
Second-Generation Managed
Packaging Developer Guide

Version 66.0, Spring ’26

Last updated: January 30, 2026

© Copyright 2000–2026 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Second-Generation Managed Packages . 1

What’s a Second-Generation Managed Package? . 3
Why Switch to Second-Generation Managed Packaging? . 3
Comparison of First- and Second-Generation Managed Packages 5

Set Up Your Development Environment . 6
Enable Dev Hub and Second-Generation Managed Packaging 6
Limited Access License for Package Developers . 7
Add a Limited Access User to Your Dev Hub Org . 8
Assign Second-Generation Managed Packaging User Permissions 8

Before You Create Second-Generation Managed Packages . 9
Know Your Orgs for Second-Generation Managed Packages . 9
Link a Namespace to a Dev Hub Org . 10
Namespaces for Second-Generation Managed Packages . 11
Create and Register Your Namespace for Second-Generation Managed Packages 11
Key Concepts in Second-Generation Managed Packaging . 12
How Manageability Rules and Ancestry Impact Upgrades for Second-Generation Managed
Packages . 13
Which Package Types Can Your Package Depend On? . 14

Scratch Orgs and Package Development . 15
How Scratch Orgs Fit in the Package Development Workflow . 16
Scratch Org Definition Files vs Org Shape in Package Development 17
When to Use Scratch Org Snapshots in Package Development 18
Create a Package Version Based on a Scratch Org Snapshot . 19
Get Access to Scratch Orgs That Have Agentforce . 20
Scratch Org Allocations for Salesforce Partners . 22
Manage Scratch Orgs from the Dev Hub Org . 22
Supported Scratch Org Editions for Partners . 23

Workflow for Second-Generation Managed Packages . 23
Components Available in Second-Generation Managed Packages 25

Account Plan Objective Measure Calculation Definition . 41
Account Relationship Share Rule . 42
Action Link Group Template . 43
Action Plan Template . 44
Actionable List Definition . 45
Actionable List Key Performance Indicator Definition . 46
Activation Platform . 47
AffinityScoreDefinition . 49
Agent Action . 50
Agent Topic . 51

AI Application . 52
AI Application Config . 53
AIUsecaseDefinition . 55
Analytics . 56
Analytics Visualization . 56
Analytics Workspace . 57
Apex Class . 58
Apex Sharing Reason . 60
Apex Trigger . 61
App Framework Template Bundle . 62
Application Subtype Definition . 63
AssessmentConfiguration . 64
AssessmentQuestion . 64
AssessmentQuestionSet . 65
Aura Component . 66
Batch Calc Job Definition . 67
Batch Process Job Definition . 68
Benefit Action . 69
Bot Template . 70
Branding Set . 72
Briefcase Definition . 73
Building Energy Intensity Record Type Configuration . 74
Business Process . 75
Business Process Group . 76
Business Process Type Definition . 77
Care Benefit Verify Settings . 77
Care Limit Type . 79
Care Request Configuration . 80
Care System Field Mapping . 81
Channel Layout . 82
Chatter Extension . 83
Claim Financial Settings . 83
CommunicationChannelType . 84
Community Template Definition . 85
Community Theme Definition . 86
Compact Layout . 87
Conditional Formatting Ruleset . 88
Connected App . 89
Context Definition . 91
Contract Type . 92
Conversation Channel Definition . 93
Conversation Vendor Info . 94
CORS Allowlist . 95
CSP Trusted Site . 96

Contents

Custom Application . 98
Custom Button or Link . 99
Custom Console Components . 100
Custom Field on Standard or Custom Object . 101
Custom Field on Custom Metadata Type . 102
Custom Field Display . 103
Custom Help Menu Section . 104
Custom Index . 104
Custom Label . 105
Custom Metadata Type Records . 106
Custom Metadata Type . 107
Custom Notification Type . 107
Custom Object . 109
Custom Object Translation . 110
Custom Permission . 111
Custom Tab . 112
Dashboard . 114
DataCalcInsightTemplate . 115
Data Connector Ingest API . 116
Data Connector S3 . 117
Data Kit Object Dependency . 118
Data Kit Object Template . 119
DataObjectBuildOrgTemplate . 120
Data Package Kit Definition . 121
Data Package Kit Object . 123
Data Source . 124
Data Source Bundle Definition . 125
Data Source Object . 126
Data Src Data Model Field Map . 127
Data Stream Definition . 128
Data Stream Template . 130
DataWeaveResource . 131
Decision Matrix Definition . 132
Decision Matrix Definition Version . 133
Decision Table . 134
Decision Table Dataset Link . 135
Digital Experience . 136
Digital Experience Bundle . 137
Decision Table . 139
Disclosure Definition . 140
Disclosure Definition Version . 141
Disclosure Type . 142
Discovery AI Model . 143
Discovery Goal . 144

Contents

Discovery Story . 145
Document . 146
Document Generation Setting . 146
Eclair GeoData . 147
Email Template (Classic) . 148
Email Template (Lightning) . 149
Embedded Service Config . 150
Embedded Service Menu Settings . 151
Enablement Measure Definition . 152
Enablement Program Definition . 153
Enablement Program Task Subcategory . 155
Entitlement Template . 156
ESignature Config . 157
ESignature Envelope Config . 158
Event Relay . 159
Explainability Action Definition . 160
Explainability Action Version . 161
Explainability Message Template . 161
Expression Set Definition . 162
Expression Set Definition Version . 164
Expression Set Object Alias . 165
Expression Set Message Token . 166
External Auth Identity Provider . 167
External Client App Canvas Settings . 168
External Client App Header . 170
External Client App Notification Settings . 171
External Client App OAuth Settings . 172
External Client App Push Settings . 173
External Credential . 174
External Data Connector . 176
External Data Source . 177
External Data Transport Field Template . 178
External Data Transport Field . 179
External Data Transport Object Template . 181
External Data Transport Object . 182
External Document Storage Configuration . 183
External Services . 184
Feature Parameter Boolean . 185
Feature Parameter Date . 186
Feature Parameter Integer . 188
FieldMappingConfig . 189
Field Set . 192
Field Source Target Relationship . 193
Flow . 194

Contents

Flow Category . 196
Flow Definition . 197
Flow Test . 198
Folder . 199
Fuel Type . 201
Fuel Type Sustainability Unit of Measure . 202
Fundraising Config . 203
Gateway Provider Payment Method Type . 204
Gen Ai Planner Bundle . 205
Generative AI Prompt Template . 206
Global Picklist . 207
Home Page Component . 208
Home Page Layout . 209
Identity Verification Proc Def . 210
Inbound Network Connection . 211
IndustriesEinsteinFeatureSettings . 212
IntegrationProviderDef . 213
Invocable Action Extension . 214
LearningAchievementConfig . 215
Learning Item Type . 216
Letterhead . 217
Life Science Config Category . 218
Life Science Config Record . 219
Lightning Bolt . 220
Lightning Message Channel . 221
Lightning Page . 222
Lightning Type . 223
Lightning Web Component . 224
List View . 225
Live Chat Sensitive Data Rule . 227
Loyalty Program Setup . 228
Managed Content Type . 229
Marketing App Extension . 230
Marketing App Extension Activity . 231
Market Segment Definition . 232
MktCalculatedInsightsObjectDef . 233
MktDataConnection . 234
MktDataTranObject . 236
Named Credential . 237
Object Source Target Map . 239
OcrSampleDocument . 240
OcrTemplate . 241
Outbound Network Connection . 242
Page Layout . 244

Contents

Path Assistant . 245
Payment Gateway Provider . 246
Permission Set . 247
Permission Set Groups . 248
Platform Cache . 249
Platform Event Channel . 250
Platform Event Channel Member . 250
Platform Event Subscriber Configuration . 251
Pricing Action Parameters . 252
Pricing Recipe . 253
Procedure Output Resolution . 254
Process . 255
Process Flow Migration . 255
Product Attribute Set . 256
Product Specification Type . 257
Product Specification Record Type . 258
Prompts (In-App Guidance) . 259
Quick Action . 260
Recommendation Strategy . 261
Record Action Deployment . 261
Record Alert Data Source Expression Set Definition . 263
Record Type . 264
RedirectWhitelistUrl . 265
Referenced Dashboard . 266
Registered External Service . 267
RelationshipGraphDefinition . 268
Remote Site Setting . 269
Report . 270
Report Type . 271
ServiceProcess . 272
Slack App (Beta) . 273
Service Catalog Category . 274
Service Catalog Filter Criteria . 275
Service Catalog Item Definition . 276
Service Catalog Fulfillment Flow . 277
Stationary Asset Environmental Source Record Type Configuration 278
Static Resource . 279
Streaming App Data Connector . 280
Sustainability UOM . 281
Sustainability UOM Conversion . 282
Timeline Object Definition . 283
Timesheet Template . 285
Transaction Processing Type . 285
Translation . 286

Contents

UI Object Relation Config . 287
User Access Policy . 288
Validation Rule . 289
Vehicle Asset Emissions Source Record Type Configuration . 291
View Definition (Beta) . 292
Virtual Visit Config . 293
Visualforce Component . 294
Visualforce Page . 295
Wave Analytic Asset Collection . 296
Wave Application . 297
Wave Component . 298
Wave Dataflow . 299
Wave Dashboard . 300
Wave Dataset . 301
Wave Lens . 302
Wave Recipe . 303
Wave Template Bundle . 304
Wave Xmd . 305
Web Store Template . 306
Workflow Alert . 307
Workflow Field Update . 308
Workflow Knowledge Publish . 309
Workflow Outbound Message . 310
Workflow Rule . 311
Workflow Task . 312

Behavior of Specific Metadata in Second-Generation Managed Packages 314
Package Agentforce Metadata Components . 315
Develop and Package Agent Templates Using Scratch Orgs . 315
Package Data Cloud Metadata Components . 319
Protected Components in Managed Packages . 320
Set Up a Platform Cache Partition with Provider Free Capacity 321
Metadata Access in Apex Code . 321
Permission Sets and Profile Settings in Packages . 322
Protecting Your Intellectual Property . 327
Call Salesforce URLs Within a Package . 327
Namespace-Based Visibility for Apex Classes in Second-Generation Managed
Packages . 329
Work with Services Outside of Salesforce . 330
Package Connected Apps in Second-Generation Managed Packaging 331
Test and Respond to the New Order Save Behavior . 331

Develop Second-Generation Managed Packages . 333
Create a Second-Generation Managed Package . 334
View Package Details for a Second-Generation Managed Package 334
Create Versions of a Second-Generation Managed Package 335

Contents

Guidance for Package Version Numbering . 337
View Details about a Second-Generation Managed Package Version 339
Project Configuration File for a Second-Generation Managed Package 341
Get Ready to Promote and Release a Second-Generation Managed Package Version . . 345
Specify a Package Ancestor in the Project File for a Second-Generation Managed
Package . 345

Install and Uninstall Second-Generation Managed Packages . 347
Use the CLI to Install a Second-Generation Managed Package 348
Use a URL to Install a Second-Generation Managed Package 349
Install Notifications for Unauthorized Managed Packages . 350
Upgrade a Second-Generation Managed Package Version . 351
Resolve Apex Test Failures . 351
Run Apex on Package Install/Upgrade . 351
Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts
. 355
Sample Script for Installing Second-Generation Managed Packages with
Dependencies . 356
Uninstall a Second-Generation Managed Package . 358

Prepare to Distribute Your Second-Generation Managed Package 359
Code Coverage for Second-Generation Managed Packages 359
Package Installation Key for Second-Generation Managed Packages 360
Release a Second-Generation Managed Package . 361
Share Release Notes and Post-Install Instructions for Second-Generation Managed
Packages . 361
Publishing Your App on AppExchange . 362
Recommend a Specific Package Version to Your Subscribers 363

Push a Package Upgrade for Second-Generation Managed Packages 363
Schedule a Push Upgrade Using CLI . 364
Schedule a Push Upgrade Using SOAP API for First- and Second-Generation Managed
Packages . 367
Assign Access to New and Changed Features in First- and Second-Generation Managed
Packages . 368
Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed
Packages . 368
Push Upgrade Best Practices . 370

Advanced Features for Second-Generation Managed Packages . 371
Package Ancestors for Second-Generation Managed Packages 372
Patch Versions for Second-Generation Managed Packages . 376
Create Dependencies Between Second-Generation Managed Packages 377
Considerations for Promoting Packages with Dependencies 381
Advanced Project Configuration Parameters for Second-Generation Managed
Packages . 382
Second-Generation Managed Packaging Keywords . 386

Contents

Target a Specific Release for Your Second-Generation Managed Packages During
Salesforce Release Transitions . 387
Use Branches in Second-Generation Managed Packaging . 388
Specify Unpackaged Metadata or Apex Access for Package Version Creation Tests for
Second-Generation Managed Packages . 389
Package IDs and Aliases for Second-Generation Managed Packages 390
Avoid Namespace Collisions in Second-Generation Managed Packages 391
Remove Metadata Components from Second-Generation Managed Packages 393
Delete a Second-Generation Managed Package or Package Version 397
Frequently Used Packaging Operations for Second-Generation Managed Packages . . . 398
Transfer a Second-Generation Managed Package to a Different Dev Hub 398
Contact Salesforce Partner Support to Enable Specific Packaging Features 403

Best Practices for Second-Generation Managed Packages . 404
Manage Licenses for Managed Packages . 404

Get Started with the License Management App . 405
Lead and License Records in the License Management App 409
Modify a License Record . 409
Refresh Licenses for a Managed Package . 410
Extending the License Management App . 410
Move the License Management App to Another Salesforce Org 413
Troubleshoot the License Management App . 414
Best Practices for the License Management App . 415
Troubleshoot Subscriber Issues . 415

Manage Features in Second-Generation Managed Packages . 418
Feature Parameter Metadata Types and Custom Objects . 419
Set Up Feature Parameters . 420
Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features 422
Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters . . 423
Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs 423
Best Practices for Feature Management . 424
Considerations for Feature Management . 424

Get Started with AppExchange App Analytics . 425
App Analytics Use Cases . 426
Enable App Analytics on Your Second-Generation Managed Package 429
Download Package Usage Logs, Package Usage Summaries, and Subscriber
Snapshots . 429
Considerations for Custom Interactions . 430
AppExchange App Analytics Best Practices . 435
Package Usage Summaries . 452
Package Usage Logs . 454
Subscriber Snapshots . 479
Test Custom Integrations . 481
AppExchange App Analytics Developer Cookbook . 482

Gaps Between First-Generation and Second-Generation Managed Packaging 502

Contents

CHAPTER 1 Second-Generation Managed Packages

Second-generation managed packaging (managed 2GP) ushers in a new way for AppExchange partners
to develop, distribute, and manage their apps and metadata. You can use managed 2GP packaging to
organize your source, build small modular packages, integrate with your version control system, and
better utilize your custom Apex code. With version control being the source of truth, there are no
packaging or patch orgs. You can execute all packaging operations via Salesforce CLI, or automate them
using scripts. Submit second-generation managed packages for security review, and list them on
AppExchange.

In this chapter ...

• What’s a
Second-Generation
Managed Package?

• Set Up Your
Development
Environment

Use managed 2GP to create new managed packages. You can’t currently migrate a first-generation
managed package to a second-generation managed package.• Before You Create

Second-Generation
Managed Packages Another great way to learn about second-generation managed packages, is by taking the

Second-Generation Managed Packages Trailhead module.• Scratch Orgs and
Package
Development

Note: Second-generation managed packaging addresses the specific needs of AppExchange
partners. If you’re a customer or system integrator and you don’t plan to distribute a package to

• Workflow for
Second-Generation
Managed Packages

multiple customers, unlocked packaging is the preferred tool. You can use unlocked packages to
organize your existing metadata, package an app or extension, or package new metadata. See
Unlocked Packages for more information.

• Components
Available in
Second-Generation
Managed Packages

• Behavior of Specific
Metadata in
Second-Generation
Managed Packages

• Develop
Second-Generation
Managed Packages

• Install and Uninstall
Second-Generation
Managed Packages

• Prepare to Distribute
Your
Second-Generation
Managed Package

• Push a Package
Upgrade for
Second-Generation
Managed Packages

• Advanced Features
for
Second-Generation
Managed Packages

1

https://trailhead.salesforce.com/content/learn/modules/second-generation-managed-packages
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm

• Best Practices for
Second-Generation
Managed Packages

• Manage Licenses for
Managed Packages

• Manage Features in
Second-Generation
Managed Packages

• Get Started with
AppExchange App
Analytics

• Gaps Between
First-Generation and
Second-Generation
Managed Packaging

2

Second-Generation Managed Packages

What’s a Second-Generation Managed Package?

If your goal is to build an app and distribute it on AppExchange, you’ll use managed packages to do both. Packaging is the container
that you fill with metadata, and it holds the set of related features, customizations, and schema that make up your app. A package can
include many different metadata components, and you can package a single component, an app, or library.

Each second-generation managed package follows a distinct lifecycle. As you develop your app, you add metadata to a package, and
create a new package version. While the package is continually evolving, each package version is an immutable artifact.

A package version contains the set of metadata and features associated with the package version at the moment it was created. As you
iterate on your package, and add, remove, or change the packaged metadata, you're likely to create many package versions along the
way.

You can install a package version in a scratch, sandbox, trial, developer edition, or production org. Your customers can install the package
into their org and when you release a new package version, your customers can upgrade to the latest version.

You can repeat the package development cycle any number of times. You can change metadata, create a package version, test the
package version, and distribute it to your customers via AppExchange.

Why Switch to Second-Generation Managed Packaging?

You’ve been using first-generation managed packages to develop your apps, so you’re probably pretty familiar with what works
well, and what’s a bit more painful than you’d like. And no doubt, you’re aware that second-generation managed packages is our
newer technology, but maybe you aren’t so sure why switching to second-generation managed packaging (managed 2GP) will
improve your package development experience. So let’s talk about that.

Comparison of First- and Second-Generation Managed Packages

If you’re familiar with first-generation managed packages (managed 1GP) and wonder how it’s different from second-generation
managed packages (managed 2GP), here are some key distinctions.

Why Switch to Second-Generation Managed Packaging?
You’ve been using first-generation managed packages to develop your apps, so you’re probably pretty familiar with what works well,
and what’s a bit more painful than you’d like. And no doubt, you’re aware that second-generation managed packages is our newer
technology, but maybe you aren’t so sure why switching to second-generation managed packaging (managed 2GP) will improve your
package development experience. So let’s talk about that.

Source-Driven Development
The source-driven development model used in managed 2GP is a big shift from the org-based development used in managed 1GP. Say
goodbye to packaging orgs as your source of truth. Instead, your source of truth with managed 2GP is the package metadata in your
version control system. And as you develop your managed 2GP package, you create and update your package metadata in a version
control system, not in an org.

Minimal Interaction with Salesforce Orgs
As you probably know well, with managed 1GP development, every package and patch version requires a unique Salesforce org, so it’s
not uncommon for you to own 100s of Salesforce orgs in which your package metadata is deployed. Managing these orgs and their
credentials can become a nightmare.

Managed 2GP takes away the hassle of managing orgs, and instead you use a single org, the Dev Hub org, to manage all your packages.
And even when you do need to connect to your Dev Hub org you’ll use Salesforce CLI (Command Line Interface) or a script to log in.

3

What’s a Second-Generation Managed Package?Second-Generation Managed Packages

By eliminating the need to manually log in and keep track of hundreds of packaging and patch orgs (and their login credentials), managed
2GP simplifies package development and promotes modern, programmatic Application Lifecycle Management (ALM).

API- and CLI-first Model
Unlike managed 1GP, which has only partial API coverage, you can perform every managed 2GP packaging operation using an API or
CLI command. You can completely automate packaging operations and be more productive. Repeatable, scriptable, and track-able ALM
is truly possible with managed 2GP.

Flexible Versioning
Managed 1GP packaging follows a linear versioning model that requires you to build upon the previous package version. This approach
is very restrictive, and for metadata that can’t be removed from a package, you’re stuck with that metadata in your managed 1GP.

Enter managed 2GP and flexible versioning. If you create a managed-released package version that you haven’t yet distributed to a
customer, you can abandon that package version and select a previous package version as the ancestor you want to build upon. Flexible
versioning also allows you to use branches and do parallel package development. You can iterate fast, learn from, and move on from
any mistakes.

One Namespace Shared Across Multiple Packages
Managed 1GP packages require each package to have a unique namespace. This restriction can lead to a proliferation of global Apex
because sharing code among packages is only possible by declaring Apex classes and methods as global.

Managed 2GP changes the game by allowing multiple packages to share the same namespace. The @namespaceAccessible
annotation then lets you share public Apex classes and methods across all packages in the same namespace. By using public Apex, you
don’t increase your global Apex footprint by exposing a global API.

Declarative Dependencies
In managed 2GP packaging, you specify dependencies among packages declaratively in a .json file. Which as you know, is a more
developer-friendly approach than how managed 1GP dependencies are declared.

Simplified Patch Versioning
Creating a patch version of a managed 2GP is as easy as creating a new major or minor package version. You use a Salesforce CLI command
and specify a non-zero number for the patch version number. And that’s it!

Because your version control system is the source of truth for managed 2GP, creating patch versions is straightforward. We promise you
won’t miss the laborious and error-prone patch org process of managed 1GP.

Avoid Having to Migrate Customers in the Future
As you may be aware, we’re developing capabilities to migrate your managed 1GP packages to managed 2GP. However, when we
launch that capability, there’s work that you have to do to migrate your managed 1GP packages and customers from 1GP to 2GP. By
adopting managed 2GP today for your new packages, you avoid the hassle of migration in the future.

4

Why Switch to Second-Generation Managed Packaging?Second-Generation Managed Packages

Comparison of First- and Second-Generation Managed Packages
If you’re familiar with first-generation managed packages (managed 1GP) and wonder how it’s different from second-generation managed
packages (managed 2GP), here are some key distinctions.

Managed 2GP PackagesManaged 1GP Packages

Your version control system is the source of truth (source-driven
system) for the metadata in your package.

And unlike managed 1GP, managed 2GP doesn’t use packaging
or patch orgs.

The packaging org is the source of truth for the metadata in your
package.

The Dev Hub owns the package, but the Dev Hub doesn’t contain
the packaged metadata.

We recommend that you enable Dev Hub in your Partner Business
Org (PBO).

The packaging org owns the package. The metadata in the package
resides in the packaging org.

A Dev Hub can own one or more packages.A packaging org can own only one managed package.

The namespace of a managed package is created in a namespace
org and linked to the Dev Hub. And you can associate multiple
namespaces to a single Dev Hub.

A namespace is linked to a managed 2GP when you run the sf
package create Salesforce CLI command. And you must
specify the namespace in the sfdx-project.json file.

The namespace of the managed package is created in the
packaging org.

See Namespaces for Second-Generation Managed Packages for
more details.

Multiple packages can use the same namespace.A namespace can be associated with only one package.

Multiple packages using the same namespace can share code
using public Apex classes and methods with the
@namespaceAccessible annotation.

Global Apex is the only way to share code across packages.

All packaging operations can be automated using Salesforce CLI.Some packaging operations, like package create and package
uninstall, can’t be automated.

Package versioning is flexible, and you can abandon unwanted
package versions. This flexible versioning allows you to use
branches and do parallel package development.

Package versioning is linear.

Patch versions are created using Salesforce CLI. The version control
system is the source of truth, and there are no patch orgs.

Patch versions can only be created in specialized orgs called patch
orgs.

Despite these distinctions, managed 1GP and 2GP packages have many things in common. They share the key packaging concept of
associating metadata with a package. And they both allow you to iterate and create package and patch versions, which can be installed
and uninstalled in subscriber orgs. Both managed package types enable you to submit a package for AppExchange security review, and
list your package on AppExchange. And both managed package types can use the License Management App, Subscriber Support
Console, and Feature Management App.

5

Comparison of First- and Second-Generation Managed
Packages

Second-Generation Managed Packages

Set Up Your Development Environment

Second-generation managed packaging uses Salesforce DX developer tools. Ensure that you have the required tools and orgs installed
and enabled.

You use these tools for managed 2GP package development.

• Salesforce CLI, a rich set of commands to execute different packaging operations like package creation and package install

• A source control system of your choosing

• A Dev Hub org

• Salesforce Extension for Visual Studio Code (optional), an IDE designed to facilitate the development of Salesforce components

Use the Dev Hub to Keep Track of Package Development
Your Dev Hub is the designated place to find and manage all your managed 2GP packages, scratch orgs, and namespaces. After you
enable the Dev Hub setting on a Salesforce org, that Dev Hub becomes the owner of every managed 2GP package you create.

All Salesforce ISV and OEM partners should designate their Partner Business Org as their Dev Hub org. A Partner Business Org (PBO) is
the production org where Salesforce Partners run their business.

Enable Dev Hub and Second-Generation Managed Packaging

The Dev Hub lets you create and manage second-generation managed packages and scratch orgs. Your Dev Hub is the designated
place to find and manage all your managed 2GP packages, scratch orgs, and namespaces.

Limited Access License for Package Developers

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and
custom objects. Partner Business Orgs (PBO) include 100 Salesforce Limited Access - Free user licenses.

Add a Limited Access User to Your Dev Hub Org

Provide your developers access to the Dev Hub and Salesforce DX development tools by adding a user with Salesforce Limited Access
- Free license and the Limited Access user profile in your Dev Hub org. Then create and assign them a permission set to the required
Dev Hub objects.

Assign Second-Generation Managed Packaging User Permissions

To create second-generation managed packages and scratch orgs, developers require access to the Dev Hub org. We recommend
enabling the Dev Hub in your Partner Business Org (PBO). A Salesforce admin can create a permission set to grant appropriate
permissions to the required Dev Hub objects and system permission.

Enable Dev Hub and Second-Generation Managed Packaging

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer, Enterprise,
Performance, and
Unlimited Editions

The Dev Hub lets you create and manage second-generation managed packages and scratch orgs.
Your Dev Hub is the designated place to find and manage all your managed 2GP packages, scratch
orgs, and namespaces.

After you enable the Dev Hub setting on a Salesforce org, that Dev Hub becomes the owner of
every managed 2GP package you create. All Salesforce ISV and OEM partners should designate their
Partner Business Org (PBO) as their Dev Hub org.

To enable Dev Hub:

1. Log in to your Partner Business Org.

6

Set Up Your Development EnvironmentSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/tools/vscode/en/vscode-desktop/install

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub. If you don't see Dev Hub in the Setup menu, make sure
that your org is one of the supported editions.

3. Select Enable Dev Hub. After you enable Dev Hub, you can’t disable it.

4. Select Enable Unlocked Packages and Second-Generation Managed Packages. After you enable this setting, you can’t disable
it.

If you choose to use a trial or Developer Edition org as your Dev Hub, consider these factors.

• When a trial or Developer Edition org expires, you lose access to all packages associated with that Dev Hub org.

• You’re limited to creating up to six scratch orgs and package versions per day, with a maximum of three active scratch orgs.

• Trial orgs expire on their expiration date.

• Developer Edition orgs can expire due to inactivity.

• If a package is associated with a non-production Dev Hub org, and that org expires or becomes inactive, the installed package can't
be updated, and new attempts to install the package may fail.

• If you plan to create package versions or run continuous integration jobs, it’s better to use your PBO as your Dev Hub because of
higher scratch org and package version limits.

The Dev Hub org instance determines where scratch orgs are created.

• Scratch orgs created from a Dev Hub org in Government Cloud are created on a Government Cloud instance.

• Scratch orgs created from a Dev Hub org in Public Cloud are created on a Public Cloud instance.

Note: You can’t enable Dev Hub in a sandbox.

Limited Access License for Package Developers
The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and custom
objects. Partner Business Orgs (PBO) include 100 Salesforce Limited Access - Free user licenses.

If the Salesforce Limited Access - Free license isn’t already enabled in your PBO, log a case with Salesforce Partner Support to request up
to 100 licenses. A Salesforce admin can upgrade a Salesforce Limited Access - Free license to a standard Salesforce license at any time.

Certain developer features aren’t available with the Salesforce Limited Access - Free license.

• To provide the ability to create and manage org shapes, assign the Salesforce user license. The Salesforce Limited Access - Free
license isn’t supported at this time.

• Users with the Salesforce Limited Access - Free license and View All Records permissions can create scratch orgs using an existing
org shape.

• Users with the Salesforce Limited Access - Free license and View All Records permissions can view scratch org snapshots created by
users other than themselves.

• The Salesforce Limited Access - Free license doesn’t provide access to some Salesforce CLI commands, such as sf limits api
display.

• Contact your Salesforce admin for API limits information.

If your developers need broader access, consider assigning the Salesforce license. For details, see Standard User Licenses in Salesforce
Help.

7

Limited Access License for Package DevelopersSecond-Generation Managed Packages

https://partners.salesforce.com
https://help.salesforce.com/s/articleView?id=platform.users_license_types_available.htm&type=5&language=en_US

Add a Limited Access User to Your Dev Hub Org
Provide your developers access to the Dev Hub and Salesforce DX development tools by adding a user with Salesforce Limited Access
- Free license and the Limited Access user profile in your Dev Hub org. Then create and assign them a permission set to the required
Dev Hub objects.

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and custom
objects.

1. Create a user in your Dev Hub org.

a. In Setup, enter Users in the Quick Find box, then select Users.

b. Click New User.

c. Fill out the form.

d. Select Salesforce Limited Access - Free for User License, and then Limited Access User for Profile.

e. After filling out the remaining information, click Save.

2. Create a permission set that provides your developer users with access to the required Dev Hub objects. For details, see Create and
Assign a Permission Set for Developer Users or Assign Second-Generation Managed Packaging User Permissions.

Assign Second-Generation Managed Packaging User Permissions
To create second-generation managed packages and scratch orgs, developers require access to the Dev Hub org. We recommend
enabling the Dev Hub in your Partner Business Org (PBO). A Salesforce admin can create a permission set to grant appropriate permissions
to the required Dev Hub objects and system permission.

To give developers access to the Dev Hub org, create a permission set that contains these required permissions:

• Object Settings > Scratch Org Info > Read, Create, and Delete

• Object Settings > Active Scratch Org > Read and Delete

• Object Settings > Namespace Registry > Read (to use a linked namespace in a scratch org)

To provide users with the ability to create second-generation managed packages and package versions, the permission set must also
contain:

• System Permissions > Create and Update Second-Generation Packages

This permission provides access to:

Tooling API Object (Create and Edit)Salesforce CLI Command

Package2sf package create

Package2VersionCreateRequestsf package version create

Package2Versionsf package version update

If you choose to test your package in a scratch org, the Create and Update Second-Generation Packages permission is also required
when creating the scratch org if you specified an ancestor version in the sfdx-project.json file. Alternatively, use the
--noancestors flag with the sf org create command when you create the scratch org.

8

Add a Limited Access User to Your Dev Hub OrgSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm

Before You Create Second-Generation Managed Packages

When you use second-generation managed packaging, to be sure that you set it up correctly, verify the following.

Did you?

• Enable Dev Hub and Second-Generation Managed Packaging in your Partner Business Org (PBO)

• Install Salesforce CLI

• Create and Register Your Namespace for Second-Generation Managed Packages

Developers who work with managed 2GP packages need a user license and permission set that provides access to the Dev Hub org. See
Limited Access License for Package Developers and Assign Second-Generation Managed Packaging User Permissions.

Know Your Orgs for Second-Generation Managed Packages

Some of the orgs that you use with second-generation managed packaging (managed 2GP) have a unique purpose.

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub
org.

Namespaces for Second-Generation Managed Packages

A namespace is a 1–15 character alphanumeric identifier that distinguishes your package and its contents from other packages in
your customer’s org. A namespace is assigned to a second-generation managed package (managed 2GP) at the time that it’s created,
and can’t be changed.

Create and Register Your Namespace for Second-Generation Managed Packages

With second-generation managed packaging (managed 2GP), you can share a single namespace with multiple packages. Since
sharing of code is much easier if your package shares the same namespace, we recommend that you use a single namespace for all
of your managed 2GP packages.

Key Concepts in Second-Generation Managed Packaging

Let’s look at some key high-level concepts in second-generation managed packaging (managed 2GP).

How Manageability Rules and Ancestry Impact Upgrades for Second-Generation Managed Packages

Before you dive in and create your first second-generation managed package (managed 2GP), it’s important to understand these
concepts, and how they affect each other.

Which Package Types Can Your Package Depend On?

Both second-generation managed packaging (managed 2GP) and unlocked packaging let you easily develop small interdependent
packages and share logic between them. If you design your app to rely on small modular packages, both package creation and
package installation are faster, and you’re less likely to hit limits.

Know Your Orgs for Second-Generation Managed Packages
Some of the orgs that you use with second-generation managed packaging (managed 2GP) have a unique purpose.

Choose Your Dev Hub Org
Use the Dev Hub org for these purposes.

• As owner of all second-generation managed packages

• To link your namespaces

• To authorize and run your sf package Salesforce CLI commands

9

Before You Create Second-Generation Managed PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_slalf_pkg_dev.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm

We recommend that your Partner Business Org is also your Dev Hub org. For important considerations about your Dev Hub org, see
Enable Dev Hub and Second-Generation Managed Packaging on page 6.

Note: The Dev Hub org against which you run the sf package create command becomes the owner of the package.

If the Dev Hub org expires or is deleted, packages owned by that Dev Hub:

• Can’t be transferred to a different Dev Hub

• Stop working and new package versions can’t be created

Namespace Org
The primary purpose of the namespace org is to acquire a namespace for your managed 2GP package.

After you create a namespace org and specify the namespace in it, open the Dev Hub org and link the namespace org to the Dev Hub
org.

Other Orgs
When you work with managed 2GP packages, you also use these orgs:

• Scratch orgs to develop and test your packages.

• A target or installation org in which you install the package.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Scratch Org Allocations for Partners

Salesforce DX Developer Guide: Scratch Orgs

Link a Namespace to a Dev Hub Org
To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub org.

Complete these tasks before you link a namespace.

• If you don’t have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, you’re good to go.

• In the Developer Edition org, create and register the namespace.

Important: Choose namespaces carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. After you associate a namespace with an org, you can't change it or reuse it.

1. Log in to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.

Tip: Make sure your browser allows pop-ups from your Dev Hub org.

a. From the App Launcher menu, select Namespace Registries.

b. Click Link Namespace.

2. In the window that pops up, log in to the Developer Edition org in which your namespace is registered using the org's System
Administrator's credentials.

10

Link a Namespace to a Dev Hub OrgSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/isv_partner_scratch_org_allocations.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm

You can’t link orgs without a namespace: sandboxes, scratch orgs, patch orgs, and branch orgs require a namespace to be linked to
the Namespace Registry.

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries list view.

Namespaces for Second-Generation Managed Packages
A namespace is a 1–15 character alphanumeric identifier that distinguishes your package and its contents from other packages in your
customer’s org. A namespace is assigned to a second-generation managed package (managed 2GP) at the time that it’s created, and
can’t be changed.

When you specify a package namespace, every component added to a package has the namespace prefixed to the component API
name. Let’s say you have a custom object called Insurance_Agent with the API name, Insurance_Agent__c. If you add this
component to a package associated with the Acme namespace, the API name becomes Acme__Insurance_Agent__c.

Important: When creating a namespace, use something that’s useful and informative to users. However, don’t name a namespace
after a person (for example, by using a person's name, nickname, or private information).

When you work with namespaces, keep these considerations in mind.

• You can develop more than one managed 2GP package and associate the packages with the same namespace. But a single managed
2GP package can't be associated with more than one namespace.

• If you work with more than one namespace, we recommend that you set up one project for each namespace.

• It's beneficial for managed 2GP packages to share the same namespace, but it's not required. Carefully consider your package and
namespace strategy. After a namespace is associated with a managed 2GP, the association can't be changed.

• There are scenarios where you may prefer to keep a managed 2GP package isolated from other managed 2GP packages you're
developing. For example, if you’re developing a product that you intend to sell or spin off, having a unique namespace for that
package enables you to transfer the namespace with the package.

SEE ALSO:

Create and Register Your Namespace for Second-Generation Managed Packages

Link a Namespace to a Dev Hub Org

Avoid Namespace Collisions in Second-Generation Managed Packages

Create and Register Your Namespace for Second-Generation Managed
Packages
With second-generation managed packaging (managed 2GP), you can share a single namespace with multiple packages. Since sharing
of code is much easier if your package shares the same namespace, we recommend that you use a single namespace for all of your
managed 2GP packages.

To create a namespace:

1. Sign up for a new Developer Edition org.

2. In Setup, enter Package Manager in the Quick Find box, and select Package Manager.

3. In Namespace Settings, click Edit.

4. Enter a namespace and select Check Availability.

5. (Optional) Select a package to associate with this namespace , or select None, then click Review.

6. Review your selections, and then click Save.

11

Namespaces for Second-Generation Managed PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_collisions.htm

To register a namespace:

1. To link the namespace that you created with your Dev Hub, use Namespace Registry. See Link a Namespace to a Dev Hub Org for
details.

2. In the sfdx-project.json file, specify your namespace using the namespace attribute. When you create a new 2GP package,
the package is associated with the namespace specified in the sfdx-project.json file.

SEE ALSO:

Namespaces for Second-Generation Managed Packages

Link a Namespace to a Dev Hub Org

Avoid Namespace Collisions in Second-Generation Managed Packages

Key Concepts in Second-Generation Managed Packaging
Let’s look at some key high-level concepts in second-generation managed packaging (managed 2GP).

DetailsWhat’s the difference between…

An app is a set of features that you’re developing for your
customers.

Metadata is the technical representation of Salesforce features like
custom objects, Apex classes, and Lightning pages. An app is
composed of a set of metadata.

An app, a package, and metadata?

A package is the container for your app’s Salesforce metadata.
Packages are used to distribute the app that you build. When a
package is installed in an org, the app’s metadata is deployed to
the org.

Your app, and thus your package, evolves over time. Whenever
you change, add, or remove the metadata in your package, you

A package and package version?

create a new package version. Each package version is an
immutable artifact, a static snapshot of your metadata at a specific
point in time. So while your package evolves continuously, you
take snapshots of it when it's in a stable state in the form of a
package version. Technically speaking, when we say “Install a
package,” we really mean install a specific package version.

A package install refers to the first time a version of the package is
installed in an org. When a package is installed, the metadata
associated with the package is deployed into the org.

A package upgrade refers to the installation of a new package
version in an org that already has a previous version of the package

A package install and package upgrade?

installed. During a package upgrade, metadata changes are
deployed. An upgrade can include deploying new metadata,
modifying existing metadata, or deleting or deprecating metadata.
At any given point in time, an org can only ever have one version
of a package installed in that org.

12

Key Concepts in Second-Generation Managed PackagingSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_namespaces.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_collisions.htm

DetailsIs it possible to...

Yes. Push upgrades enable you to upgrade packages installed in
subscriber orgs, without asking customers to install the upgrade
themselves. For more details, see Push a Package Upgrade.

Push a package upgrade?

Yes. When you uninstall managed 2GP packages, all components
in the package and any associated data is deleted from the org.
Before uninstalling a package, review these considerations.

Uninstall a package?

Yes. If you haven’t promoted or distributed a specific package or
package version, you can delete the package or package version

Delete a package or package version?

from your Dev Hub org. For more details, see Delete a Managed
2GP Package or Package Version.

How Manageability Rules and Ancestry Impact Upgrades for
Second-Generation Managed Packages
Before you dive in and create your first second-generation managed package (managed 2GP), it’s important to understand these concepts,
and how they affect each other.

• Manageability Rules

• Package Ancestry

• Package Upgrades

Manageability Rules
Each metadata component that you include in a managed 2GP package has certain rules that determine its behavior in a subscriber
org. Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is
installed in a subscriber’s org.

Manageability rules apply at both the component level and at the component attribute level. For example, manageability rules
determine whether you or the subscriber can delete a custom field, and more specifically whether either of you can edit the Field
Label, Default Value, or other attributes of the custom field. For all first- and second-generation managed packages, we enforce
manageability rules during package version creation. If you attempt to make a change that would break a manageability rule for
one of the metadata components in your package, your package version creation fails.

Package Ancestry
Second-generation managed packaging offers a flexible linear package versioning model by letting you break your linear versioning
and abandon a package version you no longer want to build upon. We call these versioning decisions package ancestry. When you
create a package version, you must also specify which package version is the ancestor.

In this quick glance at a package ancestry tree, version 1.2 and 1.5 have been abandoned. To dig deeper into this topic, see Package
Ancestors.

13

How Manageability Rules and Ancestry Impact Upgrades
for Second-Generation Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/push_upgrade_intro_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_installed_pkgs_uninstall.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_deletion.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_deletion.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm

How Manageability Rules and Ancestry Impact Package Upgrades
Both manageability rules and package ancestry impact package upgrades. During package upgrade we enforce the manageability
rule for each new and changed component in your package version. Depending on what you changed when you created the new
package version, some metadata is added to the org during package upgrade, other metadata is modified or deleted, and some
changes aren’t applied at all.

For example, page layouts don’t get updated during package upgrade, so if you change a page layout, only new customers receive
your modified page layout. When existing subscribers upgrade their package, they won’t receive that change. Conversely, changes
to Apex code or the formula in a formula field are updated during a package upgrade.

Package ancestry determines the package upgrade path. This is a complex topic, and we have topics that go deeper into this subject.
At a high level the package version you designate as the ancestor determines whether a subscriber can upgrade to that version.
Subscribers can upgrade from one package version to another only if the ancestry tree is followed. To learn more, see Understanding
Package Upgrades with Ancestry.

SEE ALSO:

Package Ancestors for Second-Generation Managed Packages

Understanding Package Upgrades with Ancestry

Which Package Types Can Your Package Depend On?
Both second-generation managed packaging (managed 2GP) and unlocked packaging let you easily develop small interdependent
packages and share logic between them. If you design your app to rely on small modular packages, both package creation and package
installation are faster, and you’re less likely to hit limits.

To develop small, modular packages, you create dependencies between your packages. A package dependency is when metadata
contained in one package depends on metadata contained in another package. These dependencies allow you to extend the functionality
of the base package with components and metadata in a separate extension package.

When working with packaging, only certain combinations of packages are supported.

14

Which Package Types Can Your Package Depend On?Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm

Can an Unmanaged
Package Depend on
a ...

Can an Unlocked
Package Depend on
a ...

Can a Managed 2GP
Depend on a ...

Can a Managed 1GP
Depend on a ...

NoYesYesYesManaged 1GP

NoYesYesNo1Managed 2GP

NoYesNot recommendedNot recommendedUnlocked package

NoNot recommendedNot recommendedNot recommendedUnmanaged package

1This dependency isn’t supported, and we block the installation of managed 2GP packages in managed 1GP packaging orgs. We can
override this behavior on an individual basis. To share your scenario and request an override, log a case with Salesforce Partner Support.
We’re investigating how to support this dependency scenario more broadly.

SEE ALSO:

Create Dependencies Between Second-Generation Managed Packages

Considerations for Promoting Packages with Dependencies

Scratch Orgs and Package Development

EDITIONS

Available in: Lightning
Experience

Available in: Developer,
Enterprise, Performance,
and Unlimited Editions

Scratch orgs are temporary Salesforce orgs intended for development and automation. They enable
source-driven deployments of Salesforce code and metadata. A scratch org is fully configurable,
allowing developers to emulate different Salesforce editions with various features and preferences.

You can use a scratch org to develop the app you want to package, and you can also create scratch
orgs to test out your package. Scratch orgs also help with continuous integration (CI) processes to
automate package development steps. For example, you could write a script that creates a package
version, creates a scratch org, installs the package version into the scratch org, runs Apex tests, and
emails the test results to the release manager.

Enable Data Cloud for Scratch Orgs
To use Data Cloud components in scratch orgs or to add these components to a package, Data Cloud for Scratch Orgs must be enabled.
Log a case with Salesforce Partner Support and request that Data Cloud for Scratch Orgs be enabled on your Partner Business Org. Data
Cloud for Scratch Orgs is only available to scratch orgs associated with the Dev Hub in your Partner Business Org.

How Scratch Orgs Fit in the Package Development Workflow

Scratch orgs are an essential tool in both developing and testing the app you want to package. Scratch orgs also help with continuous
integration (CI) processes to automate package development steps. For example, you could write a script that creates a package
version, creates a scratch org, installs the package version into the scratch org, runs Apex tests, and emails the test results to the
release manager.

Scratch Org Definition Files vs Org Shape in Package Development

The scratch org definition file is used when you create scratch orgs, and also when you create new package versions. The scratch
org definition file is a blueprint for your scratch org and defines the shape of the org you want for your package development work.

15

Scratch Orgs and Package DevelopmentSecond-Generation Managed Packages

https://partners.salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_considerations_pkg_dependency.htm
https://partners.salesforce.com/

When to Use Scratch Org Snapshots in Package Development

If the managed 2GP or unlocked package that you’re building depends on one or more large packages, it can take a long time for
the package version creation CLI command to complete. Let’s talk about why that occurs, and how scratch org snapshots can
dramatically reduce how long it takes to create a new package version.

Create a Package Version Based on a Scratch Org Snapshot

If the dependent package your base package requires is stable, you can reduce the end-to-end package version creation time by
creating a scratch org snapshot.

Get Access to Scratch Orgs That Have Agentforce

Agentforce is a set of tools to create and customize AI agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done. Start your journey with Agentforce by testing
it in a scratch org.

Scratch Org Allocations for Salesforce Partners

To ensure optimal performance, Salesforce partners are allocated a set number of scratch orgs in their Partner Business Org (PBO).
These allocations determine how many scratch orgs you can create daily, and how many can be active at a given point.

Manage Scratch Orgs from the Dev Hub Org

You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

Supported Scratch Org Editions for Partners

Create partner edition scratch orgs from a Dev Hub partner business org.

How Scratch Orgs Fit in the Package Development Workflow
Scratch orgs are an essential tool in both developing and testing the app you want to package. Scratch orgs also help with continuous
integration (CI) processes to automate package development steps. For example, you could write a script that creates a package version,
creates a scratch org, installs the package version into the scratch org, runs Apex tests, and emails the test results to the release manager.

Develop Your Package in a Scratch Org
When developing a package, it’s preferable to use a namespaced scratch org. A namespaced scratch org prepends scratch org metadata
with the package namespace. This is true for both metadata you create in the scratch org, and any metadata you deploy to the scratch
org.

To create a namespaced scratch org, use your Dev Hub org to create the scratch org. Before you create the scratch org:

• Ensure that the namespace you plan to use is already associated with your Dev Hub org.

• Specify the namespace in your sfdx-project.json file.

• Create a scratch org definition file and include any features, settings, or limits that your org needs.

When you create a scratch org both the namespace and ancestry information listed in sfdx-project.json file are pulled into
the scratch org. The ancestry information, specified as ancestorId or ancestorVersion in your sfdx-project.json
file, seeds the scratch org with manageability rules, and later warns you if you attempt to change metadata in a way that's incompatible
with the specified ancestor version. This way, you learn of issues during development instead of during the creation of the next package
version.

To create a namespaced scratch org that includes ancestor information in the scratch org, run this CLI command.

sf org create scratch --target-dev-hub MyHub --definition-file
config/project-scratch-def.json

16

How Scratch Orgs Fit in the Package Development WorkflowSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm

If you don’t want the ancestor and manageability rules seeded into the scratch org, include the --no-ancestors flag when you
create the scratch org.

When you are ready to create a new package version, see Create Versions of a Second-Generation Managed Package.

Test Your Package in a Scratch Org
When testing your package, create a scratch org that doesn’t have a namespace. Use the --no-namespace parameter when you
create the scratch org.

sf org create scratch --definition-file config/project-scratch-def.json --no-namespace
--no-ancestors

After you create the scratch org, install the package into the scratch org, and begin testing.

Enable Data Cloud for Scratch Orgs
To use Data Cloud components in scratch orgs or to add these components to a package, Data Cloud for Scratch Orgs must be enabled.
Log a case with Salesforce Partner Support and request that Data Cloud for Scratch Orgs be enabled on your Partner Business Org. Data
Cloud for Scratch Orgs is only available to scratch orgs associated with the Dev Hub in your Partner Business Org.

SEE ALSO:

Salesforce DX Developer Guide: Create Scratch Orgs

Salesforce CLI Command Reference: org create scratch

Salesforce DX Developer Guide: Select the Salesforce Release for a Scratch Org

Scratch Org Definition Files vs Org Shape in Package Development
The scratch org definition file is used when you create scratch orgs, and also when you create new package versions. The scratch org
definition file is a blueprint for your scratch org and defines the shape of the org you want for your package development work.

Build Your Own Scratch Definition File
If you read How Scratch Orgs Fit in the Package Development Workflow on page 16 you might recall that the CLI command for creating
scratch orgs includes a flag called --definition-file.

sf org create scratch --target-dev-hub MyHub --definition-file
config/project-scratch-def.json

In this example, project-scratch-def.json is the scratch org definition file. To learn more about what can be specified in
this definition file, see Build Your Own Scratch Org Definition File in the Salesforce DX Developer Guide.

Similarly the CLI --definition-file flag can be used when creating a new package version.

sf package version create --package "Expenser App"
--definition-file config/project-scratch-def.json --code-coverage

When used in the package version create command, the scratch org definition file is used to specify the features, settings,
or limits that your package requires.

17

Scratch Org Definition Files vs Org Shape in Package
Development

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_install_pkg_cli.htm
https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_create.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_create_scratch_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_version_selection.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm

When to Use Org Shape
If you're developing managed packages to distribute on AppExchange, we expect that you know what features and settings your
packages depends on, and expect you to specify these requirements in a scratch org definition file. But there are scenarios like unlocked
packages, or if you're moving from 1GP to 2GP package development, where using Org Shape for Scratch Orgs can be useful.

During org shape creation, we capture the features, settings, edition, licenses, and limits of the specified source org. By using org shape
you don’t have to manually list these items in the scratch org definition file.

Note: The source org you use for org shape can’t be a sandbox or scratch org.

Later when you create a package version, specify the org ID for the source org in the scratch org definition file.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5"

}

For more detailed instructions on enabling and creating org shape, review Create a Scratch Org Based on an Org Shape in the Salesforce
DX Developer Guide.

If you’re moving from managed 1GP package development to 2GP package development, creating an org shape of your 1GP packaging
org could be useful as you begin 2GP package development. Creating an org shape of your 1GP packaging org ensures that the features
required for your package metadata are specified.

SEE ALSO:

How Scratch Orgs Fit in the Package Development Workflow

Salesforce DX Developer Guide: Build Your Own Scratch Org Definition File

Salesforce DX Developer Guide: Create a Scratch Org Based on an Org Shape

Salesforce DX Developer Guide: Create a Scratch Org Based on an Org Shape

When to Use Scratch Org Snapshots in Package Development
If the managed 2GP or unlocked package that you’re building depends on one or more large packages, it can take a long time for the
package version creation CLI command to complete. Let’s talk about why that occurs, and how scratch org snapshots can dramatically
reduce how long it takes to create a new package version.

When you run the package version create CLI command, we create a scratch org behind the scenes. That scratch org serves
as a build org where we build your package. In the build org we install the dependent packages you specified, and deploy the package
metadata for the package version you're creating. If your dependent packages are large, the package install time for those dependent
packages extends the overall package creation time.

If the dependent packages that your base package requires are stable, you can reduce the end-to-end package version creation time
by creating a scratch org snapshot, and using that scratch org snapshot during package version creation.

A scratch org snapshot captures the state of a scratch org’s configuration so that you can use the snapshot to create scratch org replicas.
A snapshot is a point-in-time copy of a scratch org that includes installed packages, features, limits, licenses, metadata, and data. If you
install your dependent packages in the scratch org before you create the snapshot, and you specify the snapshot when you create a
new package version, the package build process bypasses these steps. Meaning, we don't install the dependent packages into the build
org, we use the snapshot instead. By not installing the dependent packages during package version creation, your package version
builds in a fraction of the time.

18

When to Use Scratch Org Snapshots in Package DevelopmentSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_snapshots_intro.htm

Keep in mind, the intention of scratch org snapshots in the package development cycle is to shorten the package creation time during
development. When you are ready to promote and release a package, you must create a new package version that doesn’t rely on a
scratch org snapshot. Package versions created using scratch org snapshots can’t be promoted to the released state.

Note: You can promote an unlocked package based on a snapshot. Only managed packages based on snapshots can’t be
promoted to the released state.

SEE ALSO:

Create a Package Version Based on a Scratch Org Snapshot

Salesforce DX Developer Guide: Scratch Org Snapshots

Create a Package Version Based on a Scratch Org Snapshot
If the dependent package your base package requires is stable, you can reduce the end-to-end package version creation time by creating
a scratch org snapshot.

If you haven’t reviewed When to Use Scratch Org Snapshots in Package Development on page 18, review that topic before continuing.

There’s more than one workflow you can follow when creating a package version based on a scratch org snapshot. You can start by
creating a scratch org, you can build your own scratch org definition file, or you can choose to use org shape to create a new scratch
org. Whichever path you choose, after the scratch org is created, you install all the dependent packages into it, and then take a snapshot
of the scratch org.

Sample Workflow

This workflow uses an org shape to create the initial scratch org where you’ll install the stable dependent packages, and then create a
scratch org snapshot to create a package version.

1. Create the org shape.

sf org create shape --target-org source-org1

2. Create a scratch org definition file that indicates the shape’s source org.

{
"orgName": "Salesforce",
"sourceOrg": "00DB1230400Ifx5"

}

3. Create a scratch org using the org shape.

sf org create scratch --duration-days 30 --no-namespace --no-ancestors --definition-file
config/scratch-def-with-shape-id.json --alias dev1-with-shape

If your default Dev Hub org isn’t the one that owns the org shape, indicate it on the command line.

4. Install the dependent packages.

sf package install --package 04txx --target-org dev1-with-shape

5. Create a snapshot of the scratch org.

sf org create snapshot --name dhsnapshot --source-org dev1-with-shape --target-dev-hub
dev-hub

19

Create a Package Version Based on a Scratch Org SnapshotSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_snapshots_intro.htm

6. Create a new scratch org definition file and specify the snapshot name, then save the file.

{
"orgName": "Salesforce",
"snapshot": "dhsnapshot"

}

7. Create a package version using the org snapshot. This command is specifying the scratch org definition file that contains the snapshot
information in it.

sf package version create --package hc-ext1 --code-coverage --installation-key-bypass
--async-validation --definition-file
scratch-def-with-snapshot-id.json

SEE ALSO:

When to Use Scratch Org Snapshots in Package Development

Salesforce DX Developer Guide: Create Org Shapes

Get Access to Scratch Orgs That Have Agentforce
Agentforce is a set of tools to create and customize AI agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done. Start your journey with Agentforce by testing it
in a scratch org.

If you don’t already have a Partner Business Org (PBO), join the Salesforce Partner Community and request a PBO.

If you’re new to creating scratch orgs, follow these steps to complete the one-time Dev Hub setup in your PBO. The Dev Hub is a feature
within an org that lets you create and manage scratch orgs, second-generation managed packages (2GP), and namespaces.

• Enable the Dev Hub and 2GP

• Create a Developer Edition org using Environment Hub

• Create a namespace in the Developer Edition org

• Link that namespace from your PBO. Linking the namespace lets you create 2GP packages that use that namespace.

• Authorize the Dev Hub org.

• Create a Salesforce DX Project.

To create a scratch org with Agentforce and Prompt Builder enabled, use this sample project-scratch-def.json file (or
simply add the feature and setting shown in this sample to your existing scratch org definition file).

{
"orgName": "GenAI Scratch Org",
"edition": "Partner Developer",
"features": ["Einstein1AIPlatform"],
"settings": {
"einsteinGptSettings" : {
"enableEinsteinGptPlatform" : true

}
}

}

To create a scratch org with the Einstein1AIPlatform feature, the scratch org you create can be a Partner Developer, Partner Enterprise,
Developer, or Enterprise edition.

20

Get Access to Scratch Orgs That Have AgentforceSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_create.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_partner_join.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_partner_request_pbo.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/environment_hub_manage_create_org.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm

To create a scratch org, run this Salesforce CLI command. Update the definition-file name, alias, and target-dev-hub alias as needed.

sf org create scratch --definition-file config/my-agentforce-project-scratch-def.json
--alias MyNamespacedScratchOrg --set-default --target-dev-hub MyDevHubOrg

Scratch Orgs with both Agentforce and Data Cloud
For some use cases such as prompt templates that use RAG, Retrievers, or BYO LLM, a scratch org that has both GenAI and Data Cloud
functionality enabled is required.

Only include Data Cloud if it’s required. Specifying Data Cloud in a scratch org significantly increases the time it takes for a scratch org
creation to complete.

Note: Including Data Cloud in a scratch org has a prerequisite. You must first open a case in the Salesforce Partner Community
to request for your PBO Dev Hub org to be granted permission to create Data Cloud scratch orgs. This request is only granted to
PBO orgs.

{
"orgName": "GenAI & Data Cloud Scratch Org",
"edition": "Partner Developer",
"features": ["CustomerDataPlatform", "CustomerDataPlatformLite","Einstein1AIPlatform"],

"settings": {
"einsteinGptSettings" : {
"enableEinsteinGptPlatform" : true

},
"customerDataPlatformSettings": {
"enableCustomerDataPlatform": true

}
}

}

Set up Agentforce in your Scratch Org
After your scratch org is created, follow these steps to start developing with Agentforce.

• Create Agents manually in the scratch org.

• To use prompt templates with your Agent Actions, assign prompt template permissions.

SEE ALSO:

Packageable Agentforce Metadata

Trailhead: Quick Start: Build Your First Agent with Agentforce

Salesforce Help: Agentforce: Agents

Agentforce Developer Guide

Salesforce Help: The Building Blocks of Agents

Salesforce Help: Customize Your Agents with Topics and Actions

Salesforce Help: Considerations for Agents

Salesforce Help: AI Project Success

21

Get Access to Scratch Orgs That Have AgentforceSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.copilot_setup_enable.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_enable.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_packageable_agentforce_md.htm
https://trailhead.salesforce.com/content/learn/projects/quick-start-build-your-first-agent-with-agentforce
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/get-started.html
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics_actions.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.generative_ai_plan_project.htm&type=5&language=en_US

Scratch Org Allocations for Salesforce Partners
To ensure optimal performance, Salesforce partners are allocated a set number of scratch orgs in their Partner Business Org (PBO). These
allocations determine how many scratch orgs you can create daily, and how many can be active at a given point.

By default, Salesforce deletes scratch orgs and their associated ActiveScratchOrg records from your Dev Hub when a scratch org expires.
All partners get 100 Salesforce Limited Access - Free user licenses.

Active PBOs
• 150 active

• 300 daily

Trial PBOs
• 20 active

• 40 daily

Scratch Org Snapshot Allocations
The number of snapshots you can create (active and daily) is the same as the active scratch org allocation.

Package Version Creation Limits
The maximum number of package versions you can create per day is equal to the daily allocated scratch orgs. For example, if you’re
allocated 300 daily scratch orgs, you’re also allowed to create 300 package versions per day.

If you specify --skipvalidation when creating a package version, the maximum number of package versions you can create
using skip validation is 500 per day.

Manage Scratch Orgs from the Dev Hub Org
You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

In the Dev Hub org, the ActiveScratchOrg standard object represents the scratch orgs that are currently in use. The ScratchOrgInfo
standard object represents the requests that were used to create scratch orgs and provides historical context.

1. Log in to the Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.

2. From the App Launcher, select Active Scratch Orgs to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. To delete an active scratch org from the Active Scratch Orgs list view, choose Delete from the dropdown.

Deleting an active scratch org doesn’t delete the request (ScratchOrgInfo) that created it, but it does free up a scratch org so that it
doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Infos from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

22

Scratch Org Allocations for Salesforce PartnersSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_skip_validation.htm

Deleting the request (ScratchOrgInfo) also deletes the active scratch org.

Supported Scratch Org Editions for Partners
Create partner edition scratch orgs from a Dev Hub partner business org.

Supported partner scratch org editions include:

• Partner Developer

• Partner Enterprise

• Partner Group

• Partner Professional

Indicate the partner edition in the scratch org definition file.

"edition": "Partner Enterprise",

If you attempt to create a partner scratch org and see this error, confirm that you’re using an active partner business org. Contact the
Partner Community for further assistance.

ERROR: You don't have permission to create Partner Edition organizations.
To enable this functionality, please log a case in the Partner Community.

License limits for partner scratch orgs are similar to partner edition orgs created in Environment Hub. Get the details on the Partner
Community.

Workflow for Second-Generation Managed Packages

You can create and install a second-generation managed package (managed 2GP) directly from the command line.

Review and complete the steps in Before You Create Second-Generation Managed Packages before starting this workflow.

The basic managed 2GP workflow includes these steps. See specific topics for details about each step.

1. Create a DX project.

sf project generate --output-dir expense-manager-workspace --name expenser-app

2. Authorize the Dev Hub org.

sf org login web --set-default-dev-hub

When you perform this step, include the ---set-default-dev-hub option. You can then omit the Dev Hub username when
running subsequent Salesforce CLI commands.

Tip: If you define an alias for each org you work with, it’s easy to switch between different orgs from the command line. You
can authorize different orgs as you iterate through the package development cycle.

3. Create a scratch org and develop the app you want to package. You can use VS Code and the Setup UI in the scratch org to build
and retrieve the pieces you want to include in your package. Navigate to the expenser-app directory, and then run this command.

sf org create scratch --definition-file config/project-scratch-def.json

4. Verify that all package components are in the project directory where you want to create a package. If you’re trying out the exact
steps and commands in this workflow, you must add at least one piece of metadata before you continue to the next step.

23

Supported Scratch Org Editions for PartnersSecond-Generation Managed Packages

https://partners.salesforce.com/
https://partners.salesforce.com/s/education/general/Partner_Orgs
https://partners.salesforce.com/s/education/general/Partner_Orgs

5. In the sfdx-project.json file, specify a namespace using the namespace attribute. For example: “namespace”: “exp-mgr”

If you specified a namespace when you created a Salesforce DX project in step one, you can skip this step. Before adding a namespace,
make sure that you’ve linked the namespace to your Dev Hub org.

6. From the Salesforce DX project directory, create the package.

sf package create --name "Expense Manager" --path force-app --package-type Managed

Your new managed 2GP package has the namespace you specified in the sfdx-project.json file.

Important: After you create a package, you can’t change or add a namespace, or change the Dev Hub the package is associated
with.

7. Review your sfdx-project.json file. The CLI automatically updates the project file to include the package directory and
creates an alias based on the package name.

{
"packageDirectories": [

{
"path": "force-app",
"default": true,
"package": "Expense Manager",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT"

}
],
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "51.0",
"packageAliases": {

"Expense Manager": "0Hoxxx"
}

}

Notice the placeholder values for versionName and versionNumber. You can update these values, or indicate base packages
that this package depends on. Your project file displays the namespace you created.

Specify the features and org settings required for the metadata in your package using an external .json file, such as the scratch
org definition file. You can specify using the --definition-file flag with the sf package version create
command, or list the definition file in your sfdx-project.json file. See: Project Configuration File for a Second-Generation
Managed Package

8. Create a package version. This example assumes the package metadata is in the force-app directory.

sf package version create --package "Expense Manager" --code-coverage --installation-key
test1234 --wait 10

9. Install and test the package version in a scratch org. Use a different scratch org from the one you used in step three.

sf package install --package "Expense Manager@0.1.0-1" --target-org MyTestOrg1
--installation-key test1234 --wait 10 --publish-wait 10

10. After the package is installed, open the scratch org to view the package.

sf org open --target-org MyTestOrg1

24

Workflow for Second-Generation Managed PackagesSecond-Generation Managed Packages

Package versions are beta until you promote them to a managed-released state. See: Release a Second-Generation Managed Package.

SEE ALSO:

Before You Create Second-Generation Managed Packages

Create and Register Your Namespace for Second-Generation Managed Packages

Project Configuration File for a Second-Generation Managed Package

Release a Second-Generation Managed Package

Components Available in Second-Generation Managed Packages

Each metadata component that you include in a second-generation managed package has certain rules that determine its behavior in
a subscriber org. Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version
is created and installed.

Before you review the details about the metadata components that can be included in a managed package, be sure you understand
the meaning of each manageability rule.

Table 1: Manageability Rules

If yes: The component can be updated during a package upgrade.
The component is first deployed to the subscriber org during the

Component Can Be Updated During Package Upgrade

initial package installation, and subsequent package upgrades
update the installed component.

If no: The component can’t be updated during package upgrades.
Instead, it’s only deployed to the subscriber org during the initial
package installation, and subsequent package upgrades don’t
update the component. Components in this category can typically
be modified by the admin in the subscriber org.

If yes: The subscriber or installer of the managed package can
delete the packaged component from their org. Deleted
components aren’t reinstalled during a package upgrade.

If no: The subscriber or installer of the managed package can’t
delete the packaged component from their org.

Subscriber Can Delete Component

If yes: After the package that contains the component is promoted
and released, the package developer can choose to remove the
component in a future package version.

In most cases, removing components from a package version marks
the component as deprecated, and doesn’t hard delete the

Package Developer Can Remove Component

component from the subscriber org. These deprecated components
can be deleted by the admin of the subscriber org. For details about
which managed 2GP components are deprecated, see Remove
Metadata Components from Second-Generation Managed
Packages.

To request access to this feature, log a support case in the Salesforce
Partner Community.

25

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_before.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://partners.salesforce.com/partnerSupport
https://partners.salesforce.com/partnerSupport

If no: After the package that contains the component is promoted
and released, the package developer can’t remove the component
in a future package version.

If yes: To protect the intellectual property of the developer, the
component’s metadata, such as Apex code or Custom Metadata
record information, is hidden in the installed org.

If no: The component is visible in the subscriber’s org.

Component Has IP Protection

Editable Properties After Package Promotion or Installation
Certain properties on metadata components are editable after the managed package is installed.

• Only Package Developer Can Edit: The package developer can edit specific component properties. These properties are locked in
the subscriber’s org. During package upgrade, the changes made by the package developer are applied in the subscriber org. For
example, when you update the code in an Apex class or the custom permissions in a permission set, subscribers receive those
updates during their package upgrade.

• Both Subscriber and Package Developer Can Edit: Both the subscriber and package developer can edit these component properties,
but developer changes are only applied to new subscriber installs. This approach prevents a package upgrade from overwriting
changes made by the subscriber. For example, the help text on a custom field, and the page layout of a custom object are editable
by both the subscriber and package developer. The subscriber can modify the page layout or help text, and trust that their changes
won’t be overwritten by a future package upgrade.

• Neither Subscriber or Package Developer Can Edit: After a package is promoted and released, these component properties are locked
and can’t be edited by the package developer or the subscriber. For example, the API names of packaged components are locked
and can’t be edited after the package version is promoted and released.

Supported Components in Second-Generation Managed Packages

Account Plan Objective Measure Calculation Definition

Represents the definition of a target object, rollup field, and logic for calculating the current value of a sales account plan objective
measure.

Account Relationship Share Rule

Determines which object records are shared, how they’re shared, the account relationship type that shares the records, and the level
of access granted to the records.

Action Link Group Template

Represents the action link group template. Action link templates let you reuse action link definitions and package and distribute
action links.

Action Plan Template

Represents an instance of an action plan template.

Actionable List Definition

Represents the data source definition details associated with an actionable list.

Actionable List Key Performance Indicator Definition

Represents the custom key performance indicators that are defined for a specific field in an object.

26

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Activation Platform

Represents the ActivationPlatform configuration, such as platform name, delivery schedule, output format, and destination folder.

AffinityScoreDefinition

Represents the affinity information used in calculations to analyze and categorize contacts for marketing purposes.

Agent Action

Represents an action, for use in Agentforce.

Agent Topic

Represents a topic, for use in Agentforce.

AI Application

Represents an instance of an AI application. For example, Einstein Prediction Builder.

AI Application Config

Represents additional prediction information related to an AI application.

AIUsecaseDefinition

Represents a collection of fields in a Salesforce org used to define a machine learning use case and get real-time predictions.

Analytics

Analytics components include analytics applications, dashboards, dataflows, datasets, lenses, recipes, and user XMD.

Analytics Visualization

Represents a Tableau Next visualization.

Analytics Workspace

Represents a Tableau Next workspace.

Apex Class

Represents an Apex Class. An Apex class is a template or blueprint from which Apex objects are created. Classes consist of other
classes, user-defined methods, variables, exception types, and static initialization code.

Apex Sharing Reason

Represents an Apex sharing reason, which is used to indicate why sharing was implemented for a custom object.

Apex Trigger

Represents an Apex trigger. A trigger is Apex code that executes before or after specific data manipulation language (DML) events
occur, such as before object records are inserted into the database, or after records have been deleted.

App Framework Template Bundle

Represents the app framework template bundle. Use these templates for Data Cloud and Tableau Next assets.

Application Subtype Definition

Represents a subtype of an application within an application domain.

AssessmentConfiguration

Represents a configuration for Assessment component. An AssessmentConfiguration entry indicates configuration for user flows
such as sending out emails or reminder actions on assessments initiated by the patient.

AssessmentQuestion

Represents the container object that stores the questions required for an assessment.

AssessmentQuestionSet

Represents the container object for Assessment Questions.

27

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Aura Component

Represents an Aura definition bundle. A bundle contains an Aura definition, such as an Aura component, and its related resources,
such as a JavaScript controller. The definition can be a component, application, event, interface, or a tokens collection.

Batch Calc Job Definition

Represents a Data Processing Engine definition.

Batch Process Job Definition

Represents the details of a Batch Management job definition.

Benefit Action

Represents details of an action that can be triggered for a benefit.

Bot Template

Represents the configuration details for a specific Einstein Bot template, including dialogs and variables.

Branding Set

Represents the definition of a set of branding properties for an Experience Builder site, as defined in the Theme panel in Experience
Builder.

Briefcase Definition

Represents a briefcase definition. A briefcase makes selected records available for specific users and groups to view when they’re
offline in the Salesforce Field Service mobile app for iOS and Android.

Building Energy Intensity Record Type Configuration

Represents the setup object that contains the mapping between the Building Energy Intensity Record record type and internal
enums. You can primarily use this object for calculations across different record types.

Business Process

The BusinessProcess metadata type enables you to display different picklist values for users based on their profile.

Business Process Group

Represents the surveys used to track customers’ experiences across different stages in their lifecycle.

Business Process Type Definition

Define the types of business processes that are applied to a rule.

Care Benefit Verify Settings

Represents the configuration settings for benefit verification requests.

Care Limit Type

Defines the characteristics of limits on benefit provision.

Care Request Configuration

Represents the details for a record type such as service request, drug request, or admission request. One or more record types can
be associated with a care request.

Care System Field Mapping

Represents a mapping from source system fields to Salesforce target entities and attributes.

Channel Layout

Represents the metadata associated with a communication channel layout.

Chatter Extension

Represents the metadata used to describe a Rich Publisher App that’s integrated with the Chatter publisher.

Claim Financial Settings

Represents the configuration settings for Insurance Claim Financial Services.

28

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

CommunicationChannelType

Represents the type of communication channel, such as WhatsApp and SMS, to use for referral promotions.

Community Template Definition

Represents the definition of an Experience Builder site template.

Community Theme Definition

Represents the definition of a theme for an Experience Builder site.

Compact Layout

Represents the metadata associated with a compact layout.

Conditional Formatting Ruleset

Represents a set of rules that define the style and visibility of conditional field formatting on Dynamic Forms-enabled Lightning page
field instances.

Connected App

Represents a connected app configuration. A connected app enables an external application to integrate with Salesforce using APIs
and standard protocols, such as SAML, OAuth, and OpenID Connect.

Context Definition

A context definition defines the relationship between the nodes and the attributes within each node. For efficient data access, users
can use nodes and attributes to easily access the relevant data from the mapped data source. Various Salesforce products offer
predefined context definitions based on their use case.

Contract Type

A contract type is used to group contracts so that they exhibit similar characteristics. For example, the lifecycle states, the people
who access, the templates and clauses used.

Conversation Channel Definition

Represents the conversation channel definition that’s implemented for Interaction Service for Bring Your Own Channel and Bring
Your Own Channel for CCaaS messaging channels.

Conversation Vendor Info

This setup object connects the partner vendor system to the Service Cloud feature.

CORS Allowlist

Represents an origin in the CORS allowlist.

CSP Trusted Site

Represents a trusted URL. For each CspTrustedSite component, you can specify Content Security Policy (CSP) directives and permissions
policy directives.

Custom Application

Represents a custom application.

Custom Button or Link

Represents a custom link defined in a home page component.

Custom Console Components

Represents a custom console component (Visualforce page) assigned to a CustomApplication that is marked as a Salesforce console.
Custom console components extend the capabilities of Salesforce console apps.

Custom Field on Standard or Custom Object

Represents the metadata associated with a field. Use this metadata type to create, update, or delete custom field definitions on
standard or custom objects.

29

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Custom Field on Custom Metadata Type

Represents a custom fields on the custom metadata type.

Custom Field Display

Represents the CustomFieldDisplay view type assigned to product attribute custom fields.

Custom Help Menu Section

Represents the section of the Lightning Experience help menu that the admin added to display custom, org-specific help resources
for the org. The custom section contains help resources added by the admin.

Custom Index

Represents an index used to increase the speed of queries.

Custom Label

The CustomLabels metadata type allows you to create custom labels that can be localized for use in different languages, countries,
and currencies.

Custom Metadata Type Records

Represents a record of a custom metadata type.

Custom Metadata Type

Represents a record of a custom metadata type.

Custom Notification Type

Represents the metadata associated with a custom notification type.

Custom Object

Represents a custom object that stores data unique to an org or an external object that maps to data stored outside an org.

Custom Object Translation

This metadata type allows you to translate custom objects for a variety of languages.

Custom Permission

Represents a permission that grants access to a custom feature.

Custom Tab

Represents a custom tab. Custom tabs let you display custom object data or other web content in Salesforce.

Dashboard

Represents a dashboard. Dashboards are visual representations of data that allow you to see key metrics and performance at a glance.

DataCalcInsightTemplate

Represents the object template for data calculations and insights of Data Cloud objects in DataCalcInsightTemplate. These objects
are added inside the data kit.

Data Connector Ingest API

Represents the connection information specific to Ingestion API.

Data Connector S3

Represents the connection information specific to Amazon S3.

Data Kit Object Dependency

Represent the object dependencies and relationships between different objects in Data Kit Object Dependency. These objects are
added inside the data kit.

Data Kit Object Template

Represents the object in Data Kit Object Template. This object template is added inside the data kit.

30

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

DataObjectBuildOrgTemplate

Represents the output objects of the components the user includes in a data kit.

Data Package Kit Definition

Represents the top-level Data Kit container definition. Content objects can be added after the Data Kit is defined.

Data Package Kit Object

Represents the object in Data Kit Content Object. These objects are added inside the data kit.

Data Source

Used to represent the system where the data was sourced.

Data Source Bundle Definition

Represents the bundle of streams that a user adds to a data kit.

Data Source Object

Represents the object from where the data was sourced.

Data Src Data Model Field Map

Represents the entity that’s used to store the design-time bundle-level mappings for the data source fields and data model fields.

Data Stream Definition

Contains Data Ingestion information such as Connection, API and File retrieval settings.

Data Stream Template

Represents the data stream that a user adds to a data kit.

DataWeaveResource

Represents the DataWeaveScriptResource class that is generated for all DataWeave scripts. DataWeave scripts can be directly invoked
from Apex.

Decision Matrix Definition

Represents a definition of a decision matrix.

Decision Matrix Definition Version

Represents a definition of a decision matrix version.

Decision Table

Represents the information about a decision table.

Decision Table Dataset Link

Represents the information about a dataset link associated with a decision table. In a dataset link, select an object for whose records,
the decision table must provide an outcome.

Digital Experience

Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s
content items.

Digital Experience Bundle

Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s
content items.

Decision Table

Represents the information about a decision table.

Disclosure Definition

Represents information that defines a disclosure type, such as details of the publisher or vendor who created or implemented the
report.

31

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Disclosure Definition Version

Represents the version information about the disclosure definition.

Disclosure Type

Represents the types of disclosures that are done by an individual or an organization and the associated metadata.

Discovery AI Model

Represents the metadata associated with a model used in Einstein Discovery.

Discovery Goal

Represents the metadata associated with an Einstein Discovery prediction definition.

Discovery Story

Represents the metadata associated with a story used in Einstein Discovery.

Document

Represents a Document. All documents must be in a document folder, such as sampleFolder/TestDocument.

Document Generation Setting

Represents an org's settings for automatic document generation from templates.

Eclair GeoData

Represents an Analytics custom map chart. Custom maps are user-defined maps that are uploaded to Analytics and are used just
as standard maps are. Custom maps are accessed in Analytics from the list of maps available with the map chart type.

Email Template (Classic)

Use email templates to increase productivity and ensure consistent messaging. Email templates with merge fields let you quickly
send emails that include field data from Salesforce records.

Email Template (Lightning)

Represents a template for an email, mass email, list email, or Sales Engagement email.

Embedded Service Config

Represents a setup node for creating an Embedded Service for Web deployment.

Embedded Service Menu Settings

Represents a setup node for creating a channel menu deployment. Channel menus list the ways in which customers can contact
your business.

