
First-Generation Managed
Packaging Developer Guide

Version 65.0, Winter ’26

Last updated: January 9, 2026

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: First-Generation Managed Packages . 1

Why Switch to Second-Generation Managed Packaging? . 3
Move to 2GP: Migrate Your Managed Packages with Ease . 4

About Package Conversion and Package Migration . 5
Three Phases of Package Migration Development . 6
Plan Your Package Migration . 8
Before You Begin Package Migrations . 10
Convert Your Managed 1GP Package to 2GP . 11
Migrate Your Subscribers from 1GP to 2GP . 14
Move to 2GP Package Development . 15
Considerations for Package Migrations . 16
Troubleshoot Package Conversion Failures . 16

Register a Namespace for a First-Generation Managed Package . 18
Create a First-Generation Managed Package Using a UI . 19

What Are Beta Versions of Managed Packages? . 20
Create a Beta Package for First-Generation Managed Packages 20
Create and Upload a First-Generation Managed Package . 22
Publish Extensions to Managed Packages . 25
View Package Details in First-Generation Managed Packages 26
Notifications for Package Errors . 29

Create a First-Generation Managed Package using Salesforce DX . 30
Enable Dev Hub and Second-Generation Managed Packaging 32
Limited Access License for Package Developers . 32
Add a Limited Access User to Your Dev Hub Org . 33
Link a Namespace to a Dev Hub Org . 33
Scratch Orgs and Package Development . 34
Build and Release Your App with Managed Packages . 38
Packaging Checklist . 38
Deploy the Package Metadata to the Packaging Org . 39
Create a Beta Version of Your App . 39
Install the Package in a Target Org . 40
Create a Managed Package Version of Your App . 41
View Information About a Package . 41

Components Available in First-Generation Managed Packages . 43
Account Plan Objective Measure Calculation Definition . 59
Account Relationship Share Rule . 60
Action Link Group Template . 61
Action Plan Template . 61
Actionable List Definition . 62

Actionable List Key Performance Indicator Definition . 63
Activation Platform . 64
AffinityScoreDefinition . 66
Agent Action . 67
Agent Topic . 69
AI Application . 70
AI Application Config . 71
AIUsecaseDefinition . 72
Analytics . 73
Analytics Dashboard . 74
Analytics Visualization . 75
Analytics Workspace . 75
Apex Class . 76
Apex Sharing Reason . 78
Apex Trigger . 79
App Framework Template Bundle . 80
Application Subtype Definition . 81
AssessmentConfiguration . 82
AssessmentQuestion . 83
AssessmentQuestionSet . 83
Aura Component . 84
Batch Calc Job Definition . 85
Batch Process Job Definition . 86
Benefit Action . 87
Bot Template . 88
Branding Set . 90
Briefcase Definition . 91
Building Energy Intensity Record Type Configuration . 92
Business Process . 93
Business Process Group . 94
Business Process Type Definition . 95
Care Benefit Verify Settings . 96
Care Limit Type . 97
Care Request Configuration . 98
Care System Field Mapping . 99
Channel Layout . 100
Chatter Extension . 101
Claim Financial Settings . 102
CommunicationChannelType . 103
Community Template Definition . 104
Community Theme Definition . 105
Compact Layout . 106
Conditional Formatting Ruleset . 107
Connected App . 107

Contents

Context Definition . 109
Contract Type . 110
Conversation Channel Definition . 111
Conversation Vendor Info . 112
CORS Allowlist . 113
CSP Trusted Site . 114
Custom Application . 116
Custom Button or Link . 117
Custom Console Components . 118
Custom Field on Standard or Custom Object . 119
Custom Field on Custom Metadata Type . 121
Custom Field Display . 121
Custom Help Menu Section . 122
Custom Index . 123
Custom Label . 123
Custom Metadata Type Records . 124
Custom Metadata Type . 125
Custom Notification Type . 126
Custom Object . 127
Custom Object Translation . 129
Custom Permission . 130
Custom Tab . 131
Dashboard . 132
DataCalcInsightTemplate . 133
Data Connector Ingest API . 134
Data Connector S3 . 135
Data Kit Object Dependency . 136
Data Kit Object Template . 138
DataObjectBuildOrgTemplate . 139
Data Package Kit Definition . 140
Data Package Kit Object . 141
Data Source . 142
Data Source Bundle Definition . 143
Data Source Object . 144
Data Src Data Model Field Map . 145
Data Stream Definition . 147
Data Stream Template . 148
DataWeaveResource . 149
Decision Matrix Definition . 150
Decision Matrix Definition Version . 152
Decision Table . 153
Decision Table Dataset Link . 154
Digital Experience . 155
Digital Experience Bundle . 156

Contents

Decision Table . 157
Disclosure Definition . 158
Disclosure Definition Version . 159
Disclosure Type . 160
Discovery AI Model . 161
Discovery Goal . 162
Discovery Story . 163
Document . 164
Document Generation Setting . 165
Eclair GeoData . 166
Email Template (Classic) . 166
Email Template (Lightning) . 167
Embedded Service Config . 168
Embedded Service Menu Settings . 169
Enablement Measure Definition . 170
Enablement Program Definition . 171
Enablement Program Task Subcategory . 173
Entitlement Template . 174
ESignature Config . 175
ESignature Envelope Config . 176
Event Relay . 177
Explainability Action Definition . 178
Explainability Action Version . 179
Explainability Message Template . 179
Expression Set Definition . 180
Expression Set Definition Version . 182
Expression Set Object Alias . 183
Expression Set Message Token . 184
External Auth Identity Provider . 185
External Client App Header . 186
External Client App Notification Settings . 187
External Client App OAuth Settings . 188
External Client App Push Settings . 190
External Credential . 191
External Data Connector . 193
External Data Source . 194
External Data Transport Field Template . 195
External Data Transport Field . 196
External Data Transport Object Template . 197
External Data Transport Object . 198
External Document Storage Configuration . 200
External Services . 201
Feature Parameter Boolean . 202
Feature Parameter Date . 203

Contents

Feature Parameter Integer . 204
Field Set . 206
Field Source Target Relationship . 207
Flow . 208
Flow Category . 211
Flow Definition . 212
Flow Test . 213
Folder . 214
Fuel Type . 215
Fuel Type Sustainability Unit of Measure . 216
Fundraising Config . 217
Gateway Provider Payment Method Type . 218
Gen Ai Planner Bundle . 219
Generative AI Prompt Template . 220
Global Picklist . 221
Home Page Component . 222
Home Page Layout . 223
Identity Verification Proc Def . 224
Inbound Network Connection . 225
IntegrationProviderDef . 226
LearningAchievementConfig . 227
Learning Item Type . 228
Letterhead . 229
Life Science Config Category . 230
Life Science Config Record . 231
Lightning Bolt . 233
Lightning Message Channel . 233
Lightning Page . 234
Lightning Type . 235
Lightning Web Component . 236
List View . 238
Live Chat Sensitive Data Rule . 239
Loyalty Program Setup . 240
Managed Content Type . 241
Marketing App Extension . 242
Marketing App Extension Activity . 243
Market Segment Definition . 245
MktCalculatedInsightsObjectDef . 246
MktDataConnection . 247
MktDataTranObject . 248
Named Credential . 249
Object Source Target Map . 251
OcrSampleDocument . 252
OcrTemplate . 254

Contents

Outbound Network Connection . 255
Page Layout . 256
Path Assistant . 257
Payment Gateway Provider . 258
Permission Set . 259
Permission Set Groups . 260
Platform Cache . 261
Platform Event Channel . 262
Platform Event Channel Member . 262
Platform Event Subscriber Configuration . 263
Pricing Action Parameters . 264
Pricing Recipe . 265
Procedure Output Resolution . 266
Process . 267
Process Flow Migration . 267
Product Attribute Set . 268
Product Specification Type . 269
Product Specification Record Type . 270
Prompts (In-App Guidance) . 271
Quick Action . 272
Recommendation Strategy . 273
Record Action Deployment . 274
Record Alert Data Source Expression Set Definition . 275
Record Type . 276
RedirectWhitelistUrl . 277
Referenced Dashboard . 278
Registered External Service . 279
RelationshipGraphDefinition . 280
Remote Site Setting . 281
Report . 282
Report Type . 283
ServiceProcess . 284
Slack App (Beta) . 285
Service Catalog Category . 286
Service Catalog Filter Criteria . 287
Service Catalog Item Definition . 288
Service Catalog Fulfillment Flow . 289
Stationary Asset Environmental Source Record Type Configuration 290
Static Resource . 291
Streaming App Data Connector . 292
Sustainability UOM . 293
Sustainability UOM Conversion . 294
Timeline Object Definition . 295
Timesheet Template . 297

Contents

Translation . 297
UI Object Relation Config . 298
User Access Policy . 299
Validation Rule . 301
Vehicle Asset Emissions Source Record Type Configuration . 302
View Definition (Beta) . 303
Virtual Visit Config . 304
Visualforce Component . 305
Visualforce Page . 306
Wave Analytic Asset Collection . 307
Wave Application . 308
Wave Component . 309
Wave Dataflow . 310
Wave Dashboard . 311
Wave Dataset . 312
Wave Lens . 313
Wave Recipe . 314
Wave Template Bundle . 315
Wave Xmd . 316
Web Store Template . 318
Workflow Alert . 318
Workflow Field Update . 319
Workflow Knowledge Publish . 320
Workflow Outbound Message . 321
Workflow Rule . 322
Workflow Task . 324

Behavior of Specific Metadata in First-Generation Managed Packages 325
Get Access to Agentforce in Your 1GP Packaging Org . 326
Components Automatically Added to First-Generation Managed Packages 327
Protected Components in Managed Packages . 330
Set Up a Platform Cache Partition with Provider Free Capacity 331
Package Dependencies in First-Generation Managed Packages 332
Metadata Access in Apex Code . 333
Permission Sets and Profile Settings in Packages . 333
Permission Set Groups . 336
Custom Profile Settings . 336
Protecting Your Intellectual Property . 337
Call Salesforce URLs Within a Package . 337
Develop App Documentation . 339
API and Dynamic Apex Access in Packages . 339
Connected Apps . 346

Package and Test Your First-Generation Managed Package . 346
Install a Managed Package . 347
Install First-Generation Managed Packages Using Metadata API 350

Contents

Component Availability After Deployment . 351
Install Notifications for Unauthorized Managed Packages . 351
Resolve Apex Test Failures . 352
Run Apex on Package Install/Upgrade . 352
Run Apex on Package Uninstall . 356
Uninstall a First-Generation Managed Package . 357

Update Your First-Generation Managed Package . 358
Package Versions in First-Generation Managed Packages . 359
Create and Upload Patches in First-Generation Managed Packages 360
Work with Patch Versions . 361
Versioning Apex Code . 363
Apex Deprecation Effects for Subscribers . 363

Publish Upgrades to First-Generation Managed Packages . 364
Plan the Release of First-Generation Managed Packages . 365
Remove Components from First-Generation Managed Packages 366
Delete Components from First-Generation Managed Packages 368
Modifying Custom Fields after a Package Is Released . 369
Manage Versions of First-Generation Managed Packages . 369
View Unused Components in a Managed Package . 370
Push Package Upgrades to Subscribers . 371

Manage Licenses for Managed Packages . 377
Get Started with the License Management App . 378
Lead and License Records in the License Management App . 381
Modify a License Record . 382
Refresh Licenses for a Managed Package . 383
Extending the License Management App . 383
Move the License Management App to Another Salesforce Org 386
Troubleshoot the License Management App . 386
Best Practices for the License Management App . 388
Troubleshoot Subscriber Issues . 388

Manage Features in First-Generation Managed Packages . 390
Feature Parameter Metadata Types and Custom Objects . 391
Set Up Feature Parameters . 392
Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features 393
Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters . . 394
Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs 395
Best Practices for Feature Management . 395
Considerations for Feature Management . 396

AppExchange App Analytics for First-Generation Managed Packages 396
Enable App Analytics on Your First-Generation Managed Package 397

Developing and Distributing Unmanaged Packages . 397
Create and Upload an Unmanaged Package . 397
Components Available in Unmanaged Packages . 398
Convert Unmanaged Packages to Managed . 401

Contents

CHAPTER 1 First-Generation Managed Packages

Managed packages are used by Salesforce partners to distribute and sell applications to customers. Using
AppExchange and the License Management Application (LMA), developers can sell and manage
user-based licenses to their app. Managed packages are upgradeable.

In this chapter ...

• Why Switch to
Second-Generation

Note: Building a new app? Have you considered using second-generation managed packages?
Flexible versioning and the ability to share a namespace across packages are just two reasons why

Managed
Packaging?

developers love creating second-generation managed packages. We think you’d love it, too. To• Move to 2GP:
Migrate Your learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-

and Second-Generation Managed Packages.Managed Packages
with Ease

• Register a
Namespace for a
First-Generation
Managed Package

• Create a
First-Generation
Managed Package
Using a UI

• Create a
First-Generation
Managed Package
using Salesforce DX

• Components
Available in
First-Generation
Managed Packages

• Behavior of Specific
Metadata in
First-Generation
Managed Packages

• Package and Test
Your First-Generation
Managed Package

• Update Your
First-Generation
Managed Package

• Publish Upgrades to
First-Generation
Managed Packages

• Manage Licenses for
Managed Packages

• Manage Features in
First-Generation
Managed Packages

1

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

• AppExchange App
Analytics for
First-Generation
Managed Packages

• Developing and
Distributing
Unmanaged
Packages

2

First-Generation Managed Packages

Why Switch to Second-Generation Managed Packaging?

You’ve been using first-generation managed packages to develop your apps, so you’re probably pretty familiar with what works well,
and what’s a bit more painful than you’d like. And no doubt, you’re aware that second-generation managed packages is our newer
technology, but maybe you aren’t so sure why switching to second-generation managed packaging (managed 2GP) will improve your
package development experience. So let’s talk about that.

Source-Driven Development
The source-driven development model used in managed 2GP is a big shift from the org-based development used in managed 1GP. Say
goodbye to packaging orgs as your source of truth. Instead, your source of truth with managed 2GP is the package metadata in your
version control system. And as you develop your managed 2GP package, you create and update your package metadata in a version
control system, not in an org.

Minimal Interaction with Salesforce Orgs
As you probably know well, with managed 1GP development, every package and patch version requires a unique Salesforce org, so it’s
not uncommon for you to own 100s of Salesforce orgs in which your package metadata is deployed. Managing these orgs and their
credentials can become a nightmare.

Managed 2GP takes away the hassle of managing orgs, and instead you use a single org, the Dev Hub org, to manage all your packages.
And even when you do need to connect to your Dev Hub org you’ll use Salesforce CLI (Command Line Interface) or a script to log in.

By eliminating the need to manually log in and keep track of hundreds of packaging and patch orgs (and their login credentials), managed
2GP simplifies package development and promotes modern, programmatic Application Lifecycle Management (ALM).

API- and CLI-first Model
Unlike managed 1GP, which has only partial API coverage, you can perform every managed 2GP packaging operation using an API or
CLI command. You can completely automate packaging operations and be more productive. Repeatable, scriptable, and track-able ALM
is truly possible with managed 2GP.

Flexible Versioning
Managed 1GP packaging follows a linear versioning model that requires you to build upon the previous package version. This approach
is very restrictive, and for metadata that can’t be removed from a package, you’re stuck with that metadata in your managed 1GP.

Enter managed 2GP and flexible versioning. If you create a managed-released package version that you haven’t yet distributed to a
customer, you can abandon that package version and select a previous package version as the ancestor you want to build upon. Flexible
versioning also allows you to use branches and do parallel package development. You can iterate fast, learn from, and move on from
any mistakes.

One Namespace Shared Across Multiple Packages
Managed 1GP packages require each package to have a unique namespace. This restriction can lead to a proliferation of global Apex
because sharing code among packages is only possible by declaring Apex classes and methods as global.

Managed 2GP changes the game by allowing multiple packages to share the same namespace. The @namespaceAccessible
annotation then lets you share public Apex classes and methods across all packages in the same namespace. By using public Apex, you
don’t increase your global Apex footprint by exposing a global API.

3

Why Switch to Second-Generation Managed Packaging?First-Generation Managed Packages

Declarative Dependencies
In managed 2GP packaging, you specify dependencies among packages declaratively in a .json file. Which as you know, is a more
developer-friendly approach than how managed 1GP dependencies are declared.

Simplified Patch Versioning
Creating a patch version of a managed 2GP is as easy as creating a new major or minor package version. You use a Salesforce CLI command
and specify a non-zero number for the patch version number. And that’s it!

Because your version control system is the source of truth for managed 2GP, creating patch versions is straightforward. We promise you
won’t miss the laborious and error-prone patch org process of managed 1GP.

Avoid Having to Migrate Customers in the Future
As you may be aware, we’re developing capabilities to migrate your managed 1GP packages to managed 2GP. However, when we
launch that capability, there’s work that you have to do to migrate your managed 1GP packages and customers from 1GP to 2GP. By
adopting managed 2GP today for your new packages, you avoid the hassle of migration in the future.

SEE ALSO:

Second-Generation Managed Packaging Developer Guide

Move to 2GP: Migrate Your Managed Packages with Ease

Are you still using first-generation managed packaging (1GP) for your package development work? If so, you're not alone. Many ISVs
like you are looking to move to second-generation managed packaging (2GP) and take advantage of its many benefits.

If you don't have customers who are still using 1GP packages you created, you can skip this chapter and move straight to learning how
to build new 2GP packages.

Package migration involves two main steps: converting an existing 1GP package into a 2GP package, and then migrating the 2GP package
into a subscriber org. Package migration won't change your package's metadata, or disrrupt any subscriber data associated with your
package.

About Package Conversion and Package Migration

There are two main stages involved in package migrations. It starts with package conversion and ends with package migration.

Three Phases of Package Migration Development

As you move from 1GP development to 2GP development, you’ll move through three phases.

Plan Your Package Migration

Are you ready to move your subscribers to 2GP? The speed and ease of your package migration depend on a few key factors.

Before You Begin Package Migrations

If you’ve never created or worked with managed 2GP packages, scratch orgs, or Salesforce CLI, take some time to learn more about
Salesforce DX and second-generation managed packages.

Convert Your Managed 1GP Package to 2GP

Before you convert your managed 1GP package version, ensure your development environment is set up.

4

Move to 2GP: Migrate Your Managed Packages with EaseFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://trailhead.salesforce.com/content/learn/modules/second-generation-managed-packages

Migrate Your Subscribers from 1GP to 2GP

Are you ready to migrate your converted package? To migrate a package you install the converted 2GP package into a subscriber
org that already has the managed 1GP package version installed. Package migration requires that the major and minor version of
the subscriber's installed package, match the major and minor version of 2GP you’re installing.

Move to 2GP Package Development

To fully transition to 2GP package development, you retrieve the source files for your package’s latest converted version. Then, you
confirm in Setup for your packaging org that you’re ready to develop and distribute your package solely using 2GP packaging.

Considerations for Package Migrations

Review these limits and considerations for converting and migrating packages.

Troubleshoot Package Conversion Failures

Here are some possible error scenarios that can occur when you convert a package.

About Package Conversion and Package Migration
There are two main stages involved in package migrations. It starts with package conversion and ends with package migration.

Package conversion takes a managed-released 1GP package version, and creates a 2GP package version with identical metadata. As you
explore the package conversion process, you can convert a package to 2GP and still continue your 1GP package development.

After a package conversion completes:

• The original managed 1GP package is unaltered.

• You have both your original managed 1GP package version and a new managed 2GP package version.

Package migration is the process of upgrading your existing 1GP subscribers to the new 2GP package. During package migration there’s
no change in package metadata or customer data associated with the package.

Let's look at an example scenario.

1. The package conversion process takes the latest released major.minor of Acme's 1GP managed package (4.0) and converts it into a
2GP managed package version with the same major.minor version number (4.0).

After package conversion, Acme has a new 2GP managed package version 4.0, and the metadata in both their 1GP and 2GP package
versions are identical.

2. Package migration occurs when a 1GP managed package installed in a subscriber org is migrated to the corresponding converted
2GP package.

To migrate a subscriber to the managed 2GP package version, the major.minor version of the managed 2GP and the installed managed
1GP must match. In the example in the diagram, Subscriber A has version 4.0 of Acme's 1GP package installed, and after migration

5

About Package Conversion and Package MigrationFirst-Generation Managed Packages

Subscriber A has version 4.0 of Acme's 2GP package installed. Moving forward, if Acme decides to release version 4.2, they must use a
2GP package version to upgrade migrated subscribers to version 4.2.

Three Phases of Package Migration Development
As you move from 1GP development to 2GP development, you’ll move through three phases.

• Phase One: Plan for and test package migration

• Phase Two: Transition from 1GP to 2GP

• Phase Three: Fully transitioned to 2GP package development

Here's a quick comparison of the three phases.

New package
versions built using
2GP?

Migrate Packages?Convert Packages?New package
versions are built
using 1GP?

Phase

No.Migrate in scratch orgs or
test environments only.

Only for testing. When
converting packages for
testing only, you don’t

Yes. Use 1GP to create
and distribute packages.

Phase 1

Plan and Test

need to promote the
converted version.

No. Even if you have
migrated some or all

Yes. Use the push
upgrade CLI to migrate
subscribers to 2GP.

Yes. You can begin the
conversion process with
the latest version of your

Yes. In phase two, even if
you have migrated a
subscriber. All new
innovation to your

Phase 2

Transition from 1GP to
2GP subscribers to a 2GP

package version. DuringMigration is a one-time
operation per subscriber
and package.

package. For previously
converted packages, you
can also convert specific
patch versions as needed.

package is built using
1GP.

phase two any major,
minor, or patch updates
to this package must be
built using 1GP.In phase two, after

package migration, youRemember, a crucial step
before updating your If you make updates to

the 1GP package, upload
upgrade subscribers
using push upgrades tosubscribers is to promote

your converted package it to thea converted version of
your package.version to the released

state.
managed-released state,
then convert that
package version, and use
push upgrades to
upgrade subscriber orgs.

YesAt this stage, most of
your subscribers are

Before moving to phase
three you must convert

No. In this phase all
innovation to your

Phase 3

Fully Transitioned from
1GP to 2GP migrated to 2GP, but you

can continue migrating
lagging subscribers.

your latest package
version. After a package
has moved to phase
three, you can no longer

package is built using
2GP.

convert any new major,
minor package versions.

6

Three Phases of Package Migration DevelopmentFirst-Generation Managed Packages

Phase One: Plan for and Test Package Migration
In phase one, you’re developing, distributing, and releasing package upgrades using 1GP packaging. While you continue package
development using 1GP, it’s a good time to learn how package migrations work, and plan out how to migrate. See Plan Your Package
Migration for more details.

During phase one you can convert your 1GP package, test the package in a scratch org, and try migrating packages installed in scratch
orgs or sandboxes. During package conversion, your original managed 1GP package isn’t altered. After a package conversion completes,
you have both your original managed 1GP package version, and a new managed 2GP package version. Because your original 1GP isn’t
altered, you can continue developing that 1GP package using its associated packaging org.

If your subscribers aren’t all using the same version of your package, phase one is a great time to get everyone upgraded to the same
1GP version of your package. Let's look at why this is recommended.

The package conversion command automatically selects and converts the latest major.minor package version. (We’ll cover patch versions
in a later section). To migrate subscribers using a lower major.minor package version, you must upgrade them to either your latest 1GP
package version, or to a previously converted 1GP version.

When you migrate a package, the 1GP package version installed on a subscriber org must match the major.minor.patch version of the
converted 2GP package you migrate to that org.

If you’re able to get your subscribers all updated to the same package version, you only need to convert that one package version (for
example version 6.0), and then you could choose to bulk migrate all subscribers to version 6.0 of the converted 2GP package.

Before moving to phase two, ensure you understand how migration works, including some best practices.

• Review: Plan Your Migration

• Review: Before you Begin Package Migration

• Review: Considerations for Package Migration

• Try package conversion and package migration in a test environment

Phase Two: Transition from 1GP to 2GP
Phase two is a transition time.

In phase two you will convert your package, promote it to the released state, and start migrating your subscribers. The package conversion
CLI command converts your latest major.minor released version of your package. To ultimately migrate all subscribers and move to
phase three, any subscribers not using your latest package version must be upgraded to either your latest package version, or upgraded
to a previously converted version, before they can be migrated.

If you’ve already tested package conversion and migration, you understand how to run those CLI commands. The thing to note about
phase two is that after you migrate subscribers to your 2GP package, you’ll continue to use 1GP for new package innovation. After you
create a new 1GP package version, you convert that package version, promote it, and push upgrade the new converted 2GP to your
subscribers. Package migration is a one-time per package and subscriber operation, but during phase two you’ll likely convert additional
versions of your 1GP package and use those new converted versions to upgrade previously migrated subscribers.

Phase Three: Fully Transitioned to 2GP Package Development
In phase three, you confirm in Setup for your packaging org that you’re ready to develop and distribute your package solely using 2GP
packaging. When you confirm that you’re ready to move to 2GP, the packaging org for your package is blocked from creating any new
major or minor 1GP versions of that package. See Move to 2GP Package Development on page 15 for instructions.

You can continue to create 1GP patch versions for versions prior to moving to 2GP development. For example, if you moved package
version 6.0.0 to 2GP development, you can create patch version 5.0.1 or 4.1.1 using 1GP, but you can’t create patch version 6.0.1 or later
using 1GP.

7

Three Phases of Package Migration DevelopmentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_planning.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_planning.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_planning.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_prerequistes.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migrations_known_limitations.htm

Plan Your Package Migration
Are you ready to move your subscribers to 2GP? The speed and ease of your package migration depend on a few key factors.

Before you start, think about your current situation:

• How many 1GP packages do you own?

• How many subscribers are using them?

• Are your subscribers all using the same major and minor version of your package, or are you supporting multiple package versions?

• Do your packages depend on other packages?

Be sure to review the Considerations for Package Migrations and the prerequisites listed in Before you Begin Package Migrations.

Supporting Multiple Versions of a Package?
If you currently have subscribers using multiple versions of your package, think through how to upgrade your subscribers using lower
versions of your 1GP package.

When you migrate a package, the 1GP package version installed on a subscriber org must match the major.minor.patch version of the
converted 2GP package you migrate to that org. When you run the Salesforce CLI package conversion command, the latest major.minor
managed-released package version is converted.

If you’re able to get your subscribers all updated to the same package version, you only need to convert that one package version (for
example version 6.0), and then you could bulk migrate all subscribers to version 6.0 of the converted 2GP package. Package migration
is significantly easier if you aren’t having to convert and migrate several versions of the same package.

But if upgrading all subscribers to the same package version isn’t possible for you, make sure to create an upgrade path for subscribers
using lower package versions. One way to do that is to convert each 1GP package version that you promote to the managed-released
state.

Can package version be converted
to 2GP?

Package Built After 6/15/25?Package Version

NoNo1.0

NoNo1.1

NoNo1.2

Yes. If it’s converted before creating 1.4,
otherwise, no.

Yes1.3

Yes. If it’s converted before creating 1.5,
otherwise, no.

Yes1.4

Yes. If it’s converted before creating 1.6,
otherwise, no.

Yes1.5

Yes. If it’s converted before creating 1.7,
otherwise, no.

Yes1.6

If you convert package version 1.3 before you create version 1.4, then subscribers using versions 1.0-1.2 can be upgraded to 1.3 and
migrated to 2GP. Even if you aren’t ready to migrate subscribers, simply having the converted 1.3 package version gives subscribers

8

Plan Your Package MigrationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migrations_known_limitations.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_prerequistes.htm

using version 1.3 and lower an upgrade path in the future. Without the converted version 1.3, subscribers must to upgrade to version
1.4 or whatever converted versions are available.

If your subscribers are using a 1GP major.minor package version that hasn’t been converted, you must first upgrade them to a 1GP
package version that has been converted.

Migrating Packages with Dependencies
If the package you plan to convert depends on other packages, the order in which you migrate your package might be significant. As
you may already know, a 1GP package can't depend on a 2GP package.

This limitation impacts the order in which you migrate a package with dependencies. Because 1GP packages can’t depend on 2GP
packages, when you migrate a 1GP package with dependencies, we recommend migrating the packages in a particular order starting
with the leaf package.

9

Plan Your Package MigrationFirst-Generation Managed Packages

In this example of a three-level package dependency, you migrate the leaf package, followed by the extension package, and end with
migrating the base package.

It’s possible to migrate the base package first, but this creates added complexity as 1GP extension packages can't depend on a base 2GP
package. Therefore, our recommendation is to start migrating with leaf packages and then make your way down to the base package.

Before You Begin Package Migrations
If you’ve never created or worked with managed 2GP packages, scratch orgs, or Salesforce CLI, take some time to learn more about
Salesforce DX and second-generation managed packages.

Review Know Your Orgs for Second-Generation Managed Packages, How Scratch Orgs Fit in the Package Development Workflow, and
Before You Create Second-Generation Managed Packages and ensure you have enabled:

• Dev Hub in your Partner Business Org

• Second-Generation Managed Packaging in your Dev Hub

The Second-Generation Managed Packages Trailhead module is a great resource to learn more about 2GP.

Prerequisites for Package Conversion
Before starting package conversion, review the requirements regarding metadata support, API version, and managed-released versions.
Ensure your package meets these criteria.

Metadata Support

If your 1GP package contains metadata that isn’t currently supported in 2GP packages, the package conversion fails. You can compare
the metadata in your package against the Metadata Coverage Report and ensure the metadata in your 1GP managed package is
also supported in 2GP.

Alternatively, you can identify metadata issues by running the CLI package convert command. The package convert
CLI command detects and reports back to you any 1GP metadata types that prevent the package from being converted to 2GP.
Using the package convert CLI command in this way lets you quickly assess whether you have any packaged metadata that
isn’t supported in 2GP. During package conversion, your original managed 1GP package isn’t altered. It’s safe to test out the conversion
command, before you are ready to migrate your packages to 2GP.

If your package contains metadata that isn’t supported in managed 2GP, either remove the metadata from your package, or wait to
convert the package until managed 2GP supports that metadata type.

API Version
You can convert first-generation managed packages created using API version 57 (Spring ’23) or higher.

Managed-Released Package Versions
You can convert managed-released package versions only.

10

Before You Begin Package MigrationsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_before_know_orgs.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_so_how_fit_pkg_dev.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_before.htm
https://trailhead.salesforce.com/content/learn/modules/second-generation-managed-packages
https://developer.salesforce.com/docs/metadata-coverage

User Permissions

Package conversion and migration require the second-generation managed packaging user permissions. See Assign Second-Generation
Managed Packaging User Permissions for details.

Convert Your Managed 1GP Package to 2GP
Before you convert your managed 1GP package version, ensure your development environment is set up.

You need the latest version of Salesforce CLI installed, and the Dev Hub and second-generation managed packaging enabled in your
PBO (Partner Business Org).

Package Conversion Steps

1. Run sf update to ensure you have the latest Salesforce CLI.

2. From your command line, navigate to the directory in which you plan to create your Salesforce DX project directory.

3. Create a Salesforce DX project. For example: sf project generate --name myconvertedpkg.

4. Authorize to your Dev Hub org.

sf org login web --set-default-dev-hub

5. Link the namespace of your managed 1GP to the Dev Hub in your Partner Business Org (PBO).

a. Log in to your Dev Hub org.

b. Follow the steps listed in Link a Namespace to a Dev Hub Org.

After you convert a package, it's associated with your Dev Hub org. The association between the Dev Hub org and your package
can’t be changed. And you can't associate the package with a second, separate Dev Hub org. This means any subsequent package
conversions you initiate for this package, must be associated with the Dev Hub org you specify the first time you convert a particular
package.

6. If your package depends on standard value sets, create a seed metadata file. Then in step 7, when you run sf package convert,
include the —-seed-metadata flag.

For details on setting up a seed metadata file, see Picklist Value Errors.

7. If your package has tests that depend on unpackaged metadata, add an unpackaged metadata directory to your
sfdx-project.json file. To learn more about sfdx-project.json file, see Project Configuration File for a
Second-Generation Managed Package.

Example:

"packageDirectories": [
{

"path": "force-app",
"package": "TV_unl",
"versionName": "ver 2.1",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"
}

},
]

8. From the command line, navigate to the directory on your computer that contains your Salesforce DX project, then convert your
package.

11

Convert Your Managed 1GP Package to 2GPFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_troubleshoot_errors.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

Example:

sf package convert --installation-key mdpTest --package 033xxx --wait 20

To locate your 033 package ID, log in to your 1GP packaging org. From Setup, enter Package Manager in the Quick Find box,
and then select Package Manager. Select the name of your managed package. After you navigate to the Package Detail page,
inspect the URL in your browser’s address bar. The 15-character string in the URL that begins with 033 is your package ID.

If the package version you're converting is a patch version, you must include the --patch-version flag when you run the
package convert command. Package versions follow a major.minor.patch.build number format. Any package version number
that contains a non-zero patch number is a patch version. For example, 1.1.2 is a patch version, but 1.1.0 isn’t.

Before converting a patch version you must first convert the major.minor version of that package. Using the above example, you
must convert package version 1.1.0 before converting patch version 1.1.2.

What’s an Installation Key?

In the CLI command shown in step 7, an installation key with the value of mpdTest is specified. An installation key is a security key.
By including this flag with the package conversion command, you’re setting a password and requiring that password whenever anyone
installs the converted 2GP package. If you prefer not to require an installation key, specify --installation-key-bypass when
you convert your package.

Congrats, Your Package is Converted

After you’ve completed steps 1-7, your 1GP package is converted to 2GP. You can test your package in a scratch org.

The converted package is a beta version. Before you migrate the package you must promote it to a managed-released version. See Get
Ready to Promote and Release a Second-Generation Managed Package Version for details. To promote a package version to released,
you must use the --code-coverage flag when converting the package version. The package must also meet the code coverage
requirements.

Note: In a scratch org, you don’t need to promote the package version to migrate it.

Keep in mind that after you migrate subscribers to 2GP, all future upgrades to that package version for that subscriber must use a 2GP
package version.

To fully transition your package development from your 1GP packaging org to a 2GP, CLI-based development model, see Move to 2GP
Package Development on page 15.

View Details about Your Converted 2GP Package

So you’ve converted your 1GP package to a 2GP package. You can use one of two Salesforce CLI commands to retrieve details about
your 2GP packages.

Specify Dependencies on Unpackageable Metadata

It’s possible that the managed 1GP package you’re converting includes tests or references to unpackageable metadata.

Test Your Converted Managed 2GP Package

Before you migrate your first subscribers, we strongly recommend you install your newly converted managed 2GP package into a
new scratch org and test its functionality. If you prefer, you can also install the converted package in a sandbox, or developer edition
org.

View Details about Your Converted 2GP Package
So you’ve converted your 1GP package to a 2GP package. You can use one of two Salesforce CLI commands to retrieve details about
your 2GP packages.

12

Convert Your Managed 1GP Package to 2GPFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_get_ready_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_get_ready_promote.htm

To see details about the new managed 2GP package, run:

sf package list --verbose

In the verbose command output, there's a column labeled Converted From Package Id. When that field is populated it
indicates that the package was originally created using 1GP, and has been converted to 2GP. The 033 ID that displays in that column
maps to the original 1GP package.

To see details about the new managed 2GP package version, run:

sf package version list

If the value in the Released column of the command output is false, this indicates that the package is a beta package version, and
you must promote the package to the managed-released state before you migrate the package. See Get Ready to Promote and Release
a Second-Generation Managed Package Version.

The package convert command creates a new managed 2GP package, and a new managed 2GP package version, and both are now
associated with your Dev Hub org. The association between the Dev Hub org and your package can’t be changed. And you can't associate
the package with a second, separate Dev Hub org. This means any subsequent package conversions you initiate for this package, must
be associated with the Dev Hub org you specified the first time you converted a particular package.

Specify Dependencies on Unpackageable Metadata
It’s possible that the managed 1GP package you’re converting includes tests or references to unpackageable metadata.

To ensure your package conversion is successful, references to unpackageable metadata must be specified in your project configuration
file. If you followed the steps in Convert Your Managed 1GP Package to 2GP, you created a Salesforce DX project in step three. When
you create a Salesforce DX project, the project configuration file (sfdx-project.json) is automatically created.

If you think you may have these kinds of references, review Specify Unpackaged Metadata for Package Version Creation Tests and
Reference Standard Value Sets by Specifying a Seed Metadata Directory. In Migrating Your Subscribers from 1GP to 2GP, we share when
in the conversion workflow to specify unpackageable metadata.

Test Your Converted Managed 2GP Package
Before you migrate your first subscribers, we strongly recommend you install your newly converted managed 2GP package into a new
scratch org and test its functionality. If you prefer, you can also install the converted package in a sandbox, or developer edition org.

1. Create a scratch org. When creating your scratch org, be sure to include a scratch org definition file that includes any Salesforce
features that your package depends on.

sf org create scratch --target-dev-hub MyHub --definition-file
config/project-scratch-def.json

2. Migrate the converted package.

To verify the 04t ID of the converted package, run sf package version list and review the command output. Then run
the package install command and specify the 04t ID. In this scenario, the package version is being migrated, not installed.

Example:

sf package install --package 04t...

Next, explore your package and test its functionality. Make sure everything is operating as expected. Note that the converted package
is a beta version.

13

Convert Your Managed 1GP Package to 2GPFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_get_ready_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_get_ready_promote.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_conversion_workflow.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_unpackaged_md.htm
https://help.salesforce.com/s/articleView?id=release-notes.rn_packaging_standard_value_sets.htm&release=244&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_pkg_migration_workflow.htm

During phase one you can convert your 1GP package, install the converted package in a scratch org, and try out package migration by
using packages that are installed in scratch orgs. By testing these steps in a scratch org first, you can understand how package migration
works, before migrating packages used by active customers.

Migrate Your Subscribers from 1GP to 2GP
Are you ready to migrate your converted package? To migrate a package you install the converted 2GP package into a subscriber org
that already has the managed 1GP package version installed. Package migration requires that the major and minor version of the
subscriber's installed package, match the major and minor version of 2GP you’re installing.

After a package is migrated there’s no change to the metadata or customer data associated with the package.

If your package has dependencies on other packages, the order in which you migrate the base and dependent packages is important.
For more details, see Plan Your Package Migration.

Bulk Migrate Multiple Subscribers (Beta)
To migrate multiple subscribers that all have the same package version installed, use the Salesforce CLI command to schedule a push
upgrade and specify the --migrate-to-2gp flag. Remember the major.minor.patch version of the package you're migrating, must
be identical to the major.minor.patch version installed in a subscriber org.

The subscriber package version ID (starts with 04t) that you specify when migrating a package version, must be the ID for the converted
2GP package version, not the ID for the original 1GP package version.

Example:

sf package push-upgrade schedule --migrate-to-2gp --package-version 04txyz
--scheduled-start-time "2024-12-06T21:00:00" --org-file upgrade-orgs.csv

Push upgrades for package migrations have a daily limit. Currently, you can use push upgrades to migrate 5 subscriber orgs per day.

Note: Push migrations is a beta service that is subject to the Beta Services Terms at Agreements - Salesforce.com or a written
Unified Pilot Agreement if executed by Customer, and applicable terms in the Product Terms Directory. Use of this beta service is
at the Customer's sole discretion.

Before migrating customers using push upgrades, please review these best practices. In particular, we strongly recommend that you
work with your subscribers and follow a staggered approach, starting by migrating sandboxes first, before carrying out migrations in
production.

Note: Before migrating customers using push upgrades, please review these best practices. In particular, we strongly recommend
that you work with your subscribers and follow a staggered approach, starting by migrating sandboxes first, before carrying out
migrations in production.

Manually Migrate One Subscriber
If you have subscribers who don't allow push upgrades to their org, they can manually upgrade to the 2GP package. Provide them with
the package installation URL and they can migrate the package.

Push Upgrade History and Org Migrations
From time to time, Salesforce migrates production orgs from one instance to another. If your Dev Hub org is scheduled for an org
migration, it's crucial to back up your historical data related to push upgrades and 2GP migrations, as this data won't be retained
post-migration.

14

Migrate Your Subscribers from 1GP to 2GPFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_planning.htm
https://www.salesforce.com/company/legal/
https://ptd.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/push_upgrade_best_practices.htm

Move to 2GP Package Development
To fully transition to 2GP package development, you retrieve the source files for your package’s latest converted version. Then, you
confirm in Setup for your packaging org that you’re ready to develop and distribute your package solely using 2GP packaging.

Before you move to 2GP package development, review Plan Your Package Migration and confirm that you’re ready to move your
subscribers to 2GP.

1. To retrieve the source files for your package’s latest converted version, run the sf package version retrieve CLI
command. This example retrieves the package metadata for a converted subscriber package version ID into my-folder/ within
a Salesforce DX project directory:

sf package version retrieve --package 04tXXX --output-dir my-folder –-target-dev-hub
devhub@example.com

Note: By default, sf package version retrieve is available to 2GP managed packages that were converted from
1GP. To use this command with an unlocked package or a managed package created using 2GP (not converted from 1GP),
set IsDevUsePkgZipRequested to true in the Package2VersionCreateRequest Tooling API object. If you run this
command and the zip folder with the package version’s source files is missing, confirm that IsDevUsePkgZipRequested
is set to true.

2. Open the new sfdx-project.json file and update the versionName, versionNumber, and ancestorVersion.

3. From Setup in the packaging org, enter Package Manager in the Quick Find box, and then select Package Manager.

4. Click the package that you want to move to 2GP development.

5. On the package’s detail page, click Move to 2GP.

6. Carefully review and acknowledge the statements in the Move to Second-Generation Managed Packaging window, then click
Proceed.

After you click Proceed, you can no longer create new major or minor versions in the packaging org. To innovate on the package using
2GP, you create new package versions using the sf package version create CLI command.

15

Move to 2GP Package DevelopmentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/migration_planning.htm

Considerations for Package Migrations
Review these limits and considerations for converting and migrating packages.

1. Packages converted before June 15, 2025 can’t be promoted or migrated. Instead, run the convert command on your latest package
version, and move forward with that package version.

2. The daily package conversion limit is the same as your Dev Hub org’s scratch org allocation. See Scratch Org Allocations for Salesforce
Partners for details.

3. The convert command may fail on your first attempt to convert a package. If this happens, retry again in a few minutes. This issue
is most likely to occur if you create a new package for testing purposes, and immediately try to convert that package version.

4. The package conversion process performs limited validation when creating the managed 2GP package version.

a. In some instances the limited validation could mask issues that would otherwise result in package conversion failure.

b. You can expect to see cryptic error messages in certain scenarios. Please share those error messages with us so we can improve
them.

5. During migration, the managed 1GP package version installed in the target org has the same version number as the managed 2GP
migration package version.

6. Only package versions created using API version 57 (Spring ’23) or above, can be converted. To promote a package version, it must
have been created using API version 64 (Summer ’25) or later.

7. Large packages containing 20,000+ metadata files aren’t supported at this time.

8. Packages containing Data Cloud metadata can’t be converted.

Troubleshoot Package Conversion Failures
Here are some possible error scenarios that can occur when you convert a package.

API Version
Salesforce API version 57 is the minimum API version required for converting a package from first-generation packaging (1GP) to
second-generation packaging (2GP). If you encounter errors during conversion, first make sure that the package version you’re converting
was created using Salesforce API version 57 or later. If your package is using a lower API version, create a 1GP package version using the
latest API version, then try the conversion process again.

RecordType Errors
If the package you’re converting contains a RecordType, you must specify it under object settings in a scratch org definition file. For
example,

"objectSettings": {
"Contact": {
"defaultRecordType": "default"
}
}

Then specify the scratch org definition file when you run the package conversion CLI command.

sf package convert -p 033xx0000004Jx3 –-definition-file config/project-scratch-def.json

16

Considerations for Package MigrationsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/isv_partner_scratch_org_allocations.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/isv_partner_scratch_org_allocations.htm

Org Shape Errors
An org shape is a stored representation of a source org’s baseline setup. In the conversion process, the org shape is used to create the
2GP version of the 1GP package.

When you convert a 1GP package to 2GP, and you have not previously set up an org shape for the source 1GP packaging org, we create
an org shape for you so that we’re using a replica of your 1GP packaging org’s baseline setup. To learn more about org shapes, see Create
and Manage Org Shapes and Troubleshoot Org Shape.

If you already have an org shape set up for your 1GP packaging org, we use your existing org shape in the conversion process. When
you have an existing org shape, you can sometimes experience org shape issues in the conversion process.

If you encounter an org shape error when you run the sf package convert command, delete the packaging org’s existing org
shape and then recreate the org shape. Then, try the conversion process again.

If you continue to experience org shape errors, contact Salesforce Partner Support for help.

Picklist Value Errors
If your package references a custom picklist value that isn’t included in Salesforce’s StandardValueSet, a picklist error occurs during
package conversion.

For more details on Standard Value Sets, StandardValueSet in Metadata API Developer Guide.

To resolve this error, follow these steps.

1. Create a package.xml file that follows this example. Replace the example AccountType value with the object identified in the error
you received. Update the version field to the current Salesforce API version

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>AccountType</members>
<name>StandardValueSet</name>

</types>
<version>64.0</version>

</Package>

2. Authenticate to your packaging org. The required picklist values should be present in your packaging org

3. Run the project retrieve Salesforce CLI command. Replace the variables for org alias and path, with the actual values you need.

sf project retrieve start --manifest package.xml --target-org <org-alias> –-output-dir
<path>

After the retrieve command completes, a new file is created in your force-app/main/default/standardValueSets directory. The name
of the file will be AccountType.standardValueSet-meta.xml, where AccountType is the object you specified in your package.xml file.

4. Create a parent and child folder in your project root

New parent folder: seed-metadata/

New child folder: standardValueSets/

Note: Only standardValueSet metadata type is allowed in the seed-metadata folder

5. Move the <object>.standardValueSet-meta.xml file into the seedmetadata/standardValueSets/ directory you created.

6. Run the package conversion CLI command and specify the --seed-metadata flag and the path to your seed metadata file.

17

Troubleshoot Package Conversion FailuresFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_create_shape.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_create_shape.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_limitations.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_create_shape.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_create_shape.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_standardvalueset.htm

sf package convert --package <033xxxx> --seed-metadata=<path-to-seedmetadata>

If you package encounter new errors for other picklist values, repeat these steps.

Register a Namespace for a First-Generation Managed Package

A namespace is a one to 15-character alphanumeric identifier that distinguishes your package and its contents from packages of other
developers on AppExchange. Namespace prefixes are case-insensitive. For example, ABC and abc aren’t recognized as unique. Your
namespace must be globally unique across all Salesforce orgs.

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

Warning: When creating a namespace, use something that’s useful and informative to users. However, don’t name a namespace
after a person (for example, by using a person's name, nickname, or private information.)

Salesforce automatically prepends your namespace, followed by two underscores (”__”), to all unique component names in your
Salesforce org. A unique package component is one that requires a name that no other component has within Salesforce, such as custom
objects, custom fields, custom links, and validation rules. For example, if your namespace is abc and your managed package contains a
custom object with the API name, Expense__c, use the API name abc__Expense__c to access this object using the API. The namespace
is displayed on all component detail pages.

Your namespace must:

• Begin with a letter

• Contain one to 15 alphanumeric characters

• Not contain two consecutive underscores

For example, myNp123 and my_np are valid namespaces, but 123Company and my__np aren’t.

To register a namespace:

1. From Setup, enter Package Manager in the Quick Find box and select Package Manager.

2. In the Namespace Settings panel, click Edit.

Note: After you’ve configured your namespace settings, this button is hidden.

3. Enter the namespace you want to register.

4. To determine if the namespace is already in use, click Check Availability.

5. If the namespace prefix that you entered isn’t available, repeat the previous two steps.

6. Click Review.

7. Click Save.

18

Register a Namespace for a First-Generation Managed
Package

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

Create a First-Generation Managed Package Using a UI

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

If your goal is to build an app and distribute it on AppExchange, you use managed packages to do
both. Packaging is the container that you fill with metadata, and it holds the set of related features,
customizations, and schema that make up your app. A package can include many different metadata
components, and you can package a single component, an app, or library.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

1. From Setup, in the Quick Find box, enter Package Manager, and then select Package Manager.

2. Click New.

3. Enter a name for your package. You can use a different name than what appears on AppExchange.

4. From the dropdown menu, select the default language of all component labels in the package.

5. (Optional) Choose a custom link from the Configure Custom Link field to display configuration information to installers
of your app. You can select a predefined custom link to a URL that you’ve created for your home page layouts; see the Configure
Option on page 339. The custom link appears as a Configure link within Salesforce on AppExchange Downloads page and app detail
page of the installer's organization.

6. (Optional) In the Notify on Apex Error field, enter the username of the person to notify if an uncaught exception occurs
in the Apex code. If you don’t specify a username, all uncaught exceptions generate an email notification that is sent to Salesforce.
This option is only available for managed packages.

7. (Optional) In the Notify on Packaging Error field, enter the email address of the person who receives an email notification
if an error occurs when a subscriber’s attempt to install, upgrade, or uninstall a packaged app fails. This field appears only if packaging
error notifications are enabled. To enable notifications, contact Salesforce Partner Support.

8. (Optional) Enable language extension packages. (Beta)

a. Under Language Settings, click Edit.

b. Select Enable Language Extension Package and save your changes.

9. (Optional) Enter a description that describes the package. You can change this description before you upload it to AppExchange.

10. (Optional) Specify a post install script. You can run an Apex script in the subscriber organization after the package is installed or
upgraded. For more information, see Running Apex on Package Install/Upgrade.

11. (Optional) Specify an uninstall script. You can run an Apex script in the subscriber organization after the package is uninstalled. For
more information, see Running Apex on Package Uninstall.

12. Save your work.

What Are Beta Versions of Managed Packages?

A beta package is an early version of a managed package. The purpose of a beta package is to allow the developer to test their
application in different Salesforce orgs and to share the app with a pilot set of users for evaluation and feedback.

Create a Beta Package for First-Generation Managed Packages

Follow this procedure to create and upload a beta package through the UI. (You can also upload a package using the Tooling API.
For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.)

19

Create a First-Generation Managed Package Using a UIFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/pkg2_feature_enablement.htm

Create and Upload a First-Generation Managed Package

Use the following procedure to create and upload a managed package through the UI. You can also upload a package using the
Tooling API. For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

Publish Extensions to Managed Packages

An extension is any package, component, or set of components that adds to the functionality of a managed package. An extension
requires that the base managed package is installed in the org. For example, if you have built a recruiting app, an extension to this
app can include a component for performing background checks on candidates.

View Package Details in First-Generation Managed Packages

From Setup, enter Packages in the Quick Find box, then select Packages. Click the name of a package to view its details,
including added components, whether it’s a managed package, whether the package has been uploaded, and so on.

Notifications for Package Errors

Accurately track failed package installations, upgrades, and uninstallations in subscriber orgs with the Notifications for Package Errors
feature. Proactively address issues with managed and unmanaged packages and provide support to subscribers so that they can
successfully install and upgrade your apps.

What Are Beta Versions of Managed Packages?
A beta package is an early version of a managed package. The purpose of a beta package is to allow the developer to test their application
in different Salesforce orgs and to share the app with a pilot set of users for evaluation and feedback.

Before installing a beta version of a managed package, review the following notes:

• Beta packages can be installed in scratch, sandbox, or Developer Edition orgs, or test orgs furnished through the Environment Hub
only.

• The components of a beta package are editable in the packaging org until a Managed - Released package is uploaded.

• Beta versions aren't considered major releases, so the package version number doesn't change.

• Beta packages aren’t upgradeable. Because developers can still edit the components of a beta package, the Managed - Released
version might not be compatible with the beta package installed. To install a new beta package or released version, first, uninstall
the beta package. For more information, see Uninstall a Managed Package on page 357 and Install a Managed Package on page 347.

Create a Beta Package for First-Generation Managed Packages

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

Follow this procedure to create and upload a beta package through the UI. (You can also upload
a package using the Tooling API. For sample code and more details, see the PackageUploadRequest
object in the Tooling API Developer Guide.)

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

1. Create a package:

a. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

b. Click New.

c. Enter a name for your package. You can use a different name than what appears on AppExchange.

d. From the dropdown menu, select the default language of all component labels in the package.

20

What Are Beta Versions of Managed Packages?First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

e. Optionally, choose a custom link from the Configure Custom Link field to display configuration information to installers
of your app. You can select a predefined custom link to a URL or s-control that you’ve created for your home page layouts; see
the Configure Option. The custom link displays as a Configure link within Salesforce on AppExchange Downloads page and
app detail page of the installer's organization.

f. Optionally, in the Notify on Apex Error field, enter the username of the person to notify if an uncaught exception
occurs in the Apex code. If you don’t specify a username, all uncaught exceptions generate an email notification that is sent to
Salesforce. This option is only available for managed packages.

Note: Apex can only be packaged from Developer, Enterprise, Unlimited, and Performance Edition organizations.

g. Optionally, in the Notify on Packaging Error field, enter the email address of the person who receives an email
notification if an error occurs when a subscriber’s attempt to install, upgrade, or uninstall a packaged app fails. This field appears
only if packaging error notifications are enabled. To enable notifications, contact your Salesforce representative.

h. Optionally, enter a description that describes the package. You can change this description before you upload it to AppExchange.

i. Optionally, specify a post install script. You can run an Apex script in the subscriber organization after the package is installed or
upgraded. For more information, see Running Apex on Package Install or Upgrade.

j. Optionally, specify an uninstall script. You can run an Apex script in the subscriber organization after the package is uninstalled.
For more information, see Running Apex on Package Uninstall.

k. Click Save.

2. Optionally, change the API access privileges. By default, API access is set to Unrestricted, but you can change this setting to
further restrict API access of the components in the package.

3. Add the necessary components for your app.

a. Click Add Components.

b. From the dropdown list, choose the type of component.

c. Select the components you want to add.

d. Click Add To Package.

e. Repeat these steps until you added all the components you want in your package.

Note: Some related components are automatically included in the package even though they don’t display in the Package
Components list. For example, when you add a custom object to a package, its custom fields, page layouts, and relationships
with standard objects are automatically included. For a complete list of components, see Components Automatically Added
to First-Generation Managed Packages on page 327.

4. Optionally, click View Dependencies and review a list of components that rely on other components, permissions, or preferences
within the package. To return to the Package detail page, click Done.

5. Click Upload.

6. On the Upload Package page, do the following:

a. Enter a Version Name, such as Spring ’22. The version name is the marketing name for a specific release of a package
and allows you to create a more descriptive title for the version than just a number.

b. Enter a Version Number, such as 1.0. For more information on versions, see Update Your First-Generation Managed
Package on page 358.

c. Select a Release Type of Managed - Beta.

d. (Optional) Enter and confirm a password to share the package privately with anyone who has the password. Don't enter a
password if you want to make the package available to anyone on AppExchange and share your package publicly.

21

Create a Beta Package for First-Generation Managed
Packages

First-Generation Managed Packages

e. Salesforce automatically selects the requirements it finds. In addition, select any other required components from the Package
Requirements and Object Requirements sections to notify installers of any requirements for this package.

f. Click Upload.

After your package has uploaded successfully, you receive an email with an installation link.

Create and Upload a First-Generation Managed Package

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

Use the following procedure to create and upload a managed package through the UI. You can
also upload a package using the Tooling API. For sample code and more details, see the
PackageUploadRequest object in the Tooling API Developer Guide.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

These steps assume you’ve already created a namespace and beta package. If you’re uploading a
beta package for testing, see Create and Upload a Beta Package.

1. Create a package:

a. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

b. Click New.

c. Enter a name for your package. You can use a different name than what appears on AppExchange.

d. From the dropdown menu, select the default language of all component labels in the package.

e. Optionally, choose a custom link from the Configure Custom Link field to display configuration information to installers
of your app. You can select a predefined custom link to a URL or s-control that you’ve created for your home page layouts; see
the Configure Option on page 339. The custom link displays as a Configure link within Salesforce on AppExchange Downloads
page and app detail page of the installer's organization.

f. Optionally, in the Notify on Apex Error field, enter the username of the person to notify if an uncaught exception
occurs in the Apex code. If you don’t specify a username, all uncaught exceptions generate an email notification that is sent to
Salesforce. This option is only available for managed packages.

Note: Apex can only be packaged from Developer, Enterprise, Unlimited, and Performance Edition organizations.

g. Optionally, in the Notify on Packaging Error field, enter the email address of the person who receives an email
notification if an error occurs when a subscriber’s attempt to install, upgrade, or uninstall a packaged app fails. This field appears
only if packaging error notifications are enabled. To enable notifications, contact your Salesforce representative.

h. Optionally, enter a description that describes the package. You can change this description before you upload it to AppExchange.

i. Optionally, specify a post install script. You can run an Apex script in the subscriber organization after the package is installed or
upgraded. For more information, see Running Apex on Package Install/Upgrade.

j. Optionally, specify an uninstall script. You can run an Apex script in the subscriber organization after the package is uninstalled.
For more information, see Running Apex on Package Uninstall.

k. Click Save.

2. Salesforce sets your package API access privileges to Unrestricted. You can change this setting to further restrict API access
of Salesforce components in the package. For more information, see Manage API and Dynamic Apex Access in Packages.

22

Create and Upload a First-Generation Managed PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

3. Add the necessary components for your app.

a. Click Add Components.

b. From the dropdown list, choose the type of component you want to add to your package.

• At the top of the list, click a letter to display the contents of the sorted column that begin with that character.

• If available, click the Next Page (or Previous Page) link to go to the next or previous set of components.

• If available, click fewer or more at the bottom of the list to view a shorter or longer display list.

c. Select the components you want to add.

d. Click Add To Package.

e. Repeat these steps until you added all the components you want in your package.

Note: Some related components are automatically included in the package even if they don’t display in the Package
Components list. For example, when you add a custom object to a package, its custom fields, page layouts, and relationships
with standard objects are automatically included.

When you package a joined report, each block is included in the package. Although the blocks appear in the package as reports,
when you click a block, an error message indicates that you have “insufficient privileges” to view the report. This error message
is expected behavior. Instead, click the name of the joined report to run it.

4. Optionally, click View Dependencies and review a list of components that rely on other components, permissions, or preferences
within the package. An entity can include such things as an s-control, a standard or custom field, or an organization-wide setting
like multicurrency. Your package can’t be installed unless the installer has the listed components enabled or installed. For more
information on dependencies, see Understanding Dependencies on page 332. To return to the Package detail page, click Done.

Note: You can’t upload packages that contain any of the following:

• Workflow rules or workflow actions (such as field updates or outbound messages) that reference record types.

• Reports that reference record types on standard objects.

5. Click Upload.

Note: If you create a managed package to publish on AppExchange, you must certify your application before you package
it. For more information, see Security Review on AppExchange.

6. On the Upload Package page, do the following:

a. Enter a Version Name. As a best practice, it's useful to have a short description and the date.

b. Enter a Version Number for the upload, such as 1.0. The format is majorNumber.minorNumber.

Note: If you’re uploading a new patch version, you can't change the patch number.

The version number represents a release of a package. This field is required for managed and unmanaged packages. For a
managed package, the version number corresponds to a Managed - Released upload. All beta uploads use the same version
number until you upload a Managed - Released package version with a new version number.

For example, the following is a sequence of version numbers for a series of uploads.

NotesVersion
Number

TypeUpload
Sequence

The first Managed - Beta upload.1.0Managed - BetaFirst upload

23

Create and Upload a First-Generation Managed PackageFirst-Generation Managed Packages

https://partners.salesforce.com/s/education/appvendors/Security_Review

NotesVersion
Number

TypeUpload
Sequence

A Managed - Released upload. The version number doesn’t change.1.0Managed - ReleasedSecond upload

Note the change of minor release number for the Managed -
Released upload.

1.1Managed - ReleasedThird upload

The first Managed - Beta upload for version number 2.0. Note the
major version number update.

2.0Managed - BetaFourth upload

A Managed - Released upload. The version number doesn’t change.2.0Managed - ReleasedFifth upload

c. For managed packages, select a Release Type:

• Choose Managed - Released to upload an upgradeable version. After upload, some attributes of the metadata components
are locked.

• Choose Managed - Beta if you want to upload a version of your package to a small sampling of your audience for testing
purposes. You can still change the components and upload other beta versions.

Note: Beta packages can only be installed in Developer Edition, scratch, or sandbox orgs, and thus can't be pushed
to customer orgs.

d. Change the Description, if necessary.

e. (Optional) Specify a link to release notes for the package. Click URL and enter the details in the text field that appears. This link
will be displayed during the installation process, and on the Package Details page after installation.

