
Salesforce Mobile Notifications
Implementation Guide

Salesforce, Summer ’25

Last updated: June 20, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

MOBILE NOTIFICATIONS OVERVIEW . 1
Push Notification Registration and Flow . 3

STEPS FOR IMPLEMENTING MOBILE NOTIFICATIONS 6
Step 1. Developer Registration with Mobile OS Vendors . 6
Step 2. Creating a Connected App . 7

Create a Connected App for Android . 8
Create a Connected App for Apple iOS . 9
Testing Your Connected App Push Configuration . 10

Step 3. Configure Your Mobile SDK App . 13
Enable Push Notifications in a Salesforce Mobile SDK Android App 13
Enable Push Notifications in a Salesforce Mobile SDK iOS App 14
Enable Push Notifications in a Salesforce Mobile SDK Hybrid App 17
Handle Notification Encryption in Salesforce Mobile SDK Apps 18
Build Your Own In-App Notification Feature . 19

Step 4. Packaging Components for Customer Organizations . 23

SENDING MOBILE NOTIFICATIONS . 24
Using Apex Triggers to Send Push Notifications . 24

PushNotification Class . 25
Push Notifications Resource . 28

Custom Notification Actions . 29

USING THE CONNECT REST API PUSH NOTIFICATION RESOURCE
(OPTIONAL) . 33

REFERENCE . 34
PushNotificationPayload Class . 34

PushNotificationPayload Methods . 34
Apex Limits Functions for Push Notifications . 36
Push Notification Limits . 37
Error Messages for Push Notifications . 37
Debug Log Events . 38
Notifications Resources . 39

Notification . 40
Notifications . 43
Notifications Status . 45
Notification App Setting . 45
Notification App Settings . 47

Notification Setting . 49
Notification Settings . 51
CustomNotificationType (Tooling API) . 52

Notification Builder Platform Push Payloads . 55
iOS Custom Push Payload Content . 55
Android Custom Push Payload Content . 57

Invocable Actions Custom . 58

INDEX . 59

Contents

MOBILE NOTIFICATIONS OVERVIEW

Mobile notifications on Lightning Platform allow mobile app developers to notify their customers when business events occur in
customers’ orgs. Salesforce provides considerable flexibility for using mobile notifications. You can push notifications to devices or deliver
them within an app.

All notifications sent from Salesforce can support both Salesforce apps and custom apps. You can define custom types to fit your own
business needs. However, an org can limit the types it allows and their routings.

Lightning Platform provides two server-side notification systems:

Notification Builder
Full-featured, UI-centric platform. Notification Builder is integrated with the core notifications framework that powers Chatter and
other Salesforce apps. As a result, you can use familiar Salesforce tools for creating, scheduling, and sending notifications. For example,
you can send invocable action notifications through Process Builder, Flow, or REST API. You can also retrieve past notifications for
use in custom in-app notification displays. You can send notifications to both Salesforce apps and customer apps.

Apex
Legacy code-based platform for push notifications only. With Apex notifications, Apex triggers capture business events in the
customer’s org. Apps can then send push notifications with either Apex or Connect REST APIs. Apex push does not retain notification
payloads for subsequent use.

A few considerations guide your choice of platform.

• If you have an existing Apex push implementation, the legacy platform remains fully supported.

• Consider which notification features suit your business needs. Types include:

Mobile push notifications
Notifications sent in reaction to an event. For example, push notifications usually arrive on mobile devices while the customer
isn’t looking at the app. Salesforce supports two types of push: Apex push—traditional “send, fire, and forget” mechanism—and
Notification Builder push, which boasts a richer feature set. Notification Builder push notifications require you to subscribe your
connected app to the custom notification types you plan to send.

In-app notifications
Notifications sent to customers while they’re using either the Salesforce mobile app, another Salesforce app, or any properly
configured custom app. In Salesforce mobile app, customers receive these notifications in the Notification Bell. Other client apps
can implement their own notification displays using Notification Builder APIs.

Custom notification types
Notifications that you create through Notification Builder in Setup to suit your unique business needs. You can then send
notifications of those types through Process Builder, Flow Builder, or the invocable action API.

