntegerValue ('YourIntegerFeatureParameter') ;

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature
Parameters

Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

® System.FeatureManagement.setPackageBooleanValue ('YourBooleanFeatureParameter',
booleanValue) ;

® System.FeatureManagement.setPackageDateValue ('YourDateFeatureParameter',
datetimeValue) ;

® System.FeatureManagement.setPackagelIntegerValue ('YourIntegerFeatureParameter',
integerValue) ;
Warning: The value ¢ field on subscriber-to-LMO feature parameters is editable in your LMO. But don't change it. The
changes don't propagate to your subscriber’s org, so your values will be out of sync.

You can view the value of a subscriber-to-LMO feature parameter from the Subscriber Support Console.

Hide Custom Obijects and Custom Permissions in Your Subscribers’ Orgs

Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the pilot
feature.

@ Note: Check with your company’s legal team before releasing hidden functionality.

To hide custom objects when creating your package, set the value of their Visibility field to Protected. After you've set the visibility
to Protected, you can later update it to Unprotected. To change the visibility of an object, use the CustomObject Metadata APl and
update the visibility field.

To hide custom permissions when creating your package, from Setup, enter Custom Permissions inthe Quick Find box. Select
Custom Permissions > Your Custom Permission > Edit. Enable Protected Component, and then click Save. After your
package is installed, use the System.FeatureManagement.changeProtection () Apex method to hide and unhide
custom objects and permissions.

Warning: After you've released unprotected objects to subscribers, you can't change the visibility to Protected.

To hide custom permissions in released packages:

® System.FeatureManagement.changeProtection ('YourCustomPermissionName',
'CustomPermission', 'Protected');

423

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_subscriber_support_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/customobject.htm

Second-Generation Managed Packages

To unhide custom permissions and custom objects in released packages:

System.FeatureManagement.changeProtection (' YourCustomPermissionName',
'CustomPermission', 'Unprotected');

System.FeatureManagement.changeProtection ('YourCustomObjectName c', 'CustomObject',
'Unprotected’) ;

SEE ALSO:

Protected Components in Managed Packages
Metadata APl Developer Guide: customObject

Apex Reference Guide: Feature Management Methods, changeProtection

Best Practices for Feature Management

Here are some best practices when working with feature parameters.

We recommend that you use this feature set in a test package and a test LMO before using it with your production package. Apply
changes to your production package only after fully understanding the product’s behavior.

Create LMO-to-subscriber feature parameters to enable features from your LMO for individual subscriber orgs. Don't use the Apex
code in your managed package to modify LMO-to-subscriber feature parameters’ values in subscriber orgs. You can't send the
modified values back to your LMO, and your records will be out of sync.

Use LMO-to-subscriber feature parameters as read-only fields to manage app behavior. For example, use LMO-to-subscriber feature
parameters to track the maximum number of permitted e-signatures or to make enhanced reporting available.

Create subscriber-to-LMO feature parameters to manage activation metrics. Set these feature parameters’ values in subscriber orgs
using the Apex code in your managed package. For example, use subscriber-to-LMO feature parameters to track the number of
e-signatures consumed or to check whether a customer has activated enhanced reporting.

Considerations for Feature Management

Keep these considerations in mind when working with feature parameters.

After a feature parameter is included in a promoted and released package version, we recommend that you only edit the value field
located in LMO-to-subscriber junction objects.

Modifying or deleting other fields or records related to feature parameters, including the data flow direction, may cause the FMA to
stop operating correctly.
Don't use the LMO to create or delete feature parameters.

When you update LMO-to-subscriber values in your LMO, the values in your subscribers” orgs are updated asynchronously. This
process can take several minutes.

When you publish a push upgrade to your managed package, feature parameters in your LMO and your subscribers’ orgs are updated
asynchronously. Creating and updating the junction object records can take several minutes.

When the Apex code in your package updates subscriber-to-LMO values in your subscriber’s org, the changes can take up to 24
hours to reach your LMO.

424

Best Practices for Feature Management

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/customobject.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm#apex_System_FeatureManagement_changeProtection

Second-Generation Managed Packages Get Started with AppExchange App Analytics

Get Started with AppExchange App Analytics

AppExchange App Analytics provides usage data about how subscribers interact with your AppExchange managed packages and
packaged components. You can use these details to identify attrition risks, inform feature development decisions, and improve user
experience.

@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.
Usage data from Government Cloud and Government Cloud Plus orgs isn't available in App Analytics.

App Analytics is available for first- and second-generation (1GP and 2GP) managed packages that passed security review and are registered
to aLicense Management App. Usage data is provided as package usage logs, monthly package usage summaries, or subscriber snapshots.
All usage data is available as downloadable comma-separated value (.csv) files. To view the data in dashboard or visualization format,
use CRM Analytics or a third-party analytics tool.

In a 24-hour period, you can download a maximum 20 GB of AppExchange App Analytics data.

App Analytics Use Cases

To achieve your business objectives, use App Analytics across your teams. Read this guide to understand common use cases and
how to map App Analytics data to sample product features.

Enable App Analytics on Your Second-Generation Managed Package

Activate AppExchange App Analytics on your second-generation (2GP) managed package to access AppExchange App Analytics
package usage logs and subscriber snapshots. Package usage summaries are available by default.

Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots
To request package usage logs, monthly package usage summaries, and subscriber snapshots, use the AppAnalyticsQueryRequest
object. Usage logs, usage summaries, and subscriber snapshots are downloadable comma-separated value (.csv) files.

Considerations for Custom Interactions

Easily create and log custom interactions on your managed package using Apex. As subscribers interact with your package and your
Apex code is executed, the custom interactions that you defined are logged. Retrieve your custom interactions in your package's
AppExchange App Analytics usage logs and usage summaries.

AppExchange App Analytics Best Practices

To plan and maximize your AppExchange App Analytics query strategy, follow our best practices. First, use file compression to reduce
your data results file size. Second, schedule and automate your regular App Analytics queries. Third, plan, schedule, and automate
catch-up queries to supplement your regular query data.

Package Usage Summaries

Package usage summaries provide high-level metrics by calendar month. Discover how many users access your package and which
operations they perform.

Package Usage Logs

Analyze adoption and user behavior, then make informed feature development decisions based on data from package usage logs.
AppExchange App Analytics tracks U, API-based, Lightning-based, and Apex operations, and it logs each CRUD operation on
components and custom objects in packages. Events from sandbox and trial orgs are tracked in package usage logs. Events from
scratch orgs aren't tracked.

Subscriber Snapshots
Subscriber snapshots give you a point-in-time summary of subscriber activity. Use subscriber snapshots to see usage trends by org
and package.

425

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/
https://help.salesforce.com/articleView?id=bi_explorer.htm&language=en_US

Second-Generation Managed Packages

Test Custom Integrations

App Analytics Use Cases

To test your custom integrations in a nonproduction environment, use AppExchange App Analytics Simulation Mode. Submit an

App Analytics query request and receive sample usage data.

AppExchange App Analytics Developer Cookbook

Delve deeper into your AppExchange App Analytics managed package usage data by creating key performance indicators (KPIs).
First, complete some prerequisites and retrieve your App Analytics data. Next, prepare your CRM Analytics environment. Finally, to
build your KPIs, complete App Analytics recipes.

App Analytics Use Cases

To achieve your business objectives, use App Analytics across your teams. Read this guide to
understand common use cases and how to map App Analytics data to sample product features.

App Analytics Use Cases

While there are various use cases for App Analytics, these cases tend to be the most common.

Partner User

Presales Engineer or Account
Executive

Customer Success
Representative

Goal

Provide a great customer trial

experience and close deals

Drive feature adoption and

minimize subscriber attrition

How App Analytics Helps

App Analytics provides detailed
package usage logs for
sandboxes and trial orgs.

Use log data to know how
many users are trialing your
package and which
features they're actively
testing.

Analyze log data to provide
customized
recommendations to your
prospective subscribers.

Help prospective
subscribers try more
features or further
configure the trial
experience to demonstrate
how your solutions can
address their use cases.

App Analytics provides package
usage logs, package usage
summaries, and subscriber
snapshots in production for
subscribers.

426

Use comprehensive usage
data from all three data
types to know how and

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Second-Generation Managed Packages

Partner User

Product Manager

Software Engineer

Goal

Obtain productinsights and drive roadmap
prioritization

Optimize code

427

App Analytics Use Cases

How App Analytics Helps

when the various users for a subscriber
are employing your solutions.

e Provide tailored recommendations to
drive feature adoption, identify upsell
opportunities, and forecast attrition risk.

e Tracka user's activity across multiple
packages to help you determine where
opportunities and risks lie within a
particular package.

e Combine your App Analytics data with
license usage data from the License
Management App to get a better
picture of how your subscriber is
adopting your product.

App Analytics provides you with usage data
from your entire subscriber base so that you
can carry out high-level and detailed
user-level analysis.

As a product manager, you can analyze
usage data to:

e |dentify your most-used features.
e |dentify incomplete user journeys.
e |dentify user pain points.

e |dentify unexpected usage patterns or
validate expected behavior.

e Retirerarely used or end-of-life features.

These insights help you design and build
product improvements and fixes. Then you
can prioritize and adjust your product
roadmap accordingly.

App Analytics provides usage data on Apex.
Use your data on its own or combine it with
more data to optimize your code, making
it more performant and reliable.

Consider using your Apex data in
combination with these products.

e Use the Subscriber Support Console to
troubleshoot subscriber issues and
access logs as code is executed in real
time.

Second-Generation Managed Packages

Partner User

Goal

App Analytics Use Cases

How App Analytics Helps

e Use the Salesforce Code Analyzer to
identify and fix problems in your code
while you develop.

There are other use cases where App Analytics isn't a good fit. For example, we don't recommend that you use App Analytics to audit
customer license usage based on the user id_token in package usage logs. We provide usage data for users licensed to use your
package, for users who indirectly interact with it, and for automated processes.

Mapping App Analytics Data to Product Features

For the most common App Analytics use cases, analyze App Analytics usage data at a feature level. Feature-level analysis supports
conversations about those features that you have with subscribers and with your teams.

App Analytics data is organized around the concept of a custom_entity, which isthe developer name of the components that are
included in your managed package. custom_entity information is included in package usage summaries, package usage logs,

and subscriber snapshots.

@ Example: Imagine that you want to understand how subscribers are using a new feature in your solution that enables them to
easily manage newsletter subscriptions from Salesforce. To build this feature, your developers add these components to your

managed package.

* Anew custom object, Newsletter Subscription

e Anew Lightning Page, SubscriptionPage

e Anew Lightning Component, SubscriptionComponent

e Anew Apex (Class, SubscriptionHandler

As subscribers interact with your components, interaction data flows through in App Analytics.

Component

Newsletter Subscription

SubscriptionPage

SubscriptionComponent

SubscriptionHandler

Package Usage Log
(Daily)

Create Read Update and
Delete (CRUD) events

Lightning interactions

Lightning component
interactions

Apex executions

Package Usage Summary Subscriber Snapshot
(Monthly) (Daily)

CRUD events Record Counts

Lightning interactions —

Lightning component —
interactions

Apex executions —

The volume of total App Analytics data from your feature’s data mixed with data for your entire solution across all subscribers can
be vast. To make it easier for you to analyze, employ one of these strategies.

e Select asingle component that best represents usage for this feature, and look solely at the data where it appears under
custom_entity.In thisexample, the custom object Newsletter Subscription isagood candidate because it
tracks CRUD events from all sources, not only from the other components.

Second-Generation Managed Packages Enable App Analytics on Your Second-Generation Managed
Package

e Select a combination of components for a user journey that you care about. Using our example, select an interaction for
SubscriptionPage, followed by SubscriptionComponent, SubscriptionHandler and CRUD for
Newsletter Subscription.

Package usage logs and subscriber snapshots are updated daily so that you can track subscriber usage more closely and more
frequently. Package usage summaries are updated monthly. To understand how we gather and make this data available to you,
read How Does AppExchange App Analytics Data Flow?

SEE ALSO:
How to Read App Analytics Package Usage Log Data
Customer Success Recipes

Troubleshoot Subscriber Issues

Enable App Analytics on Your Second-Generation Managed Package

Activate AppExchange App Analytics on your second-generation (2GP) managed package to access EDITIONS
AppExchange App Analytics package usage logs and subscriber snapshots. Package usage summaries
are available by default.

Available in: Enterprise,
Toensure that you're running the latest version of Salesforce CLIand its plug-ins,run s£ update Performance, Unlimited,
and sf plugins update. and Developer Editions.

1. Activate App Analytics on your managed 2GP package. sf package update
--package "Your Package Alias" --enable-app-analytics USER PERMISSIONS

To deactivate App Analytics on your managed 2GP package, run this CLI command. s£ To access packages and

package update --package "Your Package Alias" pockogeversions:
--no-enable-app-analytics e Readon Pockoges,

Package Versions
2. Forany additional package that you want App Analytics data for, repeat step 1. .
To request and retrieve

AppExchange App Analytics

data:
Downloqd Package Usqge Logs, Package Usage o eate, Read. Edi
Summaries, and Subscriber Snapshots Delete, View All, and
Modify All on the
To request package usage logs, monthly package usage summaries, and subscriber snapshots, use AppAnalyticsQueryRequest
the AppAnalyticsQueryRequest object. Usage logs, usage summaries, and subscriber snapshots are object

downloadable comma-separated value (.csv) files.

To enable App Analytics on your second-generation (2GP) managed packages, follow these
instructions. To enable App Analytics on your first-generation (1GP) managed packages, follow these instructions.

Then determine which team members need create, read, update, and delete (CRUD) access to the AppAnalyticsQueryRequest object,
and consider creating a permission set for them. By default, admins have the permissions required to request package usage logs and
usage summaries using the AppAnalyticsQueryRequest object.

In a 24-hour period, you can download up to 20 GB of AppExchange App Analytics data.

Package usage summary data is available to download for 10 years from the summary file log date. Package usage log data is available
to download for 45 days from the date that the log event occurred. Subscriber snapshot data is available to download for 45 days from
the snapshot date.

The usage data that AppExchange App Analytics collects depends on the org type and data type.

429

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_data_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_enable2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/app_analytics_enable1gp.htm
https://help.salesforce.com/articleView?id=perm_sets_create.htm&language=en_US

Second-Generation Managed Packages Considerations for Custom Interactions

Table 5: Data Type Collection Varies by Org Type

Data Type Data is Collected on... Data isn‘t Collected on...
PackageUsagelog Production, sandbox, and trial orgs Scratch orgs
PackageUsageSummary Production orgs Sandbox, scratch, and trial orgs
SubscriberSnapshot Production org and trial orgs Sandbox and scratch orgs

@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in AppExchange Program Policies.

1. Log in to the License Management Org (LMO) that the package is registered to.
2. From the LMO, complete the required fields in the AppAnalyticsQueryRequest object.

3. Retrieve the App Analytics Query Request object created in the APl request. The Down1loadURL field populates after the request
is completed.

4. C(lickthe URLin the DownloadURL field in the App Analytics Query Request object, and download the .csv file.

@ Note: The download URL expires after 60 minutes.

Considerations for Custom Interactions

Easily create and log custom interactions on your managed package using Apex. As subscribers EDITIONS
interact with your package and your Apex code is executed, the custom interactions that you defined
are logged. Retrieve your custom interactions in your package's AppExchange App Analytics usage
logs and usage summaries.

Available in: both Salesforce
Classic and Lightning

Asan ISV partner, the complex features that you develop in your managed packages could involve Experience

multiple actions on different objects, callouts to Apex functions, and much more. It can be difficult
to interpret how your subscribers interacted with specific packaged components via your
downloaded App Analytics package usage logs and summaries.

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions
To provide you with more clarity about your subscribers’ events in custom ways and at different

granularity levels, create custom interactions in your managed packages using Apex.

With Apex custom interactions, you can discover:

e Which app feature a user interacted with

e How users flowed through a specific user journey

e Which Ul components a user interacted with

Keep these considerations in mind:

e A custom interaction can appear for a given user request up to 50 times. This limit avoids flooding the logs due to large loops.
e Werecommend that youdon't call IsvPartners.AppAnalytics.logCustomInteraction from inside aloop.

e Ifthe IsvPartners.AppAnalytics.logCustomInteraction methodis called from a running Apex test, no
AppExchange App Analytics package usage log or package usage summary data is produced.

430

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_appanalyticsqueryrequest.htm

Second-Generation Managed Packages Considerations for Custom Interactions

Log Custom Interactions
Create and log custom interactions with your managed package using Apex.

SEE ALSO:
Apex Developer Guide: Enums
Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots
Apex Reference Guide: IsvPartners Namespace

Custom Interactions

Log Custom Interactions

Create and log custom interactions with your managed package using Apex.

1. Inyour packaged Apex code, include Apex enums that are associated with the events that you want to log as custom interactions.
2. InyourApexcode,invoke IsvPartners.AppAnalytics.logCustomInteraction,usingtheenumsthatyou created.

3. Testyour code by running it in your development environment and checking your debug logs to be certain that the custom
interactions you created are being logged. Ensure that your debug log levels for Apex Code are setto FINE.

4. Afteryou're finished with your implementation, publish a new version of your managed package.

5. After subscribers install your package, retrieve your package usage logs and package usage summaries. Filter your package usage
logdataon custom entity type byCustominteractionLabel,andon log record type by Custominteraction. Or filter
your package usage summary data on custom_entity type by CustominteractionlLabel.