Note: As a best practice, point to an external URL, so you can make the information available to customers before the
release, and update it independently of the package.

f. (Optional) Specify a link to post install instructions for the package. Click URL or Visualforce page and enter the details in the
text field that appears. This link will be displayed on the Package Details page after installation.

Note: As a best practice, point to an external URL, so you can update the information independently of the package.

g. (Optional) Enter and confirm a password to share the package privately with anyone who has the password. Don't enter a
password if you want to make the package available to anyone on AppExchange and share your package publicly.

h. Salesforce automatically selects the requirements it finds. In addition, select any other required components from the Package
Requirements and Object Requirements sections to notify installers of any requirements for this package.

i. Click Upload.

You receive an email that includes an installation link when your package has been uploaded successfully.

Note:

• When using the install URL, the old installer is displayed by default. You can customize the installation behavior by modifying
the installation URL you provide your customers.

– To access the new installer, append the text &newui=1 to the installation URL.

– To access the new installer with the "All Users" option selected by default, append the additional text &p1=full to the
installation URL.

24

Create and Upload a First-Generation Managed PackageFirst-Generation Managed Packages

• If you uploaded from your Salesforce production org, notify installers who want to install it in a sandbox org to replace the
login.salesforce.com portion of the installation URL with test.salesforce.com.t”

After your upload is complete you can do any of the following.

• To revert the Managed - Released package version back to Managed - Beta, click Revert to Beta.

Important: The Revert to Beta option is available only for the latest released package version that is not a patch version. For
example, if both package versions 1.0 and 2.0 are released, the Revert to Beta option is available only on the detail page of
package version 2.0. To revert the released package version to beta, the package version can’t be installed in any orgs and it
can’t be associated with a patch development org. If the package version is installed in any subscriber orgs, uninstall the
package version before reverting the version to the beta state. After you revert a package version to beta, when you create a
new package version, the new package version number is the highest package version number that’s in the beta state.

• To change the password option, click Change Password link.

• To prevent new installations of this package while allowing existing installations to continue operating, click Deprecate.

Note: You can’t deprecate the most recent version of a managed package.

When you deprecate a package, remember to remove it from AppExchange as well.

• To make a deprecated version available for installation again, click Undeprecate.

Publish Extensions to Managed Packages

EDITIONS

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

An extension is any package, component, or set of components that adds to the functionality of a
managed package. An extension requires that the base managed package is installed in the org.
For example, if you have built a recruiting app, an extension to this app can include a component
for performing background checks on candidates.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

The community of developers, users, and visionaries building and publishing apps on AppExchange
is part of what makes Salesforce Platform such a rich development platform. Use this community
to build extensions to other apps and encourage them to build extensions to your apps.

When working with both first-generation (1GP) and second-generation (2GP) managed packages,
only certain combinations of packages are supported. See: Which Package Types Can Your Package
Depend On?

To publish extensions to a managed package:

1. Install the base package in the Salesforce org that you plan to use to upload the extension.

2. Build your extension components.

Note: To build an extension, install the base package and include a dependency to that base package in your package. The
extension attribute automatically becomes active.

3. Create a package and add your extension components. Salesforce automatically includes some related components.

4. Upload the new package that contains the extension components.

25

Publish Extensions to Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_dependency_overview.htm

5. Proceed with the publishing process as usual. For information on creating a test drive or registering and publishing your app, go to
Salesforce Partner Community.

Note: Packages can’t be upgraded to Managed - Beta if they’re used within the same org as an extension.

View Package Details in First-Generation Managed Packages
From Setup, enter Packages in the Quick Find box, then select Packages. Click the name of a package to view its details,
including added components, whether it’s a managed package, whether the package has been uploaded, and so on.

From the package detail page:

• To change the package name, the custom link that displays when users click Configure, or the description, click Edit.

• To delete the package, click Delete. This action doesn’t delete the components contained in the package, but the components are
no longer bundled together within this package.

• To upload the package, click Upload. You’re notified by email when the upload is complete.

• You can enable, disable, or change the dynamic Apex and API access that components in the package have to standard objects in
the installing org by using the links next to API Access.

View Package Details
For package developers, the package detail section displays these attributes (in alphabetical order).

DescriptionAttribute

The type of access that the API and dynamic Apex that package
components have. The default is Unrestricted, which means that

API Access

all package components that access the API have the same access
as the user who is logged in. Click Enable Restrictions or Disable
Restrictions to change the API and dynamic Apex access
permissions for a package.

The name of the developer that created this package, including
the date and time.

Created By

A description of the package.Description

The language used for the labels on components. The default value
is your user language.

Language

The name of the last user to modify this package, including the
date and time.

Last Modified By

The username of the person who receives email notifications when
an exception occurs in Apex that isn’t caught by the code. If you

Notify on Apex Error

don’t specify a username, all uncaught exceptions send an email
notification to Salesforce. Available only for managed packages.

Apex can be packaged only from Developer, Enterprise, Unlimited,
and Performance Edition orgs.

The email address of the person who receives email notifications
if an error occurs when a subscriber’s attempt to install, upgrade,

Notify on Packaging Error

26

View Package Details in First-Generation Managed PackagesFirst-Generation Managed Packages

https://partners.salesforce.com

DescriptionAttribute

or uninstall a packaged app fails. This field appears only if packaging
error notifications are enabled. To enable notifications, contact
your Salesforce representative.

The name of the package, provided by the publisher.Package Name

A comma-separated list of org IDs to exclude when you push a
package upgrade to subscribers.

Push Upgrade Exclusion List

The Apex code that runs after this package is installed or upgraded.
For more information, see Run Apex on Package Install/Upgrade
on page 352.

Post Install Script

Indicates whether it’s a managed or unmanaged package.Type

The Apex code that runs after this package is uninstalled. For more
information, see Run Apex on Package Uninstall on page 356.

Uninstall Script

View Package Components
The Components tab lists each package component contained in the package, including the name and type of each component.

Note: Some related components are automatically included in the package even though they aren’t displayed in the Package
Components list. For example, when you add a custom object to a package, its custom fields, page layouts, and relationships with
standard objects are included. For a list of components that Salesforce automatically includes, see Components Automatically
Added on page 327.

Package components frequently depend on other components that aren’t always added to the package explicitly. Each time you change
a package, Salesforce checks for dependencies and displays the components as package members. Package Manager checks for
dependencies and shows the component relationship to the package in the Include By column of the Package Details.

When your package contains 1,000 or more components, you can decide when to refresh the components list in the Package Details
and avoid a long wait while this page loads. The components list refreshes automatically for packages with less than 1,000 components.
Click Refresh Components if the package has new or changed components, and wait for the list to refresh.

Click View Dependencies to review a list of components that rely on other components, permissions, or preferences within the package.
An entity can include such things as a standard or custom field, or an organization-wide setting like multicurrency. Your package can’t
be installed unless the installer has the listed components enabled or installed. Click Back to Package to return to the Package detail
page.

Click View Deleted Components to see which components were deleted from the package across all its versions.

View Version History
For package developers, the Versions tab lists all the previous uploads of a package.

To manage an uploaded package version, click the version number of a listed upload. For more information, see Manage Versions of
First-Generation Managed Packages on page 369.

To automatically upgrade subscribers to a specific version, click Push Upgrades. Orgs entered in the Push Upgrade Exclusion List are
omitted from the upgrade. The orgs can still install the upgrade when you publish the new version.

27

View Package Details in First-Generation Managed PackagesFirst-Generation Managed Packages

Note: Push Upgrades is available for patches and major upgrades. Salesforce Partners can request Push Major Upgrade functionality.
Log a support case in the Salesforce Partner Community.

The versions table displays the package attributes (in alphabetical order).

DescriptionAttribute

Lists the actions you can perform on the package. The possible
actions are:

Action

• Deprecate—Deprecates a package version.

Users can no longer download or install this package. However,
existing installations continue to work.

• Undeprecate—Enables a previously deprecated package
version to be installed again.

The status of the package. The possible statuses are:Status

• Released: The package is Managed - Released.

• Beta: The package is Managed - Beta.

• Deprecated: The package version is deprecated.

The version name for this package. The version name is the
marketing name for a specific release of a package. It’s more
descriptive than Version Number.

Version Name

The version number for the latest installed package version. The
format is majorNumber.minorNumber.patchNumber,

Version Number

such as 2.1.3. The version number represents a release of a package.
Version Name is a more descriptive name for the release. The
patchNumber is generated only when you create a patch. If
there’s no patchNumber, it’s assumed to be zero (0).

View Patch Development Orgs
Each patch is developed in a patch development org, which is the org where patch versions are developed, maintained, and uploaded.
To start developing a patch, create a patch development org. Create and Upload Patches Patch development orgs permit developers
to change existing components without causing incompatibilities between existing subscriber installations. Click New to create a patch
for this package.

The Patch Organizations table lists all the patch development orgs created. It lists these attributes (in alphabetical order).

DescriptionAttribute

Lists the actions that you can perform on a patch development
org. The possible actions are:

Action

• Login—Log in to your package version.

• Reset—Emails a temporary password for your patch
development org.

28

View Package Details in First-Generation Managed PackagesFirst-Generation Managed Packages

https://partners.salesforce.com

DescriptionAttribute

The login associated with the patch org.Administrator Username

The package version number that you’re patching.Patching Major Release

Notifications for Package Errors
Accurately track failed package installations, upgrades, and uninstallations in subscriber orgs with the Notifications for Package Errors
feature. Proactively address issues with managed and unmanaged packages and provide support to subscribers so that they can
successfully install and upgrade your apps.

You can choose to send a notification to an email address in your org when a subscriber’s attempt to install, upgrade, or uninstall a
packaged app fails. To enable this feature, contact your Salesforce representative.

Errors can happen with these package operations:

• Installation

• Upgrade

• Push upgrade

• Uninstallation

When an installation fails, an email is sent to the specified address with the following details:

• Reason for the failure

• Subscriber org information

• Metadata of the package that wasn’t installed properly

• Who attempted to install the package

This example email is for a package installation that failed because the base package wasn’t installed before the subscriber tried to install
an extension.

On Mon, Jul 13, 2022 at 11:51 AM, NO REPLY <no-reply@salesforce.com> wrote:
The install of your package failed. Here are the details:

Error Message: 00DD00000007uJp: VALIDATION_FAILED [DB 0710 DE1 Pkg1 1.2: A required package
is missing: Package "DB 0710 DE1 Pkg1", Version 1.2 or later must be installed first.]
Date/Time of Occurrence = Mon Jul 13 18:51:20 GMT 2015

Subscriber Org Name = DB 071015 EE 1
Subscriber Org ID = 00DD00000007uJp
Subscriber Org Status = TRIAL
Subscriber Org Edition = Enterprise Edition

Package Name = DB 0710 DE2 Pkg1
Package ID = 033D000000060EE
Package Namespace = DB_0710_DE2
Package Type = MANAGED
Package Version Name = 1.2
Package Version Number = 1.2
Package Version Id = 04tD00000006QoF

Installer Name = Admin User
Installer Email Address = db@salesforce.com

29

Notifications for Package ErrorsFirst-Generation Managed Packages

Set the Notification Email Address

Specify which address to email when a package installation, upgrade, or uninstallation fails.

Set the Notification Email Address
Specify which address to email when a package installation, upgrade, or uninstallation fails.

Notifications are sent only for package versions that are uploaded after the address is added. For example, if you upload package version
1.0 and then set the notification address, notifications aren’t sent for failures related to version 1.0. Notifications start when version 2.0
is uploaded.

Also, you can’t change or remove the notification email address for the package after it’s been uploaded.

1. To enable this feature, contact your Salesforce representative.

2. From Setup, enter Packages in the Quick Find box, then select Packages.

3. Click the package name, and then click Edit on the package detail page.

4. Enter the email address to send notifications to, and click Save.

Notifications for Package Errors Configured in a Partner Org

Create a First-Generation Managed Package using Salesforce DX

If you’re an ISV, you want to build a managed package. A managed package is a bundle of components that make up an application or
piece of functionality. A managed package is a great way to release an app for sale and to support licensing your features. You can
protect intellectual property because the source code of many components isn’t available through the package. You can also roll out
upgrades to the package.

When you’re working with your production org, you create a .zip file of metadata components and deploy them through Metadata API.
The .zip file contains:

• A package manifest (package.xml) that lists what to retrieve or deploy

• One or more XML components organized into folders

If you don’t have the packaged source already in the source format, you can retrieve it from the org and convert it using the CLI.

Enable Dev Hub and Second-Generation Managed Packaging

The Dev Hub lets you create and manage second-generation managed packages and scratch orgs. Your Dev Hub is the designated
place to find and manage all your managed 2GP packages, scratch orgs, and namespaces.

30

Create a First-Generation Managed Package using Salesforce
DX

First-Generation Managed Packages

Limited Access License for Package Developers

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and
custom objects. Partner Business Orgs (PBO) include 100 Salesforce Limited Access - Free user licenses.

Add a Limited Access User to Your Dev Hub Org

Provide your developers access to the Dev Hub and Salesforce DX development tools by adding a user with Salesforce Limited Access
- Free license and the Limited Access user profile in your Dev Hub org. Then create and assign them a permission set to the required
Dev Hub objects.

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub
org.

Scratch Orgs and Package Development

Scratch orgs are temporary Salesforce orgs intended for development and automation. They enable source-driven deployments of
Salesforce code and metadata. A scratch org is fully configurable, allowing developers to emulate different Salesforce editions with
various features and preferences.

Build and Release Your App with Managed Packages

If you developed and tested your app, you’re well on your way to releasing it. Luckily, when it’s time to build and release an app as
a managed package, you’ve got options. You can package an app you developed from scratch. If you’re experimenting, you can also
build a sample app from Salesforce and emulate the release process.

Packaging Checklist

Ready to deploy your packaging metadata and start creating a package? Take a few minutes to verify that you covered the items in
this checklist, and you’re good to go.

Deploy the Package Metadata to the Packaging Org

Before you deploy the package metadata into your packaging org, you convert from source format to metadata format.

Create a Beta Version of Your App

Test your app in a scratch org, or share the app for evaluation by creating a beta version.

Install the Package in a Target Org

After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

Create a Managed Package Version of Your App

After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

View Information About a Package

View the details about a specific package version, including its metadata package ID, package name, release state, and build number.

31

Create a First-Generation Managed Package using Salesforce
DX

First-Generation Managed Packages

Enable Dev Hub and Second-Generation Managed Packaging

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer, Enterprise,
Performance, and
Unlimited Editions

The Dev Hub lets you create and manage second-generation managed packages and scratch orgs.
Your Dev Hub is the designated place to find and manage all your managed 2GP packages, scratch
orgs, and namespaces.

After you enable the Dev Hub setting on a Salesforce org, that Dev Hub becomes the owner of
every managed 2GP package you create. All Salesforce ISV and OEM partners should designate their
Partner Business Org (PBO) as their Dev Hub org.

To enable Dev Hub:

1. Log in to your Partner Business Org.

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub. If you don't see Dev
Hub in the Setup menu, make sure that your org is one of the supported editions.

3. Select Enable Dev Hub. After you enable Dev Hub, you can’t disable it.

4. Select Enable Unlocked Packages and Second-Generation Managed Packages. After you enable this setting, you can’t disable
it.

If you choose to use a trial or Developer Edition org as your Dev Hub, consider these factors.

• When a trial or Developer Edition org expires, you lose access to all packages associated with that Dev Hub org.

• You’re limited to creating up to six scratch orgs and package versions per day, with a maximum of three active scratch orgs.

• Trial orgs expire on their expiration date.

• Developer Edition orgs can expire due to inactivity.

• If a package is associated with a non-production Dev Hub org, and that org expires or becomes inactive, the installed package can't
be updated, and new attempts to install the package may fail.

• If you plan to create package versions or run continuous integration jobs, it’s better to use your PBO as your Dev Hub because of
higher scratch org and package version limits.

The Dev Hub org instance determines where scratch orgs are created.

• Scratch orgs created from a Dev Hub org in Government Cloud are created on a Government Cloud instance.

• Scratch orgs created from a Dev Hub org in Public Cloud are created on a Public Cloud instance.

Note: You can’t enable Dev Hub in a sandbox.

Limited Access License for Package Developers
The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and custom
objects. Partner Business Orgs (PBO) include 100 Salesforce Limited Access - Free user licenses.

If the Salesforce Limited Access - Free license isn’t already enabled in your PBO, log a case with Salesforce Partner Support to request up
to 100 licenses. A Salesforce admin can upgrade a Salesforce Limited Access - Free license to a standard Salesforce license at any time.

Certain developer features aren’t available with the Salesforce Limited Access - Free license.

• To provide the ability to create and manage org shapes, assign the Salesforce user license. The Salesforce Limited Access - Free
license isn’t supported at this time.

• Users with the Salesforce Limited Access - Free license and View All Records permissions can create scratch orgs using an existing
org shape.

32

Enable Dev Hub and Second-Generation Managed
Packaging

First-Generation Managed Packages

https://partners.salesforce.com

• Users with the Salesforce Limited Access - Free license and View All Records permissions can view scratch org snapshots created by
users other than themselves.

• The Salesforce Limited Access - Free license doesn’t provide access to some Salesforce CLI commands, such as sf limits api
display.

• Contact your Salesforce admin for API limits information.

If your developers need broader access, consider assigning the Salesforce license. For details, see Standard User Licenses in Salesforce
Help.

Add a Limited Access User to Your Dev Hub Org
Provide your developers access to the Dev Hub and Salesforce DX development tools by adding a user with Salesforce Limited Access
- Free license and the Limited Access user profile in your Dev Hub org. Then create and assign them a permission set to the required
Dev Hub objects.

The Salesforce Limited Access - Free is designed for users whose role is to build customizations or applications. This license provides
access to the Dev Hub, development tools, and environments. In the production org, this license restricts access to standard and custom
objects.

1. Create a user in your Dev Hub org.

a. In Setup, enter Users in the Quick Find box, then select Users.

b. Click New User.

c. Fill out the form.

d. Select Salesforce Limited Access - Free for User License, and then Limited Access User for Profile.

e. After filling out the remaining information, click Save.

2. Create a permission set that provides your developer users with access to the required Dev Hub objects. For details, see Create and
Assign a Permission Set for Developer Users or Assign Second-Generation Managed Packaging User Permissions.

Link a Namespace to a Dev Hub Org
To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub org.

Complete these tasks before you link a namespace.

• If you don’t have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, you’re good to go.

• In the Developer Edition org, create and register the namespace.

Important: Choose namespaces carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. After you associate a namespace with an org, you can't change it or reuse it.

1. Log in to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.

Tip: Make sure your browser allows pop-ups from your Dev Hub org.

a. From the App Launcher menu, select Namespace Registries.

b. Click Link Namespace.

33

Add a Limited Access User to Your Dev Hub OrgFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.users_license_types_available.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_permission_set.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_user_permission.htm

2. In the window that pops up, log in to the Developer Edition org in which your namespace is registered using the org's System
Administrator's credentials.

You can’t link orgs without a namespace: sandboxes, scratch orgs, patch orgs, and branch orgs require a namespace to be linked to
the Namespace Registry.

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries list view.

Scratch Orgs and Package Development

EDITIONS

Available in: Lightning
Experience

Available in: Developer,
Enterprise, Performance,
and Unlimited Editions

Scratch orgs are temporary Salesforce orgs intended for development and automation. They enable
source-driven deployments of Salesforce code and metadata. A scratch org is fully configurable,
allowing developers to emulate different Salesforce editions with various features and preferences.

You can use a scratch org to develop the app you want to package, and you can also create scratch
orgs to test out your package. Scratch orgs also help with continuous integration (CI) processes to
automate package development steps. For example, you could write a script that creates a package
version, creates a scratch org, installs the package version into the scratch org, runs Apex tests, and
emails the test results to the release manager.

Enable Data Cloud for Scratch Orgs
To use Data Cloud components in scratch orgs or to add these components to a package, Data Cloud for Scratch Orgs must be enabled.
Log a case with Salesforce Partner Support and request that Data Cloud for Scratch Orgs be enabled on your Partner Business Org. Data
Cloud for Scratch Orgs is only available to scratch orgs associated with the Dev Hub in your Partner Business Org.

Get Access to Scratch Orgs That Have Agentforce

Agentforce is a set of tools to create and customize AI agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done. Start your journey with Agentforce by testing
it in a scratch org.

Scratch Org Allocations for Salesforce Partners

To ensure optimal performance, Salesforce partners are allocated a set number of scratch orgs in their Partner Business Org (PBO).
These allocations determine how many scratch orgs you can create daily, and how many can be active at a given point.

Manage Scratch Orgs from the Dev Hub Org

You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

Supported Scratch Org Editions for Partners

Create partner edition scratch orgs from a Dev Hub partner business org.

SEE ALSO:

Salesforce CLI Setup Guide

Salesforce DX Developer Guide

Get Access to Scratch Orgs That Have Agentforce
Agentforce is a set of tools to create and customize AI agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done. Start your journey with Agentforce by testing it
in a scratch org.

34

Scratch Orgs and Package DevelopmentFirst-Generation Managed Packages

https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_setup.meta/sfdx_setup
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev

If you don’t already have a Partner Business Org (PBO), join the Salesforce Partner Community and request a PBO.

If you’re new to creating scratch orgs, follow these steps to complete the one-time Dev Hub setup in your PBO. The Dev Hub is a feature
within an org that lets you create and manage scratch orgs, second-generation managed packages (2GP), and namespaces.

• Enable the Dev Hub and 2GP

• Create a Developer Edition org using Environment Hub

• Create a namespace in the Developer Edition org

• Link that namespace from your PBO. Linking the namespace lets you create 2GP packages that use that namespace.

• Authorize the Dev Hub org.

• Create a Salesforce DX Project.

To create a scratch org with Agentforce and Prompt Builder enabled, use this sample project-scratch-def.json file (or
simply add the feature and setting shown in this sample to your existing scratch org definition file).

{
"orgName": "GenAI Scratch Org",
"edition": "Partner Developer",
"features": ["Einstein1AIPlatform"],
"settings": {
"einsteinGptSettings" : {
"enableEinsteinGptPlatform" : true

}
}

}

To create a scratch org with the Einstein1AIPlatform feature, the scratch org you create can be a Partner Developer, Partner Enterprise,
Developer, or Enterprise edition.

To create a scratch org, run this Salesforce CLI command. Update the definition-file name, alias, and target-dev-hub alias as needed.

sf org create scratch --definition-file config/my-agentforce-project-scratch-def.json
--alias MyNamespacedScratchOrg --set-default --target-dev-hub MyDevHubOrg

Scratch Orgs with both Agentforce and Data Cloud
For some use cases such as prompt templates that use RAG, Retrievers, or BYO LLM, a scratch org that has both GenAI and Data Cloud
functionality enabled is required.

Only include Data Cloud if it’s required. Specifying Data Cloud in a scratch org significantly increases the time it takes for a scratch org
creation to complete.

Note: Including Data Cloud in a scratch org has a prerequisite. You must first open a case in the Salesforce Partner Community
to request for your PBO Dev Hub org to be granted permission to create Data Cloud scratch orgs. This request is only granted to
PBO orgs.

{
"orgName": "GenAI & Data Cloud Scratch Org",
"edition": "Partner Developer",
"features": ["CustomerDataPlatform", "CustomerDataPlatformLite","Einstein1AIPlatform"],

"settings": {
"einsteinGptSettings" : {
"enableEinsteinGptPlatform" : true

},

35

Scratch Orgs and Package DevelopmentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.packagingGuide.meta/packagingGuide/appexchange_partner_join.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.packagingGuide.meta/packagingGuide/appexchange_partner_request_pbo.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_pkg_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.packagingGuide.meta/packagingGuide/environment_hub_manage_create_org.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm

"customerDataPlatformSettings": {
"enableCustomerDataPlatform": true

}
}

}

Set up Agentforce in your Scratch Org
After your scratch org is created, follow these steps to start developing with Agentforce.

• Create Agents manually in the scratch org.

• To use prompt templates with your Agent Actions, assign prompt template permissions.

SEE ALSO:

Get Access to Agentforce in Your 1GP Packaging Org

Trailhead: Quick Start: Build Your First Agent with Agentforce

Salesforce Help: Agentforce Agents

Salesforce Help: The Building Blocks of Agents

Salesforce Help: Customize Your Agents with Topics and Actions

Salesforce Help: Considerations for Agents

Salesforce Help: AI Project Success

Scratch Org Allocations for Salesforce Partners
To ensure optimal performance, Salesforce partners are allocated a set number of scratch orgs in their Partner Business Org (PBO). These
allocations determine how many scratch orgs you can create daily, and how many can be active at a given point.

By default, Salesforce deletes scratch orgs and their associated ActiveScratchOrg records from your Dev Hub when a scratch org expires.
All partners get 100 Salesforce Limited Access - Free user licenses.

Active PBOs

• 150 active

• 300 daily

Trial PBOs

• 20 active

• 40 daily

Scratch Org Snapshot Allocations
The number of snapshots you can create (active and daily) is the same as the active scratch org allocation.

Package Version Creation Limits
The maximum number of package versions you can create per day is equal to the daily allocated scratch orgs. For example, if you’re
allocated 300 daily scratch orgs, you’re also allowed to create 300 package versions per day.

36

Scratch Orgs and Package DevelopmentFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.copilot_setup_enable.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.prompt_builder_enable.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging1_agentforce_access.htm
https://trailhead.salesforce.com/content/learn/projects/quick-start-build-your-first-agent-with-agentforce
https://help.salesforce.com/s/articleView?id=sf.copilot_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.copilot_building_blocks.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.copilot_topics_actions.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.copilot_considerations.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.generative_ai_plan_project.htm&language=en_US

If you specify --skipvalidation when creating a package version, the maximum number of package versions you can create
using skip validation is 500 per day.

Manage Scratch Orgs from the Dev Hub Org
You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

In the Dev Hub org, the ActiveScratchOrg standard object represents the scratch orgs that are currently in use. The ScratchOrgInfo
standard object represents the requests that were used to create scratch orgs and provides historical context.

1. Log in to the Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.

2. From the App Launcher, select Active Scratch Orgs to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. To delete an active scratch org from the Active Scratch Orgs list view, choose Delete from the dropdown.

Deleting an active scratch org doesn’t delete the request (ScratchOrgInfo) that created it, but it does free up a scratch org so that it
doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Infos from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

Deleting the request (ScratchOrgInfo) also deletes the active scratch org.

Supported Scratch Org Editions for Partners
Create partner edition scratch orgs from a Dev Hub partner business org.

Supported partner scratch org editions include:

• Partner Developer

• Partner Enterprise

• Partner Group

• Partner Professional

Indicate the partner edition in the scratch org definition file.

"edition": "Partner Enterprise",

If you attempt to create a partner scratch org and see this error, confirm that you’re using an active partner business org. Contact the
Partner Community for further assistance.

ERROR: You don't have permission to create Partner Edition organizations.
To enable this functionality, please log a case in the Partner Community.

License limits for partner scratch orgs are similar to partner edition orgs created in Environment Hub. Get the details on the Partner
Community.

37

Scratch Orgs and Package DevelopmentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_skip_validation.htm
https://partners.salesforce.com/
https://partners.salesforce.com/s/education/general/Partner_Orgs
https://partners.salesforce.com/s/education/general/Partner_Orgs

Build and Release Your App with Managed Packages
If you developed and tested your app, you’re well on your way to releasing it. Luckily, when it’s time to build and release an app as a
managed package, you’ve got options. You can package an app you developed from scratch. If you’re experimenting, you can also build
a sample app from Salesforce and emulate the release process.

Working with a package is an iterative process. You typically retrieve, convert, and deploy source multiple times as you create scratch
orgs, test, and update the package components.

Chances are, you already have a namespace and package defined in your packaging org. If not, run this command to open the packaging
org in your browser.

sf org open --target-org me@my.org --path lightning/setup/Package/home

In the Salesforce UI, you can define a namespace and a package. Each packaging org can have a single managed package and one
namespace.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Retrieve Source from an Existing Managed Package

Packaging Checklist
Ready to deploy your packaging metadata and start creating a package? Take a few minutes to verify that you covered the items in this
checklist, and you’re good to go.

1. Link the namespace of each package you want to work with to the Dev Hub org.

2. Copy the metadata of the package from your version control system to a local project.

3. Update the config files, if needed.

For example, to work with managed packages, sfdx-project.json must include the namespace.

"namespace": "acme_example",

4. (Optional) Create an alias for each org you want to work with.

If you haven’t yet created an alias for each org, consider doing that now. Using aliases is an easy way to switch between orgs when
you’re working in the CLI.

5. Authenticate the Dev Hub org.

6. Create a scratch org.

A scratch org is different than a sandbox org. You specify the org shape using project-scratch.json. To create a scratch org and set
it as the defaultusername org, run this command from the project directory.

sf org create scratch --definition-file config/project-scratch-def.json

7. Push source to the scratch org.

8. Update source in the scratch org as needed.

9. Pull the source from the scratch org if you used declarative tools to make changes there.

With these steps complete, you’re ready to deploy your package metadata to the packaging org.

38

Build and Release Your App with Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_retrieve_man_pack.htm

Deploy the Package Metadata to the Packaging Org
Before you deploy the package metadata into your packaging org, you convert from source format to metadata format.

It’s likely that you have some files that you don’t want to convert to metadata format. Create a .forceignore file to indicate which
files to ignore.

1. Convert from source format to the metadata format.
sf project convert source --output-dir mdapi_output_dir --package-name
managed_pkg_name

Create the output directory in the root of your project, not in the package directory. If the output directory doesn’t exist, it’s created.
Be sure to include the --package-name so that the converted metadata is added to the managed package in your packaging
org.

2. Review the contents of the output directory.
ls -lR mdapi_output_dir

3. Authenticate the packaging org, if needed. This example specifies the org with an alias called MyPackagingOrgAlias, which helps
you refer to the org more easily in subsequent commands.
sf org login web --alias MyPackagingOrgAlias

You can also authenticate with an OAuth client ID: sf org login web --client-id oauth_client_id

4. Deploy the package metadata back to the packaging org.
sf project deploy start --metadata-dir mdapi_output_dir --target-org me@example.com

The --target-org is the username. Instead of the username, you can use -u MyPackagingOrgAlias to refer to your
previously defined org alias. You can use other options, like --wait to specify the number of minutes to wait. Use the
--metadata-dir parameter to provide the path to a zip file that contains your metadata. Don’t run tests at the same time as
you deploy the metadata. You can run tests during the package upload process.

A message displays the job ID for the deployment.

5. Check the status of the deployment.

When you run sf project deploy report, the job ID and target username are stored, so you don’t have to specify these
required parameters to check the status. These stored values are overwritten when you run sf project deploy start
again.

If you want to check the status of a different deploy operation, specify the job ID on the command line, which overrides the stored
job ID.

SEE ALSO:

Salesforce CLI Command Reference

How to Exclude Source When Syncing or Converting

Create a Beta Version of Your App
Test your app in a scratch org, or share the app for evaluation by creating a beta version.

If you specified the package name when you converted source to metadata format, both the changed and new components are
automatically added to the package. Including the package name in that stage of the process lets you take full advantage of end-to-end
automation.

If, for some reason, you don’t want to include new components, you have two choices. You can omit the package name when you
convert source or remove components from the package in the Salesforce UI before you create the package version.

39

Deploy the Package Metadata to the Packaging OrgFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_exclude_source.htm

Create the beta version of a managed package by running the commands against your packaging org, not the Dev Hub org.

1. Ensure that you’ve authorized the packaging org.

sf org login web --set-default me@example.com

2. Create the beta version of the package.

sf package1 version create --package-id package_id --name package_version_name

You can get the package ID on the package detail page in the packaging org. If you want to protect the package with an installation
key, add it now or when you create the released version of your package. The --installation-key supplied from the CLI is
equivalent to the Password field that you see when working with packages through the Salesforce user interface. When you include
a value for --installation-key, you or a subscriber must supply the key before you can install the package in a target org.

You’re now ready to create a scratch org and install the package there for testing. By default, the create command generates a beta
version of your managed package.

Later, when you’re ready to create the Managed - Released version of your package, include the -m (--managed-released
true) parameter.

Note: After you create a managed-released version of your package, many properties of the components added to the package
are no longer editable. Refer to the First-Generation Managed Packaging Developer Guide to understand the differences between
beta and managed-released versions of your package.

SEE ALSO:

Salesforce CLI Command Reference

Link a Namespace to a Dev Hub Org

Install the Package in a Target Org
After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

If you want to create a scratch org and set it as the defaultusername org, run this command from the project directory.

sf org create scratch -definition-file config/project-scratch-def.json

To locate the ID of the package version to install, run sf package1 version list.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

You can then copy the package version ID you want to install. For example, the ID 04txx000000069zAAA is for version 1.4.0.

1. Install the package. You supply the package alias or version ID, which starts with 04t, in the required --package parameter.

sf package install --package 04txx000000069zAAA

40

Install the Package in a Target OrgFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_cli_reference.meta/sfdx_cli_reference

If you’ve set a default target org, the package is installed there. You can specify a different target org with the --target-org
parameter. If the package is protected by an installation key, supply the key with the --installation-key parameter.

To uninstall a package, open the target org and choose Setup. On the Installed Packages page, locate the package and choose Uninstall.

Create a Managed Package Version of Your App
After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

Ensure that you’ve authorized the packaging org and can view the existing package versions.

sf org login web --instance-url https://test.salesforce.com --set-default org_alias

View the existing package versions for a specific package to get the ID for the version you want to install.

sf package1 version list --package-id 033...

To view details for all packages in the packaging org, run the command with no parameters.

More than one beta package can use the same version number. However, you can use each version number for only one managed
package version. You can specify major or minor version numbers.

You can also include URLs for a post-installation script and release notes. Before you create a managed package, make sure that you’ve
configured your developer settings, including the namespace prefix.

Note: After you create a managed package version, you can’t change some attributes of Salesforce components used in the
package. See: Components Available in Managed Packages for information on editable components.

1. Create the managed package. Include the --managed-released parameter.

sf package1 version create --package-id 033xx00000007oi --name ”Spring 22” --description
”Spring 22 Release” --version 3.2 --managed-released

You can use other options, like --wait to specify the number of minutes to wait.

To protect the package with an installation key, include a value for --installation-key. Then, you or a subscriber must
supply the key before you can install the package in a target org.

After the managed package version is created, you can retrieve the new package version ID using sf package1 version
list.

View Information About a Package
View the details about a specific package version, including its metadata package ID, package name, release state, and build number.

1. From the project directory, run this command, supplying a package version ID.
sf package1 version display -i 04txx000000069yAAA
The output is similar to this example.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069yAAA 033xx00000011coAAA r03 1.4.0 Released 1

41

Create a Managed Package Version of Your AppFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm

View All Package Versions in the Org

View the details about all package versions in the org.

Package IDs

When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

SEE ALSO:

Salesforce CLI Command Reference

View All Package Versions in the Org
View the details about all package versions in the org.

1. From the project directory, run the list command.
sf package1 version list
The output is similar to this example. When you view the package versions, the list shows a single package for multiple package
versions.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

SEE ALSO:

Salesforce CLI Command Reference

Package IDs
When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

The relationship of package version to package is one-to-many.

Used WhereDescriptionID Example

Generated when you create a package. A
single package can have one or more

Metadata Package ID033xx00000007oi

associated package version IDs. The package
ID remains the same, whether it has a
corresponding beta or released package
version.

Generated when you create a package
version.

Metadata Package Version ID04tA000000081MX

42

View Information About a PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_cli_reference.meta/sfdx_cli_reference

Components Available in First-Generation Managed Packages

Each metadata component that you include in a first-generation managed package has certain rules that determine its behavior in a
subscriber org. Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version
is created and installed.

Before you review the details about the metadata components that can be included in a managed package, be sure you understand
the meaning of each manageability rule.

Table 1: Manageability Rules

If yes: The component can be updated during a package upgrade.
The component is first deployed to the subscriber org during the

Component Can Be Updated During Package Upgrade

initial package installation, and subsequent package upgrades
update the installed component.

If no: The component can’t be updated during package upgrades.
Instead, it’s only deployed to the subscriber org during the initial
package installation, and subsequent package upgrades don’t
update the component. Components in this category can typically
be modified by the admin in the subscriber org.

If yes: The subscriber or installer of the managed package can
delete the packaged component from their org. Deleted
components aren’t reinstalled during a package upgrade.

If no: The subscriber or installer of the managed package can’t
delete the packaged component from their org.

Subscriber Can Delete Component

If yes: After the package that contains the component is promoted
and released, the package developer can choose to remove the
component in a future package version.

In most cases, removing components from a package version marks
the component as deprecated, and doesn’t hard delete the

Package Developer Can Remove Component

component from the subscriber org. These deprecated components
can be deleted by the admin of the subscriber org.

To request access to this feature, log a support case in the Salesforce
Partner Community.

If no: After the package that contains the component is promoted
and released, the package developer can’t remove the component
in a future package version.

If yes: To protect the intellectual property of the developer, the
component’s metadata, such as Apex code or Custom Metadata
record information, is hidden in the installed org.

If no: The component is visible in the subscriber’s org.

Component Has IP Protection

43

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Certain properties on metadata components are editable after the managed package is installed.

• Only Package Developer Can Edit: The package developer can edit specific component properties. These properties are locked in
the subscriber’s org. During package upgrade, the changes made by the package developer are applied in the subscriber org. For
example, when you update the code in an Apex class or the custom permissions in a permission set, subscribers receive those
updates during their package upgrade.

• Both Subscriber and Package Developer Can Edit: Both the subscriber and package developer can edit these component properties,
but developer changes are only applied to new subscriber installs. This approach prevents a package upgrade from overwriting
changes made by the subscriber. For example, the help text on a custom field, and the page layout of a custom object are editable
by both the subscriber and package developer. The subscriber can modify the page layout or help text, and trust that their changes
won’t be overwritten by a future package upgrade.

• Neither Subscriber or Package Developer Can Edit: After a package is promoted and released, these component properties are locked
and can’t be edited by the package developer or the subscriber. For example, the API names of packaged components are locked
and can’t be edited after the package version is promoted and released.

Supported Components in First-Generation Managed Packages

Account Plan Objective Measure Calculation Definition

Represents the definition of a target object, rollup field, and logic for calculating the current value of a sales account plan objective
measure.

Account Relationship Share Rule

Determines which object records are shared, how they’re shared, the account relationship type that shares the records, and the level
of access granted to the records.

Action Link Group Template

Represents the action link group template. Action link templates let you reuse action link definitions and package and distribute
action links.

Action Plan Template

Represents an instance of an action plan template.

Actionable List Definition

Represents the data source definition details associated with an actionable list.

Actionable List Key Performance Indicator Definition

Represents the custom key performance indicators that are defined for a specific field in an object.

Activation Platform

Represents the ActivationPlatform configuration, such as platform name, delivery schedule, output format, and destination folder.

AffinityScoreDefinition

Represents the affinity information used in calculations to analyze and categorize contacts for marketing purposes.

Agent Action

Represents an action, for use in Agentforce.

Agent Topic

Represents a topic, for use in Agentforce.

AI Application

Represents an instance of an AI application. For example, Einstein Prediction Builder.

44

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

AI Application Config

Represents additional prediction information related to an AI application.

AIUsecaseDefinition

Represents a collection of fields in a Salesforce org used to define a machine learning use case and get real-time predictions.

Analytics

Analytics components include analytics applications, dashboards, dataflows, datasets, lenses, recipes, and user XMD.

Analytics Dashboard

Represents a Tableau Next dashboard.

Analytics Visualization

Represents a Tableau Next visualization.

Analytics Workspace

Represents a Tableau Next workspace.

Apex Class

Represents an Apex Class. An Apex class is a template or blueprint from which Apex objects are created. Classes consist of other
classes, user-defined methods, variables, exception types, and static initialization code.

Apex Sharing Reason

Represents an Apex sharing reason, which is used to indicate why sharing was implemented for a custom object.

Apex Trigger

Represents an Apex trigger. A trigger is Apex code that executes before or after specific data manipulation language (DML) events
occur, such as before object records are inserted into the database, or after records have been deleted.

App Framework Template Bundle

Represents the app framework template bundle. Use these templates for Data Cloud and Tableau Next assets.

Application Subtype Definition

Represents a subtype of an application within an application domain.

AssessmentConfiguration

Represents a configuration for Assessment component. An AssessmentConfiguration entry indicates configuration for user flows
such as sending out emails or reminder actions on assessments initiated by the patient.

AssessmentQuestion

Represents the container object that stores the questions required for an assessment.

AssessmentQuestionSet

Represents the container object for Assessment Questions.

Aura Component

Represents an Aura definition bundle. A bundle contains an Aura definition, such as an Aura component, and its related resources,
such as a JavaScript controller. The definition can be a component, application, event, interface, or a tokens collection.

Batch Calc Job Definition

Represents a Data Processing Engine definition.

Batch Process Job Definition

Represents the details of a Batch Management job definition.

Benefit Action

Represents details of an action that can be triggered for a benefit.

45

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Bot Template

Represents the configuration details for a specific Einstein Bot template, including dialogs and variables.

Branding Set

Represents the definition of a set of branding properties for an Experience Builder site, as defined in the Theme panel in Experience
Builder.

Briefcase Definition

Represents a briefcase definition. A briefcase makes selected records available for specific users and groups to view when they’re
offline in the Salesforce Field Service mobile app for iOS and Android.

Building Energy Intensity Record Type Configuration

Represents the setup object that contains the mapping between the Building Energy Intensity Record record type and internal
enums. You can primarily use this object for calculations across different record types.

Business Process

The BusinessProcess metadata type enables you to display different picklist values for users based on their profile.

Business Process Group

Represents the surveys used to track customers’ experiences across different stages in their lifecycle.

Business Process Type Definition

Define the types of business processes that are applied to a rule.

Care Benefit Verify Settings

Represents the configuration settings for benefit verification requests.

Care Limit Type

Defines the characteristics of limits on benefit provision.

Care Request Configuration

Represents the details for a record type such as service request, drug request, or admission request. One or more record types can
be associated with a care request.

Care System Field Mapping

Represents a mapping from source system fields to Salesforce target entities and attributes.

Channel Layout

Represents the metadata associated with a communication channel layout.

Chatter Extension

Represents the metadata used to describe a Rich Publisher App that’s integrated with the Chatter publisher.

Claim Financial Settings

Represents the configuration settings for Insurance Claim Financial Services.

CommunicationChannelType

Represents the type of communication channel, such as WhatsApp and SMS, to use for referral promotions.

Community Template Definition

Represents the definition of an Experience Builder site template.

Community Theme Definition

Represents the definition of a theme for an Experience Builder site.

Compact Layout

Represents the metadata associated with a compact layout.

46

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Conditional Formatting Ruleset

Represents a set of rules that define the style and visibility of conditional field formatting on Dynamic Forms-enabled Lightning page
field instances.

Connected App

Represents a connected app configuration. A connected app enables an external application to integrate with Salesforce using APIs
and standard protocols, such as SAML, OAuth, and OpenID Connect.

Context Definition

A context definition defines the relationship between the nodes and the attributes within each node. For efficient data access, users
can use nodes and attributes to easily access the relevant data from the mapped data source. Various Salesforce products offer
predefined context definitions based on their use case.

Contract Type

A contract type is used to group contracts so that they exhibit similar characteristics. For example, the lifecycle states, the people
who access, the templates and clauses used.

Conversation Channel Definition

Represents the conversation channel definition that’s implemented for Interaction Service for Bring Your Own Channel and Bring
Your Own Channel for CCaaS messaging channels.

Conversation Vendor Info

This setup object connects the partner vendor system to the Service Cloud feature.

CORS Allowlist

Represents an origin in the CORS allowlist.

CSP Trusted Site

Represents a trusted URL. For each CspTrustedSite component, you can specify Content Security Policy (CSP) directives and permissions
policy directives.

Custom Application

Represents a custom application.

Custom Button or Link

Represents a custom link defined in a home page component.

Custom Console Components

Represents a custom console component (Visualforce page) assigned to a CustomApplication that is marked as a Salesforce console.
Custom console components extend the capabilities of Salesforce console apps.

Custom Field on Standard or Custom Object

Represents the metadata associated with a field. Use this metadata type to create, update, or delete custom field definitions on
standard or custom objects.

Custom Field on Custom Metadata Type

Represents a custom fields on the custom metadata type.

Custom Field Display

Represents the CustomFieldDisplay view type assigned to product attribute custom fields.

Custom Help Menu Section

Represents the section of the Lightning Experience help menu that the admin added to display custom, org-specific help resources
for the org. The custom section contains help resources added by the admin.

Custom Index

Represents an index used to increase the speed of queries.

47

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Custom Label

The CustomLabels metadata type allows you to create custom labels that can be localized for use in different languages, countries,
and currencies.

Custom Metadata Type Records

Represents a record of a custom metadata type.

Custom Metadata Type

Represents a record of a custom metadata type.

Custom Notification Type

Represents the metadata associated with a custom notification type.

Custom Object

Represents a custom object that stores data unique to an org or an external object that maps to data stored outside an org.

Custom Object Translation

This metadata type allows you to translate custom objects for a variety of languages.

Custom Permission

Represents a permission that grants access to a custom feature.

Custom Tab

Represents a custom tab. Custom tabs let you display custom object data or other web content in Salesforce.

Dashboard

Represents a dashboard. Dashboards are visual representations of data that allow you to see key metrics and performance at a glance.

DataCalcInsightTemplate

Represents the object template for data calculations and insights of Data Cloud objects in DataCalcInsightTemplate. These objects
are added inside the data kit.

Data Connector Ingest API

Represents the connection information specific to Ingestion API.

Data Connector S3

Represents the connection information specific to Amazon S3.

Data Kit Object Dependency

Represent the object dependencies and relationships between different objects in Data Kit Object Dependency. These objects are
added inside the data kit.

Data Kit Object Template

Represents the object in Data Kit Object Template. This object template is added inside the data kit.

DataObjectBuildOrgTemplate

Represents the output objects of the components the user includes in a data kit.

Data Package Kit Definition

Represents the top-level Data Kit container definition. Content objects can be added after the Data Kit is defined.

Data Package Kit Object

Represents the object in Data Kit Content Object. These objects are added inside the data kit.

Data Source

Used to represent the system where the data was sourced.

Data Source Bundle Definition

Represents the bundle of streams that a user adds to a data kit.

48

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Data Source Object

Represents the object from where the data was sourced.

Data Src Data Model Field Map

Represents the entity that’s used to store the design-time bundle-level mappings for the data source fields and data model fields.

Data Stream Definition

Contains Data Ingestion information such as Connection, API and File retrieval settings.

Data Stream Template

Represents the data stream that a user adds to a data kit.

DataWeaveResource

Represents the DataWeaveScriptResource class that is generated for all DataWeave scripts. DataWeave scripts can be directly invoked
from Apex.

Decision Matrix Definition

Represents a definition of a decision matrix.

Decision Matrix Definition Version

Represents a definition of a decision matrix version.

Decision Table

Represents the information about a decision table.

Decision Table Dataset Link

Represents the information about a dataset link associated with a decision table. In a dataset link, select an object for whose records,
the decision table must provide an outcome.

Digital Experience

Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s
content items.

Digital Experience Bundle

Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s
content items.

Decision Table

Represents the information about a decision table.

Disclosure Definition

Represents information that defines a disclosure type, such as details of the publisher or vendor who created or implemented the
report.

Disclosure Definition Version

Represents the version information about the disclosure definition.

Disclosure Type

Represents the types of disclosures that are done by an individual or an organization and the associated metadata.

Discovery AI Model

Represents the metadata associated with a model used in Einstein Discovery.

Discovery Goal

Represents the metadata associated with an Einstein Discovery prediction definition.

Discovery Story

Represents the metadata associated with a story used in Einstein Discovery.

49

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Document

Represents a Document. All documents must be in a document folder, such as sampleFolder/TestDocument.

Document Generation Setting

Represents an org's settings for automatic document generation from templates.

Eclair GeoData

Represents an Analytics custom map chart. Custom maps are user-defined maps that are uploaded to Analytics and are used just
as standard maps are. Custom maps are accessed in Analytics from the list of maps available with the map chart type.

Email Template (Classic)

Use email templates to increase productivity and ensure consistent messaging. Email templates with merge fields let you quickly
send emails that include field data from Salesforce records.

Email Template (Lightning)

Represents a template for an email, mass email, list email, or Sales Engagement email.

Embedded Service Config

Represents a setup node for creating an Embedded Service for Web deployment.

Embedded Service Menu Settings

Represents a setup node for creating a channel menu deployment. Channel menus list the ways in which customers can contact
your business.

Enablement Measure Definition

Represents an Enablement measure, which specifies the job-related activity that a user performs to complete a milestone or outcome
in an Enablement program. A measure identifies a source object and optional related objects, with optional field filters and filter
logic, for tracking the activity.

Enablement Program Definition

Represents an Enablement program, which includes exercises and measurable milestones to help users such as sales reps achieve
specific outcomes related to your company’s revenue goals.

Enablement Program Task Subcategory

Represents a custom exercise type that an Enablement admin adds to an Enablement program in Program Builder. A custom exercise
type also requires a corresponding EnblProgramTaskDefinition record for Program Builder and corresponding LearningItem and
LearningItemType records for when users take the exercise in the Guidance Center.

Entitlement Template

Represents an entitlement template. Entitlement templates are predefined terms of customer support that you can quickly add to
products.

ESignature Config

Using the Electronic Signature Configuration setup, the system admin must define the required configurations to support the
e-signature APIs and UI.

ESignature Envelope Config

Using the Electronic Signature Envelope Config the system admin can define the default reminders and expiry for the envelopes
submitted for eSignature.

Event Relay

Represents an event relay that you can use to send platform events and change data capture events from Salesforce to Amazon
EventBridge.

Explainability Action Definition

Define where the metadata for your Decision Explainer business rules are stored in Public Sector Solutions.

50

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Explainability Action Version

Define and store versions of the explainability actions used by your Decision Explainer business rules in Public Sector Solutions.

Explainability Message Template

Represents information about the template that contains the decision explanation message for a specified expression set step type.

Expression Set Definition

Represents an expression set definition.

Expression Set Definition Version

Represents a definition of an expression set version.

Expression Set Object Alias

Represents information about the alias of the source object that’s used in an expression set.

Expression Set Message Token

Represents a token that's used in an explainability message template. The token can be replaced with an expression set version
resource that the template is used in. This object is available in API version 59.0 and later.

External Auth Identity Provider

Represents the external auth identity provider that obtains OAuth tokens for callouts that use named credentials.

External Client App Header

Represents the header file for an external client application configuration.

External Client App Notification Settings

Represents the settings configuration for the external client app’s notifications plugin.

External Client App OAuth Settings

Represents the settings configuration for the external client app’s OAuth plugin.

External Client App Push Settings

Represents the settings configuration for the external client app’s push notification plugin.

External Credential

Represents the details of how Salesforce authenticates to the external system.

External Data Connector

Used to represent the object where the data was sourced.

External Data Source

Represents the metadata associated with an external data source. Create external data sources to manage connection details for
integration with data and content that are stored outside your Salesforce org.

External Data Transport Field Template

Represents the definition of a Data Cloud schema field.

External Data Transport Field

Use ExternalDataTranField to add a field to the ExternalDataTranObject in your managed packages. ExternalDataTranObject is a Data
Cloud schema object.

External Data Transport Object Template

Represents the definition of a Data Cloud schema object.

External Data Transport Object

To include a Data Cloud schema object in your managed packages, add ExternalDataTranObject.

51

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

External Document Storage Configuration

Represents configuration, which admin makes in setup to specify the drive, path, and named credential to be used for storing
documents on external drives.

External Services

Represents the External Service configuration for an org.

Feature Parameter Boolean

Represents a boolean feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Feature Parameter Date

Represents a date feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Feature Parameter Integer

Represents an integer feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Field Set

Represents a field set. A field set is a grouping of fields. For example, you could have a field set that contains fields describing a user's
first name, middle name, last name, and business title.

Field Source Target Relationship

Stores the relationships between a data model object (DMO) and its fields. For example, the Individual.Id field has a one-to-many
relationship (1:M) with the ContactPointEmail.PartyId field.

Flow

Represents the metadata associated with a flow. With Flow, you can create an application that navigates users through a series of
pages to query and update records in the database. You can also execute logic and provide branching capability based on user input
to build dynamic applications.

Flow Category

Represents a list of flows that are grouped by category.

Flow Definition

Represents the flow definition’s description and active flow version number.

Flow Test

Represents the metadata associated with a flow test. Before you activate a record-triggered flow, you can test it to verify its expected
results and identify flow run-time failures.

Folder

Represents a folder.

Fuel Type

Represents a custom fuel type in an org.

Fuel Type Sustainability Unit of Measure

Represents a mapping between the custom fuel types and their corresponding unit of measure (UOM) values defined by a customer
in an org.

Fundraising Config

Represents a collection of settings to configure the fundraising product.

52

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Gateway Provider Payment Method Type

Represents an entity that allows integrators and payment providers to choose an active payment to receive an order's payment data
rather than allowing the Salesforce Order Management platform to select a default payment method.

Gen Ai Planner Bundle

Represents a planner for an agent or agent template. It’s a container for all the topics and actions used to interact with a large
language model (LLM).

Generative AI Prompt Template

Represents a generative AI prompt template, for use in Agentforce.

Global Picklist

Represents the metadata for a global picklist value set, which is the set of shared values that custom picklist fields can use. A global
value set isn’t a field itself. In contrast, the custom picklist fields that are based on a global picklist are of type ValueSet.

Home Page Component

Represents the metadata associated with a home page component. You can customize the Home tab in Salesforce Classic to include
components such as sidebar links, a company logo, a dashboard snapshot, or custom components that you create. Use to create,
update, or delete home page component definitions.

Home Page Layout

Represents the metadata associated with a home page layout. You can customize home page layouts and assign the layouts to
users based on their user profile.

Identity Verification Proc Def

Represents the definition of the identity verification process.

Inbound Network Connection

Represents a private connection between a third-party data service and a Salesforce org. The connection is inbound because the
callouts are coming into Salesforce.

IntegrationProviderDef

Represents an integration definition associated with a service process. Stores data for the Industries: Send Apex Async Request and
Industries: Send External Async Request invocable actions.

LearningAchievementConfig

Represents the mapping details between a Learning Achievement type and a Learning Achievement record type.

Learning Item Type

Represents a custom exercise type that an Enablement user takes in an Enablement program in the Guidance Center. A custom
exercise type also requires a corresponding LearningItem record for the Guidance Center and corresponding EnblProgramTaskDefinition
and EnblProgramTaskSubCategory records for when admins create a program in Program Builder.

Letterhead

Represents formatting options for the letterhead in an email template. A letterhead defines the logo, page color, and text settings
for your HTML email templates. Use letterheads to ensure a consistent look and feel in your company’s emails.

Life Science Config Category

Represents the category that a Life Sciences configuration record is organized into.

Life Science Config Record

Represents a configuration record for Life Sciences. This object is a child of Life Science Config Category.

Lightning Bolt

Represents the definition of a Lightning Bolt Solution, which can include custom apps, flow categories, and Experience Builder
templates.

53

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Lightning Message Channel

Represents the metadata associated with a Lightning Message Channel. A Lightning Message Channel represents a secure channel
to communicate across UI technologies, such as Lightning Web Components, Aura Components, and Visualforce.

Lightning Page

Represents the metadata associated with a Lightning page. A Lightning page represents a customizable screen made up of regions
containing Lightning components.

Lightning Type

Represents a custom Lightning type. Use this type to override the default user interface to create a customized appearance of
responses on the custom agent’s action input and output. Deploy this bundle to your organization to implement the overrides.

Lightning Web Component

Represents a Lightning web component bundle. A bundle contains Lightning web component resources.

List View

ListView allows you to see a filtered list of records, such as contacts, accounts, or custom objects.

Live Chat Sensitive Data Rule

Represents a rule for masking or deleting data of a specified pattern. Written as a regular expression (regex). Use this object to mask
or delete data of specified patterns, such as credit card, social security, or phone and account numbers.

Loyalty Program Setup

Represents the configuration of a loyalty program process including its parameters and rules. Program processes determine how
new transaction journals are processed. When new transaction journals meet the criteria and conditions for a program process,
actions that are set up in the process are triggered for the transaction journals.

Managed Content Type

Represents the definition of custom content types for use with Salesforce CMS. Custom content types are displayed as forms with
defined fields.

Marketing App Extension

Represents an integration with a third-party app or service that generates prospect external activity.

Marketing App Extension Activity

Represents an Activity Type, which is a prospect activity that occurs in a third-party app and can be used in Account Engagement
automations.

Market Segment Definition

Represents the field values for MarketSegmentDefinition. MarketSegmentDefinition is used to store the exportable metadata of a
segment, such as segment criteria and other attributes. Developers can create segment definition packages, pass segment definition
in the form of data build tool (DBT), and publish it on AppExchange for subscriber organizations to install and instantiate these
segments.

MktCalculatedInsightsObjectDef

Represents Calculated Insight definition such as expression.

MktDataConnection

Represents the connection information of an external connector that can ingest data to Data Cloud, read data from the source, or
write data to the source in Data Cloud.

MktDataTranObject

An entity that is used to deliver (aka transport) information from the source to a target (target will be called a landing entity).This
can be the schema of a file, API, Event, or other means of transporting data, such as SubscriberFile1.csv, or SubscriberCDCEvent.

54

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Named Credential

Represents a named credential, which specifies the URL of a callout endpoint and its required authentication parameters in one
definition. A named credential can be specified as an endpoint to simplify the setup of authenticated callouts.

Object Source Target Map

Contains the object-level mappings between the source and the target objects. The source and target objects can be an
MktDataLakeObject or an MktDataModelObject. For example, an Email source object can be mapped to the ContactPointEmail
object.

OcrSampleDocument

Represents the details of a sample document or a document type that's used as a reference while extracting and mapping information
from a customer form.

OcrTemplate

Represents the details of the mapping between a form and a Salesforce object using Intelligent Form Reader.

Outbound Network Connection

Represents a private connection between a Salesforce org and a third-party data service. The connection is outbound because the
callouts are going out of Salesforce.

Page Layout

Represents the metadata associated with a page layout.

Path Assistant

Represents Path records.

Payment Gateway Provider

Represents the metadata associated with a payment gateway provider.

Permission Set

Represents a set of permissions that's used to grant more access to one or more users without changing their profile or reassigning
profiles. You can use permission sets to grant access but not to deny access.

Permission Set Groups

Represents a group of permission sets and the permissions within them. Use permission set groups to organize permissions based
on job functions or tasks. Then, you can package the groups as needed.

Platform Cache

Represents a partition in the Platform Cache.

Platform Event Channel

Represents a channel that you can subscribe to in order to receive a stream of events.

Platform Event Channel Member

Represents an entity selected for Change Data Capture notifications on a standard or custom channel, or a platform event selected
on a custom channel.

Platform Event Subscriber Configuration

Represents configuration settings for a platform event Apex trigger, including the batch size, the trigger’s running user, and parallel
subscription settings.

Pricing Action Parameters

Represents a pricing action associated to a context definition and a pricing procedure.

Pricing Recipe

Represents one out of various data models or sets of entities of a particular cloud that'll be consumed by the pricing data store during
design and run time.

55

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Procedure Output Resolution

Represents the pricing resolution for an pricing element determined using strategy name and formula.

Process

Use Flow instead.

Process Flow Migration

Represents a process's migrated criteria and the resulting migrated flow.

Product Attribute Set

Represents the ProductAttribute information being used as and attribute such as color_c, size_c .

Product Specification Type

Represents the type of product specification provided by the user to make the product terminology unique to an industry. A product
specification type is associated with a product specification record type.

Product Specification Record Type

Represents the relationship between industry-specific product specifications and the product record type.

Prompts (In-App Guidance)

Represents the metadata related to in-app guidance, which includes prompts and walkthroughs.

Quick Action

Represents a specified create or update quick action for an object that then becomes available in the Chatter publisher.

Recommendation Strategy

Represents a recommendation strategy. Recommendation strategies are applications, similar to data flows, that determine a set of
recommendations to be delivered to the client through data retrieval, branching, and logic operations.

Record Action Deployment

Represents configuration settings for the Actions & Recommendations, Action Launcher, and Bulk Action Panel components.