Enablement Measure Definition

Represents an Enablement measure, which specifies the job-related activity that a user performs to complete a milestone or outcome
in an Enablement program. A measure identifies a source object and optional related objects, with optional field filters and filter
logic, for tracking the activity.

Enablement Program Definition

Represents an Enablement program, which includes exercises and measurable milestones to help users such as sales reps achieve
specific outcomes related to your company’s revenue goals.

Enablement Program Task Subcategory

Represents a custom exercise type that an Enablement admin adds to an Enablement program in Program Builder. A custom exercise
type also requires a corresponding EnblProgramTaskDefinition record for Program Builder and corresponding LearningItem and
LearningItemType records for when users take the exercise in the Guidance Center.

Entitlement Template

Represents an entitlement template. Entitlement templates are predefined terms of customer support that you can quickly add to
products.

32

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

ESignature Config

Using the Electronic Signature Configuration setup, the system admin must define the required configurations to support the
e-signature APIs and UI.

ESignature Envelope Config

Using the Electronic Signature Envelope Config the system admin can define the default reminders and expiry for the envelopes
submitted for eSignature.

Event Relay

Represents an event relay that you can use to send platform events and change data capture events from Salesforce to Amazon
EventBridge.

Explainability Action Definition

Define where the metadata for your Decision Explainer business rules are stored in Public Sector Solutions.

Explainability Action Version

Define and store versions of the explainability actions used by your Decision Explainer business rules in Public Sector Solutions.

Explainability Message Template

Represents information about the template that contains the decision explanation message for a specified expression set step type.

Expression Set Definition

Represents an expression set definition.

Expression Set Definition Version

Represents a definition of an expression set version.

Expression Set Object Alias

Represents information about the alias of the source object that’s used in an expression set.

Expression Set Message Token

Represents a token that's used in an explainability message template. The token can be replaced with an expression set version
resource that the template is used in. This object is available in API version 59.0 and later.

External Auth Identity Provider

Represents the external auth identity provider that obtains OAuth tokens for callouts that use named credentials.

External Client App Canvas Settings

Represents an external client app's canvas app settings.

External Client App Header

Represents the header file for an external client application configuration.

External Client App Notification Settings

Represents the settings configuration for the external client app’s notifications plugin.

External Client App OAuth Settings

Represents the settings configuration for the external client app’s OAuth plugin.

External Client App Push Settings

Represents the settings configuration for the external client app’s push notification plugin.

External Credential

Represents the details of how Salesforce authenticates to the external system.

External Data Connector

Used to represent the object where the data was sourced.

33

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

External Data Source

Represents the metadata associated with an external data source. Create external data sources to manage connection details for
integration with data and content that are stored outside your Salesforce org.

External Data Transport Field Template

Represents the definition of a Data Cloud schema field.

External Data Transport Field

Use ExternalDataTranField to add a field to the ExternalDataTranObject in your managed packages. ExternalDataTranObject is a Data
Cloud schema object.

External Data Transport Object Template

Represents the definition of a Data Cloud schema object.

External Data Transport Object

To include a Data Cloud schema object in your managed packages, add ExternalDataTranObject.

External Document Storage Configuration

Represents configuration, which admin makes in setup to specify the drive, path, and named credential to be used for storing
documents on external drives.

External Services

Represents the External Service configuration for an org.

Feature Parameter Boolean

Represents a boolean feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Feature Parameter Date

Represents a date feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Feature Parameter Integer

Represents an integer feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

FieldMappingConfig

Represents the configuration for fields mapped between a source object and one or more destination objects and fields. This object
is available in API version 63.0 and later.

Field Set

Represents a field set. A field set is a grouping of fields. For example, you could have a field set that contains fields describing a user's
first name, middle name, last name, and business title.

Field Source Target Relationship

Stores the relationships between a data model object (DMO) and its fields. For example, the Individual.Id field has a one-to-many
relationship (1:M) with the ContactPointEmail.PartyId field.

Flow

Represents the metadata associated with a flow. With Flow, you can create an application that navigates users through a series of
pages to query and update records in the database. You can also execute logic and provide branching capability based on user input
to build dynamic applications.

Flow Category

Represents a list of flows that are grouped by category.

34

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Flow Definition

Represents the flow definition’s description and active flow version number.

Flow Test

Represents the metadata associated with a flow test. Before you activate a record-triggered flow, you can test it to verify its expected
results and identify flow run-time failures.

Folder

Represents a folder.

Fuel Type

Represents a custom fuel type in an org.

Fuel Type Sustainability Unit of Measure

Represents a mapping between the custom fuel types and their corresponding unit of measure (UOM) values defined by a customer
in an org.

Fundraising Config

Represents a collection of settings to configure the fundraising product.

Gateway Provider Payment Method Type

Represents an entity that allows integrators and payment providers to choose an active payment to receive an order's payment data
rather than allowing the Salesforce Order Management platform to select a default payment method.

Gen Ai Planner Bundle

Represents a planner for an agent or agent template. It’s a container for all the topics and actions used to interact with a large
language model (LLM).

Generative AI Prompt Template

Represents a generative AI prompt template, for use in Agentforce.

Global Picklist

Represents the metadata for a global picklist value set, which is the set of shared values that custom picklist fields can use. A global
value set isn’t a field itself. In contrast, the custom picklist fields that are based on a global picklist are of type ValueSet.

Home Page Component

Represents the metadata associated with a home page component. You can customize the Home tab in Salesforce Classic to include
components such as sidebar links, a company logo, a dashboard snapshot, or custom components that you create. Use to create,
update, or delete home page component definitions.

Home Page Layout

Represents the metadata associated with a home page layout. You can customize home page layouts and assign the layouts to
users based on their user profile.

Identity Verification Proc Def

Represents the definition of the identity verification process.

Inbound Network Connection

Represents a private connection between a third-party data service and a Salesforce org. The connection is inbound because the
callouts are coming into Salesforce.

IndustriesEinsteinFeatureSettings

Represents the settings for enabling the Industries Einstein feature.

IntegrationProviderDef

Represents an integration definition associated with a service process. Stores data for the Industries: Send Apex Async Request and
Industries: Send External Async Request invocable actions.

35

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Invocable Action Extension

Represents extended metadata for Apex classes that are used as invocable actions or data types. This allows developers to specify
how to present the action's inputs without writing custom code.

LearningAchievementConfig

Represents the mapping details between a Learning Achievement type and a Learning Achievement record type.

Learning Item Type

Represents a custom exercise type that an Enablement user takes in an Enablement program in the Guidance Center. A custom
exercise type also requires a corresponding LearningItem record for the Guidance Center and corresponding EnblProgramTaskDefinition
and EnblProgramTaskSubCategory records for when admins create a program in Program Builder.

Letterhead

Represents formatting options for the letterhead in an email template. A letterhead defines the logo, page color, and text settings
for your HTML email templates. Use letterheads to ensure a consistent look and feel in your company’s emails.

Life Science Config Category

Represents the category that a Life Sciences configuration record is organized into.

Life Science Config Record

Represents a configuration record for Life Sciences. This object is a child of Life Science Config Category.

Lightning Bolt

Represents the definition of a Lightning Bolt Solution, which can include custom apps, flow categories, and Experience Builder
templates.

Lightning Message Channel

Represents the metadata associated with a Lightning Message Channel. A Lightning Message Channel represents a secure channel
to communicate across UI technologies, such as Lightning Web Components, Aura Components, and Visualforce.

Lightning Page

Represents the metadata associated with a Lightning page. A Lightning page represents a customizable screen made up of regions
containing Lightning components.

Lightning Type

Represents a custom Lightning type. Use this type to override the default user interface to create a customized appearance of
responses on the custom agent’s action input and output. Deploy this bundle to your organization to implement the overrides.

Lightning Web Component

Represents a Lightning web component bundle. A bundle contains Lightning web component resources.

List View

ListView allows you to see a filtered list of records, such as contacts, accounts, or custom objects.

Live Chat Sensitive Data Rule

Represents a rule for masking or deleting data of a specified pattern. Written as a regular expression (regex). Use this object to mask
or delete data of specified patterns, such as credit card, social security, or phone and account numbers.

Loyalty Program Setup

Represents the configuration of a loyalty program process including its parameters and rules. Program processes determine how
new transaction journals are processed. When new transaction journals meet the criteria and conditions for a program process,
actions that are set up in the process are triggered for the transaction journals.

Managed Content Type

Represents the definition of custom content types for use with Salesforce CMS. Custom content types are displayed as forms with
defined fields.

36

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Marketing App Extension

Represents an integration with a third-party app or service that generates prospect external activity.

Marketing App Extension Activity

Represents an Activity Type, which is a prospect activity that occurs in a third-party app and can be used in Account Engagement
automations.

Market Segment Definition

Represents the field values for MarketSegmentDefinition. MarketSegmentDefinition is used to store the exportable metadata of a
segment, such as segment criteria and other attributes. Developers can create segment definition packages, pass segment definition
in the form of data build tool (DBT), and publish it on AppExchange for subscriber organizations to install and instantiate these
segments.

MktCalculatedInsightsObjectDef

Represents Calculated Insight definition such as expression.

MktDataConnection

Represents the connection information of an external connector that can ingest data to Data Cloud, read data from the source, or
write data to the source in Data Cloud.

MktDataTranObject

An entity that is used to deliver (aka transport) information from the source to a target (target will be called a landing entity).This
can be the schema of a file, API, Event, or other means of transporting data, such as SubscriberFile1.csv, or SubscriberCDCEvent.

Named Credential

Represents a named credential, which specifies the URL of a callout endpoint and its required authentication parameters in one
definition. A named credential can be specified as an endpoint to simplify the setup of authenticated callouts.

Object Source Target Map

Contains the object-level mappings between the source and the target objects. The source and target objects can be an
MktDataLakeObject or an MktDataModelObject. For example, an Email source object can be mapped to the ContactPointEmail
object.

OcrSampleDocument

Represents the details of a sample document or a document type that's used as a reference while extracting and mapping information
from a customer form.

OcrTemplate

Represents the details of the mapping between a form and a Salesforce object using Intelligent Form Reader.

Outbound Network Connection

Represents a private connection between a Salesforce org and a third-party data service. The connection is outbound because the
callouts are going out of Salesforce.

Page Layout

Represents the metadata associated with a page layout.

Path Assistant

Represents Path records.

Payment Gateway Provider

Represents the metadata associated with a payment gateway provider.

Permission Set

Represents a set of permissions that's used to grant more access to one or more users without changing their profile or reassigning
profiles. You can use permission sets to grant access but not to deny access.

37

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Permission Set Groups

Represents a group of permission sets and the permissions within them. Use permission set groups to organize permissions based
on job functions or tasks. Then, you can package the groups as needed.

Platform Cache

Represents a partition in the Platform Cache.

Platform Event Channel

Represents a channel that you can subscribe to in order to receive a stream of events.

Platform Event Channel Member

Represents an entity selected for Change Data Capture notifications on a standard or custom channel, or a platform event selected
on a custom channel.

Platform Event Subscriber Configuration

Represents configuration settings for a platform event Apex trigger, including the batch size, the trigger’s running user, and parallel
subscription settings.

Pricing Action Parameters

Represents a pricing action associated to a context definition and a pricing procedure.

Pricing Recipe

Represents one out of various data models or sets of entities of a particular cloud that'll be consumed by the pricing data store during
design and run time.

Procedure Output Resolution

Represents the pricing resolution for an pricing element determined using strategy name and formula.

Process

Use Flow instead.

Process Flow Migration

Represents a process's migrated criteria and the resulting migrated flow.

Product Attribute Set

Represents the ProductAttribute information being used as and attribute such as color_c, size_c .

Product Specification Type

Represents the type of product specification provided by the user to make the product terminology unique to an industry. A product
specification type is associated with a product specification record type.

Product Specification Record Type

Represents the relationship between industry-specific product specifications and the product record type.

Prompts (In-App Guidance)

Represents the metadata related to in-app guidance, which includes prompts and walkthroughs.

Quick Action

Represents a specified create or update quick action for an object that then becomes available in the Chatter publisher.

Recommendation Strategy

Represents a recommendation strategy. Recommendation strategies are applications, similar to data flows, that determine a set of
recommendations to be delivered to the client through data retrieval, branching, and logic operations.

Record Action Deployment

Represents configuration settings for the Actions & Recommendations, Action Launcher, and Bulk Action Panel components.

38

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Record Alert Data Source Expression Set Definition

Represents information about the data source for a record alert and the association with an expression set definition.

Record Type

Represents the metadata associated with a record type. Record types let you offer different business processes, picklist values, and
page layouts to different users. Use this metadata type to create, update, or delete record type definitions for a custom object.

RedirectWhitelistUrl

Represents a trusted URL that’s excluded from redirection restrictions when the redirectionWarning or redirectBlockModeEnabled
field on the SessionSettings Metadata type is set to true.

Referenced Dashboard

Represents the ReferencedDashboard object in CRM Analytics. A referenced dashboard stores information about an externally
referenced dashboard.

Registered External Service

Represents a registered external service, which provides an extension or integration.

RelationshipGraphDefinition

Represents a definition of a graph that you can configure in your organization to traverse object hierarchies and record details, giving
you a glimpse of how your business works.

Remote Site Setting

Represents a remote site setting.

Report

Represents a custom report.

Report Type

Represents the metadata associated with a custom report type. Custom report types allow you to build a framework from which
users can create and customize reports.

ServiceProcess

Represents a process created in Service Process Studio and its associated attributes.

Slack App (Beta)

Represents a Slack app.

Service Catalog Category

Represents the grouping of individual catalog items in Service Catalog.

Service Catalog Filter Criteria

Represents an eligibility rule that determines if a Service Catalog user has access to a catalog item.

Service Catalog Item Definition

Represents the entity associated with a specific, individual service available in the Service Catalog.

Service Catalog Fulfillment Flow

Represents the flow associated with a specific catalog item in the Service Catalog.

Stationary Asset Environmental Source Record Type Configuration

Represents the setup object that contains the mapping between the Stationary Asset Environmental Source record type and internal
enums. You can primarily use this object for calculations across different record types.

Static Resource

Represents a static resource file, often a code library in a ZIP file.

39

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Streaming App Data Connector

Represents the connection information specific to Web and Mobile Connectors.

Sustainability UOM

Represents information about the additional unit of measure values defined by a customer.

Sustainability UOM Conversion

Represents information about the unit of measure conversion for the additional fuel types defined by a customer.

Timeline Object Definition

Represents the container that stores the details of a timeline configuration. You can use this resource with Salesforce objects to see
their records' related events in a linear time-sorted view.

Timesheet Template

Represents a template for creating time sheets in Field Service.

Transaction Processing Type

Represents the processing constraint settings for a transaction processing request.

Translation

Add translations to your managed packages.

UI Object Relation Config

Represents the admin-created configuration of the object relation UI component.

User Access Policy

Represents a user access policy.

Validation Rule

Represents a validation rule, which is used to verify that the data a user enters in a record is valid and can be saved.

Vehicle Asset Emissions Source Record Type Configuration

Represents the setup object that contains the mapping between the Vehicle Asset Emissions Source record type and internal enums.
You can primarily use this object for calculations across different record types.

View Definition (Beta)

Represents a view definition on a Slack app.

Virtual Visit Config

Represents an external video provider configuration, which relays events from Salesforce to the provider.

Visualforce Component

Represents a Visualforce component.

Visualforce Page

Represents a Visualforce page.

Wave Analytic Asset Collection

A collection of CRM Analytics assets.

Wave Application

A CRM Analytics application.

Wave Component

A CRM Analytics dashboard component.

Wave Dataflow

A CRM Analytics data prep dataflow.

40

Components Available in Second-Generation Managed
Packages

Second-Generation Managed Packages

Wave Dashboard

A CRM Analytics dashboard.

Wave Dataset

A CRM Analytics dataset.

Wave Lens

A CRM Analytics lens.

Wave Recipe

A CRM Analytics data prep recipe.

Wave Template Bundle

A CRM Analytics template bundle.

Wave Xmd

The extended metadata for CRM Analytics dataset fields and their formatting for dashboards and lenses.

Web Store Template

Represents a configuration for creating commerce stores.

Workflow Alert

WorkflowAlert represents an email alert associated with a workflow rule.

Workflow Field Update

WorkflowFieldUpdate represents a workflow field update.

Workflow Knowledge Publish

WorkflowKnowledgePublish represents Salesforce Knowledge article publishing actions and information.

Workflow Outbound Message

WorkflowOutboundMessage represents an outbound message associated with a workflow rule.

Workflow Rule

This metadata type represents a workflow rule.

Workflow Task

This metadata type references an assigned workflow task.

Account Plan Objective Measure Calculation Definition
Represents the definition of a target object, rollup field, and logic for calculating the current value of a sales account plan objective
measure.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

41

Account Plan Objective Measure Calculation DefinitionSecond-Generation Managed Packages

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Description, DeveloperName, MasterLabel, RollupType, Status, TargetField, TargetObject

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AccountPlanObjMeasCalcDef

Component Type in 1GP Package Manager UI: Account Plan Objective Measure Calculation Definition

Documentation
Sales Account Plan Objectives, Measures, and Calculation Definitions

Account Relationship Share Rule
Determines which object records are shared, how they’re shared, the account relationship type that shares the records, and the level of
access granted to the records.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Name

42

Account Relationship Share RuleSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sales.account_plans_objective_measures.htm&type=5&language=en_US

• Developer Name

• Description

• Account Relationship Type

• Access Level

• Object Type

• Account to Criteria Field

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AccountRelationshipShareRule

Use Case
To share data between external accounts.

License Requirements
Orgs with Digital Experiences enabled can use this package.

Documentation
Salesforce Help: Account Relationships and Account Relationship Data Sharing Rules

Action Link Group Template
Represents the action link group template. Action link templates let you reuse action link definitions and package and distribute action
links.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

43

Action Link Group TemplateSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.networks_partner_account_relationships_and_sharing.htm&type=5&language=en_US

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ActionLinkGroupTemplate

Component Type in 1GP Package Manager UI: Action Link Group Template

Documentation
Salesforce Help: Action Link Templates

Action Plan Template
Represents an instance of an action plan template.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

44

Action Plan TemplateSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=platform.action_link_group_template.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ActionPlanTemplate

Documentation
Salesforce Help: Action Plans

Actionable List Definition
Represents the data source definition details associated with an actionable list.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

45

Actionable List DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.fsc_action_plans.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ActionableListDefinition

Component Type in 1GP Package Manager UI: ActionableListDefinition

Documentation
Salesforce Help: Actionable Segmentation

Actionable List Key Performance Indicator Definition
Represents the custom key performance indicators that are defined for a specific field in an object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes, Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• All attributes

Neither Package Developer or Subscriber Can Edit

46

Actionable List Key Performance Indicator DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.actionable_segmentation.htm&type=5&language=en_US
https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport

• None

More Information
Feature Name

Metadata Name: ActnblListKeyPrfmIndDef

Component Type in 1GP Package Manager UI: ActnblListKeyPrfmIndDef

License Requirements
Actionable Segmentation

Documentation
Salesforce Help: Create Custom Key Performance Indicators

Salesforce Help: ActnblListKeyPrfmIndDef

Activation Platform
Represents the ActivationPlatform configuration, such as platform name, delivery schedule, output format, and destination folder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DataConnector

• Description

• LogoUrl

• MasterLabel

• OutputFormat

• RefreshMode

47

Activation PlatformSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.create_custom_kpis.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/sforce_api_objects_actnbllistkeyprfminddef.htm
https://partners.salesforce.com/partnerSupport

• Type

Both Package Developer and Subscriber Can Edit

• Enabled (only subscriber editable)

• IncludeSegmentNames (only subscriber editable)

Neither Package Developer or Subscriber Can Edit

• ID

• OutputGrouping

• PeriodicRefreshFrequency

• RefreshFrequency

More Information
Feature Name

Metadata Name: ActivationPlatform

Component Type in 1GP Package Manager UI: ActivationPlatform

Use Case
Allows ISVs to specify capabilities of their Activation Platform integrations and publish it on AppExchange for subscriber organizations
to install and instantiate instances of the platform as a disparate activation target.

Considerations When Packaging
Some upgrade scenarios are not support:

• Adding a new required field

• Removing a previously supported ID type

• Removing a previously supported optional field or required field

• Changing a previously supported field property from optional to required

Some update scenarios are supported and don't automatically cascade to Activation Target or Activations created before the upgrade
installations:

• Adding a new ID type

• Adding of a new optional field

• Adding a new hidden field

• Value change on a previously supported hidden field

To apply updates to future Activation run jobs, the user must edit and resave all Activation Targets created before the upgrade.
Developers provide post-install instructions informing the subscriber of this required action anytime a change is made in a new
version release.

License Requirements
Data Cloud enabled orgs can access this package.

Post Install Steps
An admin from the subscriber org enables the activation platform to start using this platform in Activation creations.

Documentation
Metadata API Developer Guide: ActivationPlatform

48

Activation PlatformSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_activationplatform.htm

AffinityScoreDefinition
Represents the affinity information used in calculations to analyze and categorize contacts for marketing purposes.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AffinityScoreType

• NumberOfMonths

• NumberOfRanges

• SourceFieldApiNameList

• TargetFieldApiNameList

• ScoreRangeList

Both Package Developer and Subscriber Can Editv

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AffinityScoreDefinition

Documentation

• Fundraising Metadata API Types: AffinityScoreDefinitions

49

AffinityScoreDefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.nonprofit_cloud.meta/nonprofit_cloud/fundraising_affinityscoredefinition_metadata_api.htm

• Salesforce Help: Set Up RRM Scoring

• Salesforce Help: Scoring Frameworks Help Increase Fundraising Success

Agent Action
Represents an action, for use in Agentforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

No (However, actions can incorporate flows or Apex code that do
have IP protection.)

Component Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• IsConfirmationRequired

• MasterLabel

Action Input Fields:

• CopilotAction.IsUserInput

• Description

• IsPII

• Properties (Inherited from invocationTarget like flows or Apex code.)

• Title (Inherited from invocationTarget like flows or Apex code.)

• Required

• Lightning.Type

Action Output Fields:

• Description

50

Agent ActionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sfdo.npc_fr_set_up_configure_fundraising.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.npc_fr_scoring_frameworks_help_increase_fundraising_success.htm&language=en_US
https://partners.salesforce.com/partnerSupport

• CopilotAction.IsDisplayable

• IsPII

• CopilotAction.IsUsedByPlanner

• Properties (Inherited from invocationTarget like flows or Apex code.)

• Title (Inherited from invocationTarget like flows or Apex code.)

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• InvocationTarget

• InvocationTargetType

More Information
Feature Name

Metadata Name: GenAiFunction

Component Type in 1GP Package Manager UI: Generative AI Function Definition

Use Case
Provide actions that customers can add to their own topics and agents.

Considerations When Packaging

When creating an Agent Action of type Apex, the Apex class, invocable Apex method, and any invocable Apex variables must all be
marked as global. If any of these are public or private, the Apex method won't appear in the list of options to add to the Agent
Action, and won't be invoked by an Agent at runtime.

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: Agentforce Actions

Metadata API Developer Guide: GenAiFunction

Agent Topic
Represents a topic, for use in Agentforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

51

Agent TopicSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaifunction.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_actions.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaifunction.htm

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• MasterLabel

• Scope

• AiPluginUtterances

• GenAiFunctions

• GenAiPluginInstructions

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• PluginType

More Information
Feature Name

Metadata Name: GenAiPlugin

Component Type in 1GP Package Manager UI: Generative AI Plugin Definition

Use Case
Provide topics that customers can add to their own agents. Actions can be added to topics.

Considerations When Packaging

Subscribers can't edit which actions are associated with a managed-installed topic. Instead, subscribers must manually create a copy
of the topic and then assign actions to their copy of the topic. We're working to improve this experience.

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: Agentforce Topics

AI Application
Represents an instance of an AI application. For example, Einstein Prediction Builder.

52

AI ApplicationSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaiplugin.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Type

Both Package Developer and Subscriber Can Edit

• Status

• ExternalId

• MlExternalId

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: AIApplication

Considerations When Packaging

AIApplication is the parent entity for all Einstein configuration entities. Packaging of Einstein features must always begin with the
selection of one or more AIApplications. To create a package with ML Prediction Definition, select the parent AIApplication (Type =
PredictionBuilder). To create a package with ML Recommendation Definition, select the parent AIApplication (Type =
RecommendationBuilder). Packaging automatically analyzes the relationships and includes the associated MLPredictionDefinitions,
MLRecommendationDefinitions, and MLDataDefinitions necessary to fully define the Einstein configuration.

Documentation
Metadata API Developer Guide: AIApplication

Salesforce Help: Einstein Prediction Builder

Salesforce Help: Einstein Recommendation Builder

AI Application Config
Represents additional prediction information related to an AI application.

53

AI Application ConfigSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_aiapplication.htm
https://help.salesforce.com/s/articleView?id=sales.custom_ai_prediction_builder_lm.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.custom_ai_recommendation_builder.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AIApplicationId

Both Package Developer and Subscriber Can Edit

• Rank

• IsInsightReasonEnabled

• IsInsightReasonEnabled

• AIScoringMode

• ExternalId

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: AIApplicationConfig

Considerations When Packaging

AIApplicationConfig is always associated with an AIApplication. Packaging of Einstein features must always begin with the selection
of one or more AIApplications. To create a package with AI Application Config, select the parent AIApplication. Packaging automatically
analyzes the relationships and includes the associated MLApplicationConfig, MLPredictionDefinition, MLRecommendationDefinitions,
and MLDataDefinitions necessary to fully define the Einstein configuration.

Documentation
Metadata API Developer Guide: AIApplicationConfig

Salesforce Help: Einstein Prediction Builder

Salesforce Help: Einstein Recommendation Builder

54

AI Application ConfigSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_aiapplicationconfig.htm
https://help.salesforce.com/s/articleView?id=sales.custom_ai_prediction_builder_lm.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.custom_ai_recommendation_builder.htm&type=5&language=en_US

AIUsecaseDefinition
Represents a collection of fields in a Salesforce org used to define a machine learning use case and get real-time predictions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All the AIUsecaseDefinition fields

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AIUsecaseDefinition

Component Type in 1GP Package Manager UI: AIUsecaseDefinition

Use Case
AI Usecase Definition lets you ship data that can be used to set up use cases for which you want to generate real-time predictions.
This data includes machine learning models and feature extractors required to generate the real-time predictions.

License Requirements
This feature is available with the CRM Plus license and the use case-related product’s CRM license.

Documentation
Industries Common Resources Developer Guide: AI Accelerator

55

AIUsecaseDefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/ai_accelerator.htm

Salesforce Help: AI Accelerator

Analytics
Analytics components include analytics applications, dashboards, dataflows, datasets, lenses, recipes, and user XMD.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (Analytics Dataflow only).

All other analytics components can’t be updated.

Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (Analytic snapshot only). Supported in managed 2GP packages
only.

All other analytics components can’t be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

More Information
To include analytics components in a managed 2GP package, include EinsteinAnalyticsPlus in your scratch org definition file.

To enable analytics in a 1GP packaging org, see Basic CRM Analytics Platform Setup in Salesforce Help.

For more details, see CRM Analytics Packaging Considerations.

Analytics Visualization
Represents a Tableau Next visualization.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

56

AnalyticsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.ai_accelerator.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_einsteinanalyticsplus
https://help.salesforce.com/s/articleView?id=analytics.bi_help_setup_basic.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=analytics.bi_packaging_considerations.htm&type=5&language=en_US

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Full Name

• Is Original

• Version

More Information
Feature Name

Metadata Name: AnalyticsVisualization

Component Type in 1GP Package Manager UI: Analytics Visualization

License Requirements
Tableau Next Admin or Tableau Next Analyst permission sets

Documentation
For more information on Tableau Next visualizations, see Build Insightful Visualizations in Tableau Next in Salesforce Help.

Analytics Workspace
Represents a Tableau Next workspace.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

57

Analytics WorkspaceSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=analytics.tua_create_viz.htm&language=en_US

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AnalyticsWorkspace

Component Type in 1GP Package Manager UI: Analytics Workspace

License Requirements
Tableau Next Admin or Tableau Next Analyst permission sets

Documentation
For more information on Tableau Next workspaces, see Tableau Next Workspaces in Salesforce Help.

Apex Class
Represents an Apex Class. An Apex class is a template or blueprint from which Apex objects are created. Classes consist of other classes,
user-defined methods, variables, exception types, and static initialization code.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (if not set to global access).

Supported in both 1GP and 2GP packages.

Package Developer Can Remove Component From Package

YesComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

58

Apex ClassSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=analytics.tua_workspace.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Code

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ApexClass

Component Type in 1GP Package Manager UI: Apex Class

Considerations When Packaging

• Any Apex that is included as part of a package must have at least 75% cumulative test coverage. Each trigger must also have
some test coverage. When you upload your package to AppExchange, all tests are run to ensure that they run without errors. In
addition, all tests are run when the package is installed in the installer’s org. If any test fails, the installer can decide whether to
install the package.

• Managed packages receive a unique namespace. This namespace is prepended to your class names, methods, variables, and so
on, which helps prevent duplicate names in the installer’s org.

• In a single transaction, you can only reference 10 unique namespaces. For example, suppose that you have an object that executes
a class in a managed package when the object is updated. Then that class updates a second object, which in turn executes a
different class in a different package. Even though the first package didn’t access the second package directly, the access occurs
in the same transaction. It’s therefore included in the number of namespaces accessed in a single transaction.

• If you’re exposing any methods as Web services, include detailed documentation so that subscribers can write external code
that calls your Web service.

• If an Apex class references a custom label and that label has translations, explicitly package the individual languages desired to
include those translations in the package.

• If you reference a custom object’s sharing object (such as MyCustomObject__share) in Apex, you add a sharing model dependency
to your package. Set the default org-wide access level for the custom object to Private so other orgs can install your package
successfully.

• The code contained in an Apex class, trigger, or Visualforce component that’s part of a managed package is obfuscated and
can’t be viewed in an installing org. The only exceptions are methods declared as global. You can view global method signatures
in an installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view
their packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

• You can use the deprecated annotation in Apex to identify global methods, classes, exceptions, enums, interfaces, and
variables that can’t be referenced in later releases of a managed package. So you can refactor code in managed packages as the
requirements evolve. After you create another package version as Managed - Released, new subscribers that install the latest
package version can’t see the deprecated elements, while the elements continue to function for existing subscribers and API
integrations.

• Apex code that refers to Data Categories can’t be uploaded.

59

Apex ClassSecond-Generation Managed Packages

• Before deleting Visualforce pages or global Visualforce components from your package, remove all references to public Apex
classes and public Visualforce components. After removing the references, upgrade your subscribers to an interim package
version before you delete the page or global component.

Usage Limits
The maximum number of class and trigger code units in a deployment of Apex is 7500. For more information, see Execution Governors
and Limits in the Apex Developer Guide.

Documentation
Second-Generation Managed Packaging Developer Guide: Namespace-Based Visibility for Apex Classes in Second-Generation Managed
Packages

First-Generation Managed Packaging Developer Guide: About API and Dynamic Apex Access in Packages

First-Generation Managed Packaging Developer Guide:Using Apex in Group and Professional Editions

Apex Sharing Reason
Represents an Apex sharing reason, which is used to indicate why sharing was implemented for a custom object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Reason Label

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Reason Name

More Information
Feature Name

Metadata Name: SharingReason

Component Type in 1GP Package Manager UI: Apex Sharing Reason

60

Apex Sharing ReasonSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_gov_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_gov_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/about_client_security_profile.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/dev_packages_apex_ge_pe.htm

Considerations When Packaging
Apex sharing reasons can be added directly to a package, but are only available for custom objects.

Documentation
Metadata API Developer Guide: SharingReason

Apex Trigger
Represents an Apex trigger. A trigger is Apex code that executes before or after specific data manipulation language (DML) events occur,
such as before object records are inserted into the database, or after records have been deleted.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Code

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ApexTrigger

61

Apex TriggerSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_apexsharingreason.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Component Type in 1GP Package Manager UI: Apex Trigger

Documentation
Apex Developer Guide: Triggers

App Framework Template Bundle
Represents the app framework template bundle. Use these templates for Data Cloud and Tableau Next assets.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

• MaxAppCount

Both Package Developer and Subscriber Can Edit

• Description

• TemplateBadgeIcon

Neither Package Developer or Subscriber Can Edit

• AssetVerion

• TemplateType

More Information
Feature Name

Metadata Name: AppFrameworkTemplateBundle

Component Type in 1GP Package Manager UI: App Framework Template Bundle

Considerations When Packaging
Data Cloud and Tableau Next assets are installed in subscriber orgs via templates using the AppFrameworkTemplateBundle. The
template framework supports the data sync and orchestration needed for visualization assets, along with customizations for each
org.

62

App Framework Template BundleSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_triggers.htm

License Requirements
Tableau Included App Manager permission set

Application Subtype Definition
Represents a subtype of an application within an application domain.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Developer Name

• Description

• Application Usage Type

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ApplicationSubtypeDefinition

Documentation
Industries Common Resources Developer Guide: AssessmentSubtypeDefinition

63

Application Subtype DefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/tooling_api_objects_applicationsubtypedefinition.htm

AssessmentConfiguration
Represents a configuration for Assessment component. An AssessmentConfiguration entry indicates configuration for user flows such
as sending out emails or reminder actions on assessments initiated by the patient.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in managed 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: AssessmentConfiguration

Component Type in 1GP Package Manager UI: AssessmentConfiguration

Documentation
Health Cloud Developer Guide: AssessmentConfiguration

AssessmentQuestion
Represents the container object that stores the questions required for an assessment.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

64

AssessmentConfigurationSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_assessmentconfiguration.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All except DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: AssessmentQuestion

Documentation
Industries Common Resources Developer Guide: AssessmentQuestion

AssessmentQuestionSet
Represents the container object for Assessment Questions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

65

AssessmentQuestionSetSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_assessmentquestion.htm

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All except DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: AssessmentQuestionSet

Documentation
Industries Common Resources Developer Guide: AssessmentQuestionSet

Aura Component
Represents an Aura definition bundle. A bundle contains an Aura definition, such as an Aura component, and its related resources, such
as a JavaScript controller. The definition can be a component, application, event, interface, or a tokens collection.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

You can build Lightning components using two programming models: the Lightning Web Components model, and the original Aura
Components model.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

66

Aura ComponentSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_assessmentquestionset.htm

NoComponent Has IP Protection

When a package developer removes an Aura or Lightning web component from a package, the component remains in a subscriber’s
org after they install the upgraded package. The administrator of the subscriber’s org can delete the component, if desired. This behavior
is the same for a Lightning web component or an Aura component with a public or global access value.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• Label

• Markup

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Aura Component

Metadata Name: AuraDefinitionBundle

Component Type in 1GP Package Manager UI: Aura Component Bundle

Documentation
Lightning Aura Components Developer Guide

Batch Calc Job Definition
Represents a Data Processing Engine definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

67

Batch Calc Job DefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.lightning.meta/lightning/

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire Data Processing Engine definition

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: BatchCalcJobDefinition

Component Type in 1GP Package Manager UI: Batch Calculation Job Definition

Use Case
Data Processing Engine helps you transform data that's available in your Salesforce org and write back the transformation results as
new or updated records. You can transform the data for standard and custom objects using Data Processing Engine definitions.

License Requirements
Either Financial Services Cloud, Manufacturing Cloud, Loyalty Management, Net Zero Cloud, or Rebate Management

Data Pipelines

Documentation
Salesforce Help: Data Processing Engine

Batch Process Job Definition
Represents the details of a Batch Management job definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

68

Batch Process Job DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.dpe_intro.htm&type=5&language=en_US

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire Batch Management job

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: BatchProcessJobDefinition

Component Type in 1GP Package Manager UI: Batch Process Job Definition

Use Case
Automate the processing of records in scheduled flows with Batch Management. With Batch Management, you can process a high
volume of standard and custom object records.

License Requirements
Either Loyalty Management, Manufacturing Cloud, or Rebate Management

System Administrator Profile

Documentation
Salesforce Help: Batch Management

Benefit Action
Represents details of an action that can be triggered for a benefit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

69

Benefit ActionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.concept_batch_management.htm&type=5&language=en_US

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire Benefit Action record

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: BenefitAction

Component Type in 1GP Package Manager UI: Benefit Action

Use Case
Benefit Actions are actions that can be triggered for a loyalty program benefit.

License Requirements
Loyalty Management permission set license

Documentation
Salesforce Help: Benefit Action

Bot Template
Represents the configuration details for a specific Einstein Bot template, including dialogs and variables.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

70

Bot TemplateSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.benefit_actions.htm&type=5&language=en_US

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Bot Dialog Groups

• Bot Dialogs

• Conversation Context Variables

• Conversation Languages

• Conversation Definition Goals

• Conversation System Dialogs

• Conversation Variables

• Description

• Entry Dialog

• Icon

• Main Menu Dialog

• Label

• MlDomain

• Rich Content Enabled

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: BotTemplate

Component Type in 1GP Package Manager UI: Bot Template

Documentation
Salesforce Help: Create an Einstein Bot Template

Salesforce Help: Create a Template from an Einstein Bot

Salesforce Help: Package an Einstein Bot Template

Metadata API Developer Guide: BotTemplate

71

Bot TemplateSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=service.bots_service_create_new_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=service.bots_service_create_template_bot.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=service.bots_service_create_package_template.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_bottemplate.htm

Branding Set
Represents the definition of a set of branding properties for an Experience Builder site, as defined in the Theme panel in Experience
Builder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

• brandingSetProperty

• description

• masterLabel

• type

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: BrandingSet

Relationship to Other Components
BrandingSet can’t be added to a package by itself. BrandingSet is included automatically in a package if it’s referenced by another
object in the package, such as CommunityThemeDefinition, LightningExperienceTheme, or EmbeddedServiceMenuSettings.

Documentation
Salesforce Help: Use Branding Sets in Experience Builder

72

Branding SetSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=experience.community_designer_brandsets.htm&type=5&language=en_US

Briefcase Definition
Represents a briefcase definition. A briefcase makes selected records available for specific users and groups to view when they’re offline
in the Salesforce Field Service mobile app for iOS and Android.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire briefcase

Both Package Developer and Subscriber Can Edit

• Active

Neither Package Developer or Subscriber Can Edit

• Full Name

More Information
Feature Name

Metadata Name: BriefcaseDefinition

Component Type in 1GP Package Manager UI: Briefcase Definition

Considerations When Packaging
As a best practice, package Briefcase Definition with IsActive set to false. If you package Briefcase Definition with IsActive set to true,
the package installation fails if installing the package exceeds any limits.

Usage Limits
All Briefcase Builder limits apply to a Briefcase Definition package.

Relationship to Other Components

After you install the package, assign the briefcase to the application that the briefcase's data is for.

Documentation
Salesforce Help: Briefcase Builder

73

Briefcase DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.briefcase_builder_limits_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.briefcase_builder_overview.htm&type=5&language=en_US

Building Energy Intensity Record Type Configuration
Represents the setup object that contains the mapping between the Building Energy Intensity Record record type and internal enums.
You can primarily use this object for calculations across different record types.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: BldgEnrgyIntensityCnfg

Component Type in 1GP Package Manager UI: Building Energy Intensity Record Type Configuration

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new stationary asset types for end users.

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

• Manage Building Energy Intensity

74

Building Energy Intensity Record Type ConfigurationSecond-Generation Managed Packages

Documentation

• Salesforce Help: Set Up Record Types for Net Zero Cloud

• Salesforce Help: Benchmark Building Energy Intensity Data

Business Process
The BusinessProcess metadata type enables you to display different picklist values for users based on their profile.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
• Only Package Developer Can EditNone

• Both Package Developer and Subscriber Can EditAll attributes

• Neither Package Developer or Subscriber Can EditNone

More Information
Feature Name

Metadata Name: BusinessProcess

Use Case
You can use this component to define different picklist values that you associate with record types.

Relationship to Other Components
Record types of corresponding entities.

Documentation
Salesforce Help: Tailor Business Processes to Different Users Using Record Types

75

Business ProcessSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.netzero_setup_record_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_manager_manage_bei.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=platform.customize_recordtype.htm&type=5&language=en_US

Business Process Group
Represents the surveys used to track customers’ experiences across different stages in their lifecycle.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All Business Process Group fields including Business Process Definition and Business Process Feedback.

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Developer Name

• Customer Satisfaction Metric

More Information
Feature Name

Metadata Name: BusinessProcessGroup

Component Type in 1GP Package Manager UI: Business Process Group

Use Case
Business Process Group lets you ship groupings relevant to survey metrics that are captured as part of any purchase or product
lifecycle. For a specific business process group, you can define different stages and associate relevant questions from one or more
surveys for reporting purposes.

License Requirements
This feature is available with the Feedback Management - Growth license.

Relationship to Other Components
This feature can be used in conjunction with Surveys and Survey Invitation Rules Flow types, and their corresponding dependencies.

Documentation
Metadata API Developer Guide: BusinessProcessGroup

Salesforce Help: Track Satisfaction Across a Customer's Lifecycle

76

Business Process GroupSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_businessprocessgroup.htm
https://help.salesforce.com/s/articleView?id=xcloud.task_customer_lifecycle_maps.htm&type=5&language=en_US

Business Process Type Definition
Define the types of business processes that are applied to a rule.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Developer Name

• Description

• Application Usage Type

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: BusinessProcessTypeDefinition

Care Benefit Verify Settings
Represents the configuration settings for benefit verification requests.

77

Business Process Type DefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• ServiceApexClass

• ServiceNamedCredential

• UriPath

• isDefault

• GeneralPlanServiceTypeCode

• ServiceTypeSourceSystem

• OrganizationName

• DefaultNpi

• CodeSetType

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: CareBenefitVerifySettings

Component Type in 1GP Package Manager UI: Care Benefit Verification Settings

Use Case
Provides out-of-the-box configuration settings for benefit verification requests in Health Cloud.

License Requirements
Industries Health Cloud

Relationship to Other Components
CareBenefitVerifySettings can contain ApexClass as well as NamedCredentials.

78

Care Benefit Verify SettingsSecond-Generation Managed Packages

Documentation
Health Cloud Developer Guide: CareBenefitVerifySettings

Care Limit Type
Defines the characteristics of limits on benefit provision.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• LimitType

• MetricType

• MasterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: CareLimitType

Component Type in 1GP Package Manager UI: Care Limit Type

Use Case
Provide the characteristics of limits on benefit provision in Health Cloud.

License Requirements
Industries Health Cloud Add On or an org with a Health Cloud Financial Data Platform license

Documentation
Health Cloud Developer Guide: CareLimitType

79

Care Limit TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carebenefitverifysettings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carelimittype.htm

Care Request Configuration
Represents the details for a record type such as service request, drug request, or admission request. One or more record types can be
associated with a care request.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• CareRequestType

• CareRequestRecordType

• CareRequestRecords

• IsDefaultRecordType

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: CareRequestConfiguration

Component Type in 1GP Package Manager UI: Care Request Configuration

Use Case
Provides the details for a record type such as a service request, drug request, or admission request in Health Cloud.

License Requirements
Industries Health Cloud Add On an org with a Health Cloud Utilization Mgmt Platform license

Relationship to Other Components
Ensure that the record type specified in the Case Record Type field in CareRequestConfiguration is available in the subscriber org.
Otherwise, the package must include the record type.

80

Care Request ConfigurationSecond-Generation Managed Packages

Documentation
Health Cloud Developer Guide: CareRequestConfiguration

Care System Field Mapping
Represents a mapping from source system fields to Salesforce target entities and attributes.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• External ID Field

• Is Active

• Label

• Source System

• Target Object

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: CareSystemFieldMapping

Component Type in 1GP Package Manager UI: Care System Field Mapping

Use Case
Provides an out-of-the-box mapping for an external system to Salesforce for the Care Program Enrollment or Remote Monitoring
features in Health Cloud.

License Requirements
Industries Health Cloud

81

Care System Field MappingSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carerequestconfiguration.htm

Documentation
Health Cloud Developer Guide: CareSystemFieldMapping

Channel Layout
Represents the metadata associated with a communication channel layout.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ChannelLayout

Component Type in 1GP Package Manager UI: Communication Channel Layout

Considerations When Packaging
ChannelLayout can only be installed in Salesforce Classic orgs with Knowledge enabled.

ChannelLayout includes the article type *__kav, which is not supported by Lightning Knowledge.

If you try to install ChannelLayout into an org with Lightning Knowledge enabled, this message is displayed: “When Lightning
Knowledge is enabled, you can’t add an article type”.

License Requirements
Enable Knowledge in Salesforce Classic orgs.

Documentation
Salesforce Knowledge Developer Guide: ChannelLayout

82

Channel LayoutSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/sforce_api_objects_caresystemfieldmapping.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.knowledge_dev.meta/knowledge_dev/meta_articletype_channellayout.htm

Chatter Extension
Represents the metadata used to describe a Rich Publisher App that’s integrated with the Chatter publisher.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Header Text

• Hover Text

• Icon

• Name

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Composition CMP

• Render CMP

• Type

More Information
Feature Name

Metadata Name: ChatterExtension

Documentation
Metadata API Developer Guide: ChatterExtension

Object Reference for the Salesforce Platform: ChatterExtension

Claim Financial Settings
Represents the configuration settings for Insurance Claim Financial Services.

83

Chatter ExtensionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_chatterextensions.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_chatterextension.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Claim Coverage Pending Authority Status

• Claim Coverage Payment Detail Pending Authority Status

• Claim Pending Authority Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ClaimFinancialSettings

Documentation
Salesforce Help: Claim Financial Settings

CommunicationChannelType
Represents the type of communication channel, such as WhatsApp and SMS, to use for referral promotions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

84

CommunicationChannelTypeSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.insurance_finauth_claim_financial_settings.htm&language=en_US

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• API Name

More Information
Feature Name

Metadata Name: CommunicationChannelType

Use Case
Use WhatsApp as a communication channel for referral promotions.

License Requirements
Referral Marketing permission set license

Documentation
Salesforce Help: Communication Assets

Community Template Definition
Represents the definition of an Experience Builder site template.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

85

Community Template DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=mktg.referral_promotion_wizard_step_content.htm&type=5&language=en_US

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CommunityTemplateDefinition

Component Type in 1GP Package Manager UI: Lightning Community Template

Use Case
Share or distribute your Experience Builder site templates.

License Requirements
Customize Application user permission

Create and Set Up Experiences user permission

View Setup and Configuration user permission

Relationship to Other Components
If you add CommunityTemplateDefinition to a package, you must also add CommunityThemeDefinition to the package.

Documentation
Salesforce Help: Export a Customized Experience Builder Template for a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

Community Theme Definition
Represents the definition of a theme for an Experience Builder site.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

86

Community Theme DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=experience.community_builder_export_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.community_builder_export_package.htm&type=5&language=en_US

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CommunityThemeDefinition

Component Type in 1GP Package Manager UI: Lightning Community Theme

Use Case
Share or distribute your Experience Builder site themes.

License Requirements
Customize Application user permission

Create and Set Up Experiences user permission

View Setup and Configuration user permission

Relationship to Other Components
CommunityThemeDefinition must contain a BrandingSet.

CommunityThemeDefinition can be added to a package without a CommunityTemplateDefinition, but CommunityTemplateDefinition
must contain a CommunityThemeDefinition to be added to a package.

Documentation
Salesforce Help: Export a Customized Experience Builder Theme for a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

Compact Layout
Represents the metadata associated with a compact layout.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

87

Compact LayoutSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=experience.community_builder_export_theme.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.community_builder_export_package.htm&type=5&language=en_US

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CompactLayout

Component Type in 1GP Package Manager UI: Compact Layout

Documentation
Metadata API Developer Guide: CompactLayout

Conditional Formatting Ruleset
Represents a set of rules that define the style and visibility of conditional field formatting on Dynamic Forms-enabled Lightning page
field instances.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

88

Conditional Formatting RulesetSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_compactlayout.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Conditional formatting ruleset

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: UiFormatSpecificationSet

Component Type in 1GP Package Manager UI: UI Format Specification Set

Relationship to Other Components
You can only assign a conditional formatting ruleset to a field on a Dynamic Forms-enabled Lightning page.

Documentation
Salesforce Help: Conditional Field Formatting in Lightning App Builder

Metadata API Developer Guide: UiFormatSpecificationSet

Connected App
Represents a connected app configuration. A connected app enables an external application to integrate with Salesforce using APIs and
standard protocols, such as SAML, OAuth, and OpenID Connect.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

89

Connected AppSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.conditional_formatting_overview.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_uiformatspecificationset.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Access Method

• Canvas App URL

• Callback URL

• Connected App Name

• Contact Email

• Contact Phone

• Description

• Icon URL

• Info URL

• Trusted IP Range

• Locations

• Logo Image URL

• OAuth Scopes

Both Package Developer and Subscriber Can Edit

• ACS URL

• Entity ID

• IP Relaxation

• Mobile Start URL

• Permitted Users

• Refresh Token Policy

• SAML Attributes

• Service Provider Certificate

• Start URL

• Subject Type

Neither Package Developer or Subscriber Can Edit

• API Name

• Created Date/By

• Consumer Key

• Consumer Secret

• Installed By

• Installed Date

• Last Modified Date/By

• Version

More Information
For details on packaging a connected app in 2GP managed packages, see Package Connected Apps in Second-Generation Managed
Packaging in the Second-Generation Managed Packaging Developer Guide.

90

Connected AppSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_connected_app.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_connected_app.htm

• Subscribers or installers of a package can’t delete a connected app by itself, they can only uninstall the package. When a developer
deletes a connected app from a package, the connected app is deleted in the subscriber’s org during a package upgrade.

• To publish updates for a connected app that’s part of a managed package, you typically push a new managed package version
and upgrade subscriber orgs to the new version. But if you update a connected app’s PIN Protect settings, it’s not necessary to
push a new managed package upgrade. After saving changes to PIN Protect settings, these updates are automatically published
to subscriber orgs.

• The following connected app settings can’t be updated with managed package patches.

– Mobile App settings

– Push messaging, including Apple, Android, and Windows push notifications

– Canvas App settings

– SAML settings

To update these settings, publish a new package version.

• If you push upgrade a package containing a connected app whose OAuth scope or IP ranges have changed from the previous
version, the upgrade fails. This security feature blocks unauthorized users from gaining broad access to a customer org by
upgrading an installed package. A customer can still perform a pull upgrade of the same package. This upgrade is allowed
because it’s with the customer’s knowledge and consent.

• For connected apps created before Summer ’13, the existing install URL is valid until you package and upload a new version.
After you upload a new version of the package with an updated connected app, the install URL no longer works.

SEE ALSO:

Package Connected Apps in Second-Generation Managed Packaging

Context Definition
A context definition defines the relationship between the nodes and the attributes within each node. For efficient data access, users can
use nodes and attributes to easily access the relevant data from the mapped data source. Various Salesforce products offer predefined
context definitions based on their use case.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

Yes. Only if the component doesn’t contain any active context
definitions.

Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

91

Context DefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_connected_app.htm

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Standard Context Definitions

More Information
Feature Name

Metadata Name: ContextDefinition

Component Type in 1GP Package Manager UI: Context Definition

Documentation
Industries Common Resources Developer Guide: Context Definition

Salesforce Help: Context Service

Contract Type
A contract type is used to group contracts so that they exhibit similar characteristics. For example, the lifecycle states, the people who
access, the templates and clauses used.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Is Default

• Sub Types

Neither Package Developer or Subscriber Can Edit

• Name

92

Contract TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_contextdefinition.htm
https://help.salesforce.com/s/articleView?id=ind.context_service_context_definitions.htm&type=5&language=en_US

More Information
Feature Name

Metadata Name: ContractType

Use Case
Allows admin users to modify Contract Type properties.

License Requirements
CLM Admin Permission Set (CLM User PSL).

Documentation
Salesforce Contracts Developer Guide: ContractType

Conversation Channel Definition
Represents the conversation channel definition that’s implemented for Interaction Service for Bring Your Own Channel and Bring Your
Own Channel for CCaaS messaging channels.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Connected App

• Description

• Label

• Name

Both Package Developer and Subscriber Can Edit

• None

93

Conversation Channel DefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.clm_developer_guide.meta/clm_developer_guide/meta_contracttype.htm
https://partners.salesforce.com/partnerSupport

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ConversationChannelDefinition

Component Type in 1GP Package Manager UI: ConversationChannelDefinition

Use Case
To enable and set up Bring Your Own Channel, integrating third-party messaging services with Salesforce.

To enable and set up Bring Your Own Channel for Contact Center as a Service (CCaaS), integrating a third party CCaaS provider with
Salesforce.

License Requirements
Service Cloud license with Digital Engagement add-on license

Post Install Steps
Set up and enable Bring Your Own Channel or Bring Your Own Channel for CCaaS.

Relationship to Other Components
Linked to ConversationVendorInfo.

Documentation
Salesforce Developer Documentation: Bring Your Own Channel

Salesforce Developer Documentation: Bring Your Own Channel for CCaaS

Salesforce Help: Set Up Bring Your Own Channel

Salesforce Help: Set Up Bring Your Own Channel for CCaaS

Conversation Vendor Info
This setup object connects the partner vendor system to the Service Cloud feature.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

94

Conversation Vendor InfoSecond-Generation Managed Packages

https://developer.salesforce.com/docs/service/messaging-partner/overview
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/overview
https://help.salesforce.com/s/articleView?id=service.partner_messaging_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=service.byoc_ccaas_setup.htm&type=5&language=en_US

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ConversationVendorInfo

Component Type in 1GP Package Manager UI: ConversationVendorInfo

Use Case
Include information about a Service Cloud Voice implementation.

License Requirements
Enable Service Cloud Voice in your org.

Documentation
Service Cloud Voice for Partner Telephony Developer Guide: ConversationVendorInfo

Object Reference for the Salesforce Platform: ConversationVendorInfo

CORS Allowlist
Represents an origin in the CORS allowlist.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

95

CORS AllowlistSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/sforce_api_objects_conversationvendorinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_conversationvendorinfo.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Url pattern

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CorsWhitelistOrigin

Component Type in 1GP Package Manager UI: CORS Allowed Origin List

Use Case
Customers can add a URL pattern that includes an HTTPS protocol and a domain name. Including a port number is optional. The
wildcard character (*) is supported only for the second-level domain name, for example, https://*.example.com.

Documentation
Salesforce Help: Enable CORS for OAuth Endpoints

Salesforce Help: Configure Salesforce CORS Allowlist

CSP Trusted Site
Represents a trusted URL. For each CspTrustedSite component, you can specify Content Security Policy (CSP) directives and permissions
policy directives.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

96

CSP Trusted SiteSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.remoteaccess_oauth_endpoints_cors.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.extend_code_cors.htm&type=5&language=en_US

Both Package Developer and Subscriber Can Edit

• context

• description

• endpointUrl

• isActive

• isApplicableToConnectSrc

• isApplicableToFontSrc

• isApplicableToFrameSrc

• isApplicableToImgSrc

• isApplicableToMediaSrc

• isApplicableToStyleSrc

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CspTrustedSite

Component Type in 1GP Package Manager UI: CspTrustedSite

Use Case
The Lightning Component framework uses Content Security Policy (CSP) to impose restrictions on content. The main objective of
CSP is to help prevent cross-site scripting (XSS) and other code injection attacks. If your package includes sites or pages that load
content from an external (non-Salesforce) server or via a WebSocket connection, add the external server as a CSP trusted site. Each
CSP trusted site can apply to Experience Cloud sites, Lightning Experience pages, custom Visualforce pages, or all three.

Considerations When Packaging
When you include the CspTrustedSite component in a package, the permissions for the third-party APIs and Websocket connections
apply to sites and pages across the org. Because this component modifies security, we don’t recommend including CspTrustedSite
components in packages. Instead, we recommend that you instruct customers to use the CSP Trusted Sites Setup page or the
CSPTrustedSites metadata API type to add the URLs to their allowlist as part of activating your package. If you choose to include
CspTrustedSite components in your package, disclose this change prominently in your package documentation to ensure that your
customers are aware of the security modification.

You can’t load JavaScript resources from a third-party site, even if it’s a CSP Trusted Site. To use a JavaScript library from a third-party
site, add it to a static resource, and then add the static resource to your component. After the library is loaded from the static resource,
you can use it as normal.

CSP isn’t enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

Usage Limits
CspTrustedSite components are available in API version 39.0 and later. Multiple properties and enumeration values are available in
later API versions. For details, see CspTrustedSite in the Metadata API Developer Guide.

For Experience Builder sites, if the HTTP header size is greater than 8 KB, the directives are moved from the CSP header to the <meta>
tag. To avoid errors from infrastructure limits, ensure that the HTTP header size doesn’t exceed 3 KB per context.

Relationship to Other Components
This component can be used only in conjunction with an Aura or Lightning Web Runtime (LWR) page for an Experience Cloud site,
a Lightning Page, or a Visualforce page.

97

CSP Trusted SiteSecond-Generation Managed Packages

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://caniuse.com

Documentation
Salesforce Help: Manage CSP Trusted Sites

Metadata API Developer Guide: CspTrustedSites

Custom Application
Represents a custom application.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Show in Lightning Experience (Salesforce Classic only)

• Selected Items (Lightning Experience only)

• Utility Bar (Lightning Experience only)

Both Package Developer and Subscriber Can Edit

• All attributes, except App Name and Show in Lightning Experience (Salesforce Classic only)

• All attributes, except Developer Name, Selected Items, and Utility Bar (Lightning Experience only)

Neither Package Developer or Subscriber Can Edit

• App Name (Salesforce Classic only)

• Developer Name (Lightning Experience only)

98

Custom ApplicationSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.security_trusted_urls_manage.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_csptrustedsite.htm
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: CustomApplication

Documentation
Metadata API Developer Guide: CustomApplication

Custom Button or Link
Represents a custom link defined in a home page component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Behavior

• Button or Link URL

• Content Source

• Description

• Display Checkboxes

• Label

• Link Encoding

Both Package Developer and Subscriber Can Edit

• Height

• Resizeable

99

Custom Button or LinkSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customapplication.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• Show Address Bar

• Show Menu Bar

• Show Scrollbars

• Show Status Bar

• Show Toolbars

• Width

• Window Position

Neither Package Developer or Subscriber Can Edit

• Display Type

• Name

More Information
Feature Name

Metadata Name: WebLink, CustomPageWebLink

Documentation
Salesforce Help: Custom Buttons and Links

Custom Console Components
Represents a custom console component (Visualforce page) assigned to a CustomApplication that is marked as a Salesforce console.
Custom console components extend the capabilities of Salesforce console apps.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

A package that has a custom console component can only be installed in an org with the Service Cloud license or Sales Console permission
enabled.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

100

Custom Console ComponentsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.customize_enterprise.htm&type=5&language=en_US
https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomApplicationComponent

Component Type in 1GP Package Manager UI: Custom Console Component

Documentation
Metadata API Developer Guide: CustomApplicationComponent

Salesforce Help: Create Console Components in Salesforce Classic

Custom Field on Standard or Custom Object
Represents the metadata associated with a field. Use this metadata type to create, update, or delete custom field definitions on standard
or custom objects.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

101

Custom Field on Standard or Custom ObjectSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customapplicationcomponent.htm
https://help.salesforce.com/s/articleView?id=service.console2_components_create_overview.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Auto-Number Display Format

• Decimal Places

• Description

• Default Value

• Field Label

• Formula

• Length

• Lookup Filter

• Related List Label

• Required

• Roll-Up Summary Filter Criteria

Both Package Developer and Subscriber Can Edit

• Chatter Feed Tracking

• Help Text

• Mask Type

• Mask Character

• Sharing Setting

• Sort Picklist Values

• Track Field History

Neither Package Developer or Subscriber Can Edit

• Child Relationship Name

• Data Type

• External ID

• Field Name

• Roll-Up Summary Field

• Roll-Up Summary Object

• Roll-Up Summary Type

• Unique

More Information
• Developers can add required and universally required custom fields to managed packages as long as they have default values.

• Auto-number type fields and required fields can’t be added after the object is included in a Managed - Released package.

• Subscriber orgs can’t install roll-up summary fields that summarize detail fields set to protected.

Custom Field on Custom Metadata Type
Represents a custom fields on the custom metadata type.

102

Custom Field on Custom Metadata TypeSecond-Generation Managed Packages

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Custom Field Display
Represents the CustomFieldDisplay view type assigned to product attribute custom fields.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Description

• Master Label

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomFieldDisplay

103

Custom Field DisplaySecond-Generation Managed Packages

License Requirements
A B2B Commerce or D2C Commerce license and access to Commerce objects is required.

Documentation
Salesforce Help: Create Attributes for Product Variations in Commerce Cloud

Custom Help Menu Section
Represents the section of the Lightning Experience help menu that the admin added to display custom, org-specific help resources for
the org. The custom section contains help resources added by the admin.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: CustomHelpMenuSection

Documentation
Metadata API Developer Guide: CustomHelpMenuSection

Custom Index
Represents an index used to increase the speed of queries.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

104

Custom Help Menu SectionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=commerce.comm_config_att_set.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customhelpmenusection.htm

No. It can only be removed if the associated custom field is
removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: CustomIndex

Component Type in 1GP Package Manager UI: Custom Index

Considerations When Packaging
Subscribers can remove the custom index using Metadata API only.

Documentation
Best Practices for Deployments with Large Data Volumes: Indexes

Custom Label
The CustomLabels metadata type allows you to create custom labels that can be localized for use in different languages, countries, and
currencies.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Category

• Short Description

105

Custom LabelSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_infrastructure_indexes.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• Value

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: CustomLabels

Considerations When Packaging
If a label is translated, the language must be explicitly included in the package for the translations to be included in the package.
Subscribers can override the default translation for a custom label.

This component can be marked as protected. For more details, see Protected Components in theFirst-Generation Managed Packaging
Developer Guide.

Documentation
Metadata API Developer Guide: CustomLabels

Custom Metadata Type Records
Represents a record of a custom metadata type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in managed 1GP if protected, and managed 2GP
whether protected or not.

Package Developer Can Remove Component From Package

YesComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

106

Custom Metadata Type RecordsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customlabels.htm
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: CustomObject

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Usage Limits
Deprecated custom metadata type records count against the subscriber’s org limit. When removing custom metadata type records
from a second-generation managed package, encourage subscribers to delete the deprecated records from their org. If the subscriber
org reaches their org limit for custom metadata type records, package upgrades that include new custom metadata type records
fail. For details see Custom Metadata and Allocations and Usage Calculations in Salesforce Help.

Documentation
Salesforce Help: Package Custom Metadata Types and Records

Custom Metadata Type
Represents a record of a custom metadata type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

More Information
Second-generation managed packages (2GP) include the fields and records for custom metadata types that you add. You can’t add
fields directly to an existing package after the package version is promoted. If you create multiple packages that share a namespace,
then layouts and records can be in separate packages. Custom fields on the custom metadata type must be in the same package.

You can add fields to a custom metadata type by publishing an extension to the existing package, creating an entity relationship field,
and mapping the field to the custom metadata type in your extension. See Add Custom Metadata Type Fields to Existing Packages.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Custom Notification Type
Represents the metadata associated with a custom notification type.

107

Custom Metadata TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://help.salesforce.com/s/articleView?id=platform.custommetadatatypes_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.custommetadatatypes_package_install.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.custommetadatatypes_add_fields_packages.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Desktop, Mobile

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomNotificationType

Component Type in 1GP Package Manager UI: Custom Notification Type

License Requirements
Database.com editions don’t have permission to access this component.

Usage Limits
You can package up to 500 custom notification types, but keep in mind that subscriber orgs are limited to a total of 500 custom
notification types. The subscriber org limit is shared across namespaces.

A subscriber org can execute up to 10,000 notification actions per hour.

Documentation
Salesforce Help: Create and Send Custom Desktop or Mobile Notifications

Salesforce Help: Considerations for Processes that Send Custom Notifications

108

Custom Notification TypeSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=platform.notif_builder_custom.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.process_limits_customnotification.htm&type=5&language=en_US

Custom Object
Represents a custom object that stores data unique to an org or an external object that maps to data stored outside an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Plural Label

• Record Name

• Record Name Display Format

• Starts with a Vowel Sound

Both Package Developer and Subscriber Can Edit

• Allow Activities

• Allow Reports

• Available for Customer Portal

• Context-Sensitive Help Setting

• Default Sharing Model

• Development Status

• Enable Divisions

• Enhanced Lookup

• Grant Access Using Hierarchy

109

Custom ObjectSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• Search Layouts

• Track Field History

Neither Package Developer or Subscriber Can Edit

• Object Name

• Record Name Data Type

More Information
Feature Name

Metadata Name: CustomObject

Component Type in 1GP Package Manager UI: Custom Object

Considerations When Packaging

If a developer enables the Allow Reports or Allow Activities attributes on a packaged custom object, the subscriber’s
org also has these features enabled during a package upgrade. After it’s enabled in a Managed - Released package, the developer
and the subscriber can’t disable these attributes.

Standard button and link overrides are also packageable.

In your extension package, if you want to access history information for custom objects contained in the base package, work with
the base package owner to:

1. Enable history tracking in the release org of the base package.

2. Create a new version of the base package.

3. Install the new version of the base package in the release org of the extension package to access the history tracking info.

As a best practice, don’t enable history tracking for custom objects contained in the base package directly in the extension package’s
release org. Doing so can result in an error when you install the package and when you create patch orgs for the extension package.

This component can be marked as protected. For more details, see Protected Components and Hide Custom Objects and Custom
Permissions in Your Subscribers’ Orgs in the First-Generation Managed Packaging Developer Guide.

Documentation
Metadata API Developer Guide: CustomObject

Custom Object Translation
This metadata type allows you to translate custom objects for a variety of languages.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

110

Custom Object TranslationSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/customobject.htm

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes except Description of WorkflowTask, Help of CustomField, PicklistValueTranslation, and MasterLabel of LayoutSection.

Both Package Developer and Subscriber Can Edit

• Description of WorkflowTask

• Help of CustomField

• PicklistValueTranslation

• MasterLabel of LayoutSection

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomObjectTranslation

Relationship to Other Components
When you create a first-generation managed package and add the Translation component, the Custom Object Translation component
is automatically added to your package.

When you create a second-generation managed package, you must add Custom Object Translation to your package, even if you've
already added the Translation component.

Documentation
Metadata API Developer Guide: CustomObjectTranslation

Custom Permission
Represents a permission that grants access to a custom feature.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

111

Custom PermissionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_customobjecttranslation.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Connected App

• Description

• Label

• Name

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomPermission

Component Type in 1GP Package Manager UI: Custom Permission

Considerations When Packaging
If you deploy a change set with a custom permission that includes a connected app, the connected app must already be installed
in the destination org.

This component can be marked as protected. For more details, see Protected Components and Hide Custom Objects and Custom
Permissions in Your Subscribers’ Orgs in the First-Generation Managed Packaging Developer Guide.

Documentation
Metadata API Developer Guide: CustomPermission

Custom Tab
Represents a custom tab. Custom tabs let you display custom object data or other web content in Salesforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

112

Custom TabSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_custompermission.htm

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Encoding

• Has Sidebar

• Height

• Label

• S-control

• Splash Page Custom Link

• Type

• URL

• Width

Both Package Developer and Subscriber Can Edit

• Tab Style

Neither Package Developer or Subscriber Can Edit

• Tab Name

More Information
Feature Name

Metadata Name: CustomTab

Considerations When Packaging

• The tab style for a custom tab must be unique within your app. However, it doesn’t have to be unique within the org where it’s
installed. A custom tab style doesn’t conflict with an existing custom tab in the installer’s environment.

• To provide custom tab names in different languages, from Setup, in the Quick Find box, enter Rename Tabs and Labels,
then select Rename Tabs and Labels.

Documentation
Metadata API Developer Guide: CustomTab

113

Custom TabSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_tab.htm

Dashboard
Represents a dashboard. Dashboards are visual representations of data that allow you to see key metrics and performance at a glance.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Dashboard Unique Name

Neither Package Developer or Subscriber Can Edit

• Dashboard Unique Name

More Information
Feature Name

Metadata Name: Dashboard

Type in 1GP Package Manager UI: Dashboard

Considerations When Packaging
Developers of managed packages must consider the implications of introducing dashboard components that reference reports
released in a previous version of the package. If the subscriber deleted the report or moved the report to a personal folder, the
dashboard component referencing the report is dropped during the installation. Also, if the subscriber has modified the report, the
report results can impact what displays in the dashboard component. As a best practice, release a dashboard and the related reports
in the same version.

114

DashboardSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Documentation
Metadata API Developer Guide: Dashboard

DataCalcInsightTemplate
Represents the object template for data calculations and insights of Data Cloud objects in DataCalcInsightTemplate. These objects are
added inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataCalcInsightTemplate

Component Type in 1GP Package Manager UI: Calculated Insight Template

Use Case
DataCalcInsightTemplate represents the data calculations and insights for objects of a Data Cloud schema field the user includes in
a data kit.

115

DataCalcInsightTemplateSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_dashboard.htm
https://partners.salesforce.com/partnerSupport

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. A calculated insight template is added to a package when you add a data
calculation and insight into a data kit, and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Connector Ingest API
Represents the connection information specific to Ingestion API.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: DataConnectorIngestApi

Component Type in 1GP Package Manager UI: Adding DataStreamDefinition brings in DataConnectorIngestApi for Ingestion API
DataStreams.

116

Data Connector Ingest APISecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Use Case
This component is part of the Ingestion API Data stream metadata that is packaged and installed in subscriber.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Documentation
Salesforce Help: Ingestion API

Data Connector S3
Represents the connection information specific to Amazon S3.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Delimiter

• FileNameWildCard

• ImportFromDirectory

• S3AccessKey

• S3BucketName

• S3SecretKey

Neither Package Developer or Subscriber Can Edit

• DeveloperName

117

Data Connector S3Second-Generation Managed Packages

https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-ingestion-api.html

More Information
Feature Name

Metadata Name: DataConnectorS3

Use Case
This includes the bucket details for the S3 connector in Data Cloud.

Considerations When Packaging
To package this component, first add it to a data kit. For more information about data kits, see Data Kits in Salesforce Help.

Credentials are encrypted and need “IsDevInternal” permission for the encryption service.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Documentation
Salesforce Help:Data Connector S3

Data Kit Object Dependency
Represent the object dependencies and relationships between different objects in Data Kit Object Dependency. These objects are added
inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

118

Data Kit Object DependencySecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_data_package_kits.htm&type=5&language=en_US
https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-gcs-connector.html
https://partners.salesforce.com/partnerSupport

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataKitObjectDependency

Component Type in 1GP Package Manager UI: Data Kit Object Dependency

Use Case
DataKitObjectDependency represents the relationship of objects of a Data Cloud schema field the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit and then add
that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Kit Object Template
Represents the object in Data Kit Object Template. This object template is added inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

119

Data Kit Object TemplateSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataKitObjectTemplate

Component Type in 1GP Package Manager UI: Data Kit Object Dependency

Use Case
DataKitObjectTemplate represents the objects the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit, and then add
that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

DataObjectBuildOrgTemplate
Represents the output objects of the components the user includes in a data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

120

DataObjectBuildOrgTemplateSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataObjectBuildOrgTemplate

Component Type in 1GP Package Manager UI: DataObjectBuildOrgTemplate

Use Case

Supports extension packages that reference the output of any object.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the data object build org template to a data kit, and then add that
data kit to a package. You can’t directly add this component to a package.

License Requirements

For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps

After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Package Kit Definition
Represents the top-level Data Kit container definition. Content objects can be added after the Data Kit is defined.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

121

Data Package Kit DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• description

• developerName

• isDeployed

• isEnabled

• masterLabel

• versionNumber

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataPackageKitDefinition

Component Type in 1GP Package Manager UI: Data Package Kit Definition

Use Case
Represents the top-level data kit container definition. Content objects can be added after the data kit is defined.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataPackageKitDefinition

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

122

Data Package Kit DefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datapackagekitdefinition.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Data Package Kit Object
Represents the object in Data Kit Content Object. These objects are added inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• parentDataPackageKitDefinitionName

• referenceObjectName

• referenceObjectType

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataPackageKitObject

Component Type in 1GP Package Manager UI: Data Package Kit Object

Use Case
Represents an object in a data kit.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

123

Data Package Kit ObjectSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataPackageKitObject

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Source
Used to represent the system where the data was sourced.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• DataSourceStatus

• ExternalRecordIdentifier

• LastDataChangeStatusDateTime

• LastDataChangeStatusErrorCode

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: DataSource

Use Case
DataSource gives the lineage information of the datastream.

124

Data SourceSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datapackagekitobject.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
Create DataStream using ui-api or the Data Cloud App.

Relationship to Other Components
This isn't a top-level entity. AddDataStreamDefinition or DataKitDefinition to pick up DataSource.

Documentation
Salesforce Help: Connection Tasks in Data Cloud

Data Source Bundle Definition
Represents the bundle of streams that a user adds to a data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• dataPlatform

• isMultiDeploymentSupported

• masterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

125

Data Source Bundle DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_connection_tasks.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: DataSourceBundleDefinition

Component Type in 1GP Package Manager UI: Data Source Bundle Definition

Use Case
Represents the data stream data sources that a user adds to a data kit.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. A data source bundle definition is added to a package when you add a
data stream to a data kit and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataSourceBundleDefinition

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Source Object
Represents the object from where the data was sourced.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DataObjectType

126

Data Source ObjectSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datasourcebundledefinition.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

• DataSource

• ExternalRecordId

More Information
Feature Name

Metadata Name: DataSourceObject

Use Case
DataSourceObject contains specific information about the source of the data like filename, table names.

Considerations When Packaging
DataSourceObject pulls in child DataSourceField entity records when packaged with DataKitDefinition.

License Requirements
Customer 360 Audiences Corporate (cdpPsl) licenses must be available on both package developer org and subscriber org.

Post Install Steps
Create a DataStream via ui-api or using the Data Cloud App.

Relationship to Other Components
This isn’t a top-level entity. Add DataStreamDefinition or DataKitDefinition to pick up DataSourceObject.

Documentation
Salesforce Help: Connection Tasks in Data Cloud

Data Src Data Model Field Map
Represents the entity that’s used to store the design-time bundle-level mappings for the data source fields and data model fields.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

127

Data Src Data Model Field MapSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_connection_tasks.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• masterLabel

• sourceField

• targetField

• versionNumber

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataSrcDataModelFieldMap

Component Type in 1GP Package Manager UI: Data Source Data Model Field Mapping

Use Case
Represents the entity that contains design-time bundle-level mappings for the data source fields and data model fields.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. Data model field mappings are added to a package when you add a data
stream and any associated mappings to a data kit and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataSrcDataModelFieldMap

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Stream Definition
Contains Data Ingestion information such as Connection, API and File retrieval settings.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

128

Data Stream DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datasrcdatamodelfieldmap.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AreHeadersIncludedInTheFiles

• BulkIngest

• Description

• IsLimitedToNewFiles

• IsMissingFileFailure

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DataConnectionGCS

• DataConnectorType

• DataExtractField

• DataExtractMethod

• DataExtractField

• DataPlatformDataSetBundle

• FileNameWildcard

• MktDataLakeObject

• MktDataTranObject

More Information
Feature Name

Metadata Name: DataStreamDefinition

Component Type in 1GP Package Manager UI: DataStreamDefinition

Use Case

DataStreamDefinition is the starting point for packaging a Datastream and its mappings.

Considerations When Packaging
Data Cloud admin user can install or upgrade the package. Admin User or Data Aware Specialist User can create Datastreams out of
the installed package.

License Requirements
Customer 360 Audiences Corporate (cdpPsl) licenses must be available on both package developer org and subscriber org. CDP
Admin User can install,upgrade, or uninstall the package.

Post Install Steps

Create the DataStream via ui-api or using the Data Cloud App.

129

Data Stream DefinitionSecond-Generation Managed Packages

Documentation
Metadata API Developer Guide: DataStreamDefinition

Data Stream Template
Represents the data stream that a user adds to a data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• dataImportRefreshFrequency

• dataSourceBundleDefinition

• dataSourceObject

• objectCategory

• refreshFrequency

• refreshHours

• refreshMode

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

130

Data Stream TemplateSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datastreamdefinition.htm
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: DataStreamTemplate

Component Type in 1GP Package Manager UI: Data Stream Template

Use Case
Represents the data stream that a user adds to a data kit.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. A data stream template is added to a package when you add a data stream
to a data kit and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataStreamTemplate

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

DataWeaveResource
Represents the DataWeaveScriptResource class that is generated for all DataWeave scripts. DataWeave scripts can be directly invoked
from Apex.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (if not set to global access).Package Developer Can Remove Component From Package

YesComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

131

DataWeaveResourceSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_datastreamtemplate.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• DataWeave Script

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataWeaveResource

Component Type in 1GP Package Manager UI: DataWeaveResource

Use Case
Include MuleSoft DataWeave scripts to read and parse data from one format, transform it, and export it in a different format directly
from Apex.

Considerations When Packaging
There’s a maximum of 50 DataWeave scripts per org.

Documentation
Apex Developer Guide: DataWeave in Apex.