6. Analyze your custom interaction data.

@ Example: Let's suppose you have a Lightning Web Component (LWC). Your LWC provides a list of related contacts for each
Account record, uses a table layout, and is wired to an Apex class. You add a new card layout to your LWC. To track how well users
are adopting this new layout, you log an interaction when a user switches between

Change data view

w | Tite v

g

]

L)

layouts. - i
In your code, include Apex enums and invoke IsvPartners.AppAnalytics.logCustomInteraction.

Your LWC HTML code:

<template>
<div
class="slds-var-m-top medium slds-var-m-bottom x-large slds-box
slds-theme default"

>
<h2 class="slds-text-heading medium slds-var-m-bottom medium">
Change data view
</h2>
<!-- Button group: simple buttons -->

<lightning-button-group class="slds-var-m-bottom medium">
<lightning-button
label="Table"
variant={tableVariant}
onclick={handleClick}
></lightning-button>

431

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/langCon_apex_enums.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_namespace_IsvPartners.htm

Second-Generation Managed Packages Considerations for Custom Interactions

<lightning-button
label="Card"
variant={cardVariant}
onclick={handleClick}
></lightning-button>
</lightning-button-group>
<template lwc:if={displayTable}>
<lightning-datatable
key-field="id"
data={records}
columns={columns}
></lightning-datatable>
</template>
<template lwc:if={displayCard}>
<div class="slds-grid slds-wrap slds-grid pull-padded-small">
<template for:each={records} for:item="contact">
<div
class="slds-col slds-small-size 1l-of-1 slds-large-size 1l-of-2
slds-var-p small"
key={contact.id}

>
<lightning-card
variant="Narrow"
title={contact.name}
icon-name="standard:contact"
>
<div class="slds-var-p-horizontal small">
<p>{contact.name}</p>
<p>{contact.title}</p>
<p>
<lightning-formatted-phone
value={contact.phone}
></lightning-formatted-phone>
</p>
<p>
<lightning-formatted-email
value={contact.email}
></lightning-formatted-email>
</p>
</div>
</lightning-card>
</div>
</template>
</div>
</template>
</div>
</template>
Your LWC JavaScript code:

import { LightningElement, wire, api } from "lwc";
import { getRelatedListRecords } from "lightning/uiRelatedListApi";
import logInteraction from "@salesforce/apex/LogContactListInteraction.log";

export default class ContactList extends LightningElement ({

432

Second-Generation Managed Packages

@api recordId;
error;
records;
displayTable
displayCard
columns = [
{ label:
{ label:
{ label:
{ label:

true;

false;

fieldName:
fieldName:
fieldName:
fieldName:

"name" 1},
"title"
"email",
"phone",

"Name",

"Title",
"Email"™,
"Phone",

b

@wire (getRelatedListRecords, {
"SrecordId",
"Contacts",

parentRecordId:

relatedListId:

fields: [
"Contact
"Contact.
"Contact.Phone",
"Contact.Email",
"Contact.Title"

.Name",
Id",

I
sortBy:
})
contactList ({ error,
if (data) {
this.records
return {

["Contact.Name"]

data }) {

= =>

data.records.map ((item)
name:
id: item.fields.Id.value,

title: item.fields.Title.value,

email: item.fields.Email.value,
item.fields.Phone.value

item.fields.Name.value,

phone:
i
1)

this.error

undefined;

} else if (error) ({

this.error error;

undefined;

this.records

}

handleClick (event) {
if (event.target.label.toLowerCase ()
this.displayTable

true;

this.displayCard false;
logInteraction ({ type: "table" });

} else if (event.target.label.toLowerCase (

this.displayTable = false;
this.displayCard = true;
logInteraction({ type: "card" });
}
}
get cardVariant () {
return this.displayCard === true ? "brand"

433

type:
type:

Considerations for Custom Interactions

"email" 1},
"phone" }

{

=== "table") {

) === "card") {

wn o,
’

Second-Generation Managed Packages Considerations for Custom Interactions

}
get tableVariant () {
return this.displayTable === true ? "brand" : "";

}
Your Apex class:

public class LogContactListInteraction {
public Enum ContactListLayouts { TABLE, CARD }

@AuraEnabled
public static void log(String type) {
try {
IsvPartners.AppAnalytics.logCustomInteraction(getInteractionLabel (type));

} catch (Exception e) {
throw new AuraHandledException (e.getMessage());

private static ContactListLayouts getInteractionLabel (String type) {

if (type.tolLowerCase() == 'table') {
return ContactListLayouts.TABLE;
} else if (type.toLowerCase() == 'card') {

return ContactListLayouts.CARD;
}

return null;

}

Next, you test your code. With your Apex code debug log level set to FINE, confirm that the custom interactions are logged by
findingeventsinyourdebuglogs called APP_ ANALYTICS FINE, APP ANALYTICS WARN,or APP ANALYTICS ERROR.

APP_ANALYTICS FINE [External]IsvPartners.AppAnalytics.logCustomInteraction was called,
but not from an installed managed package.
This means that the code is ready to be packaged.

SEE ALSO:
Package Usage Logs Schema

Considerations for Custom Interactions

434

Second-Generation Managed Packages

AppExchange App Analytics Best Practices

To plan and maximize your AppExchange App Analytics query strategy, follow our best practices.
First, use file compression to reduce your data results file size. Second, schedule and automate your
regular App Analytics queries. Third, plan, schedule, and automate catch-up queries to supplement
your regular query data.

How Does AppExchange App Analytics Data Flow?

Asyour customers use your managed packages, they produce data. Their usage data is collected
daily in our data lake from each Salesforce instance. Usage data arrives to our data lake
throughout the day. From time to time, there can be data arrival delays. Also, data builds and
timestamps vary by data type. For these reasons, to optimize your data retrieval, plan out your
AppExchange App Analytics query strategy.

How Should | Plan My App Analytics Query Strategy?

AppExchange App Analytics Best Practices

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Your detailed query strategy depends on the size and scope of your business and the data types that you're querying.

Recommendations

Your query strategy varies based on your business size and scope. Also, your query strategy must adapt as your business grows. To
stay current, follow our App Analytics query recommendations for small, medium, and large-sized partners.

Where Do | Go for More Information About AppExchange App Analytics Queries?

Questions are natural when you start automating your queries and planning your query strategy. To find a good solution when you

have questions, review your code base and the size and skill of your development team.

How Does AppExchange App Analytics Data Flow?

As your customers use your managed packages, they produce data. Their usage data is collected
daily in our data lake from each Salesforce instance. Usage data arrives to our data lake throughout
the day. From time to time, there can be data arrival delays. Also, data builds and timestamps vary
by data type. For these reasons, to optimize your data retrieval, plan out your AppExchange App
Analytics query strategy.

Because Salesforce instances and your subscribers are located around the world, the time of data
collection varies by region. EU (EMEA) data arrives first, then North America (NA) data. Data from
Asia Pacific (AP) instances arrives last.

Our AppExchange App Analytics jobs run on local instance times on a non-peak schedule. Depending
on when you query for your data and where your customers are located, sometimes you retrieve
100% of your data at one time. Other times you must issue more queries to retrieve it all.

435

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Second-Generation Managed Packages AppExchange App Analytics Best Practices

¥

| Morth America (WA} Instance | Asia Pacific (AP) Instance

EMEA data arrives earliest AP data arrives latest ‘
> Salesforce Data Lake 3
¥
Your AppAnalyticsQueryRequest

Data delivery to and arrival in our data lake also depends on factors that can affect a given instance, such as the health of the instance
or technical dependencies. Ordinarily you can expect all your org data to arrive in the data lake by 23: 00 Coordinated Universal Time
(UTQ) the day after it was recorded. However, occasionally, there can be delays.

Each AppExchange App Analytics data type is also compiled at different times.

Data Type Build Information Example

Subscriber Snapshots For the March 1, 2021 snapshot:

e Snapshots use data collected at
approximately 01:00 instancelocal = e All records have this timestamp:

time. 2021-03-01T00:00:002.

e Snapshots are generated nightly at e All data normally arrives by March 2,
approximately 03: 00 instance local 2021 23:00 UTC.
time.

e All timestamps are normalized to
00:00 UTC ofthatday.
Package Usage Summaries For the March 2021 summary available on
April 1,2021:

e Summaries use data collected for an
entire month.

o Summaries are built monthly. e Allrecords have this timestamp:

. . 2021-03-31T00:00:007Z.
e Al timestamps are normalized to

00:00 UTC onthe lastdayofthe ® All data normally arrives by April 1,2021
month. 23:00 UTC.
e In this example, we recommend that
you query for your summary data on
April 3,2021 or later. We recommend a
2-day query delay to ensure that all of
your subscriber data from all worldwide
instances finished processing.

436

Second-Generation Managed Packages AppExchange App Analytics Best Practices

Data Type Build Information Example
Package Usage Logs o Usage logs use data from the previous For the March 1, 2021 log file:
day. e All records have precise timestamps
o Usage logs are generated nightly at associated with when that log event
approximately 05: 00 instance local occurred.
time. e All data normally arrives by March 2,

2021 23:00 UTC.

How Should I Plan My App Analytics Query Strategy?

Your detailed query strategy depends on the size and scope of your business and the data types EDITIONS
that you're querying.

All partners can take advantage of these query strategies. Available in: both Salesforce
e (Choose adataresults FileType value, and select a corresponding FileCompression. Ecigzsr:z:cn: Lightning

With this query strategy, you can choose gzip compressionfor csv filesor snappy column
compression for parquet files. Available in: Enterprise,
Performance, Unlimited,

e (reate regularly scheduled, automated queries.
and Developer Editions

e To sweep in late-arriving data, create catch-up queries using the AvailableSince field.

Compress Your Results Files

Your App Analytics query plan starts with your results file type and file compression. Data can eat up time and space, so do more with
less by specifying the type of file you download. Reduce your data download time by specifying how your results file is compressed.

If you don't specify file type or file compression, your results file defaults to csv with no compression for backwards compatibility
reasons. If you choose the parquet file type, your results file includes data type information for each column.

We recommend that you always compress your results files. Choose from these SOAP APl AppAnalyticsQueryRequest
FileType and FileCompression value combinations.

FileType FileCompression

csv (default) * none (default when FileType is csv)
¢ gzip

parquet ® snappy (default when FileType is parquet)
® gzip
o none

@ Notfe: When you download your App Analytics query result data, the HTTP response contains one or two important headers. The
Content-Type header indicates the file type (txt/csv or application/parquet). For queries with csv FileType and
gzip FileCompression, the Content-Encoding header indicates gzip encoding. Modern browsers often decode the
gzip-encoded file automatically, which results in a saved, uncompressed .csv file. Regardless if the file is automatically decoded
or not, its filename extension is .csv.

437

Second-Generation Managed Packages AppExchange App Analytics Best Practices

Schedule and Automate Your Queries
After you determine what queries to run and how often to run them, you want to schedule those queries. The easiest way is via automation.

What do we mean by automation? Write code that creates query request records on your schedule, monitors them, retrieves the data,
and stores your AppExchange App Analytics data somewhere. For example, you can store the data in a custom object in your License
Management Org.

Your automation options include, but aren't limited to:

e Custom APl integrations using REST or SOAP API calls

e Salesforce DX automation using the CLI

e Salesforce flows

e Apextriggers

For example, automate the retrieval of package usage summaries using Apex triggers.

If you want to also automate the retrieval of package usage log data, look to a different storage solution that scales with the data volume
the logs contain.

Create Catch-Up Queries

A catch-up query is like a broom, sweeping for data newly added to our data lake. Catch-up queries rely on you already having reqular
queries in place.

For example, on March 2,2021 18: 00 UTC you run this regular query that retrieves package usage log data for March 1, 2021:

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:002
EndTime=2021-03-02T00:00:00Z
DataType=PackageUsagelLog

FileType=csv

FileCompression=gzip"

Rerun that exact same query on March 3,2021 18:00 UTC, butadd the AvailableSince field setto the day and time you ran
your original query: 2021-03-02T18:00:002. This query is your ad hoc catch-up query. It retrieves any data newly added to the
data lake for March 2 since you ran your regular query:

sf data create record

--sobjecttype AppAnalyticsQueryRequest

--values "StartTime=2021-03-01T00:00:00%2

EndTime=2021-03-02T00:00:00%

DataType=PackageUsagelLog

FileType=csv

FileCompression=gzip

AvailableSince=2021-03-02T18:00:002Z"

You can use catch-up queries in many different ways, which we discuss in more detail in the Recommendations section.
When creating catch-up queries, keep these considerations in mind.

e If StartTime isspecified, the AvailableSince date must be later,
e If EndTime isspecified, the AvailableSince date must be later.
e Allqueries mustinclude StartTime or AvailableSince orboth.

® AvailableSince must be earlier than now.

438

Second-Generation Managed Packages AppExchange App Analytics Best Practices

@ Notfe: What happens when you want to create an ad hoc catch-up query, but you forgot when you ran the original query? Use
Salesforce CLI and your original query’s sObjectID tolook up the QuerySubmittedTime, likethis: sf data get
record --sobjecttype AppAnalyticsQueryRequest —--sobjectid OXIXXXXXXXXXXXXXXX Setyour

ad hoc catch-up query AvailableSince valueto equal the QuerySubmittedTime.

SEE ALSO:
Apache Parquet
Automate AppAnalytics - AWS Stack

Recommendations

Your query strategy varies based on your business size and scope. Also, your query strategy must
adapt as your business grows. To stay current, follow our App Analytics query recommendations
for small, medium, and large-sized partners.

@ Nofte: Inthe unlikely event of data delays, we regenerate data for log events that happened
up to 30 days in the past. To ensure that you consistently retrieve the most complete data,
we recommend that you schedule catch-up queries that look back 30 days.

Small-Sized Partners

Small-sized partners have manageable subscriber bases and one or two managed packages.
A small partner’s total daily usage data across all managed packages is 5 GB or less. Also, small
partner’s queries complete well under the 15-minute processing time limit.

Medium-Sized Partners

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Medium-sized partners have bigger subscriber bases and about six managed packages. A medium-sized partner’s total daily usage
data across all managed packages is at or just over 20 GB. Also, this partner’s queries approach or hit the 15-minute processing time

limit.

Large-Sized Partners

Large partners have large subscriber bases and many managed packages. A large partner’s total daily data usage is more than 20
GB. Sometimes a large partner’s data from just one managed package is larger than the 20-GB daily limit. Also, large partners often
must create a smaller time range for each query to complete in under the 15-minute processing time limit.

Small-Sized Partners

Small-sized partners have manageable subscriber bases and one or two managed packages. A
small partner’s total daily usage data across all managed packagesis 5 GB or less. Also, small partner’s
queries complete well under the 15-minute processing time limit.

Given how manageable smaller partners’ data is, after you run your regular queries one time, we
recommend that you run a daily catch-up query as your main query. Sweep in all data for all your
managed packages for the last 30 days.

Data Type How to Get Started How to Schedule
Catch-Up Queries

Subscriber Snapshots An initial query to retrieve data

e One daily catch-up query.
from when App Analytics was / Patey

439

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

https://parquet.apache.org/
https://medium.com/@kamipatel/automate-appanalytics-aws-stack-74cbebc49d2a

Second-Generation Managed Packages AppExchange App Analytics Best Practices

Data Type How to Get Started How to Schedule Catch-Up Queries
enabled for your managed package. e Set AvailableSince totheday
and time your last reqular query ran.
e Set StartTime to 30 days ago.
e Omit EndTime.

e FEachdayadvance StartTime and
AvailableSince by 1day.

Package Usage Summaries An initial query to retrieve data from when
App Analytics was enabled for your
managed package.

e One daily catch-up query.

e Set AvailableSince totheday
and time your last reqular query ran.

e Set StartTime to thefirst of the
previous month.

e Omit EndTime.

e FEach day advance
AvailableSince by 1day.

e FEachmonthadvance StartTime to
the first of the previous month.

Package Usage Logs An initial query to retrieve data from when
App Analytics was enabled for your
managed package.

e One daily catch-up query.

e Set AvailableSince totheday
and time your last reqular query ran.

e Set StartTime to 30 daysago.
e Omit EndTime.

e Fachdayadvance StartTime and
AvailableSince by 1day.

Example: Most of your customers use your package on an NA or EU instance, so you run your queries at 18: 00 UTC. You
have a couple customers onan AP instance, so you create catch-up queries to ensure that you capture data from around the world.

e OnMarch3Tat 18:00 UTC,runyour regular queries.

Subscriber Snapshot

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "DataType=SubscriberSnapshot
FileType=csv

FileCompression=gzip
StartTime=2020-03-30T00:00:00Z
EndTime=2020-03-31T00:00:00Z"

Package Usage Summary

sf data create record
--sobjecttype AppAnalyticsQueryRequest

440

Second-Generation Managed Packages

--values "DataType=PackageUsageSummary
FileType=csv

FileCompression=gzip
StartTime=2020-02-01T00:00:00%Z
EndTime=2020-03-01T00:00:00Z"

Package Usage Log

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsagelog
FileType=csv

FileCompression=gzip
StartTime=2020-03-30T00:00:00Z
EndTime=2020-03-31T00:00:00Z"

On April 1Tat 18:00 UTC run these three catch-up queries.