Record Alert Data Source Expression Set Definition

Represents information about the data source for a record alert and the association with an expression set definition.

Record Type

Represents the metadata associated with a record type. Record types let you offer different business processes, picklist values, and
page layouts to different users. Use this metadata type to create, update, or delete record type definitions for a custom object.

RedirectWhitelistUrl

Represents a trusted URL that’s excluded from redirection restrictions when the redirectionWarning or redirectBlockModeEnabled
field on the SessionSettings Metadata type is set to true.

Referenced Dashboard

Represents the ReferencedDashboard object in CRM Analytics. A referenced dashboard stores information about an externally
referenced dashboard.

Registered External Service

Represents a registered external service, which provides an extension or integration.

RelationshipGraphDefinition

Represents a definition of a graph that you can configure in your organization to traverse object hierarchies and record details, giving
you a glimpse of how your business works.

Remote Site Setting

Represents a remote site setting.

56

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Report

Represents a custom report.

Report Type

Represents the metadata associated with a custom report type. Custom report types allow you to build a framework from which
users can create and customize reports.

ServiceProcess

Represents a process created in Service Process Studio and its associated attributes.

Slack App (Beta)

Represents a Slack app.

Service Catalog Category

Represents the grouping of individual catalog items in Service Catalog.

Service Catalog Filter Criteria

Represents an eligibility rule that determines if a Service Catalog user has access to a catalog item.

Service Catalog Item Definition

Represents the entity associated with a specific, individual service available in the Service Catalog.

Service Catalog Fulfillment Flow

Represents the flow associated with a specific catalog item in the Service Catalog.

Stationary Asset Environmental Source Record Type Configuration

Represents the setup object that contains the mapping between the Stationary Asset Environmental Source record type and internal
enums. You can primarily use this object for calculations across different record types.

Static Resource

Represents a static resource file, often a code library in a ZIP file.

Streaming App Data Connector

Represents the connection information specific to Web and Mobile Connectors.

Sustainability UOM

Represents information about the additional unit of measure values defined by a customer.

Sustainability UOM Conversion

Represents information about the unit of measure conversion for the additional fuel types defined by a customer.

Timeline Object Definition

Represents the container that stores the details of a timeline configuration. You can use this resource with Salesforce objects to see
their records' related events in a linear time-sorted view.

Timesheet Template

Represents a template for creating time sheets in Field Service.

Translation

Add translations to your managed packages.

UI Object Relation Config

Represents the admin-created configuration of the object relation UI component.

User Access Policy

Represents a user access policy.

Validation Rule

Represents a validation rule, which is used to verify that the data a user enters in a record is valid and can be saved.

57

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Vehicle Asset Emissions Source Record Type Configuration

Represents the setup object that contains the mapping between the Vehicle Asset Emissions Source record type and internal enums.
You can primarily use this object for calculations across different record types.

View Definition (Beta)

Represents a view definition on a Slack app.

Virtual Visit Config

Represents an external video provider configuration, which relays events from Salesforce to the provider.

Visualforce Component

Represents a Visualforce component.

Visualforce Page

Represents a Visualforce page.

Wave Analytic Asset Collection

A collection of CRM Analytics assets.

Wave Application

A CRM Analytics application.

Wave Component

A CRM Analytics dashboard component.

Wave Dataflow

A CRM Analytics data prep dataflow.

Wave Dashboard

A CRM Analytics dashboard.

Wave Dataset

A CRM Analytics dataset.

Wave Lens

A CRM Analytics lens.

Wave Recipe

A CRM Analytics data prep recipe.

Wave Template Bundle

A CRM Analytics template bundle.

Wave Xmd

The extended metadata for CRM Analytics dataset fields and their formatting for dashboards and lenses.

Web Store Template

Represents a configuration for creating commerce stores.

Workflow Alert

WorkflowAlert represents an email alert associated with a workflow rule.

Workflow Field Update

WorkflowFieldUpdate represents a workflow field update.

Workflow Knowledge Publish

WorkflowKnowledgePublish represents Salesforce Knowledge article publishing actions and information.

Workflow Outbound Message

WorkflowOutboundMessage represents an outbound message associated with a workflow rule.

58

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Workflow Rule

This metadata type represents a workflow rule.

Workflow Task

This metadata type references an assigned workflow task.

Account Plan Objective Measure Calculation Definition
Represents the definition of a target object, rollup field, and logic for calculating the current value of a sales account plan objective
measure.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Description, DeveloperName, MasterLabel, RollupType, Status, TargetField, TargetObject

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AccountPlanObjMeasCalcDef

Component Type in 1GP Package Manager UI: Account Plan Objective Measure Calculation Definition

Documentation
Sales Account Plan Objectives, Measures, and Calculation Definitions

59

Account Plan Objective Measure Calculation DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sales.account_plans_objective_measures.htm&type=5&language=en_US

Account Relationship Share Rule
Determines which object records are shared, how they’re shared, the account relationship type that shares the records, and the level of
access granted to the records.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Name

• Developer Name

• Description

• Account Relationship Type

• Access Level

• Object Type

• Account to Criteria Field

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AccountRelationshipShareRule

Use Case
To share data between external accounts.

License Requirements
Orgs with Digital Experiences enabled can use this package.

Documentation
Salesforce Help: Account Relationships and Account Relationship Data Sharing Rules

60

Account Relationship Share RuleFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.networks_partner_account_relationships_and_sharing.htm&language=en_US

Action Link Group Template
Represents the action link group template. Action link templates let you reuse action link definitions and package and distribute action
links.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ActionLinkGroupTemplate

Component Type in 1GP Package Manager UI: Action Link Group Template

Documentation
Salesforce Help: Action Link Templates

Action Plan Template
Represents an instance of an action plan template.

61

Action Link Group TemplateFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.action_link_group_template.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ActionPlanTemplate

Documentation
Salesforce Help: Action Plans

Actionable List Definition
Represents the data source definition details associated with an actionable list.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

62

Actionable List DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.fsc_action_plans.htm&type=5&language=en_US

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ActionableListDefinition

Component Type in 1GP Package Manager UI: ActionableListDefinition

Documentation
Salesforce Help: Actionable Segmentation

Actionable List Key Performance Indicator Definition
Represents the custom key performance indicators that are defined for a specific field in an object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes, Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

63

Actionable List Key Performance Indicator DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.actionable_segmentation.htm&language=en_US

NoComponent Has IP Protection

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• All attributes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ActnblListKeyPrfmIndDef

Component Type in 1GP Package Manager UI: ActnblListKeyPrfmIndDef

License Requirements
Actionable Segmentation

Documentation
Salesforce Help: Create Custom Key Performance Indicators

Salesforce Help: ActnblListKeyPrfmIndDef

Activation Platform
Represents the ActivationPlatform configuration, such as platform name, delivery schedule, output format, and destination folder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

64

Activation PlatformFirst-Generation Managed Packages

https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.create_custom_kpis.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/sforce_api_objects_actnbllistkeyprfminddef.htm

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DataConnector

• Description

• LogoUrl

• MasterLabel

• OutputFormat

• RefreshMode

• Type

Both Package Developer and Subscriber Can Edit

• Enabled (only subscriber editable)

• IncludeSegmentNames (only subscriber editable)

Neither Package Developer or Subscriber Can Edit

• ID

• OutputGrouping

• PeriodicRefreshFrequency

• RefreshFrequency

More Information
Feature Name

Metadata Name: ActivationPlatform

Component Type in 1GP Package Manager UI: ActivationPlatform

Use Case
Allows ISVs to specify capabilities of their Activation Platform integrations and publish it on AppExchange for subscriber organizations
to install and instantiate instances of the platform as a disparate activation target.

Considerations When Packaging
Some upgrade scenarios are not support:

• Adding a new required field

• Removing a previously supported ID type

• Removing a previously supported optional field or required field

• Changing a previously supported field property from optional to required

65

Activation PlatformFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Some update scenarios are supported and don't automatically cascade to Activation Target or Activations created before the upgrade
installations:

• Adding a new ID type

• Adding of a new optional field

• Adding a new hidden field

• Value change on a previously supported hidden field

To apply updates to future Activation run jobs, the user must edit and resave all Activation Targets created before the upgrade.
Developers provide post-install instructions informing the subscriber of this required action anytime a change is made in a new
version release.

License Requirements
Data Cloud enabled orgs can access this package.

Post Install Steps
An admin from the subscriber org enables the activation platform to start using this platform in Activation creations.

Documentation
Metadata API Developer Guide: ActivationPlatform

AffinityScoreDefinition
Represents the affinity information used in calculations to analyze and categorize contacts for marketing purposes.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AffinityScoreType

• NumberOfMonths

66

AffinityScoreDefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_activationplatform.htm
https://partners.salesforce.com/partnerSupport

• NumberOfRanges

• SourceFieldApiNameList

• TargetFieldApiNameList

• ScoreRangeList

Both Package Developer and Subscriber Can Editv

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AffinityScoreDefinition

Documentation

• Fundraising Metadata API Types: AffinityScoreDefinitions

• Salesforce Help: Set Up RRM Scoring

• Salesforce Help: Scoring Frameworks Help Increase Fundraising Success

Agent Action
Represents an action, for use in Agentforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

No (However, actions can incorporate flows or Apex code that do
have IP protection.)

Component Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

67

Agent ActionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.nonprofit_cloud.meta/nonprofit_cloud/fundraising_affinityscoredefinition_metadata_api.htm
https://help.salesforce.com/s/articleView?id=sfdo.npc_fr_set_up_configure_fundraising.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.npc_fr_scoring_frameworks_help_increase_fundraising_success.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• IsConfirmationRequired

• MasterLabel

Action Input Fields:

• CopilotAction.IsUserInput

• Description

• IsPII

• Properties (Inherited from invocationTarget like flows or Apex code.)

• Title (Inherited from invocationTarget like flows or Apex code.)

• Required

• Lightning.Type

Action Output Fields:

• Description

• CopilotAction.IsDisplayable

• IsPII

• CopilotAction.IsUsedByPlanner

• Properties (Inherited from invocationTarget like flows or Apex code.)

• Title (Inherited from invocationTarget like flows or Apex code.)

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• InvocationTarget

• InvocationTargetType

More Information
Feature Name

Metadata Name: GenAiFunction

Component Type in 1GP Package Manager UI: Generative AI Function Definition

Use Case
Provide actions that customers can add to their own topics and agents.

Considerations When Packaging

When creating an Agent Action of type Apex, the Apex class, invocable Apex method, and any invocable Apex variables must all be
marked as global. If any of these are public or private, the Apex method won't appear in the list of options to add to the Agent
Action, and won't be invoked by an Agent at runtime.

Documentation
Salesforce Help: Agentforce Agents

68

Agent ActionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_genaifunction.htm
https://help.salesforce.com/s/articleView?id=sf.copilot_intro.htm&language=en_US

Salesforce Help: Agentforce Actions

Metadata API Developer Guide: GenAiFunction

Agent Topic
Represents a topic, for use in Agentforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• MasterLabel

• Scope

• AiPluginUtterances

• GenAiFunctions

• GenAiPluginInstructions

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• PluginType

69

Agent TopicFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ai.copilot_actions.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_genaifunction.htm
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: GenAiPlugin

Component Type in 1GP Package Manager UI: Generative AI Plugin Definition

Use Case
Provide topics that customers can add to their own agents. Actions can be added to topics.

Considerations When Packaging

Subscribers can't edit which actions are associated with a managed-installed topic. Instead, subscribers must manually create a copy
of the topic and then assign actions to their copy of the topic. We're working to improve this experience.

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: Agentforce Topics

AI Application
Represents an instance of an AI application. For example, Einstein Prediction Builder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Type

Both Package Developer and Subscriber Can Edit

• Status

• ExternalId

• MlExternalId

Neither Package Developer or Subscriber Can Edit

• Name

70

AI ApplicationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_genaiplugin.htm
https://help.salesforce.com/s/articleView?id=sf.copilot_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_topics.htm&language=en_US

More Information
Feature Name

Metadata Name: AIApplication

Considerations When Packaging

AIApplication is the parent entity for all Einstein configuration entities. Packaging of Einstein features must always begin with the
selection of one or more AIApplications. To create a package with ML Prediction Definition, select the parent AIApplication (Type =
PredictionBuilder). To create a package with ML Recommendation Definition, select the parent AIApplication (Type =
RecommendationBuilder). Packaging automatically analyzes the relationships and includes the associated MLPredictionDefinitions,
MLRecommendationDefinitions, and MLDataDefinitions necessary to fully define the Einstein configuration.

Documentation
Metadata API Developer Guide: AIApplication

Salesforce Help: Einstein Prediction Builder

Salesforce Help: Einstein Recommendation Builder

AI Application Config
Represents additional prediction information related to an AI application.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AIApplicationId

Both Package Developer and Subscriber Can Edit

• Rank

• IsInsightReasonEnabled

• IsInsightReasonEnabled

• AIScoringMode

• ExternalId

Neither Package Developer or Subscriber Can Edit

71

AI Application ConfigFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_aiapplication.htm
https://help.salesforce.com/s/articleView?id=sf.custom_ai_prediction_builder_lm.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.custom_ai_recommendation_builder.htm&language=en_US

• Name

More Information
Feature Name

Metadata Name: AIApplicationConfig

Considerations When Packaging

AIApplicationConfig is always associated with an AIApplication. Packaging of Einstein features must always begin with the selection
of one or more AIApplications. To create a package with AI Application Config, select the parent AIApplication. Packaging automatically
analyzes the relationships and includes the associated MLApplicationConfig, MLPredictionDefinition, MLRecommendationDefinitions,
and MLDataDefinitions necessary to fully define the Einstein configuration.

Documentation
Metadata API Developer Guide: AIApplicationConfig

Salesforce Help: Einstein Prediction Builder

Salesforce Help: Einstein Recommendation Builder

AIUsecaseDefinition
Represents a collection of fields in a Salesforce org used to define a machine learning use case and get real-time predictions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All the AIUsecaseDefinition fields

Both Package Developer and Subscriber Can Edit

72

AIUsecaseDefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_aiapplicationconfig.htm
https://help.salesforce.com/s/articleView?id=sf.custom_ai_prediction_builder_lm.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.custom_ai_recommendation_builder.htm&language=en_US
https://partners.salesforce.com/partnerSupport

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AIUsecaseDefinition

Component Type in 1GP Package Manager UI: AIUsecaseDefinition

Use Case
AI Usecase Definition lets you ship data that can be used to set up use cases for which you want to generate real-time predictions.
This data includes machine learning models and feature extractors required to generate the real-time predictions.

License Requirements
This feature is available with the CRM Plus license and the use case-related product’s CRM license.

Documentation
Industries Common Resources Developer Guide: AI Accelerator

Salesforce Help: AI Accelerator

Analytics
Analytics components include analytics applications, dashboards, dataflows, datasets, lenses, recipes, and user XMD.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (Analytics Dataflow only).

All other analytics components can’t be updated.

Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (Analytic snapshot only). Supported in managed 2GP packages
only.

All other analytics components can’t be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

73

AnalyticsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/ai_accelerator.htm
https://help.salesforce.com/s/articleView?id=sf.ai_accelerator.htm&language=en_US
https://partners.salesforce.com/partnerSupport

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

More Information
To include analytics components in a managed 2GP package, include EinsteinAnalyticsPlus in your scratch org definition file.

To enable analytics in a 1GP packaging org, see Basic CRM Analytics Platform Setup in Salesforce Help.

For more details, see CRM Analytics Packaging Considerations.

Analytics Dashboard
Represents a Tableau Next dashboard.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Template Asset Source Name

• Template Source

• Version

More Information
Feature Name

Metadata Name: AnalyticsDashboard

Component Type in 1GP Package Manager UI: Analytics Dashboard

License Requirements
Tableau Next Admin or Tableau Next Analyst permission sets

Documentation
For more information on Tableau Next dashboards, see Create Effective Dashboards With Tableau Next in Salesforce Help.

74

Analytics DashboardFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_einsteinanalyticsplus
https://help.salesforce.com/s/articleView?id=sf.bi_help_setup_basic.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.bi_packaging_considerations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=analytics.tua_create_dashboard.htm&language=en_US

Analytics Visualization
Represents a Tableau Next visualization.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Full Name

• Is Original

• Version

More Information
Feature Name

Metadata Name: AnalyticsVisualization

Component Type in 1GP Package Manager UI: Analytics Visualization

License Requirements
Tableau Next Admin or Tableau Next Analyst permission sets

Documentation
For more information on Tableau Next visualizations, see Build Insightful Visualizations in Tableau Next in Salesforce Help.

Analytics Workspace
Represents a Tableau Next workspace.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

75

Analytics VisualizationFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=analytics.tua_create_viz.htm&language=en_US

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: AnalyticsWorkspace

Component Type in 1GP Package Manager UI: Analytics Workspace

License Requirements
Tableau Next Admin or Tableau Next Analyst permission sets

Documentation
For more information on Tableau Next workspaces, see Tableau Next Workspaces in Salesforce Help.

Apex Class
Represents an Apex Class. An Apex class is a template or blueprint from which Apex objects are created. Classes consist of other classes,
user-defined methods, variables, exception types, and static initialization code.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (if not set to global access).

Supported in both 1GP and 2GP packages.

Package Developer Can Remove Component From Package

YesComponent Has IP Protection

76

Apex ClassFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=analytics.tua_workspace.htm&language=en_US

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Code

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ApexClass

Component Type in 1GP Package Manager UI: Apex Class

Considerations When Packaging

• Any Apex that is included as part of a package must have at least 75% cumulative test coverage. Each trigger must also have
some test coverage. When you upload your package to AppExchange, all tests are run to ensure that they run without errors. In
addition, all tests are run when the package is installed in the installer’s org. If any test fails, the installer can decide whether to
install the package.

• Managed packages receive a unique namespace. This namespace is prepended to your class names, methods, variables, and so
on, which helps prevent duplicate names in the installer’s org.

• In a single transaction, you can only reference 10 unique namespaces. For example, suppose that you have an object that executes
a class in a managed package when the object is updated. Then that class updates a second object, which in turn executes a
different class in a different package. Even though the first package didn’t access the second package directly, the access occurs
in the same transaction. It’s therefore included in the number of namespaces accessed in a single transaction.

• If you’re exposing any methods as Web services, include detailed documentation so that subscribers can write external code
that calls your Web service.

• If an Apex class references a custom label and that label has translations, explicitly package the individual languages desired to
include those translations in the package.

• If you reference a custom object’s sharing object (such as MyCustomObject__share) in Apex, you add a sharing model dependency
to your package. Set the default org-wide access level for the custom object to Private so other orgs can install your package
successfully.

• The code contained in an Apex class, trigger, or Visualforce component that’s part of a managed package is obfuscated and
can’t be viewed in an installing org. The only exceptions are methods declared as global. You can view global method signatures
in an installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view
their packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

77

Apex ClassFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• You can use the deprecated annotation in Apex to identify global methods, classes, exceptions, enums, interfaces, and
variables that can’t be referenced in later releases of a managed package. So you can refactor code in managed packages as the
requirements evolve. After you create another package version as Managed - Released, new subscribers that install the latest
package version can’t see the deprecated elements, while the elements continue to function for existing subscribers and API
integrations.

• Apex code that refers to Data Categories can’t be uploaded.

• Before deleting Visualforce pages or global Visualforce components from your package, remove all references to public Apex
classes and public Visualforce components. After removing the references, upgrade your subscribers to an interim package
version before you delete the page or global component.

Usage Limits
The maximum number of class and trigger code units in a deployment of Apex is 7500. For more information, see Execution Governors
and Limits in the Apex Developer Guide.

Documentation
Second-Generation Managed Packaging Developer Guide: Namespace-Based Visibility for Apex Classes in Second-Generation Managed
Packages

First-Generation Managed Packaging Developer Guide: About API and Dynamic Apex Access in Packages

First-Generation Managed Packaging Developer Guide:Using Apex in Group and Professional Editions

Apex Sharing Reason
Represents an Apex sharing reason, which is used to indicate why sharing was implemented for a custom object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Reason Label

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Reason Name

78

Apex Sharing ReasonFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_gov_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_gov_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_namespace_visibility.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/about_client_security_profile.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/dev_packages_apex_ge_pe.htm

More Information
Feature Name

Metadata Name: SharingReason

Component Type in 1GP Package Manager UI: Apex Sharing Reason

Considerations When Packaging
Apex sharing reasons can be added directly to a package, but are only available for custom objects.

Documentation
Metadata API Developer Guide: SharingReason

Apex Trigger
Represents an Apex trigger. A trigger is Apex code that executes before or after specific data manipulation language (DML) events occur,
such as before object records are inserted into the database, or after records have been deleted.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Code

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

79

Apex TriggerFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_apexsharingreason.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

More Information
Feature Name

Metadata Name: ApexTrigger

Component Type in 1GP Package Manager UI: Apex Trigger

Documentation
Apex Developer Guide: Triggers

App Framework Template Bundle
Represents the app framework template bundle. Use these templates for Data Cloud and Tableau Next assets.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

• MaxAppCount

Both Package Developer and Subscriber Can Edit

• Description

• TemplateBadgeIcon

Neither Package Developer or Subscriber Can Edit

• AssetVerion

• TemplateType

More Information
Feature Name

Metadata Name: AppFrameworkTemplateBundle

Component Type in 1GP Package Manager UI: App Framework Template Bundle

80

App Framework Template BundleFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_triggers.htm

Considerations When Packaging
Data Cloud and Tableau Next assets are installed in subscriber orgs via templates using the AppFrameworkTemplateBundle. The
template framework supports the data sync and orchestration needed for visualization assets, along with customizations for each
org.

License Requirements
Tableau Included App Manager permission set

Application Subtype Definition
Represents a subtype of an application within an application domain.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Developer Name

• Description

• Application Usage Type

Neither Package Developer or Subscriber Can Edit

• None

81

Application Subtype DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: ApplicationSubtypeDefinition

Documentation
Industries Common Resources Developer Guide: AssessmentSubtypeDefinition

AssessmentConfiguration
Represents a configuration for Assessment component. An AssessmentConfiguration entry indicates configuration for user flows such
as sending out emails or reminder actions on assessments initiated by the patient.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in managed 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: AssessmentConfiguration

Component Type in 1GP Package Manager UI: AssessmentConfiguration

Documentation
Health Cloud Developer Guide: AssessmentConfiguration

82

AssessmentConfigurationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/tooling_api_objects_applicationsubtypedefinition.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_assessmentconfiguration.htm

AssessmentQuestion
Represents the container object that stores the questions required for an assessment.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All except DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: AssessmentQuestion

Documentation
Industries Common Resources Developer Guide: AssessmentQuestion

AssessmentQuestionSet
Represents the container object for Assessment Questions.

83

AssessmentQuestionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_assessmentquestion.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All except DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: AssessmentQuestionSet

Documentation
Industries Common Resources Developer Guide: AssessmentQuestionSet

Aura Component
Represents an Aura definition bundle. A bundle contains an Aura definition, such as an Aura component, and its related resources, such
as a JavaScript controller. The definition can be a component, application, event, interface, or a tokens collection.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

84

Aura ComponentFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_assessmentquestionset.htm

You can build Lightning components using two programming models: the Lightning Web Components model, and the original Aura
Components model.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

When a package developer removes an Aura or Lightning web component from a package, the component remains in a subscriber’s
org after they install the upgraded package. The administrator of the subscriber’s org can delete the component, if desired. This behavior
is the same for a Lightning web component or an Aura component with a public or global access value.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• Label

• Markup

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Aura Component

Metadata Name: AuraDefinitionBundle

Component Type in 1GP Package Manager UI: Aura Component Bundle

Documentation
Lightning Aura Components Developer Guide

Batch Calc Job Definition
Represents a Data Processing Engine definition.

85

Batch Calc Job DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.lightning.meta/lightning/

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire Data Processing Engine definition

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: BatchCalcJobDefinition

Component Type in 1GP Package Manager UI: Batch Calculation Job Definition

Use Case
Data Processing Engine helps you transform data that's available in your Salesforce org and write back the transformation results as
new or updated records. You can transform the data for standard and custom objects using Data Processing Engine definitions.

License Requirements
Either Financial Services Cloud, Manufacturing Cloud, Loyalty Management, Net Zero Cloud, or Rebate Management

Data Pipelines

Documentation
Salesforce Help: Data Processing Engine

Batch Process Job Definition
Represents the details of a Batch Management job definition.

86

Batch Process Job DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.concept_data_processing_engine.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire Batch Management job

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: BatchProcessJobDefinition

Component Type in 1GP Package Manager UI: Batch Process Job Definition

Use Case
Automate the processing of records in scheduled flows with Batch Management. With Batch Management, you can process a high
volume of standard and custom object records.

License Requirements
Either Loyalty Management, Manufacturing Cloud, or Rebate Management

System Administrator Profile

Documentation
Salesforce Help: Batch Management

Benefit Action
Represents details of an action that can be triggered for a benefit.

87

Benefit ActionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.concept_batch_management.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire Benefit Action record

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: BenefitAction

Component Type in 1GP Package Manager UI: Benefit Action

Use Case
Benefit Actions are actions that can be triggered for a loyalty program benefit.

License Requirements
Loyalty Management permission set license

Documentation
Salesforce Help: Benefit Action

Bot Template
Represents the configuration details for a specific Einstein Bot template, including dialogs and variables.

88

Bot TemplateFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.benefit_actions.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Bot Dialog Groups

• Bot Dialogs

• Conversation Context Variables

• Conversation Languages

• Conversation Definition Goals

• Conversation System Dialogs

• Conversation Variables

• Description

• Entry Dialog

• Icon

• Main Menu Dialog

• Label

• MlDomain

• Rich Content Enabled

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

89

Bot TemplateFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: BotTemplate

Component Type in 1GP Package Manager UI: Bot Template

Documentation
Salesforce Help: Create an Einstein Bot Template

Salesforce Help: Create a Template from an Einstein Bot

Salesforce Help: Package an Einstein Bot Template

Metadata API Developer Guide: BotTemplate

Branding Set
Represents the definition of a set of branding properties for an Experience Builder site, as defined in the Theme panel in Experience
Builder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

• brandingSetProperty

• description

• masterLabel

• type

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

90

Branding SetFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.bots_service_create_new_template.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.bots_service_create_template_bot.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.bots_service_create_package_template.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_bottemplate.htm

More Information
Feature Name

Metadata Name: BrandingSet

Relationship to Other Components
BrandingSet can’t be added to a package by itself. BrandingSet is included automatically in a package if it’s referenced by another
object in the package, such as CommunityThemeDefinition, LightningExperienceTheme, or EmbeddedServiceMenuSettings.

Documentation
Salesforce Help: Use Branding Sets in Experience Builder

Briefcase Definition
Represents a briefcase definition. A briefcase makes selected records available for specific users and groups to view when they’re offline
in the Salesforce Field Service mobile app for iOS and Android.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire briefcase

Both Package Developer and Subscriber Can Edit

• Active

Neither Package Developer or Subscriber Can Edit

• Full Name

More Information
Feature Name

Metadata Name: BriefcaseDefinition

Component Type in 1GP Package Manager UI: Briefcase Definition

91

Briefcase DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.community_designer_brandsets.htm&language=en_US

Considerations When Packaging
As a best practice, package Briefcase Definition with IsActive set to false. If you package Briefcase Definition with IsActive set to true,
the package installation fails if installing the package exceeds any limits.

Usage Limits
All Briefcase Builder limits apply to a Briefcase Definition package.

Relationship to Other Components

After you install the package, assign the briefcase to the application that the briefcase's data is for.

Documentation
Salesforce Help: Briefcase Builder

Building Energy Intensity Record Type Configuration
Represents the setup object that contains the mapping between the Building Energy Intensity Record record type and internal enums.
You can primarily use this object for calculations across different record types.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: BldgEnrgyIntensityCnfg

Component Type in 1GP Package Manager UI: Building Energy Intensity Record Type Configuration

92

Building Energy Intensity Record Type ConfigurationFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.briefcase_builder_limits_considerations.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.briefcase_builder_overview.htm&language=en_US

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new stationary asset types for end users.

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

• Manage Building Energy Intensity

Documentation

• Salesforce Help: Set Up Record Types for Net Zero Cloud

• Salesforce Help: Benchmark Building Energy Intensity Data

Business Process
The BusinessProcess metadata type enables you to display different picklist values for users based on their profile.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
• Only Package Developer Can EditNone

• Both Package Developer and Subscriber Can EditAll attributes

• Neither Package Developer or Subscriber Can EditNone

93

Business ProcessFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.netzero_setup_record_types.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.netzero_manager_manage_bei.htm&language=en_US
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: BusinessProcess

Use Case
You can use this component to define different picklist values that you associate with record types.

Relationship to Other Components
Record types of corresponding entities.

Documentation
Salesforce Help: Tailor Business Processes to Different Users Using Record Types

Business Process Group
Represents the surveys used to track customers’ experiences across different stages in their lifecycle.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All Business Process Group fields including Business Process Definition and Business Process Feedback.

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Developer Name

• Customer Satisfaction Metric

More Information
Feature Name

Metadata Name: BusinessProcessGroup

Component Type in 1GP Package Manager UI: Business Process Group

94

Business Process GroupFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.customize_recordtype.htm&language=en_US

Use Case
Business Process Group lets you ship groupings relevant to survey metrics that are captured as part of any purchase or product
lifecycle. For a specific business process group, you can define different stages and associate relevant questions from one or more
surveys for reporting purposes.

License Requirements
This feature is available with the Feedback Management - Growth license.

Relationship to Other Components
This feature can be used in conjunction with Surveys and Survey Invitation Rules Flow types, and their corresponding dependencies.

Documentation
Metadata API Developer Guide: BusinessProcessGroup

Salesforce Help: Track Satisfaction Across a Customer's Lifecycle

Business Process Type Definition
Define the types of business processes that are applied to a rule.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Developer Name

• Description

• Application Usage Type

Neither Package Developer or Subscriber Can Edit

95

Business Process Type DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_businessprocessgroup.htm
https://help.salesforce.com/s/articleView?id=sf.task_customer_lifecycle_maps.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

• None

More Information
Feature Name

Metadata Name: BusinessProcessTypeDefinition

Care Benefit Verify Settings
Represents the configuration settings for benefit verification requests.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• ServiceApexClass

• ServiceNamedCredential

• UriPath

• isDefault

• GeneralPlanServiceTypeCode

• ServiceTypeSourceSystem

• OrganizationName

• DefaultNpi

• CodeSetType

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

96

Care Benefit Verify SettingsFirst-Generation Managed Packages

More Information
Feature Name

Metadata Name: CareBenefitVerifySettings

Component Type in 1GP Package Manager UI: Care Benefit Verification Settings

Use Case
Provides out-of-the-box configuration settings for benefit verification requests in Health Cloud.

License Requirements
Industries Health Cloud

Relationship to Other Components
CareBenefitVerifySettings can contain ApexClass as well as NamedCredentials.

Documentation
Health Cloud Developer Guide: CareBenefitVerifySettings

Care Limit Type
Defines the characteristics of limits on benefit provision.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• LimitType

• MetricType

• MasterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

97

Care Limit TypeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carebenefitverifysettings.htm

More Information
Feature Name

Metadata Name: CareLimitType

Component Type in 1GP Package Manager UI: Care Limit Type

Use Case
Provide the characteristics of limits on benefit provision in Health Cloud.

License Requirements
Industries Health Cloud Add On or an org with a Health Cloud Financial Data Platform license

Documentation
Health Cloud Developer Guide: CareLimitType

Care Request Configuration
Represents the details for a record type such as service request, drug request, or admission request. One or more record types can be
associated with a care request.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• CareRequestType

• CareRequestRecordType

• CareRequestRecords

• IsDefaultRecordType

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• Name

98

Care Request ConfigurationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carelimittype.htm

More Information
Feature Name

Metadata Name: CareRequestConfiguration

Component Type in 1GP Package Manager UI: Care Request Configuration

Use Case
Provides the details for a record type such as a service request, drug request, or admission request in Health Cloud.

License Requirements
Industries Health Cloud Add On an org with a Health Cloud Utilization Mgmt Platform license

Relationship to Other Components
Ensure that the record type specified in the Case Record Type field in CareRequestConfiguration is available in the subscriber org.
Otherwise, the package must include the record type.

Documentation
Health Cloud Developer Guide: CareRequestConfiguration

Care System Field Mapping
Represents a mapping from source system fields to Salesforce target entities and attributes.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• External ID Field

• Is Active

• Label

• Source System

• Target Object

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

99

Care System Field MappingFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.health_cloud_object_reference.meta/health_cloud_object_reference/tooling_api_objects_carerequestconfiguration.htm

• Name

More Information
Feature Name

Metadata Name: CareSystemFieldMapping

Component Type in 1GP Package Manager UI: Care System Field Mapping

Use Case
Provides an out-of-the-box mapping for an external system to Salesforce for the Care Program Enrollment or Remote Monitoring
features in Health Cloud.

License Requirements
Industries Health Cloud

Documentation
Health Cloud Developer Guide: CareSystemFieldMapping

Channel Layout
Represents the metadata associated with a communication channel layout.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

100

Channel LayoutFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.health_cloud_object_reference.meta/health_cloud_object_reference/sforce_api_objects_caresystemfieldmapping.htm

More Information
Feature Name

Metadata Name: ChannelLayout

Component Type in 1GP Package Manager UI: Communication Channel Layout

Considerations When Packaging
ChannelLayout can only be installed in Salesforce Classic orgs with Knowledge enabled.

ChannelLayout includes the article type *__kav, which is not supported by Lightning Knowledge.

If you try to install ChannelLayout into an org with Lightning Knowledge enabled, this message is displayed: “When Lightning
Knowledge is enabled, you can’t add an article type”.

License Requirements
Enable Knowledge in Salesforce Classic orgs.

Documentation
Salesforce Knowledge Developer Guide: ChannelLayout

Chatter Extension
Represents the metadata used to describe a Rich Publisher App that’s integrated with the Chatter publisher.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Header Text

• Hover Text

• Icon

• Name

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

101

Chatter ExtensionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.knowledge_dev.meta/knowledge_dev/meta_articletype_channellayout.htm

• Composition CMP

• Render CMP

• Type

More Information
Feature Name

Metadata Name: ChatterExtension

Documentation
Metadata API Developer Guide: ChatterExtension

Object Reference for the Salesforce Platform: ChatterExtension

Claim Financial Settings
Represents the configuration settings for Insurance Claim Financial Services.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Claim Coverage Pending Authority Status

• Claim Coverage Payment Detail Pending Authority Status

• Claim Pending Authority Status

Neither Package Developer or Subscriber Can Edit

• None

102

Claim Financial SettingsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_chatterextensions.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_chatterextension.htm

More Information
Feature Name

Metadata Name: ClaimFinancialSettings

Documentation
Salesforce Help: Claim Financial Settings

CommunicationChannelType
Represents the type of communication channel, such as WhatsApp and SMS, to use for referral promotions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• API Name

More Information
Feature Name

Metadata Name: CommunicationChannelType

Use Case
Use WhatsApp as a communication channel for referral promotions.

License Requirements
Referral Marketing permission set license

Documentation
Salesforce Help: Communication Assets

103

CommunicationChannelTypeFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.insurance_finauth_claim_financial_settings.htm&language=en_US
https://help.salesforce.com/s/articleView?id=mktg.referral_promotion_wizard_step_content.htm&type=5&language=en_US

Community Template Definition
Represents the definition of an Experience Builder site template.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CommunityTemplateDefinition

Component Type in 1GP Package Manager UI: Lightning Community Template

Use Case
Share or distribute your Experience Builder site templates.

License Requirements
Customize Application user permission

Create and Set Up Experiences user permission

View Setup and Configuration user permission

Relationship to Other Components
If you add CommunityTemplateDefinition to a package, you must also add CommunityThemeDefinition to the package.

Documentation
Salesforce Help: Export a Customized Experience Builder Template for a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

104

Community Template DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.community_builder_export_template.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.community_builder_export_package.htm&language=en_US

Community Theme Definition
Represents the definition of a theme for an Experience Builder site.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CommunityThemeDefinition

Component Type in 1GP Package Manager UI: Lightning Community Theme

Use Case
Share or distribute your Experience Builder site themes.

License Requirements
Customize Application user permission

Create and Set Up Experiences user permission

View Setup and Configuration user permission

Relationship to Other Components
CommunityThemeDefinition must contain a BrandingSet.

CommunityThemeDefinition can be added to a package without a CommunityTemplateDefinition, but CommunityTemplateDefinition
must contain a CommunityThemeDefinition to be added to a package.

Documentation
Salesforce Help: Export a Customized Experience Builder Theme for a Lightning Bolt Solution

105

Community Theme DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.community_builder_export_theme.htm&language=en_US

Salesforce Help: Package and Distribute a Lightning Bolt Solution

Compact Layout
Represents the metadata associated with a compact layout.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CompactLayout

Component Type in 1GP Package Manager UI: Compact Layout

Documentation
Metadata API Developer Guide: CompactLayout

106

Compact LayoutFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.community_builder_export_package.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_compactlayout.htm

Conditional Formatting Ruleset
Represents a set of rules that define the style and visibility of conditional field formatting on Dynamic Forms-enabled Lightning page
field instances.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Conditional formatting ruleset

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: UiFormatSpecificationSet

Component Type in 1GP Package Manager UI: UI Format Specification Set

Relationship to Other Components
You can only assign a conditional formatting ruleset to a field on a Dynamic Forms-enabled Lightning page.

Documentation
Salesforce Help: Conditional Field Formatting in Lightning App Builder

Metadata API Developer Guide: UiFormatSpecificationSet

Connected App
Represents a connected app configuration. A connected app enables an external application to integrate with Salesforce using APIs and
standard protocols, such as SAML, OAuth, and OpenID Connect.

107

Conditional Formatting RulesetFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.conditional_formatting_overview.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_uiformatspecificationset.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Access Method

• Canvas App URL

• Callback URL

• Connected App Name

• Contact Email

• Contact Phone

• Description

• Icon URL

• Info URL

• Trusted IP Range

• Locations

• Logo Image URL

• OAuth Scopes

Both Package Developer and Subscriber Can Edit

• ACS URL

• Entity ID

• IP Relaxation

• Mobile Start URL

• Permitted Users

• Refresh Token Policy

• SAML Attributes

• Service Provider Certificate

108

Connected AppFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• Start URL

• Subject Type

Neither Package Developer or Subscriber Can Edit

• API Name

• Created Date/By

• Consumer Key

• Consumer Secret

• Installed By

• Installed Date

• Last Modified Date/By

• Version

More Information
For details on packaging a connected app in 2GP managed packages, see Package Connected Apps in Second-Generation Managed
Packaging in the Second-Generation Managed Packaging Developer Guide.

• Subscribers or installers of a package can’t delete a connected app by itself, they can only uninstall the package. When a developer
deletes a connected app from a package, the connected app is deleted in the subscriber’s org during a package upgrade.

• To publish updates for a connected app that’s part of a managed package, you typically push a new managed package version
and upgrade subscriber orgs to the new version. But if you update a connected app’s PIN Protect settings, it’s not necessary to
push a new managed package upgrade. After saving changes to PIN Protect settings, these updates are automatically published
to subscriber orgs.

• The following connected app settings can’t be updated with managed package patches.

– Mobile App settings

– Push messaging, including Apple, Android, and Windows push notifications

– Canvas App settings

– SAML settings

To update these settings, publish a new package version.

• If you push upgrade a package containing a connected app whose OAuth scope or IP ranges have changed from the previous
version, the upgrade fails. This security feature blocks unauthorized users from gaining broad access to a customer org by
upgrading an installed package. A customer can still perform a pull upgrade of the same package. This upgrade is allowed
because it’s with the customer’s knowledge and consent.

• For connected apps created before Summer ’13, the existing install URL is valid until you package and upload a new version.
After you upload a new version of the package with an updated connected app, the install URL no longer works.

Context Definition
A context definition defines the relationship between the nodes and the attributes within each node. For efficient data access, users can
use nodes and attributes to easily access the relevant data from the mapped data source. Various Salesforce products offer predefined
context definitions based on their use case.

109

Context DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_connected_app.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_connected_app.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

Yes. Only if the component doesn’t contain any active context
definitions.

Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Standard Context Definitions

More Information
Feature Name

Metadata Name: ContextDefinition

Component Type in 1GP Package Manager UI: Context Definition

Documentation
Industries Common Resources Developer Guide: Context Definition

Salesforce Help: Context Service

Contract Type
A contract type is used to group contracts so that they exhibit similar characteristics. For example, the lifecycle states, the people who
access, the templates and clauses used.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

110

Contract TypeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_contextdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.context_service_context_definitions.htm&language=en_US&type=5

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Is Default

• Sub Types

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ContractType

Use Case
Allows admin users to modify Contract Type properties.

License Requirements
CLM Admin Permission Set (CLM User PSL).

Documentation
Salesforce Contracts Developer Guide: ContractType

Conversation Channel Definition
Represents the conversation channel definition that’s implemented for Interaction Service for Bring Your Own Channel and Bring Your
Own Channel for CCaaS messaging channels.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

111

Conversation Channel DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.clm_developer_guide.meta/clm_developer_guide/meta_contracttype.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Connected App

• Description

• Label

• Name

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ConversationChannelDefinition

Component Type in 1GP Package Manager UI: ConversationChannelDefinition

Use Case
To enable and set up Bring Your Own Channel, integrating third-party messaging services with Salesforce.

To enable and set up Bring Your Own Channel for Contact Center as a Service (CCaaS), integrating a third party CCaaS provider with
Salesforce.

License Requirements
Service Cloud license with Digital Engagement add-on license

Post Install Steps
Set up and enable Bring Your Own Channel or Bring Your Own Channel for CCaaS.

Relationship to Other Components
Linked to ConversationVendorInfo.

Documentation
Salesforce Developer Documentation: Bring Your Own Channel

Salesforce Developer Documentation: Bring Your Own Channel for CCaaS

Salesforce Help: Set Up Bring Your Own Channel

Salesforce Help: Set Up Bring Your Own Channel for CCaaS

Conversation Vendor Info
This setup object connects the partner vendor system to the Service Cloud feature.

112

Conversation Vendor InfoFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/service/messaging-partner/overview
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/overview
https://help.salesforce.com/s/articleView?id=sf.partner_messaging_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.byoc_ccaas_setup.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ConversationVendorInfo

Component Type in 1GP Package Manager UI: ConversationVendorInfo

Use Case
Include information about a Service Cloud Voice implementation.

License Requirements
Enable Service Cloud Voice in your org.

Documentation
Service Cloud Voice for Partner Telephony Developer Guide: ConversationVendorInfo

Object Reference for the Salesforce Platform: ConversationVendorInfo

CORS Allowlist
Represents an origin in the CORS allowlist.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

113

CORS AllowlistFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/sforce_api_objects_conversationvendorinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_conversationvendorinfo.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Url pattern

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CorsWhitelistOrigin

Component Type in 1GP Package Manager UI: CORS Allowed Origin List

Use Case
Customers can add a URL pattern that includes an HTTPS protocol and a domain name. Including a port number is optional. The
wildcard character (*) is supported only for the second-level domain name, for example, https://*.example.com.

Documentation
Salesforce Help: Enable CORS for OAuth Endpoints

Salesforce Help: Configure Salesforce CORS Allowlist

CSP Trusted Site
Represents a trusted URL. For each CspTrustedSite component, you can specify Content Security Policy (CSP) directives and permissions
policy directives.

114

CSP Trusted SiteFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_oauth_endpoints_cors.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.extend_code_cors.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• context

• description

• endpointUrl

• isActive

• isApplicableToConnectSrc

• isApplicableToFontSrc

• isApplicableToFrameSrc

• isApplicableToImgSrc

• isApplicableToMediaSrc

• isApplicableToStyleSrc

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CspTrustedSite

Component Type in 1GP Package Manager UI: CspTrustedSite

Use Case
The Lightning Component framework uses Content Security Policy (CSP) to impose restrictions on content. The main objective of
CSP is to help prevent cross-site scripting (XSS) and other code injection attacks. If your package includes sites or pages that load
content from an external (non-Salesforce) server or via a WebSocket connection, add the external server as a CSP trusted site. Each
CSP trusted site can apply to Experience Cloud sites, Lightning Experience pages, custom Visualforce pages, or all three.

115

CSP Trusted SiteFirst-Generation Managed Packages

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Considerations When Packaging
When you include the CspTrustedSite component in a package, the permissions for the third-party APIs and Websocket connections
apply to sites and pages across the org. Because this component modifies security, we don’t recommend including CspTrustedSite
components in packages. Instead, we recommend that you instruct customers to use the CSP Trusted Sites Setup page or the
CSPTrustedSites metadata API type to add the URLs to their allowlist as part of activating your package. If you choose to include
CspTrustedSite components in your package, disclose this change prominently in your package documentation to ensure that your
customers are aware of the security modification.

You can’t load JavaScript resources from a third-party site, even if it’s a CSP Trusted Site. To use a JavaScript library from a third-party
site, add it to a static resource, and then add the static resource to your component. After the library is loaded from the static resource,
you can use it as normal.

CSP isn’t enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

Usage Limits
CspTrustedSite components are available in API version 39.0 and later. Multiple properties and enumeration values are available in
later API versions. For details, see CspTrustedSite in the Metadata API Developer Guide.

For Experience Builder sites, if the HTTP header size is greater than 8 KB, the directives are moved from the CSP header to the <meta>
tag. To avoid errors from infrastructure limits, ensure that the HTTP header size doesn’t exceed 3 KB per context.

Relationship to Other Components
This component can be used only in conjunction with an Aura or Lightning Web Runtime (LWR) page for an Experience Cloud site,
a Lightning Page, or a Visualforce page.

Documentation
Salesforce Help: Manage CSP Trusted Sites

Metadata API Developer Guide: CspTrustedSites

Custom Application
Represents a custom application.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

116

Custom ApplicationFirst-Generation Managed Packages

https://caniuse.com
https://help.salesforce.com/s/articleView?id=sf.csp_trusted_sites.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_csptrustedsite.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Show in Lightning Experience (Salesforce Classic only)

• Selected Items (Lightning Experience only)

• Utility Bar (Lightning Experience only)

Both Package Developer and Subscriber Can Edit

• All attributes, except App Name and Show in Lightning Experience (Salesforce Classic only)

• All attributes, except Developer Name, Selected Items, and Utility Bar (Lightning Experience only)

Neither Package Developer or Subscriber Can Edit

• App Name (Salesforce Classic only)

• Developer Name (Lightning Experience only)

More Information
Feature Name

Metadata Name: CustomApplication

Documentation
Metadata API Developer Guide: CustomApplication

Custom Button or Link
Represents a custom link defined in a home page component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

117

Custom Button or LinkFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_customapplication.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Behavior

• Button or Link URL

• Content Source

• Description

• Display Checkboxes

• Label

• Link Encoding

Both Package Developer and Subscriber Can Edit

• Height

• Resizeable

• Show Address Bar

• Show Menu Bar

• Show Scrollbars

• Show Status Bar

• Show Toolbars

• Width

• Window Position

Neither Package Developer or Subscriber Can Edit

• Display Type

• Name

More Information
Feature Name

Metadata Name: WebLink, CustomPageWebLink

Documentation
Salesforce Help: Custom Buttons and Links

Custom Console Components
Represents a custom console component (Visualforce page) assigned to a CustomApplication that is marked as a Salesforce console.
Custom console components extend the capabilities of Salesforce console apps.

118

Custom Console ComponentsFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://help.salesforce.com/s/articleView?id=sf.customize_enterprise.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

A package that has a custom console component can only be installed in an org with the Service Cloud license or Sales Console permission
enabled.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomApplicationComponent

Component Type in 1GP Package Manager UI: Custom Console Component

Documentation
Metadata API Developer Guide: CustomApplicationComponent

Salesforce Help: Create Console Components in Salesforce Classic

Custom Field on Standard or Custom Object
Represents the metadata associated with a field. Use this metadata type to create, update, or delete custom field definitions on standard
or custom objects.

119

Custom Field on Standard or Custom ObjectFirst-Generation Managed Packages

https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_customapplicationcomponent.htm
https://help.salesforce.com/s/articleView?id=sf.console2_components_create_overview.htm&type=5&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Auto-Number Display Format

• Decimal Places

• Description

• Default Value

• Field Label

• Formula

• Length

• Lookup Filter

• Related List Label

• Required

• Roll-Up Summary Filter Criteria

Both Package Developer and Subscriber Can Edit

• Chatter Feed Tracking

• Help Text

• Mask Type

• Mask Character

• Sharing Setting

• Sort Picklist Values

• Track Field History

120

Custom Field on Standard or Custom ObjectFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Neither Package Developer or Subscriber Can Edit

• Child Relationship Name

• Data Type

• External ID

• Field Name

• Roll-Up Summary Field

• Roll-Up Summary Object

• Roll-Up Summary Type

• Unique

More Information
• Developers can add required and universally required custom fields to managed packages as long as they have default values.

• Auto-number type fields and required fields can’t be added after the object is included in a Managed - Released package.

• Subscriber orgs can’t install roll-up summary fields that summarize detail fields set to protected.

Custom Field on Custom Metadata Type
Represents a custom fields on the custom metadata type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Custom Field Display
Represents the CustomFieldDisplay view type assigned to product attribute custom fields.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

121

Custom Field on Custom Metadata TypeFirst-Generation Managed Packages

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Description

• Master Label

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomFieldDisplay

License Requirements
A B2B Commerce or D2C Commerce license and access to Commerce objects is required.

Documentation
Salesforce Help: Create Attributes for Product Variations in Commerce Cloud

Custom Help Menu Section
Represents the section of the Lightning Experience help menu that the admin added to display custom, org-specific help resources for
the org. The custom section contains help resources added by the admin.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

122

Custom Help Menu SectionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=commerce.comm_config_att_set.htm&language=en_US

More Information
Feature Name

Metadata Name: CustomHelpMenuSection

Documentation
Metadata API Developer Guide: CustomHelpMenuSection

Custom Index
Represents an index used to increase the speed of queries.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

No. It can only be removed if the associated custom field is
removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: CustomIndex

Component Type in 1GP Package Manager UI: Custom Index

Considerations When Packaging
Subscribers can remove the custom index using Metadata API only.

Documentation
Best Practices for Deployments with Large Data Volumes: Indexes

Custom Label
The CustomLabels metadata type allows you to create custom labels that can be localized for use in different languages, countries, and
currencies.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

123

Custom IndexFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_customhelpmenusection.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_infrastructure_indexes.htm

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Category

• Short Description

• Value

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: CustomLabels

Considerations When Packaging
If a label is translated, the language must be explicitly included in the package for the translations to be included in the package.
Subscribers can override the default translation for a custom label.

This component can be marked as protected. For more details, see Protected Components in theFirst-Generation Managed Packaging
Developer Guide.

Documentation
Metadata API Developer Guide: CustomLabels

Custom Metadata Type Records
Represents a record of a custom metadata type.

124

Custom Metadata Type RecordsFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_customlabels.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in managed 1GP if protected, and managed 2GP
whether protected or not.

Package Developer Can Remove Component From Package

YesComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: CustomObject

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Usage Limits
Deprecated custom metadata type records count against the subscriber’s org limit. When removing custom metadata type records
from a second-generation managed package, encourage subscribers to delete the deprecated records from their org. If the subscriber
org reaches their org limit for custom metadata type records, package upgrades that include new custom metadata type records
fail. For details see Custom Metadata and Allocations and Usage Calculations in Salesforce Help.

Documentation
Salesforce Help: Package Custom Metadata Types and Records

Custom Metadata Type
Represents a record of a custom metadata type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

125

Custom Metadata TypeFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://help.salesforce.com/s/articleView?id=sf.custommetadatatypes_limits.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.custommetadatatypes_package_install.htm&language=en_US

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

More Information
Second-generation managed packages (2GP) include the fields and records for custom metadata types that you add. You can’t add
fields directly to an existing package after the package version is promoted. If you create multiple packages that share a namespace,
then layouts and records can be in separate packages. Custom fields on the custom metadata type must be in the same package.

You can add fields to a custom metadata type by publishing an extension to the existing package, creating an entity relationship field,
and mapping the field to the custom metadata type in your extension. See Add Custom Metadata Type Fields to Existing Packages.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Custom Notification Type
Represents the metadata associated with a custom notification type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Desktop, Mobile

Both Package Developer and Subscriber Can Edit

126

Custom Notification TypeFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.custommetadatatypes_add_fields_packages.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://partners.salesforce.com/partnerSupport

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomNotificationType

Component Type in 1GP Package Manager UI: Custom Notification Type

License Requirements
Database.com editions don’t have permission to access this component.

Usage Limits
You can package up to 500 custom notification types, but keep in mind that subscriber orgs are limited to a total of 500 custom
notification types. The subscriber org limit is shared across namespaces.

A subscriber org can execute up to 10,000 notification actions per hour.

Documentation
Salesforce Help: Create and Send Custom Desktop or Mobile Notifications

Salesforce Help: Considerations for Processes that Send Custom Notifications

Custom Object
Represents a custom object that stores data unique to an org or an external object that maps to data stored outside an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

127

Custom ObjectFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.notif_builder_custom.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.process_limits_customnotification.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Plural Label

• Record Name

• Record Name Display Format

• Starts with a Vowel Sound

Both Package Developer and Subscriber Can Edit

• Allow Activities

• Allow Reports

• Available for Customer Portal

• Context-Sensitive Help Setting

• Default Sharing Model

• Development Status

• Enable Divisions

• Enhanced Lookup

• Grant Access Using Hierarchy

• Search Layouts

• Track Field History

Neither Package Developer or Subscriber Can Edit

• Object Name

• Record Name Data Type

More Information
Feature Name

Metadata Name: CustomObject

Component Type in 1GP Package Manager UI: Custom Object

Considerations When Packaging

If a developer enables the Allow Reports or Allow Activities attributes on a packaged custom object, the subscriber’s
org also has these features enabled during a package upgrade. After it’s enabled in a Managed - Released package, the developer
and the subscriber can’t disable these attributes.

Standard button and link overrides are also packageable.

In your extension package, if you want to access history information for custom objects contained in the base package, work with
the base package owner to:

1. Enable history tracking in the release org of the base package.

2. Create a new version of the base package.

3. Install the new version of the base package in the release org of the extension package to access the history tracking info.

128

Custom ObjectFirst-Generation Managed Packages

As a best practice, don’t enable history tracking for custom objects contained in the base package directly in the extension package’s
release org. Doing so can result in an error when you install the package and when you create patch orgs for the extension package.

This component can be marked as protected. For more details, see Protected Components and Hide Custom Objects and Custom
Permissions in Your Subscribers’ Orgs in the First-Generation Managed Packaging Developer Guide.

Documentation
Metadata API Developer Guide: CustomObject

Custom Object Translation
This metadata type allows you to translate custom objects for a variety of languages.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes except Description of WorkflowTask, Help of CustomField, PicklistValueTranslation, and MasterLabel of LayoutSection.

Both Package Developer and Subscriber Can Edit

• Description of WorkflowTask

• Help of CustomField

• PicklistValueTranslation

• MasterLabel of LayoutSection

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: CustomObjectTranslation

Relationship to Other Components
When you create a first-generation managed package and add the Translation component, the Custom Object Translation component
is automatically added to your package.

129

Custom Object TranslationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/customobject.htm

When you create a second-generation managed package, you must add Custom Object Translation to your package, even if you've
already added the Translation component.

Documentation
Metadata API Developer Guide: CustomObjectTranslation

Custom Permission
Represents a permission that grants access to a custom feature.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Connected App

• Description

• Label

• Name

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

130

Custom PermissionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_customobjecttranslation.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

More Information
Feature Name

Metadata Name: CustomPermission

Component Type in 1GP Package Manager UI: Custom Permission

Considerations When Packaging
If you deploy a change set with a custom permission that includes a connected app, the connected app must already be installed
in the destination org.

This component can be marked as protected. For more details, see Protected Components and Hide Custom Objects and Custom
Permissions in Your Subscribers’ Orgs in the First-Generation Managed Packaging Developer Guide.

Documentation
Metadata API Developer Guide: CustomPermission

Custom Tab
Represents a custom tab. Custom tabs let you display custom object data or other web content in Salesforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Encoding

• Has Sidebar

• Height

131

Custom TabFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_custompermission.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• Label

• S-control

• Splash Page Custom Link

• Type

• URL

• Width

Both Package Developer and Subscriber Can Edit

• Tab Style

Neither Package Developer or Subscriber Can Edit

• Tab Name

More Information
Feature Name

Metadata Name: CustomTab

Considerations When Packaging

• The tab style for a custom tab must be unique within your app. However, it doesn’t have to be unique within the org where it’s
installed. A custom tab style doesn’t conflict with an existing custom tab in the installer’s environment.

• To provide custom tab names in different languages, from Setup, in the Quick Find box, enter Rename Tabs and Labels,
then select Rename Tabs and Labels.

Documentation
Metadata API Developer Guide: CustomTab

Dashboard
Represents a dashboard. Dashboards are visual representations of data that allow you to see key metrics and performance at a glance.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

132

DashboardFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_tab.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Dashboard Unique Name

Neither Package Developer or Subscriber Can Edit

• Dashboard Unique Name

More Information
Feature Name

Metadata Name: Dashboard

Type in 1GP Package Manager UI: Dashboard

Considerations When Packaging
Developers of managed packages must consider the implications of introducing dashboard components that reference reports
released in a previous version of the package. If the subscriber deleted the report or moved the report to a personal folder, the
dashboard component referencing the report is dropped during the installation. Also, if the subscriber has modified the report, the
report results can impact what displays in the dashboard component. As a best practice, release a dashboard and the related reports
in the same version.

Documentation
Metadata API Developer Guide: Dashboard

DataCalcInsightTemplate
Represents the object template for data calculations and insights of Data Cloud objects in DataCalcInsightTemplate. These objects are
added inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

133

DataCalcInsightTemplateFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_dashboard.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataCalcInsightTemplate

Component Type in 1GP Package Manager UI: Calculated Insight Template

Use Case
DataCalcInsightTemplate represents the data calculations and insights for objects of a Data Cloud schema field the user includes in
a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. A calculated insight template is added to a package when you add a data
calculation and insight into a data kit, and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Connector Ingest API
Represents the connection information specific to Ingestion API.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

134

Data Connector Ingest APIFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: DataConnectorIngestApi

Component Type in 1GP Package Manager UI: Adding DataStreamDefinition brings in DataConnectorIngestApi for Ingestion API
DataStreams.

Use Case
This component is part of the Ingestion API Data stream metadata that is packaged and installed in subscriber.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Documentation
Salesforce Help: Ingestion API

Data Connector S3
Represents the connection information specific to Amazon S3.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

135

Data Connector S3First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_ingestion_api.htm&language=en_US

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Delimiter

• FileNameWildCard

• ImportFromDirectory

• S3AccessKey

• S3BucketName

• S3SecretKey

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: DataConnectorS3

Use Case
This includes the bucket details for the S3 connector in Data Cloud.

Considerations When Packaging
To package this component, first add it to a data kit. For more information about data kits, see Data Kits in Salesforce Help.

Credentials are encrypted and need “IsDevInternal” permission for the encryption service.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Documentation
Salesforce Help:Data Connector S3

Data Kit Object Dependency
Represent the object dependencies and relationships between different objects in Data Kit Object Dependency. These objects are added
inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

136

Data Kit Object DependencyFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_data_package_kits.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.c360_a_cloud_storage_connector.htm&language=en_US

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataKitObjectDependency

Component Type in 1GP Package Manager UI: Data Kit Object Dependency

Use Case
DataKitObjectDependency represents the relationship of objects of a Data Cloud schema field the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit and then add
that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

137

Data Kit Object DependencyFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

Data Kit Object Template
Represents the object in Data Kit Object Template. This object template is added inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataKitObjectTemplate

Component Type in 1GP Package Manager UI: Data Kit Object Dependency

Use Case
DataKitObjectTemplate represents the objects the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit, and then add
that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

138

Data Kit Object TemplateFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

DataObjectBuildOrgTemplate
Represents the output objects of the components the user includes in a data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataObjectBuildOrgTemplate

Component Type in 1GP Package Manager UI: DataObjectBuildOrgTemplate

Use Case

Supports extension packages that reference the output of any object.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the data object build org template to a data kit, and then add that
data kit to a package. You can’t directly add this component to a package.