Decision Matrix Definition
Represents a definition of a decision matrix.

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component is inactive.Component Is Updated During Package Upgrade

Yes. Only if the component is inactive.Subscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

132

Decision Matrix DefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/DataWeaveInApex.htm
https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Type

• GroupKey

• SubGroupKey

Both Package Developer and Subscriber Can Edit

• versions

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DecisionMatrixDefinition

Component Type in 1GP Package Manager UI: Decision Matrix Definition

Use Case
Decision matrices are lookup tables that match input values to a matrix row and return the row’s output values. Expression sets and
various digital procedures can call decision matrices. Decision matrices accept JSON input from, and return JSON output to the digital
processes that call the matrices. Decision matrices are useful for implementing complex rules in a systematic, readable manner.

Documentation
Industries Common Resources Developer Guide: Decision Matrix Definition

Salesforce Help: Decision Matrices

Salesforce Help: Decision Matrix Migration Considerations

Decision Matrix Definition Version
Represents a definition of a decision matrix version.

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

133

Decision Matrix Definition VersionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_decisionmatrixdefinition.htm
https://help.salesforce.com/s/articleView?id=ind.decision_matrices.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.decision_matrix_migration_considerations.htm&type=5&language=en_US
https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component is inactive.Component Is Updated During Package Upgrade

Yes. Only if the component is inactive.Subscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• columns

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DecisionMatrixDefinitionVersion

Component Type in 1GP Package Manager UI: Decision Matrix Definition Version

Post Install Steps
After migrating a decision matrix version, upload the row data to the active version manually. The row data isn’t migrated as part of
the migration.

Relationship to Other Components
A DecisionMatrixDefinitionVersion is a child of DecisionMatrixDefinition, and can’t exist without the parent DecisionMatrixDefinition.

Documentation
Industries Common Resources Developer Guide: Decision Matrix Definition

Salesforce Help: Decision Matrices

Salesforce Help: Decision Matrix Migration Considerations

Decision Table
Represents the information about a decision table.

134

Decision TableSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_decisionmatrixdefinition.htm
https://help.salesforce.com/s/articleView?id=ind.decision_matrices.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.decision_matrix_migration_considerations.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Decision Table

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: DecisionTable

Component Type in 1GP Package Manager UI: Decision Table

Use Case
Decision tables read business rules and decide the outcome for records in your Salesforce org or for the values that you specify.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Decision Tables

Decision Table Dataset Link
Represents the information about a dataset link associated with a decision table. In a dataset link, select an object for whose records,
the decision table must provide an outcome.

135

Decision Table Dataset LinkSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.concept_decision_table.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Dataset Link record

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: DecisionTableDatasetLink

Use Case
In a dataset link, you can map the decision table’s input fields with fields of different standard or custom objects.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Add Dataset Links to a Decision Table

Digital Experience
Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s content
items.

136

Digital ExperienceSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.task_decision_table_dataset_link.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Content Title

• Content Body

• Content Folder

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DigitalExperience

Use Case
To move Digital Experience metadata Content from one org to another

Post Install Steps
After the package is installed, publish the site to make it available to customers.

Documentation
Salesforce Help: CMS Content

Digital Experience Bundle
Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s content
items.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

137

Digital Experience BundleSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.community_managed_content_content_creation.htm&type=5&language=en_US

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Labels

• Description

• Content

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DigitalExperienceBundle

Use Case
Share or distribute the content of an enhanced workspace in Salesforce CMS, including images, documents, and news articles. In
Marketing Cloud, you can package the content of general and marketing workspaces, including landing pages, forms, and emails
(and their associated images and branding).

Considerations When Packaging

Enhanced LWR sites are unsupported.

In marketing workspaces, the default data graph, personalization recommenders, personalization points, and decisions aren't included
in the bundle. If the workspace includes emails with personalized content that’s based on these objects, then:

• Any merge field or repeater that uses the default data graph or a personalization recommender from the source org is broken
in the target org.

• Any dynamic content variations of email components are removed and only the default variations appear in the email.

Post Install Steps
After the package is installed, publish the workspace content to make it available to customers.

Documentation
Salesforce Help: Salesforce CMS

Salesforce Help: Marketing Cloud

Metadata API Developer Guide: DigitalExperienceBundle

138

Digital Experience BundleSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.community_managed_content_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=products.mktg_main.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_digitalexperiencebundle.htm

Decision Table
Represents the information about a decision table.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Decision Table

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: DecisionTable

Component Type in 1GP Package Manager UI: Decision Table

Use Case
Decision tables read business rules and decide the outcome for records in your Salesforce org or for the values that you specify.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Decision Tables

139

Decision TableSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.concept_decision_table.htm&type=5&language=en_US

Disclosure Definition
Represents information that defines a disclosure type, such as details of the publisher or vendor who created or implemented the report.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DisclosureDefinition

Component Type in 1GP Package Manager UI: Disclosure Definition

Use Case
You can use this component to define a disclosure type, such as details of the publisher or vendor who created or implemented the
report.

License Requirements

• Net Zero Cloud Growth license

• Disclosure and Compliance Hub permission set license

• Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

• Manage Disclosure and Compliance Hub

140

Disclosure DefinitionSecond-Generation Managed Packages

Documentation

• Salesforce Help: Disclosure and Compliance Hub

• Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

• Metadata API Developer Guide:DisclosureDefinition

Disclosure Definition Version
Represents the version information about the disclosure definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DisclosureDefinition

• Description

• IsActive

• VersionNumber

• OmniScriptCnfgApiName

• IsCurrentVersion

• DisclosureDefCurrVer

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DisclosureDefinitionVersion

Component Type in 1GP Package Manager UI: Disclosure Definition Version

141

Disclosure Definition VersionSecond-Generation Managed Packages

https://help.salesforce.com/articleView?id=ind.netzero_setup_disclosure_and_compliance_hub.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ind.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_disclosuredefinition.htm

Use Case
You can use this component to define the version information about the disclosure definition.

License Requirements

• Net Zero Cloud Growth license

• Disclosure and Compliance Hub permission set license

• Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

• Manage Disclosure and Compliance Hub

Documentation

• Salesforce Help: Disclosure and Compliance Hub

• Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

• Metadata API Developer Guide:DisclosureDefinitionVersion

Disclosure Type
Represents the types of disclosures that are done by an individual or an organization and the associated metadata.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

142

Disclosure TypeSecond-Generation Managed Packages

https://help.salesforce.com/articleView?id=ind.netzero_setup_disclosure_and_compliance_hub.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ind.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_disclosuredefinitionversion.htm

More Information
Feature Name

Metadata Name: DisclosureType

Component Type in 1GP Package Manager UI: Disclosure Type

Use Case
You can use this component to create types of disclosures that are done by an individual or an organization.

License Requirements

• Net Zero Cloud Growth license

• Disclosure and Compliance Hub permission set license

• Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

• Manage Disclosure and Compliance Hub

Documentation

• Salesforce Help: Disclosure and Compliance Hub

• Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

• Metadata API Developer Guide:DisclosureType

Discovery AI Model
Represents the metadata associated with a model used in Einstein Discovery.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

143

Discovery AI ModelSecond-Generation Managed Packages

https://help.salesforce.com/articleView?id=ind.netzero_setup_disclosure_and_compliance_hub.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ind.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_disclosuretype.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Discovery AI Model Unique Name

Neither Package Developer or Subscriber Can Edit

• Discovery AI Model Unique Name

More Information
Feature Name

Metadata Name: DiscoveryAIModel

Documentation
Metadata API Developer Guide: DiscoveryAIModel

Discovery Goal
Represents the metadata associated with an Einstein Discovery prediction definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

144

Discovery GoalSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_discoveryaimodel.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Both Package Developer and Subscriber Can Edit

• All attributes except Discovery Goal Unique Name

Neither Package Developer or Subscriber Can Edit

• Discovery Goal Unique Name

More Information
Feature Name

Metadata Name: DiscoveryGoal

Documentation
Metadata API Developer Guide: DiscoveryGoal

Discovery Story
Represents the metadata associated with a story used in Einstein Discovery.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Discovery Story Unique Name

Neither Package Developer or Subscriber Can Edit

145

Discovery StorySecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_discoverygoal.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• Discovery Story Unique Name

More Information
Feature Name

Metadata Name: DiscoveryStory

Documentation
Metadata API Developer Guide: DiscoveryStory

Document
Represents a Document. All documents must be in a document folder, such as sampleFolder/TestDocument.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

More Information
Feature Name

Metadata Name: Document

Component Type in 1GP Package Manager UI: Document

Documentation
Metadata API Developer Guide: Document

Document Generation Setting
Represents an org's settings for automatic document generation from templates.

146

DocumentSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_discoverystory.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_document.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Document Template Library Name

• Generation Mechanism

• Guest Access Named Credential

• Label

• Preview Type

Neither Package Developer or Subscriber Can Edit

• API Name

More Information
Feature Name

Metadata Name: DocumentGenerationSetting

Use Case
Allows admin users to modify document generation properties.

License Requirements
DocGen Designer (Permission Set License)

Documentation
Metadata API Developer Guide: DocumentGenerationSetting

Eclair GeoData
Represents an Analytics custom map chart. Custom maps are user-defined maps that are uploaded to Analytics and are used just as
standard maps are. Custom maps are accessed in Analytics from the list of maps available with the map chart type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

147

Eclair GeoDataSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_documentgenerationsetting.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Eclair GeoData Unique Name

Neither Package Developer or Subscriber Can Edit

• Eclair GeoData Unique Name

More Information
Feature Name

Metadata Name: EclairGeoData

Documentation
Metadata API Developer Guide: EclairGeoData

Email Template (Classic)
Use email templates to increase productivity and ensure consistent messaging. Email templates with merge fields let you quickly send
emails that include field data from Salesforce records.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

148

Email Template (Classic)Second-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_eclairgeodata.htm

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Email Template Name

Neither Package Developer or Subscriber Can Edit

• Email Template Name

Email Template (Lightning)
Represents a template for an email, mass email, list email, or Sales Engagement email.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only. However, 1GP packages
created in Email Template Builder can't be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

149

Email Template (Lightning)Second-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://partners.salesforce.com/partnerSupport

• None

Neither Package Developer or Subscriber Can Edit

• All attributes

More Information
These packaging considerations apply to Lightning email templates, including email templates created in Email Template Builder.

• For email templates created in Email Template Builder before the Spring ’21 release, attachments aren’t automatically added to the
package. Open and resave these templates to turn the attachments into content assets, which are then automatically added to the
package.

• Enhanced email template folders have these behaviors:

– If a package includes an enhanced email template folder, the target organization must have enhanced folders enabled for the
deploy to succeed.

– If an email template is in a subfolder, adding the root folder to a package doesn’t automatically add the email template to the
package. If the email template is in the root folder, it’s automatically added to the package.

– You can’t package an email template in the default public and private folders.

• For merge fields based on custom fields that are used in the Recipients prefix (for leads and contacts), we add references to those
merge fields. If the custom field is renamed, the reference in the template isn’t updated. Edit the custom merge field to use the new
field name and update the reference.

Note: An email template created in Email Template Builder can’t be edited after it’s downloaded. To edit the template, clone it.

When upgrading a package that has Email Template Builder email templates, only the associated FlexiPage is updated. After
downloading the new version of the template, clone it to see the changes.

Embedded Service Config
Represents a setup node for creating an Embedded Service for Web deployment.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

150

Embedded Service ConfigSecond-Generation Managed Packages

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: EmbeddedServiceConfig

Documentation
Metadata API Developer Guide: EmbeddedServiceConfig

Salesforce Help: Embedded Chat

Embedded Service Menu Settings
Represents a setup node for creating a channel menu deployment. Channel menus list the ways in which customers can contact your
business.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

151

Embedded Service Menu SettingsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_embeddedserviceconfig.htm
https://help.salesforce.com/s/articleView?id=service.snapins_chat_overview.htm&type=5&language=en_US

More Information
Feature Name

Metadata Name: EmbeddedServiceMenuSettings

Documentation
Metadata API Developer Guide: EmbeddedServiceMenuSettings

Salesforce Help: Channel Menu Setup

Enablement Measure Definition
Represents an Enablement measure, which specifies the job-related activity that a user performs to complete a milestone or outcome
in an Enablement program. A measure identifies a source object and optional related objects, with optional field filters and filter logic,
for tracking the activity.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but Status and DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

152

Enablement Measure DefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_embeddedservicemenusettings.htm
https://help.salesforce.com/s/articleView?id=service.embedded_chat_channel_menu.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: EnablementMeasureDefinition

Use Case

Include this component in a package with a program if the program has outcomes or milestones.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required. For Partner Enablement programs in supported
Experience Cloud sites, a supported Partner Relationship Management (PRM) add-on license is also required.

Usage Limits
See Enablement Limits.

Relationship to Other Components
An Enablement measure is used within an Enablement program. Package the Enablement Measure Definition component with the
Enablement Program Definition component. Or, package the Enablement Measure Definition component separately. Each measure
references a source object and optional related objects.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnablementMeasureDefinition

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

Enablement Program Definition
Represents an Enablement program, which includes exercises and measurable milestones to help users such as sales reps achieve specific
outcomes related to your company’s revenue goals.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

153

Enablement Program DefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=slack.prm_support_license_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enablementmeasuredefinition.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All but DeveloperName

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: EnablementProgramDefinition

Use Case

Include this component in a package when you want to move a program from one org to another.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required. For Partner Enablement programs in supported
Experience Cloud sites, a supported Partner Relationship Management (PRM) add-on license is also required.

Usage Limits
See Enablement Limits.

Relationship to Other Components
An Enablement program can contain other items that are related to other packageable components. Package the Enablement
Program Definition component with other appropriate components.

• Exercises that reference Digital Experiences content. Package the Digital Experience component.

• Exercises that reference assessment surveys. Package the Flow component.

• Custom exercise types that reference user-defined content. Package the Learning Item Type and Enablement Program Task
Subcategory components.

• Measures that track job-related activity using specific objects. Package the Enablement Measure Definition component.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnablementMeasureDefinition

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

154

Enablement Program DefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=slack.prm_support_license_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enablementmeasuredefinition.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html

Enablement Program Task Subcategory
Represents a custom exercise type that an Enablement admin adds to an Enablement program in Program Builder. A custom exercise
type also requires a corresponding EnblProgramTaskDefinition record for Program Builder and corresponding LearningItem and
LearningItemType records for when users take the exercise in the Guidance Center.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: EnblProgramTaskSubCategory

Use Case

Include this component in a package with a program if the program has a custom exercise type.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required.

155

Enablement Program Task SubcategorySecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html

Important: Custom exercises aren’t compatible with Partner Enablement programs.

Usage Limits
See Enablement Limits.

Relationship to Other Components
The Enablement Program Task Subcategory component requires a corresponding Learning Item Type component. Both components
are used with custom exercise types in Enablement programs. Package both of these components with an Enablement Program
Definition component.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnblProgramTaskSubCategory

• Metadata API Developer Guide: LearningItemType

• Object Reference for the Salesforce Platform: EnblProgramTaskDefinition

• Object Reference for the Salesforce Platform: LearningItem

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

• Sales Programs and Partner Tracks with Enablement Developer Guide: Implement Custom Exercise Types for Enablement Programs

Entitlement Template
Represents an entitlement template. Entitlement templates are predefined terms of customer support that you can quickly add to
products.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

156

Entitlement TemplateSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enblprogramtasksubcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_learningitemtype.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_enblprogramtaskdefinition.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_learningitem.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-custom-exercises-intro.html

More Information
Feature Name

Metadata Name: EntitlementTemplate

Documentation
Metadata API Developer Guide: EntitlementTemplate

Salesforce Help: Set Up an Entitlement Template

ESignature Config
Using the Electronic Signature Configuration setup, the system admin must define the required configurations to support the e-signature
APIs and UI.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Config Type

• Config Value

• Description

• Group Type

• Vendor

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• MasterLabel

More Information
Feature Name

Metadata Name: ESignatureConfig

Use Case
Allows users to get the electronic signatures on their documents.

157

ESignature ConfigSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_entitlementtemplate.htm
https://help.salesforce.com/s/articleView?id=service.entitlements_setting_up_templates.htm&type=5&language=en_US

License Requirements
DocGen Designer (Permission Set License)

ESignature Envelope Config
Using the Electronic Signature Envelope Config the system admin can define the default reminders and expiry for the envelopes submitted
for eSignature.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Expiration Enabled

• Expiration Period

• Expiration Warning Period

• First Reminder Period

• Reminder Enabled

• Reminder Interval Period

• Target Object Name

• Vendor

• Vendor Account Identifier

• Vendor Default Notification Enabled

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• MasterLabel

More Information
Feature Name

Metadata Name: ESignatureEnvelopeConfig

158

ESignature Envelope ConfigSecond-Generation Managed Packages

Use Case
Allows users to get the electronic signatures and notifications on their documents.

License Requirements
DocGen Designer (Permission Set License)

Documentation
Metadata API Developer Guide: ESignatureEnvelopeConfig

Event Relay
Represents an event relay that you can use to send platform events and change data capture events from Salesforce to Amazon
EventBridge.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• RelayOption

• State

Neither Package Developer or Subscriber Can Edit

• DestinationResourceName

• EventChannel

• UsageType

More Information
Feature Name

Metadata Name: EventRelayConfig

Component Type in 1GP Package Manager UI: Event Relay

159

Event RelaySecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_esignatureenvelopeconfig.htm

Documentation
Metadata API Developer Guide: EventRelayConfig

Explainability Action Definition
Define where the metadata for your Decision Explainer business rules are stored in Public Sector Solutions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Developer Name

• Business Process Type

• Application Type

• Action Log Schema Type

• Application Subtype

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExplainabilityActionDefinition

160

Explainability Action DefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_eventrelayconfig.htm
https://partners.salesforce.com/partnerSupport

Explainability Action Version
Define and store versions of the explainability actions used by your Decision Explainer business rules in Public Sector Solutions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Active

• Description

• Explainability Action Definition

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExplainabilityActionVersion

Explainability Message Template
Represents information about the template that contains the decision explanation message for a specified expression set step type.

161

Explainability Action VersionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Message

• Name

• Result Type

• Default

• Expression Set Step Type

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExplainabilityMsgTemplate

Documentation
Industries Common Resources Developer Guide: ExplainabilityMsgTemplate

Salesforce Help: Create Explainability Message Templates

Expression Set Definition
Represents an expression set definition.

162

Expression Set DefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_explainabilitymsgtemplate.htm
https://help.salesforce.com/s/articleView?id=ind.create_explainability_message_templates.htm&type=5&language=en_US

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component doesn’t contain any active versions.Component Is Updated During Package Upgrade

Yes. Only if the component doesn’t contain any active versions.Subscriber Can Delete Component From Org

Yes. Only if the component doesn’t contain any active versions.Package Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• versions

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExpressionSetDefinition

Component Type in 1GP Package Manager UI: ExpressionSet Definition

Relationship to Other Components
To use this component, any expression set version dependencies such as decision matrices, decision tables, object field aliases, and
subexpressions must be present in the target org.

Documentation
Industries Common Resources Developer Guide: Expression Set Definition

Salesforce Help: Expression Set Migration Considerations

163

Expression Set DefinitionSecond-Generation Managed Packages

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_expressionsetdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.expression_set_migration_considerations.htm&type=5&language=en_US

Expression Set Definition Version
Represents a definition of an expression set version.

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component is in an inactive state.Component Is Updated During Package Upgrade

Yes. Only if the component is in an inactive state.Subscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• variables

• steps

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExpressionSetDefinitionVersion

Component Type in 1GP Package Manager UI: Expression Set Definition Version

Relationship to Other Components
This component can be used only if the ExpressionSetDefinition to which this ExpressionSetDefinitionVersion component belongs
is present in the target org.

164

Expression Set Definition VersionSecond-Generation Managed Packages

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/
https://partners.salesforce.com/partnerSupport

To use this component, any expression set version dependencies such as decision matrices, decision tables, object field aliases, and
subexpressions must be present in the target org.

Documentation
Industries Common Resources Developer Guide: Expression Set Definition Version

Salesforce Help: Expression Set Migration Considerations

Expression Set Object Alias
Represents information about the alias of the source object that’s used in an expression set.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• mappings.sourceFieldName

• mappings.fieldAlias

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• objectApiName

• usageType

• dataType

More Information
Feature Name

Metadata Name: ExpressionSetObjectAlias

Component Type: Expression Set Object Alias

Use Case
Expression set object aliases allow you to use object fields as variables in expression sets. Aliases are relevant and user-friendly names
that are created for underlying source object fields. Field aliases are grouped under an object alias.

165

Expression Set Object AliasSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_expressionsetdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.expression_set_migration_considerations.htm&type=5&language=en_US

Documentation
Industries Common Resources Developer Guide: ExpressionSetObjectAlias

Salesforce Help: Object Variables in Expression Sets

Expression Set Message Token
Represents a token that's used in an explainability message template. The token can be replaced with an expression set version resource
that the template is used in. This object is available in API version 59.0 and later.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Master Label

• Developer Name

• Description

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExpressionSetMessageToken

166

Expression Set Message TokenSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.industries_reference.meta/industries_reference/meta_expressionsetobjectalias.htm
https://help.salesforce.com/s/articleView?id=ind.object_variables_in_expression_sets.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Component Type in 1GP Package Manager UI: ExpressionSetMessageToken

Documentation
Industries Common Resources Developer Guide: ExpressionSetMessageToken

Salesforce Help: Create Expression Set Message Tokens

External Auth Identity Provider
Represents the external auth identity provider that obtains OAuth tokens for callouts that use named credentials.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: In addition to these properties, the Description, ParameterName, ParameterType, ParameterValue, and SequenceNumber
properties have the same editability as the ExternalAuthIdentityProviderParameters they’re included in.

Only Package Developer Can Edit

• AuthenticationFlow

• AuthenticationProtocol

• Description

• Label

Both Package Developer and Subscriber Can Edit

• ExternalAuthIdentityProviderParameter

– AuthorizeUrl

– ClientAuthentication

– Description

– IdentityProviderOptions

167

External Auth Identity ProviderSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.250.0.industries_reference.meta/industries_reference/tooling_api_objects_expressionsetmessagetoken.htm
https://help.salesforce.com/s/articleView?id=ind.task_create_expression_set_message_tokens.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

– ParameterName

– ParameterType

– ParameterValue

– RefreshRequestBodyParameter

– RefreshRequestHttpHeader

– RefreshRequestQueryParameter

– SequenceNumber

– StandardExternalIdentityProvider

– TokenRequestBodyParameter

– TokenRequestHttpHeader

– TokenRequestQueryParameter

– TokenUrl

– UserInfoUrl

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: ExternalAuthIdentityProvider

Component Type in 1GP Package Manager UI: External Auth Identity Provider

Considerations When Packaging
Though external auth identity providers are represented by metadata, the standard Metadata API can’t fully expose and render
sensitive information like tokens in plain text. This means that sensitive values such as client secrets aren’t included in packages.

Package upgrades delete any additional custom request parameters that subscribers add after installing the package. Alert subscribers
that they must recreate custom parameters.

Package developers can only create parameters and delete existing parameters. After package installation, subscribers don’t receive
updated parameter values from package upgrades.

Relationship to Other Components
A callout to an external system references a named credential, which in turn links to an external credential. For external credentials
that use OAuth 2.0 authentication, external auth identity providers obtain the OAuth tokens necessary for outbound callouts.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide

Metadata API Developer Guide: ExternalAuthIdentityProvider

External Client App Canvas Settings
Represents an external client app's canvas app settings.

168

External Client App Canvas SettingsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.named_credentials_about.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalauthidentityprovider.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtlClntAppCanvasSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
External Client App plugins like the canvas plugin include two types of configurations: settings and policies. All settings are determined
by the external client app developer and can’t be edited by the admin for the subscriber org. Admin-controlled configurations are
called policies. ExtlClntAppCanvasSettings contains all of the packageable configurations for the External Client Apps canvas plugin.

Documentation
Salesforce Help: External Client Apps

Metadata API Developer Guide: ExtlClntAppCanvasSettings

Canvas Developer Guide: Introducing Canvas

169

External Client App Canvas SettingsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_extlclntappcanvassettings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.platform_connect.meta/platform_connect/canvas_framework_intro.htm

External Client App Header
Represents the header file for an external client application configuration.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalClientApplication

Considerations When Packaging
Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
ExternalClientApplication is the header file for an external client app. This defines the basic configurations of the external client app,
including whether the external client app can be packaged or if it is developed for local use only.

ExtlClntAppGlobalOauthSettings includes sensitive information for the External Client Apps OAuth plugin, like OAuth consumer
credentials that can’t be packaged or added to source control. ExtlClntAppOauthSettings includes packageable configurations. All
settings are determined by the developer and can’t be edited by the admin. Admin-controlled configurations are called policies and
are included in ExtlClntAppOauthConfigurablePolicies.

Documentation
Salesforce Help: External Client Apps

Salesforce Help: Configure Packageable External Client Apps

170

External Client App HeaderSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US

External Client App Notification Settings
Represents the settings configuration for the external client app’s notifications plugin.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtlClntAppNotificationSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
ExtlClntAppNotificationSettings contains all of the packageable configurations for the External Client Apps notifications plugin.

Documentation
Salesforce Help: External Client Apps

ExtlClntAppNotificationSettings

171

External Client App Notification SettingsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_extlclntappnotificationsettings.htm

External Client App OAuth Settings
Represents the settings configuration for the external client app’s OAuth plugin.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtlClntAppOauthSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
External Client App plugins like the OAuth plugin include two types of configurations: settings and policies. All settings are determined
by the external client app developer and can’t be edited by the admin for the subscriber org. Admin-controlled configurations are
called policies.

ExtlClntAppOauthSettings contains all of the packageable configurations for the External Client Apps OAuth plugin. Sensitive
information, like OAuth consumer credentials that can’t be packaged or added to source control, are stored in the

172

External Client App OAuth SettingsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US

ExtlClntAppGlobalOauthSettings. Policies are saved in ExtlClntAppOauthConfigurablePolicies, which is not packaged but is generated
with default values at runtime.

Documentation
Salesforce Help: External Client Apps

External Client App Push Settings
Represents the settings configuration for the external client app’s push notification plugin.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtlClntAppPushSettings

Considerations When Packaging

Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

173

External Client App Push SettingsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.configure_packageable_external_client_apps.htm&type=5&language=en_US

To deploy ExtlClntAppPushSettings retrieved from the Dev Hub org, delete androidPushConfig or applePushConfig from the metadata
file.

Relationship to Other Components

External Client App plugins like the push notification plugin include two types of configurations: settings and policies. All settings
are determined by the external client app developer and can’t be edited by the admin for the subscriber org. Admin-controlled
configurations are called policies.

ExtlClntAppPushSettings contains all of the packageable configurations for the External Client Apps push notifcation plugin. Sensitive
information, like APNS or Firebase consumer credentials that can’t be packaged or added to source control, are stored in the
ExtlClntAppApplePushConfig and ExtlClntAppAndroidPushConfig, respectively. Policies are saved in
ExtlClntAppSamlConfigurablePolicies, which is not packaged but is generated with default values at runtime.

Documentation
Salesforce Help: External Client Apps

ExtlClntAppPushSettings

External Credential
Represents the details of how Salesforce authenticates to the external system.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: In addition to these properties, the Description, ParameterGroup, ParameterName, ParameterValue, and SequenceNumber
properties have the same editability as the ExternalCredentialParameters they’re included in.

Only Package Developer Can Edit

• Label

• AuthenticationProtocol

174

External CredentialSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_extlclntapppushsettings.htm
https://partners.salesforce.com/partnerSupport

• ExternalCredentialParameters

– AuthProtocolVariant

Both Package Developer and Subscriber Can Edit

• Description

• ExternalCredentialParameters

– AuthHeader

– AuthProvider (only subscriber editable in 2GP)

– AuthProviderUrl

– AuthProviderUrlQueryParameter

– AuthParameter

– AwsStsPrincipal (only for external credentials that use AWS Signature v4 authentication with STS)

– Description

– JwtBodyClaim

– JwtHeaderClaim

– NamedPrincipal

– PerUserPrincipal

– SequenceNumber

– SigningCertificate (only subscriber editable in 2GP)

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: ExternalCredential

Considerations When Packaging
Though named and external credentials are represented by metadata, the standard Metadata API can’t fully expose the definition
of a credential and render sensitive information like tokens in plain text. This means that packaged named credentials don’t include
the access tokens or certificates that are needed to perform authenticated callouts. You can create the external credential’s principal
or populate its tokens or certificates in the UI or via the Connect API.

In managed 1GP packages, external credentials that use the OAuth 2.0 authentication protocol must reference an authentication
provider to capture the details of the authorization endpoint. If you add an external credential that references an authentication
provider, the authentication provider is added to the package. See Authentication Providers for information on which elements of
an authentication provider are and aren’t packageable.

In managed 2GP packages, if an external credential uses an authentication provider to capture the details of the authorization
endpoint, you can’t include the reference to the authentication provider in the package. If the external credential references an
authentication provider, you must recreate the authentication provider in the subscriber org and add it to the external credential.

Post Install Steps
After installing an external credential from a managed or unmanaged package, you must:

• Create the external credential’s principal or populate its tokens or certificates in the UI or via the Connect API.

• Give permission sets and profiles access to the principals of the external credential. See Enable External Credential Principals.

175

External CredentialSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=experience.sso_authentication_providers.htm&type=5&language=en_US

• Reauthenticate to the external system.

– For a Named Principal, the admin must go to Setup > Named Credential > External Credential to authenticate.

– For a Per User Principal, each user must go to My Personal Information > External Credential to authenticate.

Relationship to Other Components
ExternalCredential can be added to a package without a NamedCredential, but NamedCredential must be packaged with an
ExternalCredential.

The named credential defines a callout endpoint and an HTTP transport protocol, while the external credential represents the details
of how Salesforce authenticates to an external system via an authentication protocol. Each named credential must be mapped to
at least one external credential.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide

Metadata API Developer Guide: ExternalCredential

External Data Connector
Used to represent the object where the data was sourced.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DataConConfiguration

• DataConnectionStatus

• DataConnectorType

• DataPlatform

176

External Data ConnectorSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.named_credentials_about.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalcredential.htm

• ExternalRecordId

More Information
Feature Name

Metadata Name: ExternalDataConnector

Component Type in 1GP Package Manager UI: Adding DataStreamDefinition or DataKitDefinition brings ExternalDataConnector for
S3 data streams.

Use Case
This component holds reference to Source Data Connector Metadata.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Relationship to Other Components

This isn’t a top-level entity. Add DataStreamDefinition or DataKitDefinition to pick up this entity.

External Data Source
Represents the metadata associated with an external data source. Create external data sources to manage connection details for
integration with data and content that are stored outside your Salesforce org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Type

Both Package Developer and Subscriber Can Edit

• Auth Provider

• Certificate

• Custom Configuration

177

External Data SourceSecond-Generation Managed Packages

• Endpoint

• Identity Type

• OAuth Scope

• Password

• Protocol

• Username

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ExternalDataSource

Component Type in 1GP Package Manager UI: External Data Source

Considerations When Packaging

• After installing an external data source from a managed or unmanaged package, the subscriber must reauthenticate to the
external system.

– For password authentication, the subscriber must reenter the password in the external data source definition.

– For OAuth, the subscriber must update the callback URL in the client configuration for the authentication provider, then
reauthenticate by selecting Start Authentication Flow on Save on the external data source.

• Certificates aren’t packageable. If you package an external data source that specifies a certificate, make sure that the subscriber
org has a valid certificate with the same name.

Documentation
Metadata API Developer Guide: ExternalDataSource

External Data Transport Field Template
Represents the definition of a Data Cloud schema field.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

178

External Data Transport Field TemplateSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externaldatasource.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DataSourceField

• ExternalDataTranField

• ExternalName

• IsDataRequired

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtDataTranFieldTemplate

Component Type in 1GP Package Manager UI: External Data Transport Field Template

Use Case
ExtDataTranFieldTemplate represents the definition of a Data Cloud schema field the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit and then add
that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

External Data Transport Field
Use ExternalDataTranField to add a field to the ExternalDataTranObject in your managed packages. ExternalDataTranObject is a Data
Cloud schema object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

179

External Data Transport FieldSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Length

• Precision

• Scale

• IsDataRequired

• ExternalName

• PrimaryIndexOrder

• DateFormat

• CreationType

• MktDataTranField

• Sequence

• IsImplicitFilteringRequired

• ExtDataTranFieldTemplate

• IsCurrencyIsoCode

Both Package Developer and Subscriber Can Edit

• CustomFieldDatatypes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalDataTranField

Use Case
This component holds reference to ExternalDataTranObject metadata and represents the fields in the ExternalDataTranObject.

License Requirements
Data Cloud must be provisioned.

Post Install Steps
You must to create a data stream via ui-api or by using the Data Cloud App.

Relationship to Other Components
This isn’t a top-level entity. Add DataStreamDefinition to pick up this entity. This entity’s parent is ExternalDataTranObject.

Documentation
Metadata API Developer Guide: ExternalDataTranField

180

External Data Transport FieldSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_externaldatatranobject.htm#subtype_ExternalDataTranField

External Data Transport Object Template
Represents the definition of a Data Cloud schema object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DataSourceObject

• ExternalDataTranObject

• ExternalName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtDataTranObjectTemplate

Component Type in 1GP Package Manager UI: External Data Transport Object Template

Use Case
ExtDataTranObjectTemplate represents the definition of a Data Cloud schema object the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport object template to a data kit and then
add that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

181

External Data Transport Object TemplateSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_userpermissions.htm&type=5&language=en_US

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

External Data Transport Object
To include a Data Cloud schema object in your managed packages, add ExternalDataTranObject.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AvailabilityStatus

• CreationType

• MktDataTranObject

• ObjectCategory

• ExtDataTranObjectTemplate

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalDataTranObject

Use Case
ExternalDataTranObject contains specific schema event information that is used to describe events for ingestion via Data Cloud
Ingestion API, Web, and Mobile connectors. This object is related to many child schema fields, ExternalDataTranField.

License Requirements
Data Cloud must be provisioned.

182

External Data Transport ObjectSecond-Generation Managed Packages

https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=data.c360_a_packaging_in_customer_360_audiences.htm&type=5&language=en_US

Post Install Steps
You must create a data stream via ui-api or by using the Data Cloud App.

Relationship to Other Components
This isn’t a top-level entity. Add DataStreamDefinition to pick up this entity. This entity’s parent is ExternalDataConnector.

Documentation
Data Cloud Integration Guide: Mobile and Web SDK Schema Quick Guide for Data Cloud

Data Cloud Integration Guide: Requirements for Ingestion API Schema File

Metadata API Developer Guide: ExternalDataTranObject

External Document Storage Configuration
Represents configuration, which admin makes in setup to specify the drive, path, and named credential to be used for storing documents
on external drives.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Target Object

• Record Type

• External Document Storage Identifier

• Document Path

• Named Credential

• Storage Drive Type

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• MasterLabel

183

External Document Storage ConfigurationSecond-Generation Managed Packages

https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-mobile-web-sdk-schema-quick-guide.html
https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-ingestion-api-schema-req.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_externaldatatranobject.htm

More Information
Feature Name

Metadata Name: ExternalDocStorageConfig

Use Case
Represents the configuration that the admin makes in Setup to specify the drive, path, and named credential to be used for storing
the documents on external drives.

License Requirements
Microsoft Word 365

Documentation
Salesforce Help: Configure External Document Storage for Contracts

External Services
Represents the External Service configuration for an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

Yes (If there are no dependencies on the External Services
registration and its actions from flows or other features)

Subscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Schema

• Schema URL

Both Package Developer and Subscriber Can Edit

184

External ServicesSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.sf_contracts_Configure_External_Document_Storage_for_Contracts.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

• Named Credential

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalServiceRegistration

Component Type in 1GP Package Manager UI: ExternalServiceRegistration

Considerations When Packaging
Package developers must add named credential components to the External Services registration package. A subscriber can also
create a named credential in Salesforce. However, the subscriber must use the same name as the named credential specified in the
External Services registration that references it.

Create named credentials manually or with Apex. Be sure to add the named credential to a package so that subscriber orgs can
install it. When a subscriber org installs a named credential, it can use the Apex callouts generated by the External Services registration
process.

Usage Limits
Salesforce Help: External Services System Limits

Documentation
Metadata API Developer Guide: ExternalServiceRegistration

Salesforce Help: External Services

Feature Parameter Boolean
Represents a boolean feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

No. See note.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

185

Feature Parameter BooleanSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.external_services_schema_def_limits.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_externalserviceregistration.htm
https://help.salesforce.com/s/articleView?id=platform.external_services.htm&type=5&language=en_US

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Value (When Data Flow Direction is set to LMO to Subscriber)

Both Package Developer and Subscriber Can Edit

• Value (When Data Flow Direction is set to Subscriber to LMO)

Neither Package Developer or Subscriber Can Edit

• Full Name

• Data Type

• Data Flow Direction

More Information
Feature Name

Metadata Name: FeatureParameterBoolean

Component Type in 1GP Package Manager UI: Feature Parameter Boolean

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app’s features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can’t be registered
with the LMA, there are aspects of feature parameters that can’t be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can’t test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterBoolean

Create Feature Parameters for Your Second-Generation Managed Package

Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

Feature Parameter Date
Represents a date feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and track
activation metrics in subscriber orgs that install your package.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

186

Feature Parameter DateSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_featureparameterboolean.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

No. See note.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Value (When Data Flow Direction is set to LMO to Subscriber)

Both Package Developer and Subscriber Can Edit

• Value (When Data Flow Direction is set to Subscriber to LMO)

Neither Package Developer or Subscriber Can Edit

• Full Name

• Data Type

• Data Flow Direction

More Information
Feature Name

Metadata Name: FeatureParameterDate

Component Type in 1GP Package Manager UI: Feature Parameter Date

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app’s features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can’t be registered
with the LMA, there are aspects of feature parameters that can’t be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can’t test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterDate

Create Feature Parameters for Your Second-Generation Managed Package

187

Feature Parameter DateSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_featureparameterdate.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm

Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

Feature Parameter Integer
Represents an integer feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

No. See note.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Value (When Data Flow Direction is set to LMO to Subscriber)

Both Package Developer and Subscriber Can Edit

• Value (When Data Flow Direction is set to Subscriber to LMO)

Neither Package Developer or Subscriber Can Edit

• Full Name

• Data Type

• Data Flow Direction

More Information
Feature Name

Metadata Name: FeatureParameterInteger

Component Type in 1GP Package Manager UI: Feature Parameter Integer

188

Feature Parameter IntegerSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app’s features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can’t be registered
with the LMA, there are aspects of feature parameters that can’t be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can’t test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterInteger

Create Feature Parameters for Your Second-Generation Managed Package

Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

FieldMappingConfig
Represents the configuration for fields mapped between a source object and one or more destination objects and fields. This object is
available in API version 63.0 and later.

Important: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Supported Calls
create(), delete(), describeSObjects(), query(), retrieve(), update(), upsert()

Special Access Rules
This object is available only if the Fundraising Access license is enabled and the Fundraising User system permission is assigned to users.

Fields

DetailsField

Type
textarea

Description

Properties
Create, Defaulted on create, Filter, Group, Nillable, Sort, Update

Description
The description of the field mapping configuration.

Type
string

DeveloperName

189

FieldMappingConfigSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_featureparameterinteger.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

DetailsField

Properties
Create, Filter, Group, Sort, Update

Description
The unqiue name for FieldMappingConfig.

Type
picklist

Language

Properties
Create, Defaulted on create, Filter, Group, Nillable, Restricted picklist, Sort, Update

Description
The language of the FieldMappingConfig.

Possible values are:

• da—Danish

• de—German

• en_US—English

• es—Spanish

• es_MX—Spanish (Mexico)

• fi—Finnish

• fr—French

• it—Italian

• ja—Japanese

• ko—Korean

• nl_NL—Dutch

• no—Norwegian

• pt_BR—Portuguese (Brazil)

• ru—Russian

• sv—Swedish

• th—Thai

• zh_CN—Chinese (Simplified)

• zh_TW—Chinese (Traditional)

Type
string

MasterLabel

Properties
Create, Filter, Group, Sort, Update

Description
Label for the FieldMappingConfig.

Type
string

NamespacePrefix

190

FieldMappingConfigSecond-Generation Managed Packages

DetailsField

Properties
Filter, Group, Nillable, Sort

Description
The namespace prefix associated with this object. Each Developer Edition organization that
creates a managed package has a unique namespace prefix. Limit: 15 characters. You can
refer to a component in a managed package by using the
namespacePrefix__componentName notation.

The namespace prefix can have one of the following values:

• In Developer Edition organizations, the namespace prefix is set to the namespace prefix
of the organization for all objects that support it. There is an exception if an object is in
an installed managed package. In that case, the object has the namespace prefix of the
installed managed package. This field’s value is the namespace prefix of the Developer
Edition organization of the package developer.

• In organizations that are not Developer Edition organizations, NamespacePrefix
is only set for objects that are part of an installed managed package. There is no
namespace prefix for all other objects.

Type
picklist

ProcessType

Properties
Create, Defaulted on create, Filter, Group, Nillable, Restricted picklist, Sort, Update

Description
Specifies the type of process that the field mapping configuration supports.

Possible values are:

• ChangeRequest

• GiftEntry

• Incident

• Problem

The default value is GiftEntry.

Type
picklist

SourceObjectId

Properties
Create, Filter, Group, Restricted picklist, Sort, Update

Description
The ID of the source object for all of the fields mapped in the configuration.

Possible values are:

• GiftEntry

191

FieldMappingConfigSecond-Generation Managed Packages

Field Set
Represents a field set. A field set is a grouping of fields. For example, you could have a field set that contains fields describing a user's
first name, middle name, last name, and business title.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Available fields

Both Package Developer and Subscriber Can Edit

• Selected fields (only subscriber editable)

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: FieldSet

Component Type in 1GP Package Manager UI: Field Set

Considerations When Packaging
Field sets in installed packages perform different merge behaviors during a package upgrade:

192

Field SetSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Then in the package upgrade:If a package developer:

The modified field is placed at the end of the upgraded field set
in whichever column it was added to.

Changes a field from Unavailable to Available for the Field
Set or In the Field Set

The new field is placed at the end of the upgraded field set in
whichever column it was added to.

Adds a field

The field is removed from the upgraded field set.Changes a field from Available for the Field Set or In the Field
Set to Unavailable

The change isn’t reflected in the upgraded field set.Changes a field from In the Field Set to Available for the Field
Set (or vice versa)

Note: Subscribers aren’t notified of changes to their installed field sets. The developer must notify users of changes to released
field sets through the package release notes or other documentation. Merging has the potential to remove fields in your field
set.

When a field set is installed, a subscriber can add or remove any field.

Documentation
Metadata API Developer Guide: FieldSet

Field Source Target Relationship
Stores the relationships between a data model object (DMO) and its fields. For example, the Individual.Id field has a one-to-many
relationship (1:M) with the ContactPointEmail.PartyId field.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

193

Field Source Target RelationshipSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_fieldset.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• CreationType

• DeveloperName

• MasterLabel

• RelationshipCardinality

• SourceField

• TargetField

Both Package Developer and Subscriber Can Edit

• LastDataChangeStatusDateTime

• LastDataChangeStatusErrorCode

• Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FieldSrcTrgtRelationship

Component Type in 1GP Package Manager UI: Field Source Target Relationship

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: FieldSrcTrgtRelationship

Flow
Represents the metadata associated with a flow. With Flow, you can create an application that navigates users through a series of pages
to query and update records in the database. You can also execute logic and provide branching capability based on user input to build
dynamic applications.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

Yes, except a flow that is a template or overridable.Component Has IP Protection

194

FlowSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_fieldsrctrgtrelationship.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire flow

Both Package Developer and Subscriber Can Edit

• Flow Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• Flow API Name

• URL

More Information
Feature Name

Metadata Name: Flow

Use Case
To repeat a business process automatically such as creating an account when some criteria are met or sending an email every week,
build a flow to save time and resources

Considerations When Packaging

• When you upload a package or package version, the active flow version is included. If the flow has no active version, the latest
version is packaged.

• To update a managed package with a different flow version, activate that version and upload the package again. Or deactivate
all versions of the flow, make sure the latest flow version is the one to distribute, and then upload the package.

• In a packaging org, you can’t delete a flow after you upload it to a released or beta first-generation managed package. You can
only delete a flow version from a packaging org after you upload it to a released or beta first-generation managed package, if:

– Salesforce Customer Support activated the Managed Component Deletion permission.

– The flow version is not the most recently packaged version of the flow.

– The flow version is not active.

– The flow version is not the only version.

• You can’t delete a flow from an installed package. To remove a packaged flow from your org, deactivate it and then uninstall
the package.

• If you have multiple versions of a flow installed from multiple unmanaged packages, you can’t remove only one version by
uninstalling its package. Uninstalling a package—managed or unmanaged—that contains a single version of the flow removes
the entire flow, including all versions.

• You can’t include flows in package patches.

195

FlowSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• An active flow in a package is active after it’s installed. The previous active version of the flow in the destination org is deactivated
in favor of the newly installed version. Any in-progress flows based on the now-deactivated version continue to run without
interruption but reflect the previous version of the flow. The same behavior is true even if the destination org deactivated the
flow. Future active versions of the flow that are packaged activate the flow during package upgrade.

• Upgrading a managed package in your org installs a new flow version only if there’s a newer flow version from the developer.
After several upgrades, you can end up with multiple flow versions.

• A package version can contain only one flow version per flow. If you install a managed package version that contains a flow,
only the active flow version is deployed. If the flow has no active version, the latest version is deployed.

• If you install a flow from an unmanaged package that has the same name but a different version number as a flow in your org,
the newly installed flow becomes the latest version of the existing flow. However, if the packaged flow has the same name and
version number as a flow already in your org, the package install fails. You can’t overwrite a flow.

• A flow can be modified if it’s deployed in a managed package or between a package developer org and a subscriber org where
either org has a namespace and the other doesn’t have a namespace.

• Flow Builder can’t open a flow that is installed from a managed package, unless the flow is a template or overridable.

• You can’t create a package that contains flows invoked by both managed and unmanaged package pages. As a workaround,
create two packages, one for each type of component. For example, suppose that you want to package a customizable flow
invoked by a managed package page. Create one unmanaged package with the flow that users can customize. Then create
another managed package with the Visualforce page referencing the flow (including namespace) from the first package.

• When you translate a flow from a managed package, the flow’s Master Definition Name doesn’t appear on the Translate page
or the Override page. To update the translation for the Master Definition Name, edit the flow label and then update the translation
from the Translate page.

• If any of the following elements are used in a flow, packageable components that they reference aren’t included in the package
automatically. To deploy the package successfully, manually add those referenced components to the package.

– Post to Chatter

– Send Email

– Submit for Approval

• If a flow references a Lightning component that depends on a CSP Trusted Site, the trusted site isn’t included in the package or
change set automatically.

Usage Limits
Salesforce Help: General Flow Limits

Relationship to Other Components
The associated Flow Definition component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow

Salesforce Help: Packaging Considerations for Flows

Salesforce Help: Considerations for Deploying Flows with Packages

Salesforce DX Developer Guide: Hard-Deleted Components in Unlocked Packages

Flow Category
Represents a list of flows that are grouped by category.

196

Flow CategorySecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.flow_considerations_limit.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_visual_workflow.htm
https://help.salesforce.com/s/articleView?id=platform.flow_considerations_packaging.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.flow_considerations_packaging.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_hard_deleted_components.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• label

• description

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FlowCategory

Use Case
To reuse flow-based automated processes, group the flows into a flow category, and then add one or more flow categories to a
Lightning Bolt Solution.

License Requirements
Customize Application user permission

View Setup and Configuration user permission

Relationship to Other Components
You can use FlowCategory only as part of a Lightning Bolt Solution.

Documentation
Salesforce Help: Add Flows to a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

Flow Definition
Represents the flow definition’s description and active flow version number.

197

Flow DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=experience.community_builder_export_flow_category.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=experience.community_builder_export_package.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Active Version Number

• Description

• Master Label

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: Flow Definition

Component Type in 1GP Package Manager UI: Flow Definition

Use Case
Include this component when you use managed 1GP to package flows.

Considerations When Packaging
Considerations for Deploying Flows with Packages

Relationship to Other Components
The associated Flow component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow Definition

Salesforce Help: Flow Builder

Flow Test
Represents the metadata associated with a flow test. Before you activate a record-triggered flow, you can test it to verify its expected
results and identify flow run-time failures.

198

Flow TestSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.flow_considerations_packaging.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_flowdefinition.htm
https://help.salesforce.com/s/articleView?id=platform.flow.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation\
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• API Name

More Information
Feature Name

Metadata Name: FlowTest

Component Type in 1GP Package Manager UI: FlowTest

Use Case
Include this component when you use managed 1GP to package flow tests.

Usage Limits
Salesforce Help: Considerations for Testing Flows

Relationship to Other Components
The associated Flow component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow Test

Salesforce Help: Testing Your Flow

Folder
Represents a folder.

199

FolderSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.flow_considerations_feature_testing.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_flowtest.htm
https://help.salesforce.com/s/articleView?id=platform.flow_concepts_testing.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Folder Unique Name

Neither Package Developer or Subscriber Can Edit

• Folder Unique Name

More Information
• Five different folder metadata types can be packaged:

– DashboardFolder

– DocumentFolder

– EmailFolder (available for Salesforce Classic email templates only)

– EmailTemplateFolder

– ReportFolder

• Components that Salesforce stores in folders, such as documents, can’t be added to packages when stored in personal and unfiled
folders. Put documents, reports, and other components that Salesforce stores in folders in one of your publicly accessible folders.

• Components such as documents, email templates, reports, or dashboards are stored in new folders in the installer’s org using the
publisher’s folder names. Give these folders names that indicate they’re part of the package.

• If a new report, dashboard, document, or email template is installed during an upgrade, and the folder containing the component
was deleted by the subscriber, the folder is re-created. Any components in the folder that were previously deleted aren’t restored.

• The name of a component contained in a folder must be unique across all folders of the same component type, excluding personal
folders. Components contained in a personal folder must be unique within the personal folder only.

200

FolderSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Documentation
Metadata API Developer Guide: Folder

Fuel Type
Represents a custom fuel type in an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FuelType

Component Type in 1GP Package Manager UI: Fuel Type

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

201

Fuel TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_folder.htm

Documentation

• Salesforce Help: Create a Custom Fuel Type

Fuel Type Sustainability Unit of Measure
Represents a mapping between the custom fuel types and their corresponding unit of measure (UOM) values defined by a customer in
an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FuelTypeSustnUom

Component Type in 1GP Package Manager UI: Fuel Type Sustainability Unit of Measure

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

202

Fuel Type Sustainability Unit of MeasureSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?language=en_US&id=sf.netzero_admin_create_custom_fuel_type.htm

Documentation

• Salesforce Help: Associate a Custom Fuel Type with a Unit of Measure

Fundraising Config
Represents a collection of settings to configure the fundraising product.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• LapsedUnpaidTrxnCount

• HouseholdSoftCreditRole

• IsHshldSoftCrAutoCrea

• InstallmentExtDayCount

• DonorMatchingMethod

• FailedTransactionCount

• ShouldCreateRcrSchdTrxn

• ShouldClosePaidRcrCmt

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

203

Fundraising ConfigSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.netzero_admin_associate_custom_fuel_type_with_unitofmeasure.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: FundraisingConfig

License Requirements
Fundraising Access (Permission Set License)

Documentation
Metadata API Developer Guide: FundraisingConfig

Gateway Provider Payment Method Type
Represents an entity that allows integrators and payment providers to choose an active payment to receive an order's payment data
rather than allowing the Salesforce Order Management platform to select a default payment method.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• All fields

More Information
Feature Name

Metadata Name: GatewayProviderPaymentMethodType

License Requirements
Salesforce Order Management, B2B Commerce, or B2C Commerce (for B2B2C Commerce) licenses are required. These licenses enable
the Payment Platform org permission required to use payments objects.

204

Gateway Provider Payment Method TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.nonprofit_cloud.meta/nonprofit_cloud/npc_fundraising_api_objects_fundraisingconfig.htm

Documentation
Salesforce Help: Processing Payments with Payment Gateways

Gen Ai Planner Bundle
Represents a planner for an agent or agent template. It’s a container for all the topics and actions used to interact with a large language
model (LLM).

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Capabilities

• Description

• MasterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: GenAiPlannerBundle

Component Type in 2GP Package Manager UI: Generative AI Planner Bundle

205

Gen Ai Planner BundleSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sales.blng_payment_gateways.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaiplannerbundle.htm

Use Case
Represents a planner for an agent or agent template. It’s a container for all the topics and actions used to interact with a large
language model (LLM).

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: The Building Blocks of Agents

Generative AI Prompt Template
Represents a generative AI prompt template, for use in Agentforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Template Active Version

Both Package Developer and Subscriber Can Edit

• Template Description

Neither Package Developer or Subscriber Can Edit

• Prompt Template Name

• Prompt Template Version

More Information
Feature Name

Metadata Name: GenAIPromptTemplate

206

Generative AI Prompt TemplateSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Component Type in 1GP Package Manager UI: Generative AI Prompt Template

Use Case
To package prompt templates created from Prompt Builder for Generative AI use cases.

Considerations When Packaging
See Considerations for Packaging Prompt Templates.

License Requirements
Generative AI SKUs are needed to provision Prompt Builder in the org.

Documentation
Metadata API Developer Guide: GenAiPromptTemplate

Global Picklist
Represents the metadata for a global picklist value set, which is the set of shared values that custom picklist fields can use. A global value
set isn’t a field itself. In contrast, the custom picklist fields that are based on a global picklist are of type ValueSet.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: Global Value Set

Component Type in 1GP Package Manager UI: Global Value Set

Considerations When Packaging
When explicitly referencing a picklist value in code, keep in mind that picklist values for a custom field can be renamed, added,
edited, or deleted by subscribers.

Picklist field values can be added or deleted in the developer’s org. Changes to standard picklists can’t be packaged and deployed
to subscriber orgs, and picklist values deleted by the developer are still available in the subscriber’s org. If there are differences
between the package and the target org, or if there are dependencies on new values from features such as PathAssistant, the deploy
fails. To change values in subscriber orgs, you must manually add or modify the values in the target subscriber org.

Updating picklist values in unlocked packages isn’t supported. Manually add or modify the values in the target subscriber org.

207

Global PicklistSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_genaiprompttemplate.htm
https://partners.salesforce.com/partnerSupport

Package upgrades retain dependent picklist values that are saved in a managed custom field.

Global value sets can be added to developer and subscriber orgs. Global value sets have these behaviors during a package upgrade.

• Label and API names for field values don’t change in subscriber orgs.

• New field values aren’t added to the subscriber orgs.

• Active and inactive value settings in subscriber orgs don’t change.

• Default values in subscriber orgs don’t change.

• Global value set label names change if the package upgrade includes a global value set label change.

Documentation
Salesforce Help: Create a Global Picklist Value Set

Salesforce Help: Make Your Custom Picklist Field Values Global

Home Page Component
Represents the metadata associated with a home page component. You can customize the Home tab in Salesforce Classic to include
components such as sidebar links, a company logo, a dashboard snapshot, or custom components that you create. Use to create, update,
or delete home page component definitions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Body

• Component Position

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

208

Home Page ComponentSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.fields_creating_global_picklists.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.fields_promote_picklists.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

• Type

More Information
Feature Name

Metadata Name: HomePageComponent

Component Type in 1GP Package Manager UI: Home Page Component

Relationship to Other Components

When you package a custom home page layout, all the custom home page components included on the page layout are automatically
added. Standard components such as Messages & Alerts aren’t included in the package and don’t overwrite the installer’s Messages
& Alerts. To include a message in your custom home page layout, create an HTML Area type custom Home tab component containing
your message. From Setup, in the Quick Find box, enter Home Page Components, then select Home Page Components.
Then add the message to your custom home page layout.

Documentation
Metadata API Developer Guide: HomePageComponent

Home Page Layout
Represents the metadata associated with a home page layout. You can customize home page layouts and assign the layouts to users
based on their user profile.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Layout Name

209

Home Page LayoutSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_homepagecomponent.htm
https://partners.salesforce.com/partnerSupport

Neither Package Developer or Subscriber Can Edit

• Layout Name

More Information
Feature Name

Metadata Name: HomePageLayout

Component Type in 1GP Package Manager UI: Home Page Layout

Considerations When Packaging

After they’re installed, your custom home page layouts are listed with all the subscriber’s home page layouts. Distinguish them by
including the name of your app in the page layout name.

Documentation
Metadata API Developer Guide: HomePageLayout

Identity Verification Proc Def
Represents the definition of the identity verification process.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• SearchLayoutType

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

210

Identity Verification Proc DefSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_homepagelayouts.htm

More Information
Feature Name

Metadata Name: IdentityVerificationProcDef

Component Type in 1GP Package Manager UI: Identity Verification Process Definition

Use Case
Links the configuration for Identity Verification to a flow.

License Requirements
Industries Health Cloud, Industries Sales Excellence, and Industries Service Excellence licenses.

Actionable Segmentation Engagement, Industries Sales Excellence, Industry Service Excellence or Health Cloud Platform Permission
set license is required to use this metadata type.

Relationship to Other Components
An Identity Verification Process Field record looks up to an Identity Verification Process Details record, which in turn looks up to an
Identity Verification Process Definition record.

Documentation
Health Cloud Developer Guide: IdentityVerificationProcDef

Inbound Network Connection
Represents a private connection between a third-party data service and a Salesforce org. The connection is inbound because the callouts
are coming into Salesforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

You can only delete connections that are in an unprovisioned state.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

211

Inbound Network ConnectionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/meta_identityverificationprocdef.htm
https://partners.salesforce.com/partnerSupport

• AWS VPC Endpoint ID

• Connection Type

• Developer Name

• Description

• Link ID

• Master Label

• Region

• Source IP Ranges

Both Package Developer and Subscriber Can Edit

• Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: InboundNetworkConnection

Component Type in 1GP Package Manager UI: Inbound Network Connection

Considerations When Packaging

• Packaged connections are installed as unprovisioned. Alert subscribers about how to provision connections after package installation.

• If a developer changes the Region of a packaged connection that is subscriber-provisioned, the upgrade fails for the subscriber. Alert
subscribers about tearing down the connection before updating the Region field. As a best practice, avoid changing the Region of
a packaged connection unless necessary.

License Requirements
This feature is available with the Private Connect license.

Documentation
Salesforce Help: Secure Cross-Cloud Integrations with Private Connect

Salesforce Help: Establish an Inbound Connection with AWS

IndustriesEinsteinFeatureSettings
Represents the settings for enabling the Industries Einstein feature.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

212

IndustriesEinsteinFeatureSettingsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.private_connect_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.private_connect_inbound_aws.htm&type=5&language=en_US

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: IndustriesEinsteinFeatureSettings

Documentation
Salesforce Help: Intelligent Document Reader

Salesforce Help: Intelligent Form Reader

IntegrationProviderDef
Represents an integration definition associated with a service process. Stores data for the Industries: Send Apex Async Request and
Industries: Send External Async Request invocable actions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All other fields

Both Package Developer and Subscriber Can Edit

213

IntegrationProviderDefSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.intelligent_document_reader.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.form_reader.htm&type=5&language=en_US

• StringValue

• IntegerValue

• DateTimeValue

• DateValue

• PercentageValue

• DoubleValue

• IsTrueOrFalseValue

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
IntegrationProviderDef

Metadata Name: IntegrationProviderDef

Component Type in 1GP Package Manager UI: IntegrationProviderDef

Documentation
IntegrationProviderDef in Metadata API Developer Guide.

Invocable Action Extension
Represents extended metadata for Apex classes that are used as invocable actions or data types. This allows developers to specify how
to present the action's inputs without writing custom code.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

214

Invocable Action ExtensionSecond-Generation Managed Packages

• None

More Information
Feature Name

Metadata Name: InvocableActionExtension

Use Case
To control ordering, grouping, and conditional visibility of action input parameters. Other uses will be available in the future.

Considerations When Packaging
The maximum number of files that can be included in a package is 10,000. Invocable Action Extensions can significantly affect the
file count, as each extended Apex class adds five additional extension files. Each extension file also increases package version, creation
and installation times. If you receive an error regarding too many files or the installation takes too long, consider breaking your
package into a set of dependent packages. For more details, see Create Dependencies Between Second-Generation Managed
Packages.

Relationship to Other Components
This component is paired with an Apex Invocable Action.

Documentation
Metadata API Developer Guide: InvocableActionExtension

LearningAchievementConfig
Represents the mapping details between a Learning Achievement type and a Learning Achievement record type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

Both Package Developer and Subscriber Can Editv

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

215

LearningAchievementConfigSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm

More Information
Feature Name

Metadata Name: LearningAchievementConfig

Documentation
Education Cloud Developer Guide

Learning Item Type
Represents a custom exercise type that an Enablement user takes in an Enablement program in the Guidance Center. A custom exercise
type also requires a corresponding LearningItem record for the Guidance Center and corresponding EnblProgramTaskDefinition and
EnblProgramTaskSubCategory records for when admins create a program in Program Builder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: LearningItemType

216

Learning Item TypeSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Use Case

Include this component in a package with a program if the program has a custom exercise type.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required.

Important: Custom exercises aren’t compatible with Partner Enablement programs.

Usage Limits
See Enablement Limits.

Relationship to Other Components
The Learning Item Type component requires a corresponding Enablement Program Task Subcategory component. Both components
are used with custom exercise types in Enablement programs. Package both of these components with an Enablement Program
Definition component.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnblProgramTaskSubCategory

• Metadata API Developer Guide: LearningItemType

• Object Reference for the Salesforce Platform: EnblProgramTaskDefinition

• Object Reference for the Salesforce Platform: LearningItem

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

• Sales Programs and Partner Tracks with Enablement Developer Guide: Implement Custom Exercise Types for Enablement Programs

Letterhead
Represents formatting options for the letterhead in an email template. A letterhead defines the logo, page color, and text settings for
your HTML email templates. Use letterheads to ensure a consistent look and feel in your company’s emails.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

217

LetterheadSecond-Generation Managed Packages

https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=sales.enablement_limits.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sales.enablement.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_enblprogramtasksubcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_learningitemtype.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_enblprogramtaskdefinition.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_learningitem.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-custom-exercises-intro.html

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Letterhead Name

Neither Package Developer or Subscriber Can Edit

• Letterhead Name

More Information
Feature Name

Metadata Name: Letterhead

Documentation
Metadata API Developer Guide: Letterhead

Life Science Config Category
Represents the category that a Life Sciences configuration record is organized into.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

218

Life Science Config CategorySecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_letterhead.htm
https://partners.salesforce.com/partnerSupport

Only Package Developer Can Edit

• CategoryLabel

• DeveloperName

• MasterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• CategoryType

More Information
Feature Name

Metadata Name: LifeSciConfigCategory

Component Type in 1GP Package Manager UI: Life Science Config Category

Considerations When Packaging
When packaging the LifeSciConfigCategory component, the DeveloperName must match the Category.

License Requirements
Industries Life Sciences Cloud with the Life Sciences Cloud for Customer Engagement Add-on license and the Life Sciences Customer
Engagement managed package.

Relationship to Other Components
This component defines the category of the configuration defined in a child LifeSciConfigRecord component.

Documentation
Life Sciences Cloud Developer Guide: LifeSciConfigCategory

Life Science Config Record
Represents a configuration record for Life Sciences. This object is a child of Life Science Config Category.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

219

Life Science Config RecordSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.life_sciences_dev_guide.meta/life_sciences_dev_guide/meta_lifesciconfigcategory.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

• IsActive

• IsOrgLevel

• MasterLabel

• ParentConfigRecordId

• Type

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• LifeSciConfigCategoryId

More Information
Feature Name

Metadata Name: LifeSciConfigRecord

Component Type in 1GP Package Manager UI: Life Science Config Record

Use Case
This component holds the configuration records for Life Sciences Cloud for Customer Engagement application.

Considerations When Packaging

• You must package the LifeSciConfigRecord component with its parent LifeSciConfigCategory component.

• The component must be in the inactive state.

License Requirements
Industries Life Sciences Cloud with the Life Sciences Cloud for Customer Engagement Add-on license and the Life Sciences Customer
Engagement managed package.

Post Install Steps
For the configuration to work, make the component active by setting IsActive to true.

Relationship to Other Components
A LifeSciConfigRecord is a child of LifeSciConfigCategory, and can’t exist without the parent LifeSciConfigCategory.

Documentation
Life Sciences Cloud Developer Guide: LifeSciConfigRecord

Lightning Bolt
Represents the definition of a Lightning Bolt Solution, which can include custom apps, flow categories, and Experience Builder templates.

220

Lightning BoltSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.life_sciences_dev_guide.meta/life_sciences_dev_guide/meta_lifesciconfigrecord.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: LightningBolt

Component Type in 1GP Package Manager UI: Lightning Bolt

Documentation
Metadata API Developer Guide: LightningBolt

Lightning Message Channel
Represents the metadata associated with a Lightning Message Channel. A Lightning Message Channel represents a secure channel to
communicate across UI technologies, such as Lightning Web Components, Aura Components, and Visualforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

221

Lightning Message ChannelSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_lightningbolt.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: LightningMessageChannel

Component Type in 1GP Package Manager UI: Lightning Message Channel

Considerations When Packaging
To pass the AppExchange Security Review, the isExposed attribute must be set to false.

Documentation
Metadata API Developer Guide: Lightning Message Channel

Lightning Web Components Developer Guide: Create a Message Channel

Lightning Page
Represents the metadata associated with a Lightning page. A Lightning page represents a customizable screen made up of regions
containing Lightning components.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Lightning page

Both Package Developer and Subscriber Can Edit

• None

222

Lightning PageSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_lightningmessagechannel.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_message_channel_intro
https://partners.salesforce.com/partnerSupport

Neither Package Developer or Subscriber Can Edit

• None

Note: You must have the Manage Prompt Templates permission to successfully package Lightning pages that reference prompt
templates. Without this permission, package creation succeeds, but the prompt template isn't included in the package.

More Information
Feature Name

Metadata Name: FlexiPage

Documentation
Metadata API Developer Guide: Flexipage

Lightning Type
Represents a custom Lightning type. Use this type to override the default user interface to create a customized appearance of responses
on the custom agent’s action input and output. Deploy this bundle to your organization to implement the overrides.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: LightningTypeBundle

223

Lightning TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_flexipage.htm

Component Type in 1GP Package Manager UI: Lightning Type

Documentation
Metadata API Developer Guide: LightningTypeBundle

Lightning Web Component
Represents a Lightning web component bundle. A bundle contains Lightning web component resources.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

You can build Lightning components using two programming models: the Lightning Web Components model, and the original Aura
Components model.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

When a package developer removes an Aura or Lightning web component from a package, the component remains in a subscriber’s
org after they install the upgraded package. The administrator of the subscriber’s org can delete the component, if desired. This behavior
is the same for a Lightning web component or an Aura component with a public or global access value.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• isExposed (can only change from false to true)

• Label

• Markup

• Targets

• targetConfigs

• targetConfig

• property

224

Lightning Web ComponentSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_lightningtypebundle.htm
https://partners.salesforce.com/partnerSupport

You can’t make certain changes to <property> tags on a custom component that’s used in a managed package or an Experience
Builder site. For more information, see Considerations for configuring a component for Experience Builder in the Lightning Web Components
Developer Guide.

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Lightning Web Component

Metadata Name: LightningComponentBundle

Component Type in 1GP Package Manager UI: Lightning Web Component Bundle

Considerations When Packaging
Licensing Considerations:

Lightning Web Components don’t automatically enforce managed package licensing. Lightning Web Components in a managed
package can be seen and used by users who don’t have active licenses for that managed package. These Lightning Web Components
can also be seen and used after a trial of that managed package expires.

AppExchange partners are responsible for enforcing package licensing in their Lightning Web Components. We recommend using
an Apex controller that calls either the UserInfo.isCurrentUserLicensed(namespace) or
UserInfo.isCurrentUserLicensedForPackage(packageID) methods, and only rendering the component if true is returned.

Considerations When Using isExposed:

If isExposed is false, the package developer can remove configuration targets and a public (@api) property from a component.
The component isn't available to other namespaces or to Salesforce builders like Lightning App Builder and Experience Builder.

If isExposed is true and the component is in a published managed package, the package developer can’t remove configuration
targets or a public (@api) property from a component. This restriction is enforced even if the target or public property was added
after the most recent publication of the package.

If isExposed is true, the component is available to other namespaces, including namespaces outside of a published managed
package.

If isExposed is true and a Targets value is also provided, the component is available to Salesforce builders such as Lightning
App Builder and Experience Builder.

When you delete a Lightning Web Component with an isExposed value of true, we recommend a two-stage process to ensure
that the deleted component has no dependencies on the other items in the package. See Remove Components from
Second-Generation Managed Packages for details.

Documentation
Lightning Web Components Developer Guide

Lightning Web Components Developer Guide: Add Components to Managed Packages

Lightning Web Components Developer Guide: Delete Components from Managed Packages

List View
ListView allows you to see a filtered list of records, such as contacts, accounts, or custom objects.

225

List ViewSecond-Generation Managed Packages

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-community-builder.html#considerations
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_methods_system_userinfo.htm#apex_System_UserInfo_isCurrentUserLicensed
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_methods_system_userinfo.htm#apex_System_UserInfo_isCurrentUserLicensedForPackage
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-packaging-add.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-packaging-delete.html

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except View Unique Name

Neither Package Developer or Subscriber Can Edit

• View Unique Name

More Information
Feature Name

Metadata Name: ListView

Component Type in 1GP Package Manager UI: List View

Considerations When Packaging
If a subscriber removes a packaged listview from their production org, that listview is deprecated, but not deleted. If that subscriber
org later creates a sandbox org, and upgrades the package in the sandbox org, the removed listview persists in the sandbox org. To
remove the listview from the sandbox, package subscribers can click and select Delete.

Relationship to Other Components

List views associated with queues can’t be included in a managed package or an unlocked package.

Documentation
Metadata API Developer Guide: ListView

226

List ViewSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_listview.htm

Live Chat Sensitive Data Rule
Represents a rule for masking or deleting data of a specified pattern. Written as a regular expression (regex). Use this object to mask or
delete data of specified patterns, such as credit card, social security, or phone and account numbers.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes, Supported in 1GP Packages onlyPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: LiveChatSensitiveDataRule

Component Type in 1GP Package Manager UI: Sensitive Data Rules

Documentation
Metadata API Developer Guide: LiveChatSensitiveDataRule

227

Live Chat Sensitive Data RuleSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_livechatsensitivedatarule.htm

Loyalty Program Setup
Represents the configuration of a loyalty program process including its parameters and rules. Program processes determine how new
transaction journals are processed. When new transaction journals meet the criteria and conditions for a program process, actions that
are set up in the process are triggered for the transaction journals.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Loyalty Program Process records

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: LoyaltyProgramSetup

Component Type in 1GP Package Manager UI: Loyalty Program Setup

Use Case
Promotion setup allows loyalty program managers to create loyalty program processes.

License Requirements
Loyalty Management permission set license

Documentation
Salesforce Help: Create Processes with Promotion Setup

228

Loyalty Program SetupSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=https://help.salesforce.com/s/articleView?id=xcloud.promotion_setup.htm&type=5&language=en_US

Managed Content Type
Represents the definition of custom content types for use with Salesforce CMS. Custom content types are displayed as forms with defined
fields.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Content

• Description

• Labels

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ManagedContentType

Use Case
Share or distribute custom content types for use in enhanced workspaces in Salesforce CMS.

Considerations When Packaging
Installed content types are available only to enhanced CMS workspaces.

To refer to an installed content type when using Connect REST API, you must use the content type’s fully qualified name. Installed
content types are available only to enhanced CMS workspace resources.

Documentation
Metadata API Developer Guide: ManagedContentType

Connect REST API Developer Guide: Enhanced CMS Workspaces Resources

CMS Developer Guide: Create Custom Content Type Sample

229

Managed Content TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_managedcontenttype.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.chatterapi.meta/chatterapi/connect_resources_managed_content_enhanced_resources.htm
https://developer.salesforce.com/docs/platform/cms/guide/cms-dev-create-custom-content-type-sample.html

Marketing App Extension
Represents an integration with a third-party app or service that generates prospect external activity.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DeveloperName

• MasterLabel

• Description

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: MarketingAppExtension

Component Type in 1GP Package Manager UI: Marketing App Extension

Use Case
Partners and ISVs can provide integrations with third-parties so Account Engagement customers can enhance their automations.

Considerations When Packaging
Marketing app extensions require an associated action type component to function. The related component activity type isn’t
supported for packaging.

License Requirements
This feature is available in Plus, Advanced, or Premium editions of Account Engagement. To work with marketing app extensions,
users must be a Salesforce admin or have the required permissions to access Marketing Setup.

230

Marketing App ExtensionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=mktg.pardot_admin_marketing_admin.htm&type=5&language=en_US

Usage Limits
The number of active extensions, activities, and actions the end user can have at one time depends on their edition of Account
Engagement.

• Plus—10 active extensions, with 10 active activities and 10 active actions per active extension

• Advanced—20 active extensions, with 20 active activities and 20 active actions per active extension

• Premium—30 active extensions, with 30 active activities and 30 active actions per active extension

For more on limits, see Considerations for Working with Marketing App Extensions.

Post Install Steps
To receive data, the extension must be activated for automations and have a business unit assignment.

Relationship to Other Components
The extension requires an associated action type component to function.

Documentation
This component is part of Account Engagement’s extensibility feature set.

• Salesforce Help: Automate Data Sharing with Third-Party Apps

• Developer Guide: Work with Extensibility Features

Marketing App Extension Activity
Represents an Activity Type, which is a prospect activity that occurs in a third-party app and can be used in Account Engagement
automations.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• Description

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• DeveloperName

231

Marketing App Extension ActivitySecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=mktg.pardot_extensions_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_extensibility_parent.htm&type=5&language=en_US
https://developer.salesforce.com/docs/marketing/pardot/guide/extensibility-features-overview.html

• EndpointUrl

• MarketingAppExtension

More Information
Feature Name

Metadata Name: MarketingAppExtActivity

Component Type in 1GP Package Manager UI: Marketing App Extension

Use Case
Partners and ISVs can use Activities to submit external prospect engagement data to Marketing Cloud Account Engagement.

Considerations When Packaging
This component is included when the parent component MarketingAppExtension on page 230 is added to a package. The related
component MarketingAppExtActivity isn’t supported for packaging.

License Requirements
This feature is available in Plus, Advanced, or Premium editions of Account Engagement. To work with marketing app extensions
and related components, users must be a Salesforce admin or have the required permissions to access Marketing Setup.

Usage Limits
The number of active extensions, activities, and actions the end user can have at one time depends on their edition of Account
Engagement.

• Plus—10 active activities per active extension

• Advanced—20 active activities per active extension

• Premium—30 active activities per active extension

For more information, see Considerations for Working with Marketing App Extensions.

Post Install Steps
To receive data, the activity and its related extension must be activated for automations.

Relationship to Other Components
This component is a child of the MarketingAppExtension on page 230 component. Activities interact with Marketing Cloud Account
Engagement features that support external activities. For more information, see Capture External Prospect Activity.

Documentation
This component is part of Account Engagement’s extensibility feature set.

• Salesforce Help: Automate Data Sharing with Third-Party Apps

• Developer Guide: Work with Extensibility Features

Market Segment Definition
Represents the field values for MarketSegmentDefinition. MarketSegmentDefinition is used to store the exportable metadata of a segment,
such as segment criteria and other attributes. Developers can create segment definition packages, pass segment definition in the form
of data build tool (DBT), and publish it on AppExchange for subscriber organizations to install and instantiate these segments.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

232

Market Segment DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=mktg.pardot_admin_marketing_admin.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_extensions_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_external_activity_parent.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.pardot_extensibility_parent.htm&type=5&language=en_US
https://developer.salesforce.com/docs/marketing/pardot/guide/extensibility-features-overview.html

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Yes, applicable for all properties.

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: MarketSegmentDefinition

Component Type in 1GP Package Manager UI: Market Segment Definition

MktCalculatedInsightsObjectDef
Represents Calculated Insight definition such as expression.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

233

MktCalculatedInsightsObjectDefSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• BuilderExpression

• CalculatedInsightCreationType

• Description

• Expression

• Label

Both Package Developer and Subscriber Can Edit

• CalculatedInsightObjectDefinitionStatus

• Description

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: MktCalcInsightObjectDef

Component Type in 1GP Package Manager UI: MktCalcInsightObjectDef.

Use Case
Defines CDP calculated insight for easy creation on subscriber organizations.

Considerations When Packaging
To package this component, first add it to a data kit. For more information about data kits, see Data Kits in Salesforce Help.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to go to the Calculated Insights object home in Customer Data Platform, click New action and select Create from a
Package.

Relationship to Other Components
Calculated Insight Component is tied to the Data Model Object component. The Calculated Insight component must have Data
Model Object dependencies available on the subscriber organization that are used in the Calculated Insight.