Subscriber Snapshot Catch-Up Query

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "DataType=SubscriberSnapshot
FileType=csv

FileCompression=gzip
StartTime=2020-03-02T00:00:00Z
AvailableSince=2020-03-31T18:00:002"

Package Usage Summary Catch-Up Query

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsageSummary
FileType=csv

FileCompression=gzip
StartTime=2020-03-01T00:00:00Z
AvailableSince=2020-03-31T18:00:002Z"

Package Usage Log Catch-Up Query

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsagelog
FileType=csv

FileCompression=gzip
StartTime=2020-03-02T00:00:00Z
AvailableSince=2020-03-31T18:00:002"

AppExchange App Analytics Best Practices

On April 2at 18:00 UTC, run the same catch-up queries, but advance the subscriber snapshot and package usage log
AvailableSince and StartTime date by 1 day each. Advance the package usage summary AvailableSince

by 1 day.
Subscriber Snapshot Catch-Up Query

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=SubscriberSnapshot

441

Second-Generation Managed Packages AppExchange App Analytics Best Practices

FileType=csv

FileCompression=gzip
StartTime=2020-03-03T00:00:00Z
AvailableSince=2020-04-01T18:00:002Z"

Package Usage Summary Catch-Up Query

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsageSummary
FileType=csv

FileCompression=gzip
StartTime=2020-03-01T00:00:00Z
AvailableSince=2020-04-01T18:00:002"

Package Usage Log Catch-Up Query

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsagelog
FileType=csv

FileCompression=gzip
StartTime=2020-03-03T00:00:00Z
AvailableSince=2020-04-01T18:00:002"

Medium-Sized Partners

Medium-sized partners have bigger subscriber bases and about six managed packages. A EDITIONS
medium-sized partner’s total daily usage data across all managed packages is at or just over 20 GB.
Also, this partner's queries approach or hit the 15-minute processing time limit.

Available in: both Salesforce
We recommend that after you run your regular queries one time, use catch-up queries as your main Classic and Lightning
queries for subscriber snapshots and package usage summaries. Use a combination of daily queries Experience

and catch-up queries for package usage logs. Available in: Enterprise,

Performance, Unlimited,
Data Type How to Get Started How to Schedule and Developer Editions

Catch-Up Queries

Subscriber Snapshots An initial query to retrieve data
from when App Analytics was
enabled for your managed
packages.

e One daily query.

Set AvailableSince
to the day and time your
last regular query ran.

e Set StartTime t030
days ago.
e Omit EndTime.

e Fach day advance
StartTime and
AvailableSince by
1 day.

442

Second-Generation Managed Packages

Data Type How to Get Started

Package Usage Summaries

Package Usage Logs

managed packages.

An initial query to retrieve data from when
App Analytics was enabled for your

One regular daily query per package.

AppExchange App Analytics Best Practices

How to Schedule Catch-Up Queries

One daily catch-up query.

Set AvailableSince tothe day
and time your last regular query ran.

e Set StartTime to thefirst of the
previous month.

e Omit EndTime.

e Fachday advance
AvailableSince by 1day.

e FEachmonthadvance StartTime to
the first of the previous month.

e One daily catch-up query per package.

e Set AvailableSince totheday
and time your last reqular query ran.

e Set StartTime to 30 daysago.

® Set EndTime equaltothe
StartTime of your regular query.

e FEachdayadvance StartTime,
EndTime,and AvailableSince
by 1 day.

Example: Half of your customers use your package on an NA or EU instance, so you run your regular queries at 18: 00 UTC.
The other half of your customers are on an AP instance, so you create catch-up queries to ensure that you capture data from around
the world.

OnMarch31at 18:00 UTC, run your regular package usage log queries for each of your packages.

Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00%2
EndTime=2021-03-31T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX

FileType=csv

FileCompression=gzip"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00Z
EndTime=2021-03-31T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX

443

Second-Generation Managed Packages AppExchange App Analytics Best Practices
FileType=csv
FileCompression=gzip"
e OnApril1at 18:00 UTC onwards, run regular and catch-up package usage log queries.
=
—— (4]

A. Regular Queries

Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsagelog
PackageIds=0336XXXXXXXXXX

FileType=csv

FileCompression=gzip"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00%2
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsagelog
PackageIds=0337XXXXXXXXXX

FileType=csv

FileCompression=gzip"

B. Catch-Up Queries
Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z2
EndTime=2021-03-31T00:00:00Z
AvailableSince=2021-03-31T18:00:00%2
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX

FileType=csv

FileCompression=gzip"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=021-03-01T00:00:00Z
EndTime=2021-03-31T00:00:00%Z
AvailableSince=2021-03-31T18:00:00%
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX

444

Second-Generation Managed Packages

FileType=csv
FileCompression=gzip"

AppExchange App Analytics Best Practices

On April 2, repeat the same queries that you ran on April 1, but advance the queries by a day.

s |

A. Regular Queries

Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00%2
EndTime=2021-04-02T00:00:00Z
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX

FileType=csv

FileCompression=gzip"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00Z
EndTime=2021-04-02T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX

FileType=csv

FileCompression=gzip"

B. Catch-Up Queries
Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-02T00:00:00Z
EndTime=2021-04-01T00:00:00Z
AvailableSince=2021-04-01T18:00:00Z
DataType=PackageUsagelog
PackageIds=0336XXXXXXXXXX

FileType=csv

FileCompression=gzip"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2020-03-02T00:00:00%2
EndTime=2021-04-01T00:00:00Z
AvailableSince=2021-04-01T18:00:00Z
DataType=PackageUsagelog
PackageIds=0337XXXXXXXXXX

445

Second-Generation Managed Packages AppExchange App Analytics Best Practices

FileType=csv
FileCompression=gzip"

Large-Sized Partners

Large partners have large subscriber bases and many managed packages. A large partner’s total EDITIONS
daily data usage is more than 20 GB. Sometimes a large partner’s data from just one managed
package is larger than the 20-GB daily limit. Also, large partners often must create a smaller time
range for each query to complete in under the 15-minute processing time limit.

Available in: both Salesforce
Classic and Lightning

Large partners frequently create one query per managed package per 12, 6, or 1-hour increments Experience
throughout a 24-hour period. How frequently you schedule your queries really depends on your Available in: Enferprise,
data volume. Performance, Unlimited,
We recommend that you use a combination of queries and multiple catch-up queries for all data and Developer Editions
types
Data Type How to Get Started How to Schedule Catch-Up Queries
Subscriber Snapshots One daily query per package. « One daily query per package.
e Set AvailableSince totheday
and time your last reqular query ran.
e Set StartTime to 30 daysago.
e Omit EndTime.
e Fachdayadvance StartTime and
AvailableSince by 1day.
Package Usage Summaries One daily query per package. « One daily catch-up query per package.
e Set AvailableSince totheday
and time your last regular query ran.
e Set StartTime to thefirst of the
previous month.
e Omit EndTime.
e FEach day advance
AvailableSince by 1day.
e FEachmonthadvance StartTime to
the first of the previous month.
Package Usage Logs « Toretrieve all your data, create multiple Create two levels of catch-up queries per
segmented daily, automated App day.
Analytics queries spread throughoutthe ® Create one catch-up query per package
day. that sweeps data from 2 days ago.
e Break up your requests by managed e (reate a second catch-up query that
package and by time increments sweeps data from 3 to 30 days ago.
throughout the day.

446

Second-Generation Managed Packages AppExchange App Analytics Best Practices

Data Type How to Get Started How to Schedule Catch-Up Queries

e Fachdayadvance StartTime,
EndTime,and AvailableSince
by 1 day.

Example: Your customers use your package on all Salesforce instances around the world, and your managed packages produce
significant amounts of data. You schedule queries to run at the same time, each covering a 12-hour period, and you create a layered
catch-up query plan to capture data from all instances.

In this example, we show two of your dozens of managed packages.
e OnMarch3Tat 18:00 UTC, runyour regular package usage log queries.

Package 1

sf data create record data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00
EndTime=2021-03-30T12:00:00
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T12:00:00
EndTime=2021-03-31T00:00:00
DataType=PackageUsagelog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00
EndTime=2021-03-30T12:00:00
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T12:00:00
EndTime=2021-03-31T00:00:00
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

447

Second-Generation Managed Packages

AppExchange App Analytics Best Practices

On April 1at 18:00 UTC, run your regular and catch-up package usage log queries.

From 3 up to 30 days ago: 2 Days Ago: Yesterday: Today: Tomorrow:
March 2 through March 29 March 30 March 31 Aprill April2
— 0

|

A. Package Usage Log Regular Queries
Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z2
EndTime=2021-03-31T12:00:00Z
DataType=PackageUsagelog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T12:00:00Z
EndTime=2021-04-01T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-03-31T12:00:00%Z
DataType=PackageUsagelog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T12:00:00%2
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

B. Package Usage Log 2 Days Ago Catch-Up Queries
Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00%2

448

Second-Generation Managed Packages AppExchange App Analytics Best Practices

EndTime=2021-03-31T00:00:00Z
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-03-31T18:00:002Z"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00Z
EndTime=2021-03-31T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy
AvailableSince=2020-03-31T18:00:002"

C. Package Usage Log From 3 to 30 Days Ago Catch-Up Queries
Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z
EndTime=2021-03-30T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy
AvailableSince=2020-03-31T18:00:002"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z
EndTime=2021-03-30T00:00:00%Z
DataType=PackageUsagelog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy
AvailableSince=2020-03-31T18:00:002Z"

e On April 2 onwards, run your regular and your catch-up package usage log queries, advancing the dates by 1 day.

From 3 up to 30 days ago: Yesterday: Today: Tomorrow:
March 3 through March 30 April 1 April2 April3
— O

—_— (5]

A. Package Usage Log Regular Queries

449

Second-Generation Managed Packages AppExchange App Analytics Best Practices

Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00Z
EndTime=2021-04-01T12:00:00%Z
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T12:00:00Z2
EndTime=2021-04-02T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00Z
EndTime=2021-04-01T12:00:00Z
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T12:00:00Z2
EndTime=2021-04-02T00:00:00%Z
DataType=PackageUsagelog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy"

B. Package Usage Log 2 Days Ago Catch-Up Queries
Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00%2
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy
AvailableSince=2020-04-01T18:00:002"

450

Second-Generation Managed Packages

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-04-01T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy
AvailableSince=2020-04-01T18:00:002"

C. Package Usage Log From 3 to 30 Days Ago Catch-Up Queries

Package 1

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-02T00:00:00Z
EndTime=2021-03-31T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0336XXXXXXXXXX
FileType=parquet

FileCompression=snappy
AvailableSince=2020-04-01T18:00:002Z"

Package 2

sf data create record

--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-02T00:00:00Z
EndTime=2021-03-31T00:00:00%Z
DataType=PackageUsagelLog
PackageIds=0337XXXXXXXXXX
FileType=parquet

FileCompression=snappy
AvailableSince=2020-04-01T18:00:002Z"

AppExchange App Analytics Best Practices

Where Do | Go for More Information About AppExchange App Analytics Queries?

Questions are natural when you start automating your queries and planning your query strategy. EDITIONS

To find a good solution when you have questions, review your code base and the size and skill of

your development team.

If you still need help, try these resources:

If you have an assigned AppExchange Partner Account Manager (PAM) or AppExchange
Technical Evangelist (TE), reach out to them.

Otherwise, go to the Partner Community and post a question to the ISV TE Experts - Partner
Intelligence Chatter group.

45]

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

https://partners.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HWsf
https://partners.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HWsf

Second-Generation Managed Packages Package Usage Summaries

Package Usage Summaries

Package usage summaries provide high-level metrics by calendar month. Discover how many users access your package and which
operations they perform.

@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.
AppExchange App Analytics tracks Ul, APl-based, Lightning-based, and Apex operations and logs each CRUD operation on components
and custom objects in packages. Events from sandbox, scratch, and trial orgs aren't tracked in package usage summaries.

Partners and subscribers can access package usage data. Usage summaries become available at the beginning of the subsequent month.
For example, you can get the usage summary for May at the beginning of June.

e AppExchange Partners can request monthly usage summaries using the AppAnalyticsQueryRequest in SOAP API from the license
management org that owns the package.

e Subscribers can download usage summaries from Setup for any package that they installed that passed security review.

Package Usage Summary Schema
Use the package usage summary to discover how many users access your package and which operations they perform.

Package Usage Summary Schema

Use the package usage summary to discover how many users access your package and which operations they perform.

Package usage summaries contain aggregate data derived from related package usage logs. ISV partners have access to package usage
summaries by default, and they can activate access to package usage logs and subscriber snapshots. Subscribers only have access to
package usage summaries.

Field Description

custom entity The developer name of the component or custom object.

custom entity type The type of component or custom object that the user viewed or manipulated.
Examples:

® AnalyticsDashboard

® AnalyticsLens

® ApexClass

® ApexTrigger

® CustomInteractionLabel

® CustomInteractionFailure
® CustomObject

® ExternalObject

® LightningPage

® TLightningComponent

® VisualforcePage

managed package namespace Namespace of the package.

month The month that this usage summary applies toin YYYY-MM format. Example: 201 9-03.

452

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf

Second-Generation Managed Packages

Field

num_ creates
num deletes
num events

num_ reads

num_updates
num views

organization edition

organization id
organization name

organization status

package id

user id token

user type

Package Usage Summaries

Description

The number of new records created from the package.

The number of deleted records associated with the package.

The number of log records associated witha custom_entity.

The aggregate number of records associated with the custom_entity thatwas
read.

The definition of num_reads changed with the Spring '23 release. Some data from
February 2023 and all data dated January 2023 and earlier used this previous
num_reads definition: the aggregate number of records associated with the package
that were read, plus the number of SOSL and SOQL queries performed on the entity.

The number of records associated with the package that were updated.
The number of times the component or page has been viewed.
The name of the Salesforce edition that the subscriber org is using.

Examples:

® Developer Edition
® Enterprise Edition

® Unlimited Edition
The 15-character ID of the subscriber org.

The name of the subscriber org. Example: Acme, Inc.

The paid status of the subscriber org.
Examples:

® Active

¢ Demo
® Free
® Trial

The ID of the package.

The hashed token representing the ID of the user who accessed the package. The token
persists over time, even if a user’s details change. The token also persists across any
packages that the user interacts with.

The user ID token starts with the prefix 005-. In compliance with privacy regulations, our
systems can't access the actual user ID. Likewise, the hashed token can't be linked to the
user ID.

The user license category of the user accessing Salesforce services through the Ul or API.
Examples:

® Guest

® Partner

453

Second-Generation Managed Packages Package Usage Logs

Field Description

® Standard

SEE ALSO:
Package Usage Logs Schema

Package Usage Logs

Analyze adoption and user behavior, then make informed feature development decisions based on data from package usage logs.
AppExchange App Analytics tracks Ul, API-based, Lightning-based, and Apex operations, and it logs each CRUD operation on components
and custom objects in packages. Events from sandbox and trial orgs are tracked in package usage logs. Events from scratch orgs aren’t
tracked.

@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.

How to Read App Analytics Package Usage Log Data

App Analytics package usage logs contain data about how subscribers interact with your managed package. Your managed package
contains packaged components, and each package usage log line describes an interaction that a user has with one of your packaged
components. To understand that interaction, analyze each log line—or record—and focus on: what packaged component was
accessed, who interacted with that packaged component, and how that packaged component interaction occurred. Finally, analyze
the specific interaction data.

Package Usage Logs Schema

Make informed development decisions based on package usage log data. Analyze adoption, user behavior, company information,
and Lightning app and page usage data. Package usage logs list activity during a 24-hour period, between 12:00 AM and 11:59 PM
utcC.

How to Read App Analytics Package Usage Log Data

App Analytics package usage logs contain data about how subscribers interact with your managed EDITIONS
package. Your managed package contains packaged components, and each package usage log
line describes an interaction that a user has with one of your packaged components. To understand Available in: both Salesforce
that interaction, analyze each log line—or record—and focus on: what packaged component was Classic and Lightning
accessed, who interacted with that packaged component, and how that packaged component Experience

interaction occurred. Finally, analyze the specific interaction data.

Available in: Enterprise,
@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in the Performance, Unlimited,

AppExchange Program Policies. Usage data from Government Cloud and Government Cloud and Developer Editions
Plus orgs isn't available in App Analytics.

Determine What Packaged Component Was Accessed
To analyze a package usage log record, always start with your packaged component.

Identify Who Interacted with Your Packaged Component
After you identify your packaged component, identify both the subscriber org and the user who triggered the interaction.

454

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/

Second-Generation Managed Packages

Identify How a User Interacted with Your Packaged Component

After you identify your packaged component and who interacted with it, identify how the user interacted with your packaged
component.

Custom Object and External Object Interactions

Whenalog record in your package usage loghas custom entity type equalto CustomObject or ExternalObject,
it means that a user performed an action that resulted in a create, read, update, or delete (CRUD) interaction on your object.
Lightning Interactions

Eachrecordinyour package usagelogthathasa custom _entity type of LightningComponent or LightningPage
describes an interaction with your packaged Lightning component or page.

Apex Interactions

Each record in your package usage log that hasa custom _entity type of ApexClass or ApexTrigger describesan
interaction with your packaged Apex class or trigger.

Visualforce Interactions

Each record in your package usage log thathasa custom _entity type of VisualforcePage describes an interaction
with your packaged Visualforce pages.

CRM Analytics Asset Interactions

Eachrecord in your package usage log thathasa custom entity type of AnalyticsDashboard, AnalyticsLens,
or AnalyticsRecipe describes an interaction with your packaged CRM Analytics assets.

Custom Interactions

To understand which features and Ul components a subscriber interacted with and how they flow through a user journey, create
custom interactions with Apexenumsandthe IsvPartners.AppAnalytics.logCustomInteraction Apexmethod.