139

DataObjectBuildOrgTemplateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

License Requirements

For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps

After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Package Kit Definition
Represents the top-level Data Kit container definition. Content objects can be added after the Data Kit is defined.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Supported in 1GP packages only.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• description

• developerName

• isDeployed

• isEnabled

• masterLabel

• versionNumber

Both Package Developer and Subscriber Can Edit

• None

140

Data Package Kit DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataPackageKitDefinition

Component Type in 1GP Package Manager UI: Data Package Kit Definition

Use Case
Represents the top-level data kit container definition. Content objects can be added after the data kit is defined.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataPackageKitDefinition

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Package Kit Object
Represents the object in Data Kit Content Object. These objects are added inside the data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

141

Data Package Kit ObjectFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_datapackagekitdefinition.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• parentDataPackageKitDefinitionName

• referenceObjectName

• referenceObjectType

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataPackageKitObject

Component Type in 1GP Package Manager UI: Data Package Kit Object

Use Case
Represents an object in a data kit.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataPackageKitObject

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Source
Used to represent the system where the data was sourced.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

142

Data SourceFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_datapackagekitobject.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• DataSourceStatus

• ExternalRecordIdentifier

• LastDataChangeStatusDateTime

• LastDataChangeStatusErrorCode

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: DataSource

Use Case
DataSource gives the lineage information of the datastream.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
Create DataStream using ui-api or the Data Cloud App.

Relationship to Other Components
This isn't a top-level entity. AddDataStreamDefinition or DataKitDefinition to pick up DataSource.

Documentation
Salesforce Help: Connection Tasks in Data Cloud

Data Source Bundle Definition
Represents the bundle of streams that a user adds to a data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

143

Data Source Bundle DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_connection_tasks.htm&language=en_US

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• dataPlatform

• isMultiDeploymentSupported

• masterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataSourceBundleDefinition

Component Type in 1GP Package Manager UI: Data Source Bundle Definition

Use Case
Represents the data stream data sources that a user adds to a data kit.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. A data source bundle definition is added to a package when you add a
data stream to a data kit and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataSourceBundleDefinition

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Source Object
Represents the object from where the data was sourced.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

144

Data Source ObjectFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_datasourcebundledefinition.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DataObjectType

• DataSource

• ExternalRecordId

More Information
Feature Name

Metadata Name: DataSourceObject

Use Case
DataSourceObject contains specific information about the source of the data like filename, table names.

Considerations When Packaging
DataSourceObject pulls in child DataSourceField entity records when packaged with DataKitDefinition.

License Requirements
Customer 360 Audiences Corporate (cdpPsl) licenses must be available on both package developer org and subscriber org.

Post Install Steps
Create a DataStream via ui-api or using the Data Cloud App.

Relationship to Other Components
This isn’t a top-level entity. Add DataStreamDefinition or DataKitDefinition to pick up DataSourceObject.

Documentation
Salesforce Help: Connection Tasks in Data Cloud

Data Src Data Model Field Map
Represents the entity that’s used to store the design-time bundle-level mappings for the data source fields and data model fields.

145

Data Src Data Model Field MapFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_connection_tasks.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• masterLabel

• sourceField

• targetField

• versionNumber

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataSrcDataModelFieldMap

Component Type in 1GP Package Manager UI: Data Source Data Model Field Mapping

Use Case
Represents the entity that contains design-time bundle-level mappings for the data source fields and data model fields.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. Data model field mappings are added to a package when you add a data
stream and any associated mappings to a data kit and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

146

Data Src Data Model Field MapFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataSrcDataModelFieldMap

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

Data Stream Definition
Contains Data Ingestion information such as Connection, API and File retrieval settings.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AreHeadersIncludedInTheFiles

• BulkIngest

• Description

• IsLimitedToNewFiles

• IsMissingFileFailure

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DataConnectionGCS

• DataConnectorType

• DataExtractField

• DataExtractMethod

• DataExtractField

• DataPlatformDataSetBundle

147

Data Stream DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_datasrcdatamodelfieldmap.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

• FileNameWildcard

• MktDataLakeObject

• MktDataTranObject

More Information
Feature Name

Metadata Name: DataStreamDefinition

Component Type in 1GP Package Manager UI: DataStreamDefinition

Use Case

DataStreamDefinition is the starting point for packaging a Datastream and its mappings.

Considerations When Packaging
Data Cloud admin user can install or upgrade the package. Admin User or Data Aware Specialist User can create Datastreams out of
the installed package.

License Requirements
Customer 360 Audiences Corporate (cdpPsl) licenses must be available on both package developer org and subscriber org. CDP
Admin User can install,upgrade, or uninstall the package.

Post Install Steps

Create the DataStream via ui-api or using the Data Cloud App.

Documentation
Metadata API Developer Guide: DataStreamDefinition

Data Stream Template
Represents the data stream that a user adds to a data kit.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

148

Data Stream TemplateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_datastreamdefinition.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• dataImportRefreshFrequency

• dataSourceBundleDefinition

• dataSourceObject

• objectCategory

• refreshFrequency

• refreshHours

• refreshMode

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataStreamTemplate

Component Type in 1GP Package Manager UI: Data Stream Template

Use Case
Represents the data stream that a user adds to a data kit.

Considerations When Packaging
Any Data Cloud feature is always packaged via a data kit. A data stream template is added to a package when you add a data stream
to a data kit and package that data kit. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy features from the installed data kit.

Documentation
Metadata API Developer Guide: DataStreamTemplate

Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

DataWeaveResource
Represents the DataWeaveScriptResource class that is generated for all DataWeave scripts. DataWeave scripts can be directly invoked
from Apex.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

149

DataWeaveResourceFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_datastreamtemplate.htm
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (if not set to global access).Package Developer Can Remove Component From Package

YesComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• DataWeave Script

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DataWeaveResource

Component Type in 1GP Package Manager UI: DataWeaveResource

Use Case
Include MuleSoft DataWeave scripts to read and parse data from one format, transform it, and export it in a different format directly
from Apex.

Considerations When Packaging
There’s a maximum of 50 DataWeave scripts per org.

Documentation
Apex Developer Guide: DataWeave in Apex.

Decision Matrix Definition
Represents a definition of a decision matrix.

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

150

Decision Matrix DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/DataWeaveInApex.htm
https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component is inactive.Component Is Updated During Package Upgrade

Yes. Only if the component is inactive.Subscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Type

• GroupKey

• SubGroupKey

Both Package Developer and Subscriber Can Edit

• versions

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DecisionMatrixDefinition

Component Type in 1GP Package Manager UI: Decision Matrix Definition

Use Case
Decision matrices are lookup tables that match input values to a matrix row and return the row’s output values. Expression sets and
various digital procedures can call decision matrices. Decision matrices accept JSON input from, and return JSON output to the digital
processes that call the matrices. Decision matrices are useful for implementing complex rules in a systematic, readable manner.

Documentation
Industries Common Resources Developer Guide: Decision Matrix Definition

Salesforce Help: Decision Matrices

Salesforce Help: Decision Matrix Migration Considerations

151

Decision Matrix DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_decisionmatrixdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.decision_matrices.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.decision_matrix_migration_considerations.htm&type=5&language=en_US

Decision Matrix Definition Version
Represents a definition of a decision matrix version.

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component is inactive.Component Is Updated During Package Upgrade

Yes. Only if the component is inactive.Subscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• columns

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DecisionMatrixDefinitionVersion

Component Type in 1GP Package Manager UI: Decision Matrix Definition Version

Post Install Steps
After migrating a decision matrix version, upload the row data to the active version manually. The row data isn’t migrated as part of
the migration.

152

Decision Matrix Definition VersionFirst-Generation Managed Packages

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/
https://partners.salesforce.com/partnerSupport

Relationship to Other Components
A DecisionMatrixDefinitionVersion is a child of DecisionMatrixDefinition, and can’t exist without the parent DecisionMatrixDefinition.

Documentation
Industries Common Resources Developer Guide: Decision Matrix Definition

Salesforce Help: Decision Matrices

Salesforce Help: Decision Matrix Migration Considerations

Decision Table
Represents the information about a decision table.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Decision Table

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: DecisionTable

Component Type in 1GP Package Manager UI: Decision Table

153

Decision TableFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_decisionmatrixdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.decision_matrices.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.decision_matrix_migration_considerations.htm&type=5&language=en_US

Use Case
Decision tables read business rules and decide the outcome for records in your Salesforce org or for the values that you specify.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Decision Tables

Decision Table Dataset Link
Represents the information about a dataset link associated with a decision table. In a dataset link, select an object for whose records,
the decision table must provide an outcome.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Dataset Link record

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: DecisionTableDatasetLink

Use Case
In a dataset link, you can map the decision table’s input fields with fields of different standard or custom objects.

154

Decision Table Dataset LinkFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.concept_decision_table.htm&language=en_US

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Add Dataset Links to a Decision Table

Digital Experience
Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s content
items.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Content Title

• Content Body

• Content Folder

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DigitalExperience

Use Case
To move Digital Experience metadata Content from one org to another

Post Install Steps
After the package is installed, publish the site to make it available to customers.

Documentation
Salesforce Help: CMS Content

155

Digital ExperienceFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.task_decision_table_dataset_link.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.community_managed_content_content_creation.htm&language=en_US

Digital Experience Bundle
Represents a text-based code structure of your organization’s workspaces, organized by workspace type, and each workspace’s content
items.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Labels

• Description

• Content

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DigitalExperienceBundle

Use Case
Share or distribute the content of an enhanced workspace in Salesforce CMS, including images, documents, and news articles. In
Marketing Cloud, you can package the content of general and marketing workspaces, including landing pages, forms, and emails
(and their associated images and branding).

Considerations When Packaging

Enhanced LWR sites are unsupported.

In marketing workspaces, the default data graph, personalization recommenders, personalization points, and decisions aren't included
in the bundle. If the workspace includes emails with personalized content that’s based on these objects, then:

• Any merge field or repeater that uses the default data graph or a personalization recommender from the source org is broken
in the target org.

• Any dynamic content variations of email components are removed and only the default variations appear in the email.

156

Digital Experience BundleFirst-Generation Managed Packages

Post Install Steps
After the package is installed, publish the workspace content to make it available to customers.

Documentation
Salesforce Help: Salesforce CMS

Salesforce Help: Marketing Cloud

Metadata API Developer Guide: DigitalExperienceBundle

Decision Table
Represents the information about a decision table.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Decision Table

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

More Information
Feature Name

Metadata Name: DecisionTable

Component Type in 1GP Package Manager UI: Decision Table

157

Decision TableFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.community_managed_content_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.mktg_main.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_digitalexperiencebundle.htm

Use Case
Decision tables read business rules and decide the outcome for records in your Salesforce org or for the values that you specify.

License Requirements
Either Loyalty Management or Rebate Management

Documentation
Salesforce Help: Decision Tables

Disclosure Definition
Represents information that defines a disclosure type, such as details of the publisher or vendor who created or implemented the report.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DisclosureDefinition

Component Type in 1GP Package Manager UI: Disclosure Definition

Use Case
You can use this component to define a disclosure type, such as details of the publisher or vendor who created or implemented the
report.

158

Disclosure DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.concept_decision_table.htm&language=en_US

License Requirements

• Net Zero Cloud Growth license

• Disclosure and Compliance Hub permission set license

• Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

• Manage Disclosure and Compliance Hub

Documentation

• Salesforce Help: Disclosure and Compliance Hub

• Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

• Metadata API Developer Guide:DisclosureDefinition

Disclosure Definition Version
Represents the version information about the disclosure definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DisclosureDefinition

• Description

• IsActive

• VersionNumber

• OmniScriptCnfgApiName

• IsCurrentVersion

• DisclosureDefCurrVer

Both Package Developer and Subscriber Can Edit

• None

159

Disclosure Definition VersionFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=sf.netzero_setup_disclosure_and_compliance_hub.htm&language=en_US
https://help.salesforce.com/articleView?id=sf.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_disclosuredefinition.htm

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DisclosureDefinitionVersion

Component Type in 1GP Package Manager UI: Disclosure Definition Version

Use Case
You can use this component to define the version information about the disclosure definition.

License Requirements

• Net Zero Cloud Growth license

• Disclosure and Compliance Hub permission set license

• Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

• Manage Disclosure and Compliance Hub

Documentation

• Salesforce Help: Disclosure and Compliance Hub

• Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

• Metadata API Developer Guide:DisclosureDefinitionVersion

Disclosure Type
Represents the types of disclosures that are done by an individual or an organization and the associated metadata.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

160

Disclosure TypeFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=sf.netzero_setup_disclosure_and_compliance_hub.htm&language=en_US
https://help.salesforce.com/articleView?id=sf.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_disclosuredefinitionversion.htm

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: DisclosureType

Component Type in 1GP Package Manager UI: Disclosure Type

Use Case
You can use this component to create types of disclosures that are done by an individual or an organization.

License Requirements

• Net Zero Cloud Growth license

• Disclosure and Compliance Hub permission set license

• Disclosure and Compliance Hub User permission set

Post Install Steps
Enable these org settings:

• Manage Disclosure and Compliance Hub

Documentation

• Salesforce Help: Disclosure and Compliance Hub

• Salesforce Help: Generate Disclosures Using Disclosure and Compliance Hub

• Metadata API Developer Guide:DisclosureType

Discovery AI Model
Represents the metadata associated with a model used in Einstein Discovery.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

161

Discovery AI ModelFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=sf.netzero_setup_disclosure_and_compliance_hub.htm&language=en_US
https://help.salesforce.com/articleView?id=sf.netzero_manager_generate_disclosures_using_disclosure_compliance_hub.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_disclosuretype.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Discovery AI Model Unique Name

Neither Package Developer or Subscriber Can Edit

• Discovery AI Model Unique Name

More Information
Feature Name

Metadata Name: DiscoveryAIModel

Documentation
Metadata API Developer Guide: DiscoveryAIModel

Discovery Goal
Represents the metadata associated with an Einstein Discovery prediction definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

162

Discovery GoalFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_discoveryaimodel.htm
https://partners.salesforce.com/partnerSupport

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Discovery Goal Unique Name

Neither Package Developer or Subscriber Can Edit

• Discovery Goal Unique Name

More Information
Feature Name

Metadata Name: DiscoveryGoal

Documentation
Metadata API Developer Guide: DiscoveryGoal

Discovery Story
Represents the metadata associated with a story used in Einstein Discovery.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

163

Discovery StoryFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_discoverygoal.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Discovery Story Unique Name

Neither Package Developer or Subscriber Can Edit

• Discovery Story Unique Name

More Information
Feature Name

Metadata Name: DiscoveryStory

Documentation
Metadata API Developer Guide: DiscoveryStory

Document
Represents a Document. All documents must be in a document folder, such as sampleFolder/TestDocument.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

More Information
Feature Name

Metadata Name: Document

164

DocumentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_discoverystory.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Component Type in 1GP Package Manager UI: Document

Documentation
Metadata API Developer Guide: Document

Document Generation Setting
Represents an org's settings for automatic document generation from templates.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Document Template Library Name

• Generation Mechanism

• Guest Access Named Credential

• Label

• Preview Type

Neither Package Developer or Subscriber Can Edit

• API Name

More Information
Feature Name

Metadata Name: DocumentGenerationSetting

Use Case
Allows admin users to modify document generation properties.

License Requirements
DocGen Designer (Permission Set License)

Documentation
Metadata API Developer Guide: DocumentGenerationSetting

165

Document Generation SettingFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_document.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_documentgenerationsetting.htm

Eclair GeoData
Represents an Analytics custom map chart. Custom maps are user-defined maps that are uploaded to Analytics and are used just as
standard maps are. Custom maps are accessed in Analytics from the list of maps available with the map chart type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Eclair GeoData Unique Name

Neither Package Developer or Subscriber Can Edit

• Eclair GeoData Unique Name

More Information
Feature Name

Metadata Name: EclairGeoData

Documentation
Metadata API Developer Guide: EclairGeoData

Email Template (Classic)
Use email templates to increase productivity and ensure consistent messaging. Email templates with merge fields let you quickly send
emails that include field data from Salesforce records.

166

Eclair GeoDataFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_eclairgeodata.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Email Template Name

Neither Package Developer or Subscriber Can Edit

• Email Template Name

Email Template (Lightning)
Represents a template for an email, mass email, list email, or Sales Engagement email.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only. However, 1GP packages
created in Email Template Builder can't be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

167

Email Template (Lightning)First-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• All attributes

More Information
These packaging considerations apply to Lightning email templates, including email templates created in Email Template Builder.

• For email templates created in Email Template Builder before the Spring ’21 release, attachments aren’t automatically added to the
package. Open and resave these templates to turn the attachments into content assets, which are then automatically added to the
package.

• Enhanced email template folders have these behaviors:

– If a package includes an enhanced email template folder, the target organization must have enhanced folders enabled for the
deploy to succeed.

– If an email template is in a subfolder, adding the root folder to a package doesn’t automatically add the email template to the
package. If the email template is in the root folder, it’s automatically added to the package.

– You can’t package an email template in the default public and private folders.

• For merge fields based on custom fields that are used in the Recipients prefix (for leads and contacts), we add references to those
merge fields. If the custom field is renamed, the reference in the template isn’t updated. Edit the custom merge field to use the new
field name and update the reference.

Note: An email template created in Email Template Builder can’t be edited after it’s downloaded. To edit the template, clone it.

When upgrading a package that has Email Template Builder email templates, only the associated FlexiPage is updated. After
downloading the new version of the template, clone it to see the changes.

Embedded Service Config
Represents a setup node for creating an Embedded Service for Web deployment.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

168

Embedded Service ConfigFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: EmbeddedServiceConfig

Documentation
Metadata API Developer Guide: EmbeddedServiceConfig

Salesforce Help: Embedded Chat

Embedded Service Menu Settings
Represents a setup node for creating a channel menu deployment. Channel menus list the ways in which customers can contact your
business.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

169

Embedded Service Menu SettingsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_embeddedserviceconfig.htm
https://help.salesforce.com/s/articleView?id=sf.snapins_chat_overview.htm&type=5&language=en_US

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: EmbeddedServiceMenuSettings

Documentation
Metadata API Developer Guide: EmbeddedServiceMenuSettings

Salesforce Help: Channel Menu Setup

Enablement Measure Definition
Represents an Enablement measure, which specifies the job-related activity that a user performs to complete a milestone or outcome
in an Enablement program. A measure identifies a source object and optional related objects, with optional field filters and filter logic,
for tracking the activity.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but Status and DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

170

Enablement Measure DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_embeddedservicemenusettings.htm
https://help.salesforce.com/s/articleView?id=sf.embedded_chat_channel_menu.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

• DeveloperName

More Information
Feature Name

Metadata Name: EnablementMeasureDefinition

Use Case

Include this component in a package with a program if the program has outcomes or milestones.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required. For Partner Enablement programs in supported
Experience Cloud sites, a supported Partner Relationship Management (PRM) add-on license is also required.

Usage Limits
See Enablement Limits.

Relationship to Other Components
An Enablement measure is used within an Enablement program. Package the Enablement Measure Definition component with the
Enablement Program Definition component. Or, package the Enablement Measure Definition component separately. Each measure
references a source object and optional related objects.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnablementMeasureDefinition

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

Enablement Program Definition
Represents an Enablement program, which includes exercises and measurable milestones to help users such as sales reps achieve specific
outcomes related to your company’s revenue goals.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

171

Enablement Program DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=sf.prm_support_license_template.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.enablement_limits.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.enablement.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_enablementmeasuredefinition.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All but DeveloperName

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: EnablementProgramDefinition

Use Case

Include this component in a package when you want to move a program from one org to another.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required. For Partner Enablement programs in supported
Experience Cloud sites, a supported Partner Relationship Management (PRM) add-on license is also required.

Usage Limits
See Enablement Limits.

Relationship to Other Components
An Enablement program can contain other items that are related to other packageable components. Package the Enablement
Program Definition component with other appropriate components.

• Exercises that reference Digital Experiences content. Package the Digital Experience component.

• Exercises that reference assessment surveys. Package the Flow component.

• Custom exercise types that reference user-defined content. Package the Learning Item Type and Enablement Program Task
Subcategory components.

• Measures that track job-related activity using specific objects. Package the Enablement Measure Definition component.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnablementMeasureDefinition

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

172

Enablement Program DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=sf.prm_support_license_template.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.enablement_limits.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.enablement.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_enablementmeasuredefinition.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html

Enablement Program Task Subcategory
Represents a custom exercise type that an Enablement admin adds to an Enablement program in Program Builder. A custom exercise
type also requires a corresponding EnblProgramTaskDefinition record for Program Builder and corresponding LearningItem and
LearningItemType records for when users take the exercise in the Guidance Center.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: EnblProgramTaskSubCategory

Use Case

Include this component in a package with a program if the program has a custom exercise type.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required.

173

Enablement Program Task SubcategoryFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html

Important: Custom exercises aren’t compatible with Partner Enablement programs.

Usage Limits
See Enablement Limits.

Relationship to Other Components
The Enablement Program Task Subcategory component requires a corresponding Learning Item Type component. Both components
are used with custom exercise types in Enablement programs. Package both of these components with an Enablement Program
Definition component.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnblProgramTaskSubCategory

• Metadata API Developer Guide: LearningItemType

• Object Reference for the Salesforce Platform: EnblProgramTaskDefinition

• Object Reference for the Salesforce Platform: LearningItem

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

• Sales Programs and Partner Tracks with Enablement Developer Guide: Implement Custom Exercise Types for Enablement Programs

Entitlement Template
Represents an entitlement template. Entitlement templates are predefined terms of customer support that you can quickly add to
products.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

174

Entitlement TemplateFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.enablement_limits.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.enablement.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_enblprogramtasksubcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_learningitemtype.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_enblprogramtaskdefinition.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_learningitem.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-custom-exercises-intro.html

More Information
Feature Name

Metadata Name: EntitlementTemplate

Documentation
Metadata API Developer Guide: EntitlementTemplate

Salesforce Help: Set Up an Entitlement Template

ESignature Config
Using the Electronic Signature Configuration setup, the system admin must define the required configurations to support the e-signature
APIs and UI.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Config Type

• Config Value

• Description

• Group Type

• Vendor

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• MasterLabel

More Information
Feature Name

Metadata Name: ESignatureConfig

Use Case
Allows users to get the electronic signatures on their documents.

175

ESignature ConfigFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_entitlementtemplate.htm
https://help.salesforce.com/s/articleView?id=sf.entitlements_setting_up_templates.htm&type=5&language=en_US

License Requirements
DocGen Designer (Permission Set License)

ESignature Envelope Config
Using the Electronic Signature Envelope Config the system admin can define the default reminders and expiry for the envelopes submitted
for eSignature.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Both Package Developer and Subscriber Can Edit

• Expiration Enabled

• Expiration Period

• Expiration Warning Period

• First Reminder Period

• Reminder Enabled

• Reminder Interval Period

• Target Object Name

• Vendor

• Vendor Account Identifier

• Vendor Default Notification Enabled

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• MasterLabel

More Information
Feature Name

Metadata Name: ESignatureEnvelopeConfig

176

ESignature Envelope ConfigFirst-Generation Managed Packages

Use Case
Allows users to get the electronic signatures and notifications on their documents.

License Requirements
DocGen Designer (Permission Set License)

Documentation
Metadata API Developer Guide: ESignatureEnvelopeConfig

Event Relay
Represents an event relay that you can use to send platform events and change data capture events from Salesforce to Amazon
EventBridge.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• RelayOption

• State

Neither Package Developer or Subscriber Can Edit

• DestinationResourceName

• EventChannel

• UsageType

More Information
Feature Name

Metadata Name: EventRelayConfig

Component Type in 1GP Package Manager UI: Event Relay

177

Event RelayFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_esignatureenvelopeconfig.htm

Documentation
Metadata API Developer Guide: EventRelayConfig

Explainability Action Definition
Define where the metadata for your Decision Explainer business rules are stored in Public Sector Solutions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Developer Name

• Business Process Type

• Application Type

• Action Log Schema Type

• Application Subtype

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExplainabilityActionDefinition

178

Explainability Action DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_eventrelayconfig.htm
https://partners.salesforce.com/partnerSupport

Explainability Action Version
Define and store versions of the explainability actions used by your Decision Explainer business rules in Public Sector Solutions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Active

• Description

• Explainability Action Definition

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExplainabilityActionVersion

Explainability Message Template
Represents information about the template that contains the decision explanation message for a specified expression set step type.

179

Explainability Action VersionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Label

• Message

• Name

• Result Type

• Default

• Expression Set Step Type

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExplainabilityMsgTemplate

Documentation
Industries Common Resources Developer Guide: ExplainabilityMsgTemplate

Salesforce Help: Create Explainability Message Templates

Expression Set Definition
Represents an expression set definition.

180

Expression Set DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_explainabilitymsgtemplate.htm
https://help.salesforce.com/s/articleView?id=sf.create_explainability_message_templates.htm&type=5&language=en_US

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component doesn’t contain any active versions.Component Is Updated During Package Upgrade

Yes. Only if the component doesn’t contain any active versions.Subscriber Can Delete Component From Org

Yes. Only if the component doesn’t contain any active versions.Package Developer Can Remove Component From Package

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• versions

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExpressionSetDefinition

Component Type in 1GP Package Manager UI: ExpressionSet Definition

Relationship to Other Components
To use this component, any expression set version dependencies such as decision matrices, decision tables, object field aliases, and
subexpressions must be present in the target org.

Documentation
Industries Common Resources Developer Guide: Expression Set Definition

Salesforce Help: Expression Set Migration Considerations

181

Expression Set DefinitionFirst-Generation Managed Packages

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_expressionsetdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.expression_set_migration_considerations.htm&type=5&language=en_US

Expression Set Definition Version
Represents a definition of an expression set version.

Note: 2GP support for Business Rules Engine Components is a pilot or beta service that is subject to the Beta Services Terms at
Agreements - Salesforce.com or a written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product
Terms Directory. Use of this pilot or beta service is at the Customer's sole discretion.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes. Only if the component is in an inactive state.Component Is Updated During Package Upgrade

Yes. Only if the component is in an inactive state.Subscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• variables

• steps

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExpressionSetDefinitionVersion

Component Type in 1GP Package Manager UI: Expression Set Definition Version

Relationship to Other Components
This component can be used only if the ExpressionSetDefinition to which this ExpressionSetDefinitionVersion component belongs
is present in the target org.

182

Expression Set Definition VersionFirst-Generation Managed Packages

https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/
https://ptd.salesforce.com/
https://partners.salesforce.com/partnerSupport

To use this component, any expression set version dependencies such as decision matrices, decision tables, object field aliases, and
subexpressions must be present in the target org.

Documentation
Industries Common Resources Developer Guide: Expression Set Definition Version

Salesforce Help: Expression Set Migration Considerations

Expression Set Object Alias
Represents information about the alias of the source object that’s used in an expression set.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• mappings.sourceFieldName

• mappings.fieldAlias

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• objectApiName

• usageType

• dataType

More Information
Feature Name

Metadata Name: ExpressionSetObjectAlias

Component Type: Expression Set Object Alias

Use Case
Expression set object aliases allow you to use object fields as variables in expression sets. Aliases are relevant and user-friendly names
that are created for underlying source object fields. Field aliases are grouped under an object alias.

183

Expression Set Object AliasFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_expressionsetdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.expression_set_migration_considerations.htm&type=5&language=en_US

Documentation
Industries Common Resources Developer Guide: ExpressionSetObjectAlias

Salesforce Help: Object Variables in Expression Sets

Expression Set Message Token
Represents a token that's used in an explainability message template. The token can be replaced with an expression set version resource
that the template is used in. This object is available in API version 59.0 and later.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Master Label

• Developer Name

• Description

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExpressionSetMessageToken

184

Expression Set Message TokenFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.industries_reference.meta/industries_reference/meta_expressionsetobjectalias.htm
https://help.salesforce.com/s/articleView?id=sf.object_variables_in_expression_sets.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Component Type in 1GP Package Manager UI: ExpressionSetMessageToken

Documentation
Industries Common Resources Developer Guide: ExpressionSetMessageToken

Salesforce Help: Create Expression Set Message Tokens

External Auth Identity Provider
Represents the external auth identity provider that obtains OAuth tokens for callouts that use named credentials.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: In addition to these properties, the Description, ParameterName, ParameterType, ParameterValue, and SequenceNumber
properties have the same editability as the ExternalAuthIdentityProviderParameters they’re included in.

Only Package Developer Can Edit

• AuthenticationFlow

• AuthenticationProtocol

• Description

• Label

Both Package Developer and Subscriber Can Edit

• ExternalAuthIdentityProviderParameter

– AuthorizeUrl

– ClientAuthentication

– Description

– IdentityProviderOptions

185

External Auth Identity ProviderFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.250.0.industries_reference.meta/industries_reference/tooling_api_objects_expressionsetmessagetoken.htm
https://help.salesforce.com/s/articleView?id=sf.task_create_expression_set_message_tokens.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

– ParameterName

– ParameterType

– ParameterValue

– RefreshRequestBodyParameter

– RefreshRequestHttpHeader

– RefreshRequestQueryParameter

– SequenceNumber

– StandardExternalIdentityProvider

– TokenRequestBodyParameter

– TokenRequestHttpHeader

– TokenRequestQueryParameter

– TokenUrl

– UserInfoUrl

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: ExternalAuthIdentityProvider

Component Type in 1GP Package Manager UI: External Auth Identity Provider

Considerations When Packaging
Though external auth identity providers are represented by metadata, the standard Metadata API can’t fully expose and render
sensitive information like tokens in plain text. This means that sensitive values such as client secrets aren’t included in packages.

Package upgrades delete any additional custom request parameters that subscribers add after installing the package. Alert subscribers
that they must recreate custom parameters.

Package developers can only create parameters and delete existing parameters. After package installation, subscribers don’t receive
updated parameter values from package upgrades.

Relationship to Other Components
A callout to an external system references a named credential, which in turn links to an external credential. For external credentials
that use OAuth 2.0 authentication, external auth identity providers obtain the OAuth tokens necessary for outbound callouts.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide

Metadata API Developer Guide: ExternalAuthIdentityProvider

External Client App Header
Represents the header file for an external client application configuration.

186

External Client App HeaderFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.named_credentials_about.htm&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_externalauthidentityprovider.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalClientApplication

Considerations When Packaging
Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
ExternalClientApplication is the header file for an external client app. This defines the basic configurations of the external client app,
including whether the external client app can be packaged or if it is developed for local use only.

ExtlClntAppGlobalOauthSettings includes sensitive information for the External Client Apps OAuth plugin, like OAuth consumer
credentials that can’t be packaged or added to source control. ExtlClntAppOauthSettings includes packageable configurations. All
settings are determined by the developer and can’t be edited by the admin. Admin-controlled configurations are called policies and
are included in ExtlClntAppOauthConfigurablePolicies.

Documentation
Salesforce Help: External Client Apps

Salesforce Help: Configure Packageable External Client Apps

External Client App Notification Settings
Represents the settings configuration for the external client app’s notifications plugin.

187

External Client App Notification SettingsFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.configure_packageable_external_client_apps.htm&type=5https://help.salesforce.com/s/articleView%3Fid=sf.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.external_client_apps.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.configure_packageable_external_client_apps.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtlClntAppNotificationSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
ExtlClntAppNotificationSettings contains all of the packageable configurations for the External Client Apps notifications plugin.

Documentation
Salesforce Help: External Client Apps

ExtlClntAppNotificationSettings

External Client App OAuth Settings
Represents the settings configuration for the external client app’s OAuth plugin.

188

External Client App OAuth SettingsFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.configure_packageable_external_client_apps.htm&type=5https://help.salesforce.com/s/articleView%3Fid=sf.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.external_client_apps.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_extlclntappnotificationsettings.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtlClntAppOauthSettings

Considerations When Packaging
Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

Relationship to Other Components
External Client App plugins like the OAuth plugin include two types of configurations: settings and policies. All settings are determined
by the external client app developer and can’t be edited by the admin for the subscriber org. Admin-controlled configurations are
called policies.

ExtlClntAppOauthSettings contains all of the packageable configurations for the External Client Apps OAuth plugin. Sensitive
information, like OAuth consumer credentials that can’t be packaged or added to source control, are stored in the
ExtlClntAppGlobalOauthSettings. Policies are saved in ExtlClntAppOauthConfigurablePolicies, which is not packaged but is generated
with default values at runtime.

Documentation
Salesforce Help: External Client Apps

189

External Client App OAuth SettingsFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.configure_packageable_external_client_apps.htm&type=5https://help.salesforce.com/s/articleView%3Fid=sf.configure_packageable_external_client_apps.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.external_client_apps.htm&language=en_US

External Client App Push Settings
Represents the settings configuration for the external client app’s push notification plugin.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtlClntAppPushSettings

Considerations When Packaging

Unlike most metadata, External Client Apps can’t be created via the Setup menu in a scratch org. ISVs who intend to package External
Client Apps in a managed 2GP should instead define the External Client App in their PBO (Partner Business Org) Dev Hub. The External
Client App can then be retrieved via Salesforce CLI and deployed into a scratch org, or packaged and installed into a scratch org for
testing. See Configure Packageable External Client Apps for more information.

To deploy ExtlClntAppPushSettings retrieved from the Dev Hub org, delete androidPushConfig or applePushConfig from the metadata
file.

Relationship to Other Components

External Client App plugins like the push notification plugin include two types of configurations: settings and policies. All settings
are determined by the external client app developer and can’t be edited by the admin for the subscriber org. Admin-controlled
configurations are called policies.

190

External Client App Push SettingsFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.configure_packageable_external_client_apps.htm&type=5https://help.salesforce.com/s/articleView%3Fid=sf.configure_packageable_external_client_apps.htm&type=5&language=en_US

ExtlClntAppPushSettings contains all of the packageable configurations for the External Client Apps push notifcation plugin. Sensitive
information, like APNS or Firebase consumer credentials that can’t be packaged or added to source control, are stored in the
ExtlClntAppApplePushConfig and ExtlClntAppAndroidPushConfig, respectively. Policies are saved in
ExtlClntAppSamlConfigurablePolicies, which is not packaged but is generated with default values at runtime.

Documentation
Salesforce Help: External Client Apps

ExtlClntAppPushSettings

External Credential
Represents the details of how Salesforce authenticates to the external system.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: In addition to these properties, the Description, ParameterGroup, ParameterName, ParameterValue, and SequenceNumber
properties have the same editability as the ExternalCredentialParameters they’re included in.

Only Package Developer Can Edit

• Label

• AuthenticationProtocol

• ExternalCredentialParameters

– AuthProtocolVariant

Both Package Developer and Subscriber Can Edit

• Description

• ExternalCredentialParameters

191

External CredentialFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.external_client_apps.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_extlclntapppushsettings.htm
https://partners.salesforce.com/partnerSupport

AuthHeader–

– AuthProvider (only subscriber editable in 2GP)

– AuthProviderUrl

– AuthProviderUrlQueryParameter

– AuthParameter

– AwsStsPrincipal (only for external credentials that use AWS Signature v4 authentication with STS)

– Description

– JwtBodyClaim

– JwtHeaderClaim

– NamedPrincipal

– PerUserPrincipal

– SequenceNumber

– SigningCertificate (only subscriber editable in 2GP)

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: ExternalCredential

Considerations When Packaging
Though named and external credentials are represented by metadata, the standard Metadata API can’t fully expose the definition
of a credential and render sensitive information like tokens in plain text. This means that packaged named credentials don’t include
the access tokens or certificates that are needed to perform authenticated callouts. You can create the external credential’s principal
or populate its tokens or certificates in the UI or via the Connect API.

In managed 1GP packages, external credentials that use the OAuth 2.0 authentication protocol must reference an authentication
provider to capture the details of the authorization endpoint. If you add an external credential that references an authentication
provider, the authentication provider is added to the package. See Authentication Providers for information on which elements of
an authentication provider are and aren’t packageable.

In managed 2GP packages, if an external credential uses an authentication provider to capture the details of the authorization
endpoint, you can’t include the reference to the authentication provider in the package. If the external credential references an
authentication provider, you must recreate the authentication provider in the subscriber org and add it to the external credential.

Post Install Steps
After installing an external credential from a managed or unmanaged package, you must:

• Create the external credential’s principal or populate its tokens or certificates in the UI or via the Connect API.

• Give permission sets and profiles access to the principals of the external credential. See Enable External Credential Principals.

• Reauthenticate to the external system.

– For a Named Principal, the admin must go to Setup > Named Credential > External Credential to authenticate.

– For a Per User Principal, each user must go to My Personal Information > External Credential to authenticate.

Relationship to Other Components
ExternalCredential can be added to a package without a NamedCredential, but NamedCredential must be packaged with an
ExternalCredential.

192

External CredentialFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.sso_authentication_providers.htm&language=en_US

The named credential defines a callout endpoint and an HTTP transport protocol, while the external credential represents the details
of how Salesforce authenticates to an external system via an authentication protocol. Each named credential must be mapped to
at least one external credential.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide

Metadata API Developer Guide: ExternalCredential

External Data Connector
Used to represent the object where the data was sourced.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DataConConfiguration

• DataConnectionStatus

• DataConnectorType

• DataPlatform

• ExternalRecordId

More Information
Feature Name

Metadata Name: ExternalDataConnector

Component Type in 1GP Package Manager UI: Adding DataStreamDefinition or DataKitDefinition brings ExternalDataConnector for
S3 data streams.

193

External Data ConnectorFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.named_credentials_about.htm&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_externalcredential.htm

Use Case
This component holds reference to Source Data Connector Metadata.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

Post Install Steps
User has to create DataStream via ui-api or using the Data Cloud App.

Relationship to Other Components

This isn’t a top-level entity. Add DataStreamDefinition or DataKitDefinition to pick up this entity.

External Data Source
Represents the metadata associated with an external data source. Create external data sources to manage connection details for
integration with data and content that are stored outside your Salesforce org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Type

Both Package Developer and Subscriber Can Edit

• Auth Provider

• Certificate

• Custom Configuration

• Endpoint

• Identity Type

• OAuth Scope

• Password

• Protocol

• Username

Neither Package Developer or Subscriber Can Edit

194

External Data SourceFirst-Generation Managed Packages

• Name

More Information
Feature Name

Metadata Name: ExternalDataSource

Component Type in 1GP Package Manager UI: External Data Source

Considerations When Packaging

• After installing an external data source from a managed or unmanaged package, the subscriber must reauthenticate to the
external system.

– For password authentication, the subscriber must reenter the password in the external data source definition.

– For OAuth, the subscriber must update the callback URL in the client configuration for the authentication provider, then
reauthenticate by selecting Start Authentication Flow on Save on the external data source.

• Certificates aren’t packageable. If you package an external data source that specifies a certificate, make sure that the subscriber
org has a valid certificate with the same name.

Documentation
Metadata API Developer Guide: ExternalDataSource

External Data Transport Field Template
Represents the definition of a Data Cloud schema field.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DataSourceField

• ExternalDataTranField

• ExternalName

• IsDataRequired

Both Package Developer and Subscriber Can Edit

195

External Data Transport Field TemplateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_externaldatasource.htm

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtDataTranFieldTemplate

Component Type in 1GP Package Manager UI: External Data Transport Field Template

Use Case
ExtDataTranFieldTemplate represents the definition of a Data Cloud schema field the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport field template to a data kit and then add
that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

External Data Transport Field
Use ExternalDataTranField to add a field to the ExternalDataTranObject in your managed packages. ExternalDataTranObject is a Data
Cloud schema object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Length

196

External Data Transport FieldFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

• Precision

• Scale

• IsDataRequired

• ExternalName

• PrimaryIndexOrder

• DateFormat

• CreationType

• MktDataTranField

• Sequence

• IsImplicitFilteringRequired

• ExtDataTranFieldTemplate

• IsCurrencyIsoCode

Both Package Developer and Subscriber Can Edit

• CustomFieldDatatypes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalDataTranField

Use Case
This component holds reference to ExternalDataTranObject metadata and represents the fields in the ExternalDataTranObject.

License Requirements
Data Cloud must be provisioned.

Post Install Steps
You must to create a data stream via ui-api or by using the Data Cloud App.

Relationship to Other Components
This isn’t a top-level entity. Add DataStreamDefinition to pick up this entity. This entity’s parent is ExternalDataTranObject.

Documentation
Metadata API Developer Guide: ExternalDataTranField

External Data Transport Object Template
Represents the definition of a Data Cloud schema object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

197

External Data Transport Object TemplateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_externaldatatranobject.htm#subtype_ExternalDataTranField

Yes (supported only in 1GP packages)Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes (supported only in 1GP packages)Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DataSourceObject

• ExternalDataTranObject

• ExternalName

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExtDataTranObjectTemplate

Component Type in 1GP Package Manager UI: External Data Transport Object Template

Use Case
ExtDataTranObjectTemplate represents the definition of a Data Cloud schema object the user includes in a data kit.

Considerations When Packaging
A Data Cloud feature is always packaged via a data kit. You add the external data transport object template to a data kit and then
add that data kit to a package. You can’t directly add this component to a package.

License Requirements
For more information, see Data Cloud Standard Permission Sets in Salesforce Help.

Post Install Steps
After you install a package that contains a data kit, you must manually deploy the features from the installed data kit.

Documentation
Data Cloud Developer Guide: Packages and Data Kits

Salesforce Help: Packaging in Data Cloud

External Data Transport Object
To include a Data Cloud schema object in your managed packages, add ExternalDataTranObject.

198

External Data Transport ObjectFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_userpermissions.htm&language=en_US
https://developer.salesforce.com/docs/platform/data-cloud-dev/guide/packages-data-kits.html
https://help.salesforce.com/s/articleView?id=sf.c360_a_packaging_in_customer_360_audiences.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• AvailabilityStatus

• CreationType

• MktDataTranObject

• ObjectCategory

• ExtDataTranObjectTemplate

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalDataTranObject

Use Case
ExternalDataTranObject contains specific schema event information that is used to describe events for ingestion via Data Cloud
Ingestion API, Web, and Mobile connectors. This object is related to many child schema fields, ExternalDataTranField.

License Requirements
Data Cloud must be provisioned.

Post Install Steps
You must create a data stream via ui-api or by using the Data Cloud App.

Relationship to Other Components
This isn’t a top-level entity. Add DataStreamDefinition to pick up this entity. This entity’s parent is ExternalDataConnector.

Documentation
Data Cloud Integration Guide: Mobile and Web SDK Schema Quick Guide for Data Cloud

Data Cloud Integration Guide: Requirements for Ingestion API Schema File

Metadata API Developer Guide: ExternalDataTranObject

199

External Data Transport ObjectFirst-Generation Managed Packages

https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-mobile-web-sdk-schema-quick-guide.html
https://developer.salesforce.com/docs/data/data-cloud-int/guide/c360-a-ingestion-api-schema-req.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_externaldatatranobject.htm

External Document Storage Configuration
Represents configuration, which admin makes in setup to specify the drive, path, and named credential to be used for storing documents
on external drives.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Target Object

• Record Type

• External Document Storage Identifier

• Document Path

• Named Credential

• Storage Drive Type

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• MasterLabel

More Information
Feature Name

Metadata Name: ExternalDocStorageConfig

Use Case
Represents the configuration that the admin makes in Setup to specify the drive, path, and named credential to be used for storing
the documents on external drives.

License Requirements
Microsoft Word 365

200

External Document Storage ConfigurationFirst-Generation Managed Packages

Documentation
Salesforce Help: Configure External Document Storage for Contracts

External Services
Represents the External Service configuration for an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

Yes (If there are no dependencies on the External Services
registration and its actions from flows or other features)

Subscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Schema

• Schema URL

Both Package Developer and Subscriber Can Edit

• Named Credential

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ExternalServiceRegistration

Component Type in 1GP Package Manager UI: ExternalServiceRegistration

201

External ServicesFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.sf_contracts_Configure_External_Document_Storage_for_Contracts.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Considerations When Packaging
Package developers must add named credential components to the External Services registration package. A subscriber can also
create a named credential in Salesforce. However, the subscriber must use the same name as the named credential specified in the
External Services registration that references it.

Create named credentials manually or with Apex. Be sure to add the named credential to a package so that subscriber orgs can
install it. When a subscriber org installs a named credential, it can use the Apex callouts generated by the External Services registration
process.

Usage Limits
Salesforce Help: External Services System Limits

Documentation
Metadata API Developer Guide: ExternalServiceRegistration

Salesforce Help: External Services

Feature Parameter Boolean
Represents a boolean feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

No. See note.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Value (When Data Flow Direction is set to LMO to Subscriber)

Both Package Developer and Subscriber Can Edit

• Value (When Data Flow Direction is set to Subscriber to LMO)

Neither Package Developer or Subscriber Can Edit

202

Feature Parameter BooleanFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.external_services_schema_def_limits.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_externalserviceregistration.htm
https://help.salesforce.com/s/articleView?id=sf.external_services.htm&language=en_US

• Full Name

• Data Type

• Data Flow Direction

More Information
Feature Name

Metadata Name: FeatureParameterBoolean

Component Type in 1GP Package Manager UI: Feature Parameter Boolean

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app’s features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can’t be registered
with the LMA, there are aspects of feature parameters that can’t be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can’t test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterBoolean

Create Feature Parameters for Your Second-Generation Managed Package

Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

Feature Parameter Date
Represents a date feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and track
activation metrics in subscriber orgs that install your package.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

No. See note.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

203

Feature Parameter DateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_featureparameterboolean.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Value (When Data Flow Direction is set to LMO to Subscriber)

Both Package Developer and Subscriber Can Edit

• Value (When Data Flow Direction is set to Subscriber to LMO)

Neither Package Developer or Subscriber Can Edit

• Full Name

• Data Type

• Data Flow Direction

More Information
Feature Name

Metadata Name: FeatureParameterDate

Component Type in 1GP Package Manager UI: Feature Parameter Date

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app’s features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can’t be registered
with the LMA, there are aspects of feature parameters that can’t be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can’t test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterDate

Create Feature Parameters for Your Second-Generation Managed Package

Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

Feature Parameter Integer
Represents an integer feature parameter in the Feature Management App (FMA). Feature parameters let you drive app behavior and
track activation metrics in subscriber orgs that install your package.

204

Feature Parameter IntegerFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_featureparameterdate.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

No. See note.Component Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: Feature parameters with a data flow direction set as LMO-to-Subscriber, can be updated in the LMO (License Management Org).
Feature parameters with a data flow direction set as Subscriber-to-LMO can be updated using Apex in the subscriber org. Neither of
these changes require a package upgrade.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Value (When Data Flow Direction is set to LMO to Subscriber)

Both Package Developer and Subscriber Can Edit

• Value (When Data Flow Direction is set to Subscriber to LMO)

Neither Package Developer or Subscriber Can Edit

• Full Name

• Data Type

• Data Flow Direction

More Information
Feature Name

Metadata Name: FeatureParameterInteger

Component Type in 1GP Package Manager UI: Feature Parameter Integer

Use Case
Use LMO-to-Subscriber feature parameters to enable and disable your app’s features, or use Subscriber-to-LMO feature parameters
to track customer preferences and activation metrics.

Considerations When Packaging
Feature parameters are an extension of the License Management App (LMA), and because beta package versions can’t be registered
with the LMA, there are aspects of feature parameters that can’t be tested using a beta package version. If you use the default value,
you can test LMO-to-Subscriber values in beta package versions. You can’t test any Subscriber-to-LMO feature parameter values in
a beta managed package version.

205

Feature Parameter IntegerFirst-Generation Managed Packages

Usage Limits
A package can include up to 200 feature parameters.

Documentation
Metadata API Developer Guide: FeatureParameterInteger

Create Feature Parameters for Your Second-Generation Managed Package

Create Feature Parameters in Your First-Generation Packaging Org

Apex Reference Guide: FeatureManagement Class

Field Set
Represents a field set. A field set is a grouping of fields. For example, you could have a field set that contains fields describing a user's
first name, middle name, last name, and business title.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Available fields

Both Package Developer and Subscriber Can Edit

• Selected fields (only subscriber editable)

Neither Package Developer or Subscriber Can Edit

• Name

206

Field SetFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_featureparameterinteger.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_create_feature_parameters.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

More Information
Feature Name

Metadata Name: FieldSet

Component Type in 1GP Package Manager UI: Field Set

Considerations When Packaging
Field sets in installed packages perform different merge behaviors during a package upgrade:

Then in the package upgrade:If a package developer:

The modified field is placed at the end of the upgraded field set
in whichever column it was added to.

Changes a field from Unavailable to Available for the Field
Set or In the Field Set

The new field is placed at the end of the upgraded field set in
whichever column it was added to.

Adds a field

The field is removed from the upgraded field set.Changes a field from Available for the Field Set or In the Field
Set to Unavailable

The change isn’t reflected in the upgraded field set.Changes a field from In the Field Set to Available for the Field
Set (or vice versa)

Note: Subscribers aren’t notified of changes to their installed field sets. The developer must notify users of changes to released
field sets through the package release notes or other documentation. Merging has the potential to remove fields in your field
set.

When a field set is installed, a subscriber can add or remove any field.

Documentation
Metadata API Developer Guide: FieldSet

Field Source Target Relationship
Stores the relationships between a data model object (DMO) and its fields. For example, the Individual.Id field has a one-to-many
relationship (1:M) with the ContactPointEmail.PartyId field.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

207

Field Source Target RelationshipFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_fieldset.htm

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• CreationType

• DeveloperName

• MasterLabel

• RelationshipCardinality

• SourceField

• TargetField

Both Package Developer and Subscriber Can Edit

• LastDataChangeStatusDateTime

• LastDataChangeStatusErrorCode

• Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FieldSrcTrgtRelationship

Component Type in 1GP Package Manager UI: Field Source Target Relationship

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: FieldSrcTrgtRelationship

Flow
Represents the metadata associated with a flow. With Flow, you can create an application that navigates users through a series of pages
to query and update records in the database. You can also execute logic and provide branching capability based on user input to build
dynamic applications.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

208

FlowFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_fieldsrctrgtrelationship.htm

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

Yes, except a flow that is a template or overridable.Component Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Entire flow

Both Package Developer and Subscriber Can Edit

• Flow Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• Flow API Name

• URL

More Information
Feature Name

Metadata Name: Flow

Use Case
To repeat a business process automatically such as creating an account when some criteria are met or sending an email every week,
build a flow to save time and resources

Considerations When Packaging

• When you upload a package or package version, the active flow version is included. If the flow has no active version, the latest
version is packaged.

• To update a managed package with a different flow version, activate that version and upload the package again. Or deactivate
all versions of the flow, make sure the latest flow version is the one to distribute, and then upload the package.

• In a packaging org, you can’t delete a flow after you upload it to a released or beta first-generation managed package. You can
only delete a flow version from a packaging org after you upload it to a released or beta first-generation managed package, if:

– Salesforce Customer Support activated the Managed Component Deletion permission.

– The flow version is not the most recently packaged version of the flow.

– The flow version is not active.

– The flow version is not the only version.

209

FlowFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• You can’t delete a flow from an installed package. To remove a packaged flow from your org, deactivate it and then uninstall
the package.

• If you have multiple versions of a flow installed from multiple unmanaged packages, you can’t remove only one version by
uninstalling its package. Uninstalling a package—managed or unmanaged—that contains a single version of the flow removes
the entire flow, including all versions.

• You can’t include flows in package patches.

• An active flow in a package is active after it’s installed. The previous active version of the flow in the destination org is deactivated
in favor of the newly installed version. Any in-progress flows based on the now-deactivated version continue to run without
interruption but reflect the previous version of the flow. The same behavior is true even if the destination org deactivated the
flow. Future active versions of the flow that are packaged activate the flow during package upgrade.

• Upgrading a managed package in your org installs a new flow version only if there’s a newer flow version from the developer.
After several upgrades, you can end up with multiple flow versions.

• A package version can contain only one flow version per flow. If you install a managed package version that contains a flow,
only the active flow version is deployed. If the flow has no active version, the latest version is deployed.

• If you install a flow from an unmanaged package that has the same name but a different version number as a flow in your org,
the newly installed flow becomes the latest version of the existing flow. However, if the packaged flow has the same name and
version number as a flow already in your org, the package install fails. You can’t overwrite a flow.

• A flow can be modified if it’s deployed in a managed package or between a package developer org and a subscriber org where
either org has a namespace and the other doesn’t have a namespace.

• Flow Builder can’t open a flow that is installed from a managed package, unless the flow is a template or overridable.

• You can’t create a package that contains flows invoked by both managed and unmanaged package pages. As a workaround,
create two packages, one for each type of component. For example, suppose that you want to package a customizable flow
invoked by a managed package page. Create one unmanaged package with the flow that users can customize. Then create
another managed package with the Visualforce page referencing the flow (including namespace) from the first package.

• When you translate a flow from a managed package, the flow’s Master Definition Name doesn’t appear on the Translate page
or the Override page. To update the translation for the Master Definition Name, edit the flow label and then update the translation
from the Translate page.

• If any of the following elements are used in a flow, packageable components that they reference aren’t included in the package
automatically. To deploy the package successfully, manually add those referenced components to the package.

– Post to Chatter

– Send Email

– Submit for Approval

• If a flow references a Lightning component that depends on a CSP Trusted Site, the trusted site isn’t included in the package or
change set automatically.

Usage Limits
Salesforce Help: General Flow Limits

Relationship to Other Components
The associated Flow Definition component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow

Salesforce Help: Packaging Considerations for Flows

Salesforce Help: Considerations for Deploying Flows with Packages

Salesforce DX Developer Guide: Hard-Deleted Components in Unlocked Packages

210

FlowFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.flow_considerations_limit.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_visual_workflow.htm
https://help.salesforce.com/s/articleView?id=sf.flow_considerations_packaging.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.flow_considerations_distribute_package.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_hard_deleted_components.htm

Flow Category
Represents a list of flows that are grouped by category.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• label

• description

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FlowCategory

Use Case
To reuse flow-based automated processes, group the flows into a flow category, and then add one or more flow categories to a
Lightning Bolt Solution.

License Requirements
Customize Application user permission

View Setup and Configuration user permission

Relationship to Other Components
You can use FlowCategory only as part of a Lightning Bolt Solution.

Documentation
Salesforce Help: Add Flows to a Lightning Bolt Solution

Salesforce Help: Package and Distribute a Lightning Bolt Solution

211

Flow CategoryFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.community_builder_export_flow_category.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.community_builder_export_package.htm&language=en_US

Flow Definition
Represents the flow definition’s description and active flow version number.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Active Version Number

• Description

• Master Label

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: Flow Definition

Component Type in 1GP Package Manager UI: Flow Definition

Use Case
Include this component when you use managed 1GP to package flows.

Considerations When Packaging
Considerations for Deploying Flows with Packages

Relationship to Other Components
The associated Flow component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow Definition

Salesforce Help: Flow Builder

212

Flow DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.flow_considerations_distribute_package.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_flowdefinition.htm
https://help.salesforce.com/s/articleView?id=sf.flow.htm&language=en_US

Flow Test
Represents the metadata associated with a flow test. Before you activate a record-triggered flow, you can test it to verify its expected
results and identify flow run-time failures.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation\
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• API Name

More Information
Feature Name

Metadata Name: FlowTest

Component Type in 1GP Package Manager UI: FlowTest

Use Case
Include this component when you use managed 1GP to package flow tests.

Usage Limits
Salesforce Help: Considerations for Testing Flows

Relationship to Other Components
The associated Flow component is required for managed 1GP packages.

Documentation
Metadata API Developer Guide: Flow Test

Salesforce Help: Testing Your Flow

213

Flow TestFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.flow_considerations_feature_testing.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_flowtest.htm
https://help.salesforce.com/s/articleView?id=sf.flow_concepts_testing.htm&language=en_US

Folder
Represents a folder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Folder Unique Name

Neither Package Developer or Subscriber Can Edit

• Folder Unique Name

More Information
• Five different folder metadata types can be packaged:

– DashboardFolder

– DocumentFolder

– EmailFolder (available for Salesforce Classic email templates only)

– EmailTemplateFolder

– ReportFolder

• Components that Salesforce stores in folders, such as documents, can’t be added to packages when stored in personal and unfiled
folders. Put documents, reports, and other components that Salesforce stores in folders in one of your publicly accessible folders.

• Components such as documents, email templates, reports, or dashboards are stored in new folders in the installer’s org using the
publisher’s folder names. Give these folders names that indicate they’re part of the package.

• If a new report, dashboard, document, or email template is installed during an upgrade, and the folder containing the component
was deleted by the subscriber, the folder is re-created. Any components in the folder that were previously deleted aren’t restored.

214

FolderFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• The name of a component contained in a folder must be unique across all folders of the same component type, excluding personal
folders. Components contained in a personal folder must be unique within the personal folder only.

Documentation
Metadata API Developer Guide: Folder

Fuel Type
Represents a custom fuel type in an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FuelType

Component Type in 1GP Package Manager UI: Fuel Type

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

215

Fuel TypeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_folder.htm

• Manage Carbon Accounting

Documentation

• Salesforce Help: Create a Custom Fuel Type

Fuel Type Sustainability Unit of Measure
Represents a mapping between the custom fuel types and their corresponding unit of measure (UOM) values defined by a customer in
an org.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: FuelTypeSustnUom

Component Type in 1GP Package Manager UI: Fuel Type Sustainability Unit of Measure

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

216

Fuel Type Sustainability Unit of MeasureFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?language=en_US&id=sf.netzero_admin_create_custom_fuel_type.htm

• Manage Carbon Accounting

Documentation

• Salesforce Help: Associate a Custom Fuel Type with a Unit of Measure

Fundraising Config
Represents a collection of settings to configure the fundraising product.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• LapsedUnpaidTrxnCount

• HouseholdSoftCreditRole

• IsHshldSoftCrAutoCrea

• InstallmentExtDayCount

• DonorMatchingMethod

• FailedTransactionCount

• ShouldCreateRcrSchdTrxn

• ShouldClosePaidRcrCmt

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

217

Fundraising ConfigFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.netzero_admin_associate_custom_fuel_type_with_unitofmeasure.htm&language=en_US
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: FundraisingConfig

License Requirements
Fundraising Access (Permission Set License)

Documentation
Metadata API Developer Guide: FundraisingConfig

Gateway Provider Payment Method Type
Represents an entity that allows integrators and payment providers to choose an active payment to receive an order's payment data
rather than allowing the Salesforce Order Management platform to select a default payment method.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• All fields

More Information
Feature Name

Metadata Name: GatewayProviderPaymentMethodType

License Requirements
Salesforce Order Management, B2B Commerce, or B2C Commerce (for B2B2C Commerce) licenses are required. These licenses enable
the Payment Platform org permission required to use payments objects.

218

Gateway Provider Payment Method TypeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.nonprofit_cloud.meta/nonprofit_cloud/npc_fundraising_api_objects_fundraisingconfig.htm

Documentation
Salesforce Help: Processing Payments with Payment Gateways

Gen Ai Planner Bundle
Represents a planner for an agent or agent template. It’s a container for all the topics and actions used to interact with a large language
model (LLM).

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Capabilities

• Description

• MasterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: GenAiPlannerBundle

Component Type in 2GP Package Manager UI: Generative AI Planner Bundle

219

Gen Ai Planner BundleFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.blng_payment_gateways.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_genaiplannerbundle.htm

Use Case
Represents a planner for an agent or agent template. It’s a container for all the topics and actions used to interact with a large
language model (LLM).

Documentation
Salesforce Help: Agentforce Agents

Salesforce Help: The Building Blocks of Agents

Generative AI Prompt Template
Represents a generative AI prompt template, for use in Agentforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Template Active Version

Both Package Developer and Subscriber Can Edit

• Template Description

Neither Package Developer or Subscriber Can Edit

• Prompt Template Name

• Prompt Template Version

More Information
Feature Name

Metadata Name: GenAIPromptTemplate

220

Generative AI Prompt TemplateFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.copilot_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=ai.copilot_building_blocks.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Component Type in 1GP Package Manager UI: Generative AI Prompt Template

Use Case
To package prompt templates created from Prompt Builder for Generative AI use cases.

Considerations When Packaging
See Considerations for Packaging Prompt Templates.

License Requirements
Generative AI SKUs are needed to provision Prompt Builder in the org.

Documentation
Metadata API Developer Guide: GenAiPromptTemplate

Global Picklist
Represents the metadata for a global picklist value set, which is the set of shared values that custom picklist fields can use. A global value
set isn’t a field itself. In contrast, the custom picklist fields that are based on a global picklist are of type ValueSet.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: Global Value Set

Component Type in 1GP Package Manager UI: Global Value Set

Considerations When Packaging
When explicitly referencing a picklist value in code, keep in mind that picklist values for a custom field can be renamed, added,
edited, or deleted by subscribers.