Configurable delivery settings and preferences
For custom notifications types, you can select delivery channels—desktop, mobile, or both. You can choose to subscribe your
connected apps to custom notification types to have them returned by the API to your custom in-app notification tray. If preferred,
you can also send your subscribed notifications as push notifications.

Invocable action notifications
You can send custom notifications as invocable actions using the customNotificationAction API.

Scheduled notifications
In Process Builder, you can schedule a notification to be sent when triggered by a record change, platform event, or process. In
Flow Builder, you can schedule the customNotificationAction API to send custom notifications at predefined intervals.

1

• Notification platforms support the following types and features:

Notification Builder PlatformApex PushType or Feature

SupportedSupportedPush notifications

SupportedNot supportedSubscriptions

SupportedNot supportedScheduled notifications

SupportedNot supportedInvocable action notifications

SupportedNot supportedIn-app notifications

SupportedNot supportedRetrievable payloads

SupportedNot supportedCustom notification types

SupportedNot supportedEncryption

• Notification systems deliver payloads and the list of recipients to services operated by device OS vendors—Apple, Google—for
delivery to customers’ mobile devices. Salesforce preserves sent Notification Builder notifications and provides APIs for retrieving
them.

To handle events that Apex triggers can’t catch—for example, from sources outside of Salesforce—Connect REST API provides an
alternative sending mechanism on page 33. You can use Connect REST API to send either Apex push or Notification Builder invocable
actions.

All apps that intend to receive mobile notifications require:

A Salesforce connected app configuration on the Salesforce server

All Salesforce mobile notifications use the connected app framework. They support customer apps built in-house, Mobile SDK apps
distributed through the App Store or Google Play, and partner or ISV apps installed through managed packages.

Registration with targeted mobile OS vendors—Apple and Google
You must register as a developer of apps that are designed to receive notifications. This registration is separate from the runtime
registration that an app performs to receive notifications.

Minimal coding in client apps
Mobile SDK provides boilerplate implementations for app notification registration. You can choose whether to go further with
features such as in-app notifications.

Server-side coding
Depending on the mechanism used, sending push notifications can require coding of Apex triggers or REST API calls.

This guide covers these configuration tasks, and also testing and sending notifications. To learn how to use Notification Builder functionality
in Salesforce, see Manager Your Notifications with Notification Builder. For notification types, see Salesforce App Notification Types.

Note: These instructions do not apply to Marketing Cloud apps. To implement Marketing Cloud MobilePush notifications, see
MobilePush and Journey Builder for Apps SDKs.

See Also

• Create a Custom Notification Type

• Send Custom Notifications

2

Mobile Notifications Overview

https://help.salesforce.com/articleView?id=notif_builder.htm&language=en_US
https://help.salesforce.com/articleView?id=salesforce_app_enable_push_notifications.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-sdks.meta/mc-sdks/mobile-push-sdk.htm
https://help.salesforce.com/articleView?id=notif_builder_custom_type.htm&language=en_US
https://help.salesforce.com/articleView?id=notif_builder_custom.htm&language=en_US

• Send Notifications to a Connected App

• Send Custom Notifications with Notification Builder Platform

• Send a Custom Notification from a Process

• Flow Core Action: Send Custom Notification

IN THIS SECTION:

Push Notification Registration and Flow

To enable push notifications, you register with several different entities and configure the required settings.

Push Notification Registration and Flow

To enable push notifications, you register with several different entities and configure the required settings.

Entities involved when sending a push notification include:

• The OS vendor that delivers the notification to devices

• The Salesforce organization that sends the notification

• The mobile devices that receive and display the notification

Here is an outline of the registration process for developers.

1. Register with the mobile OS vendor, such as Apple or Google, for push service.

2. Create a connected app in Salesforce to upload the push credentials, such as the iOS .p12 certificate or the Android token.

3. Enable the mobile client app to handle push notifications using the Salesforce Mobile SDK.

4. Write Apex triggers to send push notifications when certain events occur on Salesforce records.

5. (For partners only) For partners who are developing the push notification triggers for other customer organizations, this additional
step should be performed.