SEE ALSO:

Package Usage Logs Schema

Determine What Packaged Component Was Accessed

To analyze a package usage log record, always start with your packaged component. EDITIONS

In App Analytics package usage logs, the name of each packaged component is represented by

the custom_entity fieldandits typeis represented by the custom entity type field. Available in: both Salesforce
Your managed package likely contains multiple packaged components. Classic and Lightning
Experience

To identify each packaged component uniquely, combine these fields.
Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

- package id

- package version_ id

- managed package namespace
— custom entity

- custom entity type

455

Package Usage Logs

Second-Generation Managed Packages Package Usage Logs

Identify Who Interacted with Your Packaged Component

After you identify your packaged component, identify both the subscriber org and the user who EDITIONS

triggered the interaction.

e |dentify the subscriber org with the organization id.Some standard fields are always Available in: both Salesforce
populated and provide you with info about the subscriber org. Some supplemental fields, when Classic and Lightning
populated, add detail about that org. Experience

This table describes the subscriber org fields. Available in: Enterprise,

Performance, Unlimited,

Standard Fields Supplemental Fields and Developer Editions
— organization name - organization country code

- organization_ status - organization language locale

- organization edition — organization time zone

- organization_ type - organization instance

- cloned from organization id

e Usethe user id token toidentify and describe the user associated with the interaction. This hashed token represents the ID
of the user who accessed the package. The ID persists, even if a user's details change, across any packages that the user interacts
with.

These supplemental fields, when populated, can provide you with more data about the user.

- user type

- user agent

= user country code

- user_ time zone

- session key

- login_ key

Because user id token canrepresent many different usage situations, we don't recommend using App Analytics for auditing
customer license usage.

Identify How a User Interacted with Your Packaged Component

After you identify your packaged component and who interacted with it, identify how the user EDITIONS
interacted with your packaged component.
e |dentify how the userinteracted with your packaged componentwith log record_type. Available in: both Salesforce
Other common fields associated with each interaction are: Classic and Lightning
Experience

- request_ id

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

- timestamp derived

456

Second-Generation Managed Packages Package Usage Logs

Custom Object and External Object Interactions

When a log record in your package usage log has custom_entity type equalto EDITIONS
CustomObject or ExternalObject,itmeansthata user performed an action that resulted
in a create, read, update, or delete (CRUD) interaction on your object.

Available in: both Salesforce

To determine the type and amount of CRUD that occurred on your packaged component, focus Classic and Lightning
on: Experience
* operation type Available in: Enterprise,

Performance, Unlimited,

® operation count ”
and Developer Editions

Many user actions result in CRUD, such as platform events, Apex REST API requests, or scheduled

job executions. Each actionis related toa 1og_record_type, and each log record has some

standard fields that are always populated with data. For example, an Apex REST APl request witha 1og record type of
ApexRestApi alwayshas url, api version, http method,and http status_ code data. Many actions produce log
records with supplemental fields that are often populated. For example, an Apex REST APl request sometimes has request_status,
referrer uri,and api_ type data.

CRUD from Apex REST API Requests

Toanalyze an Apex REST APl request that resulted in a CRUD operation on your packaged component, lookfora 1og_record type
of ApexRestApi. Then use these fields to dig into the details of the Apex REST APl interaction.

Standard Data Supplemental Data

® url ® request status
® api version ® referrer uri

® http method ® api type

® http status_code ® rows_ processed

® request size
® response_size

¢ num fields

CRUD from Apex SOAP API Requests

Toanalyze an Apex SOAP APl request that resulted in a CRUD operation on your packaged component, lookfora 1og_record type
of ApexSoap. Then use these fields to explore the details of the Apex SOAP APl interaction.

Standard Data Supplemental Data

® api version ® url

® class name ® request status
® method name ¢ referrer uri

457

Second-Generation Managed Packages Package Usage Logs

CRUD from REST API Requests

To analyze a REST API request that resulted in a CRUD operation on your packaged component, look fora 1og_record type of
RestApi. Then use these fields to understand the details of the REST API interaction.

Standard Data Supplemental Data

° url ® request status
® api version ® referrer uri

® http method ® api type

® http status_code i

rows_processed
® request size
® response_size

® num fields

CRUD from SOAP API Requests

To analyze a SOAP APl request that resulted in a CRUD operation on your packaged component, look fora 1og_record type of
APT. Then use these fields to uncover the details of the SOAP APl interaction.

Standard Data Supplemental Data

® api type °* url

® api version ® request status
® request size ® request uri

® response size ® rows_processed
® method name d

num fields

CRUD from Bulk APl Requests

To analyze a Bulk APl request that resulted in a CRUD operation on your packaged component, look fora Log_record type of
BulkApiV1 or BulkApiV2. Then use these fields to discover the details of the Bulk APl interaction.

Standard Data Supplemental Data
® api version ® api type
* bulk job id o

rows processed
® Dbulk batch id

® bulk operation

CRUD from Scheduled Job Executions

Toanalyze a scheduled job execution that resulted in a CRUD operation on your packaged component, lookfora 1og _record type
of CronJob. There are no additional package usage log fields to describe scheduled job executions.

458

Second-Generation Managed Packages Package Usage Logs

Standard Data Supplemental Data

none none

CRUD from Platform Events

To analyze a platform event that resulted in a CRUD operation on your packaged component, look fora 1og_record type of
PlatformEventConsumer. Then use these fields to discover the details of the platform event.

Standard Data Supplemental Data

none ® event

® event subscriber

® event count

CRUD from Queueable Apex Executions

Toanalyze a queueable Apex execution that resulted in a CRUD operation on your packaged component, lookfora 1og record type
of QueuedExec. There are no additional package usage log fields to describe Apex executions.

Standard Data Supplemental Data

none none

CRUD from Standard User Interface Requests

To analyze a user interaction that resulted in a CRUD operation on your packaged component, look fora 1og_record type of
URI. Then use these fields to discover the details of the user interaction.

Standard Data Supplemental Data

url ® request status

¢ referrer uri

CRUD from Visualforce Remoting Requests

To analyze a Visualforce Remoting request that resulted in a CRUD operation on your packaged component, look for a
log record type of VFRemoting. Then use these fields to explore the details of the Visualforce Remoting request.

Standard Data Supplemental Data

e class_name o url

e method_name ® request status
¢ referrer uri

® request size

459

Second-Generation Managed Packages Package Usage Logs

Standard Data Supplemental Data

® response_size

CRUD from Visualforce Requests

To analyze a Visualforce request that resulted in a CRUD operation on your packaged component, look fora 1og record type of
VisualforceRequest. Then use these fields to explore the details of the Visualforce request.

Standard Data Supplemental Data

url ® request status

¢ referrer uri
® request size

® response_size

CRUD from All Other User Actions

To analyze any other user action that results in a CRUD operation on your packaged component, look fora 1og record type of
UnassociatedCRUD. There are no additional package usage log fields to describe all other interactions.

Standard Data Supplemental Data

none none

@ Example: Let's look at an example package usage log record and analyze the custom or external object interaction.

{
"timestamp derived": "2022-12-15T05:47:35.9452",
"log record type": "VFRemoting",
"request id": "4mbhuJkvJ7Q83t1lqg2z5aAk",
"organization id": "00Dxx0000006H21",
"organization name": "MyCustomer Inc.",
"organization status": "Demo",
"organization edition": "Enterprise Edition",
"organization country code": "IN",
"organization language locale": "en US",
"organization time zone": "Australia/Sydney",
"organization instance": "GSO",
"organization type": "Production",
"user id token": "005-rBBA92863J08GJIN3pT75gp0cG8a9zlvpH6MOti/35%0=",
"user type": "Standard",
"url":"uwlNmuTl+gH+xKg+xCoxiaAyOOhw8B4WLeQXAbgx+mA=",
"package id": "033xx0000004FgD",
"package version id": "04txx00000041di",
"managed package namespace": "Acme",
"custom entity": "Insurance Agent",
"custom entity type": "CustomObject",

460

Second-Generation Managed Packages Package Usage Logs

"operation type": "INSERT",

"operation count": 2,

"session key": "9/uZ+soHD+0UgKYt",

"login key": "5tjyGvX04w06xFgT",

"user agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10 15 7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/IP_ADDRESS REMOVED Safari/537.36",

"user country code": "IN",

"user time zone": "Asia/Kolkata",

"class_name": "shwGCoJjDrkhbw+CY4TFzVxFWypNO7UGvtGkexbj/y4=""),

"method name": "3/UbVOES5yIW8a3c2Fb2XXjfWselMUekEZWX44tp5TIs=""
}

The Insurance Agent packaged component of type CustomObject had CRUD performed as a result of a user action
from the subscriber org My Customer Inc. Specifically, two records were inserted during a Visualforce Remoting request
that the user performed at 2022-12-15 at 05:47 am UTC.

The key data in this analysis are:

Question Field Value

What ® custom entity ¢ Insurance Agent
® custom entity type ® CustomObject
® package version id ® 04txx00000041Idi

® managed package namespace © Acme

Who ° organization id * 00Dxx0000006H21
® user_ id token .
How log record type VFRemoting
How Much ® operation type ® TINSERT
® operation count e
When timestamp derived 2022-12-15T05:47:35.945%2

In this example, the Visualforce Remoting code isn't owned by the package, so url, class name,and method name are

tokenized.

"url": "uwlNmuTl+gH+xKg+xCoxiaAyOOhw8B4WLeQXAbgx+mA="",

"class name": "shwGCoJjDrkhbw+CY4TFzVxFWypNO7UGvtGkexbj/y4=",
"method name": "3/UbVOES5yIW8a3c2Fb2XXjfWselMUekEZWX44tp5TJs=""

If the Visualforce Remoting code is part of the package, you see actual values instead of tokens.

SEE ALSO:

Package Usage Logs Schema

461

Second-Generation Managed Packages Package Usage Logs

Lightning Interactions

Each record in your package usage log thathasa custom entity type of EDITIONS
LightningComponent or LightningPage describesan interaction with your packaged
Lightning component or page.

Available in: both Salesforce

@ Note: We're continually improving the recording of Lightning interaction data in package Classic and Lightning

usage logs. Many interactions with your packaged Lightning component or page are available Experience

in AppExchange App Analytics, but not all. To determine which interactions we capture for Available in: Enterprise,
your specific package, compare your packaged components to your App Analytics package Performance, Unlimited,
usage logs. and Developer Editions

Lightning User Interaction

When a userinteracts with your LightningPage or LightningComponent packaged component,a log record type
of LightningInteraction iscreated. Some standardfields are always populated with data. For example, a Lightning component
interaction always has app_name and ui_event source data. Lightning interactions have supplemental fields that are often
populated. For example, a Lightning interaction sometimes also has page app name and page context data.

Standard Data Supplemental Data

® app_name ® page app name
® uli_event source ® page_ context

® uli event type ® related list

® target ui element ® page url

¢ parent ui element

Lightning Page View

When a user views your Lightning page, a 1og_record_type of LightningPageView is created. Some standard fields are
always populated with data. For example, a Lightning page view always has app_name and page app_name data. Lightning
page views have supplemental fields that are often populated. For example, a Lightning page view sometimes also has
page_entity type and prevpage url data.

Standard Data Supplemental Data
® app name ® page entity type
® page_app_name ® prevpage url
® page context ® related list

® page url

Example: Let’s look at an example package usage log record and analyze the Lightning interaction.

{
"timestamp derived": "2022-11-22T06:17:39.167Z",
"log record type": "LightningInteraction",
"request id": "TID:7635077000004b3035",

462

Second-Generation Managed Packages

"organization id": "00Dxx0000006H21",
"organization name": "MyCustomer Inc.",
"organization status": "Demo",

"organization edition": "Enterprise Edition",
"organization country code": "IN",
"organization language locale": "en US",
"organization time zone": "Australia/Sydney",
"organization instance": "GSO",

"organization type": "Production",

Package Usage Logs

"user id token": "005-9BwnBWYOS5FMn4cZlsLw/7F3LmTpoe8M77GrZz0ZHL6xQk=",

"user type": "Standard",
"package id": "033xx0000004FgD",
"package version id": "04txx0000004Idi",
"managed package namespace": "Acme",
"custom entity": "Acme Insurance Agents",
"custom entity type": "LightningPage",
"session key": "214YtFB/RmsRKVsS",
"login key": "fGV6RgVOH3ZCgl2v",
"user agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 15 7)

(KHTML, like Gecko) Chrome/IP_ ADDRESS REMOVED Safari/537.36",

}

"user country code": "US",

"user time zone": "America/Los_Angeles",

"app name": "one:one",

"page app name": "Insurance App",

"page context": "app flexipage:lwcAppFlexipageWrapper",
"ui event source": "click",

"ui event type": "user",

"ui event sequence num": "10",

"target ui element": "setup-app-nav-menu-item-link",
"parent ui element": "global-setup",

"page url": "/lightning/n/Acme Insurance Agents"

AppleWebKit/537.36

The Acme Insurance Agents Lightning page was interacted with as a result of a user action from subscriber org
MyCustomer Inc.Specifically, a Lightning interaction took place on the page on 2022-11-22 at 6:17 am.

The key data in this analysis are:

Question Field Value

What ® custom entity ® Acme Insurance Agents
® custom entity type ® LightningPage
® package version_ id ® 04txx00000041di

Who

How

When

® managed package namespace © Acme

® organization id ® 00Dxx0000006H21

® user id token ° (BBBCHHMZISWEIR R A 60
log _record type LightningInteraction
timestamp derived 2022-11-22T06:17:39.167%

463

Second-Generation Managed Packages Package Usage Logs

@ Nofe: Lightning interaction data is captured on an event by event basis.

SEE ALSO:
Package Usage Logs Schema
Lightning Interaction Event Type
Lightning Page View Event Type

Apex Interactions

Each record in your package usage log thathasa custom entity type of ApexClass or ApexTrigger describesan
interaction with your packaged Apex class or trigger.

Available in: both Salesforce Classic and Lightning Experience

Available in: Enterprise, Performance, Unlimited, and Developer Editions

Apex Execution

When log record type is ApexExecution, the log record is associated with a user action that resulted in the execution of
Apex code from an Apex class or trigger. Only the outermost Apex is captured.

Standard Data Supplemental Data

® entry point num_sogl queries

® quiddity

Apex Unexpected Exception

When log record type is ApexUnexpectedException, the logrecord is associated with a user action that resulted in an
Apex class or trigger throwing an unhandled exception. The stack_trace field provides detail about the Apex unexpected exceptions.

Standard Data Supplemental Data

stack trace none

@ Example: Let's look at an example package usage log record and analyze the Apex interaction.

{
"timestamp derived": "2022-11-22T06:19:33.990z",
"log record type": "ApexExecution",
"request id": "4mbhxFWBBXz83tlqg2z5aAk",
"organization id": "00Dxx0000006H21",
"organization name": "MyCustomer Inc.",
"organization status": "Demo",
"organization edition": "Enterprise Edition",
"organization country code": "IN",

464

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_eventlogfile_lightninginteraction.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_eventlogfile_lightningpageview.htm

Second-Generation Managed Packages

"organization language locale": "en US",
"organization time zone": "Australia/Sydney",
"organization instance": "GSQO",

"organization type": "Production",

Package Usage Logs

"user id token": "005-9BwnBWYOS5FMn4cZlsLw/7F3LmTpoe8M77GrZz0ZHL6xQk=",

"user type": "Standard",

"package id": "033xx0000004FgD",

"package version id": "04txx00000041di",
"managed package namespace": "Acme",

"custom entity": "InsuranceDetailsBatchable",
"custom entity type": "ApexClass",

"session key": "214YtFB/RmsRKVsS",

"login key": "fGV6RgVOH3ZCgl2v",

"user agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10 15 7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/IP ADDRESS REMOVED Safari/537.36",

"user country code": "US",
"user time zone": "America/Los Angeles",

"entry point": "Acme.InsuranceDetailsBatchable",

"num soql queries": "2",
"quiddity": "A"
}

The InsuranceAgentDetailsBatchable packaged component of type ApexClass was interacted with as a result
of a useraction from subscriber org MyCustomer Inc. Specifically, an execution of a batch Apexjob occurred on 2022-11-22

at 6:19 am. The batch Apex job is represented by Quiddity = A.

The key data in this analysis are:

Question Field

What ° custom entity

® custom entity type

® package version id

® managed package namespace

Who ® organization id
® user id token
How
® log record type
® quiddity
When timestamp derived
SEE ALSO:

Package Usage Logs Schema

Apex Developer Guide

465

Value

® TInsuranceDetailsBatchable
® ApexClass
® 04txx00000041di

® Admc

® 00Dxx0000006H21
* (BB ZISWEIR R AR 60«

® ApexExecution

* A

2022-11-22T06:19:33.99072

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_dev_guide.htm

Second-Generation Managed Packages Package Usage Logs

Visualforce Interactions

Each record in your package usage log thathasa custom entity type of EDITIONS
VisualforcePage describes an interaction with your packaged Visualforce pages.

Available in: both Salesforce

Visualforce Requests Classic and Lightning
) .))) Experience
When a user performs an action that results in a request associated with your VisualForce page,
log record type equals VisualforceRequest.Onestandard fieldis always populated Available in: Enterprise,
with data: url. Performance, Unlimited,

! i and Developer Editions
Visualforce page requests also have supplemental fields that are often populated. For example, a

Visualforce page request sometimesalsohas request_status and referrer uri data.

Use these fields to explore the details of the Visualforce request.

Standard Data Supplemental Data

url ® request status

¢ referrer uri
® request status

® response_size

Example: Let’s look at an example package usage log record and analyze the Visualforce request.