Picklist field values can be added or deleted in the developer’s org. Changes to standard picklists can’t be packaged and deployed
to subscriber orgs, and picklist values deleted by the developer are still available in the subscriber’s org. If there are differences
between the package and the target org, or if there are dependencies on new values from features such as PathAssistant, the deploy
fails. To change values in subscriber orgs, you must manually add or modify the values in the target subscriber org.

Updating picklist values in unlocked packages isn’t supported. Manually add or modify the values in the target subscriber org.

221

Global PicklistFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_genaiprompttemplate.htm
https://partners.salesforce.com/partnerSupport

Package upgrades retain dependent picklist values that are saved in a managed custom field.

Global value sets can be added to developer and subscriber orgs. Global value sets have these behaviors during a package upgrade.

• Label and API names for field values don’t change in subscriber orgs.

• New field values aren’t added to the subscriber orgs.

• Active and inactive value settings in subscriber orgs don’t change.

• Default values in subscriber orgs don’t change.

• Global value set label names change if the package upgrade includes a global value set label change.

Documentation
Salesforce Help: Create a Global Picklist Value Set

Salesforce Help: Make Your Custom Picklist Field Values Global

Home Page Component
Represents the metadata associated with a home page component. You can customize the Home tab in Salesforce Classic to include
components such as sidebar links, a company logo, a dashboard snapshot, or custom components that you create. Use to create, update,
or delete home page component definitions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Body

• Component Position

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

222

Home Page ComponentFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.fields_creating_global_picklists.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.fields_promote_picklists.htm&language=en_US
https://partners.salesforce.com/partnerSupport

• Type

More Information
Feature Name

Metadata Name: HomePageComponent

Component Type in 1GP Package Manager UI: Home Page Component

Relationship to Other Components

When you package a custom home page layout, all the custom home page components included on the page layout are automatically
added. Standard components such as Messages & Alerts aren’t included in the package and don’t overwrite the installer’s Messages
& Alerts. To include a message in your custom home page layout, create an HTML Area type custom Home tab component containing
your message. From Setup, in the Quick Find box, enter Home Page Components, then select Home Page Components.
Then add the message to your custom home page layout.

Documentation
Metadata API Developer Guide: HomePageComponent

Home Page Layout
Represents the metadata associated with a home page layout. You can customize home page layouts and assign the layouts to users
based on their user profile.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Layout Name

223

Home Page LayoutFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_homepagecomponent.htm
https://partners.salesforce.com/partnerSupport

Neither Package Developer or Subscriber Can Edit

• Layout Name

More Information
Feature Name

Metadata Name: HomePageLayout

Component Type in 1GP Package Manager UI: Home Page Layout

Considerations When Packaging

After they’re installed, your custom home page layouts are listed with all the subscriber’s home page layouts. Distinguish them by
including the name of your app in the page layout name.

Documentation
Metadata API Developer Guide: HomePageLayout

Identity Verification Proc Def
Represents the definition of the identity verification process.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• SearchLayoutType

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

224

Identity Verification Proc DefFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_homepagelayouts.htm

More Information
Feature Name

Metadata Name: IdentityVerificationProcDef

Component Type in 1GP Package Manager UI: Identity Verification Process Definition

Use Case
Links the configuration for Identity Verification to a flow.

License Requirements
Industries Health Cloud, Industries Sales Excellence, and Industries Service Excellence licenses.

Actionable Segmentation Engagement, Industries Sales Excellence, Industry Service Excellence or Health Cloud Platform Permission
set license is required to use this metadata type.

Relationship to Other Components
An Identity Verification Process Field record looks up to an Identity Verification Process Details record, which in turn looks up to an
Identity Verification Process Definition record.

Documentation
Health Cloud Developer Guide: IdentityVerificationProcDef

Inbound Network Connection
Represents a private connection between a third-party data service and a Salesforce org. The connection is inbound because the callouts
are coming into Salesforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

You can only delete connections that are in an unprovisioned state.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

225

Inbound Network ConnectionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.health_cloud_object_reference.meta/health_cloud_object_reference/meta_identityverificationprocdef.htm
https://partners.salesforce.com/partnerSupport

• AWS VPC Endpoint ID

• Connection Type

• Developer Name

• Description

• Link ID

• Master Label

• Region

• Source IP Ranges

Both Package Developer and Subscriber Can Edit

• Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: InboundNetworkConnection

Component Type in 1GP Package Manager UI: Inbound Network Connection

Considerations When Packaging

• Packaged connections are installed as unprovisioned. Alert subscribers about how to provision connections after package installation.

• If a developer changes the Region of a packaged connection that is subscriber-provisioned, the upgrade fails for the subscriber. Alert
subscribers about tearing down the connection before updating the Region field. As a best practice, avoid changing the Region of
a packaged connection unless necessary.

License Requirements
This feature is available with the Private Connect license.

Documentation
Salesforce Help: Secure Cross-Cloud Integrations with Private Connect

Salesforce Help: Establish an Inbound Connection with AWS

IntegrationProviderDef
Represents an integration definition associated with a service process. Stores data for the Industries: Send Apex Async Request and
Industries: Send External Async Request invocable actions.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

226

IntegrationProviderDefFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.private_connect_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.private_connect_inbound_aws.htm&language=en_US

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All other fields

Both Package Developer and Subscriber Can Edit

• StringValue

• IntegerValue

• DateTimeValue

• DateValue

• PercentageValue

• DoubleValue

• IsTrueOrFalseValue

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
IntegrationProviderDef

Metadata Name: IntegrationProviderDef

Component Type in 1GP Package Manager UI: IntegrationProviderDef

Documentation
IntegrationProviderDef in Metadata API Developer Guide.

LearningAchievementConfig
Represents the mapping details between a Learning Achievement type and a Learning Achievement record type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

227

LearningAchievementConfigFirst-Generation Managed Packages

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

Both Package Developer and Subscriber Can Editv

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: LearningAchievementConfig

Documentation
Education Cloud Developer Guide

Learning Item Type
Represents a custom exercise type that an Enablement user takes in an Enablement program in the Guidance Center. A custom exercise
type also requires a corresponding LearningItem record for the Guidance Center and corresponding EnblProgramTaskDefinition and
EnblProgramTaskSubCategory records for when admins create a program in Program Builder.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All but DeveloperName

228

Learning Item TypeFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: LearningItemType

Use Case

Include this component in a package with a program if the program has a custom exercise type.

Considerations When Packaging
See Considerations for Packaging Enablement Programs and Dependencies.

License Requirements
Enablement add-on license and the Enablement permission set license are required.

Important: Custom exercises aren’t compatible with Partner Enablement programs.

Usage Limits
See Enablement Limits.

Relationship to Other Components
The Learning Item Type component requires a corresponding Enablement Program Task Subcategory component. Both components
are used with custom exercise types in Enablement programs. Package both of these components with an Enablement Program
Definition component.

Documentation

• Salesforce Help: Sales Programs and Partner Tracks with Enablement

• Metadata API Developer Guide: EnblProgramTaskSubCategory

• Metadata API Developer Guide: LearningItemType

• Object Reference for the Salesforce Platform: EnblProgramTaskDefinition

• Object Reference for the Salesforce Platform: LearningItem

• Sales Programs and Partner Tracks with Enablement Developer Guide: Create a Managed Package for Enablement Programs,
Measures, and Content

• Sales Programs and Partner Tracks with Enablement Developer Guide: Implement Custom Exercise Types for Enablement Programs

Letterhead
Represents formatting options for the letterhead in an email template. A letterhead defines the logo, page color, and text settings for
your HTML email templates. Use letterheads to ensure a consistent look and feel in your company’s emails.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

229

LetterheadFirst-Generation Managed Packages

https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package-considerations.html
https://help.salesforce.com/s/articleView?id=sf.enablement_limits.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.enablement.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_enblprogramtasksubcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_learningitemtype.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_enblprogramtaskdefinition.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_learningitem.htm
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-package.html
https://developer.salesforce.com/docs/sales/enablement/guide/enablement-custom-exercises-intro.html

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Letterhead Name

Neither Package Developer or Subscriber Can Edit

• Letterhead Name

More Information
Feature Name

Metadata Name: Letterhead

Documentation
Metadata API Developer Guide: Letterhead

Life Science Config Category
Represents the category that a Life Sciences configuration record is organized into.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

230

Life Science Config CategoryFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_letterhead.htm

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

• CategoryLabel

• DeveloperName

• MasterLabel

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• CategoryType

More Information
Feature Name

Metadata Name: LifeSciConfigCategory

Component Type in 1GP Package Manager UI: Life Science Config Category

Considerations When Packaging
When packaging the LifeSciConfigCategory component, the DeveloperName must match the Category.

License Requirements
Industries Life Sciences Cloud with the Life Sciences Cloud for Customer Engagement Add-on license and the Life Sciences Customer
Engagement managed package.

Relationship to Other Components
This component defines the category of the configuration defined in a child LifeSciConfigRecord component.

Documentation
Life Sciences Cloud Developer Guide: LifeSciConfigCategory

Life Science Config Record
Represents a configuration record for Life Sciences. This object is a child of Life Science Config Category.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

231

Life Science Config RecordFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.life_sciences_dev_guide.meta/life_sciences_dev_guide/meta_lifesciconfigcategory.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

• IsActive

• IsOrgLevel

• MasterLabel

• ParentConfigRecordId

• Type

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• LifeSciConfigCategoryId

More Information
Feature Name

Metadata Name: LifeSciConfigRecord

Component Type in 1GP Package Manager UI: Life Science Config Record

Use Case
This component holds the configuration records for Life Sciences Cloud for Customer Engagement application.

Considerations When Packaging

• You must package the LifeSciConfigRecord component with its parent LifeSciConfigCategory component.

• The component must be in the inactive state.

License Requirements
Industries Life Sciences Cloud with the Life Sciences Cloud for Customer Engagement Add-on license and the Life Sciences Customer
Engagement managed package.

232

Life Science Config RecordFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Post Install Steps
For the configuration to work, make the component active by setting IsActive to true.

Relationship to Other Components
A LifeSciConfigRecord is a child of LifeSciConfigCategory, and can’t exist without the parent LifeSciConfigCategory.

Documentation
Life Sciences Cloud Developer Guide: LifeSciConfigRecord

Lightning Bolt
Represents the definition of a Lightning Bolt Solution, which can include custom apps, flow categories, and Experience Builder templates.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: LightningBolt

Component Type in 1GP Package Manager UI: Lightning Bolt

Documentation
Metadata API Developer Guide: LightningBolt

Lightning Message Channel
Represents the metadata associated with a Lightning Message Channel. A Lightning Message Channel represents a secure channel to
communicate across UI technologies, such as Lightning Web Components, Aura Components, and Visualforce.

233

Lightning BoltFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.life_sciences_dev_guide.meta/life_sciences_dev_guide/meta_lifesciconfigrecord.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_lightningbolt.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: LightningMessageChannel

Component Type in 1GP Package Manager UI: Lightning Message Channel

Considerations When Packaging
To pass the AppExchange Security Review, the isExposed attribute must be set to false.

Documentation
Metadata API Developer Guide: Lightning Message Channel

Lightning Web Components Developer Guide: Create a Message Channel

Lightning Page
Represents the metadata associated with a Lightning page. A Lightning page represents a customizable screen made up of regions
containing Lightning components.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

234

Lightning PageFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_lightningmessagechannel.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_message_channel_intro

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Lightning page

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

Note: You must have the Manage Prompt Templates permission to successfully package Lightning pages that reference prompt
templates. Without this permission, package creation succeeds, but the prompt template isn't included in the package.

More Information
Feature Name

Metadata Name: FlexiPage

Documentation
Metadata API Developer Guide: Flexipage

Lightning Type
Represents a custom Lightning type. Use this type to override the default user interface to create a customized appearance of responses
on the custom agent’s action input and output. Deploy this bundle to your organization to implement the overrides.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

235

Lightning TypeFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_flexipage.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: LightningTypeBundle

Component Type in 1GP Package Manager UI: Lightning Type

Documentation
Metadata API Developer Guide: LightningTypeBundle

Lightning Web Component
Represents a Lightning web component bundle. A bundle contains Lightning web component resources.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

You can build Lightning components using two programming models: the Lightning Web Components model, and the original Aura
Components model.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

When a package developer removes an Aura or Lightning web component from a package, the component remains in a subscriber’s
org after they install the upgraded package. The administrator of the subscriber’s org can delete the component, if desired. This behavior
is the same for a Lightning web component or an Aura component with a public or global access value.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

236

Lightning Web ComponentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_lightningtypebundle.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• isExposed (can only change from false to true)

• Label

• Markup

• Targets

• targetConfigs

• targetConfig

• property

You can’t make certain changes to <property> tags on a custom component that’s used in a managed package or an Experience
Builder site. For more information, see Considerations for configuring a component for Experience Builder in the Lightning Web Components
Developer Guide.

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Lightning Web Component

Metadata Name: LightningComponentBundle

Component Type in 1GP Package Manager UI: Lightning Web Component Bundle

Considerations When Packaging
Licensing Considerations:

Lightning Web Components don’t automatically enforce managed package licensing. Lightning Web Components in a managed
package can be seen and used by users who don’t have active licenses for that managed package. These Lightning Web Components
can also be seen and used after a trial of that managed package expires.

AppExchange partners are responsible for enforcing package licensing in their Lightning Web Components. We recommend using
an Apex controller that calls either the UserInfo.isCurrentUserLicensed(namespace) or
UserInfo.isCurrentUserLicensedForPackage(packageID) methods, and only rendering the component if true is returned.

Considerations When Using isExposed:

If isExposed is false, the package developer can remove configuration targets and a public (@api) property from a component.
The component isn't available to other namespaces or to Salesforce builders like Lightning App Builder and Experience Builder.

If isExposed is true and the component is in a published managed package, the package developer can’t remove configuration
targets or a public (@api) property from a component. This restriction is enforced even if the target or public property was added
after the most recent publication of the package.

If isExposed is true, the component is available to other namespaces, including namespaces outside of a published managed
package.

237

Lightning Web ComponentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-community-builder.html#considerations
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_methods_system_userinfo.htm#apex_System_UserInfo_isCurrentUserLicensed
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_methods_system_userinfo.htm#apex_System_UserInfo_isCurrentUserLicensedForPackage

If isExposed is true and a Targets value is also provided, the component is available to Salesforce builders such as Lightning
App Builder and Experience Builder.

When you delete a Lightning Web Component with an isExposed value of true, we recommend a two-stage process to ensure
that the deleted component has no dependencies on the other items in the package. See Remove Components from
Second-Generation Managed Packages for details.

Documentation
Lightning Web Components Developer Guide

Lightning Web Components Developer Guide: Add Components to Managed Packages

Lightning Web Components Developer Guide: Delete Components from Managed Packages

List View
ListView allows you to see a filtered list of records, such as contacts, accounts, or custom objects.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except View Unique Name

Neither Package Developer or Subscriber Can Edit

• View Unique Name

238

List ViewFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-packaging-add.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-packaging-delete.html
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

More Information
Feature Name

Metadata Name: ListView

Component Type in 1GP Package Manager UI: List View

Considerations When Packaging
If a subscriber removes a packaged listview from their production org, that listview is deprecated, but not deleted. If that subscriber
org later creates a sandbox org, and upgrades the package in the sandbox org, the removed listview persists in the sandbox org. To
remove the listview from the sandbox, package subscribers can click and select Delete.

Relationship to Other Components

List views associated with queues can’t be included in a managed package or an unlocked package.

Documentation
Metadata API Developer Guide: ListView

Live Chat Sensitive Data Rule
Represents a rule for masking or deleting data of a specified pattern. Written as a regular expression (regex). Use this object to mask or
delete data of specified patterns, such as credit card, social security, or phone and account numbers.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes, Supported in 1GP Packages onlyPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

239

Live Chat Sensitive Data RuleFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_listview.htm
https://partners.salesforce.com/partnerSupport

• None

More Information
Feature Name

Metadata Name: LiveChatSensitiveDataRule

Component Type in 1GP Package Manager UI: Sensitive Data Rules

Documentation
Metadata API Developer Guide: LiveChatSensitiveDataRule

Loyalty Program Setup
Represents the configuration of a loyalty program process including its parameters and rules. Program processes determine how new
transaction journals are processed. When new transaction journals meet the criteria and conditions for a program process, actions that
are set up in the process are triggered for the transaction journals.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Loyalty Program Process records

Both Package Developer and Subscriber Can Edit

• Label

• Description

• Status

Neither Package Developer or Subscriber Can Edit

• API Name

• URL

240

Loyalty Program SetupFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_livechatsensitivedatarule.htm

More Information
Feature Name

Metadata Name: LoyaltyProgramSetup

Component Type in 1GP Package Manager UI: Loyalty Program Setup

Use Case
Promotion setup allows loyalty program managers to create loyalty program processes.

License Requirements
Loyalty Management permission set license

Documentation
Salesforce Help: Create Processes with Promotion Setup

Managed Content Type
Represents the definition of custom content types for use with Salesforce CMS. Custom content types are displayed as forms with defined
fields.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Content

• Description

• Labels

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

241

Managed Content TypeFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=https://help.salesforce.com/s/articleView?id=sf.promotion_setup.htm&language=en_US

More Information
Feature Name

Metadata Name: ManagedContentType

Use Case
Share or distribute custom content types for use in enhanced workspaces in Salesforce CMS.

Considerations When Packaging
Installed content types are available only to enhanced CMS workspaces.

To refer to an installed content type when using Connect REST API, you must use the content type’s fully qualified name. Installed
content types are available only to enhanced CMS workspace resources.

Documentation
Metadata API Developer Guide: ManagedContentType

Connect REST API Developer Guide: Enhanced CMS Workspaces Resources

CMS Developer Guide: Create Custom Content Type Sample

Marketing App Extension
Represents an integration with a third-party app or service that generates prospect external activity.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• DeveloperName

• MasterLabel

• Description

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• None

242

Marketing App ExtensionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_managedcontenttype.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.chatterapi.meta/chatterapi/connect_resources_managed_content_enhanced_resources.htm
https://developer.salesforce.com/docs/platform/cms/guide/cms-dev-create-custom-content-type-sample.html

More Information
Feature Name

Metadata Name: MarketingAppExtension

Component Type in 1GP Package Manager UI: Marketing App Extension

Use Case
Partners and ISVs can provide integrations with third-parties so Account Engagement customers can enhance their automations.

Considerations When Packaging
Marketing app extensions require an associated action type component to function. The related component activity type isn’t
supported for packaging.

License Requirements
This feature is available in Plus, Advanced, or Premium editions of Account Engagement. To work with marketing app extensions,
users must be a Salesforce admin or have the required permissions to access Marketing Setup.

Usage Limits
The number of active extensions, activities, and actions the end user can have at one time depends on their edition of Account
Engagement.

• Plus—10 active extensions, with 10 active activities and 10 active actions per active extension

• Advanced—20 active extensions, with 20 active activities and 20 active actions per active extension

• Premium—30 active extensions, with 30 active activities and 30 active actions per active extension

For more on limits, see Considerations for Working with Marketing App Extensions.

Post Install Steps
To receive data, the extension must be activated for automations and have a business unit assignment.

Relationship to Other Components
The extension requires an associated action type component to function.

Documentation
This component is part of Account Engagement’s extensibility feature set.

• Salesforce Help: Automate Data Sharing with Third-Party Apps

• Developer Guide: Work with Extensibility Features

Marketing App Extension Activity
Represents an Activity Type, which is a prospect activity that occurs in a third-party app and can be used in Account Engagement
automations.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

243

Marketing App Extension ActivityFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.pardot_admin_marketing_admin.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.pardot_extensions_considerations.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.pardot_extensibility_parent.htm&language=en_US
https://developer.salesforce.com/docs/marketing/pardot/guide/extensibility-features-overview.html

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• MasterLabel

• Description

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• DeveloperName

• EndpointUrl

• MarketingAppExtension

More Information
Feature Name

Metadata Name: MarketingAppExtActivity

Component Type in 1GP Package Manager UI: Marketing App Extension

Use Case
Partners and ISVs can use Activities to submit external prospect engagement data to Marketing Cloud Account Engagement.

Considerations When Packaging
This component is included when the parent component MarketingAppExtension on page 242 is added to a package. The related
component MarketingAppExtActivity isn’t supported for packaging.

License Requirements
This feature is available in Plus, Advanced, or Premium editions of Account Engagement. To work with marketing app extensions
and related components, users must be a Salesforce admin or have the required permissions to access Marketing Setup.

Usage Limits
The number of active extensions, activities, and actions the end user can have at one time depends on their edition of Account
Engagement.

• Plus—10 active activities per active extension

• Advanced—20 active activities per active extension

• Premium—30 active activities per active extension

For more information, see Considerations for Working with Marketing App Extensions.

Post Install Steps
To receive data, the activity and its related extension must be activated for automations.

Relationship to Other Components
This component is a child of the MarketingAppExtension on page 242 component. Activities interact with Marketing Cloud Account
Engagement features that support external activities. For more information, see Capture External Prospect Activity.

Documentation
This component is part of Account Engagement’s extensibility feature set.

244

Marketing App Extension ActivityFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.pardot_admin_marketing_admin.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.pardot_extensions_considerations.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.pardot_external_activity_parent.htm&language=en_US

• Salesforce Help: Automate Data Sharing with Third-Party Apps

• Developer Guide: Work with Extensibility Features

Market Segment Definition
Represents the field values for MarketSegmentDefinition. MarketSegmentDefinition is used to store the exportable metadata of a segment,
such as segment criteria and other attributes. Developers can create segment definition packages, pass segment definition in the form
of data build tool (DBT), and publish it on AppExchange for subscriber organizations to install and instantiate these segments.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Yes, applicable for all properties.

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: MarketSegmentDefinition

Component Type in 1GP Package Manager UI: Market Segment Definition

245

Market Segment DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.pardot_extensibility_parent.htm&language=en_US
https://developer.salesforce.com/docs/marketing/pardot/guide/extensibility-features-overview.html
https://partners.salesforce.com/partnerSupport

MktCalculatedInsightsObjectDef
Represents Calculated Insight definition such as expression.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• BuilderExpression

• CalculatedInsightCreationType

• Description

• Expression

• Label

Both Package Developer and Subscriber Can Edit

• CalculatedInsightObjectDefinitionStatus

• Description

Neither Package Developer or Subscriber Can Edit

• DeveloperName

More Information
Feature Name

Metadata Name: MktCalcInsightObjectDef

Component Type in 1GP Package Manager UI: MktCalcInsightObjectDef.

Use Case
Defines CDP calculated insight for easy creation on subscriber organizations.

Considerations When Packaging
To package this component, first add it to a data kit. For more information about data kits, see Data Kits in Salesforce Help.

License Requirements
You need Customer 360 Audiences Corporate (cdpPsl) licenses on both package developer org and subscriber org.

246

MktCalculatedInsightsObjectDefFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.c360_a_data_package_kits.htm&language=en_US

Post Install Steps
User has to go to the Calculated Insights object home in Customer Data Platform, click New action and select Create from a
Package.

Relationship to Other Components
Calculated Insight Component is tied to the Data Model Object component. The Calculated Insight component must have Data
Model Object dependencies available on the subscriber organization that are used in the Calculated Insight.

Documentation
Metadata API Developer Guide: MktCalcInsightObjectDef

MktDataConnection
Represents the connection information of an external connector that can ingest data to Data Cloud, read data from the source, or write
data to the source in Data Cloud.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• masterLabel

• Parameters

– paramName

– value

• Credentials

– credentialName

– value

Neither Package Developer or Subscriber Can Edit

• None

247

MktDataConnectionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_mktcalcinsightobjectdef.htm

More Information
Feature Name

Metadata Name: MktDataConnection

Component Type in 1GP Package Manager UI: Data Connection

Use Case
To reuse connection parameters.

Considerations When Packaging
Connection credentials are excluded from the package. Available parameters are defined in Connector Metadata which is exposed
from Connect API.

License Requirements
Data Cloud must be provisioned. For more information, see Data Cloud: Access and Provisioning.

Usage Limits
The number of connections per connector type can be up to 200.

Post Install Steps
After you create the connection, it will be in INACTIVE state, you must manually activate the connection.

Relationship to Other Components
Must be used with Data Stream and Activation.

Documentation
Salesforce Help: Third-Party Data Cloud Connectors

MktDataTranObject
An entity that is used to deliver (aka transport) information from the source to a target (target will be called a landing entity).This can
be the schema of a file, API, Event, or other means of transporting data, such as SubscriberFile1.csv, or SubscriberCDCEvent.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

248

MktDataTranObjectFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=000396444&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=sf.c360a_connectors_and_integrations.htm&type=5&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• CreationType

• DataSource

• DataSourceObject

• DeveloperName

• ObjectCategory

• Status

Both Package Developer and Subscriber Can Edit

• DataConnector

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: MktDataTranObject

Component Type in 1GP Package Manager UI: It's not a top-level component, it can only be spidered in when customer selects some
other component. You won't be able to add this component directly to the package.

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: MktDataTranObject

Named Credential
Represents a named credential, which specifies the URL of a callout endpoint and its required authentication parameters in one definition.
A named credential can be specified as an endpoint to simplify the setup of authenticated callouts.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

249

Named CredentialFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_mktdatatranobject.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Editable Properties After Package Promotion or Installation

Note: In addition to these properties, the Description, ParameterName, ParameterValue, and SequenceNumber properties have
the same editability as the NamedCredentialParameters they’re included in.

Only Package Developer Can Edit

• Label

• NamedCredentialType

• Legacy Named Credentials only (deprecated and unsupported in future releases)

– Endpoint (deprecated)

Both Package Developer and Subscriber Can Edit

• CalloutOptions

– AllowMergeFieldsInBody

– AllowMergeFieldsInHeader

– GenerateAuthorizationHeader

• NamedCredentialParameters

– AllowedManagedPackageNamespaces (only subscriber editable)

– Authentication

– ClientCertificate (only subscriber editable in 2GP)

– HttpHeader

– OutboundNetworkConnection

– Url

• Legacy Named Credentials only (deprecated and unsupported in future releases)

– AuthProvider (deprecated)

– AuthTokenEndpointUrl (deprecated)

– AwsAccessKey, AwsAccessSecret, AwsRegion, and AwsService (all deprecated)

– Certificate (deprecated)

– JwtAudience, JwtFormulaSubject, JwtIssuer, JwtSigningCertificateId, JwtTextSubject, and JwtValidityPeriodSeconds (all deprecated)

– OauthRefreshToken, OauthScope, and OathToken (all deprecated)

– OutboundNetworkConnectionId (deprecated)

– Password (deprecated)

– PrincipalType (deprecated)

– Protocol (deprecated)

– Username (deprecated)

Neither Package Developer or Subscriber Can Edit

250

Named CredentialFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• FullName

More Information
Feature Name

Metadata Name: NamedCredential

Considerations When Packaging

Certificates aren’t packageable. If a certificate needs access to an external system, an administrator must upload one to the subscriber
org and reference it in the named credential.

Relationship to Other Components
You must package NamedCredential with the associated ExternalCredential component.

The named credential defines a callout endpoint and an HTTP transport protocol, while the external credential represents the details
of how Salesforce authenticates to an external system via an authentication protocol. Each named credential must be mapped to
at least one external credential.

Legacy Named Credentials

Important: In Winter ’23, Salesforce introduced an improved named credential that is extensible and customizable. We
strongly recommend that you use this preferred credential instead of legacy named credentials. For information on extensible,
customizable named credentials, see Named Credentials and External Credentials. Legacy named credentials are deprecated
and will be discontinued in a future release.

After installing a named credential from a managed or unmanaged package, the subscriber must reauthenticate to the external
system.

• For password authentication, the subscriber reenters the password in the named credential definition.

• For OAuth, the subscriber updates the callback URL in the client configuration for the authentication provider and then
reauthenticates by selecting Start Authentication Flow on Save on the named credential.

Documentation
Salesforce Help: Named Credentials

Named Credentials Developer Guide: Named Credentials Packaging Guide

Metadata API Developer Guide: NamedCredential

Object Source Target Map
Contains the object-level mappings between the source and the target objects. The source and target objects can be an MktDataLakeObject
or an MktDataModelObject. For example, an Email source object can be mapped to the ContactPointEmail object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

251

Object Source Target MapFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=nc_named_creds_and_ext_creds.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.named_credentials_about.htm&language=en_US
https://developer.salesforce.com/docs/platform/named-credentials/guide/nc-packaging-dev-guide.html
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_namedcredential.htm

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• CreationType

• DeveloperName

• MasterLabel

• ParentObject

• SequenceNbr

• SourceObject

• TargetObject

Both Package Developer and Subscriber Can Edit

• LastDataChangeStatusDateTime

• LastDataChangeStatusErrorCode

• Status

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ObjectSourceTargetMap

Component Type in 1GP Package Manager UI: It's not a top-level component, it can only be spidered in when customer selects some
other component. You won't be able to add this component directly to the package.

License Requirements
Data Cloud must be provisioned.

Documentation
Metadata API Developer Guide: ObjectSourceTargetMap

OcrSampleDocument
Represents the details of a sample document or a document type that's used as a reference while extracting and mapping information
from a customer form.

252

OcrSampleDocumentFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_objectsourcetargetmap.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

OcrSampleDocument

Component Type in 1GP Package Manager UI: OcrSampleDocument

Use Case
Migrate sample documents created with the Intelligent Form Reader or Intelligent Document Reader feature.

Considerations When Packaging
If you update the package by deleting OcrSampleDocumentFields associated with the OCRTemplate, the OcrSampleDocumentFields
are not deleted.

License Requirements
AWSTextract1000LimitAddOn-1 for the Intelligent Form Reader feature or IntelligentDocumentReaderAddOn-1 for the Intelligent
Document Reader feature.

Relationship to Other Components
DocumentType, ContentAsset, and OcrTemplate (Optional)

Documentation
Metadata API Developer Guide: OcrSampleDocument

253

OcrSampleDocumentFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_ocrsampledocument.htm

OcrTemplate
Represents the details of the mapping between a form and a Salesforce object using Intelligent Form Reader.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

OcrTemplate

Component Type in 1GP Package Manager UI: OcrTemplate

Use Case
Migrate Mappings created with the Intelligent Form Reader or Intelligent Document Reader feature.

Considerations When Packaging
OcrTemplate has a dependency on OcrSampleDocument. Before deploying the package, make sure to either include
OcrSampleDocument in the package or deploy a package that contains OcrSampleDocument.

License Requirements
AWSTextract1000LimitAddOn-1 for the Intelligent Form Reader feature or IntelligentDocumentReaderAddOn-1 for the Intelligent
Document Reader feature.

254

OcrTemplateFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Relationship to Other Components
DocumentType and OcrSampleDocument

Documentation
Metadata API Developer Guide: OcrTemplate

Outbound Network Connection
Represents a private connection between a Salesforce org and a third-party data service. The connection is outbound because the
callouts are going out of Salesforce.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: You can only delete connections that are in an unprovisioned state.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

Only Package Developer Can Edit

• Connection Type

• Developer Name

• Description

• Master Label

• Region

• Service Name

Both Package Developer and Subscriber Can Edit

• Status

Neither Package Developer or Subscriber Can Edit

255

Outbound Network ConnectionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_ocrtemplate.htm
https://partners.salesforce.com/partnerSupport

• None

More Information
Feature Name

Metadata Name: OutboundNetworkConnection

Component Type in 1GP Package Manager UI: Outbound Network Connection

Considerations When Packaging

• Packaged connections are installed as unprovisioned. Alert subscribers about how to provision connections after package installation.

• If a developer changes the Region or Service Name of a packaged connection that is subscriber-provisioned, the upgrade fails for
the subscriber. Alert subscribers about tearing down the connection before you update the Region or Service Name fields. As a best
practice, avoid changing the Region or Service Name of a packaged connection unless necessary.

• If you package a Named Credential that references an Outbound Network Connection, the referenced Outbound Network Connection
component is automatically added to the package.

License Requirements
This feature is available with the Private Connect license.

Documentation
Salesforce Help: Secure Cross-Cloud Integrations with Private Connect

Salesforce Help: Establish an Outbound Connection with AWS

Page Layout
Represents the metadata associated with a page layout.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packagesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

256

Page LayoutFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.private_connect_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.private_connect_outbound_aws.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Page Layout Name

Neither Package Developer or Subscriber Can Edit

• Page Layout Name

More Information
Feature Name

Metadata Name: Layout

Considerations
The page layout of the person uploading a package is the layout used for Group and Professional Edition orgs and becomes the
default page layout for Enterprise, Unlimited, Performance, and Developer Edition orgs.

Package page layouts alongside complimentary record types if the layout is being installed on an existing object. Otherwise, manually
apply the installed page layouts to profiles.

If a page layout and a record type are created as a result of installing a package, the uploading user’s page layout assignment for
that record type is assigned to that record type for all profiles in the subscriber org, unless a profile is mapped during an install or
upgrade.

Documentation
Metadata API Developer Guide: Layout

Path Assistant
Represents Path records.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

257

Path AssistantFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_layouts.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• IsActive field

Neither Package Developer or Subscriber Can Edit

• SobjectType, SobjectProcessField, and RecordType

More Information
Feature Name

Metadata Name: PathAssistant

Component Type in 1GP Package Manager UI: Path Assistant

Documentation
Metadata API Developer Guide: PathAssistant

Payment Gateway Provider
Represents the metadata associated with a payment gateway provider.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• All fields

258

Payment Gateway ProviderFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_pathassistant.htm

More Information
Feature Name

Metadata Name: PaymentGatewayProvider

License Requirements
Salesforce Order Management, B2B Commerce, or B2C Commerce (for B2B2C Commerce) licenses are required. These licenses enable
the Payment Platform org permission required to use payments objects.

Documentation
Salesforce Help: Processing Payments with Payment Gateways

Permission Set
Represents a set of permissions that's used to grant more access to one or more users without changing their profile or reassigning
profiles. You can use permission sets to grant access but not to deny access.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Label

• Custom object permissions

• Custom field permissions

• Apex class access settings

• Visualforce page access settings

259

Permission SetFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.blng_payment_gateways.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: PermissionSet

Component Type in 1GP Package Manager UI: Permission Set

Documentation
Metadata API Developer Guide: PermissionSet

Permission Set Groups
Represents a group of permission sets and the permissions within them. Use permission set groups to organize permissions based on
job functions or tasks. Then, you can package the groups as needed.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Permission Set Group Components (Developer can add and remove while Subscriber can add)

Neither Package Developer or Subscriber Can Edit

• None

260

Permission Set GroupsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_permissionset.htm

More Information
Feature Name

Metadata Name: PermissionSetGroup

Component Type in 1GP Package Manager UI: Permission Set Group

Considerations When Packaging
Don't assume that a subscriber's permission set group is the same as what the developer has specified. Although developers can
define the permission set group and what permission sets can go into it, subscribers can add additional permission sets or mute
permissions.

Relationship to Other Components
This feature can only be used in conjunction with Permission Sets.

Documentation
Salesforce Help: Permission Set Groups

Platform Cache
Represents a partition in the Platform Cache.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Master Label

• Description

• Default Partition

Both Package Developer and Subscriber Can Edit

• Organization Capacity

• Trial Capacity

Neither Package Developer or Subscriber Can Edit

• Developer Name

261

Platform CacheFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.perm_set_groups.htm&language=en_US

More Information
Feature Name

Metadata Name: PlatformCachePartition

Component Type in 1GP Package Manager UI: Platform Cache Partition

Documentation
Set Up a Platform Cache Partition with Provider Free Capacity

Metadata API Developer Guide: PlatformCachePartition

Apex Developer Guide: Platform Cache Partitions

Platform Event Channel
Represents a channel that you can subscribe to in order to receive a stream of events.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: PlatformEventChannel

Component Type in 1GP Package Manager UI: Platform Event Channel

Documentation
Metadata API Developer Guide: PlatformEventChannel

Platform Event Channel Member
Represents an entity selected for Change Data Capture notifications on a standard or custom channel, or a platform event selected on
a custom channel.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

262

Platform Event ChannelFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/data_platform_cache_setup_provider_capacity.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_platformcachepartition.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_cache_partition_setup.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_platformeventchannel.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: PlatformEventChannelMember

Component Type in 1GP Package Manager UI: Platform Event Channel Member

Considerations When Packaging

• As of Winter ’22, installing a managed package that contains Change Data Capture entity selections no longer causes an installation
error. Before Winter ’22, installing a managed package that contained Change Data Capture entity selections that were over the
default allocation caused package installation errors.

• To package Change Data Capture entity selections, create a custom channel through the PlatformEventChannel metadata type.
Then add entity selections to the custom channel through the PlatformEventChannelMember metadata type.

Documentation
Metadata API Developer Guide: PlatformEventChannelMember

Platform Event Subscriber Configuration
Represents configuration settings for a platform event Apex trigger, including the batch size, the trigger’s running user, and parallel
subscription settings.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Note: PlatformEventSubscriberConfig is tied to an Apex
trigger. If the package developer removes the Apex trigger,
PlatformEventSubscriberConfig is also removed.

NoComponent Has IP Protection

263

Platform Event Subscriber ConfigurationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_platformeventchannelmember.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• batchSize

• numPartitions

• partitionKey

• platformEventConsumer

Both Package Developer and Subscriber Can Edit

• user

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: PlatformEventSubscriberConfig

Component Type in 1GP Package Manager UI: Platform Event Subscriber Configuration

Use Case
Override the default running user and batch size of a platform event Apex trigger.

Relationship to Other Components
PlatformEventSubscriberConfig is tied to an Apex trigger.

Documentation
Platform Events Developer Guide: Configure the User and Batch Size for Your Platform Event Trigger

Platform Events Developer Guide: Platform Event Processing at Scale with Parallel Subscriptions for Apex Triggers

Pricing Action Parameters
Represents a pricing action associated to a context definition and a pricing procedure.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

264

Pricing Action ParametersFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.platform_events.meta/platform_events/platform_events_trigger_config.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.platform_events.meta/platform_events/platform_events_ps.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Pricing Action Parameters Name

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: PricingActionParameters

Component Type in 1GP Package Manager UI: PricingActionParameters

License Requirements
Salesforce Pricing permissions

Relationship to Other Components
All the components that pricing depends on are packaged along with the Pricing Action Parameters component.

Documentation
Salesforce Help: Pricing Action Parameters in Salesforce Pricing

Pricing Recipe
Represents one out of various data models or sets of entities of a particular cloud that'll be consumed by the pricing data store during
design and run time.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

265

Pricing RecipeFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.pricing_pricing_action_parameters.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Recipe Name

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: PricingRecipe

Component Type in 1GP Package Manager UI: PricingRecipe

Considerations When Packaging
There are two prerequisites currently. All the associated contexts aren’t exported. For decision tables, while exporting, column
additions made to the associated objects aren’t refreshed during export.

License Requirements
Salesforce Pricing permissions

Relationship to Other Components
All the components that pricing is dependent on are packaged along with the pricing recipe.

Documentation
Salesforce Help: Pricing Recipes

Procedure Output Resolution
Represents the pricing resolution for an pricing element determined using strategy name and formula.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

266

Procedure Output ResolutionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?language=en_US&id=sf.pricing_pricing_recipes.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Active Checkbox

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ProcedureOutputResolution

Component Type in 1GP Package Manager UI: ProcedureOutputResolution

Use Case
To determine the best price for a product if a pricing rule produces multiple outcomes.

License Requirements
Salesforce Pricing permissions

Documentation
Salesforce Help: Procedure Output Resolution

Process
Use Flow instead.

See Flow

Process Flow Migration
Represents a process's migrated criteria and the resulting migrated flow.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

267

ProcessFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=ind.pricing_procedure_output_resolution.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_flow

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Description

• Label

• Name

More Information
Feature Name

Metadata Name: ProcessFlowMigration

Component Type in 1GP Package Manager UI: Process Flow Migration

Use Case

Include this component only if you’ve used Migrate to Flow tool and wish to have pending Scheduled Actions from migrated
Processes converted into pending Flow Scheduled Paths in subscriber orgs. This occurs after the migrated Flow is activated in the
subscriber org.

Considerations When Packaging

When packaging a Flow that was migrated from a Process, this component is added automatically. When adding a Flow that was
migrated from a Process to a change set, this component would need to be added manually.

Relationship to Other Components

Flows

Documentation
Salesforce Help: Migrate Processes and Workflows to Flow

Product Attribute Set
Represents the ProductAttribute information being used as and attribute such as color_c, size_c .

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

268

Product Attribute SetFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.flow_migrate_to_flow.htm&type=5&language=en_US

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Description

• Master Label

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ProductAttributeSet

License Requirements
A B2B Commerce or D2C Commerce license and access to Commerce objects is required.

Usage Limits
An org can have a maximum of 100 product attribute sets.

For each product attribute set, you can have a maximum of five associated product attribute set items.

Documentation
Salesforce Help: Product Variations and Attributes

Metadata API Developer Guide: ProductAttributeSet

Product Specification Type
Represents the type of product specification provided by the user to make the product terminology unique to an industry. A product
specification type is associated with a product specification record type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

269

Product Specification TypeFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.comm_var_att_intro.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_productattributeset.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

• Description

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ProductSpecificationType

Component Type in 1GP Package Manager UI: ProductSpecificationType

License Requirements
Only Salesforce Admins can set up the product specification type. To create and edit product specification type, the Product Catalog
Management Designer permission set is required. To view product specification type, the Product Catalog Management Viewer
permission set is required.

Documentation
Salesforce Help: Product Specification

Salesforce Help: Create Product Specification Type and Product Specification Record Type

Product Specification Record Type
Represents the relationship between industry-specific product specifications and the product record type.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

270

Product Specification Record TypeFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.product_catalog_product_specification.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.product_catalog_create_product_specification_type_and_product_specification_record_type.htm&type=5&language=en_US

• Label

• Record Type

• Product Specification Type

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

• Is Commercial

More Information
Feature Name

Metadata Name: ProductSpecificationRecType

Component Type in 1GP Package Manager UI: ProductSpecificationRecType

License Requirements
 Only Salesforce admins can set up the product specification record type. To create and edit product specification record type, the
Product Catalog Management Designer permission set is required. To view product specification record type, the Product Catalog
Management Viewer permission set is required.

Documentation
Salesforce Help: Product Specification

Salesforce Help: Create Product Specification Type and Product Specification Record Type

Prompts (In-App Guidance)
Represents the metadata related to in-app guidance, which includes prompts and walkthroughs.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: Prompt

271

Prompts (In-App Guidance)First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.product_catalog_product_specification.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.product_catalog_create_product_specification_type_and_product_specification_record_type.htm&type=5&language=en_US

Component Type in 1GP Package Manager UI: Prompt

Considerations When Packaging

For 2GP packages, ensure that the scratch org definition file includes the GuidanceHubAllowed and Enablement features.
See Build Your Own Scratch Org Definition File in the Salesforce DX Developer Guide.

License Requirements
Enablement Admin permission set and Enablement permission set license are required.

Documentation
Metadata API Developer Guide: Prompt

Salesforce Help: Guidelines for In-App Guidance in Managed Packages

Quick Action
Represents a specified create or update quick action for an object that then becomes available in the Chatter publisher.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Field Overrides

Both Package Developer and Subscriber Can Edit

• All attributes except Field Overrides

Note: You can only modify managed package quick action layouts in Salesforce Setup. You can't make changes using Metadata
API.

Neither Package Developer or Subscriber Can Edit

272

Quick ActionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_prompt.htm
https://help.salesforce.com/s/articleView?id=sf.customhelp_iag_packages.htm&language=en_US
https://partners.salesforce.com/partnerSupport

More Information
Feature Name

Metadata Name: QuickAction

Component Type in 1GP Package Manager UI: Quick Action

Documentation
Salesforce Help: Quick Actions

Recommendation Strategy
Represents a recommendation strategy. Recommendation strategies are applications, similar to data flows, that determine a set of
recommendations to be delivered to the client through data retrieval, branching, and logic operations.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

Yes, except templatesComponent Has IP Protection

More Information
Feature Name

Metadata Name: RecommendationStrategy

Component Type in 1GP Package Manager UI: Recommendation Strategy

Use Case
You can use this component to create personalized recommendations for end users. A recommendation displays contextually in
Salesforce and prompts the end user to accept or reject the suggestion. When an end user accepts or rejects the recommendation,
Salesforce automates a process, such as creating or updating a record.

Considerations When Packaging
When you package a recommendation strategy, you must manually add object dependencies, such as recommendation,
recommendationReaction, and flow.

Usage Limits
An admin must select an object dependency for Recommendation and RecommendationReaction because object dependencies
aren't added automatically.

Documentation
Salesforce Help: Einstein Next Best Action

273

Recommendation StrategyFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.actions_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.einstein_next_best_action.htm&language=en_US

Record Action Deployment
Represents configuration settings for the Actions & Recommendations, Action Launcher, and Bulk Action Panel components.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Channel Configurations

• Deployment Contexts

• HasGuidedActions

• HasRecommendations

• Label

• Recommendations

• SelectableItems

• ShouldLaunchActionOnReject

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: RecordActionDeployment

Component Type in 1GP Package Manager UI: RecordAction Deployment

274

Record Action DeploymentFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Considerations When Packaging
If the record action deployment component uses flows, quick actions, objects, or Next Best Action recommendations, include them
in the package too.

Documentation
Metadata API Developer Guide: RecordActionDeployment

Salesforce Help: Create an Actions & Recommendations Deployment

Record Alert Data Source Expression Set Definition
Represents information about the data source for a record alert and the association with an expression set definition.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All other fields

Both Package Developer and Subscriber Can Edit

• ExpressionSetDefinition

• ExpressionSetObject

• IsActive

• RecordAlertDataSource

Neither Package Developer or Subscriber Can Edit

• FullName

• Metadata

More Information
RecAlrtDataSrcExpSetDef

Metadata Name: RecAlrtDataSrcExpSetDef

Component Type in 1GP Package Manager UI: RecAlrtDataSrcExpSetDef

275

Record Alert Data Source Expression Set DefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_recordactiondeployment.htm
https://help.salesforce.com/s/articleView?id=sf.console_lex_guided_action_deployment.htm&type=5&language=en_US

Documentation
RecAlrtDataSrcExpSetDef in Financial Services Cloud Developer Guide.

Record Type
Represents the metadata associated with a record type. Record types let you offer different business processes, picklist values, and page
layouts to different users. Use this metadata type to create, update, or delete record type definitions for a custom object.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Record Type Label

Both Package Developer and Subscriber Can Edit

• Active

• Business Process

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: RecordType

276

Record TypeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.financial_services_cloud_object_reference.meta/financial_services_cloud_object_reference/sforce_api_objects_recalrtdatasrcexpsetdef.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Component Type in 1GP Package Manager UI: Record Type

Considerations When Packaging

• If record types are included in the package, the subscriber’s org must support record types to install the package.

• When a new picklist value is installed, it’s associated with all installed record types according to the mappings specified by the
developer. A subscriber can change this association.

• Referencing an object’s record type field in a report’s criteria—for example, Account Record Type—causes a dependency.

• Summarizing by an object’s record type field in a report’s criteria—for example, Account Record Type—causes a
dependency.

• If an object’s record type field is included as a column in a report, and the subscriber’s org isn’t using record types on the object
or doesn’t support record types, the column is dropped during installation.

• If you install a custom report type that includes an object’s record type field as a column, that column is dropped if the org
doesn’t support record types or the object doesn’t have record types defined.

Documentation
Metadata API Developer Guide: RecordType

RedirectWhitelistUrl
Represents a trusted URL that’s excluded from redirection restrictions when the redirectionWarning or redirectBlockModeEnabled field
on the SessionSettings Metadata type is set to true.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Url

277

RedirectWhitelistUrlFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_recordtype.htm
https://partners.salesforce.com/partnerSupport

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: RedirectWhitelistUrl

Component Type in 1GP Package Manager UI: RedirectWhitelistUrl

Use Case
Customers can use a Salesforce security setting to specify what happens when a user clicks a hyperlink that redirects to an untrusted
URL outside the salesforce.com domain. The customer can choose to block these redirections or alert the user that the link is taking
them outside the Salesforce domain. The URLs in RedirectWhiteListURL are considered trusted for the purpose of that security setting.

If the Experience Cloud site pages, Lightning Experience pages, or custom Visualforce pages in your package include hyperlinks to
URLs outside the salesforce.com domain, use RedirectWhitelistURL to ensure that users can access those hyperlinks.

Considerations When Packaging
When you include a RedirectWhitelistURL in a package, the URLs are trusted for redirections across Salesforce. Because this component
modifies the security of the org, we don’t recommend that you include RedirectWhitelistURL in packages. Instead, instruct customers
to use the Trusted URLs for Redirects Setup page or the RedirectWhitelistURL Metadata API type to add the URLs to their allowlist
as part of activating your package. If you choose to include RedirectWhitelistURL components in your package, disclose this change
prominently in your package documentation to ensure that your customers are aware of the security modification.

Usage Limits
The RedirectWhiteListURL component is available in API version 48.0 and later.

Relationship to Other Components
This component can be used only in conjunction with an Aura or Lightning Web Runtime (LWR) page for an Experience Cloud site,
a Lightning Page, or a Visualforce Page.

Documentation
Metadata API Developer Guide: RedirectWhitelistUrl

Salesforce Help: Manage Redirections to External URLs

Metadata API Developer Guide: SecuritySettings]

Referenced Dashboard
Represents the ReferencedDashboard object in CRM Analytics. A referenced dashboard stores information about an externally referenced
dashboard.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

278

Referenced DashboardFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_redirectwhitelisturl.htm
https://help.salesforce.com/s/articleView?id=sf.security_external_redirects.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_securitysettings.htm

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Embed URL

• Template Asset Source Name

• Visibility

More Information
Feature Name

Metadata Name: ReferencedDashboard

License Requirements
Enables Tableau Dashboards in CRM Analytics

Registered External Service
Represents a registered external service, which provides an extension or integration.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

279

Registered External ServiceFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: RegisteredExternalService

Component Type in 1GP Package Manager UI: RegisteredExternalService

Documentation
Object Reference for the Salesforce Platform: RegisteredExternalService

RelationshipGraphDefinition
Represents a definition of a graph that you can configure in your organization to traverse object hierarchies and record details, giving
you a glimpse of how your business works.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

280

RelationshipGraphDefinitionFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_registeredexternalservice.htm
https://partners.salesforce.com/partnerSupport

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All properties

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: RelationshipGraphDefinition

Component Type in 1GP Package Manager UI: RelationshipGraphDefinition

Documentation
Metadata API Developer Guide: RelationshipGraphDefinition

Remote Site Setting
Represents a remote site setting.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

281

Remote Site SettingFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_relationshipgraphdefinition.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• All attributes except Remote Site Name

Neither Package Developer or Subscriber Can Edit

• Remote Site Name

More Information
Feature Name

Metadata Name: RemoteSiteSettings

Documentation
Metadata API Developer Guide: RemoteSiteSettings

Report
Represents a custom report.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

NoComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• All attributes except Report Unique Name

Neither Package Developer or Subscriber Can Edit

• Report Unique Name

282

ReportFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_remotesitesetting.htm
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

More Information
Feature Name

Metadata Name: Report

Component Type in 1GP Package Manager UI: Report

Considerations When Packaging
If a report includes elements that can’t be packaged, those elements are dropped or downgraded, or the package creation fails. For
example:

• Hierarchy drill-downs are dropped from activity and opportunities reports.

• Filters on unpackageable fields are automatically dropped (for example, in filters on standard object record types).

• Package upload fails if a report includes filter logic on an unpackageable field (for example, in filters on standard object record
types).

• Lookup values on the Select Campaign field of standard campaign reports are dropped.

• Reports are dropped from packages if they’ve been moved to a private folder or to the Unfiled Public Reports folder.

• When a package is installed into an org that doesn’t have Chart Analytics 2.0:

– Combination charts are downgraded instead of dropped. For example, a combination vertical column chart with a line added
is downgraded to a simple vertical column chart. A combination bar chart with more bars is downgraded to a simple bar
chart.

– Unsupported chart types, such as donut and funnel, are dropped.

Documentation
Metadata API Developer Guide: Report

Report Type
Represents the metadata associated with a custom report type. Custom report types allow you to build a framework from which users
can create and customize reports.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 2GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

283

Report TypeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_report.htm

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes except Development Status and Report Type Name

Both Package Developer and Subscriber Can Edit

• Development Status

Neither Package Developer or Subscriber Can Edit

• Report Type Name

More Information
Feature Name

Metadata Name: ReportType

Component Type in 1GP Package Manager UI: Custom Report Type

Considerations When Packaging
A developer can edit a custom report type in a managed package after it’s released, and can add new fields. Subscribers automatically
receive these changes when they install a new version of the managed package. However, developers can’t remove objects from
the report type after the package is released. If you delete a field in a custom report type that’s part of a managed package, and the
deleted field is part of bucketing or used in grouping, an error message appears.

Documentation
Metadata API Developer’s Guide: ReportType

ServiceProcess
Represents a process created in Service Process Studio and its associated attributes.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

284

ServiceProcessFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_reporttype.htm

• All other fields

Both Package Developer and Subscriber Can Edit

• Status

• Description

• ServiceProcessAttribute

• ServiceProcessDependency

• ServiceProcessItemGroup

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
ServiceProcess

Metadata Name: ServiceProcess

Component Type in 1GP Package Manager UI: ServiceProcess

Documentation
ServiceProcess in Metadata API Developer Guide.

Slack App (Beta)
Represents a Slack app.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

YesComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

285

Slack App (Beta)First-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• AppKey, AppToken, ClientKey, ClientSecret, SigningSecret, BotScopes, UserScopes, Config, IntegrationUser, DefaultUser

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: SlackApp

Component Type in 1GP Package Manager UI: Slack App

Use Case
Represents configuration of a Slack application

License Requirements
Connect to Slack Permission

Relationship to Other Components
Slack apps reference handlers (Apex classes) and view definition components.

Documentation
Apex SDK for Slack Developer Guide

Service Catalog Category
Represents the grouping of individual catalog items in Service Catalog.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• ParentCategory

Both Package Developer and Subscriber Can Edit

286

Service Catalog CategoryFirst-Generation Managed Packages

https://developer.salesforce.com/docs/platform/salesforce-slack-sdk/overview

• SortOrder

• IsActive

• Image

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogCategory

Component Type in 1GP Package Manager UI: Service Catalog Category

Use Case
Group your service catalog items together by associating them with a catalog category.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Post Install Steps
Categories appear in the Service Catalog user UI only if they contain active items.

Documentation
Salesforce Help: Create a Catalog Category

Service Catalog Filter Criteria
Represents an eligibility rule that determines if a Service Catalog user has access to a catalog item.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All fields

Both Package Developer and Subscriber Can Edit

287

Service Catalog Filter CriteriaFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.esc_create_a_catalog_category.htm&language=en_US

• All fields

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogFilterCriteria

Component Type in 1GP Package Manager UI: Service Catalog Item Definition

Use Case
Use the filter criteria to filter on catalog items.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Relationship to Other Components
Service catalog filter criteria are related to a catalog item definition.

Documentation
Salesforce Help: Create a Catalog Category

Service Catalog Item Definition
Represents the entity associated with a specific, individual service available in the Service Catalog.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Flow

Both Package Developer and Subscriber Can Edit

• Status

• Description

288

Service Catalog Item DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.esc_create_a_catalog_category.htm&language=en_US

• InternalNotes

• Image

• IsFeatured

• IsPublic

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogItemDef

Component Type in 1GP Package Manager UI: Service Catalog Item Definition

Use Case
Create a service catalog item that employees can request in the Service Catalog user UI.

Considerations When Packaging
Subscribers can't change properties stored in the catalog item fulfillment flow unless they make a clone of the item and its related
flow.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Usage Limits
The org can have only 1000 SvcCatalogItemDefs, including those items installed from a managed package.

Post Install Steps
If the item was installed in draft mode, it must be activated before employees can see it in the Service Catalog user UI.

Relationship to Other Components
SvcCatalogItemDef requires a relationship with a catalog category.

Documentation
Salesforce Help: Create a Catalog Item

Service Catalog Fulfillment Flow
Represents the flow associated with a specific catalog item in the Service Catalog.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

289

Service Catalog Fulfillment FlowFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.esc_create_a_catalog_item.htm&language=en_US

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Flow

• Icon

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• FullName

More Information
Feature Name

Metadata Name: SvcCatalogFulfillmentFlow

Component Type in 1GP Package Manager UI: Service Catalog Fulfillment Flow

Use Case
Make a screen flow available in the Service Catalog builder. You can also use SvcCatalogFulfillmentFlow metadata to describe the
flow and its inputs in the builder, enabling a clicks-not-code experience for providing inputs to the flow.

License Requirements
Service Catalog Add-On License

Service Catalog Builder Permission Set

Post Install Steps
Fulfillment flows appear in the Service Catalog builder only if the underlying screen flow is active in the org.

Relationship to Other Components
SvcCatalogFulfillmentFlow must be related to a FlowDefinition.

SvcCatalogFulfillmentFlow can have related SvcCatalogFulfillFlowItem records.

Documentation
Salesforce Help: Catalog Item Fulfillment Flows

Stationary Asset Environmental Source Record Type Configuration
Represents the setup object that contains the mapping between the Stationary Asset Environmental Source record type and internal
enums. You can primarily use this object for calculations across different record types.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

290

Stationary Asset Environmental Source Record Type
Configuration

First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.esc_catalog_item_fulfillment_flows.htm&language=en_US

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: StnryAssetEnvSrcCnfg

Component Type in 1GP Package Manager UI: Stationary Asset Environmental Source Record Type Configuration

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new stationary asset types for end users.

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

Documentation

• Salesforce Help: Set Up Record Types for Net Zero Cloud

• Salesforce Help: Create a Stationary Asset Environmental Source Record

Static Resource
Represents a static resource file, often a code library in a ZIP file.

291

Static ResourceFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.netzero_setup_record_types.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.netzero_manager_create_building_asset.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• File

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: StaticResource

Component Type in 1GP Package Manager UI: Static Resource

Documentation
Metadata API Developer Guide: StaticResource

Streaming App Data Connector
Represents the connection information specific to Web and Mobile Connectors.

292

Streaming App Data ConnectorFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_staticresource.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• AppIdentifier

• DataConnectorType

• StreamingAppDataConnectorType

More Information
Feature Name

Metadata Name: StreamingAppDataConnector

Use Case
The StreamingAppDataConnector is included in a package when you add a data stream (DataStreamDefinition). You need this
component if you want to package a web or mobile data stream.

Post Install Steps
The package doesn't contain any connection information. The package subscriber must create the connection in their subscriber
org and then select that connection when they deploy the data kit.

Documentation
Data Cloud Reference Guide: Capture Web Interactions

Data Cloud Reference Guide: Integrate your Mobile Applications

Sustainability UOM
Represents information about the additional unit of measure values defined by a customer.

293

Sustainability UOMFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.c360a_api.meta/c360a_api/c360a_api_salesforce_interactions_web_sdk.htm
https://developer.salesforce.com/docs/atlas.en-us.c360a_api.meta/c360a_api/c360a_api_engagement_mobile_sdk.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: SustainabilityUom

Component Type in 1GP Package Manager UI: Sustainability Unit of Measure

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

Documentation

• Salesforce Help: Create Custom Units of Measure

Sustainability UOM Conversion
Represents information about the unit of measure conversion for the additional fuel types defined by a customer.

294

Sustainability UOM ConversionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.netzero_admin_create_custom_unitsofmeasure.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: SustnUomConversion

Component Type in 1GP Package Manager UI: Sustainability Unit of Measure Conversion

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

Documentation

• Salesforce Help: Create a Unit of Measure Conversion for a Custom Fuel Type

Timeline Object Definition
Represents the container that stores the details of a timeline configuration. You can use this resource with Salesforce objects to see their
records' related events in a linear time-sorted view.

295

Timeline Object DefinitionFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.netzero_admin_create_unitofmeasure_conversion_for_custom_fuel_type.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

• FullName

• Definition

• IsActive

Both Package Developer and Subscriber Can Edit

• Label

• FullName

• Definition

• IsActive

Neither Package Developer or Subscriber Can Edit

• BaseObject

More Information
Feature Name

Metadata Name: TimelineObjectDefinition

Component Type in 1GP Package Manager UI: Timeline Object Definition

Use Case
Provides out-of-the-box Timeline object definitions.

License Requirements

Industries Health Cloud or any other License that has Timeline Permission enabled in them.