Create a managed package containing the connected app and Apex triggers. Distribute this package to customer organizations.

The following figure illustrates the complete push notification flow for customers who develop their own mobile apps and Apex triggers.
The flow consists of the following sequence of events:

1. Developer registration with the OS vendor (Apple in this figure)

2. Connected app setup in Salesforce

3. Sending the push notification via the trigger from the Salesforce organization

4. Delivery of the push notification to mobile devices by the OS vendor

3

Push Notification Registration and FlowMobile Notifications Overview

https://help.salesforce.com/articleView?id=connected_app_notifications.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_notifications_custom.htm&language=en_US
https://help.salesforce.com/articleView?id=notif_builder_custom_process.htm&language=en_US
https://help.salesforce.com/articleView?id=flow_ref_elements_actions_sendcustomnotification.htm&language=en_US

Push Notification Flow for Customers

The Push Notification Service sends the message to the users specified in the send call of the Apex
Messaging.PushNotification class.

This next figure illustrates the complete push notification flow for partners and customers. In addition to the flow represented in the
previous diagram, this flow includes steps for customers who have installed the partner’s package. It includes purchase of the partner
app, and installation of the partner’s package to get the connected app and the Apex triggers. The last few steps of sending and delivering
the push notification are similar to the previous flow.

4

Push Notification Registration and FlowMobile Notifications Overview

Push Notification Flow for Partners and Customers

5

Push Notification Registration and FlowMobile Notifications Overview

STEPS FOR IMPLEMENTING MOBILE NOTIFICATIONS

To implement mobile notifications, you configure each of the participating technologies.

IN THIS SECTION:

Step 1. Developer Registration with Mobile OS Vendors

This step asks the OS vendor to be prepared to handle Salesforce push notifications sent to your app. Developer registration also
provides some information you’ll need to finish configuring your Salesforce connected app.

Step 2. Creating a Connected App

Once you’ve registered your mobile app with the OS vendor’s push service, the next step is to create a connected app in Salesforce.

Step 3. Configure Your Mobile SDK App

In your Mobile SDK app, implement push notification protocols required by Salesforce and the device OS provider.

Step 4. Packaging Components for Customer Organizations

To distribute the Apex triggers and the connected app to customers, partners can create a managed package.

Step 1. Developer Registration with Mobile OS Vendors

This step asks the OS vendor to be prepared to handle Salesforce push notifications sent to your app. Developer registration also provides
some information you’ll need to finish configuring your Salesforce connected app.

To register your mobile client app, follow the process for your target mobile OS.

Android Registration
When developing an Android app that supports push notifications, remember these key points:

• You must be a member of the Android Developer Program.

• You can test FCM push services only on an Android device with either the Android Market app or Google Play Services installed.
Push notifications don’t work on an Android emulator.

Salesforce sends push notifications to Android apps through the Firebase Cloud Messaging for Android (FCM) framework. See
https://firebase.google.com/docs/cloud-messaging for an overview of this framework.

To begin, create a Google API project for your app. Your project must have the FCM for Android feature enabled. See
https://firebase.google.com/docs/cloud-messaging/android/client for instructions on setting up your project.

The setup process for your Google API project creates a key for your app. Once you’ve finished the project configuration, you’ll need to
add the Key for Server Applications (API Key) from FCM to your connected app settings.

Note: Push notification registration occurs at the end of the OAuth login flow. Therefore, an app does not receive push notifications
unless and until the user logs into a Salesforce org.

iOS Registration
When developing an iOS app that supports push notifications, remember these key points:

6

https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging/android/client

• You must be a member of the iOS Developer Program.

• You can test Apple push services only on an iOS physical device. Push notifications don’t work in the iOS simulator.

• There are no guarantees that all push notifications will reach the target device, even if the notification is accepted by Apple.

• Apple Push Notification Services setup requires the use of the OpenSSL command line utility provided in Mac OS X.

Before you can complete registration on the Salesforce side, you need to register with Apple Push Notification Services (APNS).