{
"timestamp derived": "2022-11-22T06:23:23.8362",
"log record type": "VisualforceRequest",
"request id": "4mbi9elZVef83tlg2z5aAk",
"organization id": "00Dxx0000006H21",
"organization name": "MyCustomer Inc.",
"organization status": "Demo",
"organization edition": "Enterprise Edition",
"organization country code": "IN",
"organization language locale": "en US",
"organization time zone": "Australia/Sydney",
"organization instance": "GSO",
"organization type": "Production",
"user id token": "005-9BwnBWYOS5FMn4cZlsLw/7F3LmTpoe8M77GrZz0ZHL6xQk=",
"user type": "Standard",
"url": "/apex/Acme Agent List",
"package id": "033xx0000004FqgD",
"package version id": "04txx0000004Idi",
"managed package namespace": "Acme",
"custom entity": "/apex/Acme Agent List",
"custom entity type": "VisualforcePage",
"request status": "S",
"session key": "214YtFB/RmsRKVsS",
"login key": "fGV6RgVOH3ZCgl2v",
"user agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10 15 7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/IP ADDRESS REMOVED Safari/537.36",
"user country code": "US",

466

Second-Generation Managed Packages Package Usage Logs

"user time zone": "America/Los_ Angeles",
"request size": "826",
"response size": "1830"

}

The Acme_Agent_List packaged component of type VisualforcePage was interacted with as a result of a user action from subscriber
org MyCustomer Inc on 2022-11-22 at 6:23 am.

The key data in this analysis are:

Question Field Value

What ® custom entity ® Acme Agent List
® custom entity type ® VisualforcePage
® package version id ® (04txx00000041di

® managed package namespace © Acme

Who ® organization id ® (00Dxx0000006H21
® user id token ° (CBrBCHHZSWEI R FAAL60=
How log_record type VisualforceRequest
When timestamp derived 2022-11-22T06:23:23.8367
SEE ALSO:

Package Usage Logs Schema

Visualforce Developer Guide

CRM Analytics Asset Interactions

Each record in your package usage log thathasa custom_entity type of
AnalyticsDashboard, AnalyticsLens,or AnalyticsRecipe describesan
interaction with your packaged CRM Analytics assets.

EDITIONS

Available in: both Salesforce
Classic and Lightning

Analytics Asset Runs Experience
To analyze a run of your CRM Analytics asset, look fora 1og record type of Available in: Enterprise,
AnalyticsAssetRun, Performance, Unlimited,
and Developer Editions
Standard Data Supplemental Data
none none
Analytics Asset Views

To analyze a view of your CRM Analytics asset, look fora 1og_record type of AnalyticsAssetView.

467

https://developer.salesforce.com/docs/atlas.en-us.260.0.pages.meta/pages/pages_intro.htm

Second-Generation Managed Packages Package Usage Logs

Standard Data Supplemental Data

none

none

Example: Let's look at an example package usage log record and analyze the CRM Analytics asset interaction.

{

"timestamp derived": "2022-11-22T06:19:49.820z",
"log record type": "AnalyticsAssetView",
"request id":"4mbhvyfahFf83tlg2Z5aAk",
"organization id": "00Dxx0000006H21",
"organization name": "MyCustomer Inc.",
"organization status": "Demo",

"organization edition": "Enterprise Edition",
"organization country code": "IN",

"organization language locale": "en US",
"organization time zone": "Australia/Sydney",
"organization instance": "GSO",

"organization type": "Production",
"user id token": "005-9BwnBWYOS5FMn4cZlsLw/7F3LmTpoe8M77GrZz0ZHL6xQk=",
"user type": "Standard",

"package id": "033xx0000004FqgD",

"package version id": "04txx0000004Idi",
"managed package namespace": "Acme",

"custom entity": "ClaimsDashboard",

"custom entity type": "AnalyticsDashboard",
"session key": "214YtFB/RmsRKVsS",

"login key": "fGV6RgVOH3ZCgl2v",

"user agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10 15 7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/IP ADDRESS REMOVED Safari/537.36",

}

"user country code": "US",
"user time zone": "America/Los_Angeles"

The packaged Analytics dashboard, C1laimsDashboard, was interacted with by a standard user from the subscriber org
MyCustom Inc. Specifically, the user performed a view of ClaimsDashboard on 2022-11-22 at 6:19am UTC.

The key data in this analysis are:

Question Field Value

What ® custom entity ® (ClaimsDashboard
® custom entity type ® AnalyticsDashboard
® package version id ® (04txx00000041di

Who

How

® managed package namespace © Acme

® organization id ® (00Dxx0000006H21
® user id token * (BB ZSWEINr= FA AT 60«
log record type AnalyticsAssetView

468

Second-Generation Managed Packages

Package Usage Logs
Question Field Value
When timestamp derived 2022-11-22T06:19:49.820%
SEE ALSO:

Package Usage Logs Schema

CRM Analytics Developer Center

Custom Interactions

To understand which features and Ul components a subscriber interacted with and how they flow EDITIONS
through a user journey, create custom interactions with Apex enums and the

IsvPartners.AppAnalytics.logCustomInteraction Apex method. Available in: both Salesforce

Classic and Lightning

Standard Data Supplemental Data Experience

o class name api_version Available in: Enterprise,
Performance, Unlimited,

® method name

and Developer Editions
e line_number

® interaction id token

Successful Custom Interactions

To analyze a custom interaction with your packaged components, lookfora Log record type of CustomInteraction and

acustom entity type of CustomInteractionLabel.The custom entity containsacustom interaction label that
you created and that was logged.

@ Note: interaction id token isincludedonlyifan interaction id was provided to the associated

IsvPartners.AppAnalytics.logCustomInteraction call. interaction id token isahashed, tokenized
version of the raw interaction id that was provided.

Unsuccessful Custom Interactions

When custom entity type isequal to CustominteractionFailure then the custom interaction couldn’t be logged. To determine
the reason for the failed logging, review the reason code provided by the custom entity value,

custom_entity Message

LABEL NO NAMESPACE We couldn't log the custom interaction with App Analytics. The
interaction label provided to
IsvPartners.AppAnalytics.logCustomInteraction
must have a namespace.

LABEL NOT ENUM We couldn't log the custom interaction with App Analytics. The

interaction label provided to

469

https://developer.salesforce.com/developer-centers/crm-analytics

Second-Generation Managed Packages

custom_entity Message

LABEL WRONG NAMESPACE

OVER CALL LIMIT

Package Usage Logs

IsvPartners.AppAnalytics.logCustomInteraction

must be an Apex enum.

interaction label provided to

We couldn't log the custom interaction with App Analytics. The

IsvPartners.AppAnalytics.logCustomInteraction
must have the same namespace as the Apex code that called the

method.

IsvPartners.AppAnalytics.logCustomInteraction

was called too many times in a single user request. This custom

interaction and subsequent ones for this user request weren't
logged with App Analytics.

@ Example: Let's look at an example package usage log record and analyze a successful Apex interaction.

{

}

"timestamp derived": "2023-09-20T06:17:39.1672",
"log record type": "CustomInteraction",

"request id": "TID:7635077000004b3035",
"organization id": "00Dxx0000006H21",
"organization name": "MyCustomer Inc.",
"organization status": "Demo",

"organization edition": "Enterprise Edition",
"organization country code": "IN",

"organization language locale": "en US",
"organization time zone": "Australia/Sydney",
"organization instance": "GSO",

"organization type": "Production",
"user id token": "005-9BwnBWYOS5FMn4cZlsLw/7F3LmTpoe8M77GrZz0ZHL6xQk=",
"user type": "Standard",

"package id": "033xx0000004FgD",

"package version id": "04txx0000004Idi",
"managed package namespace": "Acme",

"custom entity": "MyInteractionLabels.LoginButtonClicked",
"custom entity type": "CustomInteractionLabel",
"session key": "214YtFB/RmsRKVsS",

"login key": "fGV6RgVOH3ZCgl2v",

"user agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10 15 7) AppleWebKit/537.
(KHTML, like Gecko) Chrome/IP ADDRESS REMOVED Safari/537.36",

"user country code": "US",

"user time zone": "America/Los_Angeles",

"class name": "Acme.MyController",

"method name": "loginButtonCallback",

"line number": 56,

"interaction id token": "7NDe8HM8ZgPdBL+]jiOpTW3/xKTwwL30dyxmKNxtyzig8="

36

The MyInteractionLabels.LoginButtonClicked custom interaction label waslogged as a custom interaction as
a result of a user action from subscriber org MyCustomer Inc on 2023-09-20 at 6:17 am. Specifically, the user interaction resulted
in logging a custom interaction from line number 56 of the 1oginButtonCallback method found in the

470

Second-Generation Managed Packages Package Usage Logs

Acme.MyController Apexclass. Inadditiontothe InteractionlLabels.LoginButtonClicked label, an
interaction ID was provided to the log call resulting in an interaction token id value of
TNDe8HM8ZgPdBL+7i0pTW3/xKTwwL30dyxmKNxtyzi8=.

The key data in this analysis are:

Question Field Value

What ® class _name ¢ Acme.MyController
® custom entity °* Mynteractiaiaeels.IogirRitaClicked
® custom entity type ® CustomInteractionLabel
® package version id ® 04txx0000004Idi

® managed package namespace © Acme

® class_name ® loginButtonCallback
® method name * 56
® line number ° NESHRIRBHIQIBAKTW sy 71 8=

® interaction id token

Who ® organization id ® (00Dxx0000006H21
® user id token ° (BB SWEI R FA AL 60
How log_record type CustomInteraction
When timestamp derived 2023-09-20T06:17:39.1672
SEE ALSO:

Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots

Considerations for Custom Interactions

Package Usage Logs Schema

Make informed development decisions based on package usage log data. Analyze adoption, user behavior, company information, and
Lightning app and page usage data. Package usage logs list activity during a 24-hour period, between 12:00 AM and 11:59 PM UTC.

Field Description
api_type The type of APl request.
Examples:

°* BULK API

e E:SOAP Enterprise
e P:SOAP Partner

® REST

api version The version of the API that's used. Example: 45. 0.

47

Second-Generation Managed Packages

Field

app_name

bulk batch id
bulk job id

bulk operation

class name

cloned from organization_ id

custom_entity

custom entity type

Package Usage Logs

Description

The name of the Lightning application the user accessed.
Examples:

® one:one

® FieldServiceApp

® Chatter

The batch ID for the Bulk API job.
The ID for the Bulk APl job.

The operation for the Bulk API job.
Examples:

® delete

® hardDelete

® insert

® query

® queryAll

® update

® upsert

The name of the Apex class.
Examples:

¢ Help HomeController
® ROAppController v2
® FSL

The ID of the org from which this subscriber org was cloned. Applies to sandbox orgs
only. Example: 00Dxx0000000000

The developer name of the component or custom object.

The type of component or custom object that the user viewed or manipulated.
Examples:

® AnalyticsDashboard

® AnalyticsLens

® AnalyticsRecipe

® ApexClass

® ApexTrigger

® CustomInteractionFailure
® CustomInteractionLabel

® CustomObject

® ExternalObject

472

Second-Generation Managed Packages

Field

entry point

event

event count
event subscriber
http method
http status code

interaction_id token

line number

login key

log _record type

Package Usage Logs

Description
¢ LightningComponent
® LightningPage

® VisualforcePage

The entry point of the executed Apex event.
® GeneralCloner.cloneAndInsertRecords

® VF- /apex/CloneUser

The name or ID of the platform event.
Examples:
® /event/011xx0000005akx

¢ SomeCustomEvent

The number of platform events consumed by the subscriber. Example: 2.
The ID of the platform event subscriber. Example: 01gxx0000004Coy.
The type of HTTP request method. Example: GET.

The HTTP response status code. Example: 404.

A hashed token representing the interaction ID provided when the custom interaction
was logged. In compliance with privacy regulations, Salesforce can't store an actual user
interaction ID.

The line number in the Apex file.

The hashed string that ties together all events in a given user’s login session. The session
starts with a login event and ends with either a logout event or the session expiring. All
log lines with the same login key occurred during the same user login session.

Type of log record.

Examples:

® AnalyticsAssetView

® AnalyticsAssetRun

e API

® ApexExecution

® ApexRestApi

® ApexSoap

® ApexUnexpectedException

* BulkApiVl

® BulkApiV2

® CronJob

® CustomlInteraction

® LightningInteraction

473

Second-Generation Managed Packages

Field

managed package namespace

method name

num_fields
num_sogl queries

operation count

operation type

Package Usage Logs

Description

® LightningPageView

® PlatformEventConsumer
® QueuedExec

® RestApi

® UnassociatedCRUD

¢ URI

® VFRemoting

® VisualforceRequest

A log record type value of UnassociatedCRUD isassigned when a create,
read, update, or delete (CRUD) event occurs on a custom object that isn't associated with
alog record type that App Analytics captures or that is associated with unknown log
records.

Namespace of the package.

The name of the Apex method.
Examples:

® getUserAccessLevelBean

® getCurrentDocumentsRates

® getAdditionalHelpTemplate

The number of fields accessed by the user in this transaction.

The number of SOQL queries completed during the executed Apex event.

The definition of operation count dependsonthe operation type
performed.

* When operation type is INSERT, READ, UPDATE, or DELETE,
operation_count isthe number of records associated with the
custom_entity affected by the operation in this transaction.

* When operation type is SOQL QUERY, operation count isthe
number of SOQL queries associated with the custom_entity performedin this
transaction.

® When operation type is SOSL QUERY, operation count isthe
number of SOSL queries associated with the custom_entity performed in this
transaction.

The operation performed on the component or custom object.
Examples:

® INSERT

® READ

® UPDATE

®* DELETE

474

Second-Generation Managed Packages Package Usage Logs

Field Description

* SOSL_QUERY
* SOQL_QUERY

organization country code The 1SO-3166 two-character country code corresponding to the subscriber org’s address
at the time of sign-up.

Examples:
e US
e CA
°* FR

organization edition The name of the Salesforce edition the subscriber org is using.
Examples:
® Developer Edition
® Enterprise Edition

® Unlimited Edition

organization id The 15-character ID of the subscriber org.

organization instance The name of the subscriber org’s instance.
Examples:
° AP2
e EU7
® NA44

organization language locale The 2-5 character code that represents the language and locale ISO-639 code of the
subscriber org. This code controls the language for the labels displayed in an application.

Examples:
® de-DE
® en-US

e fr-CA

organization name The name of the subscriber org. Example: Acme, Inc.

organization status The paid status of the subscriber org.
Examples:
® Active
® Demo
® Free

® Trial

organization time zone The default time zone of the subscriber org.

Examples:

475

Second-Generation Managed Packages Package Usage Logs

Field Description

® America/New York
® America/Los Angeles

® Europe/Paris

organization type The subscriber org environment type.
Examples:

® Production

® Sandbox

package id The ID of the package.

package version id The ID of the package version.

page app name The internal name of the Lightning application that the user accessed from the App
Launcher.
Examples:

® LightningSales
® Chatter

page_context The context of the Lightning page where the event occurred. Example:
clients:cardContainer.

page_entity type The Lightning entity type of the event.
Examples:
¢ Contact

® Task

page url The relative URL of the top-level Lightning Experience or Salesforce mobile app page that
the user accessed. The page can contain one or more Lightning components. Multiple
record IDs can be associated with page_url. Example:
/s0bject/0064100000JXITSASS /view

parent ui element The parent scope of the Lightning page element where the event occurred. Example:
ChatterFeed
prevpage url The relative URL of the previous Lightning Experience or Salesforce mobile app page that

the user opened. Example: /sObject/0064100000

quiddity The type of outer execution associated with the executed Apex event.
Examples:

® A QueryLocator Batch Apex
B: Bulk APl and Bulk API 2.0
BA: Batch Apex

C: Scheduled Apex

E: Inbound Email Service

476

Second-Generation Managed Packages Package Usage Logs

Field Description
e F:Future
e H:Apex REST

I:Invocable Action

e K:Quick Action

e I:lightning

e M:Remote Action

e (:Queuable

e R:Synchronous Uncategorized
e S:Serial Batch Apex

e TA:Tests Async

e TD: Tests Deployment
e TS: Tests Synchronous
e v Visualforce

e W: SOAP Webservices

e x:Execute Anonymous

referrer uri The referring URI from the HTTP request. URIs are redacted in these ways.
e Query strings are removed.
e UserIDs display as hashed tokens.

e Subscriber-created URIs, such as VisualForce pages, are removed.

related list A section of a record or other detail page that lists items related to that record.
Examples:
e Open Activities
e Stage History

request id The ID of the HTTP request made to the server by the browser. If multiple log lines have
the same request ID, they all occurred as part of the same user interaction.

request size The size of the callout request body in bytes.
request status The status of the HTTP request for the page or action that accesses a component or
custom object in a package.
Examples:
e A =Auth Error
e F =Failure
* N =404error
e R =Redirect
e S =Success

e U = Undefined

477

Second-Generation Managed Packages

Field
response_size
rows_processed

session_key

stack trace

target_ui_element

timestamp derived

ui event sequence num

ui event source

ui event type

url

Package Usage Logs

Description
The size of the callout response in bytes.
The number of rows that were processed in the request.

The HTTP session ID for the HTTP request to access a component or custom object in a
package. The session ID is hashed.

The stack trace associated with the Apex exception.

The Lightning target page element where the event occurred.
Examples:

® label body truncate

® tabitem-link

The access time of a component or custom object in a package in ISO8601-compatible
format (YYYY-MM-DDTHH:MM:SS sssZ). Example: 2018-07-27T11:32:59.5557%.

An auto-incremented sequence number of the current Lightning event since the session
started.

The user action on the Lightning record or records. This value indicates whether the user’s
action was on a single record or multiple records. For example, read indicates that one
record was read, such as on a record detail page. In contrast, reads indicates that
multiple records were read, such as in a list view.

Examples:
® click
® create
® delete
® hover
® read

® update

The type of Lightning event.
Examples:

® crud

® system

® user

The redacted URL of the request to access a component or custom object in a package.
URLs are redacted in these ways.

e Query strings are removed.
e User IDs display as hashed tokens.

e Subscriber-created URIs, such as VisualForce pages, are removed.