296

Timeline Object DefinitionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Legacy Component
There’s a legacy Timeline component in the Health Cloud Package which is being deprecated in favor of this component.

Documentation
Health Cloud Developer Guide: TimelineObjectDefinition

Timesheet Template
Represents a template for creating time sheets in Field Service.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP packages only.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

More Information
Feature Name

Metadata Name: TimesheetTemplate

Translation
Add translations to your managed packages.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

297

Timesheet TemplateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.health_cloud_object_reference.meta/health_cloud_object_reference/meta_timelineobjectdefinition.htm
https://partners.salesforce.com/partnerSupport

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: Translation

Relationship to Other Components
When you add this component to a first-generation managed package, the Custom Object Translation component is automatically
added to your package.

For details on how subscribers can override translations after installing a package, see Override Translations in Second-Generation
Managed Packages and Unlocked Packages in the Salesforce DX Developer Guide.

Considerations When Packaging (Beta)
Enable Language Extension Packages in Dev Hub to create language extension packages that contain translations of components in
other packages.

Note: This feature is a Beta Service. Customer may opt to try such Beta Service in its sole discretion. Any use of the Beta Service
is subject to the applicable Beta Services Terms provided at Agreements and Terms.

Language extension packages can only contain translations: Translations and CustomObjectTranslations. If a base package includes
components that can’t be translated, those components aren’t included when you create a language extension package.

To remove translations delivered by a package extension, uninstall the base package and all related extensions, then reinstall the base
package and any other desired extensions. Otherwise, translations delivered by the extension remain until you uninstall all packages
with that namespace.

UI Object Relation Config
Represents the admin-created configuration of the object relation UI component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

298

UI Object Relation ConfigFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/entering_translated_terms_in_packages.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.sfdx_dev.meta/sfdx_dev/entering_translated_terms_in_packages.htm

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Reference Name

• Developer Name

• IsActive

Both Package Developer and Subscriber Can Edit

• IsActive

Neither Package Developer or Subscriber Can Edit

• ContextObject

More Information
Feature Name

Metadata Name: UIObjectRelationConfig

Component Type in 1GP Package Manager UI: UI Object Relation Configuration

Use Case
Provides out-of-the-box relationship card configuration in Health Cloud.

License Requirements
Industries Health Cloud, Industries Insurance, or Industries Automotive licenses

Documentation
Salesforce Help: Set Up Provider Relationship Cards to Show Practitioner Information

User Access Policy
Represents a user access policy.

299

User Access PolicyFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://help.salesforce.com/s/articleView?id=sf.admin_provider_cards.htm&language=en_US

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

To confirm whether this component is available in managed 1GP, managed 2GP, or both package types, see Metadata Coverage Report.

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Name

• Label

• User Criteria Filters

• Actions

Both Package Developer and Subscriber Can Edit

• Order (only subscriber editable)

• Status (only subscriber editable)

• Trigger Type (only subscriber editable)

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: UserAccessPolicy

Component Type in 1GP Package Manager UI: User Access Policy

Usage Limits
User access policies have their status set to Design when installed and can be activated by the subscriber. Subscribers can have up
to 200 active policies at one time.

300

User Access PolicyFirst-Generation Managed Packages

https://developer.salesforce.com/docs/metadata-coverage
https://partners.salesforce.com/partnerSupport

Post Install Steps
The subscriber can activate user access policies so that they run automatically when a user record matching the policy’s user criteria
is created, updated, or both.

Documentation
Metadata API Developer Guide: UserAccessPolicy

Salesforce Help: User Access Policies

Validation Rule
Represents a validation rule, which is used to verify that the data a user enters in a record is valid and can be saved.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Error Condition Formula

• Error Location

• Error Message

Both Package Developer and Subscriber Can Edit

• Active

Neither Package Developer or Subscriber Can Edit

• Rule Name

301

Validation RuleFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_useraccesspolicy.htm
https://help.salesforce.com/s/articleView?id=sf.perm_user_access_policies.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

More Information
Feature Name

Metadata Name: ValidationRule

Component Type in 1GP Package Manager UI: Validation Rule

Considerations When Packaging
For custom objects that are packaged, any associated validation rules are implicitly packaged as well.

Documentation
Metadata API Developer Guide: ValidationRule

Vehicle Asset Emissions Source Record Type Configuration
Represents the setup object that contains the mapping between the Vehicle Asset Emissions Source record type and internal enums.
You can primarily use this object for calculations across different record types.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• All attributes

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: VehicleAssetEmssnSrcCnfg

Component Type in 1GP Package Manager UI: Vehicle Asset Emissions Source Record Type Configuration

302

Vehicle Asset Emissions Source Record Type ConfigurationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_validationformulas.htm

Use Case
You can use this component to build on top of the current Net Zero Cloud data model and carbon accounting capability to create
new vehicle asset types for end users.

License Requirements

• Net Zero Cloud Growth license or Net Zero Cloud Starter license

• Net Zero Cloud Manager permissions set

Post Install Steps
Enable these org settings:

• Net Zero Cloud

• Manage Carbon Accounting

Documentation

• Salesforce Help: Set Up Record Types for Net Zero Cloud

• Salesforce Help: Create a Vehicle Asset Emissions Source Record

View Definition (Beta)
Represents a view definition on a Slack app.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• TargetType, Content, Description

Both Package Developer and Subscriber Can Edit

• None

303

View Definition (Beta)First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.netzero_setup_record_types.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.netzero_manager_create_vehicle_asset.htm&language=en_US
https://partners.salesforce.com/partnerSupport

Neither Package Developer or Subscriber Can Edit

• None

More Information
Feature Name

Metadata Name: ViewDefinition

Component Type in 1GP Package Manager UI: View Definition

Use Case
Represents a view within a Slack application

License Requirements
Connect to Slack Permission

Relationship to Other Components
View definitions are referenced by Slack apps.

Documentation
Apex SDK for Slack Developer Guide

Virtual Visit Config
Represents an external video provider configuration, which relays events from Salesforce to the provider.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• ComprehendServiceType

• ExperienceCloudSiteUrl

• ExternalRoleIdentifier

• Label

• MessagingRegion

• NamedCredential

• StorageBucketName

304

Virtual Visit ConfigFirst-Generation Managed Packages

https://developer.salesforce.com/docs/platform/salesforce-slack-sdk/overview

• UsageType

• VideoCallApptTypeValue

• VideoControlRegion

• VisitRegion

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: VirtualVisitConfig

Documentation
Salesforce Help: Virtual Care

Visualforce Component
Represents a Visualforce component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

YesComponent Has IP Protection

If a developer removes a public Visualforce component from a new version of your 1GP managed package, the component is removed
from the subscriber’s org upon upgrade. If the Visualforce component is global, it remains in the subscriber org until the administrator
deletes it.

For 2GP packages, Visualforce components are hard deleted, and only components that aren’t marked as global can be removed from
a package.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

305

Visualforce ComponentFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.admin_virtual_care.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• Label

• Markup

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ApexComponent

Documentation
Visualforce Components

Visualforce Page
Represents a Visualforce page.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

If a developer removes a public Visualforce component from a new version of your package, the component is removed from the
subscriber’s org upon upgrade. If the Visualforce component is global, it remains in the subscriber org until the administrator deletes it.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

306

Visualforce PageFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.pages_custom_components.htm&language=en_US
https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• API Version

• Description

• Label

• Markup

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: ApexPage

Component Type in 1GP Package Manager UI: Visualforce Page

Wave Analytic Asset Collection
A collection of CRM Analytics assets.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

307

Wave Analytic Asset CollectionFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

• Folder

• Items

• Label

Both Package Developer and Subscriber Can Editv

• Color

• Description

• Shares

Neither Package Developer or Subscriber Can Edit

• Collection Type

More Information
Feature Name

Metadata Name: WaveAnalyticAssetCollection

Component Type in 1GP Package Manager UI: Wave Analytic Asset Collection

Use Case
Represents a collection of CRM Analytics assets.

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Documentation
Salesforce Help: Curate and Share Insights with Collections

Wave Application
A CRM Analytics application.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

308

Wave ApplicationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://help.salesforce.com/s/articleView?id=sf.bi_home_collections&language=en_US

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Asset Icon

• Description

• Shares

Neither Package Developer or Subscriber Can Edit

• Folder

• Template Origin

• Template Version

More Information
Feature Name

Metadata Name: WaveApplication

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Component
A CRM Analytics dashboard component.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

309

Wave ComponentFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Template Asset Source Name

More Information
Feature Name

Metadata Name: WaveComponent

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dataflow
A CRM Analytics data prep dataflow.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

310

Wave DataflowFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Dataflow Type

More Information
Feature Name

Metadata Name: WaveDataflow

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dashboard
A CRM Analytics dashboard.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

311

Wave DashboardFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Date Version

• Template Asset Source Name

More Information
Feature Name

Metadata Name: WaveDashboard

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Dataset
A CRM Analytics dataset.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

312

Wave DatasetFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

Neither Package Developer or Subscriber Can Edit

• Application

• Template Asset Source Name

• Type

More Information
Feature Name

Metadata Name: WaveDataset

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Lens
A CRM Analytics lens.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

313

Wave LensFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

• Visualization Type

Neither Package Developer or Subscriber Can Edit

• Application

• Datasets

• Template Asset Source Name

More Information
Feature Name

Metadata Name: WaveLens

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Recipe
A CRM Analytics data prep recipe.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

314

Wave RecipeFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Description

• Security Predicate

• Target Dataset Alias

Neither Package Developer or Subscriber Can Edit

• Application

• Dataflow

• Format

• Template Asset Source Name

More Information
Feature Name

Metadata Name: Wave Recipe

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Template Bundle
A CRM Analytics template bundle.

315

Wave Template BundleFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Asset Icon

• Description

Neither Package Developer or Subscriber Can Edit

• Asset Version

• Template Type

More Information
Feature Name

Metadata Name: WaveTemplateBundle

Considerations When Packaging
Analytics assets are installed in subscriber orgs via Analytics Templates using the WaveTemplateBundle. The template framework
supports the data sync and orchestration needed for visualization assets, along with customizations for each org. For more information,
see the Analytics Templates Developer Guide.

License Requirements
Manage CRM Analytics

Wave Xmd
The extended metadata for CRM Analytics dataset fields and their formatting for dashboards and lenses.

316

Wave XmdFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

YesSubscriber Can Delete Component From Org

YesPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Label

Both Package Developer and Subscriber Can Edit

• Dates

• Dimensions

• Measures

• Organizations

• Wave Visualization

Neither Package Developer or Subscriber Can Edit

• Application

• Dataset

• Dataset Connector

• Dataset Fully Qualified Name

• Origin

• Type

More Information
Feature Name

Metadata Name: WaveXmd

317

Wave XmdFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport

Considerations When Packaging
Analytics assets should be installed in subscriber orgs via Analytics Templates. The template framework supports the data sync and
orchestration needed for visualization assets, along with customizations for each org. For more information, see the Analytics
Templates Developer Guide.

License Requirements
Manage CRM Analytics

Web Store Template
Represents a configuration for creating commerce stores.

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

NoPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

More Information
Feature Name

Metadata Name: WebStoreTemplate

Documentation
Metadata API Developer Guide: WebStoreTemplate

Workflow Alert
WorkflowAlert represents an email alert associated with a workflow rule.

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP)Packageable In:

YesComponent Is Updated During Package Upgrade

318

Web Store TemplateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.bi_dev_guide_wave_templates.meta/bi_dev_guide_wave_templates/bi_templatesdev_intro_wave_templates.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/meta_webstoretemplate.htm

NoSubscriber Can Delete Component From Org

Yes. Both protected and non-protected components can be
removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Additional Emails

• Email Template

• From Email Address

• Recipients

Neither Package Developer or Subscriber Can Edit

• Description

More Information
Feature Name

Metadata Name: Workflow

• Salesforce prevents you from uploading workflow alerts that have a public group, partner user, or role recipient. Change the recipient
to a user before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the installer
can customize it as necessary.

• You can package workflow rules and associated workflow actions, such as email alerts and field updates. However, any time-based
triggers aren’t included in the package. Notify your installers to set up any time-based triggers that are essential to your app.

• References to a specific user in workflow actions, such as the email recipient of a workflow email alert, are replaced by the user
installing the package. Sometimes workflow actions referencing roles, public groups, account team, opportunity team, or case team
roles aren’t uploaded.

• References to an org-wide address, such as the From email address of a workflow email alert, are reset to Current User
during installation.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Field Update
WorkflowFieldUpdate represents a workflow field update.

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

319

Workflow Field UpdateFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages. Both protected
and non-protected components can be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Field Value

• Formula Value

Both Package Developer and Subscriber Can Edit

• Lookup

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Field Update

• Salesforce prevents you from uploading workflow field updates that change an Owner field to a queue. Change the updated field
value to a user before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the
installer can customize it as necessary.

• Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a
standard or managed-installed object.

• You can package workflow rules and associated workflow actions, such as email alerts and field updates. However, any time-based
triggers aren’t included in the package. Notify your installers to set up any time-based triggers that are essential to your app.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Knowledge Publish
WorkflowKnowledgePublish represents Salesforce Knowledge article publishing actions and information.

320

Workflow Knowledge PublishFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Component Manageability Rules
Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

First-Generation Managed Packages (1GP)Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes, if protectedPackage Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Action

• Description

• Unique Name

Both Package Developer and Subscriber Can Edit

• None

Neither Package Developer or Subscriber Can Edit

• Object Name

More Information
Feature Name

Metadata Name: WorkflowKnowledgePublish

Component Type in 1GP Package Manager UI: Knowledge Action

Considerations When Packaging

WorkflowKnowledgePublish can only be installed in Salesforce Classic orgs with Knowledge enabled.

WorkflowKnowledgePublish includes the article type *__kav, which is not supported by Lightning Knowledge.

If you try to install WorkflowKnowledgePublish into an org with Lightning Knowledge enabled, this message is displayed: When
Lightning Knowledge is enabled, you can’t add an article type.

License Requirements
Salesforce Classic orgs with Knowledge enabled can use this package.

Documentation
Salesforce Help: Create Workflow Actions for Knowledge

Workflow Outbound Message
WorkflowOutboundMessage represents an outbound message associated with a workflow rule.

321

Workflow Outbound MessageFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.knowledge_actions_create.htm&type=5&language=en_US

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages. Both protected
and non-protected components can be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Endpoint URL

• Fields to Send

• Send Session ID

Both Package Developer and Subscriber Can Edit

• User to Send As

Neither Package Developer or Subscriber Can Edit

• Name

More Information
Feature Name

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Outbound Message

Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a standard
or managed-installed object.

This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Workflow Rule
This metadata type represents a workflow rule.

322

Workflow RuleFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages.Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Note: When a package developer removes this component from a package, the component remains in a subscriber’s org after
they install the upgraded package. The admin of the subscriber’s org can then delete the component, if desired.

Removing components from managed 1GP or 2GP packages requires approval from Salesforce. To request access to the component
removal feature, log a support case in the Salesforce Partner Community.

For more details on 2GP component removal, see Remove Metadata Components from Second-Generation Managed Packages.

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• Description

• Evaluation Criteria

• Rule Criteria

Both Package Developer and Subscriber Can Edit

• Active

Neither Package Developer or Subscriber Can Edit

• Rule Name

More Information
• Feature Name:

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Rule

• Salesforce prevents you from uploading workflow rules, field updates, and outbound messages that reference a record type on a
standard or managed-installed object.

• Developers can associate or disassociate workflow actions with a workflow rule at any time. These changes, including disassociation,
are reflected in the subscriber’s org upon install. In managed packages, a subscriber can’t disassociate workflow actions from a
workflow rule if it was associated by the developer.

323

Workflow RuleFirst-Generation Managed Packages

https://partners.salesforce.com/partnerSupport
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_remove_md_components.htm

• On install, all workflow rules newly created in the installed or upgraded package, have the same activation status as in the uploaded
package.

• You can't package workflow rules with time triggers.

Workflow Task
This metadata type references an assigned workflow task.

Component Manageability Rules

Note: When creating a new package or package version, use the Flow component instead of Workflow components. If your
managed package already includes Workflow components, come up with a plan to migrate to use Flow.

Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created and
promoted to the released state.

Second-Generation Managed Packages (2GP), First-Generation
Managed Packages (1GP)

Packageable In:

YesComponent Is Updated During Package Upgrade

NoSubscriber Can Delete Component From Org

Yes. Supported in both 1GP and 2GP packages. Both protected
and non-protected components can be removed.

Package Developer Can Remove Component From Package

NoComponent Has IP Protection

Editable Properties After Package Promotion or Installation
Only Package Developer Can Edit

• None

Both Package Developer and Subscriber Can Edit

• Assign To

• Comments

• Due Date

• Priority

• Record Type

• Status

Neither Package Developer or Subscriber Can Edit

• Subject

More Information
Feature Name

Metadata Name: Workflow

Component Type in 1GP Package Manager UI: Workflow Task

324

Workflow TaskFirst-Generation Managed Packages

• Salesforce prevents you from uploading workflow tasks that are assigned to a role. Change the Assigned To field to a user
before uploading your app. During installation, Salesforce replaces that user with the user installing the app, and the installer can
customize it as necessary.

• This component can be marked as protected. For more details, see Protected Components in the First-Generation Managed Packaging
Developer Guide.

Behavior of Specific Metadata in First-Generation Managed Packages

Learn how profiles and other metadata are handled for first-generation managed packages.

Get Access to Agentforce in Your 1GP Packaging Org

Agentforce is a set of tools to create and customize AI agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done.

Components Automatically Added to First-Generation Managed Packages

When adding components to your first-generation managed package, related components are automatically added. For example,
if you add a Visualforce page to a package that references a custom controller, that Apex class is also added.

Protected Components in Managed Packages

Developers can mark certain components as protected. Protected components can’t be linked to or referenced by components
created in a subscriber org. A developer can delete a protected component in a future release without worrying about failing
installations. However, after a component is marked as unprotected and is released globally, the developer can’t delete it.

Set Up a Platform Cache Partition with Provider Free Capacity

Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through
a capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Package Dependencies in First-Generation Managed Packages

Package dependencies are created when a component references another component, permission, or preference that is required
for the component to be valid.

Metadata Access in Apex Code

Use the Metadata namespace in Apex to access metadata in your package.

Permission Sets and Profile Settings in Packages

Permission sets, permission set groups, and profile settings are all ways to grant permissions and other access settings to a package.
Only use a profile setting if permission sets don’t support the specific access you need to grant. In all other instances, use permission
sets or permission set groups.

Permission Set Groups

You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set
groups can be updated when you upgrade the package.

Custom Profile Settings

Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify
custom object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your
custom profiles with existing non-standard profiles. Permissions in your custom profile that are related to new components created
as part of the install or upgrade are added to the existing profile. The security settings associated with standard objects and existing
custom objects in an installer’s organization are unaffected.

Protecting Your Intellectual Property

The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check
for malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

325

Behavior of Specific Metadata in First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm

Call Salesforce URLs Within a Package

The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all
possible URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex
DomainCreator class to get the corresponding hostname. This method allows your package to work in all orgs, regardless of
the org type and My Domain settings.

Develop App Documentation

To help your subscribers make the most of your app, provide documentation about how to configure and customize your app.

API and Dynamic Apex Access in Packages

Apex Package components have access via dynamic Apex and the API to standard and custom objects in the organization where
they’re installed.

Connected Apps

A connected app is a framework that enables an external application to integrate with Salesforce using APIs and standard protocols,
such as SAML, OAuth, and OpenID Connect. Connected apps use these protocols to authenticate, authorize, and provide single
sign-on (SSO) for external apps. The external apps that are integrated with Salesforce can run on the customer success platform,
other platforms, devices, or SaaS subscriptions. For example, when you log in to your Salesforce mobile app and see your data from
your Salesforce org, you’re using a connected app.

Get Access to Agentforce in Your 1GP Packaging Org
Agentforce is a set of tools to create and customize AI agents that are deeply and securely integrated with customers' data and apps.
Agentforce brings together humans with agents to transform the way work gets done.

To enable Agentforce Extensibility for ISVs on a 1GP packaging org, you must log a case with Salesforce Partner Support. In the case
details, list your packaging org ID and request Agentforce Extensibility for ISVs be provisioned. Only 1GP development orgs created from
Environment Hub can have Agentforce provisioned.

Table 2: Packageable Agentforce Components

More InformationAvailable in …Component Type in
Package Manager

Feature Name

Agent ActionManaged 2GP and Managed
1GP

Generative AI Function
Definition

Agent Actions

Agent TopicManaged 2GP and Managed
1GP

Generative AI Plugin DefinitionAgent Topics

326

Get Access to Agentforce in Your 1GP Packaging OrgFirst-Generation Managed Packages

https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaifunction
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiplugin

More InformationAvailable in …Component Type in
Package Manager

Feature Name

Generative AI Prompt TemplateManaged 2GP and Managed
1GP

Generative AI Prompt TemplatePrompt Templates

SEE ALSO:

Get Access to Scratch Orgs That Have Agentforce

Salesforce Help: Considerations for Packaging Prompt Templates

Trailhead: Quick Start: Build Your First Agent with Agentforce

Salesforce Help: Agentforce: Agents

Salesforce Help: The Building Blocks of Agents

Salesforce Help: Customize Your Agents with Topics and Actions

Salesforce Help: Considerations for Agents

Salesforce Help: AI Project Success

Components Automatically Added to First-Generation Managed Packages
When adding components to your first-generation managed package, related components are automatically added. For example, if you
add a Visualforce page to a package that references a custom controller, that Apex class is also added.

To understand what components are automatically included in first-generation managed packages, review the following list:

These components are automatically addedWhen you add this component

Action target object (if it’s a custom object), action target field, action record type, predefined
field values, action layout; and any custom fields that the action layout or predefined values
refer to on the target object

Action

Custom fields, custom objects, and other explicitly referenced Apex classes, and anything
else that the Apex class references directly

Apex class

Note: If an Apex class references a custom label, and that label has translations, you
must explicitly package the individual languages desired for those translations to be
included.

Custom fields, custom objects, and any explicitly referenced Apex classes, and anything else
that the Apex trigger references directly

Apex trigger

Custom fields, the default page layoutArticle type

Custom fieldsCompact layout

Custom tabs (including web tabs), documents (stored as images on the tab), documents
folder, asset files

Custom app

Custom fields and custom objectsCustom button or link

Custom objectsCustom field

Custom home page components on the layoutCustom home page layouts

327

Components Automatically Added to First-Generation
Managed Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm#mdc_genaiprompttemplate
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/dev2gp_scratch_orgs_agentforce.htm
https://help.salesforce.com/s/articleView?id=ai.prompt_builder_considerations_packaging.htm&language=en_US
https://trailhead.salesforce.com/content/learn/projects/quick-start-build-your-first-agent-with-agentforce
https://help.salesforce.com/s/articleView?id=sf.copilot_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.copilot_building_blocks.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.copilot_topics_actions.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.copilot_considerations.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.generative_ai_plan_project.htm&language=en_US

These components are automatically addedWhen you add this component

Apex sharing reasons, Apex sharing recalculations, Apex triggers, custom fields, list views,
page layouts, record types, validation rules, or custom buttons or links.

Custom settings

Custom fields, validation rules, page layouts, list views, custom buttons, custom links, record
types, Apex sharing reasons, Apex sharing recalculations, and Apex triggers

Custom object

Note:

• Apex sharing reasons are unavailable in extensions.

• When packaged and installed, only public list views from an app are installed. If a
custom object has any custom list views that you want to include in your package,
ensure that the list view is accessible by all users.

External data source, custom fields, page layouts, list views, custom buttons, and custom linksCustom object (as an external object)

Note:

• When packaged and installed, only public list views from an app are installed. If
an external object has any custom list views that you want to include in your
package, ensure that the list view is accessible by all users.

• In managed and unmanaged packages, external objects are included in the custom
object component.

Custom objects (including all of its components), s-controls, and Visualforce pagesCustom tab

Folders, reports (including all of its components), s-controls, and Visualforce pagesDashboard

FolderDocument

Email template (Classic) • Folder

• Letterhead

• Custom fields

• Documents (stored as images on the letterhead or template)

Email template (Lightning) • Custom object

• Custom field references (in Handlebars Merge Language syntax)

• Enhanced folder (except the default public and private folders)

• Inline images referencing Salesforce Files

• Attachments referencing Salesforce Files

For Lightning email templates created before Spring ’21, attachments aren’t automatically
added to the package. Open and resave these templates to turn the attachments into content
assets, which are then automatically added to the package

These items aren’t included and can’t be added to a package:

• Enhanced letterhead

• The associated FlexiPage

• CMS files (Account Engagement only)

328

Components Automatically Added to First-Generation
Managed Packages

First-Generation Managed Packages

These components are automatically addedWhen you add this component

Email template (Lightning) created in
Email Template Builder

• Custom object

• Custom field references (in Handlebars Merge Language syntax)

• Enhanced folder (except the default public and private folders)

• Inline images referencing Salesforce Files

• Attachments referencing Salesforce Files

• The associated FlexiPage

These items aren’t included and can’t be added to a package:

• Enhanced letterhead

• CMS files (Account Engagement only)

Permission set and authentication providerExternal Credential

Note: External credentials that use the Oauth 2.0 authentication protocol must
reference an authentication provider to capture the details of the authorization
endpoint. If you add an external credential that references an authentication provider,
the authentication provider is added to the package. See Authentication Providers for
information on which elements of an authentication provider are and aren’t
packageable.

Any referenced fieldsField set

All Lightning resources referenced by the page, such as record types, actions, custom
components, events, and interfaces. Custom fields, custom objects, list views, page layouts,
Visualforce pages, and Apex classes referenced by the components on the page.

Lightning page

Lightning pageLightning page tab

Custom objects, custom fields, Apex classes, and Visualforce pagesFlow

Everything in the folderFolder

All Lightning resources referenced by the application, such as components, events, and
interfaces. Custom fields, custom objects, list views, page layouts, and Apex classes referenced
by the application.

Lightning application

All Lightning resources referenced by the component, such as nested components, events,
and interfaces. Custom fields, custom objects, list views, page layouts, and Apex classes
referenced by the component.

Lightning component

Custom fields, custom objects, list views, and page layoutsLightning event

Custom fields, custom objects, list views, and page layoutsLightning interface

All Lightning web component resources referenced by the component, such as nested
components and modules. Custom fields, custom objects, list views, page layouts, and Apex
classes referenced by the component

Lightning web component

External credential; for legacy named credentials, an authentication providerNamed Credential

Actions, custom buttons, custom links, s-controls, and Visualforce pagesPage layout

329

Components Automatically Added to First-Generation
Managed Packages

First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.sso_authentication_providers.htm&language=en_US

These components are automatically addedWhen you add this component

Any custom permissions, external data sources, Visualforce pages, record types, and Apex
classes that are assigned in the permission set

Permission set

Record type mappings, compact layoutRecord type

Folder, custom fields, custom objects, custom report types, and custom s-controlsReport

ReportsReporting Snapshot

Custom fields and custom objectsS-control

Translated terms for the selected language on any component in the packageTranslation

Custom fields (referenced in the formula)Validation rule

Associated Visualforce pageVisualforce home page component

Apex classes that are used as custom controllers, Visualforce custom components, and
referenced field sets

Visualforce pages

All associated workflow alerts, field updates, outbound messages, and tasks; also, if the
workflow rule is designed for a custom object, the custom object is automatically included

Workflow rule

Note: Some package components, such as validation rules or record types, don’t appear in the list of package components, but
are included and install with the other components.

Protected Components in Managed Packages
Developers can mark certain components as protected. Protected components can’t be linked to or referenced by components created
in a subscriber org. A developer can delete a protected component in a future release without worrying about failing installations.
However, after a component is marked as unprotected and is released globally, the developer can’t delete it.

Developers can mark these components as protected in managed packages.

• Custom labels

• Custom links (for Home page only)

• Custom metadata types

• Custom objects

• Custom permissions

• Custom settings

• Workflow alerts

• Workflow field updates

• Workflow outbound messages

• Workflow tasks

330

Protected Components in Managed PackagesFirst-Generation Managed Packages

Considerations for Protected Custom Objects in Subscriber Sandboxes
When a subscriber creates either a full or partial sandbox copy using a template, protected custom objects don’t display in the list of
objects to copy. As a result, data contained in the records of protected custom objects isn’t copied to these sandboxes. If a full sandbox
is created without selecting a sandbox template, data from protected custom objects is copied to the sandbox.

SEE ALSO:

Hide Custom Objects and Custom Permissions in Your Subscribers' Orgs

Set Up a Platform Cache Partition with Provider Free Capacity
Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through a
capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Follow the steps here to allocate the Provider Free capacity to a Platform Cache partition before adding it to your managed package.

Note: If a Platform Cache partition is already part of your managed package, you can choose to edit the existing partition and
allocate the Provider Free capacity to it.

Create a partition from the Platform Cache page and then set it up to use the Provider Free capacity

1. From Setup, in the Quick Find box, enter Platform Cache, and then select Platform Cache.

As the Provider Free capacity is automatically enabled in all Developer edition orgs, the Org’s Capacity Breakdown donut chart shows
the Provider Free capacity.

2. Click New Platform Cache Partition.

3. In the Label box, enter a name for the partition. The name can contain alphanumeric characters only and must be unique in your
org.

4. In the Description box, enter an optional description for the partition.

5. In the Capacity section, allocate separate capacities for session cache and org cache from the available Provider Free capacity.

6. Save the new Platform Cache partition.

You can add this new Platform Cache partition to your managed package. When a security-reviewed managed package with Platform
Cache partition is installed on the subscriber org, the Provider Free capacity is allocated and automatically made available to the installed
partition. The managed package can start using the Platform Cache partition; no post-install script or manual allocation is required.

Note: If the managed package is not AppExchange-certified and security-reviewed, the Provider Free capacity resets to zero and
will not be allocated to the installed Platform Cache partition.

When a Platform Cache partition with Provider Free capacity is installed in a subscriber org, the Provider Free capacity allocated is
non-editable. The provider free capacity of one installed partition can’t be used for any other partition.

Tip: After you install a Platform Cache partition with Provider Free capacity, you can edit the partition and make additional
allocations from the available platform cache capacity of the org.

331

Set Up a Platform Cache Partition with Provider Free CapacityFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_hide_custom_objects_permissions.htm

Package Dependencies in First-Generation Managed Packages

EDITIONS

AppExchange packages
and Visualforce are
available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Apex available in:
Enterprise, Performance,
Unlimited, and Developer
Editions

USER PERMISSIONS

To upload packages:
• Upload AppExchange

Packages

To view Visualforce
dependencies:
• Developer Mode

Package dependencies are created when a component references another component, permission,
or preference that is required for the component to be valid.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

Packages, Apex classes, Apex triggers, Visualforce components, and Visualforce pages can have
dependencies on components within an org. These dependencies are recorded on the Show
Dependencies page.

Dependencies are important for packaging because any dependency in a component of a package
is considered a dependency of the package as a whole.

Note: An installer’s organization must meet all dependency requirements listed on the Show
Dependencies page or else the installation fails. For example, the installer's org must have
divisions enabled to install a package that references divisions.

Dependencies are important for Apex classes or triggers. Any component on which a class or trigger
depends must be included with the class or trigger when the code is deployed or packaged.

In addition to dependencies, the operational scope is also displayed on the Show Dependencies
page. The operational scope is a table that lists any data manipulation language (DML) operations
(such as insert or merge) that Apex executes on a specified object. The operational scope
can be used when installing an application to determine the full extent of the application’s database
operations.

To view the dependencies and operational scope for a package, Apex class, Apex trigger, or Visualforce page:

1. Navigate to the appropriate component from Setup.

• For packages, enter Packages in the Quick Find box, then select Packages.

• For Apex classes, enter Apex Classes in the Quick Find box, then select Apex Classes.

• For Apex triggers, from the management settings for the appropriate object, go to Triggers.

• For Visualforce pages, enter Visualforce Pages in the Quick Find box, then select Visualforce Pages.

2. Select the name of the component.

3. Click View Dependencies for a package, or Show Dependencies for all other components, to see a list of objects that depend
upon the selected component.

If a list of dependent objects displays, click Fields to access the field-level detail of the operational scope. The field-level detail includes
information, such as whether Apex updates a field. For more information, see Field Operational Scope.

Packages, Apex code, and Visualforce pages can depend many components, including but not limited to:

• Custom field definitions

• Validation formulas

• Reports

• Record types

• Apex

• Visualforce pages and components

332

Package Dependencies in First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://help.salesforce.com/articleView?id=field_operational_scope.htm&language=en_US

For example, if a Visualforce page includes a reference to a multicurrency field, such as {!contract.ISO_code}, that Visualforce
page has a dependency on multicurrency. If a package contains this Visualforce page, it also has a dependency on multicurrency. Any
organization that wants to install this package must have multicurrency enabled.

Metadata Access in Apex Code
Use the Metadata namespace in Apex to access metadata in your package.

Your package may need to retrieve or modify metadata during installation or update. The Metadata namespace in Apex provides
classes that represent metadata types, as well as classes that let you retrieve and deploy metadata components to the subscriber org.
These considerations apply to metadata in Apex:

• You can create, retrieve, and update metadata components in Apex code, but you can’t delete components.

• You can currently access records of custom metadata types and page layouts in Apex.

• Managed packages not approved by Salesforce can’t access metadata in the subscriber org, unless the subscriber org enables the
Allow metadata deploy by Apex from non-certified Apex package version org preference. Use this org preference when
doing test or beta releases of your managed packages.

If your package accesses metadata during installation or update, or contains a custom setup interface that accesses metadata, you must
notify the user. For installs that access metadata, notify the user in the description of your package. The notice should let customers
know that your package has the ability to modify the subscriber org’s metadata.

You can write your own notice, or use this sample:

This package can access and change metadata outside its namespace in the Salesforce
org where it’s installed.

Salesforce verifies the notice during the security review.

For more information, see Metadata in the Apex Developer Guide.

Permission Sets and Profile Settings in Packages

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Permission sets are
available in: Contact
Manager, Professional,
Group, Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Permission sets, permission set groups, and profile settings are all ways to grant permissions and
other access settings to a package. Only use a profile setting if permission sets don’t support the
specific access you need to grant. In all other instances, use permission sets or permission set groups.

Important: Where possible, we changed noninclusive terms to align with our company
value of Equality. We maintained certain terms to avoid any effect on customer
implementations.

Profile SettingsPermission SetsBehavior

What permissions and settings
are included?

•• Assigned custom appsAssigned custom apps

• •Custom object permissions Assigned connected apps

•• Tab settingsExternal object permissions

• •Custom field permissions Page layout assignments

• Record type assignments• Custom metadata types
permissions • Custom field permissions

• Custom permissions • Custom metadata type
permissions• Custom settings

permissions

333

Metadata Access in Apex CodeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_metadata.htm

Profile SettingsPermission SetsBehavior

• Custom object permissions• Custom tab visibility settings

• Apex class access • Custom permissions

• Custom settings permissions• Visualforce page access

• External data source access • External object permissions

• Apex class access• Record types

• Visualforce page accessNote: Although permission sets
include standard tab visibility • External data source access

settings, these settings can’t be
packaged as permission set
components.

If a permission set includes an
assigned custom app, it’s possible
that a subscriber can delete the app.
In that case, when the package is
later upgraded, the assigned custom
app is removed from the permission
set.

Profile settings are applied to existing
profiles in the subscriber’s org on install or

Yes.Can they be upgraded in managed
packages?

upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied.

Yes.No.Can subscribers edit them?

Yes. Subscribers can clone any profile that
includes permissions and settings related
to packaged components.

Yes. However, if a subscriber clones a
permission set or creates one that’s based
on a packaged permission set, it isn’t
updated in subsequent upgrades. Only the

Can you clone or create them?

permission sets included in a package are
upgraded.

No.No. Also, you can’t include object
permissions for a custom object in a

Do they include standard object
permissions?

master-detail relationship where the master
is a standard object.

No.No.Do they include user permissions?

Yes. Profile settings are applied to existing
profiles in the subscriber’s org on install or

No. Subscribers must assign permission sets
after installation.

Are they included in the installation wizard?

upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied. Affected components
(listed with the developerName) can include
new:

334

Permission Sets and Profile Settings in PackagesFirst-Generation Managed Packages

Profile SettingsPermission SetsBehavior

• Fields (CustomField)

• Objects (CustomObject),

• Tabs (CustomTab)

• Apps (CustomApplication)

• Apex classes (ApexClass)

• Apex pages (ApexPage)

• Layouts (Layout)

• Record types (RecordType)

• Custom permissions
(CustomPermission)

• Custom settings (CustomSetting)

• Custom metadata types
(CustomMetadata)

None. In a subscriber org, the installation
overrides the profile settings, not their user
licenses.

A permission set is only installed if the
subscriber org has at least one user license
that matches the permission set. For
example, permission sets with the Salesforce

What are the user license requirements?

Platform user license aren’t installed in an
org that has no Salesforce Platform user
licenses. If a subscriber later acquires a
license, the subscriber must reinstall the
package to get the permission sets
associated with the newly acquired license.

Permission sets with no user license are
always installed. If you assign a permission
set that doesn’t include a user license, the
user’s existing license must allow its enabled
settings and permissions. Otherwise, the
assignment fails.

Profile settings are applied to existing
profiles.

Subscribers must assign packaged
permission sets after installing the package.

How are they assigned to users?

Same behavior as for permission sets.A permission set in the extension package
can't modify access permissions for either

Can permission sets in an extension package
grant access to objects installed in a base
package? the parent objects in the base package or

the associated child objects in the extension
package.

Best Practices
• If users need access to apps, standard tabs, page layouts, and record types, don't use permission sets as the sole permission-granting

model for your app.

335

Permission Sets and Profile Settings in PackagesFirst-Generation Managed Packages

• Create packaged permission sets that grant access to the custom components in a package, but not standard Salesforce components.

Permission Set Groups
You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set groups
can be updated when you upgrade the package.

Keep these considerations in mind when you organize permission sets into groups to include in your managed packages:

Important: You can't include object permissions for standard objects in managed packages. During package installation, all
object permissions for standard objects are ignored, and aren't installed in the org.

Also:

• You can’t add permission sets constrained by a permission set license to managed or unmanaged packages.

• You can only package permissions for metadata that’s included in your package.

• You can add or remove permission sets in permission set groups as part of a package upgrade. Subscribers can also modify the
permission set groups by muting permissions or adding or removing local permissions sets. Subscribers can't remove included
permission sets from the permission set groups in the managed package.

SEE ALSO:

Salesforce Help: Create a Permission Set Group

Salesforce Help: Permission Set Groups Considerations

Custom Profile Settings
Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify custom
object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your custom profiles
with existing non-standard profiles. Permissions in your custom profile that are related to new components created as part of the install
or upgrade are added to the existing profile. The security settings associated with standard objects and existing custom objects in an
installer’s organization are unaffected.

Consider these tips when creating custom profiles for apps you want to publish.

• Give each custom profile a name that identifies the profile as belonging to the app. For example, if you’re creating a Human Resources
app named “HR2GO,” a good profile name would be ”HR2GO Approving Manager.”

• If your custom profiles have a hierarchy, use a name that indicates the profile’s location in the hierarchy. For example, name a
senior-level manager’s profile ”HR2GO Level 2 Approving Manager.”

• Avoid custom profile names that can be interpreted differently in other organizations. For example, the profile name ”HR2GO Level
2 Approving Manager” is open to less interpretation than ”Sr. Manager.”

• Provide a meaningful description for each profile. The description displays to the user installing your app.

Alternatively, you can use permission sets to maintain control of permission settings through the upgrade process. Permission sets
contain a subset of profile access settings, including object permissions, field permissions, Apex class access, and Visualforce page access.
These permissions are the same as those available on profiles. You can add a permission set as a component in a package.

Note: In packages, assigned apps and tab settings aren’t included in permission set components.

336

Permission Set GroupsFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.perm_set_groups_create.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.perm_set_groups_considerations.htm&language=en_US

Protecting Your Intellectual Property
The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check for
malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

To protect your intellectual property, consider the following:

• Only publish package components that are your intellectual property and that you have the rights to share.

• After your components are available on AppExchange, you can’t recall them from anyone who has installed them.

• The information in the components that you package and publish might be visible to customers. Use caution when adding your
code to a formula, Visualforce page, or other component that you can’t hide in your app.

• The code contained in an Apex class, trigger, Lightning, or Visualforce component that’s part of a managed package is obfuscated
and can’t be viewed in an installing org. The only exceptions are methods declared as global. You can view global method signatures
in an installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view their
packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

• If a custom setting is contained in a managed package, and the Visibility is specified as Protected, the custom setting isn’t
contained in the list of components for the package on the subscriber’s org. All data for the custom setting is hidden from the
subscriber.

Call Salesforce URLs Within a Package
The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all possible
URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex DomainCreator
class to get the corresponding hostname. This method allows your package to work in all orgs, regardless of the org type and My Domain
settings.

The formats for My Domain URLs vary between production and sandbox orgs. With partitioned domains, hostname formats also vary
for demo, Developer Edition, free, patch, and scratch orgs, plus Trailhead playgrounds. For example, there are currently two possible
formats for sandbox My Domain login hostname formats and ten possible Visualforce hostname formats. For more information, see My
Domain URL Formats and Partitioned Domains in Salesforce Help.

In general, use relative URLs whenever possible within your packages. If a full URL is required, use the System.DomainCreator
Apex class to get the URL’s hostname.

Note: The System.DomainCreator Apex class is available in API version 54.0 and later.

Use the My Domain Login URL for Logins
All Salesforce orgs have a My Domain, an org-specific subdomain for the URLs that Salesforce hosts for that org. Customers have the
option to prevent user and SOAP API logins from the generic login.salesforce.com and test.salesforce.com
hostnames. When those options are enabled, logins require the My Domain login URL.

To get the My Domain login URL format for an org, use the getOrgMyDomainHostname() method of the
System.DomainCreator Apex class.

//Get the My Domain login hostname
String myDomainHostname = DomainCreator.getOrgMyDomainHostname();

In this case, in a production org with a My Domain name of mycompany, myDomainHostname returns
mycompany.my.salesforce.com.

337

Protecting Your Intellectual PropertyFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.domain_name_app_url_changes.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.domain_name_app_url_changes.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.domain_name_partitioned_domains.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_class_System_DomainCreator.htm

Use Relative URLs
Whenever possible, we recommend that you use a relative URL, which only includes the path within your packages.

For example, assume that you want to add a link on the Visualforce page with a URL of
https://MyDomainName--PackageName.vf.force.com/apex/myCases to a Visualforce page with the URL,
https://MyDomainName--PackageName.vf.force.com/apex/newCase. In this case, use the relative path when
referencing the page: /apex/newCase.

Generate Hostnames for Full URLs
Sometimes a full URL is required. For example, when your package delivers a Visualforce page that includes content delivered by your
package. If your package includes full URLs, use the System.DomainCreator Apex class to get the associated hostnames.
Otherwise, users can experience issues with your package functionality.

For example, to return the hostname for Visualforce pages, use the getVisualforceHostname(packageName) method of
the System.DomainCreator Apex class.

//Define the name of your package as a string
String packageName = 'abcpackage';

//Get the Visualforce hostname
String vfHostname = DomainCreator.getVisualforceHostname(packageName);

//Build the URL for creating a new case
System.URL vfNewCaseUrl = new URL('https', vfHostname, '/apex/newCase');

In this example, in a production org with enhanced domains and a My Domain name of mycompany, vfNewCaseUrl returns
https://mycompany--abcpackage.vf.force.com/apex/newCase.

Get Part of a Domain
If you find code in your package that parses a known URL or domain to get a value, we recommend that you update that code to use
one of the newer Apex classes. Code that assumes a specific URL format can fail.

If you need a hostname, assess whether you can use the System.DomainCreator class.

If you need that value for another reason, use the Apex System.DomainParser or System.Domain class instead.

In this example, we parse a known URL to get the domain type, the org’s My Domain name, and the package name.

//Parse a known URL
System.Domain domain = DomainParser.parse('https://mycompany--abcpackage.vf.force.com');

//Get the domain type
System.DomainType domainType = domain.getDomainType(); // Returns VISUALFORCE_DOMAIN

//Get the org’s My Domain name
String myDomainName = domain.getMyDomainName(); // Returns mycompany

//Get the package name
String packageName = domain.getPackageName(); // Returns abcpackage

338

Call Salesforce URLs Within a PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_class_System_DomainParser.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_class_System_Domain.htm

Develop App Documentation
To help your subscribers make the most of your app, provide documentation about how to configure and customize your app.

• Configure Option—You can include a Configure option for installers. This option can link to installation and configuration details,
such as:

– Provisioning the external service of a client app

– Custom app settings

The Configure option is included in your package as a custom link. You can create a custom link for your home page layouts and
add it to your package.

1. Create a custom link to a URL that contains configuration information, or a Visualforce page that implements the configuration.
When you create your custom link, set the display properties to Open in separate popup window so that the user
returns to the same Salesforce page when done.

2. When you create the package, choose this custom link in the Configure Custom Link field of your package detail.

• Data Sheet—Give installers the fundamental information they must know about your app before they install.

• Customization and Enhancement Guide—Let installers know what they must customize after installation as part of their
implementation.

• Custom Help—You can provide custom help for your custom object records and custom fields.

API and Dynamic Apex Access in Packages
Apex Package components have access via dynamic Apex and the API to standard and custom objects in the organization where they’re
installed.

API Access is a package setting that controls the dynamic Apex and API access that package components have to standard and
custom objects. The setting displays for both the developer and installer on the package detail page. With this setting:

• The developer of an AppExchange package can restrict API access for a package before uploading it to AppExchange. After it’s
restricted, the package components receive Apex and API sessions that are restricted to the custom objects in the package. The
developer can also enable access to specific standard objects, and any custom objects in other packages that this package depends
on.

• The installer of a package can accept or reject package access privileges when installing the package to their organization.

• After installation, an administrator can change Apex and API access for a package at any time. The installer can also enable access
on additional objects such as custom objects created in the installer's organization or objects installed by unrelated packages.

There are two possible options for the API Access setting:

• The default Unrestricted, which gives the package components the same API access to standard objects as the user who is
logged in when the component sends a request to the API. Apex runs in system mode. Unrestricted access gives Apex read access
to all standard and custom objects.

• Restricted, which allows the administrator to select which standard objects the components in the package can access. Further,
the components in restricted packages can only access custom objects in the current package if the user has the object permissions
that provide access to them.

Considerations for API and Dynamic Apex Access in Packages
By default, dynamic Apex can only access the components with which the code is packaged. To provide access to standard objects not
included in the package, the developer must set the API Access.

339

Develop App DocumentationFirst-Generation Managed Packages

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Select the package that contains a dynamic Apex that needs access to standard objects in the installing organization.

3. In the Package Detail related list, click Enable Restrictions or Restricted, whichever is available.

4. Set the access level (Read, Create, Edit, Delete) for the standard objects that the dynamic Apex can access.

5. Click Save.

Choosing Restricted for the API Access setting in a package affects the following:

• API access in a package overrides the following user permissions:

– Author Apex

– Customize Application

– Edit HTML Templates

– Edit Read Only Fields

– Manage Billing

– Manage Call Centers

– Manage Categories

– Manage Custom Report Types

– Manage Dashboards

– Manage Letterheads

– Manage Package Licenses

– Manage Public Documents

– Manage Public List Views

– Manage Public Reports

– Manage Public Templates

– Manage Users

– Transfer Record

– Use Team Reassignment Wizards

– View Setup and Configuration

– Weekly Export Data

• If Read, Create, Edit, and Delete access aren’t selected in the API access setting for objects, users don’t have access to
those objects from the package components, even if the user has the Modify All Data and View All Data permissions.

• A package with Restricted API access can’t create users.

• Salesforce denies access to Web service and executeanonymous requests from an AppExchange package that has
Restricted access.

The following considerations also apply to API access in packages:

• Workflow rules and Apex triggers fire regardless of API access in a package.

• If a component is in more than one package in an organization, API access is unrestricted for that component in all packages in the
organization regardless of the access setting.

• If Salesforce introduces a new standard object after you select restricted access for a package, access to the new standard object
isn’t granted by default. You must modify the restricted access setting to include the new standard object.

• When you upgrade a package, changes to the API access are ignored even if the developer specified them, which ensures that the
administrator installing the upgrade has full control. Installers must carefully examine the changes in package access in each upgrade

340

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

during installation and note all acceptable changes. Then, because those changes are ignored, the administrator must manually
apply any acceptable changes after installing an upgrade.

• S-controls are served by Salesforce and rendered inline in Salesforce. Because of this tight integration, there are several means by
which an s-control in an installed package could escalate its privileges to the user’s full privileges. In order to protect the security of
organizations that install packages, s-controls have the following limitations:

– For packages you’re developing (that is, not installed from AppExchange), you can only add s-controls to packages with the
default Unrestricted API access. After a package has an s-control, you can’t enable Restricted API access.

– For packages you’ve installed, you can enable access restrictions even if the package contains s-controls. However, access
restrictions provide only limited protection for s-controls. Salesforce recommends that you understand the JavaScript in an
s-control before relying on access restriction for s-control security.

– If an installed package has Restricted API access, upgrades are successful only if the upgraded version doesn’t contain any
s-controls. If s-controls are present in the upgraded version, you must change the currently installed package to Unrestricted
API access.

Manage API and Dynamic Apex Access in Packages

API Access is a package setting that controls the dynamic Apex and API access that package components have to standard
and custom objects. The setting displays for both the developer and installer on the package detail page.

Configure Default Package Versions for API Calls

You can specify the default package versions for enterprise API and partner API calls.

About the Partner WSDL

The Partner Web Services WSDL is used for client applications that are metadata-driven and dynamic in nature. It’s particularly—but
not exclusively—useful to Salesforce partners who are building client applications for multiple organizations.

Generate an Enterprise WSDL with Managed Packages

If you’re downloading an enterprise WSDL and you have first-generation managed packages installed in your org, you must take an
extra step to select the version of each installed package to include in the generated WSDL.

Work with Services Outside of Salesforce

Manage API and Dynamic Apex Access in Packages

USER PERMISSIONS

To edit API and dynamic
Apex access for a package
you’ve created or installed:
• Create AppExchange

packages

To accept or reject package
API and dynamic Apex
access for a package as
part of installation:
• Download AppExchange

packages

API Access is a package setting that controls the dynamic Apex and API access that package
components have to standard and custom objects. The setting displays for both the developer and
installer on the package detail page.

• The developer of an AppExchange package can restrict API access for a package before uploading
it to AppExchange. After it’s restricted, the package components receive Apex and API sessions
that are restricted to the custom objects in the package. The developer can also enable access
to specific standard objects, and any custom objects in other packages that this package depends
on.

• The installer of a package can accept or reject package access privileges when installing the
package to their organization.

• After installation, an administrator can change Apex and API access for a package at any time.
The installer can also enable access on additional objects such as custom objects created in the
installer's organization or objects installed by unrelated packages.

341

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

Setting API and Dynamic Apex Access in Packages
To change package access privileges in a package you or someone in your organization has created:

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Select a package.

3. The API Access field displays the current setting, Restricted or Unrestricted, and a link to either Enable Restrictions
or Disable Restrictions. If Read, Create, Edit, and Delete access aren’t selected in the API access setting for objects, users
don’t have access to those objects from the package components, even if the user has the Modify All Data and View All Data
permissions.

Use the API Access field to:

• Enable Restrictions— This option is available only if the current setting is Unrestricted. Select this option if you want
to specify the dynamic Apex and API access that package components have to standard objects in the installer's organization.
When you select this option, the Extended Object Permissions list is displayed. To enable access for each object in the list, select
the Read, Create, Edit, or Delete checkboxes. This selection is disabled in some situations. Click Save when finished.
For more information about choosing the Restricted option, including information about when it’s disabled, see
Considerations for API and Dynamic Apex Access in Packages on page 339.

• Disable Restrictions—This option is available only if the current setting is Restricted. Select this option if you don’t want
to restrict the Apex and API access privileges that the components in the package have to standard and custom objects. This
option gives all the components in the package the same API access as the user who is logged in. For example, if a user can
access accounts, an Apex class in the package that accesses accounts would succeed when triggered by that user.

• Restricted—Click this link if you already restricted API access and wish to edit the restrictions.

Accepting or Rejecting API and Dynamic Apex Access Privileges during Installation
To accept or reject the API and dynamic Apex access privileges for a package you’re installing:

• Start the installation process on AppExchange.

• In Approve API Access, either accept by clicking Next, or reject by clicking Cancel. Complete the installation steps if you haven’t
canceled.

Changing API and Dynamic Apex Access Privileges After Installation
To edit the package API and dynamic Apex access privileges after you’ve installed a package:

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click the name of the package you wish to edit.

3. The API Access field displays the current setting, Restricted or Unrestricted, and a link to either Enable Restrictions
or Disable Restrictions. If Read, Create, Edit, and Delete access aren’t selected in the API access setting for objects, users
don’t have access to those objects from the package components, even if the user has the Modify All Data and View All Data
permissions.

Use the API Access field to:

• Enable Restrictions— This option is available only if the current setting is Unrestricted. Select this option if you want
to specify the dynamic Apex and API access that package components have to standard objects in the installer's organization.
When you select this option, the Extended Object Permissions list is displayed. To enable access for each object in the list, select
the Read, Create, Edit, or Delete checkboxes. This selection is disabled in some situations. Click Save when finished.
For more information about choosing the Restricted option, including information about when it’s disabled, see
Considerations for API and Dynamic Apex Access in Packages on page 339.

342

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

• Disable Restrictions—This option is available only if the current setting is Restricted. Select this option if you don’t want
to restrict the Apex and API access privileges that the components in the package have to standard and custom objects. This
option gives all the components in the package the same API access as the user who is logged in. For example, if a user can
access accounts, an Apex class in the package that accesses accounts would succeed when triggered by that user.

• Restricted—Click this link if you have already restricted API access and wish to edit the restrictions.

Configure Default Package Versions for API Calls

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
and Developer, Editions

USER PERMISSIONS

To configure default
package versions for API
calls:
• Customize Application

You can specify the default package versions for enterprise API and partner API calls.

A package version is a number that identifies the set of components uploaded in a package. The
version number has the format majorNumber.minorNumber.patchNumber (for example,
2.1.3). The major and minor numbers increase to a chosen value during every major release. The
patchNumber is generated and updated only for a patch release. Publishers can use package
versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package.

Default package versions for API calls provide fallback settings if package versions aren’t provided
by an API call. Many API clients don’t include package version information, so the default settings
maintain existing behavior for these clients.

You can specify the default package versions for enterprise API and partner API calls. The enterprise
WSDL is for customers who want to build an integration with their Salesforce organization only. It’s
strongly typed, which means that calls operate on objects and fields with specific data types, such
as int and string. The partner WSDL is for customers, partners, and ISVs who want to build
an integration that can work across multiple Salesforce organizations, regardless of their custom
objects or fields. It is loosely typed, which means that calls operate on name-value pairs of field
names and values instead of specific data types.

You must associate the enterprise WSDL with specific package versions to maintain existing behavior for clients. There are options for
setting the package version bindings for an API call from client applications using either the enterprise or partner WSDL. The package
version information for API calls issued from a client application based on the enterprise WSDL is determined by the first match in the
following settings.

1. The PackageVersionHeader SOAP header.

2. The SOAP endpoint contains a URL with a format of serverName/services/Soap/c/api_version/ID where
api_version is the version of the API, such as 65.0, and ID encodes your package version selections when the enterprise WSDL
was generated.

3. The default enterprise package version settings.

The partner WSDL is more flexible as it’s used for integration with multiple organizations. If you choose the Not Specified option for a
package version when configuring the default partner package versions, the behavior is defined by the latest installed package version.
This means that behavior of package components, such as an Apex trigger, could change when a package is upgraded and that change
would immediately impact the integration. Subscribers may want to select a specific version for an installed package for all partner API
calls from client applications to ensure that subsequent installations of package versions don’t affect their existing integrations.

The package version information for partner API calls is determined by the first match in the following settings.

1. The PackageVersionHeader SOAP header.

2. An API call from a Visualforce page uses the package versions set for the Visualforce page.

3. The default partner package version settings.

To configure default package versions for API calls:

343

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

1. From Setup, enter API in the Quick Find box, then select API.

2. Click Configure Enterprise Package Version Settings or Configure Partner Package Version Settings. These links are only
available if you have at least one managed package installed in your organization.

3. Select a Package Version for each of your installed managed packages. If you’re unsure which package version to select, you
should leave the default selection.

4. Click Save.

Note: Installing a new version of a package in your organization doesn’t affect the current default settings.

About the Partner WSDL
The Partner Web Services WSDL is used for client applications that are metadata-driven and dynamic in nature. It’s particularly—but
not exclusively—useful to Salesforce partners who are building client applications for multiple organizations.

As a loosely typed representation of the Salesforce data model that works with name-value pairs of field names and values instead of
specific data types, it can be used to access data within any organization. This WSDL is most appropriate for developers of clients that
can issue a query call to get information about an object before the client acts on the object. The partner WSDL document needs to be
downloaded and consumed only once per version of the API.

For more information about the Partner WSDL, see Using the Partner WSDL in SOAP API Developer Guide.

Generate an Enterprise WSDL with Managed Packages

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
and Developer, Editions

USER PERMISSIONS

To download a WSDL:
• Customize Application

If you’re downloading an enterprise WSDL and you have first-generation managed packages installed
in your org, you must take an extra step to select the version of each installed package to include
in the generated WSDL.

The enterprise WSDL is strongly typed, which means that it contains objects and fields with specific
data types, such as int and string.

A package version is a number that identifies the set of components uploaded in a package. The
version number has the format majorNumber.minorNumber.patchNumber (for example,
2.1.3). The major and minor numbers increase to a chosen value during every major release. The
patchNumber is generated and updated only for a patch release. Publishers can use package
versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package. A subscriber
can select a package version for each installed managed package to allow their API client to continue
to function with specific, known behavior even when they install subsequent versions of a package.
Each package version can have variations in the composition of its objects and fields, so you must
select a specific version when you generate the strongly typed WSDL.

Note: This is only available to first-generation managed packages.

To download an enterprise WSDL when you have managed packages installed:

1. From Setup, enter API in the Quick Find box, then select API.

2. Click Generate Enterprise WSDL.

3. Select the Package Version for each of your installed managed packages. If you’re unsure which package version to select,
you should leave the default, which is the latest package version.

4. Click Generate.

5. Use the File menu in your browser to save the WSDL to your computer.

344

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api.meta/api/sforce_api_partner.htm

6. On your computer, import the local copy of the WSDL document into your development environment.

Note the following in your generated enterprise WSDL:

• Each of your managed package version selections is included in a comment at the top of the WSDL.

• The generated WSDL contains the objects and fields in your organization, including those available in the selected versions of each
installed package. If a field or object is added in a later package version, you must generate the enterprise WSDL with that package
version to work with the object or field in your API integration.

• The SOAP endpoint at the end of the WSDL contains a URL with a format of
serverName/services/Soap/c/api_version/ID where api_version is the version of the API, such as 52.0,

and ID encodes your package version selections when you communicate with Salesforce.

You can also select the default package versions for the enterprise WSDL without downloading a WSDL from the API page in Setup.
Default package versions for API calls provide fallback settings if package versions aren’t provided by an API call. Many API clients don’t
include package version information, so the default settings maintain existing behavior for these clients.

Work with Services Outside of Salesforce
You might want to update your Salesforce data when changes occur in another service. Likewise, you might also want to update the
data in a service outside of Salesforce based on changes to your Salesforce data. For example, you might want to send a mass email to
more contacts and leads than Salesforce allows. You can use an external mail service that allows users to build a recipient list of names
and email addresses using the contact and lead information in your Salesforce organization.

An app built on the Salesforce Platform can connect with a service outside of Salesforce in many ways. For example, you can:

• create a custom link or custom formula field that passes information to an external service.

• use the Platform APIs to transfer data in and out of Salesforce.

• use an Apex class that contains a Web service method.

Warning: Don’t store usernames and passwords within any external service.

Provisioning a Service External to Salesforce
If your app links to an external service, users who install the app must be signed up to use the service. Provide access in one of two ways:

• Access by all active users in an organization with no real need to identify an individual

• Access on a per user basis where identification of the individual is important

The Salesforce service provides two globally unique IDs to support these options. The user ID identifies an individual and is unique across
all organizations. User IDs are never reused. Likewise, the organization ID uniquely identifies the organization.