Documentation
Metadata API Developer Guide: MktCalcInsightObjectDef

MktDataConnection
Represents the connection information of an external connector that can ingest data to Data Cloud, read data from the source, or write
data to the source in Data Cloud.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

234

MktDataConnectionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=data.c360_a_data_package_kits.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_mktcalcinsightobjectdef.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• masterLabel

• Parameters

– paramName

– value

• Credentials

– credentialName

– value

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: MktDataConnection

Component Type in 1GP Package Manager UI: Data Connection

Use Case
To reuse connection parameters.

Considerations When Packaging
Connection credentials are excluded from the package. Available parameters are defined in Connector Metadata which is exposed
from Connect API.

License Requirements
Data Cloud must be provisioned. For more information, see Data Cloud: Access and Provisioning.

Usage Limits
The number of connections per connector type can be up to 200.

Post Install Steps
After you create the connection, it will be in INACTIVE state, you must manually activate the connection.

235

MktDataConnectionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=000396444&type=1&language=en_US

Relationship to Other Components
Must be used with Data Stream and Activation.

Documentation
Salesforce Help: Third-Party Data Cloud Connectors

MktDataTranObject
An entity that is used to deliver (aka transport) information from the source to a target (target will be called a landing entity).This can
be the schema of a file, API, Event, or other means of transporting data, such as SubscriberFile1.csv, or SubscriberCDCEvent.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• CreationType

• DataSource

• DataSourceObject

• DeveloperName

• ObjectCategory

• Status

Both Package Developer and Subscriber Can Edit

• DataConnector

Neither Package Developer or Subscriber Can Edit

• None

236

MktDataTranObjectSecond-Generation Managed Packages

https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-data-cloud-integrations.html
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: MktDataTranObject

Component Type in 1GP Package Manager UI: It's not a top-level component, it can only be spidered in when customer selects some
other component. You won't be able to add this component directly to the package.

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: MktDataTranObject

Named Credential
Represents a named credential, which specifies the URL of a callout endpoint and its required authentication parameters in one definition.
A named credential can be specified as an endpoint to simplify the setup of authenticated callouts.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation

Note: In addition to these properties, the Description, ParameterName, ParameterValue, and SequenceNumber properties have
the same editability as the NamedCredentialParameters they’re included in.

Only Package Developer Can Edit

• Label

• NamedCredentialType

• Legacy Named Credentials only (deprecated and unsupported in future releases)

– Endpoint (deprecated)

237

Named CredentialSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_mktdatatranobject.htm
https://partners.salesforce.com/partnerSupport

Both Package Developer and Subscriber Can Edit

• CalloutOptions

– AllowMergeFieldsInBody

– AllowMergeFieldsInHeader

– GenerateAuthorizationHeader

• NamedCredentialParameters

– AllowedManagedPackageNamespaces (only subscriber editable)

– Authentication

– ClientCertificate (only subscriber editable in 2GP)

– HttpHeader

– OutboundNetworkConnection

– Url

• Legacy Named Credentials only (deprecated and unsupported in future releases)

– AuthProvider (deprecated)

– AuthTokenEndpointUrl (deprecated)

– AwsAccessKey, AwsAccessSecret, AwsRegion, and AwsService (all deprecated)

– Certificate (deprecated)

– JwtAudience, JwtFormulaSubject, JwtIssuer, JwtSigningCertificateId, JwtTextSubject, and JwtValidityPeriodSeconds (all deprecated)

– OauthRefreshToken, OauthScope, and OathToken (all deprecated)

– OutboundNetworkConnectionId (deprecated)

– Password (deprecated)

– PrincipalType (deprecated)

– Protocol (deprecated)

– Username (deprecated)

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: NamedCredential

Considerations When Packaging

Certificates aren’t packageable. If a certificate needs access to an external system, an administrator must upload one to the subscriber
org and reference it in the named credential.

Relationship to Other Components
You must package NamedCredential with the associated ExternalCredential component.

The named credential defines a callout endpoint and an HTTP transport protocol, while the external credential represents the details
of how Salesforce authenticates to an external system via an authentication protocol. Each named credential must be mapped to
at least one external credential.

238

Named CredentialSecond-Generation Managed Packages

Legacy Named Credentials

Important: In Winter ’23, Salesforce introduced an improved named credential that is extensible and customizable. We
strongly recommend that you use this preferred credential instead of legacy named credentials. For information on extensible,
customizable named credentials, see Named Credentials and External Credentials. Legacy named credentials are deprecated
and will be discontinued in a future release.

After installing a named credential from a managed or unmanaged package, the subscriber must reauthenticate to the external
system.

• For password authentication, the subscriber reenters the password in the named credential definition.

• For OAuth, the subscriber updates the callback URL in the client configuration for the authentication provider and then
reauthenticates by selecting Start Authentication Flow on Save on the named credential.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide

Metadata API Developer Guide: NamedCredential

Object Source Target Map
Contains the object-level mappings between the source and the target objects. The source and target objects can be an MktDataLakeObject
or an MktDataModelObject. For example, an Email source object can be mapped to the ContactPointEmail object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• CreationType

• DeveloperName

239

Object Source Target MapSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=nc_named_creds_and_ext_creds.htm&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.named_credentials_about.htm&type=5&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_namedcredential.htm
https://partners.salesforce.com/partnerSupport

• MasterLabel

• ParentObject

• SequenceNbr

• SourceObject

• TargetObject

Both Package Developer and Subscriber Can Edit

• LastDataChangeStatusDateTime

• LastDataChangeStatusErrorCode

• Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ObjectSourceTargetMap

Component Type in 1GP Package Manager UI: It's not a top-level component, it can only be spidered in when customer selects some
other component. You won't be able to add this component directly to the package.

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: ObjectSourceTargetMap

OcrSampleDocument
Represents the details of a sample document or a document type that's used as a reference while extracting and mapping information
from a customer form.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

240

OcrSampleDocumentSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_objectsourcetargetmap.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

OcrSampleDocument

Component Type in 1GP Package Manager UI: OcrSampleDocument

Use Case
Migrate sample documents created with the Intelligent Form Reader or Intelligent Document Reader feature.

Considerations When Packaging
If you update the package by deleting OcrSampleDocumentFields associated with the OCRTemplate, the OcrSampleDocumentFields
are not deleted.

License Requirements
AWSTextract1000LimitAddOn-1 for the Intelligent Form Reader feature or IntelligentDocumentReaderAddOn-1 for the Intelligent
Document Reader feature.

Relationship to Other Components
DocumentType, ContentAsset, and OcrTemplate (Optional)

Documentation
Metadata API Developer Guide: OcrSampleDocument

OcrTemplate
Represents the details of the mapping between a form and a Salesforce object using Intelligent Form Reader.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

241

OcrTemplateSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_ocrsampledocument.htm

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

OcrTemplate

Component Type in 1GP Package Manager UI: OcrTemplate

Use Case
Migrate Mappings created with the Intelligent Form Reader or Intelligent Document Reader feature.

Considerations When Packaging
OcrTemplate has a dependency on OcrSampleDocument. Before deploying the package, make sure to either include
OcrSampleDocument in the package or deploy a package that contains OcrSampleDocument.

License Requirements
AWSTextract1000LimitAddOn-1 for the Intelligent Form Reader feature or IntelligentDocumentReaderAddOn-1 for the Intelligent
Document Reader feature.

Relationship to Other Components
DocumentType and OcrSampleDocument

Documentation
Metadata API Developer Guide: OcrTemplate

Outbound Network Connection
Represents a private connection between a Salesforce org and a third-party data service. The connection is outbound because the
callouts are going out of Salesforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

242

Outbound Network ConnectionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_ocrtemplate.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: You can only delete connections that are in an unprovisioned state.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

• Connection Type

• Developer Name

• Description

• Master Label

• Region

• Service Name

Both Package Developer and Subscriber Can Edit

• Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: OutboundNetworkConnection

Component Type in 1GP Package Manager UI: Outbound Network Connection

Considerations When Packaging

• Packaged connections are installed as unprovisioned. Alert subscribers about how to provision connections after package installation.

• If a developer changes the Region or Service Name of a packaged connection that is subscriber-provisioned, the upgrade fails for
the subscriber. Alert subscribers about tearing down the connection before you update the Region or Service Name fields. As a best
practice, avoid changing the Region or Service Name of a packaged connection unless necessary.

• If you package a Named Credential that references an Outbound Network Connection, the referenced Outbound Network Connection
component is automatically added to the package.

243

Outbound Network ConnectionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

License Requirements
This feature is available with the Private Connect license.

Documentation
Salesforce Help: Secure Cross-Cloud Integrations with Private Connect

Salesforce Help: Establish an Outbound Connection with AWS

Page Layout
Represents the metadata associated with a page layout.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packagesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Page Layout Name

Neither Package Developer or Subscriber Can Edit

• Page Layout Name

More Information
Feature Name

Metadata Name: Layout

244

Page LayoutSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.private_connect_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=xcloud.private_connect_outbound_aws.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Considerations
The page layout of the person uploading a package is the layout used for Group and Professional Edition orgs and becomes the
default page layout for Enterprise, Unlimited, Performance, and Developer Edition orgs.

Package page layouts alongside complimentary record types if the layout is being installed on an existing object. Otherwise, manually
apply the installed page layouts to profiles.

If a page layout and a record type are created as a result of installing a package, the uploading user’s page layout assignment for
that record type is assigned to that record type for all profiles in the subscriber org, unless a profile is mapped during an install or
upgrade.

Documentation
Metadata API Developer Guide: Layout

Path Assistant
Represents Path records.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• IsActive field

Neither Package Developer or Subscriber Can Edit

• SobjectType, SobjectProcessField, and RecordType

245

Path AssistantSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_layouts.htm
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: PathAssistant

Component Type in 1GP Package Manager UI: Path Assistant

Documentation
Metadata API Developer Guide: PathAssistant

Payment Gateway Provider
Represents the metadata associated with a payment gateway provider.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• All fields

More Information
Feature Name

Metadata Name: PaymentGatewayProvider

License Requirements
Salesforce Order Management, B2B Commerce, or B2C Commerce (for B2B2C Commerce) licenses are required. These licenses enable
the Payment Platform org permission required to use payments objects.

Documentation
Salesforce Help: Processing Payments with Payment Gateways

246

Payment Gateway ProviderSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_pathassistant.htm
https://help.salesforce.com/s/articleView?id=sales.blng_payment_gateways.htm&type=5&language=en_US

Permission Set
Represents a set of permissions that's used to grant more access to one or more users without changing their profile or reassigning
profiles. You can use permission sets to grant access but not to deny access.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Custom object permissions

• Custom field permissions

• Apex class access settings

• Visualforce page access settings

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: PermissionSet

247

Permission SetSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Component Type in 1GP Package Manager UI: Permission Set

Documentation
Metadata API Developer Guide: PermissionSet

Permission Set Groups
Represents a group of permission sets and the permissions within them. Use permission set groups to organize permissions based on
job functions or tasks. Then, you can package the groups as needed.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Permission Set Group Components (Developer can add and remove while Subscriber can add)

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: PermissionSetGroup

Component Type in 1GP Package Manager UI: Permission Set Group

Considerations When Packaging
Don't assume that a subscriber's permission set group is the same as what the developer has specified. Although developers can
define the permission set group and what permission sets can go into it, subscribers can add additional permission sets or mute
permissions.

Relationship to Other Components
This feature can only be used in conjunction with Permission Sets.

248

Permission Set GroupsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_permissionset.htm

Documentation
Salesforce Help: Permission Set Groups

Platform Cache
Represents a partition in the Platform Cache.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Description

• Default Partition

Both Package Developer and Subscriber Can Edit

• Organization Capacity

• Trial Capacity

Neither Package Developer or Subscriber Can Edit

• Developer Name

More Information
Feature Name

Metadata Name: PlatformCachePartition

Component Type in 1GP Package Manager UI: Platform Cache Partition

Documentation
Set Up a Platform Cache Partition with Provider Free Capacity

Metadata API Developer Guide: PlatformCachePartition

Apex Developer Guide: Platform Cache Partitions

249

Platform CacheSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.perm_set_groups.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/data_platform_cache_setup_provider_capacity.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_platformcachepartition.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_cache_partition_setup.htm

Platform Event Channel
Represents a channel that you can subscribe to in order to receive a stream of events.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: PlatformEventChannel

Component Type in 1GP Package Manager UI: Platform Event Channel

Documentation
Metadata API Developer Guide: PlatformEventChannel

SEE ALSO:

Change Data Capture Developer Guide: Compose Streams of Change Data Capture Notifications with Custom Channels

Platform Event Channel Member
Represents an entity selected for Change Data Capture notifications on a standard or custom channel, or a platform event selected on
a custom channel.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

250

Platform Event ChannelSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_platformeventchannel.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.change_data_capture.meta/change_data_capture/cdc_custom_channel.htm

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: PlatformEventChannelMember

Component Type in 1GP Package Manager UI: Platform Event Channel Member

Considerations When Packaging

• As of Winter ’22, installing a managed package that contains Change Data Capture entity selections no longer causes an installation
error. Before Winter ’22, installing a managed package that contained Change Data Capture entity selections that were over the
default allocation caused package installation errors.

• To package Change Data Capture entity selections, create a custom channel through the PlatformEventChannel metadata type.
Then add entity selections to the custom channel through the PlatformEventChannelMember metadata type.

Documentation
Metadata API Developer Guide: PlatformEventChannelMember

SEE ALSO:

Change Data Capture Developer Guide: Compose Streams of Change Data Capture Notifications with Custom Channels

Platform Event Subscriber Configuration
Represents configuration settings for a platform event Apex trigger, including the batch size, the trigger’s running user, and parallel
subscription settings.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Note: PlatformEventSubscriberConfig is tied to an Apex
trigger. If the package developer removes the Apex trigger,
PlatformEventSubscriberConfig is also removed.

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

251

Platform Event Subscriber ConfigurationSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_platformeventchannelmember.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.change_data_capture.meta/change_data_capture/cdc_custom_channel.htm

• batchSize

• numPartitions

• partitionKey

• platformEventConsumer

Both Package Developer and Subscriber Can Edit

• user

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: PlatformEventSubscriberConfig

Component Type in 1GP Package Manager UI: Platform Event Subscriber Configuration

Use Case
Override the default running user and batch size of a platform event Apex trigger.

Relationship to Other Components
PlatformEventSubscriberConfig is tied to an Apex trigger.

Documentation
Platform Events Developer Guide: Configure the User and Batch Size for Your Platform Event Trigger

Platform Events Developer Guide: Platform Event Processing at Scale with Parallel Subscriptions for Apex Triggers

Pricing Action Parameters
Represents a pricing action associated to a context definition and a pricing procedure.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

252

Pricing Action ParametersSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.platform_events.meta/platform_events/platform_events_trigger_config.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.platform_events.meta/platform_events/platform_events_ps.htm

Both Package Developer and Subscriber Can Edit

• Pricing Action Parameters Name

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: PricingActionParameters

Component Type in 1GP Package Manager UI: PricingActionParameters

License Requirements
Salesforce Pricing permissions

Relationship to Other Components
All the components that pricing depends on are packaged along with the Pricing Action Parameters component.

Documentation
Salesforce Help: Pricing Action Parameters in Salesforce Pricing

Pricing Recipe
Represents one out of various data models or sets of entities of a particular cloud that'll be consumed by the pricing data store during
design and run time.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

253

Pricing RecipeSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.pricing_pricing_action_parameters.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Both Package Developer and Subscriber Can Edit

• Recipe Name

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: PricingRecipe

Component Type in 1GP Package Manager UI: PricingRecipe

Considerations When Packaging
There are two prerequisites currently. All the associated contexts aren’t exported. For decision tables, while exporting, column
additions made to the associated objects aren’t refreshed during export.

License Requirements
Salesforce Pricing permissions

Relationship to Other Components
All the components that pricing is dependent on are packaged along with the pricing recipe.

Documentation
Salesforce Help: Pricing Recipes

Procedure Output Resolution
Represents the pricing resolution for an pricing element determined using strategy name and formula.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Active Checkbox

Both Package Developer and Subscriber Can Edit

• None

254

Procedure Output ResolutionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?language=en_US&id=sf.pricing_pricing_recipes.htm

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ProcedureOutputResolution

Component Type in 1GP Package Manager UI: ProcedureOutputResolution

Use Case
To determine the best price for a product if a pricing rule produces multiple outcomes.

License Requirements
Salesforce Pricing permissions

Documentation
Salesforce Help: Procedure Output Resolution

Process
Use Flow instead.

See Flow

Process Flow Migration
Represents a process's migrated criteria and the resulting migrated flow.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

255

ProcessSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.pricing_procedure_output_resolution.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_flow

Neither Package Developer or Subscriber Can Edit

• Description

• Label

• Name

More Information
Feature Name

Metadata Name: ProcessFlowMigration

Component Type in 1GP Package Manager UI: Process Flow Migration

Use Case

Include this component only if you’ve used Migrate to Flow tool and wish to have pending Scheduled Actions from migrated
Processes converted into pending Flow Scheduled Paths in subscriber orgs. This occurs after the migrated Flow is activated in the
subscriber org.

Considerations When Packaging

When packaging a Flow that was migrated from a Process, this component is added automatically. When adding a Flow that was
migrated from a Process to a change set, this component would need to be added manually.

Relationship to Other Components

Flows

Documentation
Salesforce Help: Migrate Processes and Workflows to Flow

Product Attribute Set
Represents the ProductAttribute information being used as and attribute such as color_c, size_c .

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

256

Product Attribute SetSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.flow_migrate_to_flow.htm&type=5&language=en_US

Both Package Developer and Subscriber Can Edit

• Description

• Master Label

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ProductAttributeSet

License Requirements
A B2B Commerce or D2C Commerce license and access to Commerce objects is required.

Usage Limits
An org can have a maximum of 100 product attribute sets.

For each product attribute set, you can have a maximum of five associated product attribute set items.

Documentation
Salesforce Help: Product Variations and Attributes

Metadata API Developer Guide: ProductAttributeSet

Product Specification Type
Represents the type of product specification provided by the user to make the product terminology unique to an industry. A product
specification type is associated with a product specification record type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

• Description

Both Package Developer and Subscriber Can Edit

257

Product Specification TypeSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=commerce.comm_var_att_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_productattributeset.htm

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ProductSpecificationType

Component Type in 1GP Package Manager UI: ProductSpecificationType

License Requirements
Only Salesforce Admins can set up the product specification type. To create and edit product specification type, the Product Catalog
Management Designer permission set is required. To view product specification type, the Product Catalog Management Viewer
permission set is required.

Documentation
Salesforce Help: Product Specification

Salesforce Help: Create Product Specification Type and Product Specification Record Type

Product Specification Record Type
Represents the relationship between industry-specific product specifications and the product record type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

• Record Type

• Product Specification Type

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

258

Product Specification Record TypeSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.product_catalog_product_specification.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.product_catalog_create_product_specification_type_and_product_specification_record_type.htm&type=5&language=en_US

• Name

• Is Commercial

More Information
Feature Name

Metadata Name: ProductSpecificationRecType

Component Type in 1GP Package Manager UI: ProductSpecificationRecType

License Requirements
 Only Salesforce admins can set up the product specification record type. To create and edit product specification record type, the
Product Catalog Management Designer permission set is required. To view product specification record type, the Product Catalog
Management Viewer permission set is required.

Documentation
Salesforce Help: Product Specification

Salesforce Help: Create Product Specification Type and Product Specification Record Type

Prompts (In-App Guidance)
Represents the metadata related to in-app guidance, which includes prompts and walkthroughs.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: Prompt

Component Type in 1GP Package Manager UI: Prompt

Considerations When Packaging

For 2GP packages, ensure that the scratch org definition file includes the GuidanceHubAllowed and Enablement features.
See Build Your Own Scratch Org Definition File in the Salesforce DX Developer Guide.

License Requirements
Enablement Admin permission set and Enablement permission set license are required.

259

Prompts (In-App Guidance)Second-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.product_catalog_product_specification.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.product_catalog_create_product_specification_type_and_product_specification_record_type.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm

Documentation
Metadata API Developer Guide: Prompt

Salesforce Help: Guidelines for In-App Guidance in Managed Packages

Quick Action
Represents a specified create or update quick action for an object that then becomes available in the Chatter publisher.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Field Overrides

Both Package Developer and Subscriber Can Edit

• All attributes except Field Overrides

Note: You can only modify managed package quick action layouts in Salesforce Setup. You can't make changes using Metadata
API.

Neither Package Developer or Subscriber Can Edit

More Information
Feature Name

Metadata Name: QuickAction

Component Type in 1GP Package Manager UI: Quick Action

260

Quick ActionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_prompt.htm
https://help.salesforce.com/s/articleView?id=sales.customhelp_iag_packages.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Documentation
Salesforce Help: Quick Actions

Recommendation Strategy
Represents a recommendation strategy. Recommendation strategies are applications, similar to data flows, that determine a set of
recommendations to be delivered to the client through data retrieval, branching, and logic operations.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

More Information
Feature Name

Metadata Name: RecommendationStrategy

Component Type in 1GP Package Manager UI: Recommendation Strategy

Use Case
You can use this component to create personalized recommendations for end users. A recommendation displays contextually in
Salesforce and prompts the end user to accept or reject the suggestion. When an end user accepts or rejects the recommendation,
Salesforce automates a process, such as creating or updating a record.

Considerations When Packaging
When you package a recommendation strategy, you must manually add object dependencies, such as recommendation,
recommendationReaction, and flow.

Usage Limits
An admin must select an object dependency for Recommendation and RecommendationReaction because object dependencies
aren't added automatically.

Documentation
Salesforce Help: Einstein Next Best Action

Record Action Deployment
Represents configuration settings for the Actions & Recommendations, Action Launcher, and Bulk Action Panel components.

261

Recommendation StrategySecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.actions_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.einstein_next_best_action.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Channel Configurations

• Deployment Contexts

• HasGuidedActions

• HasRecommendations

• Label

• Recommendations

• SelectableItems

• ShouldLaunchActionOnReject

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: RecordActionDeployment

Component Type in 1GP Package Manager UI: RecordAction Deployment

Considerations When Packaging
If the record action deployment component uses flows, quick actions, objects, or Next Best Action recommendations, include them
in the package too.

262

Record Action DeploymentSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Documentation
Metadata API Developer Guide: RecordActionDeployment

Salesforce Help: Create an Actions & Recommendations Deployment

Record Alert Data Source Expression Set Definition
Represents information about the data source for a record alert and the association with an expression set definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All other fields

Both Package Developer and Subscriber Can Edit

• ExpressionSetDefinition

• ExpressionSetObject

• IsActive

• RecordAlertDataSource

Neither Package Developer or Subscriber Can Edit

• FullName

• Metadata

More Information
RecAlrtDataSrcExpSetDef

Metadata Name: RecAlrtDataSrcExpSetDef

Component Type in 1GP Package Manager UI: RecAlrtDataSrcExpSetDef

Documentation
RecAlrtDataSrcExpSetDef in Financial Services Cloud Developer Guide.

263

Record Alert Data Source Expression Set DefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_recordactiondeployment.htm
https://help.salesforce.com/s/articleView?id=service.console_lex_guided_action_deployment.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.financial_services_cloud_object_reference.meta/financial_services_cloud_object_reference/sforce_api_objects_recalrtdatasrcexpsetdef.htm

Record Type
Represents the metadata associated with a record type. Record types let you offer different business processes, picklist values, and page
layouts to different users. Use this metadata type to create, update, or delete record type definitions for a custom object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Record Type Label

Both Package Developer and Subscriber Can Edit

• Active

• Business Process

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: RecordType

Component Type in 1GP Package Manager UI: Record Type

Considerations When Packaging

• If record types are included in the package, the subscriber’s org must support record types to install the package.

264

Record TypeSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• When a new picklist value is installed, it’s associated with all installed record types according to the mappings specified by the
developer. A subscriber can change this association.

• Referencing an object’s record type field in a report’s criteria—for example, Account Record Type—causes a dependency.

• Summarizing by an object’s record type field in a report’s criteria—for example, Account Record Type—causes a
dependency.

• If an object’s record type field is included as a column in a report, and the subscriber’s org isn’t using record types on the object
or doesn’t support record types, the column is dropped during installation.

• If you install a custom report type that includes an object’s record type field as a column, that column is dropped if the org
doesn’t support record types or the object doesn’t have record types defined.

Documentation
Metadata API Developer Guide: RecordType

RedirectWhitelistUrl
Represents a trusted URL that’s excluded from redirection restrictions when the redirectionWarning or redirectBlockModeEnabled field
on the SessionSettings Metadata type is set to true.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Url

Neither Package Developer or Subscriber Can Edit

• None

265

RedirectWhitelistUrlSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_recordtype.htm
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: RedirectWhitelistUrl

Component Type in 1GP Package Manager UI: RedirectWhitelistUrl

Use Case
Customers can use a Salesforce security setting to specify what happens when a user clicks a hyperlink that redirects to an untrusted
URL outside the salesforce.com domain. The customer can choose to block these redirections or alert the user that the link is taking
them outside the Salesforce domain. The URLs in RedirectWhiteListURL are considered trusted for the purpose of that security setting.

If the Experience Cloud site pages, Lightning Experience pages, or custom Visualforce pages in your package include hyperlinks to
URLs outside the salesforce.com domain, use RedirectWhitelistURL to ensure that users can access those hyperlinks.

Considerations When Packaging
When you include a RedirectWhitelistURL in a package, the URLs are trusted for redirections across Salesforce. Because this component
modifies the security of the org, we don’t recommend that you include RedirectWhitelistURL in packages. Instead, instruct customers
to use the Trusted URLs for Redirects Setup page or the RedirectWhitelistURL Metadata API type to add the URLs to their allowlist
as part of activating your package. If you choose to include RedirectWhitelistURL components in your package, disclose this change
prominently in your package documentation to ensure that your customers are aware of the security modification.

Usage Limits
The RedirectWhiteListURL component is available in API version 48.0 and later.

Relationship to Other Components
This component can be used only in conjunction with an Aura or Lightning Web Runtime (LWR) page for an Experience Cloud site,
a Lightning Page, or a Visualforce Page.

Documentation
Metadata API Developer Guide: RedirectWhitelistUrl

Salesforce Help: Manage Redirections to External URLs

Metadata API Developer Guide: SecuritySettings]

Referenced Dashboard
Represents the ReferencedDashboard object in CRM Analytics. A referenced dashboard stores information about an externally referenced
dashboard.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

266

Referenced DashboardSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_redirectwhitelisturl.htm
https://help.salesforce.com/s/articleView?id=xcloud.security_external_redirects.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_securitysettings.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Embed URL

• Template Asset Source Name

• Visibility

More Information
Feature Name

Metadata Name: ReferencedDashboard

License Requirements
Enables Tableau Dashboards in CRM Analytics

Registered External Service
Represents a registered external service, which provides an extension or integration.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

267

Registered External ServiceSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: RegisteredExternalService

Component Type in 1GP Package Manager UI: RegisteredExternalService

Documentation
Object Reference for the Salesforce Platform: RegisteredExternalService

RelationshipGraphDefinition
Represents a definition of a graph that you can configure in your organization to traverse object hierarchies and record details, giving
you a glimpse of how your business works.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

268

RelationshipGraphDefinitionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_registeredexternalservice.htm
https://partners.salesforce.com/partnerSupport

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: RelationshipGraphDefinition

Component Type in 1GP Package Manager UI: RelationshipGraphDefinition

Documentation
Metadata API Developer Guide: RelationshipGraphDefinition

Remote Site Setting
Represents a remote site setting.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Remote Site Name

Neither Package Developer or Subscriber Can Edit

269

Remote Site SettingSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_relationshipgraphdefinition.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• Remote Site Name

More Information
Feature Name

Metadata Name: RemoteSiteSettings

Documentation
Metadata API Developer Guide: RemoteSiteSettings

Report
Represents a custom report.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Report Unique Name

Neither Package Developer or Subscriber Can Edit

• Report Unique Name

More Information
Feature Name

Metadata Name: Report

270

ReportSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_remotesitesetting.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Component Type in 1GP Package Manager UI: Report

Considerations When Packaging
If a report includes elements that can’t be packaged, those elements are dropped or downgraded, or the package creation fails. For
example:

• Hierarchy drill-downs are dropped from activity and opportunities reports.

• Filters on unpackageable fields are automatically dropped (for example, in filters on standard object record types).

• Package upload fails if a report includes filter logic on an unpackageable field (for example, in filters on standard object record
types).

• Lookup values on the Select Campaign field of standard campaign reports are dropped.

• Reports are dropped from packages if they’ve been moved to a private folder or to the Unfiled Public Reports folder.

• When a package is installed into an org that doesn’t have Chart Analytics 2.0:

– Combination charts are downgraded instead of dropped. For example, a combination vertical column chart with a line added
is downgraded to a simple vertical column chart. A combination bar chart with more bars is downgraded to a simple bar
chart.

– Unsupported chart types, such as donut and funnel, are dropped.

Documentation
Metadata API Developer Guide: Report

Report Type
Represents the metadata associated with a custom report type. Custom report types allow you to build a framework from which users
can create and customize reports.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

271

Report TypeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_report.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes except Development Status and Report Type Name

Both Package Developer and Subscriber Can Edit

• Development Status

Neither Package Developer or Subscriber Can Edit

• Report Type Name

More Information
Feature Name

Metadata Name: ReportType

Component Type in 1GP Package Manager UI: Custom Report Type

Considerations When Packaging
A developer can edit a custom report type in a managed package after it’s released, and can add new fields. Subscribers automatically
receive these changes when they install a new version of the managed package. However, developers can’t remove objects from
the report type after the package is released. If you delete a field in a custom report type that’s part of a managed package, and the
deleted field is part of bucketing or used in grouping, an error message appears.

Documentation
Metadata API Developer’s Guide: ReportType

ServiceProcess
Represents a process created in Service Process Studio and its associated attributes.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All other fields

Both Package Developer and Subscriber Can Edit

272

ServiceProcessSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_reporttype.htm

• Status

• Description

• ServiceProcessAttribute

• ServiceProcessDependency

• ServiceProcessItemGroup

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
ServiceProcess

Metadata Name: ServiceProcess

Component Type in 1GP Package Manager UI: ServiceProcess

Documentation
ServiceProcess in Metadata API Developer Guide.

Slack App (Beta)
Represents a Slack app.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AppKey, AppToken, ClientKey, ClientSecret, SigningSecret, BotScopes, UserScopes, Config, IntegrationUser, DefaultUser

Both Package Developer and Subscriber Can Edit

273

Slack App (Beta)Second-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: SlackApp

Component Type in 1GP Package Manager UI: Slack App

Use Case
Represents configuration of a Slack application

License Requirements
Connect to Slack Permission

Relationship to Other Components
Slack apps reference handlers (Apex classes) and view definition components.

Documentation
Apex SDK for Slack Developer Guide

Service Catalog Category
Represents the grouping of individual catalog items in Service Catalog.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• ParentCategory

Both Package Developer and Subscriber Can Edit

• SortOrder

• IsActive

• Image

274

Service Catalog CategorySecond-Generation Managed Packages

https://developer.salesforce.com/docs/platform/salesforce-slack-sdk/overview

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogCategory

Component Type in 1GP Package Manager UI: Service Catalog Category

Use Case
Group your service catalog items together by associating them with a catalog category.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Post Install Steps
Categories appear in the Service Catalog user UI only if they contain active items.

Documentation
Salesforce Help: Create a Catalog Category

Service Catalog Filter Criteria
Represents an eligibility rule that determines if a Service Catalog user has access to a catalog item.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All fields

Both Package Developer and Subscriber Can Edit

• All fields

Neither Package Developer or Subscriber Can Edit

275

Service Catalog Filter CriteriaSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=service.esc_create_a_catalog_category.htm&type=5&language=en_US

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogFilterCriteria

Component Type in 1GP Package Manager UI: Service Catalog Item Definition

Use Case
Use the filter criteria to filter on catalog items.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Relationship to Other Components
Service catalog filter criteria are related to a catalog item definition.

Documentation
Salesforce Help: Create a Catalog Category

Service Catalog Item Definition
Represents the entity associated with a specific, individual service available in the Service Catalog.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Flow

Both Package Developer and Subscriber Can Edit

• Status

• Description

• InternalNotes

• Image

276

Service Catalog Item DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=service.esc_create_a_catalog_category.htm&type=5&language=en_US

• IsFeatured

• IsPublic

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogItemDef

Component Type in 1GP Package Manager UI: Service Catalog Item Definition

Use Case
Create a service catalog item that employees can request in the Service Catalog user UI.

Considerations When Packaging
Subscribers can't change properties stored in the catalog item fulfillment flow unless they make a clone of the item and its related
flow.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Usage Limits
The org can have only 1000 SvcCatalogItemDefs, including those items installed from a managed package.

Post Install Steps
If the item was installed in draft mode, it must be activated before employees can see it in the Service Catalog user UI.

Relationship to Other Components
SvcCatalogItemDef requires a relationship with a catalog category.

Documentation
Salesforce Help: Create a Catalog Item

Service Catalog Fulfillment Flow
Represents the flow associated with a specific catalog item in the Service Catalog.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

277

Service Catalog Fulfillment FlowSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=service.esc_create_a_catalog_item.htm&type=5&language=en_US

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Flow

• Icon

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogFulfillmentFlow

Component Type in 1GP Package Manager UI: Service Catalog Fulfillment Flow

Use Case
Make a screen flow available in the Service Catalog builder. You can also use SvcCatalogFulfillmentFlow metadata to describe the
flow and its inputs in the builder, enabling a clicks-not-code experience for providing inputs to the flow.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Post Install Steps
Fulfillment flows appear in the Service Catalog builder only if the underlying screen flow is active in the org.

Relationship to Other Components
SvcCatalogFulfillmentFlow must be related to a FlowDefinition.

SvcCatalogFulfillmentFlow can have related SvcCatalogFulfillFlowItem records.

Documentation
Salesforce Help: Catalog Item Fulfillment Flows

Stationary Asset Environmental Source Record Type Configuration
Represents the setup object that contains the mapping between the Stationary Asset Environmental Source record type and internal
enums. You can primarily use this object for calculations across different record types.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

278

Stationary Asset Environmental Source Record Type
Configuration

Second-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=service.esc_catalog_item_fulfillment_flows.htm&type=5&language=en_US

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: StnryAssetEnvSrcCnfg

Component Type in 1GP Package Manager UI: Stationary Asset Environmental Source Record Type Configuration

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new stationary asset types for end users.

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

Documentation

• Salesforce Help: Set Up Record Types for Net Zero Cloud

• Salesforce Help: Create a Stationary Asset Environmental Source Record

Static Resource
Represents a static resource file, often a code library in a ZIP file.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

279

Static ResourceSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.netzero_setup_record_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_manager_create_building_asset.htm&type=5&language=en_US

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• File

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: StaticResource

Component Type in 1GP Package Manager UI: Static Resource

Documentation
Metadata API Developer Guide: StaticResource

Streaming App Data Connector
Represents the connection information specific to Web and Mobile Connectors.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

280

Streaming App Data ConnectorSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_staticresource.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• AppIdentifier

• DataConnectorType

• StreamingAppDataConnectorType

More Information
Feature Name

Metadata Name: StreamingAppDataConnector

Use Case
The StreamingAppDataConnector is included in a package when you add a data stream (DataStreamDefinition). You need this
component if you want to package a web or mobile data stream.

Post Install Steps
The package doesn't contain any connection information. The package subscriber must create the connection in their subscriber
org and then select that connection when they deploy the data kit.

Documentation
Data Cloud Reference Guide: Capture Web Interactions

Data Cloud Reference Guide: Integrate your Mobile Applications

Sustainability UOM
Represents information about the additional unit of measure values defined by a customer.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

281

Sustainability UOMSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.c360a_api.meta/c360a_api/c360a_api_salesforce_interactions_web_sdk.htm
https://developer.salesforce.com/docs/atlas.en-us.c360a_api.meta/c360a_api/c360a_api_engagement_mobile_sdk.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: SustainabilityUom

Component Type in 1GP Package Manager UI: Sustainability Unit of Measure

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

Documentation

• Salesforce Help: Create Custom Units of Measure

Sustainability UOM Conversion
Represents information about the unit of measure conversion for the additional fuel types defined by a customer.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

282

Sustainability UOM ConversionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.netzero_admin_create_custom_unitsofmeasure.htm&type=5&language=en_US

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: SustnUomConversion

Component Type in 1GP Package Manager UI: Sustainability Unit of Measure Conversion

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

Documentation

• Salesforce Help: Create a Unit of Measure Conversion for a Custom Fuel Type

Timeline Object Definition
Represents the container that stores the details of a timeline configuration. You can use this resource with Salesforce objects to see their
records' related events in a linear time-sorted view.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

283

Timeline Object DefinitionSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.netzero_admin_create_unitofmeasure_conversion_for_custom_fuel_type.htm&type=5&language=en_US

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

• FullName

• Definition

• IsActive

Both Package Developer and Subscriber Can Edit

• Label

• FullName

• Definition

• IsActive

Neither Package Developer or Subscriber Can Edit

• BaseObject

More Information
Feature Name

Metadata Name: TimelineObjectDefinition

Component Type in 1GP Package Manager UI: Timeline Object Definition

Use Case
Provides out-of-the-box Timeline object definitions.

License Requirements

Industries Health Cloud or any other License that has Timeline Permission enabled in them.

Legacy Component
There’s a legacy Timeline component in the Health Cloud Package which is being deprecated in favor of this component.

Documentation
Health Cloud Developer Guide: TimelineObjectDefinition

284

Timeline Object DefinitionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.health_cloud_object_reference.meta/health_cloud_object_reference/meta_timelineobjectdefinition.htm

Timesheet Template
Represents a template for creating time sheets in Field Service.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: TimesheetTemplate

Transaction Processing Type
Represents the processing constraint settings for a transaction processing request.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

285

Timesheet TemplateSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: TransactionProcessingType

Component Type in 1GP Package Manager UI: Transaction Processing Type

Consideration When Uninstalling
TransactionProcessingType records associated with the package are deleted from the org upon uninstallation. If sales transactions,
such as quotes or orders, reference these records, recreate them with the same DeveloperName. Otherwise, those sales transaction
records become corrupt.

Documentation
TransactionProcessingType

Translation
Add translations to your managed packages.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

286

TranslationSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.revenue_lifecycle_management_dev_guide.meta/revenue_lifecycle_management_dev_guide/tooling_api_objects_transactionprocessingtype.htm

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: Translation

Relationship to Other Components
When you add this component to a first-generation managed package, the Custom Object Translation component is automatically
added to your package.

For details on how subscribers can override translations after installing a package, see Override Translations in Second-Generation
Managed Packages and Unlocked Packages in the Salesforce DX Developer Guide.

Considerations When Packaging (Beta)
Enable Language Extension Packages in Dev Hub to create language extension packages that contain translations of components in
other packages.

Note: This feature is a Beta Service. Customer may opt to try such Beta Service in its sole discretion. Any use of the Beta Service
is subject to the applicable Beta Services Terms provided at Agreements and Terms.

Language extension packages can only contain translations: Translations and CustomObjectTranslations. If a base package includes
components that can’t be translated, those components aren’t included when you create a language extension package.

To remove translations delivered by a package extension, uninstall the base package and all related extensions, then reinstall the base
package and any other desired extensions. Otherwise, translations delivered by the extension remain until you uninstall all packages
with that namespace.

UI Object Relation Config
Represents the admin-created configuration of the object relation UI component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

287

UI Object Relation ConfigSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/entering_translated_terms_in_packages.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/entering_translated_terms_in_packages.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Reference Name

• Developer Name

• IsActive

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• ContextObject

More Information
Feature Name

Metadata Name: UIObjectRelationConfig

Component Type in 1GP Package Manager UI: UI Object Relation Configuration

Use Case
Provides out-of-the-box relationship card configuration in Health Cloud.

License Requirements
Industries Health Cloud, Industries Insurance, or Industries Automotive licenses

Documentation
Salesforce Help: Set Up Provider Relationship Cards to Show Practitioner Information

User Access Policy
Represents a user access policy.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

288

User Access PolicySecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=ind.admin_provider_cards.htm&type=5&language=en_US

NoComponent Has IP Protection

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Name

• Label

• User Criteria Filters

• Actions

Both Package Developer and Subscriber Can Edit

• Order (only subscriber editable)

• Status (only subscriber editable)

• Trigger Type (only subscriber editable)

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: UserAccessPolicy

Component Type in 1GP Package Manager UI: User Access Policy

Usage Limits
User access policies have their status set to Design when installed and can be activated by the subscriber. Subscribers can have up
to 200 active policies at one time.

Post Install Steps
The subscriber can activate user access policies so that they run automatically when a user record matching the policy’s user criteria
is created, updated, or both.

Documentation
Metadata API Developer Guide: UserAccessPolicy

Salesforce Help: User Access Policies

Validation Rule
Represents a validation rule, which is used to verify that the data a user enters in a record is valid and can be saved.

289

Validation RuleSecond-Generation Managed Packages

https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_useraccesspolicy.htm
https://help.salesforce.com/s/articleView?id=platform.perm_user_access_policies.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Error Condition Formula

• Error Location

• Error Message

Both Package Developer and Subscriber Can Edit

• Active

Neither Package Developer or Subscriber Can Edit

• Rule Name

More Information
Feature Name

Metadata Name: ValidationRule

Component Type in 1GP Package Manager UI: Validation Rule

Considerations When Packaging
For custom objects that are packaged, any associated validation rules are implicitly packaged as well.

Documentation
Metadata API Developer Guide: ValidationRule

290

Validation RuleSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_validationformulas.htm

Vehicle Asset Emissions Source Record Type Configuration
Represents the setup object that contains the mapping between the Vehicle Asset Emissions Source record type and internal enums.
You can primarily use this object for calculations across different record types.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: VehicleAssetEmssnSrcCnfg

Component Type in 1GP Package Manager UI: Vehicle Asset Emissions Source Record Type Configuration

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new vehicle asset types for end users.

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

291

Vehicle Asset Emissions Source Record Type ConfigurationSecond-Generation Managed Packages

Documentation

• Salesforce Help: Set Up Record Types for Net Zero Cloud

• Salesforce Help: Create a Vehicle Asset Emissions Source Record

View Definition (Beta)
Represents a view definition on a Slack app.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• TargetType, Content, Description

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ViewDefinition

Component Type in 1GP Package Manager UI: View Definition

Use Case
Represents a view within a Slack application

292

View Definition (Beta)Second-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.netzero_setup_record_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.netzero_manager_create_vehicle_asset.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

License Requirements
Connect to Slack Permission

Relationship to Other Components
View definitions are referenced by Slack apps.

Documentation
Apex SDK for Slack Developer Guide

Virtual Visit Config
Represents an external video provider configuration, which relays events from Salesforce to the provider.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• ComprehendServiceType

• ExperienceCloudSiteUrl

• ExternalRoleIdentifier

• Label

• MessagingRegion

• NamedCredential

• StorageBucketName

• UsageType

• VideoCallApptTypeValue

• VideoControlRegion

• VisitRegion

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

293

Virtual Visit ConfigSecond-Generation Managed Packages

https://developer.salesforce.com/docs/platform/salesforce-slack-sdk/overview

More Information
Feature Name

Metadata Name: VirtualVisitConfig

Documentation
Salesforce Help: Virtual Care

Visualforce Component
Represents a Visualforce component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

YesComponent Has IP Protection

If a developer removes a public Visualforce component from a new version of your 1GP managed package, the component is removed
from the subscriber’s org upon upgrade. If the Visualforce component is global, it remains in the subscriber org until the administrator
deletes it.

For 2GP packages, Visualforce components are hard deleted, and only components that aren’t marked as global can be removed from
a package.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• Label

• Markup

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

294

Visualforce ComponentSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.admin_virtual_care.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• Name

More Information
Feature Name

Metadata Name: ApexComponent

Documentation
Visualforce Components

Visualforce Page
Represents a Visualforce page.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

If a developer removes a public Visualforce component from a new version of your package, the component is removed from the
subscriber’s org upon upgrade. If the Visualforce component is global, it remains in the subscriber org until the administrator deletes it.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• Label

• Markup

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

295

Visualforce PageSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.pages_custom_components.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

More Information
Feature Name

Metadata Name: ApexPage

Component Type in 1GP Package Manager UI: Visualforce Page

Wave Analytic Asset Collection
A collection of CRM Analytics assets.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Folder

• Items

• Label

Both Package Developer and Subscriber Can Editv

• Color

• Description

• Shares

Neither Package Developer or Subscriber Can Edit

• Collection Type

296

Wave Analytic Asset CollectionSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: WaveAnalyticAssetCollection

Component Type in 1GP Package Manager UI: Wave Analytic Asset Collection

Use Case
Represents a collection of CRM Analytics assets.

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Documentation
Salesforce Help: Curate and Share Insights with Collections

Wave Application
A CRM Analytics application.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

297

Wave ApplicationSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://help.salesforce.com/s/articleView?id=analytics.bi_home_collections&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

• Asset Icon

• Description

• Shares

Neither Package Developer or Subscriber Can Edit

• Folder

• Template Origin

• Template Version

More Information
Feature Name

Metadata Name: WaveApplication

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Component
A CRM Analytics dashboard component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

298

Wave ComponentSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Template Asset Source Name

More Information
Feature Name

Metadata Name: WaveComponent

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dataflow
A CRM Analytics data prep dataflow.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

299

Wave DataflowSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Dataflow Type

More Information
Feature Name

Metadata Name: WaveDataflow

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dashboard
A CRM Analytics dashboard.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

300

Wave DashboardSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Date Version

• Template Asset Source Name

More Information
Feature Name

Metadata Name: WaveDashboard

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dataset
A CRM Analytics dataset.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

301

Wave DatasetSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Template Asset Source Name

• Type

More Information
Feature Name

Metadata Name: WaveDataset

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Lens
A CRM Analytics lens.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

302

Wave LensSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

• Visualization Type

Neither Package Developer or Subscriber Can Edit

• Application

• Datasets

• Template Asset Source Name

More Information
Feature Name

Metadata Name: WaveLens

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Recipe
A CRM Analytics data prep recipe.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

303

Wave RecipeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

• Security Predicate

• Target Dataset Alias

Neither Package Developer or Subscriber Can Edit

• Application

• Dataflow

• Format

• Template Asset Source Name

More Information
Feature Name

Metadata Name: Wave Recipe

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Template Bundle
A CRM Analytics template bundle.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

304

Wave Template BundleSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Asset Icon

• Description

Neither Package Developer or Subscriber Can Edit

• Asset Version

• Template Type

More Information
Feature Name

Metadata Name: WaveTemplateBundle

Considerations When Packaging
Analytics assets are installed in subscriber orgs via Analytics Templates using the WaveTemplateBundle. The template framework
supports the data sync and orchestration needed for visualization assets, along with customizations for each org. For more information,
see the Analytics Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Xmd
The extended metadata for CRM Analytics dataset fields and their formatting for dashboards and lenses.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

305

Wave XmdSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Dates

• Dimensions

• Measures

• Organizations

• Wave Visualization

Neither Package Developer or Subscriber Can Edit

• Application

• Dataset

• Dataset Connector

• Dataset Fully Qualified Name

• Origin

• Type

More Information
Feature Name

Metadata Name: WaveXmd

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Web Store Template
Represents a configuration for creating commerce stores.

306

Web Store TemplateSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: WebStoreTemplate

Documentation
Metadata API Developer Guide: WebStoreTemplate

Workflow Alert
WorkflowAlert represents an email alert associated with a workflow rule.

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Both protected and non-protected components can be
removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

307

Workflow AlertSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_webstoretemplate.htm

Both Package Developer and Subscriber Can Edit

• Additional Emails

• Email Template

• From Email Address

• Recipients

Neither Package Developer or Subscriber Can Edit

• Description

More Information
Feature Name

Metadata Name: Workflow

• Salesforce prevents you from uploading workflow alerts that have a public group, partner user, or role recipient. Change the recipient
to a user before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the installer
can customize it as necessary.

• You can package workflow rules and associated workflow actions, such as email alerts and field updates. However, any time-based
triggers aren’t included in the package. Notify your installers to set up any time-based triggers that are essential to your app.

• References to a specific user in workflow actions, such as the email recipient of a workflow email alert, are replaced by the user
installing the package. Sometimes workflow actions referencing roles, public groups, account team, opportunity team, or case team
roles aren’t uploaded.

• References to an org-wide address, such as the From email address of a workflow email alert, are reset to Current User
during installation.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Field Update
WorkflowFieldUpdate represents a workflow field update.

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages. Both protected
and non-protected components can be removed.

Package Developer Can Remove Component From Package

308

Workflow Field UpdateSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Field Value

• Formula Value

Both Package Developer and Subscriber Can Edit

• Lookup

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Field Update

• Salesforce prevents you from uploading workflow field updates that change an Owner field to a queue. Change the updated field
value to a user before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the
installer can customize it as necessary.

• Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a
standard or managed-installed object.

• You can package workflow rules and associated workflow actions, such as email alerts and field updates. However, any time-based
triggers aren’t included in the package. Notify your installers to set up any time-based triggers that are essential to your app.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Knowledge Publish
WorkflowKnowledgePublish represents Salesforce Knowledge article publishing actions and information.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes, if protectedPackage Developer Can Remove Component From Package

309

Workflow Knowledge PublishSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Action

• Description

• Unique Name

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Object Name

More Information
Feature Name

Metadata Name: WorkflowKnowledgePublish

Component Type in 1GP Package Manager UI: Knowledge Action

Considerations When Packaging

WorkflowKnowledgePublish can only be installed in Salesforce Classic orgs with Knowledge enabled.

WorkflowKnowledgePublish includes the article type *__kav, which is not supported by Lightning Knowledge.

If you try to install WorkflowKnowledgePublish into an org with Lightning Knowledge enabled, this message is displayed: When
Lightning Knowledge is enabled, you can’t add an article type.

License Requirements
Salesforce Classic orgs with Knowledge enabled can use this package.

Documentation
Salesforce Help: Create Workflow Actions for Knowledge

Workflow Outbound Message
WorkflowOutboundMessage represents an outbound message associated with a workflow rule.

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

310

Workflow Outbound MessageSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=service.knowledge_actions_create.htm&type=5&language=en_US

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages. Both protected
and non-protected components can be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Endpoint URL

• Fields to Send

• Send Session ID

Both Package Developer and Subscriber Can Edit

• User to Send As

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Outbound Message

Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a standard
or managed-installed object.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Rule
This metadata type represents a workflow rule.

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

311

Workflow RuleSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Evaluation Criteria

• Rule Criteria

Both Package Developer and Subscriber Can Edit

• Active

Neither Package Developer or Subscriber Can Edit

• Rule Name

More Information
• Feature Name:

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Rule

• Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a
standard or managed-installed object.

• Developers can associate or disassociate workflow actions with a workflow rule at any time. These changes, including disassociation,
are reflected in the subscriber’s org upon install. In managed packages, a subscriber can’t disassociate workflow actions from a
workflow rule if it was associated by the developer.

• On install, all workflow rules newly created in the installed or upgraded package, have the same activation status as in the uploaded
package.

• You can't package workflow rules with time triggers.

Workflow Task
This metadata type references an assigned workflow task.

312

Workflow TaskSecond-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages. Both protected
and non-protected components can be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Assign To

• Comments

• Due Date

• Priority

• Record Type

• Status

Neither Package Developer or Subscriber Can Edit

• Subject

More Information
Feature Name

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Task

• Salesforce prevents you from uploading workflow tasks that are assigned to a role. Change the Assigned To field to a user
before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the installer can
customize it as necessary.

• This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

313

Workflow TaskSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Behavior of Specific Metadata in Second-Generation Managed
Packages

Learn how profiles and namespace visibility are handled for second-generation managed packages.

Package Agentforce Metadata Components

Bring the power of conversational AI to your apps with Agentforce.

Develop and Package Agent Templates Using Scratch Orgs

At a high-level, agents are distributed by ISVs as agent templates. To package an agent template you first create and test an agent
in a namespaced scratch org, retrieve the agent to your Salesforce DX project, generate an agent template from the agent using
Salesforce CLI, and finally package the agent template.

Package Data Cloud Metadata Components

Utilize the power of Data Cloud in your apps by including Data Cloud metadata in your managed packages. Working with Data Cloud
metadata has some unique requirements. Review these details to understand how to work with Data Cloud metadata in your
packages.

Protected Components in Managed Packages

Developers can mark certain components as protected. Protected components can’t be linked to or referenced by components
created in a subscriber org. A developer can delete a protected component in a future release without worrying about failing
installations. However, after a component is marked as unprotected and is released globally, the developer can’t delete it.

Set Up a Platform Cache Partition with Provider Free Capacity

Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through
a capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Metadata Access in Apex Code

Use the Metadata namespace in Apex to access metadata in your package.

Permission Sets and Profile Settings in Packages

Permission sets, permission set groups, and profile settings are all ways to grant permissions and other access settings to a package.
Only use a profile setting if permission sets don’t support the specific access you need to grant. In all other instances, use permission
sets or permission set groups.

Protecting Your Intellectual Property

The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check
for malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

Call Salesforce URLs Within a Package

The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all
possible URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex
DomainCreator class to get the corresponding hostname. This method allows your package to work in all orgs, regardless of
the org type and My Domain settings.

Namespace-Based Visibility for Apex Classes in Second-Generation Managed Packages

The @NamespaceAccessible makes public Apex in a package available to other packages that use the same namespace.
Without this annotation, Apex classes, methods, interfaces, and properties defined in a second-generation managed package aren’t
accessible to the other packages with which they share a namespace. Apex that is declared global is always available across all
namespaces, and needs no annotation.

Work with Services Outside of Salesforce

314

Behavior of Specific Metadata in Second-Generation
Managed Packages

Second-Generation Managed Packages

Package Connected Apps in Second-Generation Managed Packaging

Add a connected app to a second-generation managed package.

Test and Respond to the New Order Save Behavior

To make sure custom application logic works accurately on records associated with the Order object, turn on the Enable New Order
Save Behavior setting, and test the behavior. We recommend that you support both the new and old order save behavior during
testing.

Package Agentforce Metadata Components
Bring the power of conversational AI to your apps with Agentforce.

Before you add Agentforce metadata to your package:

• Review the setup steps in Get Access to Scratch Orgs That Have Agentforce.

• Create your agent’s actions and topics in the Agentforce Asset Library. See Create a Custom Agent Action and Create a Custom Topic
for instructions. Any agent action or topic that will be packaged must be in the Agentforce Asset Library.

Table 2: Packageable Agentforce Metadata

More InformationAvailable in …Metadata NameFeature Name

Agent ActionManaged 2GP and Managed
1GP

GenAiFunctionAgent Actions

Agent TopicManaged 2GP and Managed
1GP

GenAiPluginAgent Topics

Prompt TemplateManaged 2GP and Managed
1GP

GenAiPromptTemplatePrompt Templates

Bot Template, Gen AI Planner
Bundle

Managed 2GP and Managed
1GP

BotTemplate,
GenAiPlannerBundle

Agent Templates

SEE ALSO:

Get Access to Scratch Orgs That Have Agentforce

Salesforce Help: Considerations for Packaging Prompt Templates

Trailhead: Quick Start: Build Your First Agent with Agentforce

Salesforce Help: Agentforce: Agents

Agentforce Developer Guide

Salesforce Help: The Building Blocks of Agents

Salesforce Help: Customize Your Agents with Topics and Actions

Salesforce Help: Considerations for Agents

Salesforce Help: AI Project Success

Develop and Package Agent Templates Using Scratch Orgs
At a high-level, agents are distributed by ISVs as agent templates. To package an agent template you first create and test an agent in a
namespaced scratch org, retrieve the agent to your Salesforce DX project, generate an agent template from the agent using Salesforce
CLI, and finally package the agent template.

315

Package Agentforce Metadata ComponentsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_actions_custom.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics_add_custom.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaifunction
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiplugin
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiprompttemplate
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_bot_template
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiplannerbundle
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiplannerbundle
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&language=en_US
https://trailhead.salesforce.com/content/learn/projects/quick-start-build-your-first-agent-with-agentforce
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/get-started.html
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics_actions.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.generative_ai_plan_project.htm&type=5&language=en_US

Important: If you’re packaging an agent template in October 2025 or later, follow the workaround instructions for packaging
agent templates. Due to a known issue with packaging local actions and topics, you must package agent templates using the
workaround instructions at this time.

Workflow for Agent Template Development

Agent and Agent Template Metadata
To package an agent template it helps to first understand the metadata types that make up an agent and an agent template.

Agents are defined by these major metadata types.

• Bot

• BotVersion

• GenAiPlannerBundle

The GenAiPlannerBundle type in turn defines the agent's topics and actions. The agent generate template Salesforce CLI
command brings together the metadata files for these three types and generates a BotTemplate file for a specific agent (Bot and
BotVersion). You then use the BotTemplate file, and the GenAiPlannerBundle file, to package the agent template in a managed package.

316

Develop and Package Agent Templates Using Scratch OrgsSecond-Generation Managed Packages

https://help.salesforce.com/s/issue?id=a02Ka00000ji2nu
https://help.salesforce.com/s/issue?id=a02Ka00000ji2nu

Create an Agent
Create and test your agent.

From Setup in your scratch org, enter Agents in the Quick Find box, and select Agentforce Agents. Then locate and enable the
Agentforce setting and refresh the page.

1. Click New Agent, and then select an agent type.

2. Follow the guided setup steps, and then click Create.

For more guidance, see the documentation for the agent type you chose. For details about creating an agent, see Set Up Your Agent.

Agentforce-enabled scratch orgs have access to the Agentforce Testing Center. For more detailed information on testing your agents
directly in your DX project, see Test an Agent with Agentforce DX in the Agentforce Developer Guide.

Set Up Your Salesforce DX Project and Scratch Org
To set up a Salesforce DX project and scratch org, you must already have a namespace and scratch org ready to use.

For guidance on obtaining a namespace or an Agentforce-enabled scratch org, see Get Access to Scratch Orgs with Agentforce Enabled.

Note: To package BotTemplate metadata, you must first enable Einstein Chatbot in your Dev Hub org. You must also specify this
metadata in your project-scratch-def.json file.

317

Develop and Package Agent Templates Using Scratch OrgsSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ai.agent_setup_explore_types.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.agent_parent_setup.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.agent_testing_center.htm&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/agent-dx-test.html
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_einstein.htm

1. If you’re using an existing Salesforce DX project that contains Apex classes, flows, or prompt templates for your agent, deploy them
to the scratch org.

sf project deploy start --source-dir force-app --target-org MyNamespacedScratchOrg

2. Open the scratch org.

sf org open

Develop Your Agentforce Package
After you have built and tested your agent, you are ready to start packaging it.

1. Retrieve the relevant metadata into your Salesforce DX project.

sf project retrieve start --metadata Agent:My_Awesome_Agent –-target-org
MyNamespacedScratchOrg

2. Create an agent template metadata source file.

In this example, we are generating an agent template from a Bot metadata file in your DX project that corresponds to the
My_Awesome_Agent agent. A single Bot can have multiple BotVersions. Use the --agent-version flag to specify the
version.

sf agent generate template --agent-file
force-app/main/default/bots/My_Awesome_Agent/My_Awesome_Agent.bot-meta.xml --agent-version
1

For more details on the agent generate template command, see the Salesforce CLI Reference Guide.

3. Deploy the agent template metadata source file to your scratch org.

sf project deploy start --source-dir force-app --target-org MyNamespacedScratchOrg

4. When you're satisfied with your agent template, remove the following metadata from your package directory.

a. The GenAiPlannerBundle file that was part of your original agent. This file was used to create a new, separate GenAiPlannerBundle
file for your agent template and is not necessary to package. Remove the GenAiPlannerBundle file that does not have “Template”
in the name.

b. The Bot and BotVersion. Removing these metadata types prevents errors during packaging, since agents aren’t packageable.

Note: To package prompt templates, you must assign permissions in the sfdx-project.json file. See Packaging
Considerations for Prompt Templates.

5. After you’ve tested your agent, create a new package version that contains the template and all dependencies. Possible dependencies
include: topics, actions, Apex classes, flows, and prompt templates.

sf package version create --package "Agentforce App" --installation-key “HIF83kS8kS7C”
--definition-file config/project-scratch-def.json --code-coverage --wait 10

After a subscriber installs your package in their Agentforce-enabled org, they can use the Agentforce UI to create an agent from your
template.

318

Develop and Package Agent Templates Using Scratch OrgsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_agent_commands_unified.htm#cli_reference_agent_generate_template_unified
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm

SEE ALSO:

Get Access to Scratch Orgs That Have Agentforce

Package Agentforce Metadata Components

Salesforce Help: Agentforce: Agents

Agentforce Developer Guide

Salesforce Help: The Building Blocks of Agents

Package Data Cloud Metadata Components
Utilize the power of Data Cloud in your apps by including Data Cloud metadata in your managed packages. Working with Data Cloud
metadata has some unique requirements. Review these details to understand how to work with Data Cloud metadata in your packages.

Enable Data Cloud for Scratch Orgs
To create scratch orgs or package Data Cloud components, you must have Dev Hub enabled in your Partner Business Org. Then, you
can request that Data Cloud for Scratch Orgs be enabled by logging a case with Salesforce Partner Support. Data Cloud for Scratch Orgs
is only available to scratch orgs associated with the Dev Hub in your Partner Business Org.

Create Dedicated Data Cloud Packages
When creating a managed package with Data Cloud metadata, you must isolate the Data Cloud metadata from the other Salesforce
metadata by creating separate packages that contain only Data Cloud metadata. Then create package dependencies between your
dedicated Data Cloud package and any related packages.

Add Data Cloud Metadata to a Data Kit
When packaging Data Cloud metadata, you must add the metadata to a data kit, and then add the data kit to the managed package.
Data kits streamline the package creation and installation process. For more details, see Packages and Data Kits in the Data Cloud Developer
Guide.

319

Package Data Cloud Metadata ComponentsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_packageable_agentforce_md.htm
https://help.salesforce.com/s/articleView?id=ai.copilot_intro.htm&type=5&language=en_US
https://developer.salesforce.com/docs/einstein/genai/guide/get-started.html
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&type=5&language=en_US
https://partners.salesforce.com
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html

Data Cloud One Companion Connected Orgs
Packages can’t be installed on orgs that are connected to Data Cloud as Data Cloud One companion orgs. When Data Cloud customers
install a managed package containing Data Cloud metadata, they must install the package in their Data Cloud home org. For customers
using Data Cloud One, any package installed into data spaces shared with a companion org are automatically installed into the companion
org. Companion orgs automatically receive package updates when the package in the home org is upgraded.

These package-related actions can’t be initiated in companion connected orgs, and must instead be initiated in the Data Cloud One
home org.

• Installing a managed package

• Uninstalling a managed package

• Deleting package metadata

• Receiving a package push upgrade

SEE ALSO:

Data Cloud Developer Guide: Get Started with Data Cloud Development

Data Cloud Developer Guide: Workflow for Data Cloud Second-Generation Managed Packages

Data Cloud Developer Guide: Metadata Components for Data Cloud Cheat Sheet

Salesforce Help: Connect Salesforce CRM Orgs to Data Cloud

Protected Components in Managed Packages
Developers can mark certain components as protected. Protected components can’t be linked to or referenced by components created
in a subscriber org. A developer can delete a protected component in a future release without worrying about failing installations.
However, after a component is marked as unprotected and is released globally, the developer can’t delete it.

Developers can mark these components as protected in managed packages.

• Custom labels

• Custom links (for Home page only)

• Custom metadata types

• Custom objects

• Custom permissions

• Custom settings

• Workflow alerts

• Workflow field updates

• Workflow outbound messages

• Workflow tasks

320

Protected Components in Managed PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/get-started.html
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/data-cloud-2gp-workflow.html
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/component-cheatsheet.html
https://help.salesforce.com/s/articleView?id=data.c360_a_connect_salesforce_orgs.htm&type=5&language=en_US

Considerations for Protected Custom Objects in Subscriber Sandboxes
When a subscriber creates either a full or partial sandbox copy using a template, protected custom objects don’t display in the list of
objects to copy. As a result, data contained in the records of protected custom objects isn’t copied to these sandboxes. If a full sandbox
is created without selecting a sandbox template, data from protected custom objects is copied to the sandbox.

SEE ALSO:

Hide Custom Objects and Custom Permissions in Your Subscribers' Orgs

Set Up a Platform Cache Partition with Provider Free Capacity
Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through a
capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Follow the steps here to allocate the Provider Free capacity to a Platform Cache partition before adding it to your managed package.

Note: If a Platform Cache partition is already part of your managed package, you can choose to edit the existing partition and
allocate the Provider Free capacity to it.

Create a partition from the Platform Cache page and then set it up to use the Provider Free capacity

1. From Setup, in the Quick Find box, enter Platform Cache, and then select Platform Cache.

As the Provider Free capacity is automatically enabled in all Developer edition orgs, the Org’s Capacity Breakdown donut chart shows
the Provider Free capacity.

2. Click New Platform Cache Partition.

3. In the Label box, enter a name for the partition. The name can contain alphanumeric characters only and must be unique in your
org.

4. In the Description box, enter an optional description for the partition.

5. In the Capacity section, allocate separate capacities for session cache and org cache from the available Provider Free capacity.

6. Save the new Platform Cache partition.

You can add this new Platform Cache partition to your managed package. When a security-reviewed managed package with Platform
Cache partition is installed on the subscriber org, the Provider Free capacity is allocated and automatically made available to the installed
partition. The managed package can start using the Platform Cache partition; no post-install script or manual allocation is required.

Note: If the managed package is not AppExchange-certified and security-reviewed, the Provider Free capacity resets to zero and
will not be allocated to the installed Platform Cache partition.

When a Platform Cache partition with Provider Free capacity is installed in a subscriber org, the Provider Free capacity allocated is
non-editable. The provider free capacity of one installed partition can’t be used for any other partition.

Tip: After you install a Platform Cache partition with Provider Free capacity, you can edit the partition and make additional
allocations from the available platform cache capacity of the org.

Metadata Access in Apex Code
Use the Metadata namespace in Apex to access metadata in your package.

Your package may need to retrieve or modify metadata during installation or update. The Metadata namespace in Apex provides
classes that represent metadata types, as well as classes that let you retrieve and deploy metadata components to the subscriber org.
These considerations apply to metadata in Apex:

321

Set Up a Platform Cache Partition with Provider Free CapacitySecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg2_dev/fma_hide_custom_objects_permissions.htm

• You can create, retrieve, and update metadata components in Apex code, but you can’t delete components.

• You can currently access records of custom metadata types and page layouts in Apex.

• Managed packages not approved by Salesforce can’t access metadata in the subscriber org, unless the subscriber org enables the
Allow metadata deploy by Apex from non-certified Apex package version org preference. Use this org preference when
doing test or beta releases of your managed packages.

If your package accesses metadata during installation or update, or contains a custom setup interface that accesses metadata, you must
notify the user. For installs that access metadata, notify the user in the description of your package. The notice should let customers
know that your package has the ability to modify the subscriber org’s metadata.

You can write your own notice, or use this sample:

This package can access and change metadata outside its namespace in the Salesforce
org where it’s installed.

Salesforce verifies the notice during the security review.

For more information, see Metadata in the Apex Developer Guide.

Permission Sets and Profile Settings in Packages

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Permission sets are
available in: Contact
Manager, Professional,
Group, Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Permission sets, permission set groups, and profile settings are all ways to grant permissions and
other access settings to a package. Only use a profile setting if permission sets don’t support the
specific access you need to grant. In all other instances, use permission sets or permission set groups.

Important: Where possible, we changed noninclusive terms to align with our company
value of Equality. We maintained certain terms to avoid any effect on customer
implementations.

Profile SettingsPermission SetsBehavior

What permissions and settings
are included?

•• Assigned custom appsAssigned custom apps

• •Custom object permissions Assigned connected apps

•• Tab settingsExternal object permissions

• •Custom field permissions Page layout assignments

• Record type assignments• Custom metadata types
permissions • Custom field permissions

• Custom permissions • Custom metadata type
permissions• Custom settings

permissions • Custom object permissions
• Custom tab visibility

settings
• Custom permissions

• Custom settings
permissions• Apex class access

• Visualforce page access • External object permissions
• External data source access • Apex class access
• Record types • Visualforce page access

Note: Although
permission sets include

• External data source access

standard tab visibility

322

Permission Sets and Profile Settings in PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_metadata.htm

Profile SettingsPermission SetsBehavior

settings, these settings can’t be
packaged as permission set
components.

If a permission set includes an
assigned custom app, it’s possible
that a subscriber can delete the app.
In that case, when the package is
later upgraded, the assigned custom
app is removed from the permission
set.

Profile settings are applied to existing
profiles in the subscriber’s org on install or

Yes.Can they be upgraded in managed
packages?

upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied.

Yes.No.Can subscribers edit them?

Yes. Subscribers can clone any profile that
includes permissions and settings related
to packaged components.

Yes. However, if a subscriber clones a
permission set or creates one that’s based
on a packaged permission set, it isn’t
updated in subsequent upgrades. Only the

Can you clone or create them?

permission sets included in a package are
upgraded.

No.No. Also, you can’t include object
permissions for a custom object in a

Do they include standard object
permissions?

master-detail relationship where the master
is a standard object.

No.No.Do they include user permissions?

Yes. Profile settings are applied to existing
profiles in the subscriber’s org on install or

No. Subscribers must assign permission sets
after installation.

Are they included in the installation wizard?

upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied. Affected components
(listed with the developerName) can include
new:

• Fields (CustomField)

• Objects (CustomObject),

• Tabs (CustomTab)

• Apps (CustomApplication)

• Apex classes (ApexClass)

• Apex pages (ApexPage)

• Layouts (Layout)

323

Permission Sets and Profile Settings in PackagesSecond-Generation Managed Packages

Profile SettingsPermission SetsBehavior

• Record types (RecordType)

• Custom permissions
(CustomPermission)

• Custom settings (CustomSetting)

• Custom metadata types
(CustomMetadata)

None. In a subscriber org, the installation
overrides the profile settings, not their user
licenses.

A permission set is only installed if the
subscriber org has at least one user license
that matches the permission set. For
example, permission sets with the Salesforce

What are the user license requirements?

Platform user license aren’t installed in an
org that has no Salesforce Platform user
licenses. If a subscriber later acquires a
license, the subscriber must reinstall the
package to get the permission sets
associated with the newly acquired license.

Permission sets with no user license are
always installed. If you assign a permission
set that doesn’t include a user license, the
user’s existing license must allow its enabled
settings and permissions. Otherwise, the
assignment fails.

Profile settings are applied to existing
profiles.

Subscribers must assign packaged
permission sets after installing the package.

How are they assigned to users?

Same behavior as for permission sets.A permission set in the extension package
can't modify access permissions for either

Can permission sets in an extension package
grant access to objects installed in a base
package? the parent objects in the base package or

the associated child objects in the extension
package.

Best Practices
• If users need access to apps, standard tabs, page layouts, and record types, don't use permission sets as the sole permission-granting

model for your app.

• Create packaged permission sets that grant access to the custom components in a package, but not standard Salesforce components.

Permission Set Groups

You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set
groups can be updated when you upgrade the package.

324

Permission Sets and Profile Settings in PackagesSecond-Generation Managed Packages

Custom Profile Settings

Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify
custom object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your
custom profiles with existing non-standard profiles. Permissions in your custom profile that are related to new components created
as part of the install or upgrade are added to the existing profile. The security settings associated with standard objects and existing
custom objects in an installer’s organization are unaffected.

How We Handle Profile Settings in Second-Generation Managed Packages

During package version creation for unlocked or second-generation managed packages, the build system inspects the contents of
all profiles in the DX project directory, not just the directory specified in the path, and preserves only the profile settings that are
directly related to the metadata in the package. The profile itself, and any profile settings unrelated to the package’s metadata are
discarded from the package.

Permission Set Groups
You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set groups
can be updated when you upgrade the package.

Keep these considerations in mind when you organize permission sets into groups to include in your managed packages:

Important: You can't include object permissions for standard objects in managed packages. During package installation, all
object permissions for standard objects are ignored, and aren't installed in the org.

Also:

• You can’t add permission sets constrained by a permission set license to managed or unmanaged packages.

• You can only package permissions for metadata that’s included in your package.

• You can add or remove permission sets in permission set groups as part of a package upgrade. Subscribers can also modify the
permission set groups by muting permissions or adding or removing local permissions sets. Subscribers can't remove included
permission sets from the permission set groups in the managed package.

SEE ALSO:

Salesforce Help: Create a Permission Set Group

Salesforce Help: Permission Set Group Considerations

Custom Profile Settings
Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify custom
object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your custom profiles
with existing non-standard profiles. Permissions in your custom profile that are related to new components created as part of the install
or upgrade are added to the existing profile. The security settings associated with standard objects and existing custom objects in an
installer’s organization are unaffected.

Consider these tips when creating custom profiles for apps you want to publish.

• Give each custom profile a name that identifies the profile as belonging to the app. For example, if you’re creating a Human Resources
app named “HR2GO,” a good profile name would be ”HR2GO Approving Manager.”

• If your custom profiles have a hierarchy, use a name that indicates the profile’s location in the hierarchy. For example, name a
senior-level manager’s profile ”HR2GO Level 2 Approving Manager.”

• Avoid custom profile names that can be interpreted differently in other organizations. For example, the profile name ”HR2GO Level
2 Approving Manager” is open to less interpretation than ”Sr. Manager.”

325

Permission Sets and Profile Settings in PackagesSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=platform.perm_set_groups_create.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=platform.perm_set_groups_considerations.htm&type=5&language=en_US

• Provide a meaningful description for each profile. The description displays to the user installing your app.

Alternatively, you can use permission sets to maintain control of permission settings through the upgrade process. Permission sets
contain a subset of profile access settings, including object permissions, field permissions, Apex class access, and Visualforce page access.
These permissions are the same as those available on profiles. You can add a permission set as a component in a package.

Note: In packages, assigned apps and tab settings aren’t included in permission set components.

How We Handle Profile Settings in Second-Generation Managed Packages
During package version creation for unlocked or second-generation managed packages, the build system inspects the contents of all
profiles in the DX project directory, not just the directory specified in the path, and preserves only the profile settings that are directly
related to the metadata in the package. The profile itself, and any profile settings unrelated to the package’s metadata are discarded
from the package.

During package installation, the preserved profile settings are applied only to existing profiles in the subscriber org. The profile itself isn’t
installed in the subscriber org.

To control which profile settings are included, use the scopeProfiles parameter in the project configuration file.

Note: Packages that contain only profiles and no additional metadata aren’t allowed and fail during package version creation.

This installation option is available
via…

The packaged profile settings are
applied to...

When you select…

The System Administrator profile in the
subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile.

Install for Admins Only • The package installer page

• Salesforce CLI sf package
install command

The default behavior for CLI-based package
installs is to install for admins only.

The System Administrator profile and all
cloned profiles in the subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile, and all cloned profiles.

Install for All Users • The package installer page

• Salesforce CLI sf package
install command

To install for all users via the CLI, include the
security type parameter.

Standard profiles can’t be modified.
sf package install
--security-type AllUsers

Specific profiles in the subscriber org. This
selection lets the person installing your

Install for Specific Profiles • The package installer page

Not available for CLI-based package
installations.

package determine how to map the profile
settings you packaged to specific profiles in
their org.

To test the behavior of your packaged profile, install your package in a scratch org.

1. From Setup, enter Profile in the Quick Find box, and then locate and inspect the profiles you selected during package installation.

2. Check whether your profile settings have been applied to that profile.

326

Permission Sets and Profile Settings in PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://help.salesforce.com/s/articleView?id=platform.standard_profiles.htm&type=5&language=en_US

Repeat this step for any other profile you expect to contain your profile settings. Don’t look for the profile name you created; we
apply profile settings to existing profiles in the subscriber org.

Whenever possible, use package permission sets instead of profile settings. Subscribers who install your package can easily assign your
permission set to their users.

Note: During a push upgrade, some profile settings related to Apex classes and field-level security aren’t automatically assigned
to the System Admin profile. To ensure that user access is set up correctly after a push upgrade, communicate with your customer.
Make sure they review and update their profile settings after a push upgrade.

Protecting Your Intellectual Property
The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check for
malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

To protect your intellectual property, consider the following:

• Only publish package components that are your intellectual property and that you have the rights to share.

• After your components are available on AppExchange, you can’t recall them from anyone who has installed them.

• The information in the components that you package and publish might be visible to customers. Use caution when adding your
code to a formula, Visualforce page, or other component that you can’t hide in your app.

• The code contained in an Apex class, trigger, Lightning, or Visualforce component that’s part of a managed package is obfuscated
and can’t be viewed in an installing org. The only exceptions are methods declared as global. You can view global method signatures
in an installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view their
packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

• If a custom setting is contained in a managed package, and the Visibility is specified as Protected, the custom setting isn’t
contained in the list of components for the package on the subscriber’s org. All data for the custom setting is hidden from the
subscriber.

Call Salesforce URLs Within a Package
The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all possible
URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex DomainCreator
class to get the corresponding hostname. This method allows your package to work in all orgs, regardless of the org type and My Domain
settings.