478

Second-Generation Managed Packages Subscriber Snapshots

Field Description

For Lightning-based URLs, only /aura is displayed. For Visualforce-based URLs that
aren't pages owned by the managed package, either /apex or /apexrest is
displayed.

user_ agent The browser and operating system of the device used to make the request.

Examples:

e Mozilla/5.0 (iPhone; CPU iPhone // 12_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML,
like Gecko) Cri0S5/69.0.3497.105 Mobile/15E148 Safari/605.1

e Moxzilla/5.0 (Linux; Android 8.0.0; SM-G960F Build/R16NW) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/62.0.3202.84 Mobile Safari/537.36

user country code The default 1SO-3166 two-character country code of the user.
Examples:
® CA
°* FR
® US

user id token The hashed token representing the ID of the user who accessed the package. The ID
persists, even if a user's details change. The token also persists across any packages that
the user interacts with.

The user ID token starts with the prefix 005-. In compliance with privacy regulations, our
systems can't access the actual user ID. Likewise, the hashed token can't be linked to the

user ID.

user time zone The default time zone of the user. Example: America/New York.

user_ type The user license category of the user accessing Salesforce services through the Ul or API.
Examples:
® Guest

® Partner

® Standard

Subscriber Snapshots

Subscriber snapshots give you a point-in-time summary of subscriber activity. Use subscriber snapshots to see usage trends by org and
package.

@ Note: AppExchange App Analytics is subject to certain usage restrictions, as described in the AppExchange Program Policies.

AppExchange App Analytics takes a daily snapshot of org, package, and custom entity data. Snapshots are captured daily at 00:00 UTC
and become available for download immediately. You request a date and time, or range of dates and times, and you receive one snapshot
per valid date and time requested. For example, if on April 7, 2023 you request a date and time range of
StartTime=2023-04-04T00:00:00Z2 EndTime=2020-04-07T00:00:002%,youreceive three snapshots, one foreach
completed day.

479

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf

Second-Generation Managed Packages

Field

attribute_name

attribute_value

count

custom_entity

date

managed_package_namespace

organization_edition

organization_id
organization_name

organization_status

package_id

package_version_id

Subscriber Snapshots

Description

Represents a characteristic of a custom entity, managed package, package version, or
org. Example: UsersWithMFA

A string that represents a characteristic or measure of an attribute name.

Examples:
e 0.570
e 1.000

® Acme, Inc.
® Active

® Deprecated

Total records for the custom entity in that org on the specified snapshot date.

The developer name of the component or custom object.
Examples:
¢ Amount

® Travel Expense

The subscriber snapshot date requested, in YYYY-MM-DDT00:00: 00z format. Each
point-in-time snapshot is captured at 00: 00 UTC on the date specified. Example:
2023-04-04T00:00:002

Namespace of the package. Example: sfdx _isv_pkg001
The name of the Salesforce edition the subscriber org is using.
Examples:

® Developer Edition

® Enterprise Edition

® Unlimited Edition
The 15-character ID of the subscriber org. Example: 00D4m000000Td8Y.

The name of the subscriber org. Example: My Org.

The paid status of the subscriber org.
Examples:

® ACTIVE

® DEMO

* FREE

¢ TRIAL

The ID of the managed package. Example: 033xx00000000CT.

The ID of the managed package version. Example: 04t6A0000004eytQAA.

480

Second-Generation Managed Packages Test Custom Integrations

The attribute name and attribute value fieldsarea key-value pair. Each pair hasa specific scope. Some pairs provide
org-level metadata, and others provide custom entity, managed package, or package version metadata,

Interpret these two fields in tandem using the information in this table.

@ Note: As of Spring ‘25, trial orgs aren't included in subscriber snapshot MFA data.

dbierove Description attribute_value Scope

UserSlitiMEA. Represents the Percent Org-level.
pe.rcentage of your Examples: For all packages installed into an active or demo org,
unique, standard users 0.060 the same org-level UsersWithMFA percent

who enabled multi-factor *
authentication (MFA) e 0940
using one of these

methods.

repeats on every package Version row.

e User permission sets

e Profile permission
sets

e High-assurance
session security level

The corresponding
attribute value
is always between 0 and
1, where 0 represents 0%
and 1 represents 100%.

Test Custom Integrations

Totest your custom integrations in a nonproduction environment, use AppExchange App Analytics USER PERMISSIONS

Simulation Mode. Submit an App Analytics query request and receive sample usage data.

To enable simulation mode:

@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in the ModifyMetadata

AppExchange Program Policies.

To receive sample usage data, enable simulation mode, then submit a query request that includes
a simulation mode package ID.

1. Enable simulation mode in yourtest org using the Metadata APl AppAnalyticsSettings enableSimulationMode org preference.

2. To simulate package usage log, usage summary, or subscriber snapshot downloads, complete the required fields in your SOAP AP
AppAnalyticsQueryRequest. Include DataType, and leave OrganizationIDs blank For PackageIDs, include atleast
one simulation mode package ID that matches the scenario you're testing.

Package Dataset Simulation Mode Package ID Description

Small Dataset 033xx00SIMsmall Contains a small amount of data. For use
with all query types. Use this package ID
to download data for any query-allowed
timespan.

481

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_appanalyticssettings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_appanalyticsqueryrequest.htm

Second-Generation Managed Packages

Package Dataset

Large Dataset

Empty Dataset

3. Submit your query.
4. Checkyour APl request.

Simulation Mode Package ID

033xx00SIMlarge

Use any other 15-character package ID
prefixed with 033xx00SIM.

Examples:

® (033xx00SIMempty
® 033xx00SIM44444

AppExchange App Analytics Developer Cookbook

Description

Contains a large amount of data for two
org IDs (00Dxx00SIMO0foo and
00Dxx00SIMOO0bar).Foruseonly with
package usage log queries.

Contains no data. For use with all query
types. Use one of these package IDs to
return an empty dataset.

a. |If successful, retrieve the App Analytics Query Request object created in the APl request. The Down1loadURL field populates

when the request is completed.

b. If you get an error, edit your query. Use a smaller time window, such as a 14 days, or specify one org ID. Then resubmit your

query.

5. Download the comma-separated value (.csv) file containing sample usage data from the Down1oadURL field in the App Analytics

Query Request object.

@ Important: When simulation mode is enabled, you can only access our sample usage data. Disable simulation mode to access

your production data.

AppExchange App Analytics Developer Cookbook

Delve deeper into your AppExchange App Analytics managed package usage data by creating key
performance indicators (KPIs). First, complete some prerequisites and retrieve your App Analytics
data. Next, prepare your CRM Analytics environment. Finally, to build your KPIs, complete App

Analytics recipes.

@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in the
AppExchange Program Policies.

1. What Are Recipes?

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Edifions

The AppExchange App Analytics Developer Cookbook uses two distinct types of recipes: CRM
Analytics recipes and App Analytics recipes. The CRM Analytics recipes are foundational work
that you must complete before creating App Analytics recipes. App Analytics recipes build on your CRM Analytics recipe analytics
environment and result in key performance indicators (KPIs).

2. Before You Begin

Complete these prerequisites before you create App Analytics recipes.

482

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

3. CRM Analytics Recipes
Set up your org to create AppExchange App Analytics recipes by building your CRM Analytics environment. You first create a
country-codes dataset. Then you create two CRM Analytics recipes to produce a dataset of your subscriber info, and an aggregate
dataset of all of your daily data.

4. App Analytics Recipes

To understand how your customers are using your managed packages and components, create App Analytics recipes. Each App
Analytics recipe produces a CRM Analytics lens and is a key performance indicator (KPI). Use CRM Analytics dashboards to visualize
your KPIs and gain deeper insights.

What Are Recipes?
The AppExchange App Analytics Developer Cookbook uses two distinct types of recipes: CRM EDITIONS
Analytics recipes and App Analytics recipes. The CRM Analytics recipes are foundational work that

you must complete before creating App Analytics recipes. App Analytics recipes build on your CRM Available in: both Salesforce
Analytics recipe analytics environment and result in key performance indicators (KPIs). Classic and Lightning

You can use any reporting tool to create KPIs, but we recommend our analytics powerhouse, CRM Experience
Analytics. With CRM Analytics, you can easily integrate your License Management App (LMA) data

Available in: Enterprise,
with your App Analytics data using datasets and CRM Analytics recipes.

Performance, Unlimited,
and Developer Editions

CRM Analytics Recipes
If you're familiar with CRM Analytics, you're familiar with dataflows and CRM Analytics recipes. Dataflows are great for combining data
from multiple sources, while CRM Analytics recipes are great for performing transformations on a single dataset. To set up your App

Analytics recipe environment, create CRM Analytics recipes that combine a country code dataset, your LMA data, and your App Analytics
data. These CRM Analytics recipes are required to create App Analytics recipes.

App Analytics Recipes

App Analytics recipes are CRM Analytics lens formulas with SAQL code provided. Each App Analytics recipe results in a KPI that you can
use to visualize your data on a dashboard. Some examples include Daily and Monthly Active Users, and Custom Object Reads Per Day.
Complete your CRM Analytics recipes before starting with App Analytics recipes.

483

Second-Generation Managed Packages

Before You Begin

Complete these prerequisites before you create App Analytics recipes.

AppExchange App Analytics Developer Cookbook

EDITIONS

To brush up on your AppExchange App Analytics or CRM Analytics skills, we recommend completing
these Trailhead modules.

1.

AppExchange Partner Intelligence Basics

CRM Analytics Data Integration Basics

Set up your License Management Org (LMO).

Use your LMO to track all Salesforce users who install your managed package. The LMO receives

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

a notification in the form of a lead record when a user installs or uninstalls your package. It also

tracks each package upload on AppExchange. Typically, as an AppExchange partner, you
use your Partner Business Org (PBO) as your LMO.

Register your security-reviewed managed package with your LMO. Follow the directions
in Link a Package with Your License Management Organization.

If you're not using your PBO as your LMO, install the License Management App (LMA) in
your LMO. The LMA lets you manage leads and licenses for your AppExchange offerings.
To install the LMA, read Get Started with the License Management App.

@ Nofte: Ifyou're using your PBO as your LMO, you're all set. The LMA is automatically
installed for you.

Create an App Analytics Admin permission set that includes create and read access on
the AppAnalyticsQueryRequest object. Assign this permission to any non-Admin users
so that they can create App Analytics requests. Read Create Permission Sets in Salesforce
Help if you need instructions.

Set up the CLI using the Salesforce CLI Setup Guide. If you need a CLI refresher, take the
App Development with Salesforce DX Trailhead module.

Enable CRM Analytics in your Salesforce org.

Create a CRM Analytics app named Partnerintelligence.

USER PERMISSIONS

To access License Management
App data, packages, and

package versions:
e Read on Licenses, Packages,
Package Versions

To request and retrieve

AppExchange App Analytics data:

e Create, Read, Edit, Delete,
View All, and Modify All on the

AppAnalyticsQueryRequest
object

To use CRM Analytics:

e CRM Analytics Plus Admin
user

To request and retrieve a sample package usage log, create an AppExchange App Analytics query request using the CLI. Save the

CSV datafile as RawPackageLogFile.csv.

To request and retrieve package usage logs automatically, create an automation. Which automation method you choose depends

on your business specifications and which data volume you're automating.

e For smaller datasets, such as package usage summaries, Apex scales well for automation. This GitHub repo has the details.

e Forlarger datasets, such as package usage logs, automate using an Amazon Web Services (AWS) stack.

e You can also use the free Salesforce Labs app, App Analytics. It offers great functionality to retrieve and automate data collection
and to get started with recipes and dashboards. Salesforce Labs apps are developed by Salesforce employees and are unsupported.

Get Help with Prerequisites

If you need help with setting up your solution, you can request a consultation with a Platform Expert.

484

https://trailhead.salesforce.com/en/content/learn/modules/appexchange-partner-intelligence-basics
https://trailhead.salesforce.com/en/content/learn/modules/wave_enable_data_integration_basics
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/package_associate_lmo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/isv1_3_quickstart.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/package_associate_lmo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/lma_setup.htm?search_text=license%20management%20app
https://help.salesforce.com/articleView?id=platform.perm_sets_create.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://trailhead.salesforce.com/en/content/learn/modules/sfdx_app_dev
https://help.salesforce.com/articleView?id=000335760&type=1&mode=1&language=en_US
https://github.com/developerforce/partner-intelligence-basics
https://medium.com/@kamipatel/automate-appanalytics-aws-stack-74cbebc49d2a
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000G0nUXUAZ

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

Get Help with Prerequisites

If you need help with setting up your solution, you can request a consultation with a Platform Expert. EDITIONS

1. Login to the Salesforce Partner Community.
2. (lickthe questionicon @ and then click Log a Case for Help Available n: both Salesforce
d 9 ' Classic and Lightning

3. Provide any required details, and then click Create Case. Experience
Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

CRM Analytics Recipes

Set up your org to create AppExchange App Analytics recipes by building your CRM Analytics EDITIONS

environment. You first create a country-codes dataset. Then you create two CRM Analytics recipes

to produce a dataset of your subscriber info, and an aggregate dataset of all of your daily data.

Available in: both Salesforce
The first CRM Analytics recipe, LMAJoin, combines package and license data from your LMA Classic and Lightning
with your accounts and leads. It produces a dataset of your subscribers. Experience

The second CRM Analytics recipe, DailyAggregation, joins the LMAJoin dataset with your App Available in: Enterprise,
Analytics data. It produces the DailyAggregation dataset. All your App Analytics recipes are built Performance, Unlimited,
on top of your DailyAggregation dataset. and Developer Edifions

Create the Country-Codes Dataset
To create visualizations of your country-based data in map format, you normalize the LMA country-code data to CRM Analytics
country-code format.

2. Connect to Your License Management App Data
Create an SFDC_Local connection to your License Management App (LMA) data.
3. Create the LMAJoin CRM Analytics Recipe
Create a CRM Analytics recipe that contains your License Management App (LMA) data.
4. Create Your App Analytics Dataset
Create a RawPackagelogFile App Analytics dataset using your RawPackageLogFile.csv file.
5. Create Your DailyAggregation CRM Analytics Recipe
You join your raw package log file data with your License Management App (LMA) data to create the DailyAggregation CRM Analytics
recipe. The recipe produces a dataset called DailyAggregation that you use to create App Analytics recipes.
SEE ALSO:

Explore Data and Take Action with CRM Analytics

485

https://partners.salesforce.com
https://help.salesforce.com/articleView?id=analytics.bi.htm&type=5&language=en_US

Second-Generation Managed Packages

Create the Country-Codes Dataset

To create visualizations of your country-based data in map format, you normalize the LMA

country-code data to CRM Analytics country-code format.

1.

W ® N o Un bk W N

Click country-codes.csv to download standardized country code data.
Right-click Raw and click Save Link As.

Name the file country-codes. txt, and save it to your desktop.
In Analytics Studio in CRM Analytics, click Create.

Click Dataset.

Click CSV File.

Select your country-codes. txt file.

Click Next.

Name your dataset country-codes.

10. Select your PartnerIntelligence app.
11. Click Next.
12. Click Upload File.

Connect to Your License Management App Data

Create an SFDC_Local connection to your License Management App (LMA) data.

In your org in Analytics Studio in CRM Analytics:

1.

¥ ® N Uk W N

Click Data Manager.
Click Connect.

Click Connect to Data.
Click SFDC_LOCAL.
Click Account.

Click Continue.

Select all fields.

Click Continue.

Click Save.

10. Repeat steps 2 through 8 to connect to these objects.

e Lead
e sfLma__License_ ¢
e sfLma__Package__c

e sfLma__Package_Version__c

11. Next to Account, click the down arrow.

12. Click Run Data Sync.

13. Repeat step 11 for these objects in your Connect window.

e Lead

486

AppExchange App Analytics Developer Cookbook

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

https://github.com/datasets/country-codes/blob/master/data/country-codes.csv

Second-Generation Managed Packages

e sfLma__License_ ¢
e sfLma__Package_ ¢

e sfLma__Package_Version__c

Create the LMAJoin CRM Analytics Recipe

Create a CRM Analytics recipe that contains your License Management App (LMA) data.

In your org in Analytics Studio in CRM Analytics:

1.

Click Data Manager.

2. In Dataflows & Recipes on the Recipes tab, click Create Recipe.
3. (lick Add Input Data.

4,
5

Select sfLma__License__¢, and select all columns.

. Create a transform named License with these specifications.

e CustomFormula: string (Id)

e Qutput Type: Text

e length: 255

e Default Value: blank

e Show Results In: New Column (and Keep Original)

e (Column Label: LicenseRecordId

Add a join to Lead with these specifications.

e Select Input Data to Join: Lead

e Columns to Select: Company, First Name, Id, Last Name
e Join Type: Lookup

e Join Keys: License: Record ID = Lead ID

e APIName Prefix for Right Columns: Lead

Add a join to Account with these specifications.
e Select Input Data to Join: Account

e Columns to Select: Name

e Join Type: Lookup

e Join Keys: Account Name = Account Name

e APIName Prefix for Right Columns: Account

Add ajoin to sfLma__Package__c with these specifications.
e Select Input Data to Join: sfLma__Package_ ¢

e (ColumnstoSelect: A11 fields

e Join Type: Lookup

e Join Keys: Package = Record ID

e API'Name Prefix for Right Columns: Package

AppExchange App Analytics Developer Cookbook

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Create a transform between the join and sfLma__ Package ¢ with these specifications.