Avoid using email addresses, company names, and Salesforce usernames when providing access to an external service. Usernames can
change over time and email addresses and company names can be duplicated.

If you’re providing access to an external service, we recommend the following:

• Use Single Sign-On (SSO) techniques to identify new users when they use your service.

• For each point of entry to your app, such as a custom link or web tab, include the user ID in the parameter string. Have your service
examine the user ID to verify that the user ID belongs to a known user. Include a session ID in the parameter string so that your
service can read back through the Lightning Platform API and validate that this user has an active session and is authenticated.

• Offer the external service for any known users. For new users, display an alternative page to collect the required information.

• Don’t store passwords for individual users. Besides the obvious security risks, many organizations reset passwords on a regular basis,
which requires the user to update the password on your system as well. We recommend designing your external service to use the
user ID and session ID to authenticate and identify users.

345

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

• If your application requires asynchronous updates after a user session has expired, dedicate a distinct administrator user license for
this.

Connected Apps
A connected app is a framework that enables an external application to integrate with Salesforce using APIs and standard protocols,
such as SAML, OAuth, and OpenID Connect. Connected apps use these protocols to authenticate, authorize, and provide single sign-on
(SSO) for external apps. The external apps that are integrated with Salesforce can run on the customer success platform, other platforms,
devices, or SaaS subscriptions. For example, when you log in to your Salesforce mobile app and see your data from your Salesforce org,
you’re using a connected app.

Note: Connected apps creation is restricted as of Spring ‘26. You can continue to use existing connected apps during and after
Spring ‘26. However, we recommend using external client apps instead. If you must continue creating connected apps, contact
Salesforce Support. See New connected apps can no longer be created in Spring ‘26 for more details.

By capturing metadata about an external app, a connected app tells Salesforce which authentication protocol—SAML, OAuth, and
OpenID Connect—the external app uses, and where the external app runs. Salesforce can then grant the external app access to its data,
and attach policies that define access restrictions, such as when the app’s access expires. Salesforce can also audit connected app usage.

To learn more about how to use, configure, and manage connected apps, see the following topics in Salesforce Help:

• Connected App Use Cases

• Create a Connected App

• Edit a Connected App

• Manage Access to a Connected App

More Resources
Here are some additional resources to help you navigate connected apps:

• Salesforce Help: Connected Apps

• Salesforce Help: Authorize Apps with OAuth

• Trailhead: Build Integrations Using Connected Apps

Package and Test Your First-Generation Managed Package

Learn how to package, upload, and install a beta version of your first-generation managed package as part an iterative development
approach. After your beta is up and running, learn how to test, fix, extend, and uninstall the package.

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

Install a Managed Package

During the development and testing cycle, you might need to periodically install and uninstall packages before you install the next
beta. Follow these steps to install a package.

346

Connected AppsFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=xcloud.external_client_apps.htm&language=en_US
https://help.salesforce.com/s/articleView?id=005228017&type=1&language=en_US
https://help.salesforce.com/articleView?id=connected_app_about.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_create.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_edit_parent.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_manage.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_authenticate.htm&language=en_US
https://trailhead.salesforce.com/en/content/learn/trails/build-integrations-using-connected-apps
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

Install First-Generation Managed Packages Using Metadata API

You can install, upgrade, and uninstall managed packages using the Metadata API, instead of the user interface. Automating these
repeated tasks can help you can work more efficiently and speed up application development.

Component Availability After Deployment

Many components have an Is Deployed attribute that controls whether they’re available for end users. After installation, all
components are immediately available if they were available in the developer's organization.

Install Notifications for Unauthorized Managed Packages

When you distribute a managed package that AppExchange Partner Program hasn’t authorized, we notify customers during the
installation process. The notification is removed after the package is approved.

Resolve Apex Test Failures

Package installs or upgrades may fail for not passing Apex test coverage. However, some of these failures can be ignored. For example,
a developer might write an Apex test that makes assumptions about a subscriber's data.

Run Apex on Package Install/Upgrade

App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you
can use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick
off a batch operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It
must be an Apex class that is a member of the package.

Run Apex on Package Uninstall

App developers can specify an Apex script to run automatically after a subscriber uninstalls a managed package. This script makes
it possible to perform cleanup and notification tasks based on details of the subscriber’s organization. For simplicity, you can only
specify one uninstall script. It must be an Apex class that is a member of the package.

Uninstall a First-Generation Managed Package

You can uninstall a first-generation managed package from an org using the Setup UI. When you uninstall a first-generation managed
package, all components in the package, including any deprecated components that were previously associated with the package,
are deleted from the org.

Install a Managed Package
During the development and testing cycle, you might need to periodically install and uninstall packages before you install the next beta.
Follow these steps to install a package.

Pre-Installation
1. In a browser, type in the installation URL you received when you uploaded the package.

2. Enter your username and password for the Salesforce organization in which you want to install the package, and then click Log In.

3. If the package is password-protected, enter the password you received from the publisher.

Default Installation
Click Install. You’ll see a message that describes the progress and a confirmation message after the installation is complete.

Custom Installation
Follow these steps if you need to modify the default settings, as an administrator.

347

Install a Managed PackageFirst-Generation Managed Packages

1. Choose one or more of these options, as appropriate.

• Click View Components. You see an overlay with a list of components in the package. For managed packages, the screen also
contains a list of connected apps (trusted applications that are granted access to a user's Salesforce data after the user and the
application are verified). To confirm that the components and any connected apps shown are acceptable, review the list and
then close the overlay.

Note: Some package items, such as validation rules, record types, or custom settings don’t appear in the Package
Components list but are included in the package and installed with the other items. If there are no items in the Package
Components list, it’s likely that the package contains only minor changes.

• If the package contains a remote site setting, you must approve access to websites outside of Salesforce. The dialog box lists all
the websites that the package communicates with. We recommend that a website uses SSL (secure sockets layer) for transmitting
data. After you verify that the websites are safe, select Yes, grant access to these third-party websites and click Continue,
or click Cancel to cancel the installation of the package.

Warning: By installing remote site settings, you’re allowing the package to transmit data to and from a third-party website.
Before using the package, contact the publisher to understand what data is transmitted and how it's used. If you have an
internal security contact, ask the contact to review the application so that you understand its impact before use.

• Click API Access. You see an overlay with a list of the API access settings that package components have been granted. Review
the settings to verify they’re acceptable, and then close the overlay to return to the installer screen.

• In Enterprise, Performance, Unlimited, and Developer Editions, choose one of the following security options.

Note: This option is visible only in specific types of installations. For example, in Group and Professional Editions, or if the
package doesn’t contain a custom object, Salesforce skips this option, which gives all users full access.

Install for Admins Only
Specifies the following settings on the installing administrator’s profile and any profile with the "Customize Application"
permission.

– Object permissions—Read, Create, Edit, Delete, View All Records, and Modify All Records
enabled

– Field-level security—set to visible and editable for all fields

– Apex classes—enabled

– Visualforce pages—enabled

– App settings—enabled

– Tab settings—determined by the package developer

– Page layout settings—determined by the package developer

– Record Type settings—determined by the package developer

After installation, if you have Enterprise, Performance, Unlimited, or Developer Edition, set the appropriate user and object
permissions on custom profiles as needed.

Install for All Users
Specifies the following settings on all internal custom profiles.

– Object permissions— Read, Create, Edit, and Delete enabled

– Field-level security—set to visible and editable for all fields

– Apex classes—enabled

– Visualforce pages—enabled

– App settings—enabled

348

Install a Managed PackageFirst-Generation Managed Packages

– Tab settings—determined by the package developer

– Page layout settings—determined by the package developer

– Record Type settings—copied from admin profile

Note: The Customer Portal User, Customer Portal Manager, High Volume Customer Portal, Authenticated Website,
Partner User, and standard profiles receive no access.

Install for Specific Profiles...
Lets you determine package access for all custom profiles in your org. You can set each profile to have full access or no access
for the new package and all its components.

– Full Access—Specifies the following settings for each profile.

• Object permissionsRead, Create, Edit, and Delete enabled

• Field-level security—set to visible and editable for all fields

• Apex classes—enabled

• Visualforce pages—enabled

• App settings—enabled

• Tab settings—enabled

• Page layout settings—determined by the package developer

• Record Type settings—determined by the package developer

– No Access—Page layout and Record Type settings are determined by the package developer. All other settings are
hidden or disabled.

If the package developer has included settings for custom profiles, you can incorporate the settings of the publisher’s custom
profiles into your profiles without affecting your settings. Choose the name of the profile settings in the dropdown list next
to the profile that you’re applying them to. The current settings in that profile remain intact.

Alternatively, click Set All next to an access level to give this setting to all user profiles.

2. Click Install. You’ll see a message that describes the progress and a confirmation message after the installation is complete.

Post-Installation Steps
If the package includes post-installation instructions, they’re displayed after the installation is completed. Review and follow the instructions
provided. In addition, before you deploy the package to your users, make any necessary changes for your implementation. Depending
on the contents of the package, some of the following customization steps are required.

• If the package includes permission sets, assign the included permission sets to your users who need them. In managed packages,
you can't edit permission sets that are included in the package, but subsequent upgrades happen automatically. If you clone a
permission set that comes with a managed package or create your own, you can edit the permission set, but subsequent upgrades
won't affect it.

• If you’re reinstalling a package and need to reimport the package data by using the export file that you received after uninstalling,
see Import Package Data.

• If you installed a managed package, click Manage Licenses to assign licenses to users.

Note: You can’t assign licenses in Lightning Experience. To assign a license, switch to Salesforce Classic.

• Configure components in the package as required.

349

Install a Managed PackageFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.distribution_reimport_package_data.htm&language=en_US

Install First-Generation Managed Packages Using Metadata API
You can install, upgrade, and uninstall managed packages using the Metadata API, instead of the user interface. Automating these
repeated tasks can help you can work more efficiently and speed up application development.

To install, upgrade, or uninstall a package, use the standard Metadata API deploy() call with the InstalledPackage metadata
type. The following operations are supported.

• Deploying an InstalledPackage installs the package in the deploying organization.

• Deploying a newer version of a currently installed package upgrades the package.

• Deploying an InstalledPackage using a manifest called destructiveChanges.xml, instead of package.xml,
uninstalls it from the organization.

To specify whether all users, or only admins, can access the package you’re installing, use the securityType field on the
InstalledPackage metadata type. The default value is AllUsers. This field is available in API version 57.0 and later.

Note: InstalledPackage must be the only metadata type specified in the manifest file.

The following is a typical project manifest (package.xml) for installing a package. The manifest must not contain a fullName or
namespacePrefix element.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>*</members>
<name>InstalledPackage</name>

</types>
<version>28.0</version>

</Package>

The package is specified in a file called MyNamespace.installedPackage, where MyNamespace is the namespace prefix of
the package. The file must be in a directory called installedPackages, and its contents must have this format.

<?xml version="1.0" encoding="UTF-8"?>
<InstalledPackage xmlns="http://soap.sforce.com/2006/04/metadata">
<versionNumber>1.0</versionNumber>
<password>optional_password</password>
<securityType>AdminsOnly</securityType>

</InstalledPackage>

The securityType field is optional. If it’s not specified, the default security type is AllUsers.

InstalledPackage in API version 43.0 and later must include the activateRSS field set to either of these values.

true
Keep the isActive state of any Remote Site Settings(RSS) or Content Security Policies(CSP) in the package.

false
Override the isActive state of any RSS or CSP in the package and set it to false.

The default value is false.

Note: Regardless of what activateRSS is set to, a retrieve of InstalledPackage always returns <activateRSS
xsi:nil=”true”/>. Therefore, before you deploy a package, inspect the information you’ve retrieved from
InstalledPackage and set activateRSS to the desired value.

350

Install First-Generation Managed Packages Using Metadata
API

First-Generation Managed Packages

To uninstall a package, deploy this destructiveChanges.xml manifest file in addition to the package.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>MyNamespace</members>
<name>InstalledPackage</name>
</types>

</Package>

Retrieving an InstalledPackage, using the retrieve() call creates an XML representation of the package installed in an org.
If the installed package has a password or security type specified, that information isn’t retrieved. Deploying the retrieved file in a different
org installs the package in that organization.

For more information on the deploy() and retrieve() commands, see the Metadata API Developer’s Guide.

Component Availability After Deployment
Many components have an Is Deployed attribute that controls whether they’re available for end users. After installation, all components
are immediately available if they were available in the developer's organization.

Installed packages are available to users in your organization with the appropriate permissions and page layout settings.

Install Notifications for Unauthorized Managed Packages
When you distribute a managed package that AppExchange Partner Program hasn’t authorized, we notify customers during the installation
process. The notification is removed after the package is approved.

The notification appears when customers configure the package installation settings (1). Before customers install the package, they must
confirm that they understand that the package isn’t authorized for distribution (2).

The notification displays when a managed package:

• Has never been through security review or is under review

• Didn’t pass the security review

• Isn’t authorized by AppExchange Partner Program for another reason

If the AppExchange Partner Program approves the package, it’s authorized for distribution, and the notification is removed. When you
publish a new version of the package, it’s automatically authorized for distribution.

351

Component Availability After DeploymentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/

For information about the AppExchange Partner Program and its requirements, visit the Salesforce Partner Community.

Resolve Apex Test Failures
Package installs or upgrades may fail for not passing Apex test coverage. However, some of these failures can be ignored. For example,
a developer might write an Apex test that makes assumptions about a subscriber's data.

If your install fails due to an Apex test failure, check for the following:

• Make sure that you’re staging all necessary data required for your Apex test, instead of relying on subscriber data that exists.

• If a subscriber creates a validation rule, required field, or trigger on an object referenced by your package, your test might fail if it
performs DML on this object. If this object is created only for testing purposes and never at runtime, and the creation fails due to
these conflicts, you might be safe to ignore the error and continue the test. Otherwise, contact the customer and determine the
impact.

Run Apex on Package Install/Upgrade
App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you can
use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick off a batch
operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It must be an Apex
class that is a member of the package.

The post install script is invoked after tests have been run, and is subject to default governor limits. It runs as a special system user that
represents your package, so all operations performed by the script appear to be done by your package. You can access this user by using
UserInfo. You can only see this user at runtime, not while running tests.

If the script fails, the install/upgrade is aborted. Any errors in the script are emailed to the user specified in the Notify on Apex Error
field of the package. If no user is specified, the install/upgrade details are unavailable.

The post install script has the following additional properties.

• It can initiate batch, scheduled, and future jobs.

• It can’t access Session IDs.

• It can only perform callouts using an async operation. The callout occurs after the script is run and the install is complete and
committed.

• It can’t call another Apex class in the package if that Apex class uses the with sharing or inherit sharing keyword.
These keywords can prevent the package from successfully installing. To learn more, see the Apex Developer Guide.

Note: You can’t run a post install script in a new trial organization provisioned using Trialforce. The script only runs when a
subscriber installs your package in an existing organization.

How Does a Post Install Script Work?

A post install script is an Apex class that implements the InstallHandler interface.

Example of a Post Install Script

Specifying a Post Install Script

After you’ve created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

352

Resolve Apex Test FailuresFirst-Generation Managed Packages

https://partners.salesforce.com/s/education/general/Partner_Program
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_classes_keywords_sharing.htm

How Does a Post Install Script Work?
A post install script is an Apex class that implements the InstallHandler interface.

This interface has a single method called onInstall that specifies the actions to be performed on installation.

global interface InstallHandler {
void onInstall(InstallContext context)

}

The onInstall method takes a context object as its argument, which provides the following information.

• The org ID of the organization in which the installation takes place.

• The user ID of the user who initiated the installation.

• The version number of the previously installed package (specified using the Version class). This is always a three-part number,
such as 1.2.0.

• Whether the installation is an upgrade

• Whether the installation is a push

The context argument is an object whose type is the InstallContext interface. This interface is automatically implemented by
the system. The following definition of the InstallContext interface shows the methods you can call on the context argument.

global interface InstallContext {
ID organizationId();
ID installerId();
Boolean isUpgrade();
Boolean isPush();
Version previousVersion();

}

Version Methods and Class

You can use the methods in the System.Version class to get the version of a managed package and to compare package versions.
A package version is a number that identifies the set of components in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every non-patch release. Major and minor number increases always use a patch number of 0.

The following are instance methods for the System.Version class.

DescriptionReturn TypeArgumentsMethod

Compares the current version with the specified
version and returns one of the following values:

IntegerSystem.Version versioncompareTo

• Zero if the current package version is equal
to the specified package version

• An Integer value greater than zero if the
current package version is greater than the
specified package version

• An Integer value less than zero if the
current package version is less than the
specified package version

If a two-part version is being compared to a
three-part version, the patch number is ignored

353

Run Apex on Package Install/UpgradeFirst-Generation Managed Packages

DescriptionReturn TypeArgumentsMethod

and the comparison is based only on the major
and minor numbers.

Returns the major package version of the calling
code.

Integermajor

Returns the minor package version of the
calling code.

Integerminor

Returns the patch package version of the calling
code or null if there’s no patch version.

Integerpatch

The System class contains two methods that you can use to specify conditional logic, so different package versions exhibit different
behavior.

• System.requestVersion: Returns a two-part version that contains the major and minor version numbers of a package.Using
this method, you can determine the version of an installed instance of your package from which the calling code is referencing your
package. Based on the version that the calling code has, you can customize the behavior of your package code.

• System.runAs(System.Version): Changes the current package version to the package version specified in the argument.

When a subscriber has installed multiple versions of your package and writes code that references Apex classes or triggers in your
package, they must select the version they’re referencing. You can execute different code paths in your package’s Apex code based on
the version setting of the calling Apex code making the reference. You can determine the calling code’s package version setting by
calling the System.requestVersion method in the package code.

Example of a Post Install Script
The following sample post install script performs these actions on package install/upgrade.

• If the previous version is null, that is, the package is being installed for the first time, the script:

– Creates a new Account called Newco and verifies that it was created.

– Creates a new instance of the custom object Survey, called Client Satisfaction Survey.

– Sends an email message to the subscriber confirming installation of the package.

• If the previous version is 1.0, the script creates a new instance of Survey called ”Upgrading from Version 1.0”.

• If the package is an upgrade, the script creates a new instance of Survey called ”Sample Survey during Upgrade”.

• If the upgrade is being pushed, the script creates a new instance of Survey called ”Sample Survey during Push”.

public class PostInstallClass implements InstallHandler {
global void onInstall(InstallContext context) {
if(context.previousVersion() == null) {
Account a = new Account(name='Newco');
insert(a);

Survey__c obj = new Survey__c(name='Client Satisfaction Survey');
insert obj;

User u = [Select Id, Email from User where Id =:context.installerID()];
String toAddress= u.Email;

354

Run Apex on Package Install/UpgradeFirst-Generation Managed Packages

String[] toAddresses = new String[]{toAddress};
Messaging.SingleEmailMessage mail =
new Messaging.SingleEmailMessage();

mail.setToAddresses(toAddresses);
mail.setReplyTo('support@package.dev');
mail.setSenderDisplayName('My Package Support');
mail.setSubject('Package install successful');
mail.setPlainTextBody('Thanks for installing the package.');
Messaging.sendEmail(new Messaging.Email[] { mail });
}

else
if(context.previousVersion().compareTo(new Version(1,0)) == 0) {
Survey__c obj = new Survey__c(name='Upgrading from Version 1.0');
insert(obj);
}

if(context.isUpgrade()) {
Survey__c obj = new Survey__c(name='Sample Survey during Upgrade');
insert obj;
}

if(context.isPush()) {
Survey__c obj = new Survey__c(name='Sample Survey during Push');
insert obj;
}

}
}

You can test a post install script using the new testInstall method of the Test class. This method takes the following arguments.

• A class that implements the InstallHandler interface.

• A Version object that specifies the version number of the existing package.

• An optional Boolean value that is true if the installation is a push. The default is false.

This sample shows how to test a post install script implemented in the PostInstallClass Apex class.

@isTest
static void testInstallScript() {
PostInstallClass postinstall = new PostInstallClass();
Test.testInstall(postinstall, null);
Test.testInstall(postinstall, new Version(1,0), true);
List<Account> a = [Select id, name from Account where name ='Newco'];
System.assertEquals(1, a.size(), 'Account not found');

}

Specifying a Post Install Script
After you’ve created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

The class selection is also available via the Metadata API as Package.postInstallClass. This is represented in package.xml as
a <postInstallClass>foo</postInstallClass> element.

355

Run Apex on Package Install/UpgradeFirst-Generation Managed Packages

Run Apex on Package Uninstall
App developers can specify an Apex script to run automatically after a subscriber uninstalls a managed package. This script makes it
possible to perform cleanup and notification tasks based on details of the subscriber’s organization. For simplicity, you can only specify
one uninstall script. It must be an Apex class that is a member of the package.

The uninstall script is subject to default governor limits. It runs as a special system user that represents your package, so all operations
performed by the script appear to be done by your package. You can access this user by using UserInfo. You can only see this user at
runtime, not while running tests.

If the script fails, the uninstall continues but none of the changes performed by the script are committed. Any errors in the script are
emailed to the user specified in the Notify on Apex Error field of the package. If no user is specified, the uninstall details are unavailable.

The uninstall script has the following restrictions. You can’t use it to initiate batch, scheduled, and future jobs, to access Session IDs, or
to perform callouts.

How Does an Uninstall Script Work?

An uninstall script is an Apex class that implements the UninstallHandler interface. This interface has a single method called
onUninstall that specifies the actions to be performed on uninstall.

Example of an Uninstall Script

This sample uninstall script performs the following actions on package uninstall.

Specifying an Uninstall Script

After you’ve created and tested the uninstall script and included it as a member of your package, you can specify it in the Uninstall
Script lookup field on the Package Detail page.

How Does an Uninstall Script Work?
An uninstall script is an Apex class that implements the UninstallHandler interface. This interface has a single method called
onUninstall that specifies the actions to be performed on uninstall.

global interface UninstallHandler {
void onUninstall(UninstallContext context)

}

The onUninstall method takes a context object as its argument, which provides the following information.

• The org ID of the organization in which the uninstall takes place.

• The user ID of the user who initiated the uninstall.

The context argument is an object whose type is the UninstallContext interface. This interface is automatically implemented
by the system. The following definition of the UninstallContext interface shows the methods you can call on the context
argument.

global interface UninstallContext {
ID organizationId();
ID uninstallerId();

}

Example of an Uninstall Script
This sample uninstall script performs the following actions on package uninstall.

• Inserts an entry in the feed describing which user did the uninstall and in which organization

356

Run Apex on Package UninstallFirst-Generation Managed Packages

• Creates and sends an email message confirming the uninstall to that user

global class UninstallClass implements UninstallHandler {
global void onUninstall(UninstallContext ctx) {
FeedItem feedPost = new FeedItem();
feedPost.parentId = ctx.uninstallerID();
feedPost.body = 'Thank you for using our application!';
insert feedPost;

User u = [Select Id, Email from User where Id =:ctx.uninstallerID()];
String toAddress= u.Email;
String[] toAddresses = new String[] {toAddress};
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
mail.setToAddresses(toAddresses);
mail.setReplyTo('support@package.dev');
mail.setSenderDisplayName('My Package Support');
mail.setSubject('Package uninstall successful');
mail.setPlainTextBody('Thanks for uninstalling the package.');
Messaging.sendEmail(new Messaging.Email[] { mail });

}
}

You can test an uninstall script using the testUninstall method of the Test class. This method takes as its argument a class
that implements the UninstallHandler interface.

This sample shows how to test an uninstall script implemented in the UninstallClass Apex class.

@isTest
static void testUninstallScript() {
Id UninstallerId = UserInfo.getUserId();
List<FeedItem> feedPostsBefore =
[SELECT Id FROM FeedItem WHERE parentId=:UninstallerId AND CreatedDate=TODAY];

Test.testUninstall(new UninstallClass());
List<FeedItem> feedPostsAfter =
[SELECT Id FROM FeedItem WHERE parentId=:UninstallerId AND CreatedDate=TODAY];

System.assertEquals(feedPostsBefore.size() + 1, feedPostsAfter.size(),
'Post to uninstaller failed.');

}

Specifying an Uninstall Script
After you’ve created and tested the uninstall script and included it as a member of your package, you can specify it in the Uninstall
Script lookup field on the Package Detail page.

In subsequent patch releases, you can change the contents of the script but not the Apex class.

The class selection is also available via the Metadata API as Package.uninstallClass. This is represented in package.xml as an
<uninstallClass>foo</uninstallClass> element.

Uninstall a First-Generation Managed Package
You can uninstall a first-generation managed package from an org using the Setup UI. When you uninstall a first-generation managed
package, all components in the package, including any deprecated components that were previously associated with the package, are
deleted from the org.

357

Uninstall a First-Generation Managed PackageFirst-Generation Managed Packages

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click Uninstall next to the package that you want to remove.

3. Determine whether to save and export a copy of the package’s data, and then select the corresponding radio button.

4. Select Yes, I want to uninstall and click Uninstall.

When you uninstall packages, consider the following:

• If you’re uninstalling a package that includes a custom object, all components on that custom object are also deleted. Deleted items
include custom fields, validation rules, custom buttons, and links, workflow rules, and approval processes.

• You can’t uninstall a package whenever a component not included in the uninstall references any component in the package. For
example:

– When an installed package includes any component on a standard object that another component references, Salesforce prevents
you from uninstalling the package. An example is a package that includes a custom user field with a workflow rule that gets
triggered when the value of that field is a specific value. Uninstalling the package would prevent your workflow from working.

– When you’ve installed two unrelated packages that each include a custom object and one custom object component references
a component in the other, you can’t uninstall the package. An example is if you install an expense report app that includes a
custom user field and create a validation rule on another installed custom object that references that custom user field. However,
uninstalling the expense report app prevents the validation rule from working.

– When an installed folder contains components you added after installation, Salesforce prevents you from uninstalling the package.

– When an installed letterhead is used for an email template you added after installation, Salesforce prevents you from uninstalling
the package.

– When an installed package includes a custom field that’s referenced by Einstein Prediction Builder or Case Classification, Salesforce
prevents you from uninstalling the package. Before uninstalling the package, edit the prediction in Prediction Builder or Case
Classification so that it no longer references the custom field.

• You can’t uninstall a package that removes all active business and person account record types. Activate at least one other business
or person account record type, and try again.

• You can’t uninstall a package if a background job is updating a field added by the package, such as an update to a roll-up summary
field. Wait until the background job finishes, and try again.

Update Your First-Generation Managed Package

Your app is ready for an update. Learn how to fix small issues with patches and make major changes with upgrades.

Package Versions in First-Generation Managed Packages

A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3).

Create and Upload Patches in First-Generation Managed Packages

Patch versions are developed and maintained in a patch development org.

Work with Patch Versions

A patch version enables a developer to change the functionality of existing components in a managed package. Subscribers experience
no visible changes to the package. Patches are minor upgrades to a Managed - Released package and only used for fixing bugs or
other errors.

358

Update Your First-Generation Managed PackageFirst-Generation Managed Packages

Versioning Apex Code

When subscribers install multiple versions of your package and write code that references Apex classes or triggers in your package,
they must specify the version that they’re referencing.

Apex Deprecation Effects for Subscribers

Explore how deprecation of an Apex method impacts subscribers that install your managed package.

Package Versions in First-Generation Managed Packages
A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3).

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

Version numbers depend on the package release type, which identifies the way packages are distributed. There are two kinds:

Major Release
A major release denotes a Managed - Released package. During these releases, the major and minor numbers of a package version
increase to a chosen value.

Patch Release
A patch release is only for patch versions of a package. During these releases, the patch number of a package version increments.

The following table shows a sequence of version numbers for a series of uploads:

NotesVersion
Number

TypeUpload
Sequence

The firstManaged - Beta upload.1.0Managed - BetaFirst upload

A Managed - Released upload. The version number doesn’t change.1.0Managed -
Released

Second upload

Note the change of the minor release number for this Managed - Released
upload. If you’re uploading a new patch version, you can't change the patch
number.

1.1Managed -
Released

Third upload

The first> Managed - Beta upload for version number 2.0. Note the major
version number update.

2.0Managed - BetaFourth upload

A Managed - Released upload. The version number doesn’t change.2.0Managed -
Released

Fifth upload

When an existing subscriber installs a new package version, there’s still only one instance of each component in the package, but the
components can emulate older versions. For example, a subscriber can use a managed package that contains an Apex class. If the
publisher decides to deprecate a method in the Apex class and release a new package version, the subscriber still sees only one instance
of the Apex class after installing the new version. However, this Apex class can still emulate the previous version for any code that
references the deprecated method in the older version.

Package developers can use conditional logic in Apex classes and triggers to exhibit different behavior for different versions. Conditional
logic lets the package developer support existing behavior in classes and triggers in previous package versions while evolving the code.

359

Package Versions in First-Generation Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

When you’re developing client applications using the API, you can specify the version of each package that you use in your integrations.

Create and Upload Patches in First-Generation Managed Packages

EDITIONS

Available in: Developer
Edition

USER PERMISSIONS

To push an upgrade or
create a patch development
org
• Upload AppExchange

Packages

Patch versions are developed and maintained in a patch development org.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

To enable patch versioning, log a case in the Salesforce Partner Community and request patch
versioning be enabled in the org where you created the namespace for the package. Patch versioning
is available only to packages that have passed AppExchange security review.

To create a patch version:

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Click the name of your managed package.

3. On the Patch Organization tab, click New.

4. Select the package version that you want to create a patch for in the Patching Major Release dropdown. The release type must be
Managed - Released.

5. Enter a username for a login to your patch org.

6. Enter an email address associated with your login.

7. Click Save.

Note: If you ever lose your login information, click Reset on the package detail page under Patch Development Organizations
to reset the login to your patch development org.

The name of the patch development org’s My Domain name is randomly generated.

After you receive an email that Salesforce has created your patch development org, you can click Login to begin developing your patch
version.

Development in a patch development org is restricted.

• You can’t add package components.

• You can’t delete existing package components.

• API and dynamic Apex access controls can’t change for the package.

• No deprecation of any Apex code.

• You can’t add new Apex class relationships, such as extends.

• You can’t add Apex access modifiers, such as virtual or global.

• You can’t add new web services.

• You can’t add feature or component dependencies.

You can remove a feature or component dependency from a patch, but after the dependency is removed and the patch version is
uploaded, you can't reinstate that dependency in a new patch version. To reinstate the dependency, create a new major or minor
package version.

360

Create and Upload Patches in First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://partners.salesforce.com

When you finish developing your patch, upload it through the UI in your patch development org. You can also upload a package using
the Tooling API. For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

Note: When you upload a new package in your patch development org, the upload process is asynchronous. Because the time
to process the request varies, the package isn’t available immediately after the upload. While waiting, you can run SOQL queries
on the PackageUploadRequest status field to monitor the request.

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Click the name of the package.

3. On the Upload Package page, click Upload.

4. Enter a Version Name. As a best practice, it's useful to have a short description and the date.

5. Notice that the Version Number has had its patchNumber incremented.

6. For managed packages, select a Release Type:

• Choose Managed - Released to upload an upgradeable version. After upload, some attributes of the metadata components are
locked.

• Choose Managed - Beta if you want to upload a version of your package to a small sampling of your audience for testing purposes.
You can still change the components and upload other beta versions.

Note: Beta packages can only be installed in Developer Edition, scratch, or sandbox orgs, and thus can't be pushed to
customer orgs.

7. Change the Description, if necessary.

8. (Optional) Enter and confirm a password to share the package privately with anyone who has the password. Don't enter a password
if you want to make the package available to anyone on AppExchange and share your package publicly.

9. Salesforce automatically selects the requirements it finds. In addition, select any other required components from the Package
Requirements and Object Requirements sections to notify installers of any requirements for this package.

10. Click Upload.

To distribute your patch, you can either share the upload link or schedule a push upgrade.

Work with Patch Versions
A patch version enables a developer to change the functionality of existing components in a managed package. Subscribers experience
no visible changes to the package. Patches are minor upgrades to a Managed - Released package and only used for fixing bugs or other
errors.

Note: To enable patch versioning, contact Salesforce Partner Support and request patch versioning be enabled in the org where
you created the namespace for the package. Patch versioning is available only to packages that have passed AppExchange security
review.

Subscribers can install patch upgrades just like they would any other package version. However, you can also distribute a patch by using
push upgrades.

When you create a patch, the patchNumber on a package's Version Number increments by one. For example, suppose that
you release a package with the version number 2.0. When you release a patch, the number changes to 2.0.1. This value can't be changed
manually.

361

Work with Patch VersionsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/pkg2_feature_enablement.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_push_about.htm

Patch Development Organizations
Every patch is developed in a patch development org, which is the org where patch versions are developed, maintained, and uploaded.
To start developing a patch, create a package version. See Create and Upload Patches in First-Generation Managed Packages. Patch
development orgs are necessary to permit developers to change existing components without causing incompatibilities between
existing subscriber installations.

A package development org can upload an unlimited number of patches. Only one patch development org can exist per major.minor
release of your package. A patch development org for a package with a version number of 4.2 can only work on patches such as 4.2.1,
4.2.2, 4.2.3, and so on. It doesn’t work on version 4.1 or 4.3.

Integrating Patch Development
The following diagram illustrates the workflow of creating a patch and integrating any work into future versions:After version 2.0 is
released, the developer creates a patch. The package version number in the patch development org starts at 2.0.1. As the main development
org moves towards a released version of 3.0, a second patch is created for 2.0.2. Finally, the developer merges the changes between the
main development org, and the patch development org, and releases the package as version 3.0.

Patch Development Workflow

Git source control is the best way to monitor your package versions. To learn about Git, complete the Git and GitHub Basics Trailhead
module.

Version control is integrated into Visual Studio Code. See Salesforce Extensions for Visual Studio Code and Version Control in Visual Studio
Code for details.

362

Work with Patch VersionsFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/patches_creating.htm#patches_creating
https://trailhead.salesforce.com/en/content/learn/modules/git-and-git-hub-basics
https://developer.salesforce.com/tools/vscode
https://code.visualstudio.com/docs/editor/versioncontrol
https://code.visualstudio.com/docs/editor/versioncontrol

Versioning Apex Code
When subscribers install multiple versions of your package and write code that references Apex classes or triggers in your package, they
must specify the version that they’re referencing.

Within the Apex code that is being referenced in your package, you can conditionally execute different code paths based on the version
setting of the calling Apex code that is making the reference. The package version setting of the calling code can be determined within
the package code by calling the System.requestVersion method. In this way, package developers can determine the request
context and specify different behavior for different versions of the package.

The following sample shows different behavior in a trigger for different package versions:

trigger oppValidation on Opportunity (before insert, before update) {

for (Opportunity o : Trigger.new){

// Add a new validation to the package
// Applies to versions of the managed package greater than 1.0
if (System.requestVersion().compareTo(new Version(1,0)) > 0) {

if (o.Probability >= 50 && o.Description == null) {
o.addError('All deals over 50% require a description');

}
}

// Validation applies to all versions of the managed package.
if (o.IsWon == true && o.LeadSource == null) {

o.addError('A lead source must be provided for all Closed Won deals');
}

}
}

To compare different versions of your Apex classes, click the Class Definition tab when viewing the class details.

For more information about the System.requestVersion method, see the Apex Developer Guide.

Apex Deprecation Effects for Subscribers
Explore how deprecation of an Apex method impacts subscribers that install your managed package.

The table shows a typical sequence of actions by a package developer in the first column and actions by a subscriber in the second
column. Each row in the table denotes either a package developer or subscriber action.

NotesSubscriber ActionPackage Developer Action

Create a global Apex class,
PackageDevClass, containing a global
method m1.

Upload as Managed - Released version 1.0 of a
package that contains PackageDevClass.

The Version Number for
the package is 1.0. The First

Install version 1.0 of the package.

Installed Version
Number is 1.0.

363

Versioning Apex CodeFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_methods_system_version.htm

NotesSubscriber ActionPackage Developer Action

Create an Apex class, SubscriberClass,
that references m1 in PackageDevClass.

Deprecate m1 and create a new method, m2.

Upload as Managed - Released version 2.0 of the
package.

The Version Number for
the package is 2.0. The First

Install version 2.0 of the package.

Installed Version
Number is still 1.0.
SubscriberClass still
references version 1.0 of the
package and continues to
function, as before.

Edit the version settings for
SubscriberClass to reference version 2.0
of the package. Save the class. Note an error
message indicating that m1 can’t be referenced
in version 2.0 of the package.

Change SubscriberClass to reference
m2 instead of m1. Successfully save the class.

Publish Upgrades to First-Generation Managed Packages

USER PERMISSIONS

To configure namespace
settings:
• Customize Application

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

As a publisher, first ensure that your app is upgradeable by converting it to a managed package.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

Any changes you make to the components in a managed package are automatically included in
subsequent uploads of that package, with one exception. When you upgrade a package, changes
to the API access are ignored even if the developer specified them. These changes are ignored so
that the administrator installing the upgrade has full control. Installers must carefully examine the
changes in package access in each upgrade during installation and note all acceptable changes.
Then, because those changes are ignored, the admin must manually apply any acceptable changes
after installing an upgrade.

1. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

2. Select the package from the list of available packages.

3. View the list of package components. Changes you have made to components in this package are automatically included in this
list. If the changes reference additional components, those components are automatically included as well. To add new components,
click Add to add them to the package manually.

364

Publish Upgrades to First-Generation Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

4. Click Upload and upload it as usual.

After you upload a new version of your Managed - Released package, you can click Deprecate so installers can’t install an older
version. Deprecation prevents new installations of older versions without affecting existing installations.

You can’t deprecate the most recent version of a managed package upload.

5. When you receive an email with the link to the upload on AppExchange, notify your installed users that the new version is ready.
To distribute this information, use the list of installed users from the License Management Application (LMA). The License Management
Application (LMA) automatically stores the version number that your installers have in their organizations.

Plan the Release of First-Generation Managed Packages

Releasing a managed package is similar to releasing any other program in software development.

Remove Components from First-Generation Managed Packages

Remove metadata components such as Apex classes that you no longer want in your first-generation managed packages.

Delete Components from First-Generation Managed Packages

After you've uploaded a Managed - Released first-generation managed package, you may find that a component needs to be deleted
from your packaging org.

Modifying Custom Fields after a Package Is Released

The following changes are allowed to custom fields in a package, after it’s released.

Manage Versions of First-Generation Managed Packages

After you upload a package to AppExchange, you can still manage it from the Package Manager page.

View Unused Components in a Managed Package

View components no longer being used in the current version of a package.

Push Package Upgrades to Subscribers

A push upgrade is a method of automatically upgrading your customers to a newer version of your package. This feature can be
used to ensure that all your customers are on the same or latest version of your package. You can push an upgrade to any number
of organizations that have installed your managed package.

Plan the Release of First-Generation Managed Packages
Releasing a managed package is similar to releasing any other program in software development.

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

After you release a package by publishing it on AppExchange, anyone can install it. So, plan your release carefully. Review the states
defined in the following table to familiarize yourself with the release process. Salesforce automatically applies the appropriate state to
your package and components depending on the upload settings you choose and where it is in the release process.

DescriptionState

The package or component was created in the current Salesforce org and is managed,
but it isn’t released because of one of these reasons:

Managed - Beta

• It hasn’t been uploaded.

365

Plan the Release of First-Generation Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

DescriptionState

• It has been uploaded with Managed - Beta option selected. This option prevents
it from being published, publicly available on AppExchange. The developer can still
edit any component but the installer isn’t able to depending on which components
were packaged.

Don’t install a Managed - Beta package over a Managed - Released package. If you do,
the package is no longer upgradeable and your only option is to uninstall and reinstall
it.

The package or component was created in the current Salesforce org and is managed.
It’s also uploaded with the Managed - Released option selected, indicating that

Managed - Released

it can be published on AppExchange and is publicly available. After you’ve moved a
package to this state, some properties of the components can’t be editable.

This type of release is considered a major release.

If you must provide a minor upgrade to a managed package, consider creating a patch
instead of a new major release. A patch enables a developer to change the functionality

Patch

of existing components in a managed package. Subscribers experience no visible changes
to the package.

This type of release is considered a patch release.

The package or component was installed from another Salesforce org but is managed.Managed - Installed

The package hasn’t been converted into a managed package.Unmanaged (Legacy)

A developer can refine the functionality in a managed package over time, uploading and releasing new versions as the requirements
evolve. Updates can involve redesigning some of the components in the managed package. Developers can delete some, but not all,
types of components in a Managed - Released package when upgrading it.

Remove Components from First-Generation Managed Packages
Remove metadata components such as Apex classes that you no longer want in your first-generation managed packages.

After a managed package has been promoted to the Managed-Released state, only certain components can be removed. To confirm
whether a specific component can be removed, see Components Available in Managed Packages in the Second-Generation Managed
Packaging Developer Guide.

Impact of Component Removal in Subscriber Orgs

During package upgrade only certain component types are hard deleted and removed from the subscriber org. Most metadata components
that were removed in a package version, will remain in the subscriber org after package upgrade, and marked as deprecated. When a
package is upgraded in the subscriber org, the Setup Audit Trail logs which components were removed. Admins of a subscriber org can
delete deprecated metadata.

To enable component deletion in your packaging org, log a case with Salesforce Partner Support.

Before you remove a component, ensure that there aren’t any dependencies on the metadata you plan to remove. If any component
in the package depends on or references the component you're removing, the package version creation operation fails. After you remove
a component or field, you can't access the component, or any customizations that depend on the removed component.

366

Remove Components from First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/pkg2_feature_enablement.htm

When you delete a component, you also permanently delete the data that exists in that component. Delete tracked history data is also
deleted, and integrations that rely on the component, such as assignment or escalation rules, are changed. After you delete a component
in a managed package, you can’t restore it or create another component with the same name.

Note: In a managed package, the API names of fields must be unique and can’t be reused even after you delete the component.
This restriction prevents conflicts during package installation and upgrade.

Data and metadata are never deleted in a subscriber org without specific action by the customer. When a subscriber upgrades to the
new package version, the deleted components are still available in the subscriber’s org. The components are displayed in the Unused
Components section of the Package Details page. This section ensures that subscribers have the opportunity to export data and modify
custom integrations involving those components before explicitly deleting them. For example, before deleting custom objects or fields,
customers can preserve a record of their data from Setup by entering Data Export in the Quick Find box and then selecting Data
Export.

Note: Educate your customers about the potential impact of deleted components. Consider listing all custom components that
you’ve deleted and specifying any actions needed in the Release Notes for your upgraded package.

These restrictions apply when deleting managed components.

• If a component is referenced by any other metadata, such as workflow rules, validation rules, or Apex classes, you can’t delete it.

• You can’t delete a custom object if it includes Apex Sharing Reason, Apex Sharing Recalculation, Related Lookup Filter, Compact
Layout, or Action.

• Salesforce doesn’t recommend deleting a custom field that is referenced by a custom report type in the same package. This type of
deletion causes an error when installing the upgraded package.

• When you delete a field that is used for bucketing or grouping in a custom report type that is part of a managed package, you receive
an error message.

• When you remove a connected app that is a component of a package, the app remains available until you update the package with
a new version. But if you delete the connected app, it’s permanently deleted. Any version of the package that contains the deleted
connected app is invalidated and can’t be installed. You can update a version of the package that doesn’t contain the connected
app as a component. Never delete a connected app that Salesforce distributes, such as the Salesforce app.

You can delete managed components either declaratively from the user interface or programmatically using Metadata API. With Metadata
API, specify the components that you want to delete in a destructiveChanges.xml manifest file and then use the standard
deploy() call. The process is identical to deleting components that aren’t managed. For more information, see the Metadata API
Developer Guide .

Removing Public Apex Classes and Public Visualforce Components
Because the behavior of managed package components differs from public Apex classes and public Visualforce components, you use
a two-stage process to delete Visualforce pages, global Visualforce components, and global Lightning components from a managed
package. When you upgrade a package in a subscriber org, the Visualforce pages, global Visualforce components, and Lightning
components that you deleted aren’t removed. Although a Delete button or link is available to org administrators, many orgs continue
using the obsolete pages and components. However, public Apex classes and public Visualforce components are deleted as part of the
upgrade process. If you delete pages and components without performing this two-stage procedure, Salesforce can’t warn you when
later deletions of public classes and components break your subscribers’ obsolete pages and components.

If you’re deleting these types of components, perform this two-stage process in the order presented.

• A Visualforce page or global Visualforce component that refers to or uses public Apex classes or public Visualforce components–

– An Aura component with global access

– A Lightning web component with an isExposed value of true

1. Stage one: Remove references.

367

Remove Components from First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/

Edit the global component that you want to delete.i.

– For Visualforce, edit your Visualforce page or global Visualforce component to remove all references to public Apex
classes or public Visualforce components.

– For Lightning components, edit the global Lightning component to remove all references to other Lightning components.

ii. Upload your new package version.

iii. Push the stage-one upgrade to your subscribers.

2. Stage two: Delete your obsolete pages or components.

i. Delete your Visualforce page, global Visualforce component, or global Lightning component.

ii. Optionally, delete other related components and classes.

iii. Upload your new package version.

iv. Push the stage-two upgrade to your subscribers.

Delete Components from First-Generation Managed Packages
After you've uploaded a Managed - Released first-generation managed package, you may find that a component needs to be deleted
from your packaging org.

One of the following situations may occur:

• The component, after it’s added to a package, can't be deleted.

• The component can be deleted, but can only be undeleted from the Deleted Package Components page.

• The component can be deleted, but can be undeleted from either the Deleted Package Components page or through the Recycle
Bin

After a package is uploaded with a component marked for deletion, the component is deleted forever.

Warning: When a component is deleted, its Name remains within Salesforce, and you can’t create a new component that uses
the deleted component’s name. The Deleted Package Components page lists the names that can no longer be used.

To access the Deleted Package Components page, from Setup, enter Package Manager in the Quick Find box, then select
Package Manager. Select the package that the component was uploaded to, and then click View Deleted Components. You can
retrieve components from the Recycle Bin and Deleted Package Components page any time before uploading a new version of the
package. To do this, click Undelete next to the component.

You can retrieve these types of components.

• Apex classes and triggers that don't have global access.

• Visualforce components with public access. (If the ability to remove components has been enabled for your packaging org then
these Visualforce components can’t be undeleted. As a result, they don’t show up in the Recycle Bin or the Deleted Package
Components page after they’ve been deleted.)

• Protected components, including:

– Custom labels

– Custom links (for Home page only)

– Custom metadata types

– Custom permissions

– Custom settings

368

Delete Components from First-Generation Managed
Packages

First-Generation Managed Packages

– Workflow alerts

– Workflow field updates

– Workflow outbound messages

– Workflow tasks

– Workflow flow triggers

The pilot program for flow trigger workflow actions is closed. If you've already enabled the pilot in your org, you can continue
to create and edit flow trigger workflow actions. If you didn't enable the pilot in your org, use Flow Builder to create a
record-triggered flow, or use Process Builder to launch a flow from a process.

• Data components, such as Documents, Dashboards, and Reports. These components are the only types that can also be undeleted
from the Recycle Bin.

You can retrieve components from the Recycle Bin and Deleted Package Components page any time before uploading a new version
of the package. To do this, click Undelete next to the component.

The Deleted Components displays the following information (in alphabetical order):

DescriptionAttribute

If the Managed - Released package hasn't been uploaded with the
component deleted, this contains an Undelete link that allows
you to retrieve the component.

Action

Displays the version number of the package in which a component
exists.

Available in Versions

Displays the name of the component.Name

Displays the name of the parent object a component is associated
with. For example, a custom object is the parent of a custom field.

Parent Object

Displays the type of the component.Type

Modifying Custom Fields after a Package Is Released

EDITIONS

Available in: Developer
Edition

The following changes are allowed to custom fields in a package, after it’s released.

• The length of a text field can be increased or decreased.

• The number of digits to the left or right of the decimal point in a number field can be increased
or decreased.

• A required field can be made non-required and vice versa. If a default value was required for a
field, that restriction can be removed and vice versa.

Manage Versions of First-Generation Managed Packages

USER PERMISSIONS

To upload packages:
• Upload AppExchange

Packages

After you upload a package to AppExchange, you can still manage it from the Package Manager
page.

369

Modifying Custom Fields after a Package Is ReleasedFirst-Generation Managed Packages

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

To manage your versions:

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Select the package that contains the app or components you uploaded.

3. Select the version number listed in the Versions tab.

• To change the password option, click Change Password link.

• To prevent new installations of this package while allowing existing installations to continue operating, click Deprecate.

Note: You can’t deprecate the most recent version of a managed package.

• To make a deprecated version available for installation again, click Undeprecate.

• To view the package installation URL, see Installation URL. Installation URLs contain the 04t package ID for the package version.

View Unused Components in a Managed Package

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

View components no longer being used in the current version of a package.

Any component shown here that’s part of a managed package is safe to delete unless you’ve used
it in custom integrations. After you've deleted an unused component, it appears in this list for 15
days. During that time, you can either undelete it to restore the component and all data stored in
it, or delete the component permanently. When you undelete a custom field, some properties on
the field will be lost or changed. After 15 days, the field and its data are permanently deleted.

Note: Before deleting a custom field, you can keep a record of its data. From Setup, enter
Data Export in the Quick Find box, then select Data Export.

The following component information is displayed (in alphabetical order):

DescriptionAttribute

Can be one of two options:Action

• Undelete

• Delete

Displays the name of the component.Name

Displays the name of the parent object a component is associated
with. For example, a custom object is the parent of a custom field.

Parent Object

Displays the type of the component.Type

370

View Unused Components in a Managed PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm

Push Package Upgrades to Subscribers
A push upgrade is a method of automatically upgrading your customers to a newer version of your package. This feature can be used
to ensure that all your customers are on the same or latest version of your package. You can push an upgrade to any number of
organizations that have installed your managed package.

A package subscriber doesn’t need to do anything to receive the push upgrade. The only indication a subscriber receives after a successful
push upgrade is that the package’s Version Number on the Package Detail page has a higher value. The developer initiating the
push resolves upgrades that fail.

Use the Push Upgrade Exclusion List to exclude specific subscriber orgs from a push upgrade. You can specify up to 500 comma-separated
org IDs.

Push upgrades minimize the potential risks and support costs of having multiple subscribers running different versions of your app. You
can also automate many post-upgrade configuration steps, further simplifying the upgrade process for your customers.

The push upgrade feature is only available to first- and second-generation managed packages that have passed the AppExchange
security review. To enable push upgrades for your managed package, log a support case in the Salesforce Partner Community. For details
on the security review process, see Pass the AppExchange Security Review in the ISVforce Guide.

Push Upgrades

Push Upgrade Best Practices

Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

Assign Access to New and Changed Features in First- and Second-Generation Managed Packages

Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages

Automate the assignment of new components to existing users of a package.

Scheduling Push Upgrades

After you’ve created an updated version of your package, you can automatically deploy it to customers using a push upgrade.

Push Upgrades
Overview of Push Upgrade Steps

• Upgrade your managed package installed in a customer organization from version X to version Y

• Select one, many, or all customer organizations to upgrade and select a particular version to upgrade to

• Schedule the upgrade to start at a particular date and time

• View progress of upgrades, abort upgrades in progress, or view the result of a push upgrade

• In conjunction with push, you can use a post-install Apex script to automate post-upgrade configurations that your customers have
previously performed manually

Warning: When you push an upgrade, you’re making changes to a subscriber’s org without explicit consent. Therefore, it’s
important to plan ahead and exercise caution. You can also exclude specific subscriber orgs from a push upgrade by entering the
org IDs, separated by a comma, in the Push Upgrade Exclusion List.

Pushing a major upgrade entails a higher degree of risk as it can impact existing functionality in a subscriber’s organization. This is because
new components in the upgraded package might not be available to existing users of the package, or could overwrite users’ customizations.

371

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.258.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm

As the app developer, it’s your responsibility to protect users from any adverse impact due to upgrading. We strongly recommend you
consider all potential consequences of the upgrade and take appropriate steps to prevent any problems.

When pushing a major upgrade, we recommend that you divide changes in your package into two categories:

1. Enhancements to existing features that users already have access to—Use a post install Apex script to automatically assign the
relevant components to existing users. This ensures all current users of the package can continue using it without explicit action by
administrators.

2. New features you’re introducing—Don’t use a post install Apex script to auto-assign components. This ensures your subscribers
have the opportunity to decide if and when to use the new features.

Here are some additional guidelines to keep in mind when planning a push upgrade.

• Avoid changes to validation rules, formula fields, and errors thrown from Apex triggers, as they may negatively impact subscribers’
integrations.

• Don’t make visible changes to a package in a patch. This is because other than a change in the package version number, subscribers
aren't notified of push upgrades.

• Test your upgraded package in multiple environments, replicating all relevant features of your customers’ organizations, including
editions, customizations, other installed packages, and permission sets.

• Schedule push upgrades at your customers’ off-peak hours and outside of Salesforce’s major release windows, to minimize potential
subscriber impact.

• Notify your subscribers in advance about the timing of the upgrade, its potential consequences, and any steps they need to take.

Push Upgrade Best Practices
Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

Plan, Test, and Communicate

• Share an upgrade timeline plan with your customers so they know when you’ll upgrade, and how often.

• Plan when you want to push upgrades to your customers’ orgs. Keep in mind that most customers don’t want changes around their
month-end, quarter-end, and year-end or audit cycles. Do your customers have other critical time periods when they don’t want
any changes to their org? For example, there might be certain times when they don’t have staff available to verify changes or perform
any required post-installation steps.

• Schedule push upgrades during your customers’ off-peak hours, such as late evening and night. Have you considered time zone
issues? Do you have customers outside the United States who have different off-peak hours? You can schedule push upgrades to
any number of customer organizations at a time. Consider grouping organizations by time zone, if business hours vary widely across
your customer base.

• Don’t schedule push upgrades close to Salesforce-planned maintenance windows. In most cases, it might be better to wait 3-4
weeks after a major Salesforce release before you push major upgrades.

• Test, test, and test! Since you’re pushing changes to the organization instead of the customer pulling in changes, there’s a higher
bar to ensure the new version of your app works well in all customer configurations.

Stagger Your Push Upgrades

• Don’t push changes to all customers at once. It’s important to ensure that you have sufficient resources to handle support cases if
there are issues. Also, it’s important that you discover possible issues before your entire customer base is affected.

• Push to your own test organizations first to confirm that the push happens seamlessly. Log in to your test organization after the push
upgrade and test to see that everything works as expected.

372

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

• When applicable, push to the sandbox organizations of your customers first before pushing to their production organizations. Give
them a week or more to test, validate, and fix in the sandbox environment before you push to their production organizations.

• Push upgrades to small batches of customer production organizations initially. For example, if you have 1,000 customers, push
upgrades to 50 or 100 customers at a time, at least the first few times. After you have confidence in the results, you can upgrade
customers in larger batches.

Focus on Customer Trust

• You’re responsible for ensuring that your customers’ organizations aren’t adversely affected by your upgrade. Avoid making changes
to the package, such as changes to validation rules or formula fields, that might break external integrations made by the customer.
If for some reason you do, test and communicate well in advance. Please keep in mind that you can impact customer data, not just
metadata, by pushing an upgrade that has bugs.

• Write an Apex test on install to do basic sanity testing to confirm that the upgraded app works as expected.

• If you’re enhancing an existing feature, use a post-install script to automatically assign new components to existing users using
permission sets.

• If you’re adding a new feature, don’t auto-assign the feature to existing users. Communicate and work with the admins of the
customer org so they can determine who should have access to the new feature, and the timing of the rollout.

Assign Access to New and Changed Features in First- and Second-Generation
Managed Packages
Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

We recommend you:If the push upgrade includes:

Notify admins about the changes the upgrade introduces, and ask
them to assign permissions to all users of the package.

This approach allows admins to choose when to make the new
features available.

New features

Include a post-install script in the package that assigns permissions
to the new components or new fields automatically.

This approach ensures that current users of the package can
continue using features without interruption.

Enhancements to existing features

Note: Post-install scripts aren’t available to unlocked
packages.

Sample Post Install Script for a Push Upgrade for First- and Second-Generation
Managed Packages
Automate the assignment of new components to existing users of a package.

Note: Post-install scripts can be used with first and second-generation managed packages only.

For more information on writing a post-install Apex script, see Run Apex on Package Install/Upgrade on page 352.

373

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

In this sample script, the package upgrade contains new Visualforce pages and a new permission set that grants access to those pages.
The script performs the following actions.

• Gets the Id of the Visualforce pages in the old version of the package

• Gets the permission sets that have access to those pages

• Gets the list of profiles associated with these permission sets

• Gets the list of users who have those profiles assigned

• Assigns the permission set in the new package to those users

global class PostInstallClass implements InstallHandler {
global void onInstall(InstallContext context) {

//Get the Id of the Visualforce pages
List<ApexPage> pagesList = [SELECT Id FROM ApexPage WHERE NamespacePrefix =

'TestPackage' AND Name = 'vfpage1'];

//Get the permission sets that have access to those pages
List<SetupEntityAccess> setupEntityAccessList = [SELECT Id,

ParentId, SetupEntityId, SetupEntityType FROM SetupEntityAccess
WHERE SetupEntityId IN :pagesList];

Set<ID> PermissionSetList = new Set<ID> ();

for (SetupEntityAccess sea : setupEntityAccessList) {
PermissionSetList.add(sea.ParentId);

}
List<PermissionSet> PermissionSetWithProfileIdList =

[SELECT id, Name, IsOwnedByProfile, Profile.Name,
ProfileId FROM PermissionSet WHERE IsOwnedByProfile = true
AND Id IN :PermissionSetList];

//Get the list of profiles associated with those permission sets
Set<ID> ProfileList = new Set<ID> ();
for (PermissionSet per : PermissionSetWithProfileIdList) {

ProfileList.add(per.ProfileId);
}

//Get the list of users who have those profiles assigned
List<User> UserList = [SELECT id FROM User where ProfileId IN :ProfileList];

//Assign the permission set in the new package to those users
List<PermissionSet> PermissionSetToAssignList = [SELECT id, Name

FROM PermissionSet WHERE Name='TestPermSet' AND
NamespacePrefix = 'TestPackage'];

PermissionSet PermissionSetToAssign = PermissionSetToAssignList[0];
List<PermissionSetAssignment> PermissionSetAssignmentList = new

List<PermissionSetAssignment>();
for (User us : UserList) {

PermissionSetAssignment psa = new PermissionSetAssignment();
psa.PermissionSetId = PermissionSetToAssign.id;
psa.AssigneeId = us.id;
PermissionSetAssignmentList.add(psa);

}
insert PermissionSetAssignmentList;

374

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

}
}

// Test for the post install class
@isTest
private class PostInstallClassTest {

@isTest
public static void test() {
PostInstallClass myClass = new PostInstallClass();
Test.testInstall(myClass, null);

}
}

Scheduling Push Upgrades

USER PERMISSIONS

To push an upgrade:
• Upload AppExchange

Packages

After you’ve created an updated version of your package, you can automatically deploy it to
customers using a push upgrade.

1. Push the upgrade to your own orgs so you can run tests and fix any bugs before upgrading
subscribers.

2. When you’re ready and have coordinated with your customers on their change management
process, push to a small number of customer organizations. Try sandbox organizations first, if
possible.

3. After you’re comfortable with the initial results, push to your wider customer base, based on your agreements with each customer.

4. Deprecate the previous version of your package in your main development organization. Replace the version on AppExchange if
necessary, and update your Trialforce setup.

5. If your upgrade was a patch, after you’ve successfully distributed the upgrade to subscriber organizations, reintegrate those changes
into your main development organization. For more information about combining patches in the main development organization,
see Working with Patch Versions on page 361.

Schedule a Push Upgrade Using the UI

Note: Only first-generation managed packages can schedule a push upgrade using the UI. To schedule a push upgrade for
unlocked and second-generation managed packages, use the PackagePushRequest in the Salesforce Object Reference.

1. Log in to your main development org (not the patch org you used to upload the new version).

2. From Setup, enter Packages in the Quick Find box, then select Packages.

3. Click the name of the managed package whose upgrade you want to push.

4. On the package detail page, click the Versions tab, and then click Push Upgrades.

5. Click Schedule Push Upgrades.

6. Select a package version to push from the Patch Version dropdown list.

Note: Beta versions aren’t eligible for push.

7. For the scheduled start date, enter when you want the push upgrade to begin.

Note: Scheduled push upgrades begin as soon as resources are available on the Salesforce instance, which is either at or after
the start time you specify. In certain scenarios, the push upgrade could start a few hours after the scheduled start time.