The formats for My Domain URLs vary between production and sandbox orgs. With partitioned domains, hostname formats also vary
for demo, Developer Edition, free, patch, and scratch orgs, plus Trailhead playgrounds. For example, there are currently two possible
formats for sandbox My Domain login hostname formats and ten possible Visualforce hostname formats. For more information, see My
Domain URL Formats and Partitioned Domains in Salesforce Help.

In general, use relative URLs whenever possible within your packages. If a full URL is required, use the System.DomainCreator
Apex class to get the URL’s hostname.

Note: The System.DomainCreator Apex class is available in API version 54.0 and later.

Use the My Domain Login URL for Logins
All Salesforce orgs have a My Domain, an org-specific subdomain for the URLs that Salesforce hosts for that org. Customers have the
option to prevent user and SOAP API logins from the generic login.salesforce.com and test.salesforce.com
hostnames. When those options are enabled, logins require the My Domain login URL.

327

Protecting Your Intellectual PropertySecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=products.domain_name_app_url_changes.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_app_url_changes.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=products.domain_name_partitioned_domains.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_DomainCreator.htm

To get the My Domain login URL format for an org, use the getOrgMyDomainHostname() method of the
System.DomainCreator Apex class.

//Get the My Domain login hostname
String myDomainHostname = DomainCreator.getOrgMyDomainHostname();

In this case, in a production org with a My Domain name of mycompany, myDomainHostname returns
mycompany.my.salesforce.com.

Use Relative URLs
Whenever possible, we recommend that you use a relative URL, which only includes the path within your packages.

For example, assume that you want to add a link on the Visualforce page with a URL of
https://MyDomainName--PackageName.vf.force.com/apex/myCases to a Visualforce page with the URL,
https://MyDomainName--PackageName.vf.force.com/apex/newCase. In this case, use the relative path when
referencing the page: /apex/newCase.

Generate Hostnames for Full URLs
Sometimes a full URL is required. For example, when your package delivers a Visualforce page that includes content delivered by your
package. If your package includes full URLs, use the System.DomainCreator Apex class to get the associated hostnames.
Otherwise, users can experience issues with your package functionality.

For example, to return the hostname for Visualforce pages, use the getVisualforceHostname(packageName) method of
the System.DomainCreator Apex class.

//Define the name of your package as a string
String packageName = 'abcpackage';

//Get the Visualforce hostname
String vfHostname = DomainCreator.getVisualforceHostname(packageName);

//Build the URL for creating a new case
System.URL vfNewCaseUrl = new URL('https', vfHostname, '/apex/newCase');

In this example, in a production org with enhanced domains and a My Domain name of mycompany, vfNewCaseUrl returns
https://mycompany--abcpackage.vf.force.com/apex/newCase.

Get Part of a Domain
If you find code in your package that parses a known URL or domain to get a value, we recommend that you update that code to use
one of the newer Apex classes. Code that assumes a specific URL format can fail.

If you need a hostname, assess whether you can use the System.DomainCreator class.

If you need that value for another reason, use the Apex System.DomainParser or System.Domain class instead.

In this example, we parse a known URL to get the domain type, the org’s My Domain name, and the package name.

//Parse a known URL
System.Domain domain = DomainParser.parse('https://mycompany--abcpackage.vf.force.com');

//Get the domain type
System.DomainType domainType = domain.getDomainType(); // Returns VISUALFORCE_DOMAIN

328

Call Salesforce URLs Within a PackageSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_DomainParser.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_Domain.htm

//Get the org’s My Domain name
String myDomainName = domain.getMyDomainName(); // Returns mycompany

//Get the package name
String packageName = domain.getPackageName(); // Returns abcpackage

Namespace-Based Visibility for Apex Classes in Second-Generation
Managed Packages
The @NamespaceAccessible makes public Apex in a package available to other packages that use the same namespace. Without
this annotation, Apex classes, methods, interfaces, and properties defined in a second-generation managed package aren’t accessible
to the other packages with which they share a namespace. Apex that is declared global is always available across all namespaces, and
needs no annotation.

Considerations for Apex Accessibility Across Packages

• You can’t use the @NamespaceAccessible annotation for an @AuraEnabled Apex method or an @InvocableMethod
Apex method.

• You can add or remove the @NamespaceAccessible annotation at any time, even on managed and released Apex code.
Make sure that you don’t have dependent packages relying on the functionality of the annotation before adding or removing it.

• When adding or removing @NamespaceAccessible Apex from a package, consider the impact to customers with installed
versions of other packages that reference this package’s annotation. Before pushing a package upgrade, ensure that no customer
is running a package version that would fail to fully compile when the upgrade is pushed.

• If a public interface is declared as @NamespaceAccessible, then all interface members inherit the annotation. Individual
interface members can’t be annotated with @NamespaceAccessible.

• If a public or protected variable or method is declared as @NamespaceAccessible, its defining class must be either global or
public with the @NamespaceAccessible annotation.

• If a public or protected inner class is declared as @NamespaceAccessible, its enclosing class must be either global or public
with the @NamespaceAccessible annotation.

This example shows an Apex class marked with the @NamespaceAccessible annotation. The class is accessible to other packages
within the same namespace. The first constructor is also visible within the namespace, but the second constructor isn’t.

// A namespace-visible Apex class
@NamespaceAccessible
public class MyClass {

private Boolean bypassFLS;

// A namespace-visible constructor that only allows secure use
@NamespaceAccessible
public MyClass() {

bypassFLS = false;
}

// A package private constructor that allows use in trusted contexts,
// but only internal to the package
public MyClass (Boolean bypassFLS) {

this.bypassFLS = bypassFLS;
}
@NamespaceAccessible

329

Namespace-Based Visibility for Apex Classes in
Second-Generation Managed Packages

Second-Generation Managed Packages

protected Boolean getBypassFLS() {
return bypassFLS;

}
}

SEE ALSO:

Namespaces for Second-Generation Managed Packages

Create and Register Your Namespace for Second-Generation Managed Packages

Link a Namespace to a Dev Hub Org

Work with Services Outside of Salesforce
You might want to update your Salesforce data when changes occur in another service. Likewise, you might also want to update the
data in a service outside of Salesforce based on changes to your Salesforce data. For example, you might want to send a mass email to
more contacts and leads than Salesforce allows. You can use an external mail service that allows users to build a recipient list of names
and email addresses using the contact and lead information in your Salesforce organization.

An app built on the Salesforce Platform can connect with a service outside of Salesforce in many ways. For example, you can:

• create a custom link or custom formula field that passes information to an external service.

• use the Platform APIs to transfer data in and out of Salesforce.

• use an Apex class that contains a Web service method.

Warning: Don’t store usernames and passwords within any external service.

Provisioning a Service External to Salesforce
If your app links to an external service, users who install the app must be signed up to use the service. Provide access in one of two ways:

• Access by all active users in an organization with no real need to identify an individual

• Access on a per user basis where identification of the individual is important

The Salesforce service provides two globally unique IDs to support these options. The user ID identifies an individual and is unique across
all organizations. User IDs are never reused. Likewise, the organization ID uniquely identifies the organization.

Avoid using email addresses, company names, and Salesforce usernames when providing access to an external service. Usernames can
change over time and email addresses and company names can be duplicated.

If you’re providing access to an external service, we recommend the following:

• Use Single Sign-On (SSO) techniques to identify new users when they use your service.

• For each point of entry to your app, such as a custom link or web tab, include the user ID in the parameter string. Have your service
examine the user ID to verify that the user ID belongs to a known user. Include a session ID in the parameter string so that your
service can read back through the Lightning Platform API and validate that this user has an active session and is authenticated.

• Offer the external service for any known users. For new users, display an alternative page to collect the required information.

• Don’t store passwords for individual users. Besides the obvious security risks, many organizations reset passwords on a regular basis,
which requires the user to update the password on your system as well. We recommend designing your external service to use the
user ID and session ID to authenticate and identify users.

• If your application requires asynchronous updates after a user session has expired, dedicate a distinct administrator user license for
this.

330

Work with Services Outside of SalesforceSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_namespaces.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm

Package Connected Apps in Second-Generation Managed Packaging
Add a connected app to a second-generation managed package.

Note: Consider using External Client Apps instead. External Client Apps are the new and improved generation of connected apps.
For details, see Package External Client Apps In Second-Generation Managed Packages

Prerequisites: Create a connected app.

1. Create a first-generation managed package (1GP) and add the connected app. It’s fine if the connected app is the only component
in the package. Use the same namespace as the 2GP package for the 1GP package.

Take note of the version number of the connected app; you’ll use this number later.

2. From your packaging org, upload the 1GP package to create a package version.

3. Promote the 1GP version to the released state.

Promoting the 1GP version allows the connected app to be included in a second-generation managed package. You don’t need to
install the 1GP version into an org.

4. Navigate to the source for your connected app, or pull the source from the org where the connected app is being developed.

5. Create a source .xml file in your 2GP directory and reference the connected app you want to include. See the Sample Source File
section.

6. Create a second-generation managed package and add in the source code for the connected app. Add the source code manually.
You can’t use sf project retrieve start or the retrieve() Metadata API call to add the source code.

Example: Sample Source File

<ConnectedApp xmlns="http://soap.sforce.com/2006/04/metadata">
<developerName>db_0110_ns4__A_Connected_App</developerName>
<label>A Connected App</label>
<version>1.0</version>

</ConnectedApp>

The developerName is the combination of your namespace (db_0110_ns4) and the name of your connected app
(A_Connected_App).

The version specified in the source file is the version number of the connected app. Use decimal formatting when specifying
the version number. The version number must match the version number of the connected app before it was added to the 1GP
managed package.

Note: When you add a connected app to a 1GP package, and upload the package, the version number of the connected
app is auto incremented. For example, when version 4.0 of a connected app is added to a 1GP package, the package version
increments the version number of the connected app from 4.0 to 5.0. When creating the source file for your 2GP package,
specify the version number of the connected app before it was uploaded into a 1GP package, in this case, 4.0.

Test and Respond to the New Order Save Behavior
To make sure custom application logic works accurately on records associated with the Order object, turn on the Enable New Order
Save Behavior setting, and test the behavior. We recommend that you support both the new and old order save behavior during testing.

The Enable New Order Save Behavior setting helps Salesforce correctly evaluate custom application logic on records associated with
the Order object.

331

Package Connected Apps in Second-Generation Managed
Packaging

Second-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=release-notes.rn_packaging_external_client_app.htm&release=250&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm
https://help.salesforce.com/s/articleView?id=sales.new_order_save_behavior_setup.htm&type=5&language=en_US

If you create any type of package that includes the Order object, the installed package sometimes doesn’t work. If a subscriber org relies
on a different order save behavior than their installed packages, the installed packages sometimes don’t work. To ensure the expected
behavior, test Enable New Order Save Behavior with your installed packages.

After Enable New Order Save Behavior is selected, Salesforce evaluates and runs these customizations whenever an update to an order
item record changes the parent order record.

• Order and order item validation rules

• Order and order item Apex triggers and classes

• Order and order item flows and processes

Note: Enable New Order Save Behavior affects all package types: unlocked, unmanaged, first-generation managed package (1GP),
and second-generation managed package (2GP).

You can install packages that support old Order Save Behavior on subscriber orgs where New Order Save Behavior is enabled. However,
you must verify that your package works with the new order save behavior.

After you verify that your package works with the new order save behavior and that all your packages associated with your Dev Hub org
work with the new order save behavior, you can choose to enable the update in your Dev Hub org. We recommend that you support
both the new and old order save behavior during your testing.

Test Unmanaged and First-Generation Managed Packages

• From Setup, in the Quick Find box, enter Release Updates, and select Release Updates. Locate the Enable New Order Save
Behavior tile, and select Enable Test Run.

• Test the impact of the new behavior when an order or order item is edited. Review any custom application logic such as validation
rules, Apex triggers and classes, workflow rules, flows, and processes.

• To show that your package is compatible with both new and old order save conditions, from Setup, in the Quick Find box, enter
Package. Select the package that you tested and select Upload.

• Locate the Package Requirements section and disable New Order Save Behavior.

When this setting is disabled and the release update is enabled, subscriber orgs using either the new or old order save behavior can
install your package.

Test Unlocked and Second-Generation Managed Packages

• After creating a scratch org, enable the Release Update in it. From Setup, in the Quick Find box, enter Release Updates, and
then select Release Updates. Locate the Enable New Order Save Behavior tile, and select Enable Test Run.

• Test the impact of the new behavior when an order or order item is edited. Review any custom application logic such as validation
rules, Apex triggers and classes, workflow rules, flows, and processes.

When you’re ready to create a package version, specify the order save behavior in the definition file.

Table 3: Order Save Behavior Options

Set Features in Scratch Org Definition File ToTo Specify

{
"features": [],

Old Order Save Behavior

"settings": {
"orderSettings": {
"enableOrders": true

}
}

}

332

Test and Respond to the New Order Save BehaviorSecond-Generation Managed Packages

Set Features in Scratch Org Definition File ToTo Specify

{
"features": ["OrderSaveLogicEnabled"],

New Order Save Behavior

"settings": {
"orderSettings": {
"enableOrders": true

}
}

}

{
"features": ["OrderSaveBehaviorBoth"],

New and Old Order Save Behavior

"settings": {
"orderSettings": {
"enableOrders": true

}
}

}

Develop Second-Generation Managed Packages

Ready to get started? Create your first second-generation managed package, and then update and create new versions of your package.

Create a Second-Generation Managed Package

A package is a top-level container that holds important details about the app or package: the package name, description, and
associated namespace. When you’re ready to test or share your package, use the sf package create Salesforce CLI command
to create a package.

View Package Details for a Second-Generation Managed Package

View the details of previously created second-generation managed packages from the command line.

Create Versions of a Second-Generation Managed Package

A package version is a fixed snapshot of the package contents and related metadata. The package version is an installable, immutable
artifact that lets you manage changes and track what’s different each time you release or deploy a specific set of changes.

Guidance for Package Version Numbering

Use package versions to evolve your managed package, and release subsequent package versions without breaking existing package
users. Every package version is a fixed snapshot of the package contents and related metadata.

View Details about a Second-Generation Managed Package Version

Retrieve details about second-generation managed package versions that are in progress, or have already been created.

Project Configuration File for a Second-Generation Managed Package

The project configuration file is a blueprint for your project. The settings in the file create an outline of your managed 2GP package
and determine the package attributes and package contents.

Get Ready to Promote and Release a Second-Generation Managed Package Version

By now it’s likely that you’ve already created many different versions of your managed 2GP package and tested them. When you
have a package version that you're ready to distribute, promoting the package version is the next step.

333

Develop Second-Generation Managed PackagesSecond-Generation Managed Packages

Specify a Package Ancestor in the Project File for a Second-Generation Managed Package

When you create a second-generation managed package version you specify a package ancestor in your sfdx-project.json
file. We require that the package ancestor you specify is the highest promoted package version number for that package. You can
either update the ancestor version number each time you create a package version, or you can use a keyword.

Create a Second-Generation Managed Package
A package is a top-level container that holds important details about the app or package: the package name, description, and associated
namespace. When you’re ready to test or share your package, use the sf package create Salesforce CLI command to create a
package.

To create a package, change to the project directory in the CLI. The package name you enter becomes the package alias, and is automatically
added to the project file. You can choose to designate an active Dev Hub org user to receive email notifications for Apex gacks, and
install, upgrade, or uninstall failures associated with your packages. For definitions of each parameter shown here, see sf package create
in the Salesforce CLI Reference Guide.

sf package create --name "Expenser App" --package-type Managed \
--path "expenser-main" --target-dev-hub my-hub --error-notification-username \
me@devhub.org

The package details you supply when you create a package are automatically added to your sfdx-project.json project
configuration file.

Metadata Limits in Second-Generation Managed Packages

LimitMetadata in package

10,000 filesNumber of Metadata Files

600 MBTotal Metadata File Size

Update Details about a Package
To update the name or description of an existing package, use this command.

sf package update --package "Expense App" --name "Expense Manager App" \
--description "The Winter ’21 release is packed with an exciting set of features." \
--error-notification-username me2@devhub.org

Note: You can’t change the package namespace or package type after you create the package.

After you promote at least one package version to the released state, you can also use the sf package update CLI command to
recommend a specific version of the package to your subscribers. See Recommend a Specific Package Version to Your Subscribers on
page 363 for more information.

View Package Details for a Second-Generation Managed Package
View the details of previously created second-generation managed packages from the command line.

334

Create a Second-Generation Managed PackageSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_create_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

To display a list of all packages in the Dev Hub org, use this command.

sf package list --target-dev-hub my-hub

You can view the namespace, package name, ID, and other details in the output.

Namespace Prefix Name Id Alias Description Type
─────────────── ──────────────── ────────────────── ──────────── ─────────── ───────
db_exp_manager Expenser App 0HoB00000004CzRKAU Expenser App Managed
db_exp_manager Expenser Logic 0HoB00000004CzMKAU Expenser Logic Managed
db_exp_manager Expenser Schema 0HoB00000004CzHKAU Expenser Schema Managed

Include optional parameters to filter the list results based on the modification date, creation date, and to order by specific fields or
package IDs. To limit the details, use --concise.

To show expanded details, use --verbose The verbose parameter displays these additional details.

• Created By

• Error Notification Username

• Subscriber Package ID

Create Versions of a Second-Generation Managed Package
A package version is a fixed snapshot of the package contents and related metadata. The package version is an installable, immutable
artifact that lets you manage changes and track what’s different each time you release or deploy a specific set of changes.

Before you create a package version, first verify package details, such as the package name, dependencies, and update the versionNumber
parameter in the sfdx-project.json file. Verify that the metadata you want to change or add in the new package version is in
the package’s main directory.

Tip: Review Advanced Project Configuration Parameters for Second-Generation Managed Packages on page 382 for optional
features that you can enable in the new package version.

When you create a package version, you have three options regarding how package validations are handled.

• (Default) Complete all validations of dependencies, package ancestors, and metadata before the package version is returned.

• Perform validations asynchronously.

• Skip validation on the package version.

Create a Managed 2GP Package Version (Default Option)
Create the package version with this command. Specify the package alias or ID (0Ho). You can also include a scratch definition file that
contains a list of features and settings that the metadata of the package version depends on.

sf package version create --package "Expenser App" --installation-key “HIF83kS8kS7C” \
--definition-file config/project-scratch-def.json --code-coverage --wait 10

Note: When creating a package version, specify a --wait time to run the command. If the package version is created within
that time, the sfdx-project.json file is automatically updated with the package version information. If not, you must
manually edit the project file.

335

Create Versions of a Second-Generation Managed PackageSecond-Generation Managed Packages

It can be a long-running process to create a package version, depending on the package size and other variables. You can easily view
the status and monitor progress.

sf package version create report --package-create-request-id 08cxx00000000YDAAY

The output shows details about the request.

=== Package Version Create Request
NAME VALUE
───────────────────────────── ────────────────────
Version Create Request Id 08cB00000004CBxIAM
Status InProgress
Package Id 0HoB00000004C9hKAE
Package Version Id 05iB0000000CaaNIAS
Subscriber Package Version Id 04tB0000000NOimIAG
Tag git commit id 08dcfsdf
Branch
CreatedDate 2024-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NOimIAG

You can find the request ID (08c) in the initial output of sf package version create.

Depending on the size of the package and other variables, the create request can take several minutes. When you have more than one
pending request to create package versions, you can view a list of all requests with this command.

sf package version create list --created-last-days 0

Details for each request display as shown here (IDs and labels truncated).

=== Package Version Create Requests [3]
ID STATUS PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===
08c... Error 0Ho...
08c... Success 0Ho... 05i... 04t... 2024-06-22 12:07
08c... Success 0Ho... 05i... 04t... 2024-06-23 14:55

Async Validation
Async validation creates a new package version before completing package validations. If your development team is using continuous
integration (CI) scripts, you can leverage async validation to get an installable artifact sooner so you can start post-package creation
steps.

To specify async validation, include the - -async-validation parameter.

sf package version create --async-validation <rest of command syntax>

Sample Command-Line Output

Version create.... Create version status: PerformingValidations
The validations for this package version are in progress, but you can now begin testing
this package version.
To determine whether all package validations complete successfully, run "sf package version
create report --package-create-request-id 08cxx", and review the Status.
Async validated package versions can be promoted only if all validations complete
successfully.
Successfully created the package version [08cxx. Subscriber Package Version Id: 04txx
Package Installation URL:

336

Create Versions of a Second-Generation Managed PackageSecond-Generation Managed Packages

https://login.salesforce.com/packaging/installPackage.apexp?p0=04txx
As an alternative, you can use the "sf package:install" command.

The command-line output provides you a package creation request ID that starts with 08c. To confirm whether all package validations
complete successfully, use the 08cxx ID when and run sf package version create report
--package-create-request-id 08cxx. Then validate that the Status is listed as Success. Async validated package
versions can be promoted only if all validations complete successfully.

Skip Validation
Skips validation of dependencies, package ancestors, and metadata during package version creation. Skipping validation significantly
reduces the time it takes to create a new package version, but package versions created using skip validation can’t be promoted to the
released state.

sf package version create --skip-validation <rest of command syntax>

Note: You can't specify both skip validation and code coverage, because code coverage is calculated during validation.

You also can't specify both skip validation and async validation at the same time.

Update Details about a Managed 2GP Package Version
You can update most properties of a package version from the command line. For example, you can change the package version name
or description. One important exception is that you can’t change the release status.

In this example, we’re adding the tag parameter and specifying the git commit ID associated with this package version.

sf package version update --package "Expenser App@1.3.0-5" --tag "git commit id 08dcfsdf"

After the update is complete, you’ll see output that looks like

Successfully updated the package version. 04tB0000000KPhnIAG

How Many Managed 2GP Package Versions Can I Create Per Day?
Run this command to see how many package versions you can create per day and how many you have remaining.

sf limits api display

Look for the Package2VersionCreates entry.

NAME REMAINING MAXIMUM
───────────────────────────────────── ───────── ─────────
Package2VersionCreates 23 50

Guidance for Package Version Numbering
Use package versions to evolve your managed package, and release subsequent package versions without breaking existing package
users. Every package version is a fixed snapshot of the package contents and related metadata.

While the format for package version number is predetermined, how you determine a version number, and whether you enforce
uniqueness on package version numbers is left to package developers. The format for package version numbers is

337

Guidance for Package Version NumberingSecond-Generation Managed Packages

MAJOR.MINOR.PATCH.BUILD. Every package version has both a version number that you determine (for example, 2.2.0.1), and a unique
subscriber package version ID (starts with 04t) that is auto-assigned when you create the package version.

Before you promote a particular MAJOR.MINOR.PATCH package version, it’s possible to create multiple package versions that have unique
04t IDs, but all share the same version number, for example 2.2.0.1. There are a few approaches you can take to ensure each package
version number is unique. Keep reading to learn more, but let’s start by learning how to specify a package version number.

How Do I Specify the Package Version Number?
The versionNumber attribute in your sfdx-project.json project configuration file determines the version number that is
assigned the next time you create a managed 2GP version. Before creating a new package version, you must manually increment this
attribute in the project file. If you don't increment the versionNumber, then you can wind up with multiple package versions with the
same version number, but unique subscriber package version IDs (starts with 04t).

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Summer ‘24",
"versionDescription": "Summer 2024 Expense Manager Util Package",
"versionNumber": "2.2.0.1",
"definitionFile": "config/scratch-org-def.json"

},

Use the Keyword NEXT to Enforce Unique Build Numbers
As best practice, don’t create multiple package versions that have the same MAJOR.MINOR.PATCH.BUILD version number. An easy way
to ensure the build portion of your version number is unique is to use the keyword NEXT when you set the version number in your
sfdx-project.json file. This way, you don’t have to manually increment the version number when you want to create a new
package version.

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Summer ‘24",
"versionDescription": "Summer 2024 Expense Manager Util Package",
"versionNumber": "2.2.0.NEXT",
"definitionFile": "config/scratch-org-def.json"

},

338

Guidance for Package Version NumberingSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

Use the CLI Flag to Override a Package Version Number
You can also override the version number listed in your project file, by using the --version-number flag when you create a new
package version.

sf package version create -p "my2gp" -–version-number 2.2.0.NEXT <rest of command syntax>

By using the keyword NEXT with the --version-number flag in the CLI, you ensure the build portion of the version number is
unique.

Note: Keep in mind, the --version-number flag doesn't update your sfdx-project.json. To keep the VersionNumber
in the project file current, update it manually.

What Happens to Version Numbering After You Promote a Package Version?
After you promote a package version with a specific MAJOR.MINOR.PATCH version you can’t continue to create package versions that
use that same MAJOR.MINOR.PATCH version number. If you attempt to do so, you receive an error message.

How Do I Determine Whether to Use a New Major, Minor, or Patch Version?
While there are restrictions on what changes are allowed in a patch version, determining what qualifies as a major or minor change is
largely up to you. When introducing major changes, increase the major version number, and increase the minor version number when
making smaller improvements.

View Details about a Second-Generation Managed Package Version
Retrieve details about second-generation managed package versions that are in progress, or have already been created.

View Status and Progress Details for a Managed 2GP Package Version
Depending on the package size and other variables, creating a package version can be a long-running process. You can easily view the
status and monitor progress using this report command.

sf package version create report --package-create-request-id 08cxx00000000YDAAY

The output shows details about the request.

=== Package Version Create Request
NAME VALUE
───────────────────────────── ────────────────────
Version Create Request Id 08cB00000004CBxIAM
Status InProgress
Package Id 0HoB00000004C9hKAE
Package Version Id 05iB0000000CaaNIAS
Subscriber Package Version Id 04tB0000000NOimIAG
Tag git commit id 08dcfsdf
Branch
CreatedDate 2018-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NOimIAG

You can find the request ID (08c) in the initial output of sf package version create.

339

View Details about a Second-Generation Managed Package
Version

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_patch_version.htm

If you have more than one pending request to create package versions, you can view a list of all requests with this command.

sf package version create list --created-last-days 0

Details for each request display as shown here (IDs and labels truncated).

=== Package Version Create Requests [3]
ID STATUS PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===
08c... Error 0Ho...
08c... Success 0Ho... 05i... 04t... 2022-06-22 12:07
08c... Success 0Ho... 05i... 04t... 2022-06-23 14:55

Retrieve List of all Package Versions Associated with a Dev Hub Org
To display a list of all package versions in the Dev Hub org, use this command.

sf package version list --target-dev-hub my-hub

You can view the namespace, version name, and other details in the output.

Package Name Namespace Version Sub Pkg Ver Id Alias
Installation Key Released
─────────────── ─────────────── ─────── ─────────────────── ────────────────────────
───────────────── ───────
Expenser Schema db_exp_manager 0.1.0.1 04tB0000000719qIAA Expenser Schema@0.1.0-1
false true
Expenser Schema db_exp_manager 0.2.0.1 04tB000000071AjIAI Expenser Schema@0.2.0-1
false true
Expenser Schema db_exp_manager 0.3.0.1 04tB000000071AtIAI Expenser Schema@0.3.0-1
false false
Expenser Schema db_exp_manager 0.3.0.2 04tB000000071AyIAI Expenser Schema@0.3.0-2
false true
Expenser Schema db_exp_manager 0.3.1.1 04tB0000000KGU6IAO Expenser Schema@0.3.1-1
false false
Expenser Schema db_exp_manager 0.3.1.2 04tB0000000KGUBIA4 Expenser Schema@0.3.1-2
false true
Expenser Schema db_exp_manager 0.3.2.1 04tB0000000KGUQIA4 Expenser Schema@0.3.2-1
false true
Expenser Logic db_exp_manager 0.1.0.1 04tB0000000719vIAA Expenser Logic@0.1.0-1
false true
Expenser App db_exp_manager 0.1.0.1 04tB000000071A0IAI Expenser App@0.1.0-1
false true

To view details about a specific package, include --package parameter when you run sf package version list.

To show expanded details, use --verbose The verbose parameter displays these additional details.

• Ancestor

• Ancestor Version

• Branch

• Build Duration in Seconds

• Code Coverage

• Code Coverage Met

• Created By

340

View Details about a Second-Generation Managed Package
Version

Second-Generation Managed Packages

• Created Date

• Description

• Installation URL

• Language

• Managed Metadata Removed

• Metadata File Size

• Number of Metadata Files

• Package ID

• Package Version ID

• Release Version

• Tag

• Validation Skipped

• WasTransferred

Project Configuration File for a Second-Generation Managed Package
The project configuration file is a blueprint for your project. The settings in the file create an outline of your managed 2GP package and
determine the package attributes and package contents.

Here are some of the parameters you can specify in the project configuration file. For additional parameters, see Advanced Project
Configuration Parameters for Second-Generation Managed Packages.

DetailsName

Required? It depends on whether you’ve already promoted a
package version of this package. If yes, you must specify either the
ancestorId or ancestorVersion. If no, this parameter isn’t required.

Default if Not Specified: None

ancestorId

None. The ID of the immediate parent in the package ancestry tree
of the package version you’re creating. The ancestorId
requires the 04t of the package version, or an alias to the package
version. When specifying ancestors, you can use either
ancestorId or ancestorVersion.

Example:

"ancestorId": "Expenser Logic@0.1.0-1"

For more information, see Specify a Package Ancestor in the Project
File for a Second-Generation Managed Package.

Required? It depends on whether you’ve already promoted a
package version of this package. If yes, you must specify either the
ancestorId or ancestorVersion. If no, this parameter isn’t required.

Default if Not Specified: None

ancestorVersion

The version number of the immediate parent in the package
ancestry tree of the package version you’re creating.

341

Project Configuration File for a Second-Generation Managed
Package

Second-Generation Managed Packages

DetailsName

Specify the ancestor version using the format of
major.minor.patch.build. When specifying ancestors, you can use
either ancestorId or ancestorVersion.

Example:

"ancestorVersion": "0.1.0.1"

For more information, see Specify a Package Ancestor in the Project
File for a Second-Generation Managed Package.

Required? Yes, if you’ve specified more than one package directory

Default if Not Specified: true

default

Indicates the default package directory. When metadata is retrieved
from a development org (scratch org or source-tracked sandbox)
using sf project retrieve, it's placed in the default
package directory.

There can be only one package directory in which the default is
set to true.

Required? No

Default if Not Specified: None

definitionFile

A reference to an external .json file used to specify the features
and org settings required for the metadata of your package, such
as the scratch org definition.

Example:

"definitionFile":
"config/project-scratch-def.json",

Required? Yes

Default if Not Specified: None

namespace

A 1–15 character alphanumeric identifier that distinguishes your
package and its contents from packages of other developers.

Required? Yes

Default if Not Specified: None

package

The package name is specified in the project json file.

Required? No

Default if Not Specified: Salesforce CLI updates this file with the
aliases when you create a package or package version. You can

packageAliases

also manually update this section for existing packages or package
versions. You can use the alias instead of the cryptic package ID
when running CLI sf package commands.

342

Project Configuration File for a Second-Generation Managed
Package

Second-Generation Managed Packages

DetailsName

Required? Yes

Default if Not Specified: None.

path

Specify the location that contains the package metadata in the
--path attribute of sf package create Salesforce CLI
command.

Required? No

Default if Not Specified: None.

seedMetadata

Specify the path to your seedMetadata directory.

Seed metadata is available to standard value sets only. If your
package depends on standard value sets, you can specify a seed
metadata directory that contains the value sets.

Example:

"packageDirectories": [
{

"seedMetadata": {
"path":

"my-unpackaged-seed-directory"
}

},
]

Required? No

Default if Not Specified: None

versionDescription

Required? No

Default if Not Specified: If not specified, the CLI uses
versionNumber as the version name.

versionName

Required? Yes

Default if Not Specified: None

versionNumber

The versionNumber field sets the version number that is assigned
the next time you create a 2GP version. Version numbers are
formatted as MAJOR.MINOR.PATCH.BUILD. For example, 1.2.1.8.
To avoid creating multiple package versions with the same
MAJOR.MINOR.PATCH.BUILD number, you must increment the
versionNumber before creating a new package version.

To automatically increment the build number to the next available
build for the package, use the keyword NEXT (1.2.1.NEXT).

Alternatively, when you create a new package version, you can set
the version number using the --versionNumber flag in the
CLI.

For more details, see Guidance for Version Numbering.

343

Project Configuration File for a Second-Generation Managed
Package

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_version_guidance.htm

When you specify a parameter using Salesforce CLI, it overrides the value listed in the project definition file.

The Salesforce DX project definition file is a JSON file is located in the root directory of your project. Use the sf project generate
CLI command to generate a project file that you can build upon. Here’s how the parameters in packageDirectories appear.

{
"namespace": "exp-mgr",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "61.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Summer ‘24",
"versionDescription": "Welcome to Summer 2024 Release of Expense Manager Util

Package",
"versionNumber": "4.7.0.NEXT",
"definitionFile": "config/scratch-org-def.json"

},
{

"path": "exp-core",
"default": false,
"package": "Expense Manager",
"versionName": "v 3.2",
"versionDescription": "Summer 2024 Release",
"versionNumber": "3.2.0.NEXT",
"ancestorVersion": "3.0.0.7",
"definitionFile": "config/scratch-org-def.json",
"dependencies": [

{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

},
{

"package" : "External Apex Library - 1.0.0.4"
}

]
}

],
"packageAliases": {

"Expense Manager - Util": "0HoB00000004CFpKAM",
"External Apex Library@1.0.0.4": "04tB0000000IB1EIAW",
"Expense Manager": "0HoB00000004CFuKAM"}

}

What If I Don’t Want My Salesforce DX Project Automatically Updated?
In some circumstances, you don’t want to have automatic updates to the sfdx-project.json file. When you require more control,
use these environment variables to suppress automatic updates to the project file.

344

Project Configuration File for a Second-Generation Managed
Package

Second-Generation Managed Packages

Set This Environment Variable to TrueFor This Command

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_CREATEsf package create

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_VERSION_CREATEsf package version create

SEE ALSO:

Advanced Project Configuration Parameters for Second-Generation Managed Packages

Get Ready to Promote and Release a Second-Generation Managed
Package Version
By now it’s likely that you’ve already created many different versions of your managed 2GP package and tested them. When you have
a package version that you're ready to distribute, promoting the package version is the next step.

Each package version you create is a beta version, unless you promote it to the managed-released state. Beta versions can be installed
in only scratch orgs and sandboxes. After you install a beta version into an org, you can’t later upgrade that installed beta version. Keep
this in mind when you select which org to install and test your beta package version. If you use this sandbox as part of your release
pipeline, then using a disposable scratch org is a better option to test your beta package.

A beta package version must pass a 75% code coverage requirement before it can be promoted. To learn more, see Code Coverage for
Second-Generation Managed Packages.

To promote a package version to the released state, run the sf package version promote Salesforce CLI command. For
step-by-step instructions on promoting a package version, see Release a Second Generation Managed Package.

After a package version is promoted, you can install it in either a production org or development orgs, and can be distributed to your
customers.

For every minor package version, you can promote only one beta version. For example, if you create several beta versions of package
version 2.3, only one of those versions can be promoted. After promoting package version 2.3, start your new development using version
number 2.4.

After a package version is promoted to the released state, you can't reverse the promotion. If you discover you don’t want to distribute
a version you promoted, you can’t reverse that version back to the beta state. To ensure that that version isn’t inadvertently shared and
installed in a customer org, we recommend you use the sf package version update Salesforce CLI command and set the
installation key to something cryptic and difficult to guess.

SEE ALSO:

Considerations for Promoting Packages with Dependencies

Release a Second-Generation Managed Package

Code Coverage for Second-Generation Managed Packages

Specify a Package Ancestor in the Project File for a Second-Generation
Managed Package
When you create a second-generation managed package version you specify a package ancestor in your sfdx-project.json
file. We require that the package ancestor you specify is the highest promoted package version number for that package. You can either
update the ancestor version number each time you create a package version, or you can use a keyword.

345

Get Ready to Promote and Release a Second-Generation
Managed Package Version

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_adv_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_code_coverage.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_code_coverage.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_considerations_pkg_dependency.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_code_coverage.htm

Here are three different ways to set the package ancestor.

Use the HIGHEST Keyword (Recommended)
Use the keyword HIGHEST with either the ancestorId or ancestorVersion attribute in the sfdx-project.json file.
This keyword automatically sets the ancestor to the highest promoted package version number.

"packageDirectories": [
{
"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "HIGHEST"
},

This keyword makes it easy to set your package ancestor to use linear versioning, until you have a reason to break from linear versioning.

Use the Ancestor Version Attribute
Set the ancestorVersion attribute in the sfdx-project.json file to the package version’s major.minor.patch number.
This approach requires you to update the ancestor version number every time the major, minor, or patch value changes.

"packageDirectories": [
{
"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": “4.6.0”
},

Use the Ancestor ID Attribute
Set the ancestorId attribute in the sfdx-project.json file to either the 04t ID or the package version’s alias. This approach
requires you to update the ancestor version number every time you create a package version.

"packageDirectories": [
{
"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorId": "04tB0000000cWwnIAE"
},

"packageDirectories": [
{
"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorId": "expense-manager@4.6.0.1"
},

Note: Only package versions that have been promoted to managed-released state, can be listed as an ancestor.

346

Specify a Package Ancestor in the Project File for a
Second-Generation Managed Package

Second-Generation Managed Packages

Override Linear Package Ancestry Behavior
To break from linear package versioning, specify a package ancestor that isn’t the highest promoted package version and use the
Salesforce CLI parameter --skip-ancestor-check when you create a package version.

sf package version create --package "Expenser App" --skip-ancestor-check

The CLI parameter indicates that you’re intentionally choosing to specify a package version that isn’t the highest promoted package
version.

You can choose to not specify a package ancestor by using the keyword, NONE, with either the ancestorId or ancestorVersion
attribute in the sfdx-project.json file.

"packageDirectories": [
{
"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "NONE"
},

Because package ancestors determine package upgrade paths, existing customers can’t upgrade to a package version that is created
without a specified ancestor. Use NONE if you don’t plan to promote the package version you’re creating.

If you’ve already promoted a previous package version, and you set the ancestor to NONE on a new package version associated with
the same package, include --skip-ancestor-check when you create that package version. When you create your first package
version, you can also set the ancestor to NONE and specify --skip-ancestor-check.

What to Remember about Package Ancestry
• Package ancestry determines whether existing packages can be upgraded to newer package versions. If you’re breaking from linear

versioning, or plan to abandon a package version that is installed in customer orgs, consider how your existing customers will be
impacted, and whether an upgrade path is available to them.

• If you abandon a package version, delete the version using the Salesforce CLI command sf package version delete.

If you aren’t able to delete the package version, then update the package version’s installation key so the abandoned package version
can’t be inadvertently installed. Use sf package version update to update the installation key.

Install and Uninstall Second-Generation Managed Packages

Use a disposable scratch org to test your second-generation managed packages (managed 2GP). You can install or uninstall a managed
2GP package using a Salesforce CLI command, or from the Setup page. Because you can't upgrade a beta package version, be sure you
don't install it in a sandbox that you use in your release pipeline, such as UAT or staging.

Use the CLI to Install a Second-Generation Managed Package

If you’re working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch
org or target subscriber org.

Use a URL to Install a Second-Generation Managed Package

Install a second-generation managed package from a browser.

347

Install and Uninstall Second-Generation Managed PackagesSecond-Generation Managed Packages

Install Notifications for Unauthorized Managed Packages

When you distribute a managed package that AppExchange Partner Program hasn’t authorized, we notify customers during the
installation process. The notification is removed after the package is approved.

Upgrade a Second-Generation Managed Package Version

A package upgrade occurs when you install a new package version into an org that has a previous version of that package installed.

Resolve Apex Test Failures

Package installs or upgrades may fail for not passing Apex test coverage. However, some of these failures can be ignored. For example,
a developer might write an Apex test that makes assumptions about a subscriber's data.

Run Apex on Package Install/Upgrade

App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you
can use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick
off a batch operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It
must be an Apex class that is a member of the package.

Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts

Customize a second-generation managed package (managed 2GP) install or upgrade by specifying an Apex post install script to
run automatically after a subscriber installs or upgrades a managed 2GP package. You can also specify an Apex uninstall script to
run automatically when a subscriber uninstalls a managed 2GP package.

Sample Script for Installing Second-Generation Managed Packages with Dependencies

Use this sample script as a basis to create your own script to install second-generation managed packages with dependencies. This
script contains a query that finds dependent packages and installs them in the correct dependency order.

Uninstall a Second-Generation Managed Package

You can uninstall a second-generation managed package from an org using Salesforce CLI or from the Setup UI. When you uninstall
second-generation managed packages, all components in the package, including any deprecated components that were previously
associated with the package, are deleted from the org.

Use the CLI to Install a Second-Generation Managed Package
If you’re working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch org or
target subscriber org.

Before you install a second-generation managed package (managed 2GP) in a scratch org, run this command to list all the packages
and locate the ID or package alias.

sf package version list

Identify the version you want to install. Enter this command, supplying the package alias or package ID (starts with 04t).

sf package install --package "Expense Manager@1.2.0-12" --target-org jdoe@example.com

By default, the package install command provides admins access to the installed package. To provide access to all users, specify
--security-type AllUsers when you run the package install command.

If you’ve already set the scratch org with a default username, enter just the package version ID.

sf package install --package "Expense Manager@1.2.0-12"

Note: If you’ve defined an alias (with the -a parameter), you can specify the alias instead of the username for --target-org.

348

Use the CLI to Install a Second-Generation Managed PackageSecond-Generation Managed Packages

The CLI displays status messages regarding the installation.

Waiting for the subscriber package version install request to get processed. Status =
InProgress Successfully installed the subscriber package version: 04txx0000000FIuAAM.

Control Managed 2GP Package Installation Timeouts
When you issue a sf package install command, it takes a few minutes for a package version to become available in the target
org and for installation to complete. To allow sufficient time for a successful install, use these parameters that represent mutually exclusive
timers.

• --publish-wait defines the maximum number of minutes that the command waits for the package version to be available
in the target org. The default is 0. If the package is not available in the target org in this time frame, the install is terminated.

Setting --publish-wait is useful when you create a new package version and then immediately try to install it to target orgs.

Note: If --publish-wait is set to 0, the package installation immediately fails, unless the package version is already
available in the target org.

• --wait defines the maximum number of minutes that the command waits for the installation to complete after the package is
available. The default is 0. When the --wait interval ends, the install command completes, but the installation continues until it either
fails or succeeds. You can poll the status of the installation using sf package install report.

Note: The --wait timer takes effect after the time specified by --publish-wait has elapsed. If the
--publish-wait interval times out before the package is available in the target org, the --wait interval never starts.

For example, consider a package called Expense Manager that takes five minutes to become available on the target org, and 11 minutes
to install. The following command has publish-wait set to three minutes and wait set to 10 minutes. Because Expense Manager
requires more time than the set publish-wait interval, the installation is aborted at the end of the three-minute publish-wait
interval.

sf package install --package "Expense Manager@1.2.0-12" --publish-wait 3 --wait 10

The following command has publish-wait set to six minutes and wait set to 10 minutes. If not already available, Expense
Manager takes five minutes to become available on the target org. The clock then starts ticking for the 10-minute wait time. At the
end of 10 minutes, the command completes because the wait time interval has elapsed, although the installation is not yet complete.
At this point, sf package install report indicates that the installation is in progress. After one more minute, the installation
completes and sf package install report indicates a successful installation.

sf package install --package "Expense Manager@1.2.0-12" --publish-wait 6 --wait 10

SEE ALSO:

Salesforce CLI Command Reference package install

Salesforce Help: Determine Which Users Can Access a Package

Use a URL to Install a Second-Generation Managed Package
Install a second-generation managed package from a browser.

If you create packages from the CLI, you can derive an installation URL for the package by adding the subscriber package ID to your Dev
Hub URL. You can use this URL to test different deployment or installation scenarios.

For example, if the package version has the subscriber package ID, 04tB00000009oZ3JBI, add the ID as the value of apvId.

349

Use a URL to Install a Second-Generation Managed PackageSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified
https://help.salesforce.com/s/articleView?id=xcloud.pkg_subscriber_determine_access.htm&type=5&language=en_US

https://MyDomainName.lightning.force.com/packagingSetupUI/ipLanding.app?apvId=04tB00000009oZ3JBI

Anyone with the URL and a valid login to a Salesforce org can install the package.

To install the package:

1. In a browser, enter the installation URL.

2. Enter your username and password for the Salesforce org in which you want to install the package, and then click Login.

3. If the package is protected by an installation key, enter the installation key.

4. For a default installation, click Install.

A message describes the progress. You receive a confirmation message when the installation is complete.

SEE ALSO:

Salesforce Help: Determine Which Users Can Access a Package

Install Notifications for Unauthorized Managed Packages
When you distribute a managed package that AppExchange Partner Program hasn’t authorized, we notify customers during the installation
process. The notification is removed after the package is approved.

The notification appears when customers configure the package installation settings (1). Before customers install the package, they must
confirm that they understand that the package isn’t authorized for distribution (2).

The notification displays when a managed package:

• Has never been through security review or is under review

• Didn’t pass the security review

• Isn’t authorized by AppExchange Partner Program for another reason

If the AppExchange Partner Program approves the package, it’s authorized for distribution, and the notification is removed. When you
publish a new version of the package, it’s automatically authorized for distribution.

For information about the AppExchange Partner Program and its requirements, visit the Salesforce Partner Community.

350

Install Notifications for Unauthorized Managed PackagesSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.pkg_subscriber_determine_access.htm&type=5&language=en_US
https://partners.salesforce.com/s/education/general/Partner_Program

Upgrade a Second-Generation Managed Package Version
A package upgrade occurs when you install a new package version into an org that has a previous version of that package installed.

When you perform a package upgrade, here’s what to expect for metadata changes.

• Metadata introduced in the new version is installed as part of the upgrade.

• Metadata modified in the new version is updated as part of the upgrade.

• Metadata removed in the new version is either deprecated or deleted as part of the upgrade.

To upgrade a package, use the package install CLI command

sf package install --package 04t... --target-org me@example.com

For more examples and details about this command, see package install in the Salesforce CLI Command Reference.

Beta packages aren’t upgradeable. To install a new beta package or released version, first uninstall the beta package.

To upgrade a package version, the new version must be a direct descendent of the package version installed in your org. See Specify a
Package Ancestor in the Project File for a Second-Generation Managed Package for more information.

SEE ALSO:

Salesforce CLI Command Reference package install

Resolve Apex Test Failures
Package installs or upgrades may fail for not passing Apex test coverage. However, some of these failures can be ignored. For example,
a developer might write an Apex test that makes assumptions about a subscriber's data.

If your install fails due to an Apex test failure, check for the following:

• Make sure that you’re staging all necessary data required for your Apex test, instead of relying on subscriber data that exists.

• If a subscriber creates a validation rule, required field, or trigger on an object referenced by your package, your test might fail if it
performs DML on this object. If this object is created only for testing purposes and never at runtime, and the creation fails due to
these conflicts, you might be safe to ignore the error and continue the test. Otherwise, contact the customer and determine the
impact.

Run Apex on Package Install/Upgrade
App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you can
use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick off a batch
operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It must be an Apex
class that is a member of the package.

The post install script is invoked after tests have been run, and is subject to default governor limits. It runs as a special system user that
represents your package, so all operations performed by the script appear to be done by your package. You can access this user by using
UserInfo. You can only see this user at runtime, not while running tests.

If the script fails, the install/upgrade is aborted. Any errors in the script are emailed to the user specified in the Notify on Apex Error
field of the package. If no user is specified, the install/upgrade details are unavailable.

The post install script has the following additional properties.

• It can initiate batch, scheduled, and future jobs.

351

Upgrade a Second-Generation Managed Package VersionSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_install_unified

• It can’t access Session IDs.

• It can only perform callouts using an async operation. The callout occurs after the script is run and the install is complete and
committed.

• It can’t call another Apex class in the package if that Apex class uses the with sharing or inherit sharing keyword.
These keywords can prevent the package from successfully installing. To learn more, see the Apex Developer Guide.

Note: You can’t run a post install script in a new trial organization provisioned using Trialforce. The script only runs when a
subscriber installs your package in an existing organization.

How Does a Post Install Script Work?

A post install script is an Apex class that implements the InstallHandler interface.

Example of a Post Install Script

Specifying a Post Install Script

After you’ve created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

How Does a Post Install Script Work?
A post install script is an Apex class that implements the InstallHandler interface.

This interface has a single method called onInstall that specifies the actions to be performed on installation.

global interface InstallHandler {
void onInstall(InstallContext context)

}

The onInstall method takes a context object as its argument, which provides the following information.

• The org ID of the organization in which the installation takes place.

• The user ID of the user who initiated the installation.

• The version number of the previously installed package (specified using the Version class). This is always a three-part number,
such as 1.2.0.

• Whether the installation is an upgrade

• Whether the installation is a push

The context argument is an object whose type is the InstallContext interface. This interface is automatically implemented by
the system. The following definition of the InstallContext interface shows the methods you can call on the context argument.

global interface InstallContext {
ID organizationId();
ID installerId();
Boolean isUpgrade();
Boolean isPush();
Version previousVersion();

}

Version Methods and Class

You can use the methods in the System.Version class to get the version of a managed package and to compare package versions.
A package version is a number that identifies the set of components in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every non-patch release. Major and minor number increases always use a patch number of 0.

352

Run Apex on Package Install/UpgradeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_classes_keywords_sharing.htm

The following are instance methods for the System.Version class.

DescriptionReturn TypeArgumentsMethod

Compares the current version with the specified
version and returns one of the following values:

IntegerSystem.Version versioncompareTo

• Zero if the current package version is equal
to the specified package version

• An Integer value greater than zero if the
current package version is greater than the
specified package version

• An Integer value less than zero if the
current package version is less than the
specified package version

If a two-part version is being compared to a
three-part version, the patch number is ignored
and the comparison is based only on the major
and minor numbers.

Returns the major package version of the calling
code.

Integermajor

Returns the minor package version of the
calling code.

Integerminor

Returns the patch package version of the calling
code or null if there’s no patch version.

Integerpatch

The System class contains two methods that you can use to specify conditional logic, so different package versions exhibit different
behavior.

• System.requestVersion: Returns a two-part version that contains the major and minor version numbers of a package.Using
this method, you can determine the version of an installed instance of your package from which the calling code is referencing your
package. Based on the version that the calling code has, you can customize the behavior of your package code.

• System.runAs(System.Version): Changes the current package version to the package version specified in the argument.

When a subscriber has installed multiple versions of your package and writes code that references Apex classes or triggers in your
package, they must select the version they’re referencing. You can execute different code paths in your package’s Apex code based on
the version setting of the calling Apex code making the reference. You can determine the calling code’s package version setting by
calling the System.requestVersion method in the package code.

Example of a Post Install Script
The following sample post install script performs these actions on package install/upgrade.

• If the previous version is null, that is, the package is being installed for the first time, the script:

– Creates a new Account called Newco and verifies that it was created.

– Creates a new instance of the custom object Survey, called Client Satisfaction Survey.

– Sends an email message to the subscriber confirming installation of the package.

353

Run Apex on Package Install/UpgradeSecond-Generation Managed Packages

• If the previous version is 1.0, the script creates a new instance of Survey called ”Upgrading from Version 1.0”.

• If the package is an upgrade, the script creates a new instance of Survey called ”Sample Survey during Upgrade”.

• If the upgrade is being pushed, the script creates a new instance of Survey called ”Sample Survey during Push”.

public class PostInstallClass implements InstallHandler {
global void onInstall(InstallContext context) {
if(context.previousVersion() == null) {
Account a = new Account(name='Newco');
insert(a);

Survey__c obj = new Survey__c(name='Client Satisfaction Survey');
insert obj;

User u = [Select Id, Email from User where Id =:context.installerID()];
String toAddress= u.Email;
String[] toAddresses = new String[]{toAddress};
Messaging.SingleEmailMessage mail =
new Messaging.SingleEmailMessage();

mail.setToAddresses(toAddresses);
mail.setReplyTo('support@package.dev');
mail.setSenderDisplayName('My Package Support');
mail.setSubject('Package install successful');
mail.setPlainTextBody('Thanks for installing the package.');
Messaging.sendEmail(new Messaging.Email[] { mail });
}

else
if(context.previousVersion().compareTo(new Version(1,0)) == 0) {
Survey__c obj = new Survey__c(name='Upgrading from Version 1.0');
insert(obj);
}

if(context.isUpgrade()) {
Survey__c obj = new Survey__c(name='Sample Survey during Upgrade');
insert obj;
}

if(context.isPush()) {
Survey__c obj = new Survey__c(name='Sample Survey during Push');
insert obj;
}

}
}

You can test a post install script using the new testInstall method of the Test class. This method takes the following arguments.

• A class that implements the InstallHandler interface.

• A Version object that specifies the version number of the existing package.

• An optional Boolean value that is true if the installation is a push. The default is false.

This sample shows how to test a post install script implemented in the PostInstallClass Apex class.

@isTest
static void testInstallScript() {
PostInstallClass postinstall = new PostInstallClass();
Test.testInstall(postinstall, null);
Test.testInstall(postinstall, new Version(1,0), true);
List<Account> a = [Select id, name from Account where name ='Newco'];

354

Run Apex on Package Install/UpgradeSecond-Generation Managed Packages

System.assertEquals(1, a.size(), 'Account not found');
}

Specifying a Post Install Script
After you’ve created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

The class selection is also available via the Metadata API as Package.postInstallClass. This is represented in package.xml as
a <postInstallClass>foo</postInstallClass> element.

SEE ALSO:

Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts

Customize Second-Generation Managed Package Installs and Uninstalls
Using Scripts
Customize a second-generation managed package (managed 2GP) install or upgrade by specifying an Apex post install script to run
automatically after a subscriber installs or upgrades a managed 2GP package. You can also specify an Apex uninstall script to run
automatically when a subscriber uninstalls a managed 2GP package.

For more information, see Run Apex on Package Install/Upgrade and Run Apex on Package Uninstall.

Specify post install and uninstall scripts in the sfdx-project.json file.

"packageDirectories": [
{

"path": "expenser-schema",
"default": true,
"package": "Expense Schema",
"versionName": ""ver 0.3.2"",
"versionNumber": "0.3.2.NEXT",
"postInstallScript": "PostInstallScript",
"uninstallScript": "UninstallScript",
"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/winter-2020-release-notes.html"
},
],
{
"namespace": "db_exp_manager",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "47.0",
"packageAliases": {

"Expenser Schema": "0HoB00000004CzHKAU",
"Expenser Schema@0.1.0-1": "04tB0000000719qIAA"

}

You can also use the --post-install-script and the --uninstall-script Salesforce CLI parameters with the sf
package version create command. The CLI parameters override the scripts specified in the sfdx-project.json
file.

Note: Include the Apex classes for your post-install and uninstall scripts with the metadata in your package.

355

Customize Second-Generation Managed Package Installs
and Uninstalls Using Scripts

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_customize_installs.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/apex_post_install_script.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/apex_uninstall_script.htm

You can designate an active Dev Hub org user to receive email notifications for Apex gacks, and install, upgrade, or uninstall failures
associated with your packages. In Salesforce CLI run sf package create --error-notification-username
me@devhub.org or sf package update --error-notification-username me@devhub.org. In Tooling API,
use the PackageErrorUsername field on the Package2 object.

Sample Script for Installing Second-Generation Managed Packages with
Dependencies
Use this sample script as a basis to create your own script to install second-generation managed packages with dependencies. This script
contains a query that finds dependent packages and installs them in the correct dependency order.

Sample Script

Note: Be sure to replace the package version ID and scratch org user name with your own specific details.

#!/bin/bash

The execution of this script stops if a command or pipeline has an error.

For example, failure to install a dependent package will cause the script

to stop execution.

set -e

Specify a package version id (starts with 04t)

If you know the package alias but not the id, use sf package version list to find it.

PACKAGE=04tB0000000NmnHIAS

Specify the user name of the subscriber org.

USER_NAME=test-bvdfz3m9tqdf@example.com

Specify the timeout in minutes for package installation.

WAIT_TIME=15

echo "Retrieving dependencies for package Id: "$PACKAGE

Execute soql query to retrieve package dependencies in json format.

RESULT_JSON=`sf data query -u $USER_NAME -t -q "SELECT Dependencies FROM
SubscriberPackageVersion WHERE Id='$PACKAGE'" --json`

356

Sample Script for Installing Second-Generation Managed
Packages with Dependencies

Second-Generation Managed Packages

Parse the json string using python to test whether the result json contains a list of
ids or not.

DEPENDENCIES=`echo $RESULT_JSON | python -c 'import sys, json; print
json.load(sys.stdin)["result"]["records"][0]["Dependencies"]'`

If the parsed dependencies is None, the package has no dependencies. Otherwise, parse
the result into a list of ids.

Then loop through the ids to install each of the dependent packages.

if [["$DEPENDENCIES" != 'None']]; then

DEPENDENCIES=`echo $RESULT_JSON | python -c '

import sys, json

ids = json.load(sys.stdin)["result"]["records"][0]["Dependencies"]["ids"]

dependencies = []

for id in ids:

dependencies.append(id["subscriberPackageVersionId"])

print " ".join(dependencies)

'`

echo "The package you are installing depends on these packages (in correct dependency
order): "$DEPENDENCIES

for id in $DEPENDENCIES

do

echo "Installing dependent package: "$id

sf package install --package $id -u $USER_NAME -w $WAIT_TIME --publish-wait 10

done

else

echo "The package has no dependencies"

fi

357

Sample Script for Installing Second-Generation Managed
Packages with Dependencies

Second-Generation Managed Packages

After processing the dependencies, proceed to install the specified package.

echo "Installing package: "$PACKAGE

sf package install --package $PACKAGE -u $USER_NAME -w $WAIT_TIME --publish-wait 10

exit 0;

Uninstall a Second-Generation Managed Package
You can uninstall a second-generation managed package from an org using Salesforce CLI or from the Setup UI. When you uninstall
second-generation managed packages, all components in the package, including any deprecated components that were previously
associated with the package, are deleted from the org.

To use the CLI to uninstall a package from the target org, authorize the Dev Hub org and run this command.

sf package uninstall --package "Expense Manager@2.3.0-5"

You can also uninstall a package from the web browser. Open the Salesforce org where you installed the package.

sf org open -u me@my.org

Then uninstall the package.

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click Uninstall next to the package that you want to remove.

3. Determine whether to save and export a copy of the package’s data, and then select the corresponding radio button.

4. Select Yes, I want to uninstall and click Uninstall.

Considerations on Uninstalling Packages
• If you’re uninstalling a package that includes a custom object, all components on that custom object are also deleted. Deleted items

include custom fields, validation rules, custom buttons, and links, and approval processes.

• You can’t uninstall a package whenever a component not included in the uninstall references any component in the package. For
example:

– When an installed package includes any component on a standard object that another component references, Salesforce prevents
you from uninstalling the package. An example is a package that includes a custom user field with a workflow rule that gets
triggered when the value of that field is a specific value. Uninstalling the package would prevent your workflow from working.

– When you’ve installed two unrelated packages that each include a custom object and one custom object component references
a component in the other, you can’t uninstall the package. An example is if you install an expense report app that includes a
custom user field and create a validation rule on another installed custom object that references that custom user field. However,
uninstalling the expense report app prevents the validation rule from working.

– When an installed folder contains components you added after installation, Salesforce prevents you from uninstalling the package.

– When an installed letterhead is used for an email template you added after installation, Salesforce prevents you from uninstalling
the package.

358

Uninstall a Second-Generation Managed PackageSecond-Generation Managed Packages

– When an installed package includes a custom field that’s referenced by Einstein Prediction Builder or Case Classification, Salesforce
prevents you from uninstalling the package. Before uninstalling the package, edit the prediction in Prediction Builder or Case
Classification so that it no longer references the custom field.

• You can’t uninstall a package that removes all active business and person account record types. Activate at least one other business
or person account record type, and try again.

• You can’t uninstall a package if a background job is updating a field added by the package, such as an update to a roll-up summary
field. Wait until the background job finishes, and try again.

SEE ALSO:

Salesforce CLI Command Reference package uninstall

Prepare to Distribute Your Second-Generation Managed Package

Before you release a version of your second-generation managed package, ensure that you understand the code coverage requirements,
release logistics, and how to publish your app on AppExchange.

Code Coverage for Second-Generation Managed Packages

Before you can release and distribute a second-generation managed package version on AppExchange, the Apex code must meet
a minimum 75% code coverage requirement. And every Apex Trigger in a package needs test coverage.

Package Installation Key for Second-Generation Managed Packages

To ensure the security of the metadata in your second-generation managed package, you must specify an installation key when
creating a package version. Package creators provide the key to authorized subscribers so they can install the package. Package
installers provide the key during installation, whether installing the package from the CLI or from a browser. An installation key is
the first step during installation. The key ensures that no package information, such as the name or components, is disclosed until
the correct installation key is supplied.

Release a Second-Generation Managed Package

Each new second-generation managed package version is marked as beta when created. As you develop your package, you may
create several package versions before you create a version that is ready to be released and distributed. Only released package
versions can be listed on AppExchange and installed in customer orgs.

Share Release Notes and Post-Install Instructions for Second-Generation Managed Packages

Share details with your subscribers about what’s new and changed in a released second-generation managed package.

Publishing Your App on AppExchange

If you’ve published a first-generation managed package, you’ll notice the process for publishing a second-generation managed
package (managed 2GP) is different. After you link your Dev Hub org to the AppExchange partner console, all your released managed
2GP package versions are visible in the partner console.

Recommend a Specific Package Version to Your Subscribers

You can choose to recommend that your subscribers upgrade to a specific, released version of your package.

Code Coverage for Second-Generation Managed Packages
Before you can release and distribute a second-generation managed package version on AppExchange, the Apex code must meet a
minimum 75% code coverage requirement. And every Apex Trigger in a package needs test coverage.

359

Prepare to Distribute Your Second-Generation Managed
Package

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.250.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_uninstall_unified

To compute code coverage using Salesforce CLI, use the --code-coverage parameter when you run the sf package
version create command.

Package version creation often takes longer to complete when code coverage is being computed, so consider when to include the code
coverage parameter. You can create beta package versions without computing code coverage, but these beta versions can’t be promoted.

If you try to promote a beta package version to managed-released and the version was created without specifying code coverage, or
the code coverage in the package version is less than 75%, the package promotion fails. Code coverage is calculated during package
version validation. If you skip validation using the --skip-validation parameter, code coverage isn’t calculated for that package
version.

View code coverage information for a package version using sf package version list with the --verbose parameter,
or sf package version report command in Salesforce CLI.

Package Installation Key for Second-Generation Managed Packages
To ensure the security of the metadata in your second-generation managed package, you must specify an installation key when creating
a package version. Package creators provide the key to authorized subscribers so they can install the package. Package installers provide
the key during installation, whether installing the package from the CLI or from a browser. An installation key is the first step during
installation. The key ensures that no package information, such as the name or components, is disclosed until the correct installation
key is supplied.

To set the installation key, add the --installation-key parameter to the command when you create the package version. This
command creates a package and protects it with the installation key.

sf package version create --package "Expense Manager" --installation-key "JSB7s8vXU93fI"

Supply the installation key when you install the package version in the target org.

sf package install --package "Expense Manager" --installation-key "JSB7s8vXU93fI”

Change the Installation Key for an Existing Package Version
You can change the installation key for an existing package version with the sf package version update command.

sf package version update --package "Expense Manager@1.2.0-4" --installation-key
“HIF83kS8kS7C”

Create a Package Version Without an Installation Key
If you don’t require security measures to protect your package metadata, you can create a package version without an installation key.

sf package version create --package "Expense Manager" --installation-key-bypass

Check Whether a Package Version Requires an Installation Key
To determine whether a package version requires an installation key, use the sf package version list CLI command.

360

Package Installation Key for Second-Generation Managed
Packages

Second-Generation Managed Packages

Release a Second-Generation Managed Package
Each new second-generation managed package version is marked as beta when created. As you develop your package, you may create
several package versions before you create a version that is ready to be released and distributed. Only released package versions can be
listed on AppExchange and installed in customer orgs.

Before you promote the package version, ensure that the user permission, Promote a package version to released, is enabled in the
Dev Hub org associated with the package. Consider creating a permission set with this user permission, and then assign the permission
set to the appropriate user profiles.

When you’re ready to release, use sf package version promote.

sf package version promote --package "Expense Manager@1.3.0-7"

If the command is successful, a confirmation message appears.

Successfully promoted the package version, ID: 04tB0000000719qIAA to released.

After the update succeeds, view the package details.

sf package version report --package "Expense Manager@1.3.0.7"

Confirm that the value of the Released property is true.

=== Package Version
NAME VALUE
────────────────────────────── ───────────────────
Name ver 1.0
Alias Expense Manager-1.0.0.5
Package Version Id 05iB0000000CaahIAC
Package Id 0HoB0000000CabmKAC
Subscriber Package Version Id 04tB0000000NPbBIAW
Version 1.0.0.5
Description update version
Branch
Tag git commit id 08dcfsdf
Released true
Created Date 2021-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NPbBIAW

You can promote and release only one time for each package version number, and you can’t undo this change.

Share Release Notes and Post-Install Instructions for Second-Generation
Managed Packages
Share details with your subscribers about what’s new and changed in a released second-generation managed package.

You can specify a release notes URL to display on the package detail page in the subscriber’s org. And you can share instructions about
using your package by specifying a post install URL. The release notes and post install URLs display on the Installed Packages page in
Setup, after a successful package installation. For subscribers who install packages using an installation URL, the package installer page
displays a link to release notes. And subscribers are redirected to your post install URL following a successful package installation or
upgrade.

361

Release a Second-Generation Managed PackageSecond-Generation Managed Packages

Specify the postInstallUrl and releaseNotesUrl attributes in the packageDirectories section for the package.

"packageDirectories": [
{

"path": "expenser-schema",
"default": true,
"package": "Expense Schema",
"versionName": ""ver 0.3.2"",
"versionNumber": "0.3.2.NEXT",
"postInstallScript": "PostInstallScript",
"uninstallScript": "UninstallScript",
"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/winter-2020-release-notes.html"
},
],
{
"namespace": "db_exp_manager",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "47.0",
"packageAliases": {

"Expenser Schema": "0HoB00000004CzHKAU",
"Expenser Schema@0.1.0-1": "04tB0000000719qIAA"

}

You can also use the --post-install-url and the --release-notes-url Salesforce CLI parameters with the sf
package version create command. The CLI parameters override the URLs specified in the sfdx-project.json file.

Publishing Your App on AppExchange
If you’ve published a first-generation managed package, you’ll notice the process for publishing a second-generation managed package
(managed 2GP) is different. After you link your Dev Hub org to the AppExchange partner console, all your released managed 2GP package
versions are visible in the partner console.

To list an app on AppExchange, it must pass the AppExchange security review. For more information, see Pass the AppExchange Security
Review in the ISVforce Guide.

Link Dev Hub to the AppExchange Partner Console
• Log in to the Salesforce Partner Community.

• Select the Publishing tab

• Click Technologies

• Click Org

• Click Connect Technology, and Org

• Click Connect Org and Allow, and enter the login credentials for your Dev Hub org.

Register Your Managed 2GP Package
• From the Solutions tab, locate the package version you want to register, and click Register Package. Registering a package links

the package to your license management app.

• Enter the login credentials for the Dev Hub org associated with the package in the modal window.

• Set the default license behavior for the package, including trial length, and number of seats included with the license, and click Save.

362

Publishing Your App on AppExchangeSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_manage_licenses.htm

Packages that share a namespace can be associated with the same License Management Org (LMO), or you can associate the packages
with different LMOs.

SEE ALSO:

ISVforce Guide: Create or Edit Your AppExchange Listing

ISVforce Guide: Pass the AppExchange Security Review

Recommend a Specific Package Version to Your Subscribers
You can choose to recommend that your subscribers upgrade to a specific, released version of your package.

When you set a package version as the recommended version, your subscribers see an Upgrade to Recommended Version option
on the Installed Packages page in their org.

To set a package’s recommended version, run the sf package update CLI command and specify the package version in the
--recommended-version-id flag. This example sets PackageA@1.0 as the recommended version.

sf package update --package 0Ho.. --target-dev-hub devhub@example.com
--recommended-version-id PackageA@1.0

Keep in mind these requirements and considerations for setting a recommended version:

• You can set one recommended version per package.

• Only released package versions can be set as the recommended version.

• The recommended version is not required to be the latest, released version of a package.

• When you update the recommended version, the new version that you set must be a descendant of the previous version in the
package ancestry. If the package versions don’t share an ancestry tree, you’ll get an error when you try to update the package’s
recommended version. To bypass this error, you can use the sf package update CLI command’s
--skip-ancestor-check flag.

SEE ALSO:

Release a Second-Generation Managed Package

Salesforce CLI Command Reference: package update

Push a Package Upgrade for Second-Generation Managed Packages

Push upgrades enable you to upgrade second-generation managed packages installed in subscriber orgs, without asking customers to
install the upgrade themselves. You can choose which orgs receive a push upgrade, what version the package is upgraded to, and when
you want the upgrade to occur. Push upgrades are helpful if you need to push a change for a hot bug fix.

Use Salesforce CLI or SOAP API to initiate the push upgrade, track the status of each job, and review error messages if any push upgrades
fail.

The push upgrade feature is only available to first- and second-generation managed packages that have passed the AppExchange
security review. The CLI push upgrade commands are available to second-generation managed packages and unlocked packages. To

363

Recommend a Specific Package Version to Your SubscribersSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_publish_listings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_package_ancestor_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_update_unified

enable push upgrades for your managed package, log a case with Salesforce Partner Support on page 403. For details on the security
review process, see Pass the AppExchange Security Review in the ISVforce Guide.

Table 4: Package Types and Push Upgrade Options

Push Upgrade using UI?Push Upgrade using API?Push Upgrade using CLI?Package Type

NoYesYes2GP

YesYesNo1GP

NoYesYesUnlocked

Push Upgrade Considerations for Second-Generation Managed Packages
• You can push upgrades to packages that have passed AppExchange security review only.

• The same manageability rules for package version upgrades are applicable to push upgrades.

• When a push upgrade is installed, the Apex in package is compiled.

• Push upgrades can be used even if the package version requires a password.

Schedule a Push Upgrade Using CLI

Use Salesforce CLI commands to schedule, abort, or view details about your push upgrade requests. Push upgrades let you upgrade
second-generation managed packages installed in subscriber orgs, without asking customers to install the upgrade themselves.

Schedule a Push Upgrade Using SOAP API for First- and Second-Generation Managed Packages

After you’ve created an updated version of your package, you can automatically deploy it to customers using a push upgrade.

Assign Access to New and Changed Features in First- and Second-Generation Managed Packages

Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages

Automate the assignment of new components to existing users of a package.

Push Upgrade Best Practices

Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

Schedule a Push Upgrade Using CLI
Use Salesforce CLI commands to schedule, abort, or view details about your push upgrade requests. Push upgrades let you upgrade
second-generation managed packages installed in subscriber orgs, without asking customers to install the upgrade themselves.

The push upgrade feature is available to unlocked packages and second-generation managed packages only. To push a package upgrade
for a second-generation managed package, that package must have already passed the AppExchange security review.

Push upgrades for unlocked packages are enabled by default. To enable push upgrades for your second-generation managed package,
log a case with Salesforce Partner Support.

To initiate a push upgrade for an unlocked or second-generation managed package, the Create and Update Second-Generation Packages
user permission is required.

There are several aspects to scheduling a push upgrade for a package. At a high-level these include:

364

Schedule a Push Upgrade Using CLISecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm

• Identifying the subscriber orgs and the org IDs that you want to upgrade

• Scheduling the push upgrade

• Tracking the progress and completion of the push upgrade

In some scenarios you may also need to abort a scheduled push upgrade, or analyze errors that occurred. Let’s review each of these
steps in more detail.

Determine the Orgs to Be Upgraded
There isn't a dedicated push-upgrade CLI command for this action, instead let's look at how to use the CLI data query command.

Push upgrades must be done in the context of the Dev Hub org that owns the package. To confirm the set of packages owned by a
specific Dev Hub org, run the package list command.

Then authorize to the Dev Hub org that is the owner of the package are upgrading.

sf org login web --set-default-dev-hub

If you're preparing to push a package upgrade, we assume your development environment is set up, if you aren't certain, review Set Up
Your Development Environment.

Here are three example queries you can use to retrieve a list of subscriber orgs that are eligible for a package upgrade. To review the
possible fields that can be queried, see PackageSubscriber in the Object Reference for the Salesforce Platform.

Each query requires either a subscriber package ID (starts with 033), or a subscriber package version ID (starts with 04t). To retrieve the
subsciber package ID, use the package list command and specify the --verbose flag. To retrieve the subscriber package version ID,
use the package version list command.

Query Example 1:

Compile a list of all orgs that have a specific package installed. This query requires the subscriber package ID (starts with 033).

sf data query --target-org myDevHub --query "SELECT OrgKey, OrgName, OrgType, InstanceName,
MetadataPackageId, MetadataPackageVersionId FROM PackageSubscriber WHERE MetadataPackageId
= '033xxxxxxxxxxxxxxx'" --result-format json

If you copy and paste this query, update the target org and the subscriber package ID, before running the command. The target org is
the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

Query Example 2:

Compile a list of orgs that have a specific package version installed, and pipe that output to a CSV file.

sf data query --target-org myDevHub --query "SELECT OrgKey, OrgName, OrgType FROM
PackageSubscriber WHERE MetadataPackageVersionId = '04t…'" --result-format csv

If you copy and paste this query, update the target org and the subscriber package version ID, before running the command. The target
org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

This query returns as CSV file that you can use when scheduling the push upgrade. Before specifying the file in the package
push-upgrade schedule command, remove the first line of the CSV file. The CSV file can contain one org ID per line only.

Query Example 3:

Compile a list of all orgs that have a package version lower than version 2.7 installed. This query requires two separate steps.

Note: A single package has both a package ID (starts with 0Ho) and a subscriber package ID (starts with 033). For part one of this
two-part query, you must specify the 0Ho ID. If you run the package list command with the --verbose flag, you can
determine both the 033 and 0Ho ID for a package. For more details on package IDs, see Package IDs and Aliases for
Second-Generation Managed Packages.

365

Schedule a Push Upgrade Using CLISecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_list_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_dev_environment.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_dev_environment.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_list_unified
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_version_list_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_pkg_types_pkg_ids.htm

First, query the Package2Version object to find all versions of your package that are numerically lower than the specified version (2.7).

sf data query --target-org admin@packaging.com --use-tooling-api --query "SELECT
SubscriberPackageVersionId FROM Package2Version WHERE Package2Id = '0HoPACKAGEIDxxxx' AND
(MajorVersion < 2 OR (MajorVersion = 2 AND MinorVersion < 7))"

If you copy and paste this query, update the target org, the Package ID (starts with 0Ho), and the major and minor version before running
the command. The target org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

Note the SubscriberPackageVersionId values (starts with 04t) returned by this query.

Next, query the PackageSubscriber object using the subscriber package version IDs (starts with 04t) from the previous step.

sf data query --target-org myDevHub --query "SELECT OrgKey FROM PackageSubscriber WHERE
MetadataPackageVersionId IN ('04tID1', '04tID2', '04tID_etc')" --result-format csv >out.txt

If you copy and paste this query, update the target org and the subscriber package version IDs (starts with 04t) before running the
command. The target org is the Dev Hub org that owns the package. Specify either the username or alias for the Dev Hub org.

If you created a CSV file in this step and plan to use the file to schedule your push upgrade, you must remove the first line of the file so
that it contains a list of org IDs only.

Schedule a Package Push Upgrade
After you have the org IDs for the subscribers you're upgrading, you can schedule the push upgrade. Review these examples of the flags
you might include with the package push-upgrade schedule command. For more details on this command, see the
Salesforce CLI Command Reference.

When scheduling a push upgrade you have a choice about how to specify the orgs you want upgraded. You can use either flag:

• --org-file and provide a CSV file of all the orgs to be upgraded, or

• --org-list and specify a comma-separated list of org IDs in the command line when you run the push upgrade CLI command

If using a org file, it must contain one org ID per line only.

Examples for package push-upgrade schedule

Schedule a push upgrade that initiates at a specified time with a list of org IDs:

sf package push-upgrade schedule --package 04txyz --start-time "2024-12-06T21:00:00"
--org-list 00DAxx, 00DBx

Schedule a push upgrade that initiates as soon as possible using a list of orgs in a CSV file:

sf package push-upgrade schedule --package 04txyz --org-file upgrade-orgs.csv

Note: If you don't specify the --start-time flag, the push upgrade begins as soon as resources are available. When specfiying
a start time, schedule during off peak hours. Specify start time in UTC.

Retrieve Details about Scheduled Package Push Upgrades
Use the package push-upgrade list or package push-upgrade report commands to retrieve details about push
upgrades that have been scheduled or completed for a package.