487

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

e CustomFormula: substr (sfLma Package ID ¢, 1, 15)
e Qutput Type: Text

e length: 255

e Default Value: none

e Show Results in: New Column (and Keep Original)

e (Column Label: PackageID15

10. Create another join with these specifications.
e Select Input Data to Join: sfLma__Package_Verzion__c
e (ColumnstoSelect: A11 fields
e Join Type: Lookup
e Join Keys: Package Version = Record ID

e API'Name Prefix for Right Columns: PackageVersion

11. Create an output with these specifications.

e Write To: Dataset

e Dataset Display Label: LMAJoin

e App Location: PartnerIntelligence
e Sharing Source: default

e Security Predicate: Apply row-level security to the target dataset by adding a predicate filter condition

12. Click Apply.

13. Click Save.

14. Save your recipe as LMAJo1in.
15. Click Save and Run.

16. To monitor the status of your job, click Go to Data Monitor.

@ Example: When complete, your LMAJoin CRM Analytics recipe looks like this.

)

o o
o

o

488

Second-Generation Managed Packages

1. Monitor Your LMAJoin CRM Analytics Recipe

AppExchange App Analytics Developer Cookbook

CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your LMAJoin recipe.

2. Run the LMAJoin CRM Analytics Recipe

To create a reusable dataset, schedule your LMAJoin CRM Analytics recipe to run on a regular basis. We recommend daily at midnight.

Monitor Your LMAJoin CRM Analytics Recipe

CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your
LMAJoin recipe.

In your org in Analytics Studio in CRM Analytics:
1. Click Data Manager.

2. Click Monitor.

3. Onthe Jobs tab, locate your LMAJoin job.
4

. When your job is Successful, click Data to view your completed LMAJoin dataset.

Run the LMAJoin CRM Analytics Recipe

To create a reusable dataset, schedule your LMAJoin CRM Analytics recipe to run on a regular basis.
We recommend daily at midnight.

In your org in Analytics Studio in CRM Analytics:
1. Click Data Manager.

Click Dataflows & Recipes.

Click the Recipes tab.

Next to your LMAJoin CRM Analytics recipe, click the arrow.

o wnN

Click Schedule, and set up your schedule.

Create Your App Analytics Dataset

Create a RawPackagelogFile App Analytics dataset using your RawPackageLogFile.csv
file.

In your org in Analytics Studio in CRM Analytics:

1. Click Create and select Dataset.

Click CSV File and select your RawPackageLogFile.csv file.

Click Next.

Name your dataset RawPackageLogFile and select your Partnerintelligence app.

Click Next.

AU S o

Dimension to Measure and add these specifications.
e Default value: 0
e Scale: 0

e Precision: 18

489

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

For event_count, num_fields, num_soql_queries, operation_count, and rows_processed fields, change the field type from

Second-Generation Managed Packages

7.
8.

Search for timestamp_derived and make sure that its field type is Date.
Click Upload File.

Create Your DailyAggregation CRM Analytics Recipe

You join your raw package log file data with your License Management App (LMA) data to create
the DailyAggregation CRM Analytics recipe. The recipe produces a dataset called DailyAggregation
that you use to create App Analytics recipes.

In your org in Analytics Studio in CRM Analytics:

1.

N o v k& w N

Click Data Manager.

Click Dataflows & Recipes.

On the Recipes tab, click Create Recipe.
(Click Add Input Data.

Select RawPackageLogFile.

Select all the columns.

Create an aggregate with these specifications.

Field Aggregate By
event count Sum

login key Unique

num_ fields Sum
num_sogl queries Sum
operation count Sum
rows_processed Sum
session_key Unique

In the aggregate, in Group Rows, click +, and select timestamp_derived.
a. Select Year, Month, and Day.
b. Click Add.

In the aggregate, in Group Rows, create a group for each of these fields.
* api_type

® api_version

° app_name

e class_name

¢ cloned_from_organization

e custom_entity

e custom_entity_type

490

AppExchange App Analytics Developer Cookbook

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

* entry_point

e event

e event_subscriber

e http_method

e http_status_code

e log_record_type

* managed_package_namespace
e method_name

e operation_type

e organization_country_code

10. Create a transform named Create DMY Field with this

fomubto date (concat (timestanp derived DAY, "/", timestamp derived MONTH,"/", timestanp derived YEAR), "dd/MY/yyyy™))
11. Join your RawPackagel ogFile dataset to your LMAData dataset using this information.

e Select Input Data to Join: LMAData

e (ColumnstoSelect: A11 fields

e Join Type: Lookup

e Join Keys: organization_id = Subscriber Org ID and package_id = PackagelD15

e API'Name Prefix for Right Columns: ZLMAData

12. Join your country-codes dataset to your LMAData dataset using this information.
e Select Input Data to Join: country-codes
e (ColumnstoSelect: A11 fields
e Join Type: Lookup
e Join Keys: user_country_code =1503166-1-Alpha-2

e APIName Prefix for Right Columns: UserCountry

13. Create a transform named Feature Name.
a. Create as many CRM Analytics buckets as you need for your features, such as Inventory, Orders, and a catch-all bucket called
Other.

b. @ Notfe: A CRM Analytics bucket represents a category that you use to group your data. For example, say your app contains
multiple features, such as an inventory tracking feature and an order processing feature. Create a CRM Analytics bucket
for each feature. Each bucket contains the custom objects, pages, Lightning components, and Apex classes that pertain
to that feature. You can use these buckets to create Feature Adoption App Analytics recipes

Add your custom entities to the appropriate bucket.

14. Select Output and use these settings.
e Write To: Dataset
e Dataset Display Label: bailyAggregation
e App Location: Partnerintelligence
e Sharing Source: default
e Security Predicate: Apply row-level security to the target dataset by adding a predicate filter condition

e Name: Create Daily Aggregation Dataset

491

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

15. Click Apply.
16. Click Save.
17. Name your recipe DailyAggregation.

18. Click Save and Run.

Example: When complete, your DailyAggregation recipe looks like this.

(= 8

1. Monitor the DailyAggregation CRM Analytics Recipe
CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your DailyAggregation recipe.

2. Run the DailyAggregation CRM Analytics Recipe
To create a reusable dataset, schedule your DailyAggregation CRM Analytics recipe to run on a regular basis. We recommend daily
at midnight.

Monitor the DailyAggregation CRM Analytics Recipe

CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your EDITIONS
DailyAggregation recipe.

In your org in Analytics Studio in CRM Analytics: Available in: both Salesforce
Classic and Lightning

1. Click Data Manager.)
Experience

. Click Monitor.
Available in: Enterprise,
Performance, Unlimited,

2
3. Onthe Jobs tab, locate your DailyAggregation job.
4. When your job is Successful, click Data to view your completed DailyAggregation dataset. and Developer Editions

Run the DailyAggregation CRM Analytics Recipe

To create a reusable dataset, schedule your DailyAggregation CRM Analytics recipe to run on a EDITIONS

regular basis. We recommend daily at midnight.

In your org in Analytics Studio in CRM Analytics: Available in: both Salesforce
Classic and Lightning

1. Click Data Manager. !
Experience

. Click Dataflows & Recipes.
Available in: Enterprise,

Performance, Unlimited,

2
3. C(lick the Recipes tab.
4. Next to your DailyAggregation CRM Analytics recipe, click the arrow. and Developer Editions

492

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

5. Click Schedule, and set up your schedule.

App Analytics Recipes
To understand how your customers are using your managed packages and components, create EDITIONS
App Analytics recipes. Each App Analytics recipe produces a CRM Analytics lens and is a key

performance indicator (KPI). Use CRM Analytics dashboards to visualize your KPIs and gain deeper
insights.

Available in: both Salesforce
Classic and Lightning

@ Note: AppExchange App Analytics is subject to certain usage restrictions as described in the Experience
AppExchange Program Policies. To request and retrieve package usage logs and subscriber Available in: Enterprise,
snapshots, activate App Analytics on your security-reviewed managed package by logging Performance, Unlimited,
asupport case in the Salesforce Partner Community. For product, specify Partner Programs and Developer Editions

& Benefits. For topic, specify ISV Technology Request. You can access package usage
summaries without activation.

For example, to analyze a wide range of daily and monthly package usage metrics, build Daily and Monthly Active User App Analytics
recipes.

Example:

Customer Success Recipes

Customer success is a relationship-focused method of ensuring that your customers achieve their desired outcomes while using
your managed packages.

Custom Object Usage Recipes

Understanding how your customers use your custom objects is critical to managing the lifecycle of your managed package and its
custom objects. Start by measuring custom object usage by create, read, update, and delete (CRUD) operations.

493

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://partners.salesforce.com/

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

Customer Success Recipes

Customer success is a relationship-focused method of ensuring that your customers achieve their EDITIONS

desired outcomes while using your managed packages.

To measure customer success, you can create metrics that help you understand: Available in: both Salesforce
Classic and Lightning

e Overall managed package usage Experience

e Depth of managed package usage Availab c

vailable in: Enterprise,
Performance, Unlimited,
e Length of time as a customer and Developer Editions

e Number of renewals

e Growth

e Number of upsells

e Overall relationship
As you learn more about your customers and how they use your managed packages, your list of customer success metrics expands.

To analyze user behavior, we rely on user-related and CRUD (create, read, update, and delete) App Analytics data fields to calculate
metrics. All user behavior calculations rely on how a unique user is defined.

e Anindividual that has used your managed package and its components

e Measured for a specified time period, such as a day, month, or year

An active user can be defined as: A user who has logged some type of package usage, such as CRUD activity, page views, or Lightning
interactions, during a specified time period.

Segment the unique and active users by time period, such as day, month, or quarter.

Create a Daily Unique Users Recipe
This recipe produces a unique count of users by day.

Create a Weekly Unique Users Recipe
This recipe produces a unique count of users by week.

Create a Monthly Unique Users Recipe
This recipe produces a unique count of users by month.

Create a Daily Unique Users Recipe

This recipe produces a unique count of users by day.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.
Under Bar Length, click Count of Rows.

Click Unique.

Select user_id_token.

Select Charts.

Click Column.

Under Bars, click 4+ and search for timestamp DMY.
Select Year-Month-Day.

Click Save.

W ® N o v B W N

494

Second-Generation Managed Packages

10. Name your lens Daily Unique Users.
11. Select your Partnerintelligence app.
12. Click Save.

Example:

Daily Unique Users ~

Datasets
O vsivaggre.. ~

= DATA Y FILTERS

Bars

f imessameon -

8ar Length .
H-Jniqueoluso -
180
180
Trellis
0
Unused Fields .
g w0
80
Query Limit o
Default Edit 0
w0
20
o . -
* i - = s & &
& & & $ & & K4

B o
A A

timestamp_DMY (Year-Month-Day)

Unique of user_id_token

Uniqua of user_id_token

SAQL:

g = load "DailyAggregation";

q = group q by ('timestamp derived DAY formula Year',

'timestamp derived DAY formula Month',

AppExchange App Analytics Developer Cookbook

'timestamp derived DAY formula Day');

g = foreach g generate 'timestamp derived DAY formula Year' + "~~~" +
'timestamp derived DAY formula Month' + "~~~" + 'timestamp derived DAY formula Day'

as

'timestamp derived DAY formula Year~~~timestamp derived DAY formula Month~~~timestamp derived DAY formula Day',

unique ('user id token')
g = order g by

as 'unique user id token';

'timestamp derived DAY formula Year~~~timestamp derived DAY formula Month~~~timestamp derived DAY formula Day'

asc;
g = limit g 2000;

Create a Weekly Unique Users Recipe
This recipe produces a unique count of users by week.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

2. Under Bar Length, click Count of Rows.
3. (lick Unique.

495

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

Select user_id_token.

Select Charts.

4
5

6. Click Column.
7. Under Bars, click + and search for timestamp DMY.
8. Select Year-Week.

9. C(lick Save.

10. Name your lens Wweekly Unique Users.

11. Select your Partnerintelligence app.

12. Click Save.

Example:
Weekly Unigue Users = - PR
O v oot

= oATA b

Uniue of Uriceon e 1tk

Query Limit o

Detault

SAQL:

g = load "DailyAggregation";

g = group q by ('timestamp derived DAY formula Year',
'timestamp derived DAY formula Week');

q = foreach g generate 'timestamp derived DAY formula Year' + "~~~" +
'timestamp derived DAY formula Week' as

'timestamp derived DAY formula Year~~~timestamp derived DAY formula Week',

unique ('user id token') as 'unique user id token';
q = order g by 'timestamp derived DAY formula Year~~~timestamp derived DAY formula Week'
asc;

g = limit g 2000;

Create a Monthly Unique Users Recipe
This recipe produces a unique count of users by month.
In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

496

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

Under Bar Length, click Count of Rows.

Click Unique.

Select user_id_token.

Select Charts.

Click Column.

Under Bars, click 4+ and search for timestamp_DMY.
Select Year-Month.

Click Save.

¥ ® N o B AW N

10. Name your lens Monthly Unique Users.

11. Select your Partnerintelligence app.

12. Click Save.
Example:
Manthly Unique Users - MIEIE

O osivaas

Unique of user i tckan @)

Uniquo of user i tcken

Query Limit o
Defouts

tirnestamg. DMY (Vear-Mor

SAQL:

g = load "DailyAggregation";

q = group g by ('timestamp derived DAY formula Year',

'timestamp derived DAY formula Month');

q = foreach g generate 'timestamp derived DAY formula Year' + "~~~" +
'timestamp derived DAY formula Month' as

'timestamp derived DAY formula Year~~~timestamp derived DAY formula Month',

unique ('user id token') as 'unique user id token';

q = order q by 'timestamp derived DAY formula Year~~~timestamp derived DAY formula Month'
asc;

g = limit g 2000;

497

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

Custom Object Usage Recipes

Understanding how your customers use your custom objects is critical to managing the lifecycle EDITIONS
of your managed package and its custom objects. Start by measuring custom object usage by
create, read, update, and delete (CRUD) operations.

Available in: both Salesforce
Classic and Lightning

Create a Custom Object Creates Per Day Recipe Experience

This recipe produces a unique count of how many times per day a custom object was created. Available in: Enterprise

Create a Custom Object Updates Per Day Recipe Performance, Unlimited,

This recipe produces a unique count of how many times per day a custom object was created. and Developer Editions

Create a Custom Object Reads Per Day Recipe
This recipe produces a unique count of how many times per day a custom object was read.

Create a Custom Object Creates Per Day Recipe

This recipe produces a unique count of how many times per day a custom object was created.
In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

Select Charts.

Click Column and leave Bar Length as Count of Rows.

Under Bars, click + and search for timestamp_DMY.

Select Year-Month-Day.

Click Filters.

Click +.

Select custom_entity_type equals CustomObject.

W ® N R W N

Click Apply.
. Click +.

e —Y
- O

. Select operation_type Equals INSERT.

-_
N

. Click Apply.

13. Click Data.

14. Under Trellis, click +.

15. Select custom_entity.

16. Click Save.

17.Name your lens Custom Object Creates Per Day.
18. Select your Partnerintelligence app.

19. Click Save.

498

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

@ Example:

: .
g o
= d
I "
— 5B
|
|
= |
n
L m L L
SAQL:
g = load "DailyAggregation";
g = filter g by 'custom entity type' == "CustomObject";
g = filter g by 'operation type' == "INSERT";
q = group q by ('timestamp derived DAY formula Year',

'timestamp derived DAY formula Month', 'timestamp derived DAY formula Day',

'custom entity');

q = foreach g generate 'timestamp derived DAY formula Year' + "~~~" +
'timestamp derived DAY formula Month' + "~~~" + 'timestamp derived DAY formula Day'

as

'timestamp derived DAY formula Year~~~timestamp derived DAY formula Month~~~timestamp derived [AY formula Day',
'custom _entity' as 'custom entity', count() as 'count';

q = order g by

("timestamp derived DAY formula Year~~~timestamp derived DAY formula Month~~~timestamp derived DAY formula Day'
asc, 'custom entity' asc);

g = limit g 2000;

Create a Custom Object Updates Per Day Recipe
This recipe produces a unique count of how many times per day a custom object was created.
In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

2. Select Charts.

3. (lick Column and leave Bar Length as Count of Rows.
4. Under Bars, click + and select timestamp_DMY.

5. Select Year-Month-Day.

6. Click the Filters tab.

7. Click +.

8. Select custom_entity_type Equals CustomObject

9. Click Apply.

10. Click +.

499

Second-Generation Managed Packages AppExchange App Analytics Developer Cookbook

11. Select operation_type Equals UPDATE.

12. Click Apply.

13. Click the Data tab.

14. Under Trellis, click +.

15. Select custom_entity.

16. Click Save.

17.Name your lens Custom Object Creates Per Day.

18. Select your Partnerintelligence app.

19. Click Save.
Example:
Custom Object Updates Per Day ~
S p—
R ° [« RS
i i i
E| | ||||E |
o o 7T o TS P s
&8 88 & &8 58 &8 8 8 s
SAQL:
g = load "DailyAggregation";
g = filter g by 'custom entity type' == "CustomObject";
q = filter g by 'operation type' == "UPDATE";

q = group q by ('timestamp derived DAY formula Year',
'timestamp derived DAY formula Month', 'timestamp derived DAY formula Day',

'custom entity');

q = foreach g generate 'timestamp derived DAY formula Year' + "~~~" +
'timestamp derived DAY formula Month' + "~~~" 4+ 'timestamp derived DAY formula Day'

as

'timestamp derived DAY formula Year~~~timestamp derived DAY formula Month~~~timestamp derived DAY formula Day',
'custom _entity' as 'custom entity', count() as 'count';

g = order g by

('timestamp derived DAY formula Year~~~timestamp derived DAY formula Month~~~timestamp derived DAY formula Day'

500

Second-Generation Managed Packages

asc, 'custom entity' asc);
qg = limit g 2000;

Create a Custom Object Reads Per Day Recipe

AppExchange App Analytics Developer Cookbook

This recipe produces a unique count of how many times per day a custom object was read.