Registration with APNS requires the following items.

Certificate Signing Request (CSR) File
Generate this request using the Keychain Access feature in Mac OS X. You’ll also use OpenSSL to export the CSR private key to a file
for later use.

App ID from iOS Developer Program
In the iOS Developer Member Center, create an ID for your app, then use the CSR file to generate a certificate. Next, use OpenSSL to
combine this certificate with the private key file to create an appkey.p12 file. You’ll need this file later to configure your connected
app.

iOS Provisioning Profile
From the iOS Developer Member Center, create a new provisioning profile using your iOS app ID and developer certificate. You then
select the devices to include in the profile and download to create the provisioning profile. You can then add the profile to Xcode.
Install the profile on your test device using Xcode's Organizer.

When you’ve completed the configuration, sign and build your app in Xcode. Check the build logs to verify that the app is using the
correct provisioning profile. To view the content of your provisioning profile, run the following command at the Terminal window:
security cms -D -i <your profile>.mobileprovision

For detailed instructions see:

• Local and Push Notification Programming Guide at https://developer.apple.com/library/mac

• http://www.raywenderlich.com/32960/

Step 2. Creating a Connected App

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Essentials, Performance,
Unlimited, and Developer
Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

Customize Application AND either

Modify All Data OR Manage Connected Apps

To read, create, update, or delete connected
apps:

Customize Application AND either

Modify All Data OR Manage Connected Apps

To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

Customize Application AND Modify All Data
AND Manage Profiles and Permission Sets

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

Allow consumer key and secret rotationTo rotate the consumer key and consumer
secret:

Customize Application AND either

Modify All Data OR Manage Connected Apps

To install and uninstall connected apps:

7

Step 2. Creating a Connected AppSteps for Implementing Mobile Notifications

https://developer.apple.com/library/mac
http://www.raywenderlich.com/32960/
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

Customize Application AND either

Modify All Data OR Manage Connected Apps

To install and uninstall packaged connected apps:

AND Download AppExchange Packages

Once you’ve registered your mobile app with the OS vendor’s push service, the next step is to create a connected app in Salesforce.

The Salesforce connected app enables you to provide the registration certificate or token of your mobile client app so that Salesforce
can send push notifications. Also, the connected app provides the unique API name that identifies the mobile app to send notifications
to.

IN THIS SECTION:

Create a Connected App for Android

Create a Connected App for Apple iOS

Testing Your Connected App Push Configuration

To run a quick test of your push notification setup, use the Send Test Notification page. Troubleshoot round-trip push notifications
in a synchronous mechanism without having to configure custom notification types, Apex calls, or REST calls. You can also gain
insights into what’s going on behind the scenes in the asynchronous environment of real-world push notifications.

Create a Connected App for Android
To create a connected app, log in to your Salesforce Developer Edition org and complete these steps.

1. From Setup, in the Quick Find box, enter Apps, and then select Apps.

2. In the Connected Apps section, either click Edit next to an existing connected app, or click New to create a new connected app.

3. If you’re creating a new connected app:

a. Enter a unique name for your connected app. The API name field is auto-filled.

b. Optionally, fill in other fields, such as a description for your connected app.

c. Enter a contact email address.

d. In the OAuth Settings section, select Enable OAuth Settings.

e. Enter a callback URL.

f. Select OAuth scopes. At a minimum, select Access and manage your data (api) and Perform requests on your behalf at
any time (refresh_token).

4. Under Mobile App Settings, select Push Messaging.

5. For Platform, select Android.

1. Note: As of Spring ’24, the Mobile App Settings section includes a field for the legacy Firebase Cloud Messaging (FCM) API
server key. However, legacy Cloud Messaging API users are required to migrate to the new Firebase Cloud Messaging API
(HTTP v1) by June 2024. We recommend that you submit the Firebase Admin SDK private key and project ID required for the
new Firebase Cloud Messaging API (HTTP v1).

To configure Android push notifications using HTTP v1, complete these steps.

a. For Firebase Admin SDK Private Key, upload the JSON file that contains the private key that you generated for your Firebase
service account.