Examples for package push-upgrade list:

List all package push upgrade requests for a specified package:

sf package push-upgrade list --package 033xyz --target-dev-hub myDevHub

366

Schedule a Push Upgrade Using CLISecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.api_tooling.meta/api_tooling/tooling_api_objects_package2version.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_push-upgrade_schedule_unified

List all package push upgrade requests for a specified package scheduled in the last 30 days:

sf package push-upgrade list --package 033xyz --scheduled-last-days 30 --target-dev-hub
myDevHub

List all package push upgrade requests with a status of Failed. This status occurs if the push upgrade fails for one or more orgs.

sf package push-upgrade list --package 033xyz –-status Failed

List all package push upgrade requests with a status of Succeeded:

sf package push-upgrade list --package 033xyz –-status Succeeded

Generate a report about a specific push upgrade request:

sf package push-upgrade report --push-request-id 0DVxyz --target-dev-hub myDevHub

The package push-upgrade list command displays these fields: push request ID, package version ID, package version
number, status of the push upgrade request, push upgrade request scheduled start date and time, the number of orgs scheduled for
push upgrade, the number of orgs that were successfully upgraded, the number of orgs that failed to be upgraded, and push upgrade
request created date and time.

The package push-upgrade report command provides additional information, including error details.

Cancel a Pending Package Push Upgrade Request
If your push upgrade request has a status of either Created or Pending you can cancel the push upgrade by running the package
push-upgrade abort command. To retrieve the status of your push upgrade request, run either package push-upgrade
list or package push-upgrade report.

To cancel a specified push upgrade request:

sf package push-upgrade abort --push-request-id 0DVxyz

Retrieve Error Messages for a Package Push Upgrade
There isn't a dedicated push upgrade CLI command for this retrieving error message, instead let's look at how to use the CLI data
query command. Use this example query to retrieve error messages stored in the PackagePushError object.

Example:

sf data query --query "SELECT Id, PackagePushJobId, PackagePushJob.SubscriberOrganizationKey,
ErrorDetails, ErrorMessage, ErrorSeverity, ErrorTitle, ErrorType FROM PackagePushError
WHERE PackagePushJob.PackagePushRequestId='$PUSH_REQUEST_ID'" --target-org myDevHub

Schedule a Push Upgrade Using SOAP API for First- and Second-Generation
Managed Packages
After you’ve created an updated version of your package, you can automatically deploy it to customers using a push upgrade.

For code samples and more detailed steps, see SOAP API object documentation linked in each step.

1. Authenticate to your Dev Hub org.

2. Query MetadataPackage to verify package details.

3. Query MetadataPackageVersion to verify the package version to use for the push upgrade.

367

Schedule a Push Upgrade Using SOAP API for First- and
Second-Generation Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagepusherror.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api.meta/api/sforce_api_calls_login.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_metadatapackage.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_metadatapackageversion.htm

4. Query PackageSubscriber to retrieve details about subscriber orgs such as the org ID and installed package version. To retrieve
information about more than 2,000 subscribers, use SOAP API queryMore() call.

5. Create a PackagePushRequest object. Specify the PackageVersionId and ScheduledStartTime (optional). If you omit
the ScheduledStartTime, the push begins when you set the PackagePushRequest's status to Pending.

6. Create a PackagePushJob for each subscriber and associate it with the PackagePushRequest you created in the previous
step.

7. Schedule the push upgrade by changing the status of the PackagePushRequest to Pending.

Note: Scheduled push upgrades begin as soon as resources are available on the Salesforce instance, which is either at or after
the start time you specify. In certain scenarios, the push upgrade could start a few hours after the scheduled start time.

Assign Access to New and Changed Features in First- and
Second-Generation Managed Packages
Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

We recommend you:If the push upgrade includes:

Notify admins about the changes the upgrade introduces, and ask
them to assign permissions to all users of the package.

This approach allows admins to choose when to make the new
features available.

New features

Include a post-install script in the package that assigns permissions
to the new components or new fields automatically.

This approach ensures that current users of the package can
continue using features without interruption.

Enhancements to existing features

Note: Post-install scripts aren’t available to unlocked
packages.

Sample Post Install Script for a Push Upgrade for First- and
Second-Generation Managed Packages
Automate the assignment of new components to existing users of a package.

Note: Post-install scripts can be used with first and second-generation managed packages only.

For more information on writing a post-install Apex script, see Run Apex on Package Install/Upgrade on page 351.

In this sample script, the package upgrade contains new Visualforce pages and a new permission set that grants access to those pages.
The script performs the following actions.

• Gets the Id of the Visualforce pages in the old version of the package

• Gets the permission sets that have access to those pages

• Gets the list of profiles associated with these permission sets

368

Assign Access to New and Changed Features in First- and
Second-Generation Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api.meta/api/sforce_api_calls_querymore.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagepushrequest.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_packagepushjob.htm

• Gets the list of users who have those profiles assigned

• Assigns the permission set in the new package to those users

global class PostInstallClass implements InstallHandler {
global void onInstall(InstallContext context) {

//Get the Id of the Visualforce pages
List<ApexPage> pagesList = [SELECT Id FROM ApexPage WHERE NamespacePrefix =

'TestPackage' AND Name = 'vfpage1'];

//Get the permission sets that have access to those pages
List<SetupEntityAccess> setupEntityAccessList = [SELECT Id,

ParentId, SetupEntityId, SetupEntityType FROM SetupEntityAccess
WHERE SetupEntityId IN :pagesList];

Set<ID> PermissionSetList = new Set<ID> ();

for (SetupEntityAccess sea : setupEntityAccessList) {
PermissionSetList.add(sea.ParentId);

}
List<PermissionSet> PermissionSetWithProfileIdList =

[SELECT id, Name, IsOwnedByProfile, Profile.Name,
ProfileId FROM PermissionSet WHERE IsOwnedByProfile = true
AND Id IN :PermissionSetList];

//Get the list of profiles associated with those permission sets
Set<ID> ProfileList = new Set<ID> ();
for (PermissionSet per : PermissionSetWithProfileIdList) {

ProfileList.add(per.ProfileId);
}

//Get the list of users who have those profiles assigned
List<User> UserList = [SELECT id FROM User where ProfileId IN :ProfileList];

//Assign the permission set in the new package to those users
List<PermissionSet> PermissionSetToAssignList = [SELECT id, Name

FROM PermissionSet WHERE Name='TestPermSet' AND
NamespacePrefix = 'TestPackage'];

PermissionSet PermissionSetToAssign = PermissionSetToAssignList[0];
List<PermissionSetAssignment> PermissionSetAssignmentList = new

List<PermissionSetAssignment>();
for (User us : UserList) {

PermissionSetAssignment psa = new PermissionSetAssignment();
psa.PermissionSetId = PermissionSetToAssign.id;
psa.AssigneeId = us.id;
PermissionSetAssignmentList.add(psa);

}
insert PermissionSetAssignmentList;

}
}

// Test for the post install class
@isTest
private class PostInstallClassTest {

369

Sample Post Install Script for a Push Upgrade for First- and
Second-Generation Managed Packages

Second-Generation Managed Packages

@isTest
public static void test() {
PostInstallClass myClass = new PostInstallClass();
Test.testInstall(myClass, null);

}
}

Push Upgrade Best Practices
Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

Plan, Test, and Communicate
• Share an upgrade timeline plan with your customers so they know when you’ll upgrade, and how often.

• Plan when you want to push upgrades to your customers’ orgs. Keep in mind that most customers don’t want changes around their
month-end, quarter-end, and year-end or audit cycles. Do your customers have other critical time periods when they don’t want
any changes to their org? For example, there might be certain times when they don’t have staff available to verify changes or perform
any required post-installation steps.

• Schedule push upgrades during your customers’ off-peak hours, such as late evening and night. Have you considered time zone
issues? Do you have customers outside the United States who have different off-peak hours? You can schedule push upgrades to
any number of customer organizations at a time. Consider grouping organizations by time zone, if business hours vary widely across
your customer base.

• Don’t schedule push upgrades close to Salesforce-planned maintenance windows. In most cases, it might be better to wait 3-4
weeks after a major Salesforce release before you push major upgrades.

• Test, test, and test! Since you’re pushing changes to the organization instead of the customer pulling in changes, there’s a higher
bar to ensure the new version of your app works well in all customer configurations.

Stagger Your Push Upgrades
• Don’t push changes to all customers at once. It’s important to ensure that you have sufficient resources to handle support cases if

there are issues. Also, it’s important that you discover possible issues before your entire customer base is affected.

• Push to your own test organizations first to confirm that the push happens seamlessly. Log in to your test organization after the push
upgrade and test to see that everything works as expected.

• When applicable, push to the sandbox organizations of your customers first before pushing to their production organizations. Give
them a week or more to test, validate, and fix in the sandbox environment before you push to their production organizations.

• Push upgrades to small batches of customer production organizations initially. For example, if you have 1,000 customers, push
upgrades to 50 or 100 customers at a time, at least the first few times. After you have confidence in the results, you can upgrade
customers in larger batches.

Focus on Customer Trust
• You’re responsible for ensuring that your customers’ organizations aren’t adversely affected by your upgrade. Avoid making changes

to the package, such as changes to validation rules or formula fields, that might break external integrations made by the customer.
If for some reason you do, test and communicate well in advance. Please keep in mind that you can impact customer data, not just
metadata, by pushing an upgrade that has bugs.

• Write an Apex test on install to do basic sanity testing to confirm that the upgraded app works as expected.

370

Push Upgrade Best PracticesSecond-Generation Managed Packages

• If you’re enhancing an existing feature, use a post-install script to automatically assign new components to existing users using
permission sets.

• If you’re adding a new feature, don’t auto-assign the feature to existing users. Communicate and work with the admins of the
customer org so they can determine who should have access to the new feature, and the timing of the rollout.

Advanced Features for Second-Generation Managed Packages

After you're comfortable with creating second-generation managed packages, learn about these advanced features to customize your
package development processes.

Package Ancestors for Second-Generation Managed Packages

Second-generation managed packaging (managed 2GP) offers a flexible package versioning model that lets you break your linear
versioning and abandon a package version you no longer want to build upon. We call these versioning decisions package ancestry.

Patch Versions for Second-Generation Managed Packages

Patch versions are a way to fix small issues with your second-generation managed package without introducing major feature
changes. Customers who are using an older version of your package can install a patch and not be forced to upgrade to a new major
package version.

Create Dependencies Between Second-Generation Managed Packages

To avoid monolithic package development practices, plan to develop smaller, modular packages that group similar functionality
and components. You can then define the dependencies between these packages. A package dependency is when metadata
contained in one package depends on metadata contained in another package. For example, defining dependencies allow you to
extend the functionality of a base package with components and metadata located in a separate package.

Considerations for Promoting Packages with Dependencies

If your company is developing a package that has a package dependency, ask yourself these questions before promoting (releasing)
a new package version.

Advanced Project Configuration Parameters for Second-Generation Managed Packages

As your managed 2GP package development becomes more complex, consider including these optional parameters in your
sfdx-project.json file.

Second-Generation Managed Packaging Keywords

A keyword is a variable that you can use to specify a package version number.

Target a Specific Release for Your Second-Generation Managed Packages During Salesforce Release Transitions

During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of
which Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your
Dev Hub org was on.

Use Branches in Second-Generation Managed Packaging

Development teams who use branches in their source control system (SCS), often build package versions based on the metadata
in a particular branch of code.

Specify Unpackaged Metadata or Apex Access for Package Version Creation Tests for Second-Generation Managed Packages

For scenarios where you require metadata that isn’t part of your second-generation managed package, but is necessary for Apex
test runs, you can specify the path containing unpackaged metadata in the sfdx-project.json file. The unpackaged metadata
isn’t included in the package and isn’t installed in subscriber orgs.

371

Advanced Features for Second-Generation Managed
Packages

Second-Generation Managed Packages

Package IDs and Aliases for Second-Generation Managed Packages

During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a
second-generation managed package or package version, Salesforce CLI creates a package alias based on the package name, and
stores that name in the packageAliases section of the sfdx-project.json file. When you run CLI commands or write scripts
to automate packaging workflows, it’s often easier to reference the package alias, instead of the package ID or package version ID.

Avoid Namespace Collisions in Second-Generation Managed Packages

Namespaces impact the combination of package types that you can install in an org.

Remove Metadata Components from Second-Generation Managed Packages

Remove metadata components such as Apex classes that you no longer want in your second-generation managed packages.

Delete a Second-Generation Managed Package or Package Version

Use the sf package version delete and sf package delete commands to delete packages and package versions
that you no longer need.

Frequently Used Packaging Operations for Second-Generation Managed Packages

Transfer a Second-Generation Managed Package to a Different Dev Hub

You can transfer the ownership of a second-generation managed package (managed 2GP) from one Dev Hub org to another. These
transfers can occur either internally between two Dev Hub orgs your company owns, or you can transfer a package externally to
another Salesforce Partner or ISV. This change provides a way to sell a second-generation managed package to a different company.

Contact Salesforce Partner Support to Enable Specific Packaging Features

Certain packaging features can only be enabled by Salesforce Partner Support.

Package Ancestors for Second-Generation Managed Packages
Second-generation managed packaging (managed 2GP) offers a flexible package versioning model that lets you break your linear
versioning and abandon a package version you no longer want to build upon. We call these versioning decisions package ancestry.

Note: Only package versions that have been promoted to the managed-released state can be specified as a package ancestor.

When package versioning is linear, the package version number (formatted as major.minor.patch.build) always increments to an increasing
number. For example, looking at just the major and minor version numbers, linear versioning looks something like 1.0 1.1 1.2 2.0.
The next package version created in this linear versioning example must be higher than 2.0.

How Managed 2GP Package Versioning Affects Package Upgrades
Before we dig into package ancestry and how managed 2GP lets you break your linear versioning, let’s clarify how package versioning
impacts package upgrades. Let’s use our previous example of a package version history that looks like this, 1.0 1.1 1.2 2.0. A customer
could install version 1.0 and upgrade through each of the subsequent package versions, or they could skip versions and upgrade from
1.0 to 2.0. As long as they upgrade from a lower package version number to a higher package version number, the package upgrade
succeeds.

But what if during your development process you create a package version that you don’t want to build upon? Managed 2GP lets you
break free from linear versioning and select a different package version to build upon.

Say your team creates version 1.0, then 1.1, then 1.2 and oops! 1.2 made a mess of 1.1. Not a problem. When you create a package
version, you specify which package version is the ancestor. So you abandon 1.2, and make 1.1 the ancestor of 1.3. And this process can
be repeated. For example, the illustration shows how to abandon 1.5, and build 1.6 off 1.4.

372

Package Ancestors for Second-Generation Managed
Packages

Second-Generation Managed Packages

This more complex and tree-like versioning has the added benefit of making it possible for two or more development teams to do
parallel package development.

With Great Power Comes Great Responsibility
The flexibility to break from linear versioning is powerful. But remember that if abandoned versions like 1.2 and 1.5 are installed in
customer orgs, those customers no longer have an upgrade path. Packages can only upgrade along the ancestry line. For example, you
can upgrade from version 1.1 to 1.7, but not from version 1.5 to 1.7.

Patch Versions and Package Ancestry
You can’t specify a patch version, such as 1.0.2, as a direct ancestor of a non-patch version. Instead, use the
keyword “ancestorVersion" : "HIGHEST”, or specify a non-patch version as the ancestor. Installed patch versions inherit
the upgrade path of the non-patch version with the same major and minor number. For example, patch version 1.0.3 has the same
upgrade path as 1.0.0.

Understanding Package Upgrades with Ancestry

Review how package ancestry impacts which package version upgrades are allowed.

View Package Ancestry

Use Salesforce CLI commands to quickly confirm your package’s ancestor, or to create a visualization of the package ancestry tree.

SEE ALSO:

Understanding Package Upgrades with Ancestry

View Package Ancestry

Namespace-Based Visibility for Apex Classes in Second-Generation Managed Packages

373

Package Ancestors for Second-Generation Managed
Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_patch_version.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_upgrades.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_view_ancestors.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm

Understanding Package Upgrades with Ancestry
Review how package ancestry impacts which package version upgrades are allowed.

Refer to this table and the package ancestry tree to understand whether your subscribers can upgrade between these 2GP package
versions.

Example Package Ancestry Tree

Will This Package Upgrade Succeed?Upgrade ToUpgrade From

Yes1.71.1

Yes. Both 1.3.2 and 1.3.4 are patch versions
within the same major and minor version.

1.3.41.3.2

You’re allowed to upgrade between patch
versions that share the same major and
minor version.

Yes. 1.3.1 is a patch version. Because
upgrading from 1.3 to 1.7 is allowed, you
can also upgrade from 1.3.x to 1.7.

1.71.3.1

No. These two versions don’t share an
ancestry path.

1.31.2

No. These two versions don’t share an
ancestry path.

1.71.5

374

Package Ancestors for Second-Generation Managed
Packages

Second-Generation Managed Packages

Will This Package Upgrade Succeed?Upgrade ToUpgrade From

No. Downgrading an installed package isn’t
allowed.

1.3.31.4

Yes1.81.0

View Package Ancestry
Use Salesforce CLI commands to quickly confirm your package’s ancestor, or to create a visualization of the package ancestry tree.

View Package Ancestor Details in Salesforce CLI
Use the sf package version report or sf package version list command to view the name and version number
of the package ancestor.

Output from sf package version report command.

Output from sf package version list command.

Visualize Package Ancestry
Use the displayancestry CLI command to create visualizations of your package or package version’s ancestry tree. You can view
the visualization in Salesforce CLI or use the dot-code parameter to generate output that can be used in graph visualization software.

Use sf package version displayancestry to quickly visualize your package ancestry and understand the possible
package upgrade paths.

375

Package Ancestors for Second-Generation Managed
Packages

Second-Generation Managed Packages

To generate dotcode output, specify sf package version displayancestry --dot-code.

Patch Versions for Second-Generation Managed Packages
Patch versions are a way to fix small issues with your second-generation managed package without introducing major feature changes.
Customers who are using an older version of your package can install a patch and not be forced to upgrade to a new major package
version.

Package versions follow a major.minor.patch.build number format. Any package version number that contains a non-zero patch number
is a patch version. For example, 1.1.2.5 is a patch version, but 1.1.0.4 isn’t.

Patch versions are intended for small changes like a fixing a bug. You can’t:

• Add package components.

• Delete existing package components.

• Change the API and dynamic Apex access controls.

• Deprecate any Apex code.

• Add new Apex class relationships, such as extends.

• Add Apex access modifiers, such as virtual or global.

• Add features, settings, package dependencies, or web services.

• Change a component from protected to global.

• Change the visibility of CustomSettings or CustomMetadataType from protected to public.

When creating a patch version, you must specify the package ancestor. The major and minor numbers of the patch version and the
package ancestor must match. And the specified package ancestor must be managed-released.

You can specify another patch version as the package ancestor of a patch version. But you can’t specify a patch version as a direct ancestor
of a non-patch version. Instead, use the keyword “ancestorVersion" : "HIGHEST”, or specify a non-patch version as the
ancestor.

Installed patch versions inherit the upgrade path of the non-patch version with the same major and minor number. For example, patch
version 1.0.3 has the same upgrade path as 1.0.0. See Specify a Package Ancestor in the Project File for a Second-Generation Managed
Package for more information about how to specify a package ancestor.

When you create a patch version, the patch automatically inherits the features and settings defined in the package ancestor’s scratch
org definition file. To create a patch, follow the same steps as you do when you create a package version, and increment the patch
number.

376

Patch Versions for Second-Generation Managed PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm

Note: To enable patch versioning, log a case with Salesforce Partner Support on page 403 and request that patch versioning be
enabled in the org where you created the namespace for this package. Patch versioning is available to only to packages that have
passed AppExchange security review.

SEE ALSO:

Specify a Package Ancestor in the Project File for a Second-Generation Managed Package

Second-Generation Managed Packaging Keywords

Create Dependencies Between Second-Generation Managed Packages
To avoid monolithic package development practices, plan to develop smaller, modular packages that group similar functionality and
components. You can then define the dependencies between these packages. A package dependency is when metadata contained in
one package depends on metadata contained in another package. For example, defining dependencies allow you to extend the
functionality of a base package with components and metadata located in a separate package.

How to Specify a Managed 2GP Package Dependency

Note: To understand which combination of managed 2GP and managed 1GP package dependencies are supported, see Which
Package Types Can Your Package Depend On?.

To specify dependencies between managed packages associated with the same Dev Hub, use either the package version alias or a
combination of the package name and the version number.

Example 1:

"dependencies": [
{

"package": "MyPackageName@0.1.0.1"
}

]

Example 2:

"dependencies": [
{

"package": "MyPackageName",
"versionNumber": "1.0.0.RELEASED"

}
]

To specify a dependency on a managed package that isn’t associated with your Dev Hub:

"dependencies": [
{

"package": "04txxx"
}

]

Note: You can use the RELEASED keyword for the version number to set the dependency.

To denote dependencies with package IDs instead of package aliases, use:

• The 0Ho ID if you specify the package ID along with the version number

377

Create Dependencies Between Second-Generation Managed
Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_ancestors.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm

• The 04t ID if you specify only the package version ID

Specifying Multiple Package Dependencies
If your package has more than one dependency, provide a comma-separated list of packages in the order of installation.

For example, if your package depends on the package Expense Manager - Util, which in turn depends on the package External Apex
Library, the package dependencies are:

"dependencies": [
{

"package" : "External Apex Library - 1.0.0.4"

},
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

}
]

If the package has multilevel dependencies, you can optionally set the calculateTransitiveDependencies parameter to
true in the sfdx-project.json file. When calculateTransitiveDependencies is true, you can specify the
package’s direct dependencies only, and the indirect (transitive) dependencies are calculated for you.

For example, if calculateTransitiveDependencies is enabled and the package depends on the package Expense Manager
- Util, which in turn depends on the package External Apex Library, the package dependency is:

"dependencies": [
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

}
]

Which Types of Dependencies Are Supported?
Circular Dependencies

Circular dependencies among packages aren’t supported.

A circular dependency occurs when pkgC depends on pkgB, pkgB depends on pkgA, and pkgA depends on pkgC.

Multi-level Dependencies
Multi-level package dependencies are supported.

A multi-level dependency occurs when pkgC depends on pkgB, and pkgB depends on pkgA.

378

Create Dependencies Between Second-Generation Managed
Packages

Second-Generation Managed Packages

By default, you list all dependencies at all levels in the sfdx-project.json file. To specify only the package’s direct dependencies
and have the indirect (transitive) dependencies calculated for you, you can optionally set
calculateTransitiveDependencies to true in the sfdx-project.json file.

When calculateTransitiveDependencies is not enabled, list all dependencies in the sfdx-project.json file
in the package installation order. In this example, pkgA must be installed first, followed by pkgB, and then pkgC. The dependencies
specified for pkgC are both pkgA and pkgB.

{
"packageDirectories": [

{
"path": "pkgA-wsp",
"default": true,
"package": "pkgA",
"versionName": "ver 1.3",
"versionNumber": "1.3.0.NEXT",
"ancestorVersion": "1.1.0.RELEASED"

},
{

"path": "pkgB-wsp",
"default": false,
"package": "pkgB",
"versionName": "ver 2.3",
"versionNumber": "2.3.0.NEXT",
"ancestorVersion": "2.0.0.RELEASED",
"dependencies": [

{
"package": "pkgA@1.1.0.RELEASED"

}
]

},
{

"path": "pkgC-wsp",
"default": false,
"package": "pkgC",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"dependencies": [

{
"package": "pkgA@1.1.0.RELEASED"

},

379

Create Dependencies Between Second-Generation Managed
Packages

Second-Generation Managed Packages

{
"package": "pkgB@2.0.0.RELEASED"

}

]
}

],

}

When calculateTransitiveDependencies is set to true, specify each package’s direct dependencies only. In this
example, pkgC depends on pkgB, pkgB depends on pkgA, and pkgC’s indirect dependency on pkgA is calculated for you.

{
"packageDirectories": [

{
"path": "pkgA-wsp",
"default": true,
"package": "pkgA",
"versionName": "ver 1.3",
"versionNumber": "1.3.0.NEXT",
"ancestorVersion": "1.1.0.RELEASED"

},
{

"path": "pkgB-wsp",
"default": false,
"package": "pkgB",
"versionName": "ver 2.3",
"versionNumber": "2.3.0.NEXT",
"ancestorVersion": "2.0.0.RELEASED",
"dependencies": [

{
"package": "pkgA@1.1.0.RELEASED"

}
]

},
{

"path": "pkgC-wsp",
"default": false,
"package": "pkgC",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"calculateTransitiveDependencies": true,
"dependencies": [

{
"package": "pkgB@2.0.0.RELEASED"

}
]

}
],

}

380

Create Dependencies Between Second-Generation Managed
Packages

Second-Generation Managed Packages

The specified package version number also impacts the installation of package dependencies. Before pkgB can be installed, pkgA
version 1.1 or higher must first be installed. If this condition isn’t met, the installation of pkgB fails.

SEE ALSO:

Advanced Project Configuration Parameters for Second-Generation Managed Packages

Which Package Types Can Your Package Depend On?

Considerations for Promoting Packages with Dependencies

Considerations for Promoting Packages with Dependencies
If your company is developing a package that has a package dependency, ask yourself these questions before promoting (releasing) a
new package version.

Are you:

• Developing the base and extension package in parallel?

• Specifying skip validation when creating new package versions?

• Using the keywords LATEST or RELEASED when specifying the package dependency?

If you answered no to all these questions, your package doesn't have any tricky dependency scenarios and you can promote it when it's
ready. If you answered yes to any of these questions, keep reading.

Specifying Skip Validation
When you create a package version and specify skip validation, the version is created without validating dependencies, package ancestors,
or metadata.

If you develop your base package using skip validation, test your extension package using either a stable and previously promoted
version of the base package, or a non-skip validated base package version.

Most importantly, if you’re developing a version of your base package and extension package in parallel, ensure that you:

• First promote the base package version.

• Then specify the promoted package version in the dependency section of your extension package using the keyword RELEASED.

• Finally, create the extension package version.

After testing the extension package version, you then promote it. This process ensures that the extension package version that you
promote to the released state has as its dependency the promoted base package version.

Using the Keyword LATEST or RELEASED
A keyword is a variable that you can use to specify a package version number. The keyword LATEST maps to the most recently created
package version, which might not be the same as the promoted and released package version.

The keyword RELEASED maps to the promoted and released package version.

For example: If you create versions 1.0.0.1, 1.0.0.2, and 1.0.0.3, and promote version 1.0.0.2, then 1.0.0.RELEASED = 1.0.0.2, but 1.0.0.LATEST
= 1.0.0.3.

Example
Your company created a base package called PkgBase, and an extension package called PkgExtn.

381

Considerations for Promoting Packages with DependenciesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_adv_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_considerations_pkg_dependency.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm

PkgBase is under active development, and the development team is creating versions that specify --skip-validation.

PkgExtn version 2.3 is under active development and references its dependency on PkgBase by using the following definition in the
sfdx-project.json.

{
"path": "pkg-extension",
"default": false,
"package": "PkgExtn",
"versionName": "v 2.3",
"versionDescription": "Winter 2025",
"versionNumber": "2.3.0.NEXT",
"dependencies": [

{
"package": "PkgBase",
"versionNumber": "1.1.0.LATEST"

},

Before promoting version 2.3 of PkgExtn, you must test it using the promoted version 1.1.0 of PkgBase. Update the PkgExtn dependency
section of your sfdx-project.json and change the dependency from 1.1.0.LATEST to 1.1.0.RELEASED. If the tests succeed, then
create a new version of PkgExtn and ensure it works as expected with the promoted base package version.

SEE ALSO:

Create and Update Versions of a Second-Generation Managed Package

Get Ready to Promote and Release a Second-Generation Managed Package Version

Create Dependencies Between Second-Generation Managed Packages

Second-Generation Managed Packaging Keywords

Advanced Project Configuration Parameters for Second-Generation
Managed Packages
As your managed 2GP package development becomes more complex, consider including these optional parameters in your
sfdx-project.json file.

DetailsName

Required? No

Default if Not Specified: None

apexTestAccess

Assign permission sets and permission set licenses to the user in
context when your Apex tests run at package version creation.

"apexTestAccess": {
"permissionSets": [

"Permission_Set_1",
"Permission_Set_2"

],
"permissionSetLicenses": [

"SalesConsoleUser"

382

Advanced Project Configuration Parameters for
Second-Generation Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_pkg_ver.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_get_ready_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_dependencies.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm

DetailsName

]
}

See Specify Unpackaged Metadata or Apex Access for Package
Version Creation Tests for Second-Generation Managed Packages

Required? No

Default if Not Specified: None

branch

If your package has an associated branch, but your package
dependency is associated with a different branch, use this format.

"dependencies": [
{
"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": "featureC"
}

]

If your package has an associated branch, but your package
dependency doesn’t have an associated branch, use this format.

"dependencies": [
{
"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": ""
}

]

See Use Branches in Second-Generation Managed Packaging

Required? No

Default if Not Specified: false

calculateTransitiveDependencies

Enables the calculation of the package’s indirect dependencies. A
package can have multiple levels of dependencies, where pkgC
depends on pkgB, and pkgB depends on pkgA, for example. By
default, you list all of a package’s dependencies, including indirect
(transitive) dependencies. When
calculateTransitiveDependencies is set to true,
you specify a package’s direct dependencies only, and the indirect
dependencies are calculated for you. See the dependencies
parameter’s description for example configurations in the
sfdx-project.json file.

calculateTransitiveDependencies also enables you
to generate a hierarchical graph of a package version’s
dependencies. To generate the dependencies graph, run the
package version displaydependencies CLI

383

Advanced Project Configuration Parameters for
Second-Generation Managed Packages

Second-Generation Managed Packages

DetailsName

command. See package version displaydependencies in the
Salesforce CLI Command Reference.

Required? No

Default if Not Specified: None

dependencies

Specify the dependencies on other packages.

To specify dependencies for managed packages within the same
Dev Hub, use either the package version alias or a combination of
the package name and the version number.

"dependencies": [
{

"package": "MyPackageName@1.1.0.1"
}

]

"dependencies": [
{

"package": "MyPackageName",
"versionNumber": "1.1.0.RELEASED"

}
]

To specify dependencies for managed packages outside of the Dev
Hub use:

"dependencies": [
{

"package": "04txxx"
}

]

To set the dependency, you can use the keywords RELEASED or
LATEST for the version number.

To denote dependencies with package IDs instead of package
aliases, use:

• The 0Ho ID if you specify the package ID along with the
version number

• The 04t ID if you specify only the package version ID

If the package has more than one dependency, provide a
comma-separated list of packages in the order of installation. For
example, if a package depends on the package Expense Manager
- Util, which in turn depends on the package External Apex Library,
the package dependencies are:

"dependencies": [
{

"package" : "External Apex Library -
1.0.0.4"

384

Advanced Project Configuration Parameters for
Second-Generation Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm#cli_reference_package_version_displaydependencies_unified
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_config_keywords.htm

DetailsName

},
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

}
]

If you set the calculateTransitiveDependencies
parameter to true, you specify the package’s direct dependencies
only, and the indirect (transitive) dependencies are calculated for
you.

For example, if calculateTransitiveDependencies
is enabled and the package depends on the package Expense
Manager - Util, which in turn depends on the package External
Apex Library, the package dependency is:

"dependencies": [
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.RELEASED"

}
]

See: Considerations for Promoting Packages with Dependencies

Required? No

Default if Not Specified: None

postInstallScript

An Apex script that runs automatically in the subscriber org after
the managed package is installed or upgraded.

Required? No

Default if Not Specified: None

postInstallURL

A URL to post-install instructions for subscribers.

Required? No

Default if Not Specified: None

releaseNotesUrl

A URL to release notes.

Required? No

Default if Not Specified: false

scopeProfiles

The scopeProfiles parameter is a child of packageDirectories. If you
set scopeProfiles to true for a package directory, profile settings
from only the package directory being packaged are included, and
profile settings outside of that package directory are ignored.

385

Advanced Project Configuration Parameters for
Second-Generation Managed Packages

Second-Generation Managed Packages

DetailsName

When you set scopeProfiles to false (the default value), the new
package version includes relevant pieces of profile settings in any
package directory defined in sfdx-project.json.

Required? No

Default if Not Specified: None

unpackagedMetadata

See Specify Unpackaged Metadata or Apex Access for Package
Version Creation Tests for Second-Generation Managed Packages.

Required? No

Default if Not Specified: None

uninstallScript

An Apex script to run automatically in the subscriber org before
the managed package is uninstalled.

SEE ALSO:

Project Configuration File for a Second-Generation Managed Package

Second-Generation Managed Packaging Keywords
A keyword is a variable that you can use to specify a package version number.

You can use keywords to automatically increment the value of the package build numbers, ancestor version numbers, set the package
dependency to the latest version, or the latest released and promoted version.

ExampleUse the Keyword

"dependencies": [
{

LATEST to specify the latest version of the package dependency
when you create a package version.

"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

}
]

"versionNumber": "1.2.0.NEXT"
NEXT to increment the build number to the next available for the
package version.

If you don’t use NEXT, and you also forget to update the version
number in your sfdx-project.json file, the new package
version uses the same number as the previous package version.
Although we don’t enforce uniqueness on package version
numbers, every package version is assigned a unique subscriber
package version ID (starts with 04t).

"dependencies": [
{

RELEASED to specify the latest promoted and released version of
the package dependency when you create a package version.

"package": "pkgB",

386

Second-Generation Managed Packaging KeywordsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

ExampleUse the Keyword

"versionNumber": "2.1.0.RELEASED"
}

]

"packageDirectories": [
{

HIGHEST to automatically set the package ancestor to the highest
promoted and released package version number.

Use only with ancestor version or ancestor ID. "path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "HIGHEST"
},

"packageDirectories": [
{

NONE in the ancestor version or ancestor ID field.

Ancestry defines package upgrade paths. If the package ancestor
is set to NONE, an existing customer can’t upgrade to that package
version.

"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "NONE"
},

Target a Specific Release for Your Second-Generation Managed Packages
During Salesforce Release Transitions
During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of which
Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your Dev Hub
org was on.

To create a package version based on a preview or previous Salesforce release version, create a scratch org definition file that includes
either:

{
"release": "previous"

}

or

{
"release": "preview"

}

In the sfdx-project.json file, set the sourceApiVersion to correspond with the release version of the package version
you’re creating. If you are targeting a previous release, any sourceApiVersion value below the current release is accepted.

Then when you create your package version, specify the scratch org definition file.

sf package version create --package pkgA --definition-file config/project-scratch-def.json

Preview start date is when sandbox instances are upgraded. Preview end date is when all instances are on the GA release.

387

Target a Specific Release for Your Second-Generation
Managed Packages During Salesforce Release Transitions

Second-Generation Managed Packages

Preview End DatePreview Start DateRelease Version

February 21, 2026January 11, 2026Spring ’26

June 13, 2026May 10, 2026Summer ’26

October 10, 2026August 30, 2026Winter ’27

Use Branches in Second-Generation Managed Packaging
Development teams who use branches in their source control system (SCS), often build package versions based on the metadata in a
particular branch of code.

To identify which branch in your SCS a package version is based on, tag your package version with a branch name using --branch
attribute in this Salesforce CLI command.

sf package version create --branch featureA

You can specify any alphanumeric value up to 240 characters as the branch name.

You can also specify the branch name in the package directories section of the sfdx-project.json file.

"packageDirectories": [
{

"path": "util",
"default": true,
"package": "pkgA",
"versionName": "Spring ‘21",
"versionNumber": "4.7.0.NEXT",
"branch": "featureA"

}]

When you specify a branch, the package alias for that package version is automatically appended with the branch name. You can view
the package alias in the sfdx.project.json file.

"packageAliases": {
"pkgA@1.0.0.4-featureA":"04tB0000000IB1EIAW"}

Keep in mind that version numbers increment within each branch, and not across branches. For example, you could have two or more
beta package versions with the version number 1.3.0.1.

Package Version AliasBranch Name

pkgA@1.3.0-1-featureAfeatureA

pkgA@1.3.0-1-featureBfeatureB

pkgA@1.3.0-1Not specified

Although more than one beta package version can have the same version number, there can be only one promoted and released
package version for a given major.minor.patch package version.

388

Use Branches in Second-Generation Managed PackagingSecond-Generation Managed Packages

Package Dependencies and Branches
By default, your package can have dependencies on other packages in the same branch. For package dependencies based on packages
in other branches, explicitly set the branch attribute in the sfdx.project.json file.

Use this formatTo specify a package dependency

"dependencies": [
{

Using the branch attribute

"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": "featureC"

}]

"dependencies": [
{

Using the most recent promoted and released version of package

"package": "pkgB",
"versionNumber": "2.1.0.RELEASED"

}]

"dependencies": [
{

If your package has an associated branch, but the dependent
package doesn’t have a branch

"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": ""

}]

"dependencies": [
{

Using the package alias

"package": "pkgB@2.1.0-1-featureC"
}]

Specify Unpackaged Metadata or Apex Access for Package Version
Creation Tests for Second-Generation Managed Packages
For scenarios where you require metadata that isn’t part of your second-generation managed package, but is necessary for Apex test
runs, you can specify the path containing unpackaged metadata in the sfdx-project.json file. The unpackaged metadata isn’t
included in the package and isn’t installed in subscriber orgs.

Specify Unpackaged Metadata for Package Version Creation Tests
Specify the path to the unpackaged metadata in your sfdx-project.json file.

In this example, metadata in the my-unpackaged-directory is available for test runs during the package version creation of
the TV_unl package.

"packageDirectories": [
{

389

Specify Unpackaged Metadata or Apex Access for Package
Version Creation Tests for Second-Generation Managed

Packages

Second-Generation Managed Packages

"path": "force-app",
"package": "TV_unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"
}

},
]

The unpackagedMetadata attribute is intended for metadata that isn’t part of your package. You can’t include the same metadata
in both an unpackaged directory and a packaged directory.

Manage Apex Access for Package Version Creation Tests
Sometimes the Apex tests that you write require a user to have certain permission sets or permission set licenses. Use the
apexTestAccess setting to assign permission sets and permission set licenses to the user in whose context your Apex tests get
run at package version creation.

"packageDirectories": [
{

"path": "force-app",
"package": "TV_unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"
},
"apexTestAccess": {

"permissionSets": [
"Permission_Set_1",
"Permission_Set_2"

],
"permissionSetLicenses": [

"SalesConsoleUser"
]

}

},
]

Note: To assign user licenses, use the runAs Method. User licenses can't be assigned in the sfdx-project.json file.

Package IDs and Aliases for Second-Generation Managed Packages
During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a second-generation
managed package or package version, Salesforce CLI creates a package alias based on the package name, and stores that name in the
packageAliases section of the sfdx-project.json file. When you run CLI commands or write scripts to automate packaging
workflows, it’s often easier to reference the package alias, instead of the package ID or package version ID.

390

Package IDs and Aliases for Second-Generation Managed
Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_testing_tools_runas.htm

Package aliases are stored in the sfdx-project.json file as name-value pairs, in which the name is the alias and the value is the
ID. You can modify package aliases for existing packages and package versions in the project file.

At the command line, you also see IDs for things like package members (a component in a package) and requests (like a sf package
version create request).

Note: As a shortcut, the documentation sometimes refers to an ID by its three-character prefix. For example, a package version
ID always starts with 04t.

Here are the most commonly used IDs.

DescriptionShort ID NameID Example

Use this ID when contacting Salesforce for
packaging or security review support. To

Subscriber Package ID033J0000dAb27uxVRE

locate this ID for your package, run sf
package list --verbose against
the Dev Hub that owns the package.

Use this ID to install a package version.
Returned by sf package version
create.

Subscriber Package Version ID04t6A0000004eytQAA

Use this ID on the command line to create
a package version. Or enter it into the

Package ID0Hoxx00000000CqCAI

sfdx-project.json file and use the
directory name. Generated by sf
package create.

Use this ID to view the status and monitor
progress for a specific request to create a

Version Creation Request ID08cxx00000000BEAAY

package version such as sf package
version create report

Avoid Namespace Collisions in Second-Generation Managed Packages
Namespaces impact the combination of package types that you can install in an org.

Important: When sharing a namespace, be intentional about managing component names across packages within that namespace.
Ensure that packages associated with the same namespace don’t include components with the same API name. If two packages
include a component with the same API name, you can’t install these packages into the same org.

To understand how namespaces affect the types of packages you can install in a namespaced or no-namespace org, review this table.

First-generation
Managed Package
(1GP)

Second-generation
Managed Package
(2GP)

Namespaced
Unlocked Package

No-namespace
Unlocked Package

Installation Org

Pass.

If the namespace of the
1GP is different from the

Pass (scratch orgs).

Regardless of whether
the namespace matches

Pass.

Regardless of whether
the namespace matches

Fail.

You can’t install a
no-namespace unlocked

Org with a namespace

For example, a 1GP
packaging org, 1GP patch

namespace of the org,or is different from theor is different from thepackage in an org with a
namespace.

org, Developer Edition
org with namespace, or a

391

Avoid Namespace Collisions in Second-Generation Managed
Packages

Second-Generation Managed Packages

First-generation
Managed Package
(1GP)

Second-generation
Managed Package
(2GP)

Namespaced
Unlocked Package

No-namespace
Unlocked Package

Installation Org

scratch org with
namespace

you can install one or
many packages.

Fail.

scratch org’s namespace,
you can install one or
many 2GP packages.

org’s namespace, you can
install one or many
namespaced unlocked
packages.

If the namespace of the
1GP is the same as the

Fail (1GP packaging and
patch orgs).

namespace of the org,To prevent 1GP packages
from depending on 2GP you can’t install the 1GP

into the org.packages, we block the
installation of 2GP
packages in a 1GP
packaging or patch org.
We also block the
installation of 2GP
packages in Developer
Edition (DE) orgs that
have an associated
namespace, unless it’s a
DE scratch org.

Pass.

You can install one or
many 1GP packages.

Pass.

You can install one or
many 2GP packages.

Pass.

You can install one or
many namespaced
unlocked packages.

Pass.

You can install one or
many no-namespace
unlocked packages.

Org without a
namespace

To understand how namespaces affect the combination of packages that can be installed into one org, review this table.

First-generation Managed
Package (1GP) with
Namespace Y

Second-generation
Managed Package (2GP)
with Namespace Y

Unlocked Package with
Namespace Y

Namespace and Package
Type

Pass.

If each 1GP uses a unique
namespace, you can install

Pass.

If the 1GP and 2GP use unique
namespaces, you can install
them in the same org.

Pass.

If the 1GP and unlocked package
use unique namespaces, you
can install them in the same org.

First-generation Managed
Package (1GP) with
namespace X

multiple 1GP packages in the
same org.

Fail.

If the 1GP packages share a
namespace, you can’t install
them in the same org.

Fail.

If the 1GP and 2GP share a
namespace, you can’t install
them in the same org.

Fail.

If the 1GP and unlocked package
share a namespace, you can’t
install them in the same org.

First-generation Managed
Package (1GP) with
namespace Y

392

Avoid Namespace Collisions in Second-Generation Managed
Packages

Second-Generation Managed Packages

First-generation Managed
Package (1GP) with
Namespace Y

Second-generation
Managed Package (2GP)
with Namespace Y

Unlocked Package with
Namespace Y

Namespace and Package
Type

Pass.

If the 1GP and 2GP use unique
namespaces, you can install
them in the same org.

Pass.

You can install multiple 2GP
packages with unique
namespaces, or the same
namespace.

Pass.

You can install a 2GP and a
namespaced unlocked package
in the same org. The packages
can share a namespace or use
unique namespaces.

Second-generation Managed
Package (2GP) with
namespace X

Fail.

If the 1GP and 2GP share a
namespace, you can’t install
them in the same org.

Pass.

You can install multiple 2GP
packages with the same
namespace in the same org.

Pass.

You can install a 2GP and a
namespaced unlocked package
in the same org. The packages
can share a namespace or use
unique namespaces.

Second-generation Managed
Package (2GP) with
namespace Y

SEE ALSO:

Namespaces for Second-Generation Managed Packages

Create and Register Your Namespace for Second-Generation Managed Packages

Link a Namespace to a Dev Hub Org

Remove Metadata Components from Second-Generation Managed
Packages
Remove metadata components such as Apex classes that you no longer want in your second-generation managed packages.

Impact of Component Removal in Subscriber Orgs
During a package upgrade, only certain component types are hard deleted and removed from the subscriber org. Most metadata
components that were removed from a package version remain in the subscriber org after package upgrade and are marked as deprecated.
When a package is upgraded in the subscriber org, the Setup Audit Trail logs which components were removed. Admins of a subscriber
org can delete deprecated metadata. If the subscriber uninstalls the package, deprecated metadata that was previously associated with
the package is deleted.

You can remove these metadata components from second-generation managed packages.

Upon Package Upgrade, the Metadata Component is
...

Metadata Component

Marked as deprecatedAnalytic Snapshot

Hard deletedApex Class (excluding global Apex classes)

Hard deletedApex Trigger

Marked as deprecatedAura Component

393

Remove Metadata Components from Second-Generation
Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_plan_namespaces.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_reg_namespace.htm

Upon Package Upgrade, the Metadata Component is
...

Metadata Component

Marked as deprecatedCompact Layout

Marked as deprecatedCustom Application

Marked as deprecatedCustom Application Component

Marked as deprecatedCustom Field

Marked as deprecatedCustom Labels

Marked as deprecated, if visible to the subscriber org; otherwise,
hard deleted.

Custom Metadata Type Records

Marked as deprecatedCustom Object

Marked as deprecatedCustom Permission

Marked as deprecatedCustom Tab

Marked as deprecatedDashboard

Marked as deprecatedDashboard Folder

Marked as deprecatedDocument

Marked as deprecatedExternal Auth Identity Provider

Hard deletedExternal Client App Header

Hard deletedExternal Client App Settings

Marked as deprecatedExternal Credential

Marked as deprecatedExternal Services

Marked as deprecatedField Set

Marked as deprecatedFlow

Marked as deprecatedLightning Page

Marked as deprecatedLightning Web Component

Marked as deprecatedList View

Marked as deprecatedNamed Credential

Marked as deprecatedPage Layout

Marked as deprecatedPermission Set

Hard deletedPlatform Event Channel

Hard deletedPlatform Event Channel Member

Marked as deprecatedProfile

Marked as deprecatedQuick Action

394

Remove Metadata Components from Second-Generation
Managed Packages

Second-Generation Managed Packages

Upon Package Upgrade, the Metadata Component is
...

Metadata Component

Marked as deprecatedRecord Type

Marked as deprecatedRemote Site Setting

Marked as deprecatedReport

Marked as deprecatedReport Folder

Marked as deprecatedReport Type

Marked as deprecatedSharing Reason

Marked as deprecatedStatic Resource

Marked as deprecatedValidation Rule

Hard deletedVisualforce Component (excluding global components)

Marked as deprecatedVisualforce Page

Marked as deprecatedWebLink (Custom Button or Custom Link)

Marked as deprecatedWorkflow Email Alert, Workflow Field Update, Workflow Outbound
Message, Workflow Rule, Workflow Task

How to Remove Metadata Components
To request access to this feature, log a case with Salesforce Partner Support on page 403.

After your request is approved, remove the metadata component’s source file from your Salesforce DX project, and create a package
version. Test the new package version to ensure it’s working properly without the removed metadata.

Before You Remove Metadata Components from Second-Generation Managed
Packages
To ensure you can successfully remove metadata components from a second-generation managed package, keep these details in mind.

• Request access to the feature, if you haven’t already.

• Familiarize yourself with the list of metadata components that can be removed.

• Ensure that there aren’t dependencies on the metadata you plan to remove. If any component in the package depends on or
references the component you're removing, the package version creation operation fails. After you remove a component, you can't
access any customizations that depend on the removed component.

Remove Metadata Dependencies Within a Package
If there are dependencies to the metadata component you plan to remove, resolve the dependency before removing the metadata
component.

For example, before deleting a custom field that is referenced in a page layout, edit the page layout and remove the reference to the
custom field. Then remove the custom field from your source file, and create a package version.

395

Remove Metadata Components from Second-Generation
Managed Packages

Second-Generation Managed Packages

Some scenarios require a two-step approach to component removal. For example, let's say you plan to remove a Visualforce page that
contains a Visualforce component and replace it with a Lightning page that contains a Lightning component. Removing both the
Visualforce page and Visualforce component in a single upgrade could cause issues for your subscribers. These issues occur because
Visualforce components are deleted, and Visualforce pages are deprecated during package upgrade.

To avoid issues for your subscribers in this example, remove the reference to the Visualforce component from the Visualforce page,
create a package version, and push the upgrade. Then remove the Visualforce page from your package version, and push this upgrade
to subscribers.

Remove Dependencies Located in Other Packages
Before you remove a metadata component, first remove all references to the metadata, including references in other packages that
depend on that metadata component. For example, if you’re removing a public Apex class, ensure your other packages aren’t referencing
that class using the Apex @namespaceAccessible annotation.

In this section, PackageA refers to the package in which you plan to remove a metadata component. And PackageB is any package that
depends on the metadata you’re removing from PackageA. If you have references to the metadata component or Apex class in PackageB,
follow these steps:

1. Remove the reference to the metadata component from PackageB.

2. Create a version of PackageB.

3. Push the new version of PackageB to your subscribers.

4. Repeat these steps if any other packages include a reference to the metadata you plan to remove from PackageA.

After you've removed all references to the metadata component, remove the metadata component’s source file from the Salesforce DX
project of PackageA. Then create a version of PackageA. Before pushing this upgrade to subscribers, test the new package version to
ensure it’s working properly.

What to Consider Before Removing Metadata Components

In most cases, removing metadata components from a second-generation managed package marks the component as deprecated
and doesn’t hard delete the component from the subscriber org. This approach to component removal ensures that package
upgrades don’t disrupt a subscriber’s org.

What to Consider Before Removing Metadata Components
In most cases, removing metadata components from a second-generation managed package marks the component as deprecated and
doesn’t hard delete the component from the subscriber org. This approach to component removal ensures that package upgrades don’t
disrupt a subscriber’s org.

But there’s a scenario where a deprecated component can lead to a package upgrade issue. This issue only pertains to deprecated
components, and no action is needed for hard deleted components.

To see which components are deprecated and which are deleted, see Remove Metadata Components from Second-Generation Managed
Packages.

Here’s an example scenario of how a deprecated component leads to a package upgrade issue.

1. Subscriber A installs version 1.0 of a managed package.

2. A package developer removes project__c custom object, and creates package version 2.0.

3. Subscriber A upgrades from version 1.0 to version 2.0, and project__c is now marked as deprecated in their org. Any integration
with project__c that the subscriber created continues to work.

4. The package developer continues to refine their app, and then releases several new versions.

396

Remove Metadata Components from Second-Generation
Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

5. During development of version 5.0, the package developer adds a component named project__c to the package.

6. A new subscriber, Subscriber B, successfully installs version 5.0.

7. Subscriber A tries to upgrade to version 5.0, but the installation fails because the admin at Subscriber A never deleted project__c
from their org.

8. The package developer has two paths to unblock Subscriber A.

a. Ask Subscriber A to remove all references to project__c, and then delete the component from their org.

b. Remove project__c from the package and release a new package version.

To prevent this kind of API name collisions in your packages, here are some best practices.

Communicate within Your Team and Company
Before you remove any metadata, assess the impact to the package and to any packages that depend on that package. If you remove
metadata in one package, that action has the potential to break the functionality of a package that depends on the removed metadata.
Communicate within your team and company so that other developers are aware of this change.

Document Package Changes for Future Developers
If you internally document the major changes that your package undergoes, including the name of metadata components that were
removed, you can help alert future package developers about previously used API names.

Communicate Changes with Your Subscribers
Educate your customers about the potential impact from any components you remove. In the Release Notes for your upgraded
package, list all components you’ve removed and notify customers of any necessary actions.

Delete a Second-Generation Managed Package or Package Version
Use the sf package version delete and sf package delete commands to delete packages and package versions
that you no longer need.

To delete a package or package version, users need the Delete Second-Generation Packages user permission. Before you delete a package,
first delete all associated package versions.

Can I delete released packages and
package versions?

Can I delete beta packages and
package versions?

Package Type

NoYesSecond-Generation Managed Packages

YesYesUnlocked Packages

Considerations for Deleting a Package or Package Version

• Deletion is permanent.

• Attempts to install a deleted package version will fail.

• Before deleting, ensure that the package or package version isn’t referenced as a dependency.

397

Delete a Second-Generation Managed Package or Package
Version

Second-Generation Managed Packages

Examples:

$ sf package delete -p "Your Package Alias"

$ sf package delete -p 0Ho...

$ sf package version delete -p "Your Package Version Alias"

$ sf package version delete -p 04t...

These CLI commands can’t be used with first-generation managed packages or package versions. To delete a first-generation managed
package, see View Package Details in the First-Generation Managed Packaging Developer Guide.

Frequently Used Packaging Operations for Second-Generation Managed
Packages
For a complete list of Salesforce CLI packaging commands, see: Salesforce Command Line Reference Guide.

What it DoesSalesforce CLI command

Creates a package. When you create a package, you specify its
package type and name, among other things.

sf package create

Creates a package version.sf package version create

Installs a package version in a scratch, sandbox, or production org.sf package install

Removes a package that has been installed in an org. This process
deletes the metadata and data associated with the package.

sf package uninstall

Changes the state of the package version from beta to the
managed-released state.

sf package version promote

Creates a scratch org.sf org create scratch

Opens an org in the browser.sf org open

Transfer a Second-Generation Managed Package to a Different Dev Hub
You can transfer the ownership of a second-generation managed package (managed 2GP) from one Dev Hub org to another. These
transfers can occur either internally between two Dev Hub orgs your company owns, or you can transfer a package externally to another
Salesforce Partner or ISV. This change provides a way to sell a second-generation managed package to a different company.

Note: Package transfers are only available for second-generation managed packages that have passed AppExchange security
review. If your managed 2GP package hasn’t passed security review, consider creating a new managed 2GP using your preferred
Dev Hub.

The package transfer feature is also available to unlocked packages. Dev Hub orgs aren’t used with first-generation managed
packages or unmanaged packages, so this feature doesn’t apply to those package types.

398

Frequently Used Packaging Operations for
Second-Generation Managed Packages

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_viewing_package_details.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_package_commands_unified.htm

Request a Package Transfer to a Different Dev Hub
Start by logging a case with Salesforce Customer Support, and provide the following details.

Subject: Managed 2GP Package Transfer to a different Dev Hub

Description:

In the description, list:

• Subscriber package ID of the package you’re transferring. This ID starts with 033.

To verify the 033 ID of your package, run the sf package list command with the -–verbose flag on the source Dev Hub
org.

• Dev Hub org ID for the source org.

• Dev Hub org ID for the destination org. The destination Dev Hub org can’t be a Developer Edition org or a trial org.

• Namespace of the package being transferred.

• Details about whether this package transfer is internal or external.

An external transfer occurs when you transfer a package to a Salesforce Partner or ISV who doesn’t work at your company.

• Acknowledge that you’ve reviewed and completed the steps listed in the Prepare to Transfer Your Package section,
including linking your namespace to the destination Dev Hub, and clearing your Apex Error Notification User.

If you’re transferring more than one package, file a separate case for each package.

After your case has been reviewed and approved, someone from Salesforce Customer Support will contact you to arrange a time to
initiate the package transfer.

Note: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren’t permitted.

Package Transfers to External Customers
If you’re transferring a package to another Salesforce Partner or ISV, provide:

• The source code and config settings needed to properly set up their Salesforce DX environment.

All config settings needed to properly set up the sfdx-project.json file, and a complete list of features and settings that
must be specified in their scratch org definition file.

• The login credentials to the namespace org. This information is required to link the package namespace to their Dev Hub org.

Prepare to Transfer Your Package
Here’s how you can help ensure a smooth package transfer.

• Keep the namespace linked to the source Dev Hub. Before the package transfer, the namespace must be linked to both the source
and destination Dev Hub orgs.

• Before the package transfer process is initiated, ensure all push upgrades or package version creation processes have completed.

• Delete package versions that are no longer needed.

• If specified, clear the package’s Error Notification User using the sf package update
--error-notification-username= command. If you’re transferring the package to a Dev Hub org that you own, you
can set the Error Notification User to a user in the destination Dev Hub after the package transfer is complete. Note: Specifying
--error-notification-username= with no value after the equals sign clears any previously set username.

399

Transfer a Second-Generation Managed Package to a
Different Dev Hub

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm

During the Package Transfer Process
All push upgrades or package version creation processes must be complete before the package transfer process is initiated. Salesforce
Customer Support will alert you about the date the package transfer will occur.

After the Package Transfer Is Complete
Run sf package list and verify that the package is no longer associated with your Dev Hub.

If the transferred package is still visible in your CLI output, and the recipient of the package transfer indicates the package transfer
succeeded, log a case with Salesforce Customer Support to remove the association of the package with your Dev Hub org.

Next, unpublish your existing AppExchange listing for this package.

Impact of Package Transfers on Package IDs

After package transfer is complete
…

ID starts withID Type

This ID remains the same.033Subscriber Package ID

This ID remains the same.04tSubscriber Package Version ID

The transferred package receives a new and
unique package ID.

0HoPackage ID

Update Your Package Project File
Before you create new packages or package versions on your Dev Hub, update your sfdx-project.json file and remove all
references to the transferred package from the package directory and package alias sections.

If you have packages in your Dev Hub that depend on the package that you’re transferring, update the package dependency section in
your sfdx-project.json file to explicitly specify the 04t ID of the transferred package that you depend on.

For example, if you transferred pkgA to a different Dev Hub, and your sfdx-project.json file lists the package dependency like
this.

"dependencies": [
{

"package": "pkgA"
"versionNumber": "2.0.0.LATEST"

}
]

Update the dependency to either specify the 04t ID of pkgA.

"dependencies": [
{

"package": "04tB0000000UzH5IAK"
}

]

400

Transfer a Second-Generation Managed Package to a
Different Dev Hub

Second-Generation Managed Packages

Or specify the dependency using a package alias.

"dependencies": [
{

"package": "pkgA2.0.0-1"
}

"packageAliases": {
"pkgA2.0.0-1": "04tB0000000UzH5IAK"

}
]

What Package History Is Transferred?
When a package is transferred, all package versions, and all lines of ancestry are transferred. Customer upgrade paths aren’t affected.

Regardless of whether the package transfer occurred between two Dev Hub orgs you own, or the package was transferred externally to
a Dev Hub you don’t own, we transfer the package version history.

We transfer:

• Package name, namespace, type, and IDs. One exception is that the transferred package gets a new 0Ho ID.

• Package version info. This includes all the info that is typically displayed when you run the sf package version list or
sf package version report command.

We don’t transfer:

• Push upgrade history.

• Package version create requests.

• The username of the Dev Hub user who received Apex and other types of error notifications. This optional user is set using
--error-notification-username.

• Deleted package versions.

Take Ownership of a Second-Generation Managed Package Transferred from a Different Dev Hub

You can take ownership of a second-generation managed package that is transferred from another Dev Hug org.

Take Ownership of a Second-Generation Managed Package Transferred from a
Different Dev Hub
You can take ownership of a second-generation managed package that is transferred from another Dev Hug org.

To initiate a package transfer from your Dev Hub org, see Transfer a Second-Generation Managed Package to a Different Dev Hub.

Note: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren’t permitted.

Transfers from External Customers
If you’re receiving the package from another Salesforce Partner or ISV, make sure they provide the source code for the package, and an
outline for the config settings needed to properly set up your Salesforce DX environment.

Request all the configuration settings required to properly set up the sfdx-project.json file, and a complete list of features and
settings that must be specified in your scratch org definition file.

401

Transfer a Second-Generation Managed Package to a
Different Dev Hub

Second-Generation Managed Packages

Also ensure that the company who is transferring the ownership of the package provides the login credentials for the namespace org
they used. This information is needed to link the package namespace to your Dev Hub org.

Receive a Package Transfer
For internal transfers, skip this step. Only log the case described in Transfer a Second-Generation Managed Package to a Different Dev
Hub .

If you’re receiving a package from a different Salesforce Partner or ISV, start by linking the namespace of the package you are receiving
to your Dev Hub org. See Link a Namespace to a Dev Hub Org in the Salesforce DX Developer Guide.

Next, log a case with Salesforce Customer Support, and provide the:

• Dev Hub org ID for the source org.

• Subscriber package ID of the package you’re receiving. This ID begins with 033.

• Dev Hub org ID for the destination org.

After the Package Transfer Is Complete
After the package transfer is complete, you’ll be notified by Salesforce Customer Support.

To verify that the transferred package is associated with your Dev Hub, run sf package list.

Impact of Package Transfers on Package IDs

After package transfer is complete
…

ID starts withID Type

This ID remains the same.033Subscriber Package ID

This ID remains the same.04tSubscriber Package Version ID

The transferred package receives a new and
unique package ID.

0HoPackage ID

Update Your Package Project File
Open and review the contents of the sfdx-project.json file that you received from the original package owner.

Open and review the contents of any scratch org definition files that you received from the original package owner. Definition files help
in setting up your scratch orgs during development. Use the -–definition-file parameter to specify a definition file when you
create a new package version.

If the package directories section lists additional packages that weren’t transferred to you, remove those references from the
sfdx-project.json file.

Next, review the package alias section of the sfdx-project.json file, and remove any references to package aliases that aren’t
associated with the package that was transferred.

Update the package alias of the transferred package to specify its 0Ho package ID.

402

Transfer a Second-Generation Managed Package to a
Different Dev Hub

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

Before You Create a New Package Version
Similar to how you go about creating any new package versions, you must update the sfdx-project.json file, and update the
version number and ancestor ID. We recommend you set the ancestor ID to HIGHEST.

To designate a Dev Hub user to receive email notifications for unhandled Apex exceptions, and install, upgrade, or uninstall failures
associated with your package, run the sf package update command, and use the --error-notification-username
parameter.

What Package History Is Transferred?
Regardless of whether the package transfer occurred between two Dev Hub orgs you own, or the package was transferred externally to
a Dev Hub you don’t own, we transfer the package version history.

We transfer:

• Package name, namespace, type, and IDs. One exception is that the transferred package gets a new 0Ho ID.

• Package version info. This includes all the info that is typically displayed when you run the sf package version list or
sf package version report command.

We don’t transfer:

• Push upgrade history.

• Package version create requests.

• The username of the Dev Hub user who received Apex and other types of error notifications.

• Deleted package versions.

Next Steps
You’ve verified that the package is associated with your Dev Hub, you’ve updated your sfdx-project.json file, and perhaps
you’ve even created a new package version. Congrats! There’s still a couple more items of business left to complete.

1. Register the transferred package with your License Management Org.

If this is an external transfer, log a case with Salesforce Customer Support and request provide both your LMO org ID, and the 033
package ID.

2. Publish Your Package on AppExchange

Contact Salesforce Partner Support to Enable Specific Packaging Features
Certain packaging features can only be enabled by Salesforce Partner Support.

To log a case for Salesforce Partner Support, follow these steps.

1. Log in to the Salesforce Partner Community.

2. Click the question icon and then click Log a Case for Help.

3. Complete the Subject and Description fields

a. After you enter a Description, a section called Pick a different product & topic will display.

4. For topic, select AppExchange & Managed Packages.

For Feature Management App enablement, select ISV Technology Request.

5. Provide any other required details, and then click Create Case.

403

Contact Salesforce Partner Support to Enable Specific
Packaging Features

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_publish_appexchange.htm
https://partners.salesforce.com/

Best Practices for Second-Generation Managed Packages

We suggest that you follow these best practices when working with second-generation managed packages.

• We recommend that you work with only one Dev Hub, and enable Dev Hub in your partner business org.

• The Dev Hub org against which you run the sf package create command becomes the owner of the package. If the Dev
Hub org associated with a package expires or is deleted, its packages no longer work.

• Include the --tag option when you use the sf package version create and sf package version update
commands. This option helps you keep your version control system tags in sync with specific package versions.

• Create user-friendly aliases for packaging IDs, and include those aliases in your Salesforce DX project file and when running CLI
packaging commands. See: Package IDs and Aliases for Second-Generation Managed Packages.

• When adding components to your package, check the product documentation for that component to ensure that the product is
generally available (GA). If you choose to package a non-GA component, it may have limitations and isn't guaranteed to GA. This
scenario is particularly risky if the component can't be removed from a managed package.

Manage Licenses for Managed Packages

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Use the License Management App (LMA) to manage leads and licenses for your AppExchange
solutions. By integrating the LMA into your sales and marketing processes, you can better engage
with prospects, retain existing customers, and grow your ISV business. The LMA is a managed
package that is installed in all partner business orgs (PBO) and includes custom objects that track
details on packages, package versions, and licenses.

For details, see...PermissionsI need to...

Get Started with the License
Management App on page 405

System Admin profileConfigure the LMA

Lead and License Records in
the LMA

Object Permissions: ReadBill subscribers or monitor
license expiration

Modify a License RecordObject Permissions: EditConvert trial subscriptions into
paying customers

Extend the LMAObject Permissions: EditCustomize the LMO

Modify a License RecordObject Permissions: EditProvision licenses to a
subscriber

Troubleshoot Subscriber IssuesVarious permissions (see Assign
Permissions to the Subscriber

Support subscribers with
technical issues

Support Console on page 408
for details)

Note: The LMA is available only in English.

The LMA is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility requirements, visit
https://partners.salesforce.com.

404

Best Practices for Second-Generation Managed PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_terms_relationships.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_terms_relationships.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_extend.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_subscriber_support_overview.htm
https://partners.salesforce.com

Get Started with the License Management App

To start managing leads and licenses with the License Management App (LMA), complete these installation and configuration steps.

Lead and License Records in the License Management App

Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.

Modify a License Record

You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

Refresh Licenses for a Managed Package

To sync all license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also
resolve discrepancies between the number of licenses in a subscriber’s org and the number displayed in the License Management
App (LMA). Refreshing is required when you move the LMA to a different org.

Extending the License Management App

The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to
manage leads and licenses, many partners also integrate it into their existing business processes.

Move the License Management App to Another Salesforce Org

You can move an LMA to a different org, but your package and license records don’t automatically move with it. You must manually
relink your packages and refresh the licenses.

Troubleshoot the License Management App

If you’re experiencing issues with the License Management App, review these troubleshooting tips.

Best Practices for the License Management App

Follow these best practices when you use the License Management App (LMA).

Troubleshoot Subscriber Issues

Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you’re granted access, you can log in to the subscriber’s org and view their
configuration and data to troubleshoot and resolve issues.

Get Started with the License Management App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

To start managing leads and licenses with the License Management App (LMA), complete these
installation and configuration steps.

Install the License Management App

The License Management App (LMA) is a managed package that is installed in all partner
business orgs. The org that the LMA is installed in is called the License Management Org (LMO).

Associate a Package with the License Management App

To receive lead and license records for your package, you connect your License Management
Org (LMO), your package, and the Salesforce Partner Console. Your LMO is the Salesforce org
where the License Management App (LMA) is installed.

Configure Permissions for the License Management App

Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set
to assign user permissions.

405

Get Started with the License Management AppSecond-Generation Managed Packages

Install the License Management App

USER PERMISSIONS

To install packages:
• Download AppExchange

Packages

The License Management App (LMA) is a managed package that is installed in all partner business
orgs. The org that the LMA is installed in is called the License Management Org (LMO).

We strongly recommend that you use your partner business org (PBO) as your LMO. However, you
can choose to install the LMA in another production org. Consider installing the LMA in an org that
your company is already using to manage sales, billing, and marketing.

Commercial use of the LMA is prohibited in Developer and Partner Developer Edition orgs. Installing
the LMA in a Developer Edition org is allowed only if you’re building integrations with the LMA and need an environment only for
development and testing purposes. You can install the LMA in Enterprise, Unlimited, or Performance Edition production orgs.

It’s not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed in the same org as the LMA. If the org
in which you plan to install the LMA has either Slack or the DLRS package installed, uninstall them before you install the LMA. Alternatively,
install the LMA in a different org.

Note: To confirm whether your PBO already has the LMA installed, skip to step 4.

1. To install the LMA in an org other than your PBO, log a case in the Partner Community. After we review the case, you receive an
email with an installation URL.

2. Log in to the org where you want to install the LMA, and then go to the installation URL included in the email.

3. Choose which users can access the LMA, and then click Install.

4. To confirm that the LMA is installed, open the App Launcher. If the installation was successful, the License Management App appears
in the list of available apps.

Associate a Package with the License Management App

USER PERMISSIONS

To manage licenses in the
Partner Community:
• Manage Listings

To receive lead and license records for your package, you connect your License Management Org
(LMO), your package, and the Salesforce Partner Console. Your LMO is the Salesforce org where the
License Management App (LMA) is installed.

A single LMO can manage multiple 1GP and 2GP packages, but a package can be associated with
only one LMO.

1. Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the Partner Console.

a. Log in to the Partner Community, and select the Publishing tab.

b. Click Technologies > Orgs.

c. Click Connect Technology, and then click Org.

d. Click Connect Org.

e. Log in to the org. Provide a username and a password with a security token appended. For example, if the password is ABC and
the token is 123, enter ABC123. Don’t remember your token? Reset your security token.

For 1GP packages, enter the login credentials for the packaging org. Repeat this step for all your 1GP packages.

For 2GP packages, enter the login credentials for the Dev Hub org. When you connect the Dev Hub org, all the 2GP packages
owned by the Dev Hub org are linked to the Partner Console.

2. Select the Solutions tab.

3. Locate the package you want to register with the LMO. To register each package you own, repeat this step.

a. Click the down arrow to expand the list of versions for your package.

406

Get Started with the License Management AppSecond-Generation Managed Packages

https://partners.salesforce.com
https://partners.salesforce.com/
https://help.salesforce.com/articleView?id=user_security_token.htm&type=5&language=en_US

b. Click Register Package for the package version you want to register.

Package versions created after linking to your LMO inherit the association.

c. To register the package, log in to your LMO.

4. Set the default behavior you want for your package license, and then click Save.

After the package is registered, a license is created when customers install it. You can view which packages are registered in the LMA.

Note: Beta package versions don’t display in the LMA. Only managed-released package versions (1GP) and promoted package
versions (2GP) are visible in the LMA. Unlocked packages aren’t supported.

SEE ALSO:

Salesforce Help: Reset Your Security Token

Configure Permissions for the License Management App
Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set to
assign user permissions.

Ensure that you:

• Install the LMA.

• Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the AppExchange Partner Console.

• Associate your package with the LMA.

1. Set object permissions for the license, package, and package version custom objects.

Object PermissionsCustom Object

To view license records:

Assign READ permissions

License

To modify license records:

Assign READ and EDIT permissions

To view package records:

Assign READ permissions

Package

To modify package records:

Assign READ and EDIT permissions

To view package version records:

Assign READ permissions

Package Version

We recommend leaving all package version records as read-only.

2. Set field-level security in user profiles or permission sets.

407

Get Started with the License Management AppSecond-Generation Managed Packages

https://help.salesforce.com/articleView?id=user_security_token.htm&type=5&language=en_US

Field-Level PermissionsCustom Object

Make all fields read-only.License

Make all fields read-only.Package

Make all fields read-only.Package Version

3. Add related lists to page layouts.

Add the Licenses related list to the...To enable...

Lead page layoutLicense managers to view the licenses associated with a particular
lead

Account page layoutLMA users to view the licenses associated with a particular
account

Contact page layoutLMA users to view the licenses associated with a particular
contact

Assign Permissions to the Subscriber Support Console

Create a permission set to provide users access to the Subscriber Support Console.

Assign Permissions to the Subscriber Support Console
Create a permission set to provide users access to the Subscriber Support Console.

Note: If you’ve already assigned these permissions via a profile or another permission set, you can skip this task.

1. From Setup, in the Quick Find box, enter Permission Sets, and select Permission Sets.

2. Click New and enter your permission set information.

3. On the Permission Set Overview page, locate the Apps section, and select Visualforce Page Access.

a. Click Edit.

b. Add sfLma.LoginToPartnerBT and sfLma.SubscriberSupport to the list of Enabled Visualforce pages, and then click Save.

4. On the Permission Set Overview page, locate the System section, and select System Permissions. Click Edit.

a. Select Log in to Subscriber Organization, and click Save.

5. From Setup, in the Quick Find box, enter Profiles, and select Profiles.

a. Click Edit.

b. Under Custom App Settings, select License Management App.

c. Under Custom Tab Settings, locate the Subscribers tab and select Default On.

d. Click Save.

408

Get Started with the License Management AppSecond-Generation Managed Packages

Lead and License Records in the License Management App
Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.

The key objects in the LMA are Package, Lead, and License.

• Package—The LMA includes a Package custom object and a Package Version custom object. These objects display details about
each 1GP or 2GP package and package version you’ve listed on AppExchange.

• Lead —The Lead standard object gives you details about who installed your package, such as the installer’s name, company, and
email address. Lead records created by the LMA are just like the ones you use elsewhere in Salesforce, except the lead source is
Package Installation. You can manually convert leads into accounts and contacts. When you convert a lead, the license record links
to the converted account or contact.

• License—The License custom object gives you control over how many users in the customer’s org can access your package and for
how long. Each license record links to a lead record and a package record.

To understand which actions you must take and which actions the LMA handles for you, review this table.

Who Takes This StepAction

Customer or prospectYour package is installed by a new subscriber.

LMAA lead record is created with the customer’s name, company, and email address.

LMAA license record is created according to the values you specified when you registered the package.

You (ISV partner)The lead record is converted to account and contact records. (Optional)

LMAAccount and contact records are associated with the license record.

Note: Lead assignment rules aren't triggered for leads created by the LMA.

Modify a License Record
You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

Warning: You can't use the LMA to modify licenses provisioned through AppExchange Checkout. To modify licenses provisioned
through Checkout, have your customers follow the instructions in Add or Remove Licenses from an AppExchange Checkout
Subscription.

1. In the LMA, locate the license.

2. Click Modify License.

When the LMA is installed, the Edit button doesn’t appear on the license page layout, and the Modify License button is included
instead. This setup is intentional. You must edit license records on the Modified License page, don't attempt to edit license records
directly.

3. Update the field values as needed.

DescriptionField

Enter the last day that the customer can access your package, or select Does not
expire.

Expiration

409

Lead and License Records in the License Management AppSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=service.customize_leadrules.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_checkout_update_seats.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/appexchange_checkout_update_seats.htm

DescriptionField

Enter the number of licensed seats, or select Site License to make your package
available to all users in the customer’s org. You can allocate up to 99,000,000 seats.

Seats

Select a value from the dropdown.Status

• Trial—Lets the customer try your offering for up to 90 days. After the trial license
converts to an active license, it can’t return to a trial state.

• Active—Lets the customer use your package according to the license agreement.

• Suspended—Prohibits the customer from accessing your offering.

Note: When your offering is uninstalled, its status is set to Uninstalled, and the
license can’t be edited.

4. Click Save.

Refresh Licenses for a Managed Package
To sync all license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also resolve
discrepancies between the number of licenses in a subscriber’s org and the number displayed in the License Management App (LMA).
Refreshing is required when you move the LMA to a different org.

Note: For each package, you can refresh licenses only one time per week.

1. From the LMA, select the Packages tab.

2. Open the package record.

3. Click Refresh Licenses. In Lightning Experience, Refresh Licenses is located in the dropdown menu.

Extending the License Management App
The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to manage
leads and licenses, many partners also integrate it into their existing business processes.

The LMA includes these custom objects:

• License

• Package on page 411

• Package Version on page 411

You can add custom fields to the objects as long as you don’t mark your custom fields as required.

Package and Package Version Object Fields

The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you’ve listed on AppExchange.

License Object Fields

Use the License custom object to set limits on how many users in the subscriber’s org can use your app and for how long.

410

Refresh Licenses for a Managed PackageSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_license_details.htm

Adding Custom Automation to License Management App Objects

Here are some examples of how you can use the License Management App (LMA) to grow your business and retain customers.

Package and Package Version Object Fields
The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you’ve listed on AppExchange.

To view details about a package record, from the LMA, select the Packages tab, and then select the package name. You can view package
versions in the Package Version related list.

Note: The LMA creates the package records, which contain critical information for tracking your licenses and packages. Treat
these fields as read-only and ensure that your object permissions protect package records.

DescriptionPackage Custom Object Fields

The name of the org that owns the package. For 1GP, the org name is the packaging org.
For 2GP, it’s the Dev Hub org.

Developer Name

The 18-character ID of the org that owns the package. For 1GP, the org ID is the packaging
org ID. For 2GP, it’s the Dev Hub org ID.

Developer Org ID

The date when the License Refresh tool was last run.Last License Refresh

The most recent package version you’ve released.Latest Version

The owner of the lead records that the LMA creates when a customer installs your package.Lead Manager

The date when the License Refresh tool can be run again.Next Available Refresh

The LMA owns all package records.Owner

The 18-character ID that identifies the package. This ID starts with 033.Package ID

The name you specified when you created the package.Package Name

DescriptionPackage Version Object Fields

The package name and links to the package record’s detail page.Package

The name you specified when you created the package version.Package Version Name

The date you created this package version.Release Date

The version number in major.minor.patch format. For example, 3.1.0.Version Number

The 18-character ID of this package version.Version ID

License Object Fields
Use the License custom object to set limits on how many users in the subscriber’s org can use your app and for how long.

The License Management App (LMA) creates a license record every time your package is installed in an org. For example, if a subscriber
installs two of your 1GP packages and three of your 2GP packages, you have five license records for that subscriber in your LMA. If you

411

Extending the License Management AppSecond-Generation Managed Packages

deliver a 2GP app that is composed of multiple packages, a unique license record is created for each package in the app. You can allocate
up to 99,000,000 seats per subscriber license.