In your org in Analytics Studio in CRM Analytics:

1.

¥ ® N Uk W N

T Y
- O

12.
13.
14.
15.
16.
17.
18.
19.

In All items on the Datasets tab, select your DailyAggregation dataset.

Select Charts.

Click Column and leave Bar Length as Count of Rows.
Under Bars, click + and search for timestamp_DMY.
Select Year-Month-Day.

Click Filters.

Click +.

Select custom_entity_type Equals CustomObject

Click Apply.

. Click +.
. Select operation_type Equals READ.

Click Apply.

Click Data.

Under Trellis, click +.

Select custom_entity.

Click Save.

Name your lens Custom Object Reads Per Day.
Select your Partnerlntelligence app.

Click Save.

@ Example:

501

Second-Generation Managed Packages Gaps Between First-Generation and Second-Generation
Managed Packaging

SAQL:

g = load "DailyAggregation";

q = filter g by 'custom entity type' == "CustomObject";
q = filter g by 'operation type' == "READ";

q = group q by ('timestamp derived DAY formula Year',

'timestamp derived DAY formula Month', 'timestamp derived DAY formula Day',

'custom entity');

q = foreach g generate 'timestamp derived DAY formula Year' + "~~~" +
'timestamp derived DAY formula Month' + "~~~" 4+ 'timestamp derived DAY formula Day'

as

'timestamp derived DAY fornmila Year~~~timestamp derived DAY formula Month~~~timestamp derived DAY formula Day',
'custom entity' as 'custom entity', count() as 'count';

g = order g by

("timestamp derived DAY formula Year~~~timestamp derived DAY formila Month~~~timestamp derived DAY formula Day’
asc, 'custom entity' asc);

qg = limit g 2000;

Gaps Between First-Generation and Second-Generation Managed
Packaging

The following functionality is supported in first-generation managed packaging, and not yet supported in second-generation managed
packaging. We're working to address these feature gaps.

e Package versions can't be deprecated.
e Apex VersionProvider isn't supported.
e Adefault language for labels in packages can't be specified.

See the Metadata Coverage Report, for the latest information on supported metadata types.

502

https://help.salesforce.com/articleView?id=code_version_settings_apex.htm&language=en_US
https://developer.salesforce.com/docs/metadata-coverage

	Second-Generation Managed Packages
	What’s a Second-Generation Managed Package?
	Why Switch to Second-Generation Managed Packaging?
	Comparison of First- and Second-Generation Managed Packages

	Set Up Your Development Environment
	Enable Dev Hub and Second-Generation Managed Packaging
	Limited Access License for Package Developers
	Add a Limited Access User to Your Dev Hub Org
	Assign Second-Generation Managed Packaging User Permissions

	Before You Create Second-Generation Managed Packages
	Know Your Orgs for Second-Generation Managed Packages
	Link a Namespace to a Dev Hub Org
	Namespaces for Second-Generation Managed Packages
	Create and Register Your Namespace for Second-Generation Managed Packages
	Key Concepts in Second-Generation Managed Packaging
	How Manageability Rules and Ancestry Impact Upgrades for Second-Generation Managed Packages
	Which Package Types Can Your Package Depend On?

	Scratch Orgs and Package Development
	How Scratch Orgs Fit in the Package Development Workflow
	Scratch Org Definition Files vs Org Shape in Package Development
	When to Use Scratch Org Snapshots in Package Development
	Create a Package Version Based on a Scratch Org Snapshot
	Get Access to Scratch Orgs That Have Agentforce
	Scratch Org Allocations for Salesforce Partners
	Manage Scratch Orgs from the Dev Hub Org
	Supported Scratch Org Editions for Partners

	Workflow for Second-Generation Managed Packages
	Components Available in Second-Generation Managed Packages
	Account Plan Objective Measure Calculation Definition
	Account Relationship Share Rule
	Action Link Group Template
	Action Plan Template
	Actionable List Definition
	Actionable List Key Performance Indicator Definition
	Activation Platform
	AffinityScoreDefinition
	Agent Action
	Agent Topic
	AI Application
	AI Application Config
	AIUsecaseDefinition
	Analytics
	Analytics Visualization
	Analytics Workspace
	Apex Class
	Apex Sharing Reason
	Apex Trigger
	App Framework Template Bundle
	Application Subtype Definition
	AssessmentConfiguration
	AssessmentQuestion
	AssessmentQuestionSet
	Aura Component
	Batch Calc Job Definition
	Batch Process Job Definition
	Benefit Action
	Bot Template
	Branding Set
	Briefcase Definition
	Building Energy Intensity Record Type Configuration
	Business Process
	Business Process Group
	Business Process Type Definition
	Care Benefit Verify Settings
	Care Limit Type
	Care Request Configuration
	Care System Field Mapping
	Channel Layout
	Chatter Extension
	Claim Financial Settings
	CommunicationChannelType
	Community Template Definition
	Community Theme Definition
	Compact Layout
	Conditional Formatting Ruleset
	Connected App
	Context Definition
	Contract Type
	Conversation Channel Definition
	Conversation Vendor Info
	CORS Allowlist
	CSP Trusted Site
	Custom Application
	Custom Button or Link
	Custom Console Components
	Custom Field on Standard or Custom Object
	Custom Field on Custom Metadata Type
	Custom Field Display
	Custom Help Menu Section
	Custom Index
	Custom Label
	Custom Metadata Type Records
	Custom Metadata Type
	Custom Notification Type
	Custom Object
	Custom Object Translation
	Custom Permission
	Custom Tab
	Dashboard
	DataCalcInsightTemplate
	Data Connector Ingest API
	Data Connector S3
	Data Kit Object Dependency
	Data Kit Object Template
	DataObjectBuildOrgTemplate
	Data Package Kit Definition
	Data Package Kit Object
	Data Source
	Data Source Bundle Definition
	Data Source Object
	Data Src Data Model Field Map
	Data Stream Definition
	Data Stream Template
	DataWeaveResource
	Decision Matrix Definition
	Decision Matrix Definition Version
	Decision Table
	Decision Table Dataset Link
	Digital Experience
	Digital Experience Bundle
	Decision Table
	Disclosure Definition
	Disclosure Definition Version
	Disclosure Type
	Discovery AI Model
	Discovery Goal
	Discovery Story
	Document
	Document Generation Setting
	Eclair GeoData
	Email Template (Classic)
	Email Template (Lightning)
	Embedded Service Config
	Embedded Service Menu Settings
	Enablement Measure Definition
	Enablement Program Definition
	Enablement Program Task Subcategory
	Entitlement Template
	ESignature Config
	ESignature Envelope Config
	Event Relay
	Explainability Action Definition
	Explainability Action Version
	Explainability Message Template
	Expression Set Definition
	Expression Set Definition Version
	Expression Set Object Alias
	Expression Set Message Token
	External Auth Identity Provider
	External Client App Canvas Settings
	External Client App Header
	External Client App Notification Settings
	External Client App OAuth Settings
	External Client App Push Settings
	External Credential
	External Data Connector
	External Data Source
	External Data Transport Field Template
	External Data Transport Field
	External Data Transport Object Template
	External Data Transport Object
	External Document Storage Configuration
	External Services
	Feature Parameter Boolean
	Feature Parameter Date
	Feature Parameter Integer
	FieldMappingConfig
	Field Set
	Field Source Target Relationship
	Flow
	Flow Category
	Flow Definition
	Flow Test
	Folder
	Fuel Type
	Fuel Type Sustainability Unit of Measure
	Fundraising Config
	Gateway Provider Payment Method Type
	Gen Ai Planner Bundle
	Generative AI Prompt Template
	Global Picklist
	Home Page Component
	Home Page Layout
	Identity Verification Proc Def
	Inbound Network Connection
	IndustriesEinsteinFeatureSettings
	IntegrationProviderDef
	Invocable Action Extension
	LearningAchievementConfig
	Learning Item Type
	Letterhead
	Life Science Config Category
	Life Science Config Record
	Lightning Bolt
	Lightning Message Channel
	Lightning Page
	Lightning Type
	Lightning Web Component
	List View
	Live Chat Sensitive Data Rule
	Loyalty Program Setup
	Managed Content Type
	Marketing App Extension
	Marketing App Extension Activity
	Market Segment Definition
	MktCalculatedInsightsObjectDef
	MktDataConnection
	MktDataTranObject
	Named Credential
	Object Source Target Map
	OcrSampleDocument
	OcrTemplate
	Outbound Network Connection
	Page Layout
	Path Assistant
	Payment Gateway Provider
	Permission Set
	Permission Set Groups
	Platform Cache
	Platform Event Channel
	Platform Event Channel Member
	Platform Event Subscriber Configuration
	Pricing Action Parameters
	Pricing Recipe
	Procedure Output Resolution
	Process
	Process Flow Migration
	Product Attribute Set
	Product Specification Type
	Product Specification Record Type
	Prompts (In-App Guidance)
	Quick Action
	Recommendation Strategy
	Record Action Deployment
	Record Alert Data Source Expression Set Definition
	Record Type
	RedirectWhitelistUrl
	Referenced Dashboard
	Registered External Service
	RelationshipGraphDefinition
	Remote Site Setting
	Report
	Report Type
	ServiceProcess
	Slack App (Beta)
	Service Catalog Category
	Service Catalog Filter Criteria
	Service Catalog Item Definition
	Service Catalog Fulfillment Flow
	Stationary Asset Environmental Source Record Type Configuration
	Static Resource
	Streaming App Data Connector
	Sustainability UOM
	Sustainability UOM Conversion
	Timeline Object Definition
	Timesheet Template
	Transaction Processing Type
	Translation
	UI Object Relation Config
	User Access Policy
	Validation Rule
	Vehicle Asset Emissions Source Record Type Configuration
	View Definition (Beta)
	Virtual Visit Config
	Visualforce Component
	Visualforce Page
	Wave Analytic Asset Collection
	Wave Application
	Wave Component
	Wave Dataflow
	Wave Dashboard
	Wave Dataset
	Wave Lens
	Wave Recipe
	Wave Template Bundle
	Wave Xmd
	Web Store Template
	Workflow Alert
	Workflow Field Update
	Workflow Knowledge Publish
	Workflow Outbound Message
	Workflow Rule
	Workflow Task

	Behavior of Specific Metadata in Second-Generation Managed Packages
	Package Agentforce Metadata Components
	Develop and Package Agent Templates Using Scratch Orgs
	Package Data Cloud Metadata Components
	Protected Components in Managed Packages
	Set Up a Platform Cache Partition with Provider Free Capacity
	Metadata Access in Apex Code
	Permission Sets and Profile Settings in Packages
	Permission Set Groups
	Custom Profile Settings
	How We Handle Profile Settings in Second-Generation Managed Packages

	Protecting Your Intellectual Property
	Call Salesforce URLs Within a Package
	Namespace-Based Visibility for Apex Classes in Second-Generation Managed Packages
	Work with Services Outside of Salesforce
	Package Connected Apps in Second-Generation Managed Packaging
	Test and Respond to the New Order Save Behavior

	Develop Second-Generation Managed Packages
	Create a Second-Generation Managed Package
	View Package Details for a Second-Generation Managed Package
	Create Versions of a Second-Generation Managed Package
	Guidance for Package Version Numbering
	View Details about a Second-Generation Managed Package Version
	Project Configuration File for a Second-Generation Managed Package
	Get Ready to Promote and Release a Second-Generation Managed Package Version
	Specify a Package Ancestor in the Project File for a Second-Generation Managed Package

	Install and Uninstall Second-Generation Managed Packages
	Use the CLI to Install a Second-Generation Managed Package
	Use a URL to Install a Second-Generation Managed Package
	Install Notifications for Unauthorized Managed Packages
	Upgrade a Second-Generation Managed Package Version
	Resolve Apex Test Failures
	Run Apex on Package Install/Upgrade
	How Does a Post Install Script Work?
	Example of a Post Install Script
	Specifying a Post Install Script

	Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts
	Sample Script for Installing Second-Generation Managed Packages with Dependencies
	Uninstall a Second-Generation Managed Package

	Prepare to Distribute Your Second-Generation Managed Package
	Code Coverage for Second-Generation Managed Packages
	Package Installation Key for Second-Generation Managed Packages
	Release a Second-Generation Managed Package
	Share Release Notes and Post-Install Instructions for Second-Generation Managed Packages
	Publishing Your App on AppExchange
	Recommend a Specific Package Version to Your Subscribers

	Push a Package Upgrade for Second-Generation Managed Packages
	Schedule a Push Upgrade Using CLI
	Schedule a Push Upgrade Using SOAP API for First- and Second-Generation Managed Packages
	Assign Access to New and Changed Features in First- and Second-Generation Managed Packages
	Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages
	Push Upgrade Best Practices

	Advanced Features for Second-Generation Managed Packages
	Package Ancestors for Second-Generation Managed Packages
	Understanding Package Upgrades with Ancestry
	View Package Ancestry

	Patch Versions for Second-Generation Managed Packages
	Create Dependencies Between Second-Generation Managed Packages
	Considerations for Promoting Packages with Dependencies
	Advanced Project Configuration Parameters for Second-Generation Managed Packages
	Second-Generation Managed Packaging Keywords
	Target a Specific Release for Your Second-Generation Managed Packages During Salesforce Release Transitions
	Use Branches in Second-Generation Managed Packaging
	Specify Unpackaged Metadata or Apex Access for Package Version Creation Tests for Second-Generation Managed Packages
	Package IDs and Aliases for Second-Generation Managed Packages
	Avoid Namespace Collisions in Second-Generation Managed Packages
	Remove Metadata Components from Second-Generation Managed Packages
	What to Consider Before Removing Metadata Components

	Delete a Second-Generation Managed Package or Package Version
	Frequently Used Packaging Operations for Second-Generation Managed Packages
	Transfer a Second-Generation Managed Package to a Different Dev Hub
	Take Ownership of a Second-Generation Managed Package Transferred from a Different Dev Hub

	Contact Salesforce Partner Support to Enable Specific Packaging Features

	Best Practices for Second-Generation Managed Packages
	Manage Licenses for Managed Packages
	Get Started with the License Management App
	Install the License Management App
	Associate a Package with the License Management App
	Configure Permissions for the License Management App
	Assign Permissions to the Subscriber Support Console

	Lead and License Records in the License Management App
	Modify a License Record
	Refresh Licenses for a Managed Package
	Extending the License Management App
	Package and Package Version Object Fields
	License Object Fields
	Adding Custom Automation to License Management App Objects

	Move the License Management App to Another Salesforce Org
	Troubleshoot the License Management App
	Leads and Licenses Aren’t Being Created in the License Management App
	Proxy User Has Deactivated Message in the LMA

	Best Practices for the License Management App
	Troubleshoot Subscriber Issues
	Request Login Access from Subscribers
	Log In to Subscriber Orgs
	Debug Subscriber Orgs

	Manage Features in Second-Generation Managed Packages
	Feature Parameter Metadata Types and Custom Objects
	Set Up Feature Parameters
	Install and Set Up the Feature Management App in Your License Management Org
	Create Feature Parameters for Your Second-Generation Managed Package

	Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features
	Assign Override Values in Your LMO
	Check LMO-to-Subscriber Values in Your Code

	Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters
	Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs
	Best Practices for Feature Management
	Considerations for Feature Management

	Get Started with AppExchange App Analytics
	App Analytics Use Cases
	Enable App Analytics on Your Second-Generation Managed Package
	Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots
	Considerations for Custom Interactions
	AppExchange App Analytics Best Practices
	How Does AppExchange App Analytics Data Flow?
	How Should I Plan My App Analytics Query Strategy?
	Recommendations
	Small-Sized Partners
	Medium-Sized Partners
	Large-Sized Partners

	Where Do I Go for More Information About AppExchange App Analytics Queries?

	Package Usage Summaries
	Package Usage Summary Schema

	Package Usage Logs
	How to Read App Analytics Package Usage Log Data
	Determine What Packaged Component Was Accessed
	Identify Who Interacted with Your Packaged Component
	Identify How a User Interacted with Your Packaged Component
	Custom Object and External Object Interactions
	Lightning Interactions
	Apex Interactions
	Visualforce Interactions
	CRM Analytics Asset Interactions
	Custom Interactions

	Package Usage Logs Schema

	Subscriber Snapshots
	Test Custom Integrations
	AppExchange App Analytics Developer Cookbook
	What Are Recipes?
	Before You Begin
	Get Help with Prerequisites

	CRM Analytics Recipes
	Create the Country-Codes Dataset
	Connect to Your License Management App Data
	Create the LMAJoin CRM Analytics Recipe
	Monitor Your LMAJoin CRM Analytics Recipe
	Run the LMAJoin CRM Analytics Recipe

	Create Your App Analytics Dataset
	Create Your DailyAggregation CRM Analytics Recipe
	Monitor the DailyAggregation CRM Analytics Recipe
	Run the DailyAggregation CRM Analytics Recipe

	App Analytics Recipes
	Customer Success Recipes
	Create a Daily Unique Users Recipe
	Create a Weekly Unique Users Recipe
	Create a Monthly Unique Users Recipe

	Custom Object Usage Recipes
	Create a Custom Object Creates Per Day Recipe
	Create a Custom Object Updates Per Day Recipe
	Create a Custom Object Reads Per Day Recipe

	Gaps Between First-Generation and Second-Generation Managed Packaging