8

Create a Connected App for AndroidSteps for Implementing Mobile Notifications

https://firebase.google.com/docs/cloud-messaging/migrate-v1
https://firebase.google.com/docs/cloud-messaging/migrate-v1
https://help.salesforce.com/s/articleView?id=sf.connected_app_mobile_push_notifications_android.htm&type=5&language=en_US

b. For Project ID, enter the project ID that you collected from the Firebase project.

To use the legacy FCM API instead, complete this step. However, we recommend that you migrate from legacy FCM APIs to HTTP
v1 after sufficient testing.

a. For Server Key, enter the key that you obtained during the developer registration with FCM.

6. Save your work.
After saving a new connected app, you get a consumer key. Mobile apps use this key as their connection token.

Create a Connected App for Apple iOS
To create a connected app, log in to your Salesforce Developer Edition org and perform these steps.

1. From Setup, enter Apps in the Quick Find box, then select Apps.

2. In the Connected Apps section, click either Edit next to an existing connected app, or New to create a new connected app.

3. If you’re creating a new connected app:

a. Enter a unique name for your connected app. The API name field is auto-filled.

b. Optionally, fill in other fields, such as a description for your connected app.

c. Enter a contact email address.

d. In the OAuth Settings section, select Enable OAuth Settings.

e. Enter a callback URL.

f. Select OAuth scopes. At a minimum, select Access and manage your data (api) and Perform requests on your behalf at
any time (refresh_token).

4. Under Mobile App Settings, select Push Messaging Enabled.

5. For Platform, select Apple.

When you select the Apple option, the dialog expands to show more settings.

6. Upload the Signing Key from your Apple developer account.

7. Enter the Key Identifier from your Apple developer account.

8. Enter the Team Identifier from your Apple developer account.

9

Create a Connected App for Apple iOSSteps for Implementing Mobile Notifications

https://firebase.google.com/docs/cloud-messaging/migrate-v1
https://firebase.google.com/docs/cloud-messaging/migrate-v1

Note: You can use authentication tokens, push certificates, or both. If a token is provided, Salesforce always uses the token.
We also use Application Bundle ID when it is provided. We recommend using Application Bundle ID to avoid problems with
your push notification settings.

Testing Your Connected App Push Configuration

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Essentials, Performance,
Unlimited, and Developer
Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

To send a push notification
from the Test Push
Notifications page:
• Author Apex

AND

Manage Connected
Apps

To run a quick test of your push notification setup, use the Send Test Notification page. Troubleshoot
round-trip push notifications in a synchronous mechanism without having to configure custom
notification types, Apex calls, or REST calls. You can also gain insights into what’s going on behind
the scenes in the asynchronous environment of real-world push notifications.

About the Send Test Notification Page
The Send Test Notification page uses information from your Apple Push Notification Service (APNS)
or Firebase Cloud Messaging (FCM) for Android setup to configure a synchronous push mechanism.
You select a device to receive the push notification by entering a connection token string. If you
don’t know the token string, you can use the Search tool to select from the list of devices that are
registered for your connected app. The Search tool automatically displays the five most recently
registered devices. You can also enter a user’s name to search for devices that are registered to that
user.

For Android FCM push notifications, you can select the Dry Run option to test your FCM setup. This
option sends the notification to the FCM server but doesn’t forward it to a device.

You can use any JSON-formatted payload for a dry-run test. For example, you can start with
something as simple as {"alert": "test"}.

Each push attempt returns a status message that indicates success or failure.

To reach the test page:

1. In Setup, enter Apps in the Quick Find box, then select Apps.

2. Click the name of your connected app.

3. Click Send test notification next to Supported Push Platform. This link appears only if you’ve
configured your connected app to support mobile push notifications.

Important: Successful test push notifications apply against the push notification daily limits
for your organization.

10

Testing Your Connected App Push ConfigurationSteps for Implementing Mobile Notifications

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

IN THIS SECTION:

Send Test Push Notifications to APNS

To run a quick test of your push notification setup for Apple Push Notification Service (APNS), use the Send Test Notification page.