To view details about a license record, select the Licenses tab in the LMA, and then select and open the license record.

License records are automatically created and contain critical information for tracking licenses. Do not directly edit the license record.
Instead, use the Modify License tool to change the expiration date, license status, and the number of licensed seats.

DescriptionLicense Custom Object Fields

A lookup field to the account record for a converted lead.Account

A lookup field to the contact record for a converted lead.Contact

License records are always created by the LMA.Created By

Displays the expiration date or Does not expire (default).Expiration Date

The date the subscriber installed this package version.Install Date

The Salesforce instance where the subscriber’s org resides.Instance

The lead record that the LMA created when the package was installed. A lead represents
the user who owns the license.

If you convert the lead into an opportunity, the lead name is retained but the lead record
no longer exists.

Lead

An auto-generated number that represents an instance of a license. License names are in
the format of L-00001, and each new license is incremented by one.

License Name

Displays the number of licenses or Site License (default). When a package is installed
in a sandbox org, Site License is the default. If a free trial package is installed in a
sandbox org, the Site License is applied.

Licensed Seats

The type of license: Active, Suspended, Trial, or Uninstalled.License Status

This is a legacy field and can be ignored.License Type

The edition of the subscriber’s org.Org Edition

Applies only if the subscriber installs your package in a trial org. Indicates the date when
the trial org expires. It isn’t related to the package license expiration.

Org Expiration Date

The status of the subscriber’s org: Active, Free, or Trial.Org Status

The LMA owns all license records. Don’t edit this field.Owner

A lookup field that links to the package version associated with this license.Package Version

The version number in major.minor.patch format. For example, 3.1.0.Package Version Number

Indicates whether the license is for a package installed in a sandbox org.Sandbox

The 15-character ID representing the subscriber’s org.Subscriber Org ID

Displays the number of users who have a license to the package.

This field is blank if:

Used Licenses

• A customer uninstalled the package.

412

Extending the License Management AppSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm

DescriptionLicense Custom Object Fields

• Licensed Seats is set to Site License.

Adding Custom Automation to License Management App Objects

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Here are some examples of how you can use the License Management App (LMA) to grow your
business and retain customers.

Alert Sales Reps Before a License Expires
If you’re managing licenses for several packages, it can be difficult to track the various expirations.
If a license expires accidentally, you could even lose a customer. To help your customers with
renewals, set up an Apex trigger or create a flow to email a sales rep on your team before the license
expires.

Notify Customer-Retention Specialists When an Offering Is Uninstalled
If a customer uninstalls your offering, find out why. By speaking to the customer, you have an opportunity to restore the business
relationship or receive feedback that helps you improve your offering.

To notify a customer-retention specialist on your team, follow these high-level steps.

1. Create an email template for the notification.

2. Create a workflow rule with a filter that specifies that the License Status equals Uninstalled.

3. Associate the workflow rule with a workflow alert that sends an email to the retention specialist.

Move the License Management App to Another Salesforce Org

USER PERMISSIONS

To install packages:
• Download AppExchange

Packages

To manage licenses in the
Partner Community:
• Manage Listings

You can move an LMA to a different org, but your package and license records don’t automatically
move with it. You must manually relink your packages and refresh the licenses.

It’s not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed
in the same org as the LMA. If the org in which you plan to install the LMA has either Slack or the
DLRS package installed, uninstall them before you install the LMA. Alternatively, install the LMA in
a different org.

1. To remove the association between the LMA and the org where it’s currently installed, log a
case with Salesforce Partner Support on page 403.

2. Install the LMA in the new org on page 406.

3. Associate your packages with the new org on page 406.

4. Refresh licenses for your packages on page 410.

413

Move the License Management App to Another Salesforce
Org

Second-Generation Managed Packages

Troubleshoot the License Management App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

If you’re experiencing issues with the License Management App, review these troubleshooting tips.

Leads and Licenses Aren’t Being Created in the License Management App

When a customer installs your package, leads and license records are created. If these records
aren’t being created, review these configurations in the License Management Org (LMO). If you
resolve your issue using one of these recommendations, your missing licenses appear in the
LMA within a few days.

Proxy User Has Deactivated Message in the LMA

If you’re editing a license and see a “proxy user has deactivated” message, it's possible that the
subscriber org is locked, deleted, or disabled.

Leads and Licenses Aren’t Being Created in the License Management App
When a customer installs your package, leads and license records are created. If these records aren’t being created, review these
configurations in the License Management Org (LMO). If you resolve your issue using one of these recommendations, your missing
licenses appear in the LMA within a few days.

Did the customer complete the package installation?
When a customer clicks Get it Now on your AppExchange listing, Salesforce counts this selection as an installation. However, the
customer can cancel the installation before it’s completed, or the installation could have failed. If the installation doesn’t finish, a
license isn’t created.

Is State and Country picklist validation enabled?
To avoid state and country picklist-related lead failures, you have two options. Use the standard picklist integration values, or add
duplicate states and countries to your picklists.

Standard picklist integration values

To implement this option, use the Salesforce standard state and country picklists in your org, and leave the integration values as-is.
We recommend this option for most partners.

With this option, AppExchange leads propagate to your org with full state and country names, and the names match integration
values in the standard picklists.

Add duplicate states and countries to your picklists.

Implement this option if you have a requirement to use the two-letter state or country abbreviations in your org. For example, you
display abbreviations in the user interface or use them to integrate with other systems. Add duplicate states and countries to your
picklists with different integration values. Set one value to the two-letter state or country abbreviation. Set the other value to the
full state or country name. Make only the two-letter abbreviation picklist entries visible.

With this option, AppExchange leads propagate to your org with full state and country names, which match the full name integration
values in your org. You also have two-letter integration values to use as needed.

Does the lead or license object have a trigger?
Don’t use before_create or before_update triggers on leads and licenses. Instead, use after_ triggers, or remove
all triggers. If a trigger fails, it can block license creation.

Does the lead or license record have a required custom field?
If yes, remove the requirement. The LMA doesn’t populate a required custom field, so it can prevent licenses or leads from being
created.

414

Troubleshoot the License Management AppSecond-Generation Managed Packages

Is the lead manager a valid, active user?
If not, the LMA can’t create leads and licenses.

Does the lead or license record have a validation rule?
Validation rules often block the creation of LMA lead or license records because the required field isn’t there.

Does the lead or license have a workflow rule?
Workflow rules sometimes prevent leads and licenses from being created. Remove the workflow rule.

Was the lead converted to an account?
When leads are converted to accounts, they’re no longer leads.

Are you using standard duplicate rules for leads?
When a customer installs your package, the LMA checks for existing leads and contacts. If an existing contact matches the customer
who installed your package, a lead record isn’t created. To complete these checks, the LMA applies standard lead duplicate rules
and matching rules. If you prefer to have the LMA associate every license with a lead regardless of whether there’s an existing contact
match, customize the standard duplicate rule for leads and remove the matching rule for contacts.

Proxy User Has Deactivated Message in the LMA
If you’re editing a license and see a “proxy user has deactivated” message, it's possible that the subscriber org is locked, deleted, or
disabled.

If you attempt to contact the subscriber and they aren't responsive, consider deleting the license record.

Best Practices for the License Management App
Follow these best practices when you use the License Management App (LMA).

• To take advantage of entitlements that are unique to AppExchange partners, use your partner business org as your License
Management Org.

• Create a list view filter for leads created by installed packages. The filter helps your team separate subscriber-based leads from leads
coming from other sources.

• Use the API to find licensed users. The isCurrentUserLicensed method determines if a user has a license to a managed
package. For more information, see the Apex Reference Guide.

• Treat the LMA custom objects as read-only. Use the Modify License page to edit licenses. Don’t attempt to directly or programmatically
edit license records.

• The LMA automatically creates package, package version, and license records. Customizations, such as adding required custom fields
or creating workflow rules, triggers, or validation rules that require custom fields, can prevent the LMA from working properly.

Troubleshoot Subscriber Issues
Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you’re granted access, you can log in to the subscriber’s org and view their configuration
and data to troubleshoot and resolve issues.

To access the Subscriber Overview page, click the organization’s name from the Subscribers tab in the LMA.

Note: This feature is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility
requirements, see www.salesforce.com/partners.

415

Best Practices for the License Management AppSecond-Generation Managed Packages

https://help.salesforce.com/articleView?id=duplicate_rules_standard_lead_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=matching_rules_standard_contact_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=duplicate_prevention_map_of_tasks.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_methods_system_userinfo.htm
https://partners.salesforce.com

Request Login Access from Subscribers

To log in to a subscriber org, first request login access from the subscriber.

Log In to Subscriber Orgs

After your subscriber has granted you login access, you can log in to the subscriber org to troubleshoot the issue.

Debug Subscriber Orgs

After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger
sessions.

Request Login Access from Subscribers
To log in to a subscriber org, first request login access from the subscriber.

Ask the subscriber to enable either Grant Account Login Access or Grant Login Access. If they don’t see your company listed, one
of the following applies.

• A system admin disabled the ability for non-admins to grant access.

• The user doesn’t have a license for the package.

• The package is licensed to the entire org. In this scenario, only an admin with the Manage Users permission can grant access.

• The org setting Administrators Can Log in as Any User is enabled.

Note: When the org setting Administrators Can Log in as Any User is disabled, login access is granted for a limited amount
of time, and the subscriber can revoke access at any time.

Any changes you make while logged in as a subscriber are logged in the subscriber org’s audit trail.

Log In to Subscriber Orgs

USER PERMISSIONS

To log in to subscriber orgs:
• Log in to Subscriber Org

After your subscriber has granted you login access, you can log in to the subscriber org to
troubleshoot the issue.

Available in: Enterprise, Performance, and Unlimited Editions

Note: You can only log in to orgs with a Salesforce Platform or full Salesforce license. You can’t log in to subscriber orgs on
Government Cloud instances. It's also not possible to log into a scratch org using the log in to subscriber org feature.

Multi-Factor Authentication Required to Log In to a Subscriber Org
Starting in Spring ’22, multi-factor authentication (MFA) is required when logging into the License Management Org (LMO). MFA is
required only for LMO users who require access to the Subscriber Support Console. This requirement provides subscribers an extra layer
of security by verifying the identity of the user accessing their org. You also have more control over which users log in to a subscriber
org.

Determine which users require access to the Subscriber Support Console, and then set up multi-factor authentication (MFA) for those
users.

Log In to a Subscriber Org
After you’ve logged in to the LMO using multi-factor authentication (MFA), and your subscriber has granted you login access, you’re
ready to log in.

416

Troubleshoot Subscriber IssuesSecond-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.mfa_direct_login_user_perm.htm&type=5&language=en_US

1. In the License Management App (LMA), click the Subscribers tab.

2. To find a subscriber org, enter a subscriber name or org ID in the search box, and click Search.

3. Click the name of the subscriber org.

4. On the Org Details page, click Login next to a user’s name. You have the same permissions as the user you logged in as.

5. When you’re finished troubleshooting, log out of the subscriber org.

Note: Some subscribers require MFA in addition to the MFA required for the LMO. Ask your subscriber if their org requires MFA
to log in. If so, your login attempt sends an MFA notification to your subscriber, and your login is blocked until your subscriber
responds to the notification. To ensure that your subscriber is available to respond to the MFA notification, consider coordinating
a specific login time.

Best Practices for Logging In

• Create an audit trial that indicates when and why a subscriber org login has occurred. You can create an audit trail by logging a case
in your LMO before each subscriber org login.

• When you access a subscriber org, you’re logged out of your LMO. To prevent your session from being automatically logged out of
your LMO when you log in to a subscriber org, use the org’s My Domain login URL.

• Allow only trusted support and engineering personnel to log in to a subscriber’s org. Because this feature can include full read/write
access to customer data and configurations, it’s vital to your reputation to preserve their security.

• Control who has login access by giving the Log in to Subscriber Org user permission to specific support personnel via a profile or
permission set. See Assign Permissions to the Subscriber Org Console on page 408.

Debug Subscriber Orgs
After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger sessions.

Get Access to Debug Logs
You can debug your code by generating Apex debug logs that contain the output from your managed package. Using this log information,
you can troubleshoot issues that are specific to that subscriber.

To get access to a subscriber’s Apex debug logs, you can either request login access from the subscriber, or use the License Management
App (LMA) to enable debug logs for a namespace.

Important: Note these important considerations for enabling subscriber debug logs for a namespace.

• When you enable debug logs for a namespace, the Apex code for the managed package becomes visible to the subscriber
org.

• Because multiple packages can share a namespace in second-generation managed packaging (2GP), enabling debug logs for
2GP means enabling logs for all managed packages in the namespace. For example, a subscriber is reporting issues with
Package A and you enable debug logs for the namespace that includes Package A. The subscriber also uses Package B and
Package C that are in the same namespace. By enabling debug logs for the namespace that includes Package A, you also
enable debug logs for Package B and Package C.

Follow these steps to enable debug logs for a namespace through the LMA.

1. In the LMA, click the Subscribers tab.

2. Search for the subscriber’s name or org ID, then click the name of the subscriber org.

3. In the Packages & Licensing section, find the package that you want to troubleshoot.

417

Troubleshoot Subscriber IssuesSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_requesting_login_access.htm

4. In the Subscriber Debug Logs column, click Enable.

5. Review the confirmation message, then click OK.

After you enable debug logs, your Apex code remains visible to the subscriber org until you disable debug logs. To disable debug logs,
follow the same steps in the LMA.

Troubleshoot with Debug Logs
After you get access to a subscriber’s debug logs or you enable debug logs for a namespace, get debug logs from the Developer Console.

1. From Setup of the subscriber’s org, in the Quick Find box, enter Debug Logs, and then select Debug Logs.

2. Launch the Developer Console.

3. Perform the operation, and view the debug log with your output.

Subscribers are unable to see the logs you set up or generate because they contain your unobfuscated Apex code.

You can also view and edit data contained in protected custom settings from your managed packages when logged in as a user.

Troubleshoot with the ISV Debugger
Each License Management Org can use one free ISV Customer Debugger session at a time. The ISV Customer Debugger is part of the
Salesforce Extensions for Visual Studio Code. You can use the ISV Customer Debugger only in sandbox orgs, so you can initiate debugging
sessions only from a customer’s sandbox.

For details, see the ISV Customer Debugger documentation.

Manage Features in Second-Generation Managed Packages

Take the License Management App (LMA) a step further by extending it with the Feature Management App (FMA).

Here at Salesforce, we sometimes run pilot programs, like the one we ran when we introduced Feature Management. Sometimes we
dark-launch features to see how they work in production before sharing them with you. Sometimes we make features available to select
orgs for limited-time trials. And sometimes we want to track activation metrics for those features.

With feature parameters, we’re extending this functionality to you. Install the FMA in your License Management Org (LMO). The FMA
extends the License Management App, and like the LMA, it’s a managed package.

Feature Parameter Metadata Types and Custom Objects

Feature parameters are represented as Metadata API types in your package metadata, as records of custom objects in your LMO,
and as hidden records in your subscriber’s org.

Set Up Feature Parameters

Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features

Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or
disable new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period.
Assign values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those
values in your code.

418

Manage Features in Second-Generation Managed PackagesSecond-Generation Managed Packages

https://developer.salesforce.com/tools/vscode
https://developer.salesforce.com/tools/vscode/en/apex/isv-debugger

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters

Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs

Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the
pilot feature.

Best Practices for Feature Management

Here are some best practices when working with feature parameters.

Considerations for Feature Management

Keep these considerations in mind when working with feature parameters.

Feature Parameter Metadata Types and Custom Objects
Feature parameters are represented as Metadata API types in your package metadata, as records of custom objects in your LMO, and as
hidden records in your subscriber’s org.

Feature Parameter Fields
Feature parameters are represented as Metadata API types and store boolean, integer, or date values.

The first time a subscriber installs your package, a FeatureParameter__c record is created in your LMO for each feature parameter.
The feature parameter records include these fields:

• FullName__c

• DataType__c (Boolean, Integer, or Date)

• DataFlowDirection__c

• Package__c

• IntroducedInPackageVersion__c

• Namespace_Prefix__c

Note: After a feature parameter is included and released in the package version, the data flow direction can’t be changed.

Lifecycle of a Feature Parameter
Set Up the Feature Parameter

Start by defining your feature parameter in an XML file. Create one XML file for each feature parameter.

Depending on how you’re using the feature parameter, you’ll also write code that enables you to check access rights or collect usage
information after the parameter is set up.

Subscriber Installs Your Managed Package
When a subscriber installs or upgrades your package in their org, a FeatureParameter__c record for each feature parameter
is created in the LMO. If these records were created during a previous installation or upgrade, this step is skipped.

419

Feature Parameter Metadata Types and Custom ObjectsSecond-Generation Managed Packages

During package installation, junction object records are created in both the subscriber org and your LMO. A junction object is a
custom object with two master-detail relationships. In this case, the relationships are between FeatureParameter__c and
License__c in the LMO. These records store the value of their associated feature parameter for the subscriber org.

Utilize Your Feature Parameters
Use the junction objects to override the feature parameters’ default values or to collect data. Depending on the value of each feature
parameter’s DataFlowDirection__c field, data flows to the subscriber org (from the LMO) or to the LMO (from the subscriber
org). That data is stored in the junction object records.

Set Up Feature Parameters
Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Install and Set Up the Feature Management App in Your License Management Org

Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to
display related lists for your feature parameters.

Create Feature Parameters for Your Second-Generation Managed Package

To create a feature parameter for a 2GP managed package, create an individual XML file. Here are details on the file naming convention,
folder structure, and the attributes you use when creating feature parameters.

Install and Set Up the Feature Management App in Your License Management Org
Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to display
related lists for your feature parameters.

1. To request access to the FMA, log a support case in the Salesforce Partner Community. For product, specify Partner Programs &
Benefits. For topic, specify ISV Technology Request. The FMA extends the License Management App, so be sure to install the
LMA before requesting access to the FMA.

2. To install the FMA, follow the instructions in your welcome email.

3. Add the Feature Parameters tab to your default view. For details, see Customize My Tabs in Salesforce Help.

4. Update your page layout for licenses.

a. Navigate to a license record’s detail page.

b. Click Edit Layout.

c. In the Related Lists section of the License Page Layout Editor, add these lists.

• Feature Parameter Booleans

• Feature Parameter Dates

• Feature Parameter Integers

d. For each related list, add these columns.

• Data Flow Direction

• Feature Parameter Name

• Full Name

• Master Label

• Value

420

Set Up Feature ParametersSecond-Generation Managed Packages

https://partners.salesforce.com
https://help.salesforce.com/articleView?id=user_userdisplay_tabs.htm&language=en_US

Create Feature Parameters for Your Second-Generation Managed Package
To create a feature parameter for a 2GP managed package, create an individual XML file. Here are details on the file naming convention,
folder structure, and the attributes you use when creating feature parameters.

Note: Feature parameters for managed 1GP packages are created in the packaging org’s UI, see Create Feature Parameters in
Your Packaging Org in the First-Generation Managed Packaging Developer Guide for details.

A package can include up to 200 feature parameters.

Folder Structure
Feature parameters are stored as files in your Salesforce DX project folder.

Under the root force-app folder, create a folder and name it featureParameters. Store your feature parameter files in the feature
parameters folder. Each feature parameter you create must have its own separate file.

Note: It’s not possible to create feature parameters using a scratch org’s user interface.

File Naming Convention
The naming format for feature parameter files is <name>.featureParameter<type>-meta.xml.

The name is the API name of the feature parameter.

The type is the feature parameter type. Feature parameters can be booleans, integers, or dates.

File Name FormatType

.featureParameterBoolean-meta.xmlBoolean

.featureParameterDate-meta.xmlDate

.featureParameterInteger-meta.xmlInteger

Feature Parameter Attributes
Feature parameters include these three fields.

DescriptionField Name

Indicates which direction this parameter is transferring data.

Each feature parameter value gets transferred in one of two
directions:

dataflowDirection

• From your LMO to a subscriber org (LmoToSubscriber)

• From a subscriber org to your LMO (SubscriberToLmo)

The label of the feature parameter. This label displays in the app.masterLabel

The value of the feature parameter. Booleans, integers, and dates
are all valid values. Integer values can’t exceed nine digits.

value

Note: After a feature parameter is included and released in the package version, the data flow direction can’t be changed.

421

Set Up Feature ParametersSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm

Examples of Feature Parameter file

AdvancedPricingEnabled.featureParameterBoolean-meta.xml

<FeatureParameterBoolean xmlns="http://soap.sforce.com/2006/04/metadata">
<dataflowDirection>SubscriberToLmo</dataflowDirection>
<masterLabel>Advanced Pricing Enabled</masterLabel>
<value>true</value>

</FeatureParameterBoolean>

NumberofLedgers.featureParameterInteger-meta.xml

<?xml version="1.0" encoding="UTF-8"?>
<FeatureParameterInteger xmlns="http://soap.sforce.com/2006/04/metadata">

<dataflowDirection>SubscriberToLmo</dataflowDirection>
<masterLabel>Number of Ledgers</masterLabel>
<value>7</value>

</FeatureParameterInteger>

ProjectActivationDate.featureParameterDate-meta.xml

<?xml version="1.0" encoding="UTF-8"?>
<FeatureParameterDate xmlns="http://soap.sforce.com/2006/04/metadata">

<dataflowDirection>LmoToSubscriber</dataflowDirection>
<masterLabel>Date of Activation of the Project</masterLabel>
<value>2020-01-25</value>

</FeatureParameterDate>

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features
Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or disable
new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period. Assign
values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those values in your
code.

Assign Override Values in Your LMO

To override the default value of a feature parameter in a subscriber’s org, update the appropriate junction object record in your LMO.

Check LMO-to-Subscriber Values in Your Code

You can reference feature parameters in your code, just like you’d reference any other custom object.

Assign Override Values in Your LMO
To override the default value of a feature parameter in a subscriber’s org, update the appropriate junction object record in your LMO.

1. Open the license record for a subscriber’s installation of your package.

2. In the related list for Feature Parameter Booleans, Feature Parameter Integers, or Feature Parameter Dates, select the feature parameter
whose value you want to update.

3. Click Edit.

4. Set a value.

5. Click Save.

422

Use LMO-to-Subscriber Feature Parameters to Enable and
Disable Features

Second-Generation Managed Packages

Check LMO-to-Subscriber Values in Your Code
You can reference feature parameters in your code, just like you’d reference any other custom object.

Use these Apex methods with LMO-to-subscriber feature parameters to check values in your subscriber’s org.

• System.FeatureManagement.checkPackageBooleanValue('YourBooleanFeatureParameter');

• System.FeatureManagement.checkPackageDateValue('YourDateFeatureParameter');

• System.FeatureManagement.checkPackageIntegerValue('YourIntegerFeatureParameter');

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature
Parameters
Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

• System.FeatureManagement.setPackageBooleanValue('YourBooleanFeatureParameter',
booleanValue);

• System.FeatureManagement.setPackageDateValue('YourDateFeatureParameter',
datetimeValue);

• System.FeatureManagement.setPackageIntegerValue('YourIntegerFeatureParameter',
integerValue);

Warning: The Value__c field on subscriber-to-LMO feature parameters is editable in your LMO. But don’t change it. The
changes don’t propagate to your subscriber’s org, so your values will be out of sync.

You can view the value of a subscriber-to-LMO feature parameter from the Subscriber Support Console.

Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs
Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the pilot
feature.

Note: Check with your company’s legal team before releasing hidden functionality.

To hide custom objects when creating your package, set the value of their Visibility field to Protected. After you've set the visibility
to Protected, you can later update it to Unprotected. To change the visibility of an object, use the CustomObject Metadata API and
update the visibility field.

To hide custom permissions when creating your package, from Setup, enter Custom Permissions in the Quick Find box. Select
Custom Permissions > Your Custom Permission > Edit. Enable Protected Component, and then click Save. After your
package is installed, use the System.FeatureManagement.changeProtection() Apex method to hide and unhide
custom objects and permissions.

Warning: After you’ve released unprotected objects to subscribers, you can’t change the visibility to Protected.

To hide custom permissions in released packages:

• System.FeatureManagement.changeProtection('YourCustomPermissionName',
'CustomPermission', 'Protected');

423

Track Preferences and Activation Metrics with
Subscriber-to-LMO Feature Parameters

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_subscriber_support_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/customobject.htm

To unhide custom permissions and custom objects in released packages:

• System.FeatureManagement.changeProtection('YourCustomPermissionName',
'CustomPermission', 'Unprotected');

• System.FeatureManagement.changeProtection('YourCustomObjectName__c', 'CustomObject',
'Unprotected');

SEE ALSO:

Protected Components in Managed Packages

Metadata API Developer Guide: customObject

Apex Reference Guide: Feature Management Methods, changeProtection

Best Practices for Feature Management
Here are some best practices when working with feature parameters.

• We recommend that you use this feature set in a test package and a test LMO before using it with your production package. Apply
changes to your production package only after fully understanding the product’s behavior.

• Create LMO-to-subscriber feature parameters to enable features from your LMO for individual subscriber orgs. Don’t use the Apex
code in your managed package to modify LMO-to-subscriber feature parameters’ values in subscriber orgs. You can’t send the
modified values back to your LMO, and your records will be out of sync.

Use LMO-to-subscriber feature parameters as read-only fields to manage app behavior. For example, use LMO-to-subscriber feature
parameters to track the maximum number of permitted e-signatures or to make enhanced reporting available.

• Create subscriber-to-LMO feature parameters to manage activation metrics. Set these feature parameters’ values in subscriber orgs
using the Apex code in your managed package. For example, use subscriber-to-LMO feature parameters to track the number of
e-signatures consumed or to check whether a customer has activated enhanced reporting.

Considerations for Feature Management
Keep these considerations in mind when working with feature parameters.

• After a feature parameter is included in a promoted and released package version, we recommend that you only edit the value field
located in LMO-to-subscriber junction objects.

Modifying or deleting other fields or records related to feature parameters, including the data flow direction, may cause the FMA to
stop operating correctly.

• Don’t use the LMO to create or delete feature parameters.

• When you update LMO-to-subscriber values in your LMO, the values in your subscribers’ orgs are updated asynchronously. This
process can take several minutes.

• When you publish a push upgrade to your managed package, feature parameters in your LMO and your subscribers’ orgs are updated
asynchronously. Creating and updating the junction object records can take several minutes.

• When the Apex code in your package updates subscriber-to-LMO values in your subscriber’s org, the changes can take up to 24
hours to reach your LMO.

424

Best Practices for Feature ManagementSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/customobject.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm#apex_System_FeatureManagement_changeProtection

Get Started with AppExchange App Analytics

AppExchange App Analytics provides usage data about how subscribers interact with your AppExchange managed packages and
packaged components. You can use these details to identify attrition risks, inform feature development decisions, and improve user
experience.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.
Usage data from Government Cloud and Government Cloud Plus orgs isn’t available in App Analytics.

App Analytics is available for first- and second-generation (1GP and 2GP) managed packages that passed security review and are registered
to a License Management App. Usage data is provided as package usage logs, monthly package usage summaries, or subscriber snapshots.
All usage data is available as downloadable comma-separated value (.csv) files. To view the data in dashboard or visualization format,
use CRM Analytics or a third-party analytics tool.

In a 24-hour period, you can download a maximum 20 GB of AppExchange App Analytics data.

App Analytics Use Cases

To achieve your business objectives, use App Analytics across your teams. Read this guide to understand common use cases and
how to map App Analytics data to sample product features.

Enable App Analytics on Your Second-Generation Managed Package

Activate AppExchange App Analytics on your second-generation (2GP) managed package to access AppExchange App Analytics
package usage logs and subscriber snapshots. Package usage summaries are available by default.

Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots

To request package usage logs, monthly package usage summaries, and subscriber snapshots, use the AppAnalyticsQueryRequest
object. Usage logs, usage summaries, and subscriber snapshots are downloadable comma-separated value (.csv) files.

Considerations for Custom Interactions

Easily create and log custom interactions on your managed package using Apex. As subscribers interact with your package and your
Apex code is executed, the custom interactions that you defined are logged. Retrieve your custom interactions in your package's
AppExchange App Analytics usage logs and usage summaries.

AppExchange App Analytics Best Practices

To plan and maximize your AppExchange App Analytics query strategy, follow our best practices. First, use file compression to reduce
your data results file size. Second, schedule and automate your regular App Analytics queries. Third, plan, schedule, and automate
catch-up queries to supplement your regular query data.

Package Usage Summaries

Package usage summaries provide high-level metrics by calendar month. Discover how many users access your package and which
operations they perform.

Package Usage Logs

Analyze adoption and user behavior, then make informed feature development decisions based on data from package usage logs.
AppExchange App Analytics tracks UI, API-based, Lightning-based, and Apex operations, and it logs each CRUD operation on
components and custom objects in packages. Events from sandbox and trial orgs are tracked in package usage logs. Events from
scratch orgs aren’t tracked.

Subscriber Snapshots

Subscriber snapshots give you a point-in-time summary of subscriber activity. Use subscriber snapshots to see usage trends by org
and package.

425

Get Started with AppExchange App AnalyticsSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/
https://help.salesforce.com/articleView?id=bi_explorer.htm&language=en_US

Test Custom Integrations

To test your custom integrations in a nonproduction environment, use AppExchange App Analytics Simulation Mode. Submit an
App Analytics query request and receive sample usage data.

AppExchange App Analytics Developer Cookbook

Delve deeper into your AppExchange App Analytics managed package usage data by creating key performance indicators (KPIs).
First, complete some prerequisites and retrieve your App Analytics data. Next, prepare your CRM Analytics environment. Finally, to
build your KPIs, complete App Analytics recipes.

App Analytics Use Cases

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To achieve your business objectives, use App Analytics across your teams. Read this guide to
understand common use cases and how to map App Analytics data to sample product features.

App Analytics Use Cases
While there are various use cases for App Analytics, these cases tend to be the most common.

How App Analytics HelpsGoalPartner User

App Analytics provides detailed
package usage logs for
sandboxes and trial orgs.

Provide a great customer trial
experience and close deals

Presales Engineer or Account
Executive

• Use log data to know how
many users are trialing your
package and which
features they’re actively
testing.

• Analyze log data to provide
customized
recommendations to your
prospective subscribers.

• Help prospective
subscribers try more
features or further
configure the trial
experience to demonstrate
how your solutions can
address their use cases.

App Analytics provides package
usage logs, package usage

Drive feature adoption and
minimize subscriber attrition

Customer Success
Representative

summaries, and subscriber
snapshots in production for
subscribers.

• Use comprehensive usage
data from all three data
types to know how and

426

App Analytics Use CasesSecond-Generation Managed Packages

How App Analytics HelpsGoalPartner User

when the various users for a subscriber
are employing your solutions.

• Provide tailored recommendations to
drive feature adoption, identify upsell
opportunities, and forecast attrition risk.

• Track a user’s activity across multiple
packages to help you determine where
opportunities and risks lie within a
particular package.

• Combine your App Analytics data with
license usage data from the License
Management App to get a better
picture of how your subscriber is
adopting your product.

App Analytics provides you with usage data
from your entire subscriber base so that you

Obtain product insights and drive roadmap
prioritization

Product Manager

can carry out high-level and detailed
user-level analysis.

As a product manager, you can analyze
usage data to:

• Identify your most-used features.

• Identify incomplete user journeys.

• Identify user pain points.

• Identify unexpected usage patterns or
validate expected behavior.

• Retire rarely used or end-of-life features.

These insights help you design and build
product improvements and fixes. Then you
can prioritize and adjust your product
roadmap accordingly.

App Analytics provides usage data on Apex.
Use your data on its own or combine it with

Optimize codeSoftware Engineer

more data to optimize your code, making
it more performant and reliable.

Consider using your Apex data in
combination with these products.

• Use the Subscriber Support Console to
troubleshoot subscriber issues and
access logs as code is executed in real
time.

427

App Analytics Use CasesSecond-Generation Managed Packages

How App Analytics HelpsGoalPartner User

• Use the Salesforce Code Analyzer to
identify and fix problems in your code
while you develop.

There are other use cases where App Analytics isn’t a good fit. For example, we don’t recommend that you use App Analytics to audit
customer license usage based on the user_id_token in package usage logs. We provide usage data for users licensed to use your
package, for users who indirectly interact with it, and for automated processes.

Mapping App Analytics Data to Product Features
For the most common App Analytics use cases, analyze App Analytics usage data at a feature level. Feature-level analysis supports
conversations about those features that you have with subscribers and with your teams.

App Analytics data is organized around the concept of a custom_entity, which is the developer name of the components that are
included in your managed package. custom_entity information is included in package usage summaries, package usage logs,
and subscriber snapshots.

Example: Imagine that you want to understand how subscribers are using a new feature in your solution that enables them to
easily manage newsletter subscriptions from Salesforce. To build this feature, your developers add these components to your
managed package.

• A new custom object, Newsletter_Subscription

• A new Lightning Page, SubscriptionPage

• A new Lightning Component, SubscriptionComponent

• A new Apex Class, SubscriptionHandler

As subscribers interact with your components, interaction data flows through in App Analytics.

Subscriber Snapshot
(Daily)

Package Usage Summary
(Monthly)

Package Usage Log
(Daily)

Component

Record CountsCRUD eventsCreate Read Update and
Delete (CRUD) events

Newsletter_Subscription

—Lightning interactionsLightning interactionsSubscriptionPage

—Lightning component
interactions

Lightning component
interactions

SubscriptionComponent

—Apex executionsApex executionsSubscriptionHandler

The volume of total App Analytics data from your feature’s data mixed with data for your entire solution across all subscribers can
be vast. To make it easier for you to analyze, employ one of these strategies.

• Select a single component that best represents usage for this feature, and look solely at the data where it appears under
custom_entity. In this example, the custom object Newsletter_Subscription is a good candidate because it
tracks CRUD events from all sources, not only from the other components.

428

App Analytics Use CasesSecond-Generation Managed Packages

• Select a combination of components for a user journey that you care about. Using our example, select an interaction for
SubscriptionPage, followed by SubscriptionComponent, SubscriptionHandler and CRUD for
Newsletter_Subscription.

Package usage logs and subscriber snapshots are updated daily so that you can track subscriber usage more closely and more
frequently. Package usage summaries are updated monthly. To understand how we gather and make this data available to you,
read How Does AppExchange App Analytics Data Flow?

SEE ALSO:

How to Read App Analytics Package Usage Log Data

Customer Success Recipes

Troubleshoot Subscriber Issues

Enable App Analytics on Your Second-Generation Managed Package

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions.

USER PERMISSIONS

To access packages and
package versions:
• Read on Packages,

Package Versions

To request and retrieve
AppExchange App Analytics
data:
• Create, Read, Edit,

Delete, View All, and
Modify All on the
AppAnalyticsQueryRequest
object

Activate AppExchange App Analytics on your second-generation (2GP) managed package to access
AppExchange App Analytics package usage logs and subscriber snapshots. Package usage summaries
are available by default.

To ensure that you’re running the latest version of Salesforce CLI and its plug-ins, run sf update
and sf plugins update.

1. Activate App Analytics on your managed 2GP package. sf package update
--package "Your Package Alias" --enable-app-analytics

To deactivate App Analytics on your managed 2GP package, run this CLI command. sf
package update --package "Your Package Alias"
--no-enable-app-analytics

2. For any additional package that you want App Analytics data for, repeat step 1.

Download Package Usage Logs, Package Usage
Summaries, and Subscriber Snapshots
To request package usage logs, monthly package usage summaries, and subscriber snapshots, use
the AppAnalyticsQueryRequest object. Usage logs, usage summaries, and subscriber snapshots are
downloadable comma-separated value (.csv) files.

To enable App Analytics on your second-generation (2GP) managed packages, follow these
instructions. To enable App Analytics on your first-generation (1GP) managed packages, follow these instructions.

Then determine which team members need create, read, update, and delete (CRUD) access to the AppAnalyticsQueryRequest object,
and consider creating a permission set for them. By default, admins have the permissions required to request package usage logs and
usage summaries using the AppAnalyticsQueryRequest object.

In a 24-hour period, you can download up to 20 GB of AppExchange App Analytics data.

Package usage summary data is available to download for 10 years from the summary file log date. Package usage log data is available
to download for 45 days from the date that the log event occurred. Subscriber snapshot data is available to download for 45 days from
the snapshot date.

The usage data that AppExchange App Analytics collects depends on the org type and data type.

429

Enable App Analytics on Your Second-Generation Managed
Package

Second-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_data_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_enable2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/app_analytics_enable1gp.htm
https://help.salesforce.com/articleView?id=perm_sets_create.htm&language=en_US

Table 5: Data Type Collection Varies by Org Type

Data isn’t Collected on...Data is Collected on...Data Type

Scratch orgsProduction, sandbox, and trial orgsPackageUsageLog

Sandbox, scratch, and trial orgsProduction orgsPackageUsageSummary

Sandbox and scratch orgsProduction org and trial orgsSubscriberSnapshot

Note: AppExchange App Analytics is subject to certain usage restrictions as described in AppExchange Program Policies.

1. Log in to the License Management Org (LMO) that the package is registered to.

2. From the LMO, complete the required fields in the AppAnalyticsQueryRequest object.

3. Retrieve the App Analytics Query Request object created in the API request. The DownloadURL field populates after the request
is completed.

4. Click the URL in the DownloadURL field in the App Analytics Query Request object, and download the .csv file.

Note: The download URL expires after 60 minutes.

Considerations for Custom Interactions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Easily create and log custom interactions on your managed package using Apex. As subscribers
interact with your package and your Apex code is executed, the custom interactions that you defined
are logged. Retrieve your custom interactions in your package's AppExchange App Analytics usage
logs and usage summaries.

As an ISV partner, the complex features that you develop in your managed packages could involve
multiple actions on different objects, callouts to Apex functions, and much more. It can be difficult
to interpret how your subscribers interacted with specific packaged components via your
downloaded App Analytics package usage logs and summaries.

To provide you with more clarity about your subscribers’ events in custom ways and at different
granularity levels, create custom interactions in your managed packages using Apex.

With Apex custom interactions, you can discover:

• Which app feature a user interacted with

• How users flowed through a specific user journey

• Which UI components a user interacted with

Keep these considerations in mind:

• A custom interaction can appear for a given user request up to 50 times. This limit avoids flooding the logs due to large loops.

• We recommend that you don’t call IsvPartners.AppAnalytics.logCustomInteraction from inside a loop.

• If the IsvPartners.AppAnalytics.logCustomInteraction method is called from a running Apex test, no
AppExchange App Analytics package usage log or package usage summary data is produced.

430

Considerations for Custom InteractionsSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_appanalyticsqueryrequest.htm

Log Custom Interactions

Create and log custom interactions with your managed package using Apex.

SEE ALSO:

Apex Developer Guide: Enums

Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots

Apex Reference Guide: IsvPartners Namespace

Custom Interactions

Log Custom Interactions
Create and log custom interactions with your managed package using Apex.

1. In your packaged Apex code, include Apex enums that are associated with the events that you want to log as custom interactions.

2. In your Apex code, invoke IsvPartners.AppAnalytics.logCustomInteraction, using the enums that you created.

3. Test your code by running it in your development environment and checking your debug logs to be certain that the custom
interactions you created are being logged. Ensure that your debug log levels for Apex Code are set to FINE.

4. After you’re finished with your implementation, publish a new version of your managed package.

5. After subscribers install your package, retrieve your package usage logs and package usage summaries. Filter your package usage
log data on custom_entity_type by CustomInteractionLabel, and on log_record_type by CustomInteraction. Or filter
your package usage summary data on custom_entity_type by CustomInteractionLabel.

6. Analyze your custom interaction data.

Example: Let’s suppose you have a Lightning Web Component (LWC). Your LWC provides a list of related contacts for each
Account record, uses a table layout, and is wired to an Apex class. You add a new card layout to your LWC. To track how well users
are adopting this new layout, you log an interaction when a user switches between

layouts.

In your code, include Apex enums and invoke IsvPartners.AppAnalytics.logCustomInteraction.

Your LWC HTML code:

<template>
<div

class="slds-var-m-top_medium slds-var-m-bottom_x-large slds-box
slds-theme_default"

>
<h2 class="slds-text-heading_medium slds-var-m-bottom_medium">

Change data view
</h2>

<!-- Button group: simple buttons -->
<lightning-button-group class="slds-var-m-bottom_medium">

<lightning-button
label="Table"
variant={tableVariant}
onclick={handleClick}

></lightning-button>

431

Considerations for Custom InteractionsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/langCon_apex_enums.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.apexref.meta/apexref/apex_namespace_IsvPartners.htm

<lightning-button
label="Card"
variant={cardVariant}
onclick={handleClick}

></lightning-button>
</lightning-button-group>
<template lwc:if={displayTable}>

<lightning-datatable
key-field="id"
data={records}
columns={columns}

></lightning-datatable>
</template>
<template lwc:if={displayCard}>

<div class="slds-grid slds-wrap slds-grid_pull-padded-small">
<template for:each={records} for:item="contact">

<div
class="slds-col slds-small-size_1-of-1 slds-large-size_1-of-2

slds-var-p_small"
key={contact.id}

>
<lightning-card

variant="Narrow"
title={contact.name}
icon-name="standard:contact"

>
<div class="slds-var-p-horizontal_small">

<p>{contact.name}</p>
<p>{contact.title}</p>
<p>

<lightning-formatted-phone
value={contact.phone}
></lightning-formatted-phone>

</p>
<p>

<lightning-formatted-email
value={contact.email}
></lightning-formatted-email>

</p>
</div>

</lightning-card>
</div>

</template>
</div>
</template>
</div>

</template>

Your LWC JavaScript code:

import { LightningElement, wire, api } from "lwc";
import { getRelatedListRecords } from "lightning/uiRelatedListApi";
import logInteraction from "@salesforce/apex/LogContactListInteraction.log";

export default class ContactList extends LightningElement {

432

Considerations for Custom InteractionsSecond-Generation Managed Packages

@api recordId;
error;
records;
displayTable = true;
displayCard = false;
columns = [

{ label: "Name", fieldName: "name" },
{ label: "Title", fieldName: "title" },
{ label: "Email", fieldName: "email", type: "email" },
{ label: "Phone", fieldName: "phone", type: "phone" }

];
@wire(getRelatedListRecords, {

parentRecordId: "$recordId",
relatedListId: "Contacts",
fields: [

"Contact.Name",
"Contact.Id",
"Contact.Phone",
"Contact.Email",
"Contact.Title"

],
sortBy: ["Contact.Name"]
})
contactList({ error, data }) {

if (data) {
this.records = data.records.map((item) => {

return {
name: item.fields.Name.value,
id: item.fields.Id.value,
title: item.fields.Title.value,
email: item.fields.Email.value,
phone: item.fields.Phone.value
};

});
this.error = undefined;

} else if (error) {
this.error = error;
this.records = undefined;
}

}

handleClick(event) {
if (event.target.label.toLowerCase() === "table") {
this.displayTable = true;
this.displayCard = false;

logInteraction({ type: "table" });
} else if (event.target.label.toLowerCase() === "card") {

this.displayTable = false;
this.displayCard = true;
logInteraction({ type: "card" });

}
}
get cardVariant() {

return this.displayCard === true ? "brand" : "";

433

Considerations for Custom InteractionsSecond-Generation Managed Packages

}
get tableVariant() {

return this.displayTable === true ? "brand" : "";
}

}

Your Apex class:

public class LogContactListInteraction {
public Enum ContactListLayouts { TABLE, CARD }

@AuraEnabled
public static void log(String type) {

try {
IsvPartners.AppAnalytics.logCustomInteraction(getInteractionLabel(type));

} catch (Exception e) {
throw new AuraHandledException(e.getMessage());

}
}

private static ContactListLayouts getInteractionLabel(String type) {
if (type.toLowerCase() == 'table') {

return ContactListLayouts.TABLE;
} else if (type.toLowerCase() == 'card') {

return ContactListLayouts.CARD;
}
return null;

}
}

Next, you test your code. With your Apex code debug log level set to FINE, confirm that the custom interactions are logged by
finding events in your debug logs called APP_ANALYTICS_FINE, APP_ANALYTICS_WARN, or APP_ANALYTICS_ERROR.

APP_ANALYTICS_FINE [External]IsvPartners.AppAnalytics.logCustomInteraction was called,
but not from an installed managed package.
This means that the code is ready to be packaged.

SEE ALSO:

Package Usage Logs Schema

Considerations for Custom Interactions

434

Considerations for Custom InteractionsSecond-Generation Managed Packages

AppExchange App Analytics Best Practices

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To plan and maximize your AppExchange App Analytics query strategy, follow our best practices.
First, use file compression to reduce your data results file size. Second, schedule and automate your
regular App Analytics queries. Third, plan, schedule, and automate catch-up queries to supplement
your regular query data.

How Does AppExchange App Analytics Data Flow?

As your customers use your managed packages, they produce data. Their usage data is collected
daily in our data lake from each Salesforce instance. Usage data arrives to our data lake
throughout the day. From time to time, there can be data arrival delays. Also, data builds and
timestamps vary by data type. For these reasons, to optimize your data retrieval, plan out your
AppExchange App Analytics query strategy.

How Should I Plan My App Analytics Query Strategy?

Your detailed query strategy depends on the size and scope of your business and the data types that you’re querying.

Recommendations

Your query strategy varies based on your business size and scope. Also, your query strategy must adapt as your business grows. To
stay current, follow our App Analytics query recommendations for small, medium, and large-sized partners.

Where Do I Go for More Information About AppExchange App Analytics Queries?

Questions are natural when you start automating your queries and planning your query strategy. To find a good solution when you
have questions, review your code base and the size and skill of your development team.

How Does AppExchange App Analytics Data Flow?

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

As your customers use your managed packages, they produce data. Their usage data is collected
daily in our data lake from each Salesforce instance. Usage data arrives to our data lake throughout
the day. From time to time, there can be data arrival delays. Also, data builds and timestamps vary
by data type. For these reasons, to optimize your data retrieval, plan out your AppExchange App
Analytics query strategy.

Because Salesforce instances and your subscribers are located around the world, the time of data
collection varies by region. EU (EMEA) data arrives first, then North America (NA) data. Data from
Asia Pacific (AP) instances arrives last.

Our AppExchange App Analytics jobs run on local instance times on a non-peak schedule. Depending
on when you query for your data and where your customers are located, sometimes you retrieve
100% of your data at one time. Other times you must issue more queries to retrieve it all.

435

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

Data delivery to and arrival in our data lake also depends on factors that can affect a given instance, such as the health of the instance
or technical dependencies. Ordinarily you can expect all your org data to arrive in the data lake by 23:00 Coordinated Universal Time
(UTC) the day after it was recorded. However, occasionally, there can be delays.

Each AppExchange App Analytics data type is also compiled at different times.

ExampleBuild InformationData Type

For the March 1, 2021 snapshot:Subscriber Snapshots • Snapshots use data collected at
approximately 01:00 instance local
time.

• All records have this timestamp:
2021-03-01T00:00:00Z.

• Snapshots are generated nightly at
approximately 03:00 instance local
time.

• All data normally arrives by March 2,
2021 23:00 UTC.

• All timestamps are normalized to
00:00 UTC of that day.

For the March 2021 summary available on
April 1, 2021:

Package Usage Summaries • Summaries use data collected for an
entire month.

• All records have this timestamp:
2021-03-31T00:00:00Z.

• Summaries are built monthly.

• All timestamps are normalized to
00:00 UTC on the last day of the
month.

• All data normally arrives by April 1, 2021
23:00 UTC.

• In this example, we recommend that
you query for your summary data on
April 3, 2021 or later. We recommend a
2-day query delay to ensure that all of
your subscriber data from all worldwide
instances finished processing.

436

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

ExampleBuild InformationData Type

For the March 1, 2021 log file:Package Usage Logs • Usage logs use data from the previous
day. • All records have precise timestamps

associated with when that log event
occurred.

• Usage logs are generated nightly at
approximately 05:00 instance local
time. • All data normally arrives by March 2,

2021 23:00 UTC.

How Should I Plan My App Analytics Query Strategy?

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Your detailed query strategy depends on the size and scope of your business and the data types
that you’re querying.

All partners can take advantage of these query strategies.

• Choose a data results FileType value, and select a corresponding FileCompression.
With this query strategy, you can choose gzip compression for csv files or snappy column
compression for parquet files.

• Create regularly scheduled, automated queries.

• To sweep in late-arriving data, create catch-up queries using the AvailableSince field.

Compress Your Results Files
Your App Analytics query plan starts with your results file type and file compression. Data can eat up time and space, so do more with
less by specifying the type of file you download. Reduce your data download time by specifying how your results file is compressed.

If you don’t specify file type or file compression, your results file defaults to csv with no compression for backwards compatibility
reasons. If you choose the parquet file type, your results file includes data type information for each column.

We recommend that you always compress your results files. Choose from these SOAP API AppAnalyticsQueryRequest
FileType and FileCompression value combinations.

FileCompressionFileType

csv (default) • none (default when FileType is csv)

• gzip

parquet • snappy (default when FileType is parquet)

• gzip

• none

Note: When you download your App Analytics query result data, the HTTP response contains one or two important headers. The
Content-Type header indicates the file type (txt/csv or application/parquet). For queries with csv FileType and
gzip FileCompression, the Content-Encoding header indicates gzip encoding. Modern browsers often decode the
gzip-encoded file automatically, which results in a saved, uncompressed .csv file. Regardless if the file is automatically decoded
or not, its filename extension is .csv.

437

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

Schedule and Automate Your Queries
After you determine what queries to run and how often to run them, you want to schedule those queries. The easiest way is via automation.

What do we mean by automation? Write code that creates query request records on your schedule, monitors them, retrieves the data,
and stores your AppExchange App Analytics data somewhere. For example, you can store the data in a custom object in your License
Management Org.

Your automation options include, but aren’t limited to:

• Custom API integrations using REST or SOAP API calls

• Salesforce DX automation using the CLI

• Salesforce flows

• Apex triggers

For example, automate the retrieval of package usage summaries using Apex triggers.

If you want to also automate the retrieval of package usage log data, look to a different storage solution that scales with the data volume
the logs contain.

Create Catch-Up Queries
A catch-up query is like a broom, sweeping for data newly added to our data lake. Catch-up queries rely on you already having regular
queries in place.

For example, on March 2, 2021 18:00 UTC you run this regular query that retrieves package usage log data for March 1, 2021:

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z
EndTime=2021-03-02T00:00:00Z
DataType=PackageUsageLog
FileType=csv
FileCompression=gzip"

Rerun that exact same query on March 3, 2021 18:00 UTC, but add the AvailableSince field set to the day and time you ran
your original query: 2021-03-02T18:00:00Z. This query is your ad hoc catch-up query. It retrieves any data newly added to the
data lake for March 2 since you ran your regular query:

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z
EndTime=2021-03-02T00:00:00Z
DataType=PackageUsageLog
FileType=csv
FileCompression=gzip
AvailableSince=2021-03-02T18:00:00Z"

You can use catch-up queries in many different ways, which we discuss in more detail in the Recommendations section.

When creating catch-up queries, keep these considerations in mind.

• If StartTime is specified, the AvailableSince date must be later.

• If EndTime is specified, the AvailableSince date must be later.

• All queries must include StartTime or AvailableSince or both.

• AvailableSince must be earlier than now.

438

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

Note: What happens when you want to create an ad hoc catch-up query, but you forgot when you ran the original query? Use
Salesforce CLI and your original query’s sObjectID to look up the QuerySubmittedTime, like this: sf data get
record --sobjecttype AppAnalyticsQueryRequest --sobjectid 0XIXXXXXXXXXXXXXXX Set your
ad hoc catch-up query AvailableSince value to equal the QuerySubmittedTime.

SEE ALSO:

Apache Parquet

Automate AppAnalytics - AWS Stack

Recommendations

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Your query strategy varies based on your business size and scope. Also, your query strategy must
adapt as your business grows. To stay current, follow our App Analytics query recommendations
for small, medium, and large-sized partners.

Note: In the unlikely event of data delays, we regenerate data for log events that happened
up to 30 days in the past. To ensure that you consistently retrieve the most complete data,
we recommend that you schedule catch-up queries that look back 30 days.

Small-Sized Partners

Small-sized partners have manageable subscriber bases and one or two managed packages.
A small partner’s total daily usage data across all managed packages is 5 GB or less. Also, small
partner’s queries complete well under the 15-minute processing time limit.

Medium-Sized Partners

Medium-sized partners have bigger subscriber bases and about six managed packages. A medium-sized partner’s total daily usage
data across all managed packages is at or just over 20 GB. Also, this partner’s queries approach or hit the 15-minute processing time
limit.

Large-Sized Partners

Large partners have large subscriber bases and many managed packages. A large partner’s total daily data usage is more than 20
GB. Sometimes a large partner’s data from just one managed package is larger than the 20-GB daily limit. Also, large partners often
must create a smaller time range for each query to complete in under the 15-minute processing time limit.

Small-Sized Partners

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Small-sized partners have manageable subscriber bases and one or two managed packages. A
small partner’s total daily usage data across all managed packages is 5 GB or less. Also, small partner’s
queries complete well under the 15-minute processing time limit.

Given how manageable smaller partners’ data is, after you run your regular queries one time, we
recommend that you run a daily catch-up query as your main query. Sweep in all data for all your
managed packages for the last 30 days.

How to Schedule
Catch-Up Queries

How to Get StartedData Type

An initial query to retrieve data
from when App Analytics was

Subscriber Snapshots • One daily catch-up query.

439

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

https://parquet.apache.org/
https://medium.com/@kamipatel/automate-appanalytics-aws-stack-74cbebc49d2a

How to Schedule Catch-Up QueriesHow to Get StartedData Type

enabled for your managed package. • Set AvailableSince to the day
and time your last regular query ran.

• Set StartTime to 30 days ago.

• Omit EndTime.

• Each day advance StartTime and
AvailableSince by 1 day.

An initial query to retrieve data from when
App Analytics was enabled for your
managed package.

Package Usage Summaries • One daily catch-up query.

• Set AvailableSince to the day
and time your last regular query ran.

• Set StartTime to the first of the
previous month.

• Omit EndTime.

• Each day advance
AvailableSince by 1 day.

• Each month advance StartTime to
the first of the previous month.

An initial query to retrieve data from when
App Analytics was enabled for your
managed package.

Package Usage Logs • One daily catch-up query.

• Set AvailableSince to the day
and time your last regular query ran.

• Set StartTime to 30 days ago.

• Omit EndTime.

• Each day advance StartTime and
AvailableSince by 1 day.

Example: Most of your customers use your package on an NA or EU instance, so you run your queries at 18:00 UTC. You
have a couple customers on an AP instance, so you create catch-up queries to ensure that you capture data from around the world.

• On March 31 at 18:00 UTC, run your regular queries.

Subscriber Snapshot

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=SubscriberSnapshot
FileType=csv
FileCompression=gzip
StartTime=2020-03-30T00:00:00Z
EndTime=2020-03-31T00:00:00Z"

Package Usage Summary

sf data create record
--sobjecttype AppAnalyticsQueryRequest

440

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

--values "DataType=PackageUsageSummary
FileType=csv
FileCompression=gzip
StartTime=2020-02-01T00:00:00Z
EndTime=2020-03-01T00:00:00Z"

Package Usage Log

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsageLog
FileType=csv
FileCompression=gzip
StartTime=2020-03-30T00:00:00Z
EndTime=2020-03-31T00:00:00Z"

• On April 1 at 18:00 UTC run these three catch-up queries.

Subscriber Snapshot Catch-Up Query

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=SubscriberSnapshot
FileType=csv
FileCompression=gzip
StartTime=2020-03-02T00:00:00Z
AvailableSince=2020-03-31T18:00:00Z"

Package Usage Summary Catch-Up Query

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsageSummary
FileType=csv
FileCompression=gzip
StartTime=2020-03-01T00:00:00Z
AvailableSince=2020-03-31T18:00:00Z"

Package Usage Log Catch-Up Query

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsageLog
FileType=csv
FileCompression=gzip
StartTime=2020-03-02T00:00:00Z
AvailableSince=2020-03-31T18:00:00Z"

• On April 2 at 18:00 UTC, run the same catch-up queries, but advance the subscriber snapshot and package usage log
AvailableSince and StartTime date by 1 day each. Advance the package usage summary AvailableSince
by 1 day.

Subscriber Snapshot Catch-Up Query

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=SubscriberSnapshot

441

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

FileType=csv
FileCompression=gzip
StartTime=2020-03-03T00:00:00Z
AvailableSince=2020-04-01T18:00:00Z"

Package Usage Summary Catch-Up Query

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsageSummary
FileType=csv
FileCompression=gzip
StartTime=2020-03-01T00:00:00Z
AvailableSince=2020-04-01T18:00:00Z"

Package Usage Log Catch-Up Query

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "DataType=PackageUsageLog
FileType=csv
FileCompression=gzip
StartTime=2020-03-03T00:00:00Z
AvailableSince=2020-04-01T18:00:00Z"

Medium-Sized Partners

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Medium-sized partners have bigger subscriber bases and about six managed packages. A
medium-sized partner’s total daily usage data across all managed packages is at or just over 20 GB.
Also, this partner’s queries approach or hit the 15-minute processing time limit.

We recommend that after you run your regular queries one time, use catch-up queries as your main
queries for subscriber snapshots and package usage summaries. Use a combination of daily queries
and catch-up queries for package usage logs.

How to Schedule
Catch-Up Queries

How to Get StartedData Type

An initial query to retrieve data
from when App Analytics was

Subscriber Snapshots • One daily query.

• Set AvailableSince
to the day and time your
last regular query ran.

enabled for your managed
packages.

• Set StartTime to 30
days ago.

• Omit EndTime.

• Each day advance
StartTime and
AvailableSince by
1 day.

442

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

How to Schedule Catch-Up QueriesHow to Get StartedData Type

An initial query to retrieve data from when
App Analytics was enabled for your
managed packages.

Package Usage Summaries • One daily catch-up query.

• Set AvailableSince to the day
and time your last regular query ran.

• Set StartTime to the first of the
previous month.

• Omit EndTime.

• Each day advance
AvailableSince by 1 day.

• Each month advance StartTime to
the first of the previous month.

One regular daily query per package.Package Usage Logs • One daily catch-up query per package.

• Set AvailableSince to the day
and time your last regular query ran.

• Set StartTime to 30 days ago.

• Set EndTime equal to the
StartTime of your regular query.

• Each day advance StartTime,
EndTime, and AvailableSince
by 1 day.

Example: Half of your customers use your package on an NA or EU instance, so you run your regular queries at 18:00 UTC.
The other half of your customers are on an AP instance, so you create catch-up queries to ensure that you capture data from around
the world.

• On March 31 at 18:00 UTC, run your regular package usage log queries for each of your packages.

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00Z
EndTime=2021-03-31T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=csv
FileCompression=gzip"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00Z
EndTime=2021-03-31T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX

443

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

FileType=csv
FileCompression=gzip"

• On April 1 at 18:00 UTC onwards, run regular and catch-up package usage log queries.

A. Regular Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=csv
FileCompression=gzip"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=csv
FileCompression=gzip"

B. Catch-Up Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z
EndTime=2021-03-31T00:00:00Z
AvailableSince=2021-03-31T18:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=csv
FileCompression=gzip"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=021-03-01T00:00:00Z
EndTime=2021-03-31T00:00:00Z
AvailableSince=2021-03-31T18:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX

444

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

FileType=csv
FileCompression=gzip"

• On April 2, repeat the same queries that you ran on April 1, but advance the queries by a day.

A. Regular Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00Z
EndTime=2021-04-02T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=csv
FileCompression=gzip"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00Z
EndTime=2021-04-02T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=csv
FileCompression=gzip"

B. Catch-Up Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-02T00:00:00Z
EndTime=2021-04-01T00:00:00Z
AvailableSince=2021-04-01T18:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=csv
FileCompression=gzip"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2020-03-02T00:00:00Z
EndTime=2021-04-01T00:00:00Z
AvailableSince=2021-04-01T18:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX

445

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

FileType=csv
FileCompression=gzip"

Large-Sized Partners

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Large partners have large subscriber bases and many managed packages. A large partner’s total
daily data usage is more than 20 GB. Sometimes a large partner’s data from just one managed
package is larger than the 20-GB daily limit. Also, large partners often must create a smaller time
range for each query to complete in under the 15-minute processing time limit.

Large partners frequently create one query per managed package per 12, 6, or 1-hour increments
throughout a 24-hour period. How frequently you schedule your queries really depends on your
data volume.

We recommend that you use a combination of queries and multiple catch-up queries for all data
types

How to Schedule Catch-Up QueriesHow to Get StartedData Type

One daily query per package.Subscriber Snapshots • One daily query per package.

• Set AvailableSince to the day
and time your last regular query ran.

• Set StartTime to 30 days ago.

• Omit EndTime.

• Each day advance StartTime and
AvailableSince by 1 day.

One daily query per package.Package Usage Summaries • One daily catch-up query per package.

• Set AvailableSince to the day
and time your last regular query ran.

• Set StartTime to the first of the
previous month.

• Omit EndTime.

• Each day advance
AvailableSince by 1 day.

• Each month advance StartTime to
the first of the previous month.

Create two levels of catch-up queries per
day.

Package Usage Logs • To retrieve all your data, create multiple
segmented daily, automated App

• Create one catch-up query per package
that sweeps data from 2 days ago.

Analytics queries spread throughout the
day.

• • Create a second catch-up query that
sweeps data from 3 to 30 days ago.

Break up your requests by managed
package and by time increments
throughout the day.

446

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

How to Schedule Catch-Up QueriesHow to Get StartedData Type

• Each day advance StartTime,
EndTime, and AvailableSince
by 1 day.

Example: Your customers use your package on all Salesforce instances around the world, and your managed packages produce
significant amounts of data. You schedule queries to run at the same time, each covering a 12-hour period, and you create a layered
catch-up query plan to capture data from all instances.

In this example, we show two of your dozens of managed packages.

• On March 31 at 18:00 UTC, run your regular package usage log queries.

Package 1

sf data create record data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00
EndTime=2021-03-30T12:00:00
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T12:00:00
EndTime=2021-03-31T00:00:00
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00
EndTime=2021-03-30T12:00:00
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T12:00:00
EndTime=2021-03-31T00:00:00
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

447

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

• On April 1 at 18:00 UTC, run your regular and catch-up package usage log queries.

A. Package Usage Log Regular Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-03-31T12:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T12:00:00Z
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-03-31T12:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T12:00:00Z
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

B. Package Usage Log 2 Days Ago Catch-Up Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00Z

448

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

EndTime=2021-03-31T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-03-31T18:00:00Z"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-30T00:00:00Z
EndTime=2021-03-31T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-03-31T18:00:00Z"

C. Package Usage Log From 3 to 30 Days Ago Catch-Up Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z
EndTime=2021-03-30T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-03-31T18:00:00Z"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-01T00:00:00Z
EndTime=2021-03-30T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-03-31T18:00:00Z"

• On April 2 onwards, run your regular and your catch-up package usage log queries, advancing the dates by 1 day.

A. Package Usage Log Regular Queries

449

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00Z
EndTime=2021-04-01T12:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T12:00:00Z
EndTime=2021-04-02T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T00:00:00Z
EndTime=2021-04-01T12:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-04-01T12:00:00Z
EndTime=2021-04-02T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy"

B. Package Usage Log 2 Days Ago Catch-Up Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-04-01T18:00:00Z”

450

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-31T00:00:00Z
EndTime=2021-04-01T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-04-01T18:00:00Z"

C. Package Usage Log From 3 to 30 Days Ago Catch-Up Queries

Package 1

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-02T00:00:00Z
EndTime=2021-03-31T00:00:00Z
DataType=PackageUsageLog
PackageIds=0336XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-04-01T18:00:00Z"

Package 2

sf data create record
--sobjecttype AppAnalyticsQueryRequest
--values "StartTime=2021-03-02T00:00:00Z
EndTime=2021-03-31T00:00:00Z
DataType=PackageUsageLog
PackageIds=0337XXXXXXXXXX
FileType=parquet
FileCompression=snappy
AvailableSince=2020-04-01T18:00:00Z"

Where Do I Go for More Information About AppExchange App Analytics Queries?

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Questions are natural when you start automating your queries and planning your query strategy.
To find a good solution when you have questions, review your code base and the size and skill of
your development team.

If you still need help, try these resources:

• If you have an assigned AppExchange Partner Account Manager (PAM) or AppExchange
Technical Evangelist (TE), reach out to them.

• Otherwise, go to the Partner Community and post a question to the ISV TE Experts - Partner
Intelligence Chatter group.

451

AppExchange App Analytics Best PracticesSecond-Generation Managed Packages

https://partners.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HWsf
https://partners.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HWsf

Package Usage Summaries
Package usage summaries provide high-level metrics by calendar month. Discover how many users access your package and which
operations they perform.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.

AppExchange App Analytics tracks UI, API-based, Lightning-based, and Apex operations and logs each CRUD operation on components
and custom objects in packages. Events from sandbox, scratch, and trial orgs aren’t tracked in package usage summaries.

Partners and subscribers can access package usage data. Usage summaries become available at the beginning of the subsequent month.
For example, you can get the usage summary for May at the beginning of June.

• AppExchange Partners can request monthly usage summaries using the AppAnalyticsQueryRequest in SOAP API from the license
management org that owns the package.

• Subscribers can download usage summaries from Setup for any package that they installed that passed security review.

Package Usage Summary Schema

Use the package usage summary to discover how many users access your package and which operations they perform.

Package Usage Summary Schema
Use the package usage summary to discover how many users access your package and which operations they perform.

Package usage summaries contain aggregate data derived from related package usage logs. ISV partners have access to package usage
summaries by default, and they can activate access to package usage logs and subscriber snapshots. Subscribers only have access to
package usage summaries.

DescriptionField

The developer name of the component or custom object.custom_entity

The type of component or custom object that the user viewed or manipulated.

Examples:

custom_entity_type

• AnalyticsDashboard

• AnalyticsLens

• ApexClass

• ApexTrigger

• CustomInteractionLabel

• CustomInteractionFailure

• CustomObject

• ExternalObject

• LightningPage

• LightningComponent

• VisualforcePage

Namespace of the package.managed_package_namespace

The month that this usage summary applies to in YYYY-MM format. Example: 2019-03.month

452

Package Usage SummariesSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf

DescriptionField

The number of new records created from the package.num_creates

The number of deleted records associated with the package.num_deletes

The number of log records associated with a custom_entity.num_events

The aggregate number of records associated with the custom_entity that was
read.

The definition of num_reads changed with the Spring ’23 release. Some data from
February 2023 and all data dated January 2023 and earlier used this previous

num_reads

num_reads definition: the aggregate number of records associated with the package
that were read, plus the number of SOSL and SOQL queries performed on the entity.

The number of records associated with the package that were updated.num_updates

The number of times the component or page has been viewed.num_views

The name of the Salesforce edition that the subscriber org is using.

Examples:

organization_edition

• Developer Edition

• Enterprise Edition

• Unlimited Edition

The 15-character ID of the subscriber org.organization_id

The name of the subscriber org. Example: Acme, Inc.organization_name

The paid status of the subscriber org.

Examples:

organization_status

• Active

• Demo

• Free

• Trial

The ID of the package.package_id

The hashed token representing the ID of the user who accessed the package. The token
persists over time, even if a user’s details change. The token also persists across any
packages that the user interacts with.

The user ID token starts with the prefix 005-. In compliance with privacy regulations, our
systems can’t access the actual user ID. Likewise, the hashed token can’t be linked to the
user ID.

user_id_token

The user license category of the user accessing Salesforce services through the UI or API.

Examples:

user_type

• Guest

• Partner

453

Package Usage SummariesSecond-Generation Managed Packages

DescriptionField

• Standard

SEE ALSO:

Package Usage Logs Schema

Package Usage Logs
Analyze adoption and user behavior, then make informed feature development decisions based on data from package usage logs.
AppExchange App Analytics tracks UI, API-based, Lightning-based, and Apex operations, and it logs each CRUD operation on components
and custom objects in packages. Events from sandbox and trial orgs are tracked in package usage logs. Events from scratch orgs aren’t
tracked.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.

How to Read App Analytics Package Usage Log Data

App Analytics package usage logs contain data about how subscribers interact with your managed package. Your managed package
contains packaged components, and each package usage log line describes an interaction that a user has with one of your packaged
components. To understand that interaction, analyze each log line—or record—and focus on: what packaged component was
accessed, who interacted with that packaged component, and how that packaged component interaction occurred. Finally, analyze
the specific interaction data.

Package Usage Logs Schema

Make informed development decisions based on package usage log data. Analyze adoption, user behavior, company information,
and Lightning app and page usage data. Package usage logs list activity during a 24-hour period, between 12:00 AM and 11:59 PM
UTC.

How to Read App Analytics Package Usage Log Data

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

App Analytics package usage logs contain data about how subscribers interact with your managed
package. Your managed package contains packaged components, and each package usage log
line describes an interaction that a user has with one of your packaged components. To understand
that interaction, analyze each log line—or record—and focus on: what packaged component was
accessed, who interacted with that packaged component, and how that packaged component
interaction occurred. Finally, analyze the specific interaction data.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the
AppExchange Program Policies. Usage data from Government Cloud and Government Cloud
Plus orgs isn’t available in App Analytics.

Determine What Packaged Component Was Accessed

To analyze a package usage log record, always start with your packaged component.

Identify Who Interacted with Your Packaged Component

After you identify your packaged component, identify both the subscriber org and the user who triggered the interaction.

454

Package Usage LogsSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/

Identify How a User Interacted with Your Packaged Component

After you identify your packaged component and who interacted with it, identify how the user interacted with your packaged
component.

Custom Object and External Object Interactions

When a log record in your package usage log has custom_entity_type equal to CustomObject or ExternalObject,
it means that a user performed an action that resulted in a create, read, update, or delete (CRUD) interaction on your object.

Lightning Interactions

Each record in your package usage log that has a custom_entity_type of LightningComponent or LightningPage
describes an interaction with your packaged Lightning component or page.

Apex Interactions

Each record in your package usage log that has a custom_entity_type of ApexClass or ApexTrigger describes an
interaction with your packaged Apex class or trigger.

Visualforce Interactions

Each record in your package usage log that has a custom_entity_type of VisualforcePage describes an interaction
with your packaged Visualforce pages.

CRM Analytics Asset Interactions

Each record in your package usage log that has a custom_entity_type of AnalyticsDashboard, AnalyticsLens,
or AnalyticsRecipe describes an interaction with your packaged CRM Analytics assets.

Custom Interactions

To understand which features and UI components a subscriber interacted with and how they flow through a user journey, create
custom interactions with Apex enums and the IsvPartners.AppAnalytics.logCustomInteraction Apex method.

SEE ALSO:

Package Usage Logs Schema

Determine What Packaged Component Was Accessed

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To analyze a package usage log record, always start with your packaged component.

In App Analytics package usage logs, the name of each packaged component is represented by
the custom_entity field and its type is represented by the custom_entity_type field.
Your managed package likely contains multiple packaged components.

• To identify each packaged component uniquely, combine these fields.

– package_id

– package_version_id

– managed_package_namespace

– custom_entity

– custom_entity_type

455

Package Usage LogsSecond-Generation Managed Packages

Identify Who Interacted with Your Packaged Component

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

After you identify your packaged component, identify both the subscriber org and the user who
triggered the interaction.

• Identify the subscriber org with the organization_id. Some standard fields are always
populated and provide you with info about the subscriber org. Some supplemental fields, when
populated, add detail about that org.
This table describes the subscriber org fields.

Supplemental FieldsStandard Fields

–– organization_country_codeorganization_name

– organization_status – organization_language_locale

– organization_time_zone– organization_edition

– – organization_instanceorganization_type

– cloned_from_organization_id

• Use the user_id_token to identify and describe the user associated with the interaction. This hashed token represents the ID
of the user who accessed the package. The ID persists, even if a user’s details change, across any packages that the user interacts
with.
These supplemental fields, when populated, can provide you with more data about the user.

– user_type

– user_agent

– user_country_code

– user_time_zone

– session_key

– login_key

Because user_id_token can represent many different usage situations, we don’t recommend using App Analytics for auditing
customer license usage.

Identify How a User Interacted with Your Packaged Component

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

After you identify your packaged component and who interacted with it, identify how the user
interacted with your packaged component.

• Identify how the user interacted with your packaged component with log_record_type.
Other common fields associated with each interaction are:

– request_id

– timestamp_derived

456

Package Usage LogsSecond-Generation Managed Packages

Custom Object and External Object Interactions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

When a log record in your package usage log has custom_entity_type equal to
CustomObject or ExternalObject, it means that a user performed an action that resulted
in a create, read, update, or delete (CRUD) interaction on your object.

To determine the type and amount of CRUD that occurred on your packaged component, focus
on:

• operation_type

• operation_count

Many user actions result in CRUD, such as platform events, Apex REST API requests, or scheduled
job executions. Each action is related to a log_record_type, and each log record has some
standard fields that are always populated with data. For example, an Apex REST API request with a log_record_type of
ApexRestApi always has url, api_version, http_method, and http_status_code data. Many actions produce log
records with supplemental fields that are often populated. For example, an Apex REST API request sometimes has request_status,
referrer_uri, and api_type data.

CRUD from Apex REST API Requests

To analyze an Apex REST API request that resulted in a CRUD operation on your packaged component, look for a log_record_type
of ApexRestApi. Then use these fields to dig into the details of the Apex REST API interaction.

Supplemental DataStandard Data

• request_status• url

• api_version • referrer_uri

• api_type• http_method

• • rows_processedhttp_status_code

• request_size

• response_size

• num_fields

CRUD from Apex SOAP API Requests

To analyze an Apex SOAP API request that resulted in a CRUD operation on your packaged component, look for a log_record_type
of ApexSoap. Then use these fields to explore the details of the Apex SOAP API interaction.

Supplemental DataStandard Data

• url• api_version

• class_name • request_status

•• referrer_urimethod_name

457

Package Usage LogsSecond-Generation Managed Packages

CRUD from REST API Requests

To analyze a REST API request that resulted in a CRUD operation on your packaged component, look for a log_record_type of
RestApi. Then use these fields to understand the details of the REST API interaction.

Supplemental DataStandard Data

• request_status• url

• api_version • referrer_uri

• api_type• http_method

• • rows_processedhttp_status_code

• request_size

• response_size

• num_fields

CRUD from SOAP API Requests

To analyze a SOAP API request that resulted in a CRUD operation on your packaged component, look for a log_record_type of
API. Then use these fields to uncover the details of the SOAP API interaction.

Supplemental DataStandard Data

• url• api_type

• api_version • request_status

• request_uri• request_size

• response_size • rows_processed

•• num_fieldsmethod_name

CRUD from Bulk API Requests

To analyze a Bulk API request that resulted in a CRUD operation on your packaged component, look for a log_record_type of
BulkApiV1 or BulkApiV2. Then use these fields to discover the details of the Bulk API interaction.

Supplemental DataStandard Data

• api_type• api_version

• bulk_job_id • rows_processed

• bulk_batch_id

• bulk_operation

CRUD from Scheduled Job Executions

To analyze a scheduled job execution that resulted in a CRUD operation on your packaged component, look for a log_record_type
of CronJob. There are no additional package usage log fields to describe scheduled job executions.

458

Package Usage LogsSecond-Generation Managed Packages

Supplemental DataStandard Data

nonenone

CRUD from Platform Events

To analyze a platform event that resulted in a CRUD operation on your packaged component, look for a log_record_type of
PlatformEventConsumer. Then use these fields to discover the details of the platform event.

Supplemental DataStandard Data

none • event

• event_subscriber

• event_count

CRUD from Queueable Apex Executions

To analyze a queueable Apex execution that resulted in a CRUD operation on your packaged component, look for a log_record_type
of QueuedExec. There are no additional package usage log fields to describe Apex executions.

Supplemental DataStandard Data

nonenone

CRUD from Standard User Interface Requests

To analyze a user interaction that resulted in a CRUD operation on your packaged component, look for a log_record_type of
URI. Then use these fields to discover the details of the user interaction.

Supplemental DataStandard Data

url • request_status

• referrer_uri

CRUD from Visualforce Remoting Requests

To analyze a Visualforce Remoting request that resulted in a CRUD operation on your packaged component, look for a
log_record_type of VFRemoting. Then use these fields to explore the details of the Visualforce Remoting request.

Supplemental DataStandard Data

• url• class_name

• method_name • request_status

• referrer_uri

• request_size

459

Package Usage LogsSecond-Generation Managed Packages

Supplemental DataStandard Data

• response_size

CRUD from Visualforce Requests

To analyze a Visualforce request that resulted in a CRUD operation on your packaged component, look for a log_record_type of
VisualforceRequest. Then use these fields to explore the details of the Visualforce request.

Supplemental DataStandard Data

url • request_status

• referrer_uri

• request_size

• response_size

CRUD from All Other User Actions

To analyze any other user action that results in a CRUD operation on your packaged component, look for a log_record_type of
UnassociatedCRUD. There are no additional package usage log fields to describe all other interactions.