375

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.object_reference.meta/object_reference/sforce_api_objects_packagepushrequest.htm

8. In the Select Target Organizations section, select the orgs to receive your push upgrade. If an org already received a push upgrade
for the selected package version, it doesn’t appear in this list. You can select orgs by:

• Entering a term that filters based on an org’s name or ID. Names can match by partial string, but IDs must match exactly.

• Choosing between production and sandbox orgs from the Organizations dropdown list.

• Choosing orgs that have already installed a particular version.

• Clicking individual orgs or the Select All and Deselect All checkboxes.

This section lists the following information about the org (in alphabetical order):

DescriptionField

The current package version an organization has installed.Current Version

The ID of the org.Organization ID

The name of the org. To view the upgrade history for the org,
click the org name.

Organization Name

The name of the user who installed the package.Primary Contact

9. Click Schedule. While a push upgrade is in progress, you can click Abort to stop it.

Schedule a Push Upgrade Using the Enterprise API
1. Authenticate to your main development org (not the patch org you used to upload the new version).

2. Determine the package version you want to upgrade subscribers to by querying the MetadataPackageVersion object.

3. Gather the list of subscriber orgs that are eligible to be upgraded by querying the PackageSubscriber object.

Note: If you’re retrieving more than 2,000 subscribers, use SOAP API queryMore() call.

4. Create a PackagePushRequest object. PackagePushRequest objects take a PackageVersionId and, optionally, a ScheduledStartTime
parameter to specify when the push begins. If you omit the ScheduledStartTime, the push begins when you set the
PackagePushRequest's status to Pending.

5. Create a PackagePushJob for each eligible subscriber and associate it with the PackagePushRequest you created in the previous
step.

6. Schedule the push upgrade by changing the status of the PackagePushRequest to Pending.

7. Check the status of the PackagePushRequest and PackagePushJob objects by querying the Status fields. If the status is either
Created or Pending, you can abort the push upgrade by changing the status of the PackagePushRequest to Canceled. You can’t
abort a push upgrade that has a status of Canceled, Succeeded, Failed, or In Progress.

Note: If you’re pushing the upgrade to more than 2,000 subscribers, use the Bulk_API to process the job in batches.

For sample code and more details, see SOAP API Developer Guide.

376

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.api.meta/api/sforce_api_calls_querymore.htm
https://developer.salesforce.com/page/Bulk_API

Manage Licenses for Managed Packages

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Use the License Management App (LMA) to manage leads and licenses for your AppExchange
solutions. By integrating the LMA into your sales and marketing processes, you can better engage
with prospects, retain existing customers, and grow your ISV business. The LMA is a managed
package that is installed in all partner business orgs (PBO) and includes custom objects that track
details on packages, package versions, and licenses.

For details, see...PermissionsI need to...

Get Started with the License
Management App on page 378

System Admin profileConfigure the LMA

Lead and License Records in
the LMA

Object Permissions: ReadBill subscribers or monitor
license expiration

Modify a License RecordObject Permissions: EditConvert trial subscriptions into
paying customers

Extend the LMAObject Permissions: EditCustomize the LMO

Modify a License RecordObject Permissions: EditProvision licenses to a
subscriber

Troubleshoot Subscriber IssuesVarious permissions (see Assign
Permissions to the Subscriber

Support subscribers with
technical issues

Support Console on page 381
for details)

Note: The LMA is available only in English.

The LMA is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility requirements, visit
https://partners.salesforce.com.

Get Started with the License Management App

To start managing leads and licenses with the License Management App (LMA), complete these installation and configuration steps.

Lead and License Records in the License Management App

Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.

Modify a License Record

You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

Refresh Licenses for a Managed Package

To sync all license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also
resolve discrepancies between the number of licenses in a subscriber’s org and the number displayed in the License Management
App (LMA). Refreshing is required when you move the LMA to a different org.

Extending the License Management App

The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to
manage leads and licenses, many partners also integrate it into their existing business processes.

377

Manage Licenses for Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_terms_relationships.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_terms_relationships.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_extend.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_subscriber_support_overview.htm
https://partners.salesforce.com

Move the License Management App to Another Salesforce Org

You can move an LMA to a different org, but your package and license records don’t automatically move with it. You must manually
relink your packages and refresh the licenses.

Troubleshoot the License Management App

If you’re experiencing issues with the License Management App, review these troubleshooting tips.

Best Practices for the License Management App

Follow these best practices when you use the License Management App (LMA).

Troubleshoot Subscriber Issues

Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you’re granted access, you can log in to the subscriber’s org and view their
configuration and data to troubleshoot and resolve issues.

Get Started with the License Management App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

To start managing leads and licenses with the License Management App (LMA), complete these
installation and configuration steps.

Install the License Management App

The License Management App (LMA) is a managed package that is installed in all partner
business orgs. The org that the LMA is installed in is called the License Management Org (LMO).

Associate a Package with the License Management App

To receive lead and license records for your package, you connect your License Management
Org (LMO), your package, and the Salesforce Partner Console. Your LMO is the Salesforce org
where the License Management App (LMA) is installed.

Configure Permissions for the License Management App

Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set
to assign user permissions.

Install the License Management App

USER PERMISSIONS

To install packages:
• Download AppExchange

Packages

The License Management App (LMA) is a managed package that is installed in all partner business
orgs. The org that the LMA is installed in is called the License Management Org (LMO).

We strongly recommend that you use your partner business org (PBO) as your LMO. However, you
can choose to install the LMA in another production org. Consider installing the LMA in an org that
your company is already using to manage sales, billing, and marketing.

Commercial use of the LMA is prohibited in Developer and Partner Developer Edition orgs. Installing
the LMA in a Developer Edition org is allowed only if you’re building integrations with the LMA and need an environment only for
development and testing purposes. You can install the LMA in Enterprise, Unlimited, or Performance Edition production orgs.

It’s not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed in the same org as the LMA. If the org
in which you plan to install the LMA has either Slack or the DLRS package installed, uninstall them before you install the LMA. Alternatively,
install the LMA in a different org.

Note: To confirm whether your PBO already has the LMA installed, skip to step 4.

378

Get Started with the License Management AppFirst-Generation Managed Packages

1. To install the LMA in an org other than your PBO, log a case in the Partner Community. After we review the case, you receive an
email with an installation URL.

2. Log in to the org where you want to install the LMA, and then go to the installation URL included in the email.

3. Choose which users can access the LMA, and then click Install.

4. To confirm that the LMA is installed, open the App Launcher. If the installation was successful, the License Management App appears
in the list of available apps.

Associate a Package with the License Management App

USER PERMISSIONS

To manage licenses in the
Partner Community:
• Manage Listings

To receive lead and license records for your package, you connect your License Management Org
(LMO), your package, and the Salesforce Partner Console. Your LMO is the Salesforce org where the
License Management App (LMA) is installed.

A single LMO can manage multiple 1GP and 2GP packages, but a package can be associated with
only one LMO.

1. Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the Partner Console.

a. Log in to the Partner Community, and select the Publishing tab.

b. Click Technologies > Orgs.

c. Click Connect Technology, and then click Org.

d. Click Connect Org.

e. Log in to the org. Provide a username and a password with a security token appended. For example, if the password is ABC and
the token is 123, enter ABC123. Don’t remember your token? Reset your security token.

For 1GP packages, enter the login credentials for the packaging org. Repeat this step for all your 1GP packages.

For 2GP packages, enter the login credentials for the Dev Hub org. When you connect the Dev Hub org, all the 2GP packages
owned by the Dev Hub org are linked to the Partner Console.

2. Select the Solutions tab.

3. Locate the package you want to register with the LMO. To register each package you own, repeat this step.

a. Click the down arrow to expand the list of versions for your package.

b. Click Register Package for the package version you want to register.

Package versions created after linking to your LMO inherit the association.

c. To register the package, log in to your LMO.

4. Set the default behavior you want for your package license, and then click Save.

After the package is registered, a license is created when customers install it. You can view which packages are registered in the LMA.

Note: Beta package versions don’t display in the LMA. Only managed-released package versions (1GP) and promoted package
versions (2GP) are visible in the LMA. Unlocked packages aren’t supported.

SEE ALSO:

Salesforce Help: Reset Your Security Token

379

Get Started with the License Management AppFirst-Generation Managed Packages

https://partners.salesforce.com
https://partners.salesforce.com/
https://help.salesforce.com/articleView?id=user_security_token.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=user_security_token.htm&type=5&language=en_US

Configure Permissions for the License Management App
Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set to
assign user permissions.

Ensure that you:

• Install the LMA.

• Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the AppExchange Partner Console.

• Associate your package with the LMA.

1. Set object permissions for the license, package, and package version custom objects.

Object PermissionsCustom Object

To view license records:

Assign READ permissions

License

To modify license records:

Assign READ and EDIT permissions

To view package records:

Assign READ permissions

Package

To modify package records:

Assign READ and EDIT permissions

To view package version records:

Assign READ permissions

Package Version

We recommend leaving all package version records as read-only.

2. Set field-level security in user profiles or permission sets.

Field-Level PermissionsCustom Object

Make all fields read-only.License

Make all fields read-only.Package

Make all fields read-only.Package Version

3. Add related lists to page layouts.

Add the Licenses related list to the...To enable...

Lead page layoutLicense managers to view the licenses associated with a particular
lead

Account page layoutLMA users to view the licenses associated with a particular
account

380

Get Started with the License Management AppFirst-Generation Managed Packages

Add the Licenses related list to the...To enable...

Contact page layoutLMA users to view the licenses associated with a particular
contact

Assign Permissions to the Subscriber Support Console

Create a permission set to provide users access to the Subscriber Support Console.

Assign Permissions to the Subscriber Support Console
Create a permission set to provide users access to the Subscriber Support Console.

Note: If you’ve already assigned these permissions via a profile or another permission set, you can skip this task.

1. From Setup, in the Quick Find box, enter Permission Sets, and select Permission Sets.

2. Click New and enter your permission set information.

3. On the Permission Set Overview page, locate the Apps section, and select Visualforce Page Access.

a. Click Edit.

b. Add sfLma.LoginToPartnerBT and sfLma.SubscriberSupport to the list of Enabled Visualforce pages, and then click Save.

4. On the Permission Set Overview page, locate the System section, and select System Permissions. Click Edit.

a. Select Log in to Subscriber Organization, and click Save.

5. From Setup, in the Quick Find box, enter Profiles, and select Profiles.

a. Click Edit.

b. Under Custom App Settings, select License Management App.

c. Under Custom Tab Settings, locate the Subscribers tab and select Default On.

d. Click Save.

Lead and License Records in the License Management App
Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.

The key objects in the LMA are Package, Lead, and License.

• Package—The LMA includes a Package custom object and a Package Version custom object. These objects display details about
each 1GP or 2GP package and package version you’ve listed on AppExchange.

• Lead —The Lead standard object gives you details about who installed your package, such as the installer’s name, company, and
email address. Lead records created by the LMA are just like the ones you use elsewhere in Salesforce, except the lead source is
Package Installation. You can manually convert leads into accounts and contacts. When you convert a lead, the license record links
to the converted account or contact.

• License—The License custom object gives you control over how many users in the customer’s org can access your package and for
how long. Each license record links to a lead record and a package record.

To understand which actions you must take and which actions the LMA handles for you, review this table.

381

Lead and License Records in the License Management AppFirst-Generation Managed Packages

Who Takes This StepAction

Customer or prospectYour package is installed by a new subscriber.

LMAA lead record is created with the customer’s name, company, and email address.

LMAA license record is created according to the values you specified when you registered the package.

You (ISV partner)The lead record is converted to account and contact records. (Optional)

LMAAccount and contact records are associated with the license record.

Note: Lead assignment rules aren't triggered for leads created by the LMA.

Modify a License Record
You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

Warning: You can't use the LMA to modify licenses provisioned through AppExchange Checkout. To modify licenses provisioned
through Checkout, have your customers follow the instructions in Add or Remove Licenses from an AppExchange Checkout
Subscription.

1. In the LMA, locate the license.

2. Click Modify License.

When the LMA is installed, the Edit button doesn’t appear on the license page layout, and the Modify License button is included
instead. This setup is intentional. You must edit license records on the Modified License page, don't attempt to edit license records
directly.

3. Update the field values as needed.

DescriptionField

Enter the last day that the customer can access your package, or select Does not
expire.

Expiration

Enter the number of licensed seats, or select Site License to make your package
available to all users in the customer’s org. You can allocate up to 99,000,000 seats.

Seats

Select a value from the dropdown.Status

• Trial—Lets the customer try your offering for up to 90 days. After the trial license
converts to an active license, it can’t return to a trial state.

• Active—Lets the customer use your package according to the license agreement.

• Suspended—Prohibits the customer from accessing your offering.

Note: When your offering is uninstalled, its status is set to Uninstalled, and the
license can’t be edited.

4. Click Save.

382

Modify a License RecordFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=service.customize_leadrules.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.258.0.packagingGuide.meta/packagingGuide/appexchange_checkout_update_seats.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.packagingGuide.meta/packagingGuide/appexchange_checkout_update_seats.htm

Refresh Licenses for a Managed Package
To sync all license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also resolve
discrepancies between the number of licenses in a subscriber’s org and the number displayed in the License Management App (LMA).
Refreshing is required when you move the LMA to a different org.

Note: For each package, you can refresh licenses only one time per week.

1. From the LMA, select the Packages tab.

2. Open the package record.

3. Click Refresh Licenses. In Lightning Experience, Refresh Licenses is located in the dropdown menu.

Extending the License Management App
The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to manage
leads and licenses, many partners also integrate it into their existing business processes.

The LMA includes these custom objects:

• License

• Package on page 383

• Package Version on page 383

You can add custom fields to the objects as long as you don’t mark your custom fields as required.

Package and Package Version Object Fields

The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you’ve listed on AppExchange.

License Object Fields

Use the License custom object to set limits on how many users in the subscriber’s org can use your app and for how long.

Adding Custom Automation to License Management App Objects

Here are some examples of how you can use the License Management App (LMA) to grow your business and retain customers.

Package and Package Version Object Fields
The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you’ve listed on AppExchange.

To view details about a package record, from the LMA, select the Packages tab, and then select the package name. You can view package
versions in the Package Version related list.

Note: The LMA creates the package records, which contain critical information for tracking your licenses and packages. Treat
these fields as read-only and ensure that your object permissions protect package records.

DescriptionPackage Custom Object Fields

The name of the org that owns the package. For 1GP, the org name is the packaging org.
For 2GP, it’s the Dev Hub org.

Developer Name

The 18-character ID of the org that owns the package. For 1GP, the org ID is the packaging
org ID. For 2GP, it’s the Dev Hub org ID.

Developer Org ID

383

Refresh Licenses for a Managed PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_license_details.htm

DescriptionPackage Custom Object Fields

The date when the License Refresh tool was last run.Last License Refresh

The most recent package version you’ve released.Latest Version

The owner of the lead records that the LMA creates when a customer installs your package.Lead Manager

The date when the License Refresh tool can be run again.Next Available Refresh

The LMA owns all package records.Owner

The 18-character ID that identifies the package. This ID starts with 033.Package ID

The name you specified when you created the package.Package Name

DescriptionPackage Version Object Fields

The package name and links to the package record’s detail page.Package

The name you specified when you created the package version.Package Version Name

The date you created this package version.Release Date

The version number in major.minor.patch format. For example, 3.1.0.Version Number

The 18-character ID of this package version.Version ID

License Object Fields
Use the License custom object to set limits on how many users in the subscriber’s org can use your app and for how long.

The License Management App (LMA) creates a license record every time your package is installed in an org. For example, if a subscriber
installs two of your 1GP packages and three of your 2GP packages, you have five license records for that subscriber in your LMA. If you
deliver a 2GP app that is composed of multiple packages, a unique license record is created for each package in the app. You can allocate
up to 99,000,000 seats per subscriber license.

To view details about a license record, select the Licenses tab in the LMA, and then select and open the license record.

License records are automatically created and contain critical information for tracking licenses. Do not directly edit the license record.
Instead, use the Modify License tool to change the expiration date, license status, and the number of licensed seats.

DescriptionLicense Custom Object Fields

A lookup field to the account record for a converted lead.Account

A lookup field to the contact record for a converted lead.Contact

License records are always created by the LMA.Created By

Displays the expiration date or Does not expire (default).Expiration Date

The date the subscriber installed this package version.Install Date

The Salesforce instance where the subscriber’s org resides.Instance

384

Extending the License Management AppFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_edit_license.htm

DescriptionLicense Custom Object Fields

The lead record that the LMA created when the package was installed. A lead represents
the user who owns the license.

If you convert the lead into an opportunity, the lead name is retained but the lead record
no longer exists.

Lead

An auto-generated number that represents an instance of a license. License names are in
the format of L-00001, and each new license is incremented by one.

License Name

Displays the number of licenses or Site License (default). When a package is installed
in a sandbox org, Site License is the default. If a free trial package is installed in a
sandbox org, the Site License is applied.

Licensed Seats

The type of license: Active, Suspended, Trial, or Uninstalled.License Status

This is a legacy field and can be ignored.License Type

The edition of the subscriber’s org.Org Edition

Applies only if the subscriber installs your package in a trial org. Indicates the date when
the trial org expires. It isn’t related to the package license expiration.

Org Expiration Date

The status of the subscriber’s org: Active, Free, or Trial.Org Status

The LMA owns all license records. Don’t edit this field.Owner

A lookup field that links to the package version associated with this license.Package Version

The version number in major.minor.patch format. For example, 3.1.0.Package Version Number

Indicates whether the license is for a package installed in a sandbox org.Sandbox

The 15-character ID representing the subscriber’s org.Subscriber Org ID

Displays the number of users who have a license to the package.

This field is blank if:

Used Licenses

• A customer uninstalled the package.

• Licensed Seats is set to Site License.

Adding Custom Automation to License Management App Objects

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Here are some examples of how you can use the License Management App (LMA) to grow your
business and retain customers.

Alert Sales Reps Before a License Expires
If you’re managing licenses for several packages, it can be difficult to track the various expirations.
If a license expires accidentally, you could even lose a customer. To help your customers with
renewals, set up an Apex trigger or create a flow to email a sales rep on your team before the license
expires.

385

Extending the License Management AppFirst-Generation Managed Packages

Notify Customer-Retention Specialists When an Offering Is Uninstalled
If a customer uninstalls your offering, find out why. By speaking to the customer, you have an opportunity to restore the business
relationship or receive feedback that helps you improve your offering.

To notify a customer-retention specialist on your team, follow these high-level steps.

1. Create an email template for the notification.

2. Create a workflow rule with a filter that specifies that the License Status equals Uninstalled.

3. Associate the workflow rule with a workflow alert that sends an email to the retention specialist.

Move the License Management App to Another Salesforce Org

USER PERMISSIONS

To install packages:
• Download AppExchange

Packages

To manage licenses in the
Partner Community:
• Manage Listings

You can move an LMA to a different org, but your package and license records don’t automatically
move with it. You must manually relink your packages and refresh the licenses.

It’s not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed
in the same org as the LMA. If the org in which you plan to install the LMA has either Slack or the
DLRS package installed, uninstall them before you install the LMA. Alternatively, install the LMA in
a different org.

1. To remove the association between the LMA and the org where it’s currently installed, log a
case with Salesforce Partner Support.

2. Install the LMA in the new org on page 378.

3. Associate your packages with the new org on page 379.

4. Refresh licenses for your packages on page 383.

Troubleshoot the License Management App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

If you’re experiencing issues with the License Management App, review these troubleshooting tips.

Leads and Licenses Aren’t Being Created in the License Management App

When a customer installs your package, leads and license records are created. If these records
aren’t being created, review these configurations in the License Management Org (LMO). If you
resolve your issue using one of these recommendations, your missing licenses appear in the
LMA within a few days.

Proxy User Has Deactivated Message in the LMA

If you’re editing a license and see a “proxy user has deactivated” message, it's possible that the
subscriber org is locked, deleted, or disabled.

Leads and Licenses Aren’t Being Created in the License Management App
When a customer installs your package, leads and license records are created. If these records aren’t being created, review these
configurations in the License Management Org (LMO). If you resolve your issue using one of these recommendations, your missing
licenses appear in the LMA within a few days.

386

Move the License Management App to Another Salesforce
Org

First-Generation Managed Packages

Did the customer complete the package installation?
When a customer clicks Get it Now on your AppExchange listing, Salesforce counts this selection as an installation. However, the
customer can cancel the installation before it’s completed, or the installation could have failed. If the installation doesn’t finish, a
license isn’t created.

Is State and Country picklist validation enabled?
To avoid state and country picklist-related lead failures, you have two options. Use the standard picklist integration values, or add
duplicate states and countries to your picklists.

Standard picklist integration values

To implement this option, use the Salesforce standard state and country picklists in your org, and leave the integration values as-is.
We recommend this option for most partners.

With this option, AppExchange leads propagate to your org with full state and country names, and the names match integration
values in the standard picklists.

Add duplicate states and countries to your picklists.

Implement this option if you have a requirement to use the two-letter state or country abbreviations in your org. For example, you
display abbreviations in the user interface or use them to integrate with other systems. Add duplicate states and countries to your
picklists with different integration values. Set one value to the two-letter state or country abbreviation. Set the other value to the
full state or country name. Make only the two-letter abbreviation picklist entries visible.

With this option, AppExchange leads propagate to your org with full state and country names, which match the full name integration
values in your org. You also have two-letter integration values to use as needed.

Does the lead or license object have a trigger?
Don’t use before_create or before_update triggers on leads and licenses. Instead, use after_ triggers, or remove
all triggers. If a trigger fails, it can block license creation.

Does the lead or license record have a required custom field?
If yes, remove the requirement. The LMA doesn’t populate a required custom field, so it can prevent licenses or leads from being
created.

Is the lead manager a valid, active user?
If not, the LMA can’t create leads and licenses.

Does the lead or license record have a validation rule?
Validation rules often block the creation of LMA lead or license records because the required field isn’t there.

Does the lead or license have a workflow rule?
Workflow rules sometimes prevent leads and licenses from being created. Remove the workflow rule.

Was the lead converted to an account?
When leads are converted to accounts, they’re no longer leads.

Are you using standard duplicate rules for leads?
When a customer installs your package, the LMA checks for existing leads and contacts. If an existing contact matches the customer
who installed your package, a lead record isn’t created. To complete these checks, the LMA applies standard lead duplicate rules
and matching rules. If you prefer to have the LMA associate every license with a lead regardless of whether there’s an existing contact
match, customize the standard duplicate rule for leads and remove the matching rule for contacts.

Proxy User Has Deactivated Message in the LMA
If you’re editing a license and see a “proxy user has deactivated” message, it's possible that the subscriber org is locked, deleted, or
disabled.

If you attempt to contact the subscriber and they aren't responsive, consider deleting the license record.

387

Troubleshoot the License Management AppFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=duplicate_rules_standard_lead_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=matching_rules_standard_contact_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=duplicate_prevention_map_of_tasks.htm&language=en_US

Best Practices for the License Management App
Follow these best practices when you use the License Management App (LMA).

• To take advantage of entitlements that are unique to AppExchange partners, use your partner business org as your License
Management Org.

• Create a list view filter for leads created by installed packages. The filter helps your team separate subscriber-based leads from leads
coming from other sources.

• Use the API to find licensed users. The isCurrentUserLicensed method determines if a user has a license to a managed
package. For more information, see the Apex Reference Guide.

• Treat the LMA custom objects as read-only. Use the Modify License page to edit licenses. Don’t attempt to directly or programmatically
edit license records.

• The LMA automatically creates package, package version, and license records. Customizations, such as adding required custom fields
or creating workflow rules, triggers, or validation rules that require custom fields, can prevent the LMA from working properly.

Troubleshoot Subscriber Issues
Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you’re granted access, you can log in to the subscriber’s org and view their configuration
and data to troubleshoot and resolve issues.

To access the Subscriber Overview page, click the organization’s name from the Subscribers tab in the LMA.

Note: This feature is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility
requirements, see www.salesforce.com/partners.

Request Login Access from Subscribers

To log in to a subscriber org, first request login access from the subscriber.

Log In to Subscriber Orgs

After your subscriber has granted you login access, you can log in to the subscriber org to troubleshoot the issue.

Debug Subscriber Orgs

After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger
sessions.

Request Login Access from Subscribers
To log in to a subscriber org, first request login access from the subscriber.

Ask the subscriber to enable either Grant Account Login Access or Grant Login Access. If they don’t see your company listed, one
of the following applies.

• A system admin disabled the ability for non-admins to grant access.

• The user doesn’t have a license for the package.

• The package is licensed to the entire org. In this scenario, only an admin with the Manage Users permission can grant access.

• The org setting Administrators Can Log in as Any User is enabled.

Note: When the org setting Administrators Can Log in as Any User is disabled, login access is granted for a limited amount
of time, and the subscriber can revoke access at any time.

Any changes you make while logged in as a subscriber are logged in the subscriber org’s audit trail.

388

Best Practices for the License Management AppFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_methods_system_userinfo.htm
https://partners.salesforce.com

Log In to Subscriber Orgs

USER PERMISSIONS

To log in to subscriber orgs:
• Log in to Subscriber Org

After your subscriber has granted you login access, you can log in to the subscriber org to
troubleshoot the issue.

Available in: Enterprise, Performance, and Unlimited Editions

Note: You can only log in to orgs with a Salesforce Platform or full Salesforce license. You can’t log in to subscriber orgs on
Government Cloud instances. It's also not possible to log into a scratch org using the log in to subscriber org feature.

Multi-Factor Authentication Required to Log In to a Subscriber Org
Starting in Spring ’22, multi-factor authentication (MFA) is required when logging into the License Management Org (LMO). MFA is
required only for LMO users who require access to the Subscriber Support Console. This requirement provides subscribers an extra layer
of security by verifying the identity of the user accessing their org. You also have more control over which users log in to a subscriber
org.

Determine which users require access to the Subscriber Support Console, and then set up multi-factor authentication (MFA) for those
users.

Log In to a Subscriber Org
After you’ve logged in to the LMO using multi-factor authentication (MFA), and your subscriber has granted you login access, you’re
ready to log in.

1. In the License Management App (LMA), click the Subscribers tab.

2. To find a subscriber org, enter a subscriber name or org ID in the search box, and click Search.

3. Click the name of the subscriber org.

4. On the Org Details page, click Login next to a user’s name. You have the same permissions as the user you logged in as.

5. When you’re finished troubleshooting, log out of the subscriber org.

Note: Some subscribers require MFA in addition to the MFA required for the LMO. Ask your subscriber if their org requires MFA
to log in. If so, your login attempt sends an MFA notification to your subscriber, and your login is blocked until your subscriber
responds to the notification. To ensure that your subscriber is available to respond to the MFA notification, consider coordinating
a specific login time.

Best Practices for Logging In

• Create an audit trial that indicates when and why a subscriber org login has occurred. You can create an audit trail by logging a case
in your LMO before each subscriber org login.

• When you access a subscriber org, you’re logged out of your LMO. To prevent your session from being automatically logged out of
your LMO when you log in to a subscriber org, use the org’s My Domain login URL.

• Allow only trusted support and engineering personnel to log in to a subscriber’s org. Because this feature can include full read/write
access to customer data and configurations, it’s vital to your reputation to preserve their security.

• Control who has login access by giving the Log in to Subscriber Org user permission to specific support personnel via a profile or
permission set. See Assign Permissions to the Subscriber Org Console on page 381.

389

Troubleshoot Subscriber IssuesFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.mfa_direct_login_user_perm.htm&type=5&language=en_US

Debug Subscriber Orgs
After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger sessions.

Troubleshoot with Debug Logs
You can debug your code by generating Apex debug logs that contain the output from your managed package. Using this log information,
you can troubleshoot issues that are specific to that subscriber.

1. If the user has access, set up a debug log: From Setup, in the Quick Find box, enter Debug Logs, and then select Debug Logs.

2. Launch the Developer Console.

3. Perform the operation, and view the debug log with your output.

Subscribers are unable to see the logs you set up or generate because they contain your unobfuscated Apex code.

You can also view and edit data contained in protected custom settings from your managed packages when logged in as a user.

Troubleshoot with the ISV Debugger
Each License Management Org can use one free ISV Customer Debugger session at a time. The ISV Customer Debugger is part of the
Salesforce Extensions for Visual Studio Code. You can use the ISV Customer Debugger only in sandbox orgs, so you can initiate debugging
sessions only from a customer’s sandbox.

For details, see the ISV Customer Debugger documentation.

Manage Features in First-Generation Managed Packages

Control how you release features to customers with the Feature Management App (FMA). The FMA extends the functionality of the
License Management App (LMA). Use the FMA to manage features as easily as you manage licenses with the LMA.

Here at Salesforce, we sometimes run pilot programs, like the one we ran when we introduced Feature Management. Sometimes we
dark-launch features to see how they work in production before sharing them with you. Sometimes we make features available to select
orgs for limited-time trials. And sometimes we want to track activation metrics for those features.

With feature parameters, we’re extending this functionality to you. Install the FMA in your License Management Org (LMO). The FMA
extends the License Management App, and like the LMA, it’s a managed package.

Feature Parameter Metadata Types and Custom Objects

Feature parameters are represented as Metadata API types in your packaging org, as records of custom objects in your License
Management Org, and as hidden records in your subscriber’s org.

Set Up Feature Parameters

Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features

Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or
disable new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period.
Assign values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those
values in your code.

390

Manage Features in First-Generation Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/tools/vscode
https://developer.salesforce.com/tools/vscode/en/apex/isv-debugger

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters

Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs

Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the
pilot feature.

Best Practices for Feature Management

Here are some best practices when working with feature parameters.

Considerations for Feature Management

Keep these considerations in mind when working with feature parameters.

Feature Parameter Metadata Types and Custom Objects
Feature parameters are represented as Metadata API types in your packaging org, as records of custom objects in your License Management
Org, and as hidden records in your subscriber’s org.

Feature Parameter Fields
Feature parameters are represented as Metadata API types and store boolean, integer, or date values.

The first time a subscriber installs your package, a FeatureParameter__c record is created in your License Management Org
(LMO) for each feature parameter. The feature parameter records include these fields:

• FullName__c

• DataType__c (Boolean, Integer, or Date)

• DataFlowDirection__c

• Package__c

• IntroducedInPackageVersion__c

• Namespace_Prefix__c

Lifecycle of a Feature Parameter
Set Up the Feature Parameter

Start by defining your feature parameter in the packaging org using the Feature Parameters tab on the Package detail page.

Depending on how you’re using the feature parameter, you’ll also write code that enables you to check access rights or collect usage
information after the parameter is set up.

Subscriber Installs Your Managed Package
When a subscriber installs or upgrades your package in their org, a FeatureParameter__c record for each feature parameter
is created in the LMO. If these records were created during a previous installation or upgrade, this step is skipped.

During package installation, junction object records are created in both the subscriber org and your LMO. A junction object is a
custom object with two master-detail relationships. In this case, the relationships are between FeatureParameter__c and
License__c in the LMO. These records store the value of their associated feature parameter for that subscriber org.

391

Feature Parameter Metadata Types and Custom ObjectsFirst-Generation Managed Packages

Utilize Your Feature Parameters
Use the junction objects to override the feature parameters’ default values or to collect data. Depending on the value of each feature
parameter’s DataFlowDirection__c field, data flows to the subscriber org (from the LMO) or to the LMO (from the subscriber
org). That data is stored in the junction object records.

Set Up Feature Parameters
Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Install and Set Up the Feature Management App in Your License Management Org

Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to
display related lists for your feature parameters.

Create Feature Parameters in Your Packaging Org

Create a feature parameter in your packaging org, and set its type, default value, and data flow direction.

Add Feature Parameters to Your Managed Package

After you’ve created some feature parameters, you can add them to a managed package as components and reference them in your
code. Feature parameters aren’t available in unmanaged packages.

Install and Set Up the Feature Management App in Your License Management Org
Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to display
related lists for your feature parameters.

1. To request access to the FMA, log a support case in the Salesforce Partner Community. For product, specify Partner Programs &
Benefits. For topic, specify ISV Technology Request. The FMA extends the License Management App, so be sure to install the
LMA before requesting access to the FMA.

2. To install the FMA, follow the instructions in your welcome email.

3. Add the Feature Parameters tab to your default view. For details, see Customize My Tabs in Salesforce Help.

4. Update your page layout for licenses.

a. Navigate to a license record’s detail page.

b. Click Edit Layout.

c. In the Related Lists section of the License Page Layout Editor, add these lists.

• Feature Parameter Booleans

• Feature Parameter Dates

• Feature Parameter Integers

d. For each related list, add these columns.

• Data Flow Direction

• Feature Parameter Name

• Full Name

• Master Label

• Value

392

Set Up Feature ParametersFirst-Generation Managed Packages

https://partners.salesforce.com
https://help.salesforce.com/articleView?id=user_userdisplay_tabs.htm&language=en_US

Create Feature Parameters in Your Packaging Org
Create a feature parameter in your packaging org, and set its type, default value, and data flow direction.

1. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

2. In the Packages section, in the Package Name column, select your managed package.

3. On the Feature Parameters tab, click New Boolean, New Integer, or New Date.

If the Feature Parameters tab isn’t visible, log a case with Salesforce Partner Support.

4. Give your feature parameter a developer name that meets the standard criteria for developer names. The name must be unique in
your org. It can contain only alphanumeric characters and underscores, and must begin with a letter. It can’t include spaces, end
with an underscore, nor contain two consecutive underscores.

5. Give the feature parameter a label.

6. Set a default value for the feature parameter. If you’re creating a Feature Parameter Boolean, you see only a checkbox for Default
Value. If you want your default value to be true, select this checkbox. Integer values can’t exceed nine digits.

7. Set a data flow direction. To use this feature parameter to control behavior in your subscriber’s org, select LMO to Subscriber. To
collect activation metrics from your subscriber, select Subscriber to LMO. Note: After the feature parameter is included in a promoted
and released package version, the data flow direction can't be changed.

8. Click Save.

Add Feature Parameters to Your Managed Package
After you’ve created some feature parameters, you can add them to a managed package as components and reference them in your
code. Feature parameters aren’t available in unmanaged packages.

A package can include up to 200 feature parameters.

Complete these steps in your packaging org.

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. In the Packages section, in the Package Name column, select your managed package.

3. On the Components tab, click Add.

4. From the Component Type dropdown, select Feature Parameter Boolean, Feature Parameter Date, or Feature Parameter
Integer.

5. Select your feature parameter, and then click Add to Package.

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features
Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or disable
new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period. Assign
values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those values in your
code.

Assign Override Values in Your LMO

To override the default value of a feature parameter in a subscriber’s org, update the appropriate junction object record in your LMO.

393

Use LMO-to-Subscriber Feature Parameters to Enable and
Disable Features

First-Generation Managed Packages

Check LMO-to-Subscriber Values in Your Code

You can reference feature parameters in your code, just like you’d reference any other custom object.

Assign Override Values in Your LMO
To override the default value of a feature parameter in a subscriber’s org, update the appropriate junction object record in your LMO.

1. Open the license record for a subscriber’s installation of your package.

2. In the related list for Feature Parameter Booleans, Feature Parameter Integers, or Feature Parameter Dates, select the feature parameter
whose value you want to update.

3. Click Edit.

4. Set a value.

5. Click Save.

Check LMO-to-Subscriber Values in Your Code
You can reference feature parameters in your code, just like you’d reference any other custom object.

Use these Apex methods with LMO-to-subscriber feature parameters to check values in your subscriber’s org.

• System.FeatureManagement.checkPackageBooleanValue('YourBooleanFeatureParameter');

• System.FeatureManagement.checkPackageDateValue('YourDateFeatureParameter');

• System.FeatureManagement.checkPackageIntegerValue('YourIntegerFeatureParameter');

SEE ALSO:

Apex Reference Guide: FeatureManagement Class

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature
Parameters
Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

• System.FeatureManagement.setPackageBooleanValue('YourBooleanFeatureParameter',
booleanValue);

• System.FeatureManagement.setPackageDateValue('YourDateFeatureParameter',
datetimeValue);

• System.FeatureManagement.setPackageIntegerValue('YourIntegerFeatureParameter',
integerValue);

Warning: The Value__c field on subscriber-to-LMO feature parameters is editable in your LMO. But don’t change it. The
changes don’t propagate to your subscriber’s org, so your values will be out of sync.

394

Track Preferences and Activation Metrics with
Subscriber-to-LMO Feature Parameters

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm

You can view the value of a subscriber-to-LMO feature parameter from the Subscriber Support Console.

SEE ALSO:

Apex Reference Guide: FeatureManagement Class

Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs
Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the pilot
feature.

Note: Check with your company’s legal team before releasing hidden functionality.

To hide custom objects when creating your package, set the value of their Visibility field to Protected. After you've set the visibility
to Protected, you can later update it to Unprotected. To change the visibility of an object, use the CustomObject Metadata API and
update the visibility field.

To hide custom permissions when creating your package, from Setup, enter Custom Permissions in the Quick Find box. Select
Custom Permissions > Your Custom Permission > Edit. Enable Protected Component, and then click Save. After your
package is installed, use the System.FeatureManagement.changeProtection() Apex method to hide and unhide
custom objects and permissions.

Warning: After you’ve released unprotected objects to subscribers, you can’t change the visibility to Protected.

To hide custom permissions in released packages:

• System.FeatureManagement.changeProtection('YourCustomPermissionName',
'CustomPermission', 'Protected');

To unhide custom permissions and custom objects in released packages:

• System.FeatureManagement.changeProtection('YourCustomPermissionName',
'CustomPermission', 'Unprotected');

• System.FeatureManagement.changeProtection('YourCustomObjectName__c', 'CustomObject',
'Unprotected');

SEE ALSO:

Protected Components in Managed Packages

Metadata API Developer Guide: CustomObject

Apex Reference Guide: Feature Management Methods, changeProtection

Best Practices for Feature Management
Here are some best practices when working with feature parameters.

• We recommend that you use this feature set in a test package and a test LMO before using it with your production package. Apply
changes to your production package only after fully understanding the product’s behavior.

• Create LMO-to-subscriber feature parameters to enable features from your LMO for individual subscriber orgs. Don’t use the Apex
code in your managed package to modify LMO-to-subscriber feature parameters’ values in subscriber orgs. You can’t send the
modified values back to your LMO, and your records will be out of sync.

395

Hide Custom Objects and Custom Permissions in Your
Subscribers’ Orgs

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/lma_subscriber_support_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/customobject.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/packaging_protected_components.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.api_meta.meta/api_meta/customobject.htm
https://developer.salesforce.com/docs/atlas.en-us.258.0.apexref.meta/apexref/apex_class_System_FeatureManagement.htm#apex_System_FeatureManagement_changeProtection

Use LMO-to-subscriber feature parameters as read-only fields to manage app behavior. For example, use LMO-to-subscriber feature
parameters to track the maximum number of permitted e-signatures or to make enhanced reporting available.

• Create subscriber-to-LMO feature parameters to manage activation metrics. Set these feature parameters’ values in subscriber orgs
using the Apex code in your managed package. For example, use subscriber-to-LMO feature parameters to track the number of
e-signatures consumed or to check whether a customer has activated enhanced reporting.

Considerations for Feature Management
Keep these considerations in mind when working with feature parameters.

• After a feature parameter is included in a promoted and released package version, we recommend that you only edit the value field
located in LMO-to-subscriber junction objects.

Modifying or deleting other fields or records related to feature parameters, including the data flow direction, may cause the FMA to
stop operating correctly.

• Don’t use the LMO to create or delete feature parameters.

• When you update LMO-to-subscriber values in your LMO, the values in your subscribers’ orgs are updated asynchronously. This
process can take several minutes.

• When you publish a push upgrade to your managed package, feature parameters in your LMO and your subscribers’ orgs are updated
asynchronously. Creating and updating the junction object records can take several minutes.

• When the Apex code in your package updates subscriber-to-LMO values in your subscriber’s org, the changes can take up to 24
hours to reach your LMO.

AppExchange App Analytics for First-Generation Managed Packages

AppExchange App Analytics provides usage data about how subscribers interact with your first-generation (1GP) managed packages
and packaged components. You can use these details to identify attrition risks, inform feature development decisions, and improve user
experience.

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.
Usage data from Government Cloud and Government Cloud Plus orgs isn’t available in App Analytics.

App Analytics is available for managed 1GP packages that passed security review and are registered to a License Management App.
Usage data is provided as package usage logs, monthly package usage summaries, or subscriber snapshots. All usage data is available
as downloadable comma-separated value (.csv) files. To view the data in dashboard or visualization format, use CRM Analytics or a
third-party analytics tool.

In a 24-hour period, you can download a maximum 20 GB of AppExchange App Analytics data.

Enable App Analytics on Your First-Generation Managed Package

Activate AppExchange App Analytics on your first-generation (1GP) managed package to access AppExchange App Analytics package
usage logs and subscriber snapshots. Package usage summaries are available by default.

SEE ALSO:

Get Started with AppExchange App Analytics

396

Considerations for Feature ManagementFirst-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/
https://help.salesforce.com/articleView?id=bi_explorer.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_intro_2gp.htm

Enable App Analytics on Your First-Generation Managed Package

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions.

USER PERMISSIONS

To access packages and
package versions:
• Read on Packages,

Package Versions

To request and retrieve
AppExchange App Analytics
data:
• Create, Read, Edit,

Delete, View All, and
Modify All on the
AppAnalyticsQueryRequest
object

Activate AppExchange App Analytics on your first-generation (1GP) managed package to access
AppExchange App Analytics package usage logs and subscriber snapshots. Package usage summaries
are available by default.

1. Log in to your packaging org.

2. Click the gear icon , and select Setup.

3. In the Quick Find box, enter package, and select Package Manager.

4. Find your package, and click Edit.

5. Check Enable AppExchange App Analytics.

6. Save your work.

For full documentation on available App Analytics data and query best practices, read Get Started
with AppExchange App Analytics in the Second-Generation Managed Packaging Developer Guide.

Developing and Distributing Unmanaged Packages

Unmanaged packages can be used for distributing open-source projects to developers, or as a
one-time drop of applications that require customization after installation.

After the components are installed from an unmanaged package, they can be edited in the org
they’re installed in. The developer who creates and uploads an unmanaged package has no control
over the installed components, and can't change or upgrade them.

As a best practice, install an unmanaged package only if the org used to upload the package still exists. If that org is deleted, you may
not be able to install the unmanaged package.

Don’t use unmanaged packages for sandbox to production migration. Instead, use the Salesforce Extensions for Visual Studio Code or
the Ant Migration Tool. If you’re using Enterprise, Unlimited, or Performance Edition, see Change Sets.

Create and Upload an Unmanaged Package

Use the following procedure to upload an unmanaged package through the UI. You can also upload a package using the Tooling
API. For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

Components Available in Unmanaged Packages

Not all components can be packaged for distribution.

Convert Unmanaged Packages to Managed

Create and Upload an Unmanaged Package
Use the following procedure to upload an unmanaged package through the UI. You can also upload a package using the Tooling API.
For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

1. Create the package:

a. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

b. Click New.

c. Fill in the details of the package.

d. Click Save.

397

Enable App Analytics on Your First-Generation Managed
Package

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_intro_2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_intro_2gp.htm
https://help.salesforce.com/s/articleView?id=sf.changesets.htm&language=en_US

2. On the Components tab, click Add.

3. From the Component Type dropdown list, choose a component.

4. Select the component you want to add.

5. Click Add To Package.

6. Repeat these steps until you’ve added all the components you want in your package.

7. Click Upload.

You will receive an email that includes an installation link when your package has been uploaded successfully. Wait a few moments
before clicking the installation link or distributing it to others, as it might take a few minutes for it to become active.

Considerations for Uninstalling Unmanaged Packages
If your unmanaged package has dependencies on metadata in another package, remove any dependencies before attempting to uninstall
either package.

If you’re working in a sandbox org, you must first remove the package dependencies in your production org.

1. Locate the unmanaged package in your production org and remove the dependencies to the package you plan to uninstall.

2. Create or refresh your sandbox org.

3. In your sandbox org, you can now uninstall the package that your unmanaged package previously depended on.

Components Available in Unmanaged Packages
Not all components can be packaged for distribution.

Packaged Explicitly or Implicitly
Components can be added either explicitly or implicitly. Explicit components must be included directly in the package, while implicit
components are automatically added. For example, if you create a custom field on a standard object, you must explicitly add the
custom field to your package. However, if you create a custom object and add a custom field to it, the field is implicitly added to the
package when you add the custom object.

• Explicitly: The component must be manually added to the package.

• Implicitly: The component is automatically added to the package when another dependent component, usually a custom
object, is added.

Automatic Renaming
Salesforce can resolve naming conflicts automatically on install.

• No: If a naming conflict occurs the install is blocked.

• Yes: If a naming conflict occurs Salesforce can optionally change the name of the component being installed.

Automatic RenamingPackaged Explicitly or ImplicitlyComponent

NoExplicitlyApex Class

NoImplicitly

On an extension: Explicitly

Apex Sharing Reason

NoImplicitlyApex Sharing Recalculation

398

Components Available in Unmanaged PackagesFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.data_sandbox_create_parent.htm&language=en_US

Automatic RenamingPackaged Explicitly or ImplicitlyComponent

NoOn a standard or extension object: Explicitly

On an object in the package: Implicitly

Apex Trigger

NoExplicitlyApplication

NoOn a standard object: Explicitly

On a custom object: Implicitly

Custom Button or Link

NoOn a standard object: Explicitly

On a custom object: Implicitly

Custom Field

NoImplicitlyCustom Label

NoExplicitlyCustom Object

NoImplicitly

With required custom permissions: Explicitly

Custom Permission

NoExplicitlyCustom Report Type

NoExplicitlyCustom Setting

YesExplicitly

In a folder: Implicitly

Dashboard

YesExplicitly

In a folder: Implicitly

Document*

(10 MB limit)

YesExplicitly

In a folder: Implicitly

Email Template (Classic)

NoExplicitly

Referenced by an external object: Implicitly

External Data Source

Assigned by a permission set: Implicitly

NoImplicitlyFlow Definition

YesExplicitlyFolder

NoExplicitlyHome Page Component

NoExplicitlyHome Page Layout

NoExplicitlyInbound Network Connection

YesExplicitlyLetterhead

NoExplicitlyLightning Application

NoExplicitlyLightning Component

399

Components Available in Unmanaged PackagesFirst-Generation Managed Packages

Automatic RenamingPackaged Explicitly or ImplicitlyComponent

NoExplicitlyLightning Event

NoExplicitlyLightning Interface

NoExplicitlyLightning Page

YesOn a standard object: Explicitly

On a custom object: Implicitly

List View

NoExplicitlyNamed Credential

NoExplicitlyOutbound Network Connection

NoOn a standard object: Explicitly

On a custom object: Implicitly

Page Layout

NoOn a standard object: Explicitly

On a custom object: Implicitly

Record Type

YesExplicitly

In a folder: Implicitly

Report

YesExplicitlyReporting Snapshot

NoExplicitlyS-Control*

(10 MB limit)

NoExplicitlyStatic Resource

NoExplicitlyTab

NoExplicitlyTranslation

NoOn a standard object: Explicitly

On a custom object: Implicitly

Validation Rule

NoExplicitlyVisualforce Component

NoExplicitlyVisualforce Page

NoExplicitlyWorkflow Email Alert

NoExplicitlyWorkflow Field Update

NoExplicitlyWorkflow Outbound Message

NoExplicitlyWorkflow Rule

NoExplicitlyWorkflow Task

*The combined size of S-Controls and documents must be less than 10 MB.

400

Components Available in Unmanaged PackagesFirst-Generation Managed Packages

Convert Unmanaged Packages to Managed

EDITIONS

Available in: Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Developer
Edition

Package uploads and
installs are available in
Group, Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

USER PERMISSIONS

To configure namespace
settings:
• Customize Application

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

Before you convert an existing package to managed, alert any current installers that they must save
their data:

1. Export all the data from the previous, unmanaged version of the package.

2. Uninstall the unmanaged package.

3. Install the new managed version of the package.

4. Import all the exported data into the new managed package.

Note: Note to installers: if you have made customizations to an installation of an
unmanaged package, make a list of these customizations before uninstalling since you
may want to implement them again.

To convert an unmanaged package into a managed package:

1. Register a namespace.

2. From Setup, enter Package Manager in the Quick Find box, then select Package
Manager.

3. Edit the package that you want to make managed, then select Managed.

401

Convert Unmanaged Packages to ManagedFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/register_namespace_prefix.htm

	First-Generation Managed Packages
	Why Switch to Second-Generation Managed Packaging?
	Move to 2GP: Migrate Your Managed Packages with Ease
	About Package Conversion and Package Migration
	Three Phases of Package Migration Development
	Plan Your Package Migration
	Before You Begin Package Migrations
	Convert Your Managed 1GP Package to 2GP
	View Details about Your Converted 2GP Package
	Specify Dependencies on Unpackageable Metadata
	Test Your Converted Managed 2GP Package

	Migrate Your Subscribers from 1GP to 2GP
	Move to 2GP Package Development
	Considerations for Package Migrations
	Troubleshoot Package Conversion Failures
	Picklist Value Errors

	Register a Namespace for a First-Generation Managed Package
	Create a First-Generation Managed Package Using a UI
	What Are Beta Versions of Managed Packages?
	Create a Beta Package for First-Generation Managed Packages
	Create and Upload a First-Generation Managed Package
	Publish Extensions to Managed Packages
	View Package Details in First-Generation Managed Packages
	Notifications for Package Errors
	Set the Notification Email Address

	Create a First-Generation Managed Package using Salesforce DX
	Enable Dev Hub and Second-Generation Managed Packaging
	Limited Access License for Package Developers
	Add a Limited Access User to Your Dev Hub Org
	Link a Namespace to a Dev Hub Org
	Scratch Orgs and Package Development
	Get Access to Scratch Orgs That Have Agentforce
	Scratch Org Allocations for Salesforce Partners
	Manage Scratch Orgs from the Dev Hub Org
	Supported Scratch Org Editions for Partners

	Build and Release Your App with Managed Packages
	Packaging Checklist
	Deploy the Package Metadata to the Packaging Org
	Create a Beta Version of Your App
	Install the Package in a Target Org
	Create a Managed Package Version of Your App
	View Information About a Package
	View All Package Versions in the Org
	Package IDs

	Components Available in First-Generation Managed Packages
	Account Plan Objective Measure Calculation Definition
	Account Relationship Share Rule
	Action Link Group Template
	Action Plan Template
	Actionable List Definition
	Actionable List Key Performance Indicator Definition
	Activation Platform
	AffinityScoreDefinition
	Agent Action
	Agent Topic
	AI Application
	AI Application Config
	AIUsecaseDefinition
	Analytics
	Analytics Dashboard
	Analytics Visualization
	Analytics Workspace
	Apex Class
	Apex Sharing Reason
	Apex Trigger
	App Framework Template Bundle
	Application Subtype Definition
	AssessmentConfiguration
	AssessmentQuestion
	AssessmentQuestionSet
	Aura Component
	Batch Calc Job Definition
	Batch Process Job Definition
	Benefit Action
	Bot Template
	Branding Set
	Briefcase Definition
	Building Energy Intensity Record Type Configuration
	Business Process
	Business Process Group
	Business Process Type Definition
	Care Benefit Verify Settings
	Care Limit Type
	Care Request Configuration
	Care System Field Mapping
	Channel Layout
	Chatter Extension
	Claim Financial Settings
	CommunicationChannelType
	Community Template Definition
	Community Theme Definition
	Compact Layout
	Conditional Formatting Ruleset
	Connected App
	Context Definition
	Contract Type
	Conversation Channel Definition
	Conversation Vendor Info
	CORS Allowlist
	CSP Trusted Site
	Custom Application
	Custom Button or Link
	Custom Console Components
	Custom Field on Standard or Custom Object
	Custom Field on Custom Metadata Type
	Custom Field Display
	Custom Help Menu Section
	Custom Index
	Custom Label
	Custom Metadata Type Records
	Custom Metadata Type
	Custom Notification Type
	Custom Object
	Custom Object Translation
	Custom Permission
	Custom Tab
	Dashboard
	DataCalcInsightTemplate
	Data Connector Ingest API
	Data Connector S3
	Data Kit Object Dependency
	Data Kit Object Template
	DataObjectBuildOrgTemplate
	Data Package Kit Definition
	Data Package Kit Object
	Data Source
	Data Source Bundle Definition
	Data Source Object
	Data Src Data Model Field Map
	Data Stream Definition
	Data Stream Template
	DataWeaveResource
	Decision Matrix Definition
	Decision Matrix Definition Version
	Decision Table
	Decision Table Dataset Link
	Digital Experience
	Digital Experience Bundle
	Decision Table
	Disclosure Definition
	Disclosure Definition Version
	Disclosure Type
	Discovery AI Model
	Discovery Goal
	Discovery Story
	Document
	Document Generation Setting
	Eclair GeoData
	Email Template (Classic)
	Email Template (Lightning)
	Embedded Service Config
	Embedded Service Menu Settings
	Enablement Measure Definition
	Enablement Program Definition
	Enablement Program Task Subcategory
	Entitlement Template
	ESignature Config
	ESignature Envelope Config
	Event Relay
	Explainability Action Definition
	Explainability Action Version
	Explainability Message Template
	Expression Set Definition
	Expression Set Definition Version
	Expression Set Object Alias
	Expression Set Message Token
	External Auth Identity Provider
	External Client App Header
	External Client App Notification Settings
	External Client App OAuth Settings
	External Client App Push Settings
	External Credential
	External Data Connector
	External Data Source
	External Data Transport Field Template
	External Data Transport Field
	External Data Transport Object Template
	External Data Transport Object
	External Document Storage Configuration
	External Services
	Feature Parameter Boolean
	Feature Parameter Date
	Feature Parameter Integer
	Field Set
	Field Source Target Relationship
	Flow
	Flow Category
	Flow Definition
	Flow Test
	Folder
	Fuel Type
	Fuel Type Sustainability Unit of Measure
	Fundraising Config
	Gateway Provider Payment Method Type
	Gen Ai Planner Bundle
	Generative AI Prompt Template
	Global Picklist
	Home Page Component
	Home Page Layout
	Identity Verification Proc Def
	Inbound Network Connection
	IntegrationProviderDef
	LearningAchievementConfig
	Learning Item Type
	Letterhead
	Life Science Config Category
	Life Science Config Record
	Lightning Bolt
	Lightning Message Channel
	Lightning Page
	Lightning Type
	Lightning Web Component
	List View
	Live Chat Sensitive Data Rule
	Loyalty Program Setup
	Managed Content Type
	Marketing App Extension
	Marketing App Extension Activity
	Market Segment Definition
	MktCalculatedInsightsObjectDef
	MktDataConnection
	MktDataTranObject
	Named Credential
	Object Source Target Map
	OcrSampleDocument
	OcrTemplate
	Outbound Network Connection
	Page Layout
	Path Assistant
	Payment Gateway Provider
	Permission Set
	Permission Set Groups
	Platform Cache
	Platform Event Channel
	Platform Event Channel Member
	Platform Event Subscriber Configuration
	Pricing Action Parameters
	Pricing Recipe
	Procedure Output Resolution
	Process
	Process Flow Migration
	Product Attribute Set
	Product Specification Type
	Product Specification Record Type
	Prompts (In-App Guidance)
	Quick Action
	Recommendation Strategy
	Record Action Deployment
	Record Alert Data Source Expression Set Definition
	Record Type
	RedirectWhitelistUrl
	Referenced Dashboard
	Registered External Service
	RelationshipGraphDefinition
	Remote Site Setting
	Report
	Report Type
	ServiceProcess
	Slack App (Beta)
	Service Catalog Category
	Service Catalog Filter Criteria
	Service Catalog Item Definition
	Service Catalog Fulfillment Flow
	Stationary Asset Environmental Source Record Type Configuration
	Static Resource
	Streaming App Data Connector
	Sustainability UOM
	Sustainability UOM Conversion
	Timeline Object Definition
	Timesheet Template
	Translation
	UI Object Relation Config
	User Access Policy
	Validation Rule
	Vehicle Asset Emissions Source Record Type Configuration
	View Definition (Beta)
	Virtual Visit Config
	Visualforce Component
	Visualforce Page
	Wave Analytic Asset Collection
	Wave Application
	Wave Component
	Wave Dataflow
	Wave Dashboard
	Wave Dataset
	Wave Lens
	Wave Recipe
	Wave Template Bundle
	Wave Xmd
	Web Store Template
	Workflow Alert
	Workflow Field Update
	Workflow Knowledge Publish
	Workflow Outbound Message
	Workflow Rule
	Workflow Task

	Behavior of Specific Metadata in First-Generation Managed Packages
	Get Access to Agentforce in Your 1GP Packaging Org
	Components Automatically Added to First-Generation Managed Packages
	Protected Components in Managed Packages
	Set Up a Platform Cache Partition with Provider Free Capacity
	Package Dependencies in First-Generation Managed Packages
	Metadata Access in Apex Code
	Permission Sets and Profile Settings in Packages
	Permission Set Groups
	Custom Profile Settings
	Protecting Your Intellectual Property
	Call Salesforce URLs Within a Package
	Develop App Documentation
	API and Dynamic Apex Access in Packages
	Manage API and Dynamic Apex Access in Packages
	Configure Default Package Versions for API Calls
	About the Partner WSDL
	Generate an Enterprise WSDL with Managed Packages
	Work with Services Outside of Salesforce

	Connected Apps

	Package and Test Your First-Generation Managed Package
	Install a Managed Package
	Install First-Generation Managed Packages Using Metadata API
	Component Availability After Deployment
	Install Notifications for Unauthorized Managed Packages
	Resolve Apex Test Failures
	Run Apex on Package Install/Upgrade
	How Does a Post Install Script Work?
	Example of a Post Install Script
	Specifying a Post Install Script

	Run Apex on Package Uninstall
	How Does an Uninstall Script Work?
	Example of an Uninstall Script
	Specifying an Uninstall Script

	Uninstall a First-Generation Managed Package

	Update Your First-Generation Managed Package
	Package Versions in First-Generation Managed Packages
	Create and Upload Patches in First-Generation Managed Packages
	Work with Patch Versions
	Versioning Apex Code
	Apex Deprecation Effects for Subscribers

	Publish Upgrades to First-Generation Managed Packages
	Plan the Release of First-Generation Managed Packages
	Remove Components from First-Generation Managed Packages
	Delete Components from First-Generation Managed Packages
	Modifying Custom Fields after a Package Is Released
	Manage Versions of First-Generation Managed Packages
	View Unused Components in a Managed Package
	Push Package Upgrades to Subscribers
	Push Upgrades
	Push Upgrade Best Practices
	Assign Access to New and Changed Features in First- and Second-Generation Managed Packages
	Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages
	Scheduling Push Upgrades

	Manage Licenses for Managed Packages
	Get Started with the License Management App
	Install the License Management App
	Associate a Package with the License Management App
	Configure Permissions for the License Management App
	Assign Permissions to the Subscriber Support Console

	Lead and License Records in the License Management App
	Modify a License Record
	Refresh Licenses for a Managed Package
	Extending the License Management App
	Package and Package Version Object Fields
	License Object Fields
	Adding Custom Automation to License Management App Objects

	Move the License Management App to Another Salesforce Org
	Troubleshoot the License Management App
	Leads and Licenses Aren’t Being Created in the License Management App
	Proxy User Has Deactivated Message in the LMA

	Best Practices for the License Management App
	Troubleshoot Subscriber Issues
	Request Login Access from Subscribers
	Log In to Subscriber Orgs
	Debug Subscriber Orgs

	Manage Features in First-Generation Managed Packages
	Feature Parameter Metadata Types and Custom Objects
	Set Up Feature Parameters
	Install and Set Up the Feature Management App in Your License Management Org
	Create Feature Parameters in Your Packaging Org
	Add Feature Parameters to Your Managed Package

	Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features
	Assign Override Values in Your LMO
	Check LMO-to-Subscriber Values in Your Code

	Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters
	Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs
	Best Practices for Feature Management
	Considerations for Feature Management

	AppExchange App Analytics for First-Generation Managed Packages
	Enable App Analytics on Your First-Generation Managed Package

	Developing and Distributing Unmanaged Packages
	Create and Upload an Unmanaged Package
	Considerations for Uninstalling Unmanaged Packages

	Components Available in Unmanaged Packages
	Convert Unmanaged Packages to Managed