Send Test Push Notifications to FCM for Android

To run a quick test of your push notification setup for Firebase Cloud Messaging (FCM) for Android, use the Test Push Notifications
page.

Check a User's Mobile Push Registrations

From a User page in your organization, an administrator can easily check which of the user’s devices are currently registered for push
notifications. Checking the registrations may help you troubleshoot push notification failures.

SEE ALSO:

Error Messages for Push Notifications

Push Notification Limits

Send Test Push Notifications to APNS

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Connected Apps can be
created in: Group,
Essentials, Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

Connected Apps can be
installed in: All editions

USER PERMISSIONS

Customize Application AND either

Modify All Data OR Manage Connected Apps

To read, create, update, or delete connected
apps:

Customize Application AND either

Modify All Data OR Manage Connected Apps

To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

Customize Application AND Modify All Data
AND Manage Profiles and Permission Sets

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

Allow consumer key and secret rotationTo rotate the consumer key and consumer
secret:

Customize Application AND either

Modify All Data OR Manage Connected Apps

To install and uninstall connected apps:

Download AppExchange Packages AND
Customize Application AND either

Modify All Data OR Manage Connected Apps

To install and uninstall packaged connected
apps:

To run a quick test of your push notification setup for Apple Push Notification Service (APNS), use the Send Test Notification page.

1. In Setup, enter Apps in the Quick Find box, then select Apps.

2. Click the name of your connected app.

3. Click Send test notification next to Supported Push Platform. This link appears only if you’ve configured your connected app to
support mobile push notifications.

4. Enter a connection token string in the Recipient field, OR search for a recipient by clicking Search , and then select one of
the search results. By default, the Search results list displays the five devices most recently registered for your connected app.

11

Testing Your Connected App Push ConfigurationSteps for Implementing Mobile Notifications

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

a. To find other devices, enter a user name in the Search text box.

b. Click Go to generate a list of all devices currently registered under that user name.

5. Optionally, for Alert, enter an alert message or dictionary per Apple’s specifications.

6. For Badge, enter a badge number or 0 for no badge.

7. For Sound, enter the name of a sound file in the application bundle, or enter default to use the system default alert sound.

8. Optionally, to use a custom payload, enter your payload’s JSON value in the Custom Payload field.

9. Click Send to send the test push notification, or click Clear to reset the form.

Send Test Push Notifications to FCM for Android

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Connected Apps can be
created in: Group,
Essentials, Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

Connected Apps can be
installed in: All editions

USER PERMISSIONS

Customize Application AND either

Modify All Data OR Manage Connected Apps

To read, create, update, or delete connected
apps:

Customize Application AND either

Modify All Data OR Manage Connected Apps

To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

Customize Application AND Modify All Data
AND Manage Profiles and Permission Sets

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

Allow consumer key and secret rotationTo rotate the consumer key and consumer
secret:

Customize Application AND either

Modify All Data OR Manage Connected Apps

To install and uninstall connected apps:

Download AppExchange Packages AND
Customize Application AND either

Modify All Data OR Manage Connected Apps

To install and uninstall packaged connected
apps:

To run a quick test of your push notification setup for Firebase Cloud Messaging (FCM) for Android, use the Test Push Notifications page.

1. In Setup, enter Apps in the Quick Find box, then select Apps.

2. Click the name of your connected app.

3. Click Send test notification next to Supported Push Platform. This link appears only if you’ve configured your connected app to
support mobile push notifications.

4. Enter a connection token string in the Recipient field, OR search for a recipient by clicking Search , and then select one of
the search results. By default, the Search results list displays the five devices most recently registered for your connected app.

a. To find other devices, enter a user name in the Search text box.

b. Click Go to generate a list of all devices currently registered under that user name.

5. For Payload, enter a JSON value that contains your message.

6. To send the push notification to the FCM server only, select Dry Run.

12

Testing Your Connected App Push ConfigurationSteps for Implementing Mobile Notifications

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

7. Click Send to send the test push notification, or click Clear to reset the form.

Check a User's Mobile Push Registrations
From a User page in your organization, an administrator can easily check which of the user’s devices are currently registered for push
notifications. Checking the registrations may help you troubleshoot push notification failures.