Supplemental DataStandard Data

nonenone

Example: Let’s look at an example package usage log record and analyze the custom or external object interaction.

{
"timestamp_derived": "2022-12-15T05:47:35.945Z",
"log_record_type": "VFRemoting",
"request_id": "4mbhuJkvJ7Q83tlq2Z5aAk",
"organization_id": "00Dxx0000006H2l",
"organization_name": "MyCustomer Inc.",
"organization_status": "Demo",
"organization_edition": "Enterprise Edition",
"organization_country_code": "IN",
"organization_language_locale": "en_US",
"organization_time_zone": "Australia/Sydney",
"organization_instance": "GS0",
"organization_type": "Production",
"user_id_token": "005-rBBA92863JO8GJN3pT75gp0cG8a9z1vpH6MOti/359o=",
"user_type": "Standard",
"url":"uwlNmuT1+gH+xKq+xCoxiaAyOOhw8B4WLeQXAbgx+mA=",
"package_id": "033xx0000004FqD",
"package_version_id": "04txx0000004Idi",
"managed_package_namespace": "Acme",
"custom_entity": "Insurance_Agent",
"custom_entity_type": "CustomObject",

460

Package Usage LogsSecond-Generation Managed Packages

"operation_type": "INSERT",
"operation_count": 2,
"session_key": "9/uZ+soHD+0UqKYt",
"login_key": "5tjyGvX04w06xFgT",
"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/IP_ADDRESS_REMOVED Safari/537.36",
"user_country_code": "IN",
"user_time_zone": "Asia/Kolkata",
"class_name": "shwGCoJjDrkhbw+CY4TFzVxFWypN07UGvtGkexbj/y4=",
"method_name": "3/UbV0E5yIW8a3c2Fb2XXjfWse1MUekEZWX44tp5TJs="

}

The Insurance_Agent packaged component of type CustomObject had CRUD performed as a result of a user action
from the subscriber org My Customer Inc. Specifically, two records were inserted during a Visualforce Remoting request
that the user performed at 2022-12-15 at 05:47 am UTC.

The key data in this analysis are:

ValueFieldQuestion

What • Insurance_Agent• custom_entity

• custom_entity_type • CustomObject

• 04txx0000004Idi• package_version_id

• •managed_package_namespace Acme

Who • 00Dxx0000006H2l• organization_id

• •user_id_token 005-rBBA92863JO8GJN3pT75gp0cG8a9z1vpH6MOti/359o=

VFRemotinglog_record_typeHow

How Much • INSERT• operation_type

• •operation_count 2

2022-12-15T05:47:35.945Ztimestamp_derivedWhen

In this example, the Visualforce Remoting code isn’t owned by the package, so url, class_name, and method_name are
tokenized.

"url": "uwlNmuT1+gH+xKq+xCoxiaAyOOhw8B4WLeQXAbgx+mA=",
"class_name": "shwGCoJjDrkhbw+CY4TFzVxFWypN07UGvtGkexbj/y4=",
"method_name": "3/UbV0E5yIW8a3c2Fb2XXjfWse1MUekEZWX44tp5TJs="

If the Visualforce Remoting code is part of the package, you see actual values instead of tokens.

SEE ALSO:

Package Usage Logs Schema

461

Package Usage LogsSecond-Generation Managed Packages

Lightning Interactions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Each record in your package usage log that has a custom_entity_type of
LightningComponent or LightningPage describes an interaction with your packaged
Lightning component or page.

Note: We’re continually improving the recording of Lightning interaction data in package
usage logs. Many interactions with your packaged Lightning component or page are available
in AppExchange App Analytics, but not all. To determine which interactions we capture for
your specific package, compare your packaged components to your App Analytics package
usage logs.

Lightning User Interaction

When a user interacts with your LightningPage or LightningComponent packaged component, a log_record_type
of LightningInteraction is created. Some standard fields are always populated with data. For example, a Lightning component
interaction always has app_name and ui_event_source data. Lightning interactions have supplemental fields that are often
populated. For example, a Lightning interaction sometimes also has page_app_name and page_context data.

Supplemental DataStandard Data

• page_app_name• app_name

• ui_event_source • page_context

• related_list• ui_event_type

• target_ui_element • page_url

• parent_ui_element

Lightning Page View

When a user views your Lightning page, a log_record_type of LightningPageView is created. Some standard fields are
always populated with data. For example, a Lightning page view always has app_name and page_app_name data. Lightning
page views have supplemental fields that are often populated. For example, a Lightning page view sometimes also has
page_entity_type and prevpage_url data.

Supplemental DataStandard Data

• page_entity_type• app_name

• page_app_name • prevpage_url

•• page_context related_list

• page_url

Example: Let’s look at an example package usage log record and analyze the Lightning interaction.

{
"timestamp_derived": "2022-11-22T06:17:39.167Z",
"log_record_type": "LightningInteraction",
"request_id": "TID:7635077000004b3035",

462

Package Usage LogsSecond-Generation Managed Packages

"organization_id": "00Dxx0000006H2l",
"organization_name": "MyCustomer Inc.",
"organization_status": "Demo",
"organization_edition": "Enterprise Edition",
"organization_country_code": "IN",
"organization_language_locale": "en_US",
"organization_time_zone": "Australia/Sydney",
"organization_instance": "GS0",
"organization_type": "Production",
"user_id_token": "005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=",
"user_type": "Standard",
"package_id": "033xx0000004FqD",
"package_version_id": "04txx0000004Idi",
"managed_package_namespace": "Acme",
"custom_entity": "Acme__Insurance_Agents",
"custom_entity_type": "LightningPage",
"session_key": "2l4YtFB/RmsRKVsS",
"login_key": "fGV6RgVOH3ZCgl2v",

"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/IP_ADDRESS_REMOVED Safari/537.36",

"user_country_code": "US",
"user_time_zone": "America/Los_Angeles",
"app_name": "one:one",
"page_app_name": "Insurance_App",
"page_context": "app_flexipage:lwcAppFlexipageWrapper",
"ui_event_source": "click",
"ui_event_type": "user",
"ui_event_sequence_num": "10",
"target_ui_element": "setup-app-nav-menu-item-link",
"parent_ui_element": "global-setup",
"page_url": "/lightning/n/Acme__Insurance_Agents"

}

The Acme_Insurance_Agents Lightning page was interacted with as a result of a user action from subscriber org
MyCustomer Inc. Specifically, a Lightning interaction took place on the page on 2022-11-22 at 6:17 am.

The key data in this analysis are:

ValueFieldQuestion

What • Acme_Insurance_Agents• custom_entity

• custom_entity_type • LightningPage

• 04txx0000004Idi• package_version_id

• •managed_package_namespace Acme

Who • 00Dxx0000006H2l• organization_id

• •user_id_token 005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=

LightningInteractionlog_record_typeHow

2022-11-22T06:17:39.167Ztimestamp_derivedWhen

463

Package Usage LogsSecond-Generation Managed Packages

Note: Lightning interaction data is captured on an event by event basis.

SEE ALSO:

Package Usage Logs Schema

Lightning Interaction Event Type

Lightning Page View Event Type

Apex Interactions
Each record in your package usage log that has a custom_entity_type of ApexClass or ApexTrigger describes an
interaction with your packaged Apex class or trigger.

Available in: both Salesforce Classic and Lightning Experience

Available in: Enterprise, Performance, Unlimited, and Developer Editions

Apex Execution

When log_record_type is ApexExecution, the log record is associated with a user action that resulted in the execution of
Apex code from an Apex class or trigger. Only the outermost Apex is captured.

Supplemental DataStandard Data

num_soql_queries• entry_point

• quiddity

Apex Unexpected Exception

When log_record_type is ApexUnexpectedException, the log record is associated with a user action that resulted in an
Apex class or trigger throwing an unhandled exception. The stack_trace field provides detail about the Apex unexpected exceptions.

Supplemental DataStandard Data

nonestack_trace

Example: Let’s look at an example package usage log record and analyze the Apex interaction.

{
"timestamp_derived": "2022-11-22T06:19:33.990Z",
"log_record_type": "ApexExecution",
"request_id": "4mbhxFWBBXz83tlq2Z5aAk",
"organization_id": "00Dxx0000006H2l",
"organization_name": "MyCustomer Inc.",
"organization_status": "Demo",
"organization_edition": "Enterprise Edition",
"organization_country_code": "IN",

464

Package Usage LogsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_eventlogfile_lightninginteraction.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_eventlogfile_lightningpageview.htm

"organization_language_locale": "en_US",
"organization_time_zone": "Australia/Sydney",
"organization_instance": "GS0",
"organization_type": "Production",
"user_id_token": "005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=",
"user_type": "Standard",
"package_id": "033xx0000004FqD",
"package_version_id": "04txx0000004Idi",
"managed_package_namespace": "Acme",
"custom_entity": "InsuranceDetailsBatchable",
"custom_entity_type": "ApexClass",
"session_key": "2l4YtFB/RmsRKVsS",
"login_key": "fGV6RgVOH3ZCgl2v",
"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/IP_ADDRESS_REMOVED Safari/537.36",
"user_country_code": "US",
"user_time_zone": "America/Los_Angeles",
"entry_point": "Acme.InsuranceDetailsBatchable",
"num_soql_queries": "2",
"quiddity": "A"

}

The InsuranceAgentDetailsBatchable packaged component of type ApexClass was interacted with as a result
of a user action from subscriber org MyCustomer Inc. Specifically, an execution of a batch Apex job occurred on 2022-11-22
at 6:19 am. The batch Apex job is represented by Quiddity = A.

The key data in this analysis are:

ValueFieldQuestion

What • InsuranceDetailsBatchable• custom_entity

• custom_entity_type • ApexClass

• 04txx0000004Idi• package_version_id

• •managed_package_namespace Admc

Who • 00Dxx0000006H2l• organization_id

• •user_id_token 005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=

How • ApexExecution• log_record_type

• •quiddity A

2022-11-22T06:19:33.990Ztimestamp_derivedWhen

SEE ALSO:

Package Usage Logs Schema

Apex Developer Guide

465

Package Usage LogsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.apexcode.meta/apexcode/apex_dev_guide.htm

Visualforce Interactions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Each record in your package usage log that has a custom_entity_type of
VisualforcePage describes an interaction with your packaged Visualforce pages.

Visualforce Requests

When a user performs an action that results in a request associated with your VisualForce page,
log_record_type equals VisualforceRequest. One standard field is always populated
with data: url.

Visualforce page requests also have supplemental fields that are often populated. For example, a
Visualforce page request sometimes also has request_status and referrer_uri data.

Use these fields to explore the details of the Visualforce request.

Supplemental DataStandard Data

url • request_status

• referrer_uri

• request_status

• response_size

Example: Let’s look at an example package usage log record and analyze the Visualforce request.

{
"timestamp_derived": "2022-11-22T06:23:23.836Z",
"log_record_type": "VisualforceRequest",
"request_id": "4mbi9e1ZVef83tlq2Z5aAk",
"organization_id": "00Dxx0000006H2l",
"organization_name": "MyCustomer Inc.",
"organization_status": "Demo",
"organization_edition": "Enterprise Edition",
"organization_country_code": "IN",
"organization_language_locale": "en_US",
"organization_time_zone": "Australia/Sydney",
"organization_instance": "GS0",
"organization_type": "Production",
"user_id_token": "005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=",
"user_type": "Standard",
"url": "/apex/Acme__Agent_List",
"package_id": "033xx0000004FqD",
"package_version_id": "04txx0000004Idi",
"managed_package_namespace": "Acme",
"custom_entity": "/apex/Acme__Agent_List",
"custom_entity_type": "VisualforcePage",
"request_status": "S",
"session_key": "2l4YtFB/RmsRKVsS",
"login_key": "fGV6RgVOH3ZCgl2v",
"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/IP_ADDRESS_REMOVED Safari/537.36",
"user_country_code": "US",

466

Package Usage LogsSecond-Generation Managed Packages

"user_time_zone": "America/Los_Angeles",
"request_size": "826",
"response_size": "1830"

}

The Acme_Agent_List packaged component of type VisualforcePage was interacted with as a result of a user action from subscriber
org MyCustomer Inc on 2022-11-22 at 6:23 am.

The key data in this analysis are:

ValueFieldQuestion

What • Acme__Agent_List• custom_entity

• custom_entity_type • VisualforcePage

• 04txx0000004Idi• package_version_id

• •managed_package_namespace Acme

Who • 00Dxx0000006H2l• organization_id

• •user_id_token 005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=

VisualforceRequestlog_record_typeHow

2022-11-22T06:23:23.836Ztimestamp_derivedWhen

SEE ALSO:

Package Usage Logs Schema

Visualforce Developer Guide

CRM Analytics Asset Interactions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Each record in your package usage log that has a custom_entity_type of
AnalyticsDashboard, AnalyticsLens, or AnalyticsRecipe describes an
interaction with your packaged CRM Analytics assets.

Analytics Asset Runs

To analyze a run of your CRM Analytics asset, look for a log_record_type of
AnalyticsAssetRun.

Supplemental DataStandard Data

nonenone

Analytics Asset Views

To analyze a view of your CRM Analytics asset, look for a log_record_type of AnalyticsAssetView.

467

Package Usage LogsSecond-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.260.0.pages.meta/pages/pages_intro.htm

Supplemental DataStandard Data

nonenone

Example: Let’s look at an example package usage log record and analyze the CRM Analytics asset interaction.

{
"timestamp_derived": "2022-11-22T06:19:49.820Z",
"log_record_type": "AnalyticsAssetView",
"request_id":"4mbhvyfahFf83tlq2Z5aAk",
"organization_id": "00Dxx0000006H2l",
"organization_name": "MyCustomer Inc.",
"organization_status": "Demo",
"organization_edition": "Enterprise Edition",
"organization_country_code": "IN",
"organization_language_locale": "en_US",
"organization_time_zone": "Australia/Sydney",
"organization_instance": "GS0",
"organization_type": "Production",
"user_id_token": "005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=",
"user_type": "Standard",
"package_id": "033xx0000004FqD",
"package_version_id": "04txx0000004Idi",
"managed_package_namespace": "Acme",
"custom_entity": "ClaimsDashboard",
"custom_entity_type": "AnalyticsDashboard",
"session_key": "2l4YtFB/RmsRKVsS",
"login_key": "fGV6RgVOH3ZCgl2v",
"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/IP_ADDRESS_REMOVED Safari/537.36",
"user_country_code": "US",
"user_time_zone": "America/Los_Angeles"

}

The packaged Analytics dashboard, ClaimsDashboard, was interacted with by a standard user from the subscriber org
MyCustom Inc. Specifically, the user performed a view of ClaimsDashboard on 2022-11-22 at 6:19am UTC.

The key data in this analysis are:

ValueFieldQuestion

What • ClaimsDashboard• custom_entity

• custom_entity_type • AnalyticsDashboard

• 04txx0000004Idi• package_version_id

• •managed_package_namespace Acme

Who • 00Dxx0000006H2l• organization_id

• •user_id_token 005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=

AnalyticsAssetViewlog_record_typeHow

468

Package Usage LogsSecond-Generation Managed Packages

ValueFieldQuestion

2022-11-22T06:19:49.820Ztimestamp_derivedWhen

SEE ALSO:

Package Usage Logs Schema

CRM Analytics Developer Center

Custom Interactions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To understand which features and UI components a subscriber interacted with and how they flow
through a user journey, create custom interactions with Apex enums and the
IsvPartners.AppAnalytics.logCustomInteraction Apex method.

Supplemental DataStandard Data

api_version• class_name

• method_name

• line_number

• interaction_id_token

Successful Custom Interactions

To analyze a custom interaction with your packaged components, look for a log_record_type of CustomInteraction and
a custom_entity_type of CustomInteractionLabel. The custom_entity contains a custom interaction label that
you created and that was logged.

Note: interaction_id_token is included only if an interaction_id was provided to the associated
IsvPartners.AppAnalytics.logCustomInteraction call. interaction_id_token is a hashed, tokenized
version of the raw interaction id that was provided.

Unsuccessful Custom Interactions

When custom_entity_type is equal to CustomInteractionFailure then the custom interaction couldn’t be logged. To determine
the reason for the failed logging, review the reason code provided by the custom_entity value.

Messagecustom_entity

We couldn’t log the custom interaction with App Analytics. The
interaction label provided to

LABEL_NO_NAMESPACE

IsvPartners.AppAnalytics.logCustomInteraction
must have a namespace.

We couldn’t log the custom interaction with App Analytics. The
interaction label provided to

LABEL_NOT_ENUM

469

Package Usage LogsSecond-Generation Managed Packages

https://developer.salesforce.com/developer-centers/crm-analytics

Messagecustom_entity

IsvPartners.AppAnalytics.logCustomInteraction
must be an Apex enum.

We couldn’t log the custom interaction with App Analytics. The
interaction label provided to

LABEL_WRONG_NAMESPACE

IsvPartners.AppAnalytics.logCustomInteraction
must have the same namespace as the Apex code that called the
method.

IsvPartners.AppAnalytics.logCustomInteraction
was called too many times in a single user request. This custom

OVER_CALL_LIMIT

interaction and subsequent ones for this user request weren’t
logged with App Analytics.

Example: Let’s look at an example package usage log record and analyze a successful Apex interaction.

{
"timestamp_derived": "2023-09-20T06:17:39.167Z",
"log_record_type": "CustomInteraction",
"request_id": "TID:7635077000004b3035",
"organization_id": "00Dxx0000006H2l",
"organization_name": "MyCustomer Inc.",
"organization_status": "Demo",
"organization_edition": "Enterprise Edition",
"organization_country_code": "IN",
"organization_language_locale": "en_US",
"organization_time_zone": "Australia/Sydney",
"organization_instance": "GS0",
"organization_type": "Production",
"user_id_token": "005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=",
"user_type": "Standard",
"package_id": "033xx0000004FqD",
"package_version_id": "04txx0000004Idi",
"managed_package_namespace": "Acme",
"custom_entity": "MyInteractionLabels.LoginButtonClicked",
"custom_entity_type": "CustomInteractionLabel",
"session_key": "2l4YtFB/RmsRKVsS",
"login_key": "fGV6RgVOH3ZCgl2v",
"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/IP_ADDRESS_REMOVED Safari/537.36",
"user_country_code": "US",
"user_time_zone": "America/Los_Angeles",
"class_name": "Acme.MyController",
"method_name": "loginButtonCallback",
"line_number": 56,
"interaction_id_token": "7NDe8HM8ZgPdBL+jiOpTW3/xKTwwL30dyxmKNxtyzi8="

}

The MyInteractionLabels.LoginButtonClicked custom interaction label was logged as a custom interaction as
a result of a user action from subscriber org MyCustomer Inc on 2023-09-20 at 6:17 am. Specifically, the user interaction resulted
in logging a custom interaction from line number 56 of the loginButtonCallback method found in the

470

Package Usage LogsSecond-Generation Managed Packages

Acme.MyController Apex class. In addition to the InteractionLabels.LoginButtonClicked label, an
interaction ID was provided to the log call resulting in an interaction token id value of
7NDe8HM8ZgPdBL+jiOpTW3/xKTwwL30dyxmKNxtyzi8=.

The key data in this analysis are:

ValueFieldQuestion

What • Acme.MyController• class_name

• custom_entity • MyInteractionLabels.LoginButtonClicked

• CustomInteractionLabel• custom_entity_type

• package_version_id • 04txx0000004Idi

• Acme• managed_package_namespace

• class_name • loginButtonCallback

• 56• method_name

• line_number • 7NDe8HM8ZgPdBL+jiOpTW3/xKTwwL30dyxmKNxtyzi8=

• interaction_id_token

Who • 00Dxx0000006H2l• organization_id

• •user_id_token 005-9BwnBWYO5FMn4cZ1sLw7F3LmTpoe8M77GrZOZHL6xQk=

CustomInteractionlog_record_typeHow

2023-09-20T06:17:39.167Ztimestamp_derivedWhen

SEE ALSO:

Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots

Considerations for Custom Interactions

Package Usage Logs Schema
Make informed development decisions based on package usage log data. Analyze adoption, user behavior, company information, and
Lightning app and page usage data. Package usage logs list activity during a 24-hour period, between 12:00 AM and 11:59 PM UTC.

DescriptionField

The type of API request.

Examples:

api_type

• BULK_API

• E: SOAP Enterprise

• P: SOAP Partner

• REST

The version of the API that’s used. Example: 45.0.api_version

471

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

The name of the Lightning application the user accessed.

Examples:

app_name

• one:one

• FieldServiceApp

• Chatter

The batch ID for the Bulk API job.bulk_batch_id

The ID for the Bulk API job.bulk_job_id

The operation for the Bulk API job.

Examples:

bulk_operation

• delete

• hardDelete

• insert

• query

• queryAll

• update

• upsert

The name of the Apex class.

Examples:

class_name

• Help_HomeController

• ROAppController_v2

• FSL

The ID of the org from which this subscriber org was cloned. Applies to sandbox orgs
only. Example: 00Dxx0000000000

cloned_from_organization_id

The developer name of the component or custom object.custom_entity

The type of component or custom object that the user viewed or manipulated.

Examples:

custom_entity_type

• AnalyticsDashboard

• AnalyticsLens

• AnalyticsRecipe

• ApexClass

• ApexTrigger

• CustomInteractionFailure

• CustomInteractionLabel

• CustomObject

• ExternalObject

472

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

• LightningComponent

• LightningPage

• VisualforcePage

The entry point of the executed Apex event.entry_point

• GeneralCloner.cloneAndInsertRecords

• VF- /apex/CloneUser

The name or ID of the platform event.

Examples:

event

• /event/011xx0000005akx

• SomeCustomEvent

The number of platform events consumed by the subscriber. Example: 2.event_count

The ID of the platform event subscriber. Example: 01qxx0000004Coy.event_subscriber

The type of HTTP request method. Example: GET.http_method

The HTTP response status code. Example: 404.http_status_code

A hashed token representing the interaction ID provided when the custom interaction
was logged. In compliance with privacy regulations, Salesforce can’t store an actual user
interaction ID.

interaction_id_token

The line number in the Apex file.line_number

The hashed string that ties together all events in a given user’s login session. The session
starts with a login event and ends with either a logout event or the session expiring. All
log lines with the same login key occurred during the same user login session.

login_key

Type of log record.

Examples:

log_record_type

• AnalyticsAssetView

• AnalyticsAssetRun

• API

• ApexExecution

• ApexRestApi

• ApexSoap

• ApexUnexpectedException

• BulkApiV1

• BulkApiV2

• CronJob

• CustomInteraction

• LightningInteraction

473

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

• LightningPageView

• PlatformEventConsumer

• QueuedExec

• RestApi

• UnassociatedCRUD

• URI

• VFRemoting

• VisualforceRequest

A log_record_type value of UnassociatedCRUD is assigned when a create,
read, update, or delete (CRUD) event occurs on a custom object that isn’t associated with
a log record type that App Analytics captures or that is associated with unknown log
records.

Namespace of the package.managed_package_namespace

The name of the Apex method.

Examples:

method_name

• getUserAccessLevelBean

• getCurrentDocumentsRates

• getAdditionalHelpTemplate

The number of fields accessed by the user in this transaction.num_fields

The number of SOQL queries completed during the executed Apex event.num_soql_queries

The definition of operation_count depends on the operation_type
performed.

operation_count

• When operation_type is INSERT, READ, UPDATE, or DELETE,
operation_count is the number of records associated with the
custom_entity affected by the operation in this transaction.

• When operation_type is SOQL_QUERY, operation_count is the
number of SOQL queries associated with the custom_entity performed in this
transaction.

• When operation_type is SOSL_QUERY, operation_count is the
number of SOSL queries associated with the custom_entity performed in this
transaction.

The operation performed on the component or custom object.

Examples:

operation_type

• INSERT

• READ

• UPDATE

• DELETE

474

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

• SOSL_QUERY

• SOQL_QUERY

The ISO-3166 two-character country code corresponding to the subscriber org’s address
at the time of sign-up.

Examples:

organization_country_code

• US

• CA

• FR

The name of the Salesforce edition the subscriber org is using.

Examples:

organization_edition

• Developer Edition

• Enterprise Edition

• Unlimited Edition

The 15-character ID of the subscriber org.organization_id

The name of the subscriber org’s instance.

Examples:

organization_instance

• AP2

• EU7

• NA44

The 2–5 character code that represents the language and locale ISO-639 code of the
subscriber org. This code controls the language for the labels displayed in an application.

Examples:

organization_language_locale

• de-DE

• en-US

• fr-CA

The name of the subscriber org. Example: Acme, Inc.organization_name

The paid status of the subscriber org.

Examples:

organization_status

• Active

• Demo

• Free

• Trial

The default time zone of the subscriber org.

Examples:

organization_time_zone

475

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

• America/New York

• America/Los Angeles

• Europe/Paris

The subscriber org environment type.

Examples:

organization_type

• Production

• Sandbox

The ID of the package.package_id

The ID of the package version.package_version_id

The internal name of the Lightning application that the user accessed from the App
Launcher.

Examples:

page_app_name

• LightningSales

• Chatter

The context of the Lightning page where the event occurred. Example:
clients:cardContainer.

page_context

The Lightning entity type of the event.

Examples:

page_entity_type

• Contact

• Task

The relative URL of the top-level Lightning Experience or Salesforce mobile app page that
the user accessed. The page can contain one or more Lightning components. Multiple

page_url

record IDs can be associated with page_url. Example:
/sObject/0064100000JXITSASS/view

The parent scope of the Lightning page element where the event occurred. Example:
ChatterFeed.

parent_ui_element

The relative URL of the previous Lightning Experience or Salesforce mobile app page that
the user opened. Example: /sObject/0064100000

prevpage_url

The type of outer execution associated with the executed Apex event.

Examples:

quiddity

• A: QueryLocator Batch Apex

• B: Bulk API and Bulk API 2.0

• BA: Batch Apex

• C: Scheduled Apex

• E: Inbound Email Service

476

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

• F: Future

• H: Apex REST

• I: Invocable Action

• K: Quick Action

• L: Lightning

• M: Remote Action

• Q: Queuable

• R: Synchronous Uncategorized

• S: Serial Batch Apex

• TA: Tests Async

• TD: Tests Deployment

• TS: Tests Synchronous

• V: Visualforce

• W: SOAP Webservices

• X: Execute Anonymous

The referring URI from the HTTP request. URIs are redacted in these ways.referrer_uri

• Query strings are removed.

• User IDs display as hashed tokens.

• Subscriber-created URIs, such as VisualForce pages, are removed.

A section of a record or other detail page that lists items related to that record.

Examples:

related_list

• Open Activities

• Stage History

The ID of the HTTP request made to the server by the browser. If multiple log lines have
the same request ID, they all occurred as part of the same user interaction.

request_id

The size of the callout request body in bytes.request_size

The status of the HTTP request for the page or action that accesses a component or
custom object in a package.

Examples:

request_status

• A = Auth Error

• F = Failure

• N = 404 error

• R = Redirect

• S = Success

• U = Undefined

477

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

The size of the callout response in bytes.response_size

The number of rows that were processed in the request.rows_processed

The HTTP session ID for the HTTP request to access a component or custom object in a
package. The session ID is hashed.

session_key

The stack trace associated with the Apex exception.stack_trace

The Lightning target page element where the event occurred.

Examples:

target_ui_element

• label body truncate

• tabitem-link

The access time of a component or custom object in a package in ISO8601-compatible
format (YYYY-MM-DDTHH:MM:SS.sssZ). Example: 2018-07-27T11:32:59.555Z.

timestamp_derived

An auto-incremented sequence number of the current Lightning event since the session
started.

ui_event_sequence_num

The user action on the Lightning record or records. This value indicates whether the user’s
action was on a single record or multiple records. For example, read indicates that one

ui_event_source

record was read, such as on a record detail page. In contrast, reads indicates that
multiple records were read, such as in a list view.

Examples:

• click

• create

• delete

• hover

• read

• update

The type of Lightning event.

Examples:

ui_event_type

• crud

• system

• user

The redacted URL of the request to access a component or custom object in a package.
URLs are redacted in these ways.

url

• Query strings are removed.

• User IDs display as hashed tokens.

• Subscriber-created URIs, such as VisualForce pages, are removed.

478

Package Usage LogsSecond-Generation Managed Packages

DescriptionField

For Lightning-based URLs, only /aura is displayed. For Visualforce-based URLs that
aren’t pages owned by the managed package, either /apex or /apexrest is
displayed.

The browser and operating system of the device used to make the request.

Examples:

user_agent

• Mozilla/5.0 (iPhone; CPU iPhone // 12_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML,
like Gecko) CriOS/69.0.3497.105 Mobile/15E148 Safari/605.1

• Mozilla/5.0 (Linux; Android 8.0.0; SM-G960F Build/R16NW) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/62.0.3202.84 Mobile Safari/537.36

The default ISO-3166 two-character country code of the user.

Examples:

user_country_code

• CA

• FR

• US

The hashed token representing the ID of the user who accessed the package. The ID
persists, even if a user’s details change. The token also persists across any packages that
the user interacts with.

The user ID token starts with the prefix 005-. In compliance with privacy regulations, our
systems can’t access the actual user ID. Likewise, the hashed token can’t be linked to the
user ID.

user_id_token

The default time zone of the user. Example: America/New_York.user_time_zone

The user license category of the user accessing Salesforce services through the UI or API.

Examples:

user_type

• Guest

• Partner

• Standard

Subscriber Snapshots
Subscriber snapshots give you a point-in-time summary of subscriber activity. Use subscriber snapshots to see usage trends by org and
package.

Note: AppExchange App Analytics is subject to certain usage restrictions, as described in the AppExchange Program Policies.

AppExchange App Analytics takes a daily snapshot of org, package, and custom entity data. Snapshots are captured daily at 00:00 UTC
and become available for download immediately. You request a date and time, or range of dates and times, and you receive one snapshot
per valid date and time requested. For example, if on April 7, 2023 you request a date and time range of
StartTime=2023-04-04T00:00:00Z EndTime=2020-04-07T00:00:00Z, you receive three snapshots, one for each
completed day.

479

Subscriber SnapshotsSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf

DescriptionField

Represents a characteristic of a custom entity, managed package, package version, or
org. Example: UsersWithMFA

attribute_name

A string that represents a characteristic or measure of an attribute_name.

Examples:

attribute_value

• 0.570

• 1.000

• Acme, Inc.

• Active

• Deprecated

Total records for the custom entity in that org on the specified snapshot date.count

The developer name of the component or custom object.

Examples:

custom_entity

• Amount

• Travel_Expense

The subscriber snapshot date requested, in YYYY-MM-DDT00:00:00Z format. Each
point-in-time snapshot is captured at 00:00 UTC on the date specified. Example:
2023-04-04T00:00:00Z

date

Namespace of the package. Example: sfdx_isv_pkg001managed_package_namespace

The name of the Salesforce edition the subscriber org is using.

Examples:

organization_edition

• Developer Edition

• Enterprise Edition

• Unlimited Edition

The 15-character ID of the subscriber org. Example: 00D4m000000Td8Y.organization_id

The name of the subscriber org. Example: My_Org.organization_name

The paid status of the subscriber org.

Examples:

organization_status

• ACTIVE

• DEMO

• FREE

• TRIAL

The ID of the managed package. Example: 033xx00000000CI.package_id

The ID of the managed package version. Example: 04t6A0000004eytQAA.package_version_id

480

Subscriber SnapshotsSecond-Generation Managed Packages

The attribute_name and attribute_value fields are a key-value pair. Each pair has a specific scope. Some pairs provide
org-level metadata, and others provide custom entity, managed package, or package version metadata,

Interpret these two fields in tandem using the information in this table.

Note: As of Spring ’25, trial orgs aren’t included in subscriber snapshot MFA data.

Scopeattribute_valueDescriptionattribute_name

Org-level.

For all packages installed into an active or demo org,
the same org-level UsersWithMFA percent
repeats on every package version row.

Percent

Examples:

Represents the
percentage of your
unique, standard users
who enabled multi-factor
authentication (MFA)

UsersWithMFA

• 0.060

• 0.940
using one of these
methods.

• User permission sets

• Profile permission
sets

• High-assurance
session security level

The corresponding
attribute_value
is always between 0 and
1, where 0 represents 0%
and 1 represents 100%.

Test Custom Integrations

USER PERMISSIONS

To enable simulation mode:
• ModifyMetadata

To test your custom integrations in a nonproduction environment, use AppExchange App Analytics
Simulation Mode. Submit an App Analytics query request and receive sample usage data.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the
AppExchange Program Policies.

To receive sample usage data, enable simulation mode, then submit a query request that includes
a simulation mode package ID.

1. Enable simulation mode in your test org using the Metadata API AppAnalyticsSettings enableSimulationMode org preference.

2. To simulate package usage log, usage summary, or subscriber snapshot downloads, complete the required fields in your SOAP API
AppAnalyticsQueryRequest. Include DataType, and leave OrganizationIDs blank. For PackageIDs, include at least
one simulation mode package ID that matches the scenario you’re testing.

DescriptionSimulation Mode Package IDPackage Dataset

Contains a small amount of data. For use
with all query types. Use this package ID

033xx00SIMsmallSmall Dataset

to download data for any query-allowed
timespan.

481

Test Custom IntegrationsSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://developer.salesforce.com/docs/atlas.en-us.260.0.api_meta.meta/api_meta/meta_appanalyticssettings.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.object_reference.meta/object_reference/sforce_api_objects_appanalyticsqueryrequest.htm

DescriptionSimulation Mode Package IDPackage Dataset

Contains a large amount of data for two
org IDs (00Dxx00SIM00foo and

033xx00SIMlargeLarge Dataset

00Dxx00SIM00bar). For use only with
package usage log queries.

Contains no data. For use with all query
types. Use one of these package IDs to
return an empty dataset.

Use any other 15-character package ID
prefixed with 033xx00SIM.

Examples:

Empty Dataset

• 033xx00SIMempty

• 033xx00SIM44444

3. Submit your query.

4. Check your API request.

a. If successful, retrieve the App Analytics Query Request object created in the API request. The DownloadURL field populates
when the request is completed.

b. If you get an error, edit your query. Use a smaller time window, such as a 14 days, or specify one org ID. Then resubmit your
query.

5. Download the comma-separated value (.csv) file containing sample usage data from the DownloadURL field in the App Analytics
Query Request object.

Important: When simulation mode is enabled, you can only access our sample usage data. Disable simulation mode to access
your production data.

AppExchange App Analytics Developer Cookbook

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Delve deeper into your AppExchange App Analytics managed package usage data by creating key
performance indicators (KPIs). First, complete some prerequisites and retrieve your App Analytics
data. Next, prepare your CRM Analytics environment. Finally, to build your KPIs, complete App
Analytics recipes.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the
AppExchange Program Policies.

1. What Are Recipes?

The AppExchange App Analytics Developer Cookbook uses two distinct types of recipes: CRM
Analytics recipes and App Analytics recipes. The CRM Analytics recipes are foundational work
that you must complete before creating App Analytics recipes. App Analytics recipes build on your CRM Analytics recipe analytics
environment and result in key performance indicators (KPIs).

2. Before You Begin

Complete these prerequisites before you create App Analytics recipes.

482

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf

3. CRM Analytics Recipes

Set up your org to create AppExchange App Analytics recipes by building your CRM Analytics environment. You first create a
country-codes dataset. Then you create two CRM Analytics recipes to produce a dataset of your subscriber info, and an aggregate
dataset of all of your daily data.

4. App Analytics Recipes

To understand how your customers are using your managed packages and components, create App Analytics recipes. Each App
Analytics recipe produces a CRM Analytics lens and is a key performance indicator (KPI). Use CRM Analytics dashboards to visualize
your KPIs and gain deeper insights.

What Are Recipes?

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

The AppExchange App Analytics Developer Cookbook uses two distinct types of recipes: CRM
Analytics recipes and App Analytics recipes. The CRM Analytics recipes are foundational work that
you must complete before creating App Analytics recipes. App Analytics recipes build on your CRM
Analytics recipe analytics environment and result in key performance indicators (KPIs).

You can use any reporting tool to create KPIs, but we recommend our analytics powerhouse, CRM
Analytics. With CRM Analytics, you can easily integrate your License Management App (LMA) data
with your App Analytics data using datasets and CRM Analytics recipes.

CRM Analytics Recipes
If you’re familiar with CRM Analytics, you’re familiar with dataflows and CRM Analytics recipes. Dataflows are great for combining data
from multiple sources, while CRM Analytics recipes are great for performing transformations on a single dataset. To set up your App
Analytics recipe environment, create CRM Analytics recipes that combine a country code dataset, your LMA data, and your App Analytics
data. These CRM Analytics recipes are required to create App Analytics recipes.

App Analytics Recipes
App Analytics recipes are CRM Analytics lens formulas with SAQL code provided. Each App Analytics recipe results in a KPI that you can
use to visualize your data on a dashboard. Some examples include Daily and Monthly Active Users, and Custom Object Reads Per Day.
Complete your CRM Analytics recipes before starting with App Analytics recipes.

483

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

Before You Begin

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To access License Management
App data, packages, and
package versions:
• Read on Licenses, Packages,

Package Versions

To request and retrieve
AppExchange App Analytics data:
• Create, Read, Edit, Delete,

View All, and Modify All on the
AppAnalyticsQueryRequest
object

To use CRM Analytics:
• CRM Analytics Plus Admin

user

Complete these prerequisites before you create App Analytics recipes.

To brush up on your AppExchange App Analytics or CRM Analytics skills, we recommend completing
these Trailhead modules.

• AppExchange Partner Intelligence Basics

• CRM Analytics Data Integration Basics

1. Set up your License Management Org (LMO).

Use your LMO to track all Salesforce users who install your managed package. The LMO receives
a notification in the form of a lead record when a user installs or uninstalls your package. It also
tracks each package upload on AppExchange. Typically, as an AppExchange partner, you
use your Partner Business Org (PBO) as your LMO.

2. Register your security-reviewed managed package with your LMO. Follow the directions
in Link a Package with Your License Management Organization.

3. If you’re not using your PBO as your LMO, install the License Management App (LMA) in
your LMO. The LMA lets you manage leads and licenses for your AppExchange offerings.
To install the LMA, read Get Started with the License Management App.

Note: If you’re using your PBO as your LMO, you’re all set. The LMA is automatically
installed for you.

4. Create an App Analytics Admin permission set that includes create and read access on
the AppAnalyticsQueryRequest object. Assign this permission to any non-Admin users
so that they can create App Analytics requests. Read Create Permission Sets in Salesforce
Help if you need instructions.

5. Set up the CLI using the Salesforce CLI Setup Guide. If you need a CLI refresher, take the
App Development with Salesforce DX Trailhead module.

6. Enable CRM Analytics in your Salesforce org.

7. Create a CRM Analytics app named PartnerIntelligence.

8. To request and retrieve a sample package usage log, create an AppExchange App Analytics query request using the CLI. Save the
CSV data file as RawPackageLogFile.csv.

9. To request and retrieve package usage logs automatically, create an automation. Which automation method you choose depends
on your business specifications and which data volume you’re automating.

• For smaller datasets, such as package usage summaries, Apex scales well for automation. This GitHub repo has the details.

• For larger datasets, such as package usage logs, automate using an Amazon Web Services (AWS) stack.

• You can also use the free Salesforce Labs app, App Analytics. It offers great functionality to retrieve and automate data collection
and to get started with recipes and dashboards. Salesforce Labs apps are developed by Salesforce employees and are unsupported.

Get Help with Prerequisites

If you need help with setting up your solution, you can request a consultation with a Platform Expert.

484

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

https://trailhead.salesforce.com/en/content/learn/modules/appexchange-partner-intelligence-basics
https://trailhead.salesforce.com/en/content/learn/modules/wave_enable_data_integration_basics
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/package_associate_lmo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/isv1_3_quickstart.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/package_associate_lmo.htm
https://developer.salesforce.com/docs/atlas.en-us.260.0.packagingGuide.meta/packagingGuide/lma_setup.htm?search_text=license%20management%20app
https://help.salesforce.com/articleView?id=platform.perm_sets_create.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.260.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://trailhead.salesforce.com/en/content/learn/modules/sfdx_app_dev
https://help.salesforce.com/articleView?id=000335760&type=1&mode=1&language=en_US
https://github.com/developerforce/partner-intelligence-basics
https://medium.com/@kamipatel/automate-appanalytics-aws-stack-74cbebc49d2a
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000G0nUXUAZ

Get Help with Prerequisites

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

If you need help with setting up your solution, you can request a consultation with a Platform Expert.

1. Log in to the Salesforce Partner Community.

2. Click the question icon and then click Log a Case for Help.

3. Provide any required details, and then click Create Case.

CRM Analytics Recipes

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Set up your org to create AppExchange App Analytics recipes by building your CRM Analytics
environment. You first create a country-codes dataset. Then you create two CRM Analytics recipes
to produce a dataset of your subscriber info, and an aggregate dataset of all of your daily data.

• The first CRM Analytics recipe, LMAJoin, combines package and license data from your LMA
with your accounts and leads. It produces a dataset of your subscribers.

• The second CRM Analytics recipe, DailyAggregation, joins the LMAJoin dataset with your App
Analytics data. It produces the DailyAggregation dataset. All your App Analytics recipes are built
on top of your DailyAggregation dataset.

1. Create the Country-Codes Dataset

To create visualizations of your country-based data in map format, you normalize the LMA country-code data to CRM Analytics
country-code format.

2. Connect to Your License Management App Data

Create an SFDC_Local connection to your License Management App (LMA) data.

3. Create the LMAJoin CRM Analytics Recipe

Create a CRM Analytics recipe that contains your License Management App (LMA) data.

4. Create Your App Analytics Dataset

Create a RawPackageLogFile App Analytics dataset using your RawPackageLogFile.csv file.

5. Create Your DailyAggregation CRM Analytics Recipe

You join your raw package log file data with your License Management App (LMA) data to create the DailyAggregation CRM Analytics
recipe. The recipe produces a dataset called DailyAggregation that you use to create App Analytics recipes.

SEE ALSO:

Explore Data and Take Action with CRM Analytics

485

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

https://partners.salesforce.com
https://help.salesforce.com/articleView?id=analytics.bi.htm&type=5&language=en_US

Create the Country-Codes Dataset

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To create visualizations of your country-based data in map format, you normalize the LMA
country-code data to CRM Analytics country-code format.

1. Click country-codes.csv to download standardized country code data.

2. Right-click Raw and click Save Link As.

3. Name the file country-codes.txt, and save it to your desktop.

4. In Analytics Studio in CRM Analytics, click Create.

5. Click Dataset.

6. Click CSV File.

7. Select your country-codes.txt file.

8. Click Next.

9. Name your dataset country-codes.

10. Select your PartnerIntelligence app.

11. Click Next.

12. Click Upload File.

Connect to Your License Management App Data

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Create an SFDC_Local connection to your License Management App (LMA) data.

In your org in Analytics Studio in CRM Analytics:

1. Click Data Manager.

2. Click Connect.

3. Click Connect to Data.

4. Click SFDC_LOCAL.

5. Click Account.

6. Click Continue.

7. Select all fields.

8. Click Continue.

9. Click Save.

10. Repeat steps 2 through 8 to connect to these objects.

• Lead

• sfLma__License__c

• sfLma__Package__c

• sfLma__Package_Version__c

11. Next to Account, click the down arrow.

12. Click Run Data Sync.

13. Repeat step 11 for these objects in your Connect window.

• Lead

486

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

https://github.com/datasets/country-codes/blob/master/data/country-codes.csv

• sfLma__License__c

• sfLma__Package__c

• sfLma__Package_Version__c

Create the LMAJoin CRM Analytics Recipe

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Create a CRM Analytics recipe that contains your License Management App (LMA) data.

In your org in Analytics Studio in CRM Analytics:

1. Click Data Manager.

2. In Dataflows & Recipes on the Recipes tab, click Create Recipe.

3. Click Add Input Data.

4. Select sfLma__License__c, and select all columns.

5. Create a transform named License with these specifications.

• Custom Formula: string(Id)

• Output Type: Text

• Length: 255

• Default Value: blank

• Show Results In: New Column (and Keep Original)

• Column Label: LicenseRecordId

6. Add a join to Lead with these specifications.

• Select Input Data to Join: Lead

• Columns to Select: Company, First Name, Id, Last Name

• Join Type: Lookup

• Join Keys: License: Record ID = Lead ID

• API Name Prefix for Right Columns: Lead

7. Add a join to Account with these specifications.

• Select Input Data to Join: Account

• Columns to Select: Name

• Join Type: Lookup

• Join Keys: Account Name = Account Name

• API Name Prefix for Right Columns: Account

8. Add a join to sfLma__Package__c with these specifications.

• Select Input Data to Join: sfLma__Package__c

• Columns to Select: All fields

• Join Type: Lookup

• Join Keys: Package = Record ID

• API Name Prefix for Right Columns: Package

9. Create a transform between the join and sfLma__Package__c with these specifications.

487

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

Custom Formula: substr(sfLma__Package_ID__c, 1, 15)•

• Output Type: Text

• Length: 255

• Default Value: none

• Show Results in: New Column (and Keep Original)

• Column Label: PackageID15

10. Create another join with these specifications.

• Select Input Data to Join: sfLma__Package_Verzion__c

• Columns to Select: All fields

• Join Type: Lookup

• Join Keys: Package Version = Record ID

• API Name Prefix for Right Columns: PackageVersion

11. Create an output with these specifications.

• Write To: Dataset

• Dataset Display Label: LMAJoin

• App Location: PartnerIntelligence

• Sharing Source: default

• Security Predicate: Apply row-level security to the target dataset by adding a predicate filter condition

12. Click Apply.

13. Click Save.

14. Save your recipe as LMAJoin.

15. Click Save and Run.

16. To monitor the status of your job, click Go to Data Monitor.

Example: When complete, your LMAJoin CRM Analytics recipe looks like this.

488

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

1. Monitor Your LMAJoin CRM Analytics Recipe

CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your LMAJoin recipe.

2. Run the LMAJoin CRM Analytics Recipe

To create a reusable dataset, schedule your LMAJoin CRM Analytics recipe to run on a regular basis. We recommend daily at midnight.

Monitor Your LMAJoin CRM Analytics Recipe

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your
LMAJoin recipe.

In your org in Analytics Studio in CRM Analytics:

1. Click Data Manager.

2. Click Monitor.

3. On the Jobs tab, locate your LMAJoin job.

4. When your job is Successful, click Data to view your completed LMAJoin dataset.

Run the LMAJoin CRM Analytics Recipe

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To create a reusable dataset, schedule your LMAJoin CRM Analytics recipe to run on a regular basis.
We recommend daily at midnight.

In your org in Analytics Studio in CRM Analytics:

1. Click Data Manager.

2. Click Dataflows & Recipes.

3. Click the Recipes tab.

4. Next to your LMAJoin CRM Analytics recipe, click the arrow.

5. Click Schedule, and set up your schedule.

Create Your App Analytics Dataset

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Create a RawPackageLogFile App Analytics dataset using your RawPackageLogFile.csv
file.

In your org in Analytics Studio in CRM Analytics:

1. Click Create and select Dataset.

2. Click CSV File and select your RawPackageLogFile.csv file.

3. Click Next.

4. Name your dataset RawPackageLogFile and select your PartnerIntelligence app.

5. Click Next.

6. For event_count, num_fields, num_soql_queries, operation_count, and rows_processed fields, change the field type from
Dimension to Measure and add these specifications.

• Default value: 0

• Scale: 0

• Precision: 18

489

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

7. Search for timestamp_derived and make sure that its field type is Date.

8. Click Upload File.

Create Your DailyAggregation CRM Analytics Recipe

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

You join your raw package log file data with your License Management App (LMA) data to create
the DailyAggregation CRM Analytics recipe. The recipe produces a dataset called DailyAggregation
that you use to create App Analytics recipes.

In your org in Analytics Studio in CRM Analytics:

1. Click Data Manager.

2. Click Dataflows & Recipes.

3. On the Recipes tab, click Create Recipe.

4. Click Add Input Data.

5. Select RawPackageLogFile.

6. Select all the columns.

7. Create an aggregate with these specifications.

Aggregate ByField

Sumevent_count

Uniquelogin_key

Sumnum_fields

Sumnum_soql_queries

Sumoperation_count

Sumrows_processed

Uniquesession_key

8. In the aggregate, in Group Rows, click +, and select timestamp_derived.

a. Select Year, Month, and Day.

b. Click Add.

9. In the aggregate, in Group Rows, create a group for each of these fields.

• api_type

• api_version

• app_name

• class_name

• cloned_from_organization

• custom_entity

• custom_entity_type

490

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

• entry_point

• event

• event_subscriber

• http_method

• http_status_code

• log_record_type

• managed_package_namespace

• method_name

• operation_type

• organization_country_code

10. Create a transform named Create DMY Field with this
formula.to_date(concat(timestamp_derived_DAY,"/",timestamp_derived_MONTH,"/",timestamp_derived_YEAR),"dd/MM/yyyy"))

11. Join your RawPackageLogFile dataset to your LMAData dataset using this information.

• Select Input Data to Join: LMAData

• Columns to Select: All fields

• Join Type: Lookup

• Join Keys: organization_id = Subscriber Org ID and package_id = PackageID15

• API Name Prefix for Right Columns: LMAData

12. Join your country-codes dataset to your LMAData dataset using this information.

• Select Input Data to Join: country-codes

• Columns to Select: All fields

• Join Type: Lookup

• Join Keys: user_country_code = ISO3166-1-Alpha-2

• API Name Prefix for Right Columns: UserCountry

13. Create a transform named Feature Name.

a. Create as many CRM Analytics buckets as you need for your features, such as Inventory, Orders, and a catch-all bucket called
Other.

b. Note: A CRM Analytics bucket represents a category that you use to group your data. For example, say your app contains
multiple features, such as an inventory tracking feature and an order processing feature. Create a CRM Analytics bucket
for each feature. Each bucket contains the custom objects, pages, Lightning components, and Apex classes that pertain
to that feature. You can use these buckets to create Feature Adoption App Analytics recipes

Add your custom entities to the appropriate bucket.

14. Select Output and use these settings.

• Write To: Dataset

• Dataset Display Label: DailyAggregation

• App Location: PartnerIntelligence

• Sharing Source: default

• Security Predicate: Apply row-level security to the target dataset by adding a predicate filter condition

• Name: Create Daily Aggregation Dataset

491

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

15. Click Apply.

16. Click Save.

17. Name your recipe DailyAggregation.

18. Click Save and Run.

Example: When complete, your DailyAggregation recipe looks like this.

1. Monitor the DailyAggregation CRM Analytics Recipe

CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your DailyAggregation recipe.

2. Run the DailyAggregation CRM Analytics Recipe

To create a reusable dataset, schedule your DailyAggregation CRM Analytics recipe to run on a regular basis. We recommend daily
at midnight.

Monitor the DailyAggregation CRM Analytics Recipe

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

CRM Analytics recipes can take a while to complete. Use these steps to monitor the status of your
DailyAggregation recipe.

In your org in Analytics Studio in CRM Analytics:

1. Click Data Manager.

2. Click Monitor.

3. On the Jobs tab, locate your DailyAggregation job.

4. When your job is Successful, click Data to view your completed DailyAggregation dataset.

Run the DailyAggregation CRM Analytics Recipe

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To create a reusable dataset, schedule your DailyAggregation CRM Analytics recipe to run on a
regular basis. We recommend daily at midnight.

In your org in Analytics Studio in CRM Analytics:

1. Click Data Manager.

2. Click Dataflows & Recipes.

3. Click the Recipes tab.

4. Next to your DailyAggregation CRM Analytics recipe, click the arrow.

492

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

5. Click Schedule, and set up your schedule.

App Analytics Recipes

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

To understand how your customers are using your managed packages and components, create
App Analytics recipes. Each App Analytics recipe produces a CRM Analytics lens and is a key
performance indicator (KPI). Use CRM Analytics dashboards to visualize your KPIs and gain deeper
insights.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the
AppExchange Program Policies. To request and retrieve package usage logs and subscriber
snapshots, activate App Analytics on your security-reviewed managed package by logging
a support case in the Salesforce Partner Community. For product, specify Partner Programs
& Benefits. For topic, specify ISV Technology Request. You can access package usage
summaries without activation.

For example, to analyze a wide range of daily and monthly package usage metrics, build Daily and Monthly Active User App Analytics
recipes.

Example:

Customer Success Recipes

Customer success is a relationship-focused method of ensuring that your customers achieve their desired outcomes while using
your managed packages.

Custom Object Usage Recipes

Understanding how your customers use your custom objects is critical to managing the lifecycle of your managed package and its
custom objects. Start by measuring custom object usage by create, read, update, and delete (CRUD) operations.

493

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://partners.salesforce.com/

Customer Success Recipes

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Customer success is a relationship-focused method of ensuring that your customers achieve their
desired outcomes while using your managed packages.

To measure customer success, you can create metrics that help you understand:

• Overall managed package usage

• Depth of managed package usage

• Growth

• Length of time as a customer

• Number of renewals

• Number of upsells

• Overall relationship

As you learn more about your customers and how they use your managed packages, your list of customer success metrics expands.

To analyze user behavior, we rely on user-related and CRUD (create, read, update, and delete) App Analytics data fields to calculate
metrics. All user behavior calculations rely on how a unique user is defined.

• An individual that has used your managed package and its components

• Measured for a specified time period, such as a day, month, or year

An active user can be defined as: A user who has logged some type of package usage, such as CRUD activity, page views, or Lightning
interactions, during a specified time period.

Segment the unique and active users by time period, such as day, month, or quarter.

Create a Daily Unique Users Recipe

This recipe produces a unique count of users by day.

Create a Weekly Unique Users Recipe

This recipe produces a unique count of users by week.

Create a Monthly Unique Users Recipe

This recipe produces a unique count of users by month.

Create a Daily Unique Users Recipe

This recipe produces a unique count of users by day.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

2. Under Bar Length, click Count of Rows.

3. Click Unique.

4. Select user_id_token.

5. Select Charts.

6. Click Column.

7. Under Bars, click + and search for timestamp_DMY.

8. Select Year-Month-Day.

9. Click Save.

494

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

10. Name your lens Daily Unique Users.

11. Select your PartnerIntelligence app.

12. Click Save.

Example:

SAQL:

q = load "DailyAggregation";
q = group q by ('timestamp_derived_DAY_formula_Year',
'timestamp_derived_DAY_formula_Month', 'timestamp_derived_DAY_formula_Day');
q = foreach q generate 'timestamp_derived_DAY_formula_Year' + "~~~" +
'timestamp_derived_DAY_formula_Month' + "~~~" + 'timestamp_derived_DAY_formula_Day'
as
'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day',
unique('user_id_token') as 'unique_user_id_token';
q = order q by
'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day'
asc;
q = limit q 2000;

Create a Weekly Unique Users Recipe

This recipe produces a unique count of users by week.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

2. Under Bar Length, click Count of Rows.

3. Click Unique.

495

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

4. Select user_id_token.

5. Select Charts.

6. Click Column.

7. Under Bars, click + and search for timestamp_DMY.

8. Select Year-Week.

9. Click Save.

10. Name your lens Weekly Unique Users.

11. Select your PartnerIntelligence app.

12. Click Save.

Example:

SAQL:

q = load "DailyAggregation";
q = group q by ('timestamp_derived_DAY_formula_Year',
'timestamp_derived_DAY_formula_Week');
q = foreach q generate 'timestamp_derived_DAY_formula_Year' + "~~~" +
'timestamp_derived_DAY_formula_Week' as
'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Week',
unique('user_id_token') as 'unique_user_id_token';
q = order q by 'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Week'
asc;
q = limit q 2000;

Create a Monthly Unique Users Recipe

This recipe produces a unique count of users by month.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

496

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

2. Under Bar Length, click Count of Rows.

3. Click Unique.

4. Select user_id_token.

5. Select Charts.

6. Click Column.

7. Under Bars, click + and search for timestamp_DMY.

8. Select Year-Month.

9. Click Save.

10. Name your lens Monthly Unique Users.

11. Select your PartnerIntelligence app.

12. Click Save.

Example:

SAQL:

q = load "DailyAggregation";
q = group q by ('timestamp_derived_DAY_formula_Year',
'timestamp_derived_DAY_formula_Month');
q = foreach q generate 'timestamp_derived_DAY_formula_Year' + "~~~" +
'timestamp_derived_DAY_formula_Month' as
'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month',
unique('user_id_token') as 'unique_user_id_token';
q = order q by 'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month'
asc;
q = limit q 2000;

497

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

Custom Object Usage Recipes

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Understanding how your customers use your custom objects is critical to managing the lifecycle
of your managed package and its custom objects. Start by measuring custom object usage by
create, read, update, and delete (CRUD) operations.

Create a Custom Object Creates Per Day Recipe

This recipe produces a unique count of how many times per day a custom object was created.

Create a Custom Object Updates Per Day Recipe

This recipe produces a unique count of how many times per day a custom object was created.

Create a Custom Object Reads Per Day Recipe

This recipe produces a unique count of how many times per day a custom object was read.

Create a Custom Object Creates Per Day Recipe

This recipe produces a unique count of how many times per day a custom object was created.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

2. Select Charts.

3. Click Column and leave Bar Length as Count of Rows.

4. Under Bars, click + and search for timestamp_DMY.

5. Select Year-Month-Day.

6. Click Filters.

7. Click +.

8. Select custom_entity_type equals CustomObject.

9. Click Apply.

10. Click +.

11. Select operation_type Equals INSERT.

12. Click Apply.

13. Click Data.

14. Under Trellis, click +.

15. Select custom_entity.

16. Click Save.

17. Name your lens Custom Object Creates Per Day.

18. Select your PartnerIntelligence app.

19. Click Save.

498

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

Example:

SAQL:

q = load "DailyAggregation";
q = filter q by 'custom_entity_type' == "CustomObject";
q = filter q by 'operation_type' == "INSERT";
q = group q by ('timestamp_derived_DAY_formula_Year',
'timestamp_derived_DAY_formula_Month', 'timestamp_derived_DAY_formula_Day',
'custom_entity');
q = foreach q generate 'timestamp_derived_DAY_formula_Year' + "~~~" +
'timestamp_derived_DAY_formula_Month' + "~~~" + 'timestamp_derived_DAY_formula_Day'
as
'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day',
'custom_entity' as 'custom_entity', count() as 'count';
q = order q by
('timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day'
asc, 'custom_entity' asc);
q = limit q 2000;

Create a Custom Object Updates Per Day Recipe

This recipe produces a unique count of how many times per day a custom object was created.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

2. Select Charts.

3. Click Column and leave Bar Length as Count of Rows.

4. Under Bars, click + and select timestamp_DMY.

5. Select Year-Month-Day.

6. Click the Filters tab.

7. Click +.

8. Select custom_entity_type Equals CustomObject

9. Click Apply.

10. Click +.

499

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

11. Select operation_type Equals UPDATE.

12. Click Apply.

13. Click the Data tab.

14. Under Trellis, click +.

15. Select custom_entity.

16. Click Save.

17. Name your lens Custom Object Creates Per Day.

18. Select your PartnerIntelligence app.

19. Click Save.

Example:

SAQL:

q = load "DailyAggregation";
q = filter q by 'custom_entity_type' == "CustomObject";
q = filter q by 'operation_type' == "UPDATE";
q = group q by ('timestamp_derived_DAY_formula_Year',
'timestamp_derived_DAY_formula_Month', 'timestamp_derived_DAY_formula_Day',
'custom_entity');
q = foreach q generate 'timestamp_derived_DAY_formula_Year' + "~~~" +
'timestamp_derived_DAY_formula_Month' + "~~~" + 'timestamp_derived_DAY_formula_Day'
as
'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day',
'custom_entity' as 'custom_entity', count() as 'count';
q = order q by
('timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day'

500

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

asc, 'custom_entity' asc);
q = limit q 2000;

Create a Custom Object Reads Per Day Recipe

This recipe produces a unique count of how many times per day a custom object was read.

In your org in Analytics Studio in CRM Analytics:

1. In All items on the Datasets tab, select your DailyAggregation dataset.

2. Select Charts.

3. Click Column and leave Bar Length as Count of Rows.

4. Under Bars, click + and search for timestamp_DMY.

5. Select Year-Month-Day.

6. Click Filters.

7. Click +.

8. Select custom_entity_type Equals CustomObject

9. Click Apply.

10. Click +.

11. Select operation_type Equals READ.

12. Click Apply.

13. Click Data.

14. Under Trellis, click +.

15. Select custom_entity.

16. Click Save.

17. Name your lens Custom Object Reads Per Day.

18. Select your PartnerIntelligence app.

19. Click Save.

Example:

501

AppExchange App Analytics Developer CookbookSecond-Generation Managed Packages

SAQL:

q = load "DailyAggregation";
q = filter q by 'custom_entity_type' == "CustomObject";
q = filter q by 'operation_type' == "READ";
q = group q by ('timestamp_derived_DAY_formula_Year',
'timestamp_derived_DAY_formula_Month', 'timestamp_derived_DAY_formula_Day',
'custom_entity');
q = foreach q generate 'timestamp_derived_DAY_formula_Year' + "~~~" +
'timestamp_derived_DAY_formula_Month' + "~~~" + 'timestamp_derived_DAY_formula_Day'
as
'timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day',
'custom_entity' as 'custom_entity', count() as 'count';
q = order q by
('timestamp_derived_DAY_formula_Year~~~timestamp_derived_DAY_formula_Month~~~timestamp_derived_DAY_formula_Day'
asc, 'custom_entity' asc);
q = limit q 2000;

Gaps Between First-Generation and Second-Generation Managed
Packaging

The following functionality is supported in first-generation managed packaging, and not yet supported in second-generation managed
packaging. We’re working to address these feature gaps.

• Package versions can’t be deprecated.

• Apex VersionProvider isn’t supported.

• A default language for labels in packages can’t be specified.

See the Metadata Coverage Report, for the latest information on supported metadata types.

502

Gaps Between First-Generation and Second-Generation
Managed Packaging

Second-Generation Managed Packages

https://help.salesforce.com/articleView?id=code_version_settings_apex.htm&language=en_US
https://developer.salesforce.com/docs/metadata-coverage

	Second-Generation Managed Packages
	What’s a Second-Generation Managed Package?
	Why Switch to Second-Generation Managed Packaging?
	Comparison of First- and Second-Generation Managed Packages

	Set Up Your Development Environment
	Enable Dev Hub and Second-Generation Managed Packaging
	Limited Access License for Package Developers
	Add a Limited Access User to Your Dev Hub Org
	Assign Second-Generation Managed Packaging User Permissions

	Before You Create Second-Generation Managed Packages
	Know Your Orgs for Second-Generation Managed Packages
	Link a Namespace to a Dev Hub Org
	Namespaces for Second-Generation Managed Packages
	Create and Register Your Namespace for Second-Generation Managed Packages
	Key Concepts in Second-Generation Managed Packaging
	How Manageability Rules and Ancestry Impact Upgrades for Second-Generation Managed Packages
	Which Package Types Can Your Package Depend On?

	Scratch Orgs and Package Development
	How Scratch Orgs Fit in the Package Development Workflow
	Scratch Org Definition Files vs Org Shape in Package Development
	When to Use Scratch Org Snapshots in Package Development
	Create a Package Version Based on a Scratch Org Snapshot
	Get Access to Scratch Orgs That Have Agentforce
	Scratch Org Allocations for Salesforce Partners
	Manage Scratch Orgs from the Dev Hub Org
	Supported Scratch Org Editions for Partners

	Workflow for Second-Generation Managed Packages
	Components Available in Second-Generation Managed Packages
	Account Plan Objective Measure Calculation Definition
	Account Relationship Share Rule
	Action Link Group Template
	Action Plan Template
	Actionable List Definition
	Actionable List Key Performance Indicator Definition
	Activation Platform
	AffinityScoreDefinition
	Agent Action
	Agent Topic
	AI Application
	AI Application Config
	AIUsecaseDefinition
	Analytics
	Analytics Visualization
	Analytics Workspace
	Apex Class
	Apex Sharing Reason
	Apex Trigger
	App Framework Template Bundle
	Application Subtype Definition
	AssessmentConfiguration
	AssessmentQuestion
	AssessmentQuestionSet
	Aura Component
	Batch Calc Job Definition
	Batch Process Job Definition
	Benefit Action
	Bot Template
	Branding Set
	Briefcase Definition
	Building Energy Intensity Record Type Configuration
	Business Process
	Business Process Group
	Business Process Type Definition
	Care Benefit Verify Settings
	Care Limit Type
	Care Request Configuration
	Care System Field Mapping
	Channel Layout
	Chatter Extension
	Claim Financial Settings
	CommunicationChannelType
	Community Template Definition
	Community Theme Definition
	Compact Layout
	Conditional Formatting Ruleset
	Connected App
	Context Definition
	Contract Type
	Conversation Channel Definition
	Conversation Vendor Info
	CORS Allowlist
	CSP Trusted Site
	Custom Application
	Custom Button or Link
	Custom Console Components
	Custom Field on Standard or Custom Object
	Custom Field on Custom Metadata Type
	Custom Field Display
	Custom Help Menu Section
	Custom Index
	Custom Label
	Custom Metadata Type Records
	Custom Metadata Type
	Custom Notification Type
	Custom Object
	Custom Object Translation
	Custom Permission
	Custom Tab
	Dashboard
	DataCalcInsightTemplate
	Data Connector Ingest API
	Data Connector S3
	Data Kit Object Dependency
	Data Kit Object Template
	DataObjectBuildOrgTemplate
	Data Package Kit Definition
	Data Package Kit Object
	Data Source
	Data Source Bundle Definition
	Data Source Object
	Data Src Data Model Field Map
	Data Stream Definition
	Data Stream Template
	DataWeaveResource
	Decision Matrix Definition
	Decision Matrix Definition Version
	Decision Table
	Decision Table Dataset Link
	Digital Experience
	Digital Experience Bundle
	Decision Table
	Disclosure Definition
	Disclosure Definition Version
	Disclosure Type
	Discovery AI Model
	Discovery Goal
	Discovery Story
	Document
	Document Generation Setting
	Eclair GeoData
	Email Template (Classic)
	Email Template (Lightning)
	Embedded Service Config
	Embedded Service Menu Settings
	Enablement Measure Definition
	Enablement Program Definition
	Enablement Program Task Subcategory
	Entitlement Template
	ESignature Config
	ESignature Envelope Config
	Event Relay
	Explainability Action Definition
	Explainability Action Version
	Explainability Message Template
	Expression Set Definition
	Expression Set Definition Version
	Expression Set Object Alias
	Expression Set Message Token
	External Auth Identity Provider
	External Client App Canvas Settings
	External Client App Header
	External Client App Notification Settings
	External Client App OAuth Settings
	External Client App Push Settings
	External Credential
	External Data Connector
	External Data Source
	External Data Transport Field Template
	External Data Transport Field
	External Data Transport Object Template
	External Data Transport Object
	External Document Storage Configuration
	External Services
	Feature Parameter Boolean
	Feature Parameter Date
	Feature Parameter Integer
	FieldMappingConfig
	Field Set
	Field Source Target Relationship
	Flow
	Flow Category
	Flow Definition
	Flow Test
	Folder
	Fuel Type
	Fuel Type Sustainability Unit of Measure
	Fundraising Config
	Gateway Provider Payment Method Type
	Gen Ai Planner Bundle
	Generative AI Prompt Template
	Global Picklist
	Home Page Component
	Home Page Layout
	Identity Verification Proc Def
	Inbound Network Connection
	IndustriesEinsteinFeatureSettings
	IntegrationProviderDef
	Invocable Action Extension
	LearningAchievementConfig
	Learning Item Type
	Letterhead
	Life Science Config Category
	Life Science Config Record
	Lightning Bolt
	Lightning Message Channel
	Lightning Page
	Lightning Type
	Lightning Web Component
	List View
	Live Chat Sensitive Data Rule
	Loyalty Program Setup
	Managed Content Type
	Marketing App Extension
	Marketing App Extension Activity
	Market Segment Definition
	MktCalculatedInsightsObjectDef
	MktDataConnection
	MktDataTranObject
	Named Credential
	Object Source Target Map
	OcrSampleDocument
	OcrTemplate
	Outbound Network Connection
	Page Layout
	Path Assistant
	Payment Gateway Provider
	Permission Set
	Permission Set Groups
	Platform Cache
	Platform Event Channel
	Platform Event Channel Member
	Platform Event Subscriber Configuration
	Pricing Action Parameters
	Pricing Recipe
	Procedure Output Resolution
	Process
	Process Flow Migration
	Product Attribute Set
	Product Specification Type
	Product Specification Record Type
	Prompts (In-App Guidance)
	Quick Action
	Recommendation Strategy
	Record Action Deployment
	Record Alert Data Source Expression Set Definition
	Record Type
	RedirectWhitelistUrl
	Referenced Dashboard
	Registered External Service
	RelationshipGraphDefinition
	Remote Site Setting
	Report
	Report Type
	ServiceProcess
	Slack App (Beta)
	Service Catalog Category
	Service Catalog Filter Criteria
	Service Catalog Item Definition
	Service Catalog Fulfillment Flow
	Stationary Asset Environmental Source Record Type Configuration
	Static Resource
	Streaming App Data Connector
	Sustainability UOM
	Sustainability UOM Conversion
	Timeline Object Definition
	Timesheet Template
	Transaction Processing Type
	Translation
	UI Object Relation Config
	User Access Policy
	Validation Rule
	Vehicle Asset Emissions Source Record Type Configuration
	View Definition (Beta)
	Virtual Visit Config
	Visualforce Component
	Visualforce Page
	Wave Analytic Asset Collection
	Wave Application
	Wave Component
	Wave Dataflow
	Wave Dashboard
	Wave Dataset
	Wave Lens
	Wave Recipe
	Wave Template Bundle
	Wave Xmd
	Web Store Template
	Workflow Alert
	Workflow Field Update
	Workflow Knowledge Publish
	Workflow Outbound Message
	Workflow Rule
	Workflow Task

	Behavior of Specific Metadata in Second-Generation Managed Packages
	Package Agentforce Metadata Components
	Develop and Package Agent Templates Using Scratch Orgs
	Package Data Cloud Metadata Components
	Protected Components in Managed Packages
	Set Up a Platform Cache Partition with Provider Free Capacity
	Metadata Access in Apex Code
	Permission Sets and Profile Settings in Packages
	Permission Set Groups
	Custom Profile Settings
	How We Handle Profile Settings in Second-Generation Managed Packages

	Protecting Your Intellectual Property
	Call Salesforce URLs Within a Package
	Namespace-Based Visibility for Apex Classes in Second-Generation Managed Packages
	Work with Services Outside of Salesforce
	Package Connected Apps in Second-Generation Managed Packaging
	Test and Respond to the New Order Save Behavior

	Develop Second-Generation Managed Packages
	Create a Second-Generation Managed Package
	View Package Details for a Second-Generation Managed Package
	Create Versions of a Second-Generation Managed Package
	Guidance for Package Version Numbering
	View Details about a Second-Generation Managed Package Version
	Project Configuration File for a Second-Generation Managed Package
	Get Ready to Promote and Release a Second-Generation Managed Package Version
	Specify a Package Ancestor in the Project File for a Second-Generation Managed Package

	Install and Uninstall Second-Generation Managed Packages
	Use the CLI to Install a Second-Generation Managed Package
	Use a URL to Install a Second-Generation Managed Package
	Install Notifications for Unauthorized Managed Packages
	Upgrade a Second-Generation Managed Package Version
	Resolve Apex Test Failures
	Run Apex on Package Install/Upgrade
	How Does a Post Install Script Work?
	Example of a Post Install Script
	Specifying a Post Install Script

	Customize Second-Generation Managed Package Installs and Uninstalls Using Scripts
	Sample Script for Installing Second-Generation Managed Packages with Dependencies
	Uninstall a Second-Generation Managed Package

	Prepare to Distribute Your Second-Generation Managed Package
	Code Coverage for Second-Generation Managed Packages
	Package Installation Key for Second-Generation Managed Packages
	Release a Second-Generation Managed Package
	Share Release Notes and Post-Install Instructions for Second-Generation Managed Packages
	Publishing Your App on AppExchange
	Recommend a Specific Package Version to Your Subscribers

	Push a Package Upgrade for Second-Generation Managed Packages
	Schedule a Push Upgrade Using CLI
	Schedule a Push Upgrade Using SOAP API for First- and Second-Generation Managed Packages
	Assign Access to New and Changed Features in First- and Second-Generation Managed Packages
	Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages
	Push Upgrade Best Practices

	Advanced Features for Second-Generation Managed Packages
	Package Ancestors for Second-Generation Managed Packages
	Understanding Package Upgrades with Ancestry
	View Package Ancestry

	Patch Versions for Second-Generation Managed Packages
	Create Dependencies Between Second-Generation Managed Packages
	Considerations for Promoting Packages with Dependencies
	Advanced Project Configuration Parameters for Second-Generation Managed Packages
	Second-Generation Managed Packaging Keywords
	Target a Specific Release for Your Second-Generation Managed Packages During Salesforce Release Transitions
	Use Branches in Second-Generation Managed Packaging
	Specify Unpackaged Metadata or Apex Access for Package Version Creation Tests for Second-Generation Managed Packages
	Package IDs and Aliases for Second-Generation Managed Packages
	Avoid Namespace Collisions in Second-Generation Managed Packages
	Remove Metadata Components from Second-Generation Managed Packages
	What to Consider Before Removing Metadata Components

	Delete a Second-Generation Managed Package or Package Version
	Frequently Used Packaging Operations for Second-Generation Managed Packages
	Transfer a Second-Generation Managed Package to a Different Dev Hub
	Take Ownership of a Second-Generation Managed Package Transferred from a Different Dev Hub

	Contact Salesforce Partner Support to Enable Specific Packaging Features

	Best Practices for Second-Generation Managed Packages
	Manage Licenses for Managed Packages
	Get Started with the License Management App
	Install the License Management App
	Associate a Package with the License Management App
	Configure Permissions for the License Management App
	Assign Permissions to the Subscriber Support Console

	Lead and License Records in the License Management App
	Modify a License Record
	Refresh Licenses for a Managed Package
	Extending the License Management App
	Package and Package Version Object Fields
	License Object Fields
	Adding Custom Automation to License Management App Objects

	Move the License Management App to Another Salesforce Org
	Troubleshoot the License Management App
	Leads and Licenses Aren’t Being Created in the License Management App
	Proxy User Has Deactivated Message in the LMA

	Best Practices for the License Management App
	Troubleshoot Subscriber Issues
	Request Login Access from Subscribers
	Log In to Subscriber Orgs
	Debug Subscriber Orgs

	Manage Features in Second-Generation Managed Packages
	Feature Parameter Metadata Types and Custom Objects
	Set Up Feature Parameters
	Install and Set Up the Feature Management App in Your License Management Org
	Create Feature Parameters for Your Second-Generation Managed Package

	Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features
	Assign Override Values in Your LMO
	Check LMO-to-Subscriber Values in Your Code

	Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters
	Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs
	Best Practices for Feature Management
	Considerations for Feature Management

	Get Started with AppExchange App Analytics
	App Analytics Use Cases
	Enable App Analytics on Your Second-Generation Managed Package
	Download Package Usage Logs, Package Usage Summaries, and Subscriber Snapshots
	Considerations for Custom Interactions
	AppExchange App Analytics Best Practices
	How Does AppExchange App Analytics Data Flow?
	How Should I Plan My App Analytics Query Strategy?
	Recommendations
	Small-Sized Partners
	Medium-Sized Partners
	Large-Sized Partners

	Where Do I Go for More Information About AppExchange App Analytics Queries?

	Package Usage Summaries
	Package Usage Summary Schema

	Package Usage Logs
	How to Read App Analytics Package Usage Log Data
	Determine What Packaged Component Was Accessed
	Identify Who Interacted with Your Packaged Component
	Identify How a User Interacted with Your Packaged Component
	Custom Object and External Object Interactions
	Lightning Interactions
	Apex Interactions
	Visualforce Interactions
	CRM Analytics Asset Interactions
	Custom Interactions

	Package Usage Logs Schema

	Subscriber Snapshots
	Test Custom Integrations
	AppExchange App Analytics Developer Cookbook
	What Are Recipes?
	Before You Begin
	Get Help with Prerequisites

	CRM Analytics Recipes
	Create the Country-Codes Dataset
	Connect to Your License Management App Data
	Create the LMAJoin CRM Analytics Recipe
	Monitor Your LMAJoin CRM Analytics Recipe
	Run the LMAJoin CRM Analytics Recipe

	Create Your App Analytics Dataset
	Create Your DailyAggregation CRM Analytics Recipe
	Monitor the DailyAggregation CRM Analytics Recipe
	Run the DailyAggregation CRM Analytics Recipe

	App Analytics Recipes
	Customer Success Recipes
	Create a Daily Unique Users Recipe
	Create a Weekly Unique Users Recipe
	Create a Monthly Unique Users Recipe

	Custom Object Usage Recipes
	Create a Custom Object Creates Per Day Recipe
	Create a Custom Object Updates Per Day Recipe
	Create a Custom Object Reads Per Day Recipe

	Gaps Between First-Generation and Second-Generation Managed Packaging