1. In Setup, enter Users in the Quick Find box, then select Users.

2. Select a user’s name from the Full Name column.

3. Under User Detail, click View next to Mobile Push Registrations.

Note: If a device you expected doesn’t appear in the list, it doesn’t necessarily mean that the device isn’t properly configured.
Mobile push registrations are volatile and depend on the device state as well as the mobile app state.

Step 3. Configure Your Mobile SDK App

In your Mobile SDK app, implement push notification protocols required by Salesforce and the device OS provider.

Follow the instructions for your target mobile platform (Android, iOS, or hybrid).

IN THIS SECTION:

Enable Push Notifications in a Salesforce Mobile SDK Android App

Enable Push Notifications in a Salesforce Mobile SDK iOS App

Enable Push Notifications in a Salesforce Mobile SDK Hybrid App

Handle Notification Encryption in Salesforce Mobile SDK Apps

Mobile notifications travel from Salesforce, through third-party messaging services to mobile carriers, then on to mobile devices.
Such an indirect path only increases the opportunities for malicious attacks. To guard against snooping or hacking, Salesforce encrypts
Notification Builder notifications. Your app is responsible for decrypting these notifications.

Build Your Own In-App Notification Feature

If you use the Salesforce mobile app, you’re familiar with the Salesforce Bell. The Bell provides an in-app notification tray that lists
the current user’s most recent notifications. With Salesforce Notification APIs, you can design and build your own tray.

Enable Push Notifications in a Salesforce Mobile SDK Android App
1. Add an entry for androidPushNotificationClientId.

a. In res/values/bootconfig.xml (for native apps):

<string name="androidPushNotificationClientId">1234567890</string>

b. In assets/www/bootconfig.json (for hybrid apps):

"androidPushNotificationClientId": "1234567890"

This example value represents the project number of the Google project that is authorized to send push notifications to Android
devices.

13

Step 3. Configure Your Mobile SDK AppSteps for Implementing Mobile Notifications

Note: Behind the scenes, Mobile SDK automatically reads this value and uses it to register the device against the Salesforce
connected app. Each time the user re-opens the app, Mobile SDK automatically renews the registration. This validation allows
Salesforce to send notifications to the connected app.

A device becomes unregistered if:

• The app goes unused for an extended period of time

OR

• The user logs out of the app

2. Create a class in your app that implements PushNotificationInterface. PushNotificationInterface is a
Mobile SDK Android interface for handling push notifications. PushNotificationInterface has a single method,
onPushMessageReceived(Bundle message).

public interface PushNotificationInterface {
public void onPushMessageReceived(Bundle message);

}

In this method you implement your custom functionality for displaying, or otherwise disposing of, push notifications.

3. In the onCreate() method of your Application subclass, call the
SalesforceSDKManager.setPushNotificationReceiver() method, passing in your implementation of
PushNotificationInterface. Call this method immediately after the SalesforceSDKManager.initNative()
call.

@Override
public void onCreate() {

super.onCreate();
SalesforceSDKManager.initNative(getApplicationContext(),

new KeyImpl(), MainActivity.class);
SalesforceSDKManager.getInstance().

setPushNotificationReceiver(myPushNotificationInterface);
}

Enable Push Notifications in a Salesforce Mobile SDK iOS App
Salesforce Mobile SDK for iOS provides the SFPushNotificationManager class to handle push registration. To use it, import
<SalesforceSDKCore/SFPushNotificationManager>. The SFPushNotificationManager class is available
as a runtime singleton:

Swift

PushNotificationManager.sharedInstance()

Objective-C

[SFPushNotificationManager sharedInstance]

This class implements four registration methods:

Swift

func registerForRemoteNotifications()

14

Enable Push Notifications in a Salesforce Mobile SDK iOS AppSteps for Implementing Mobile Notifications

func application(_ application: UIApplication,
didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data)

func registerSalesforceNotifications(completionBlock: (() → Void)?,
fail: (() → Void)?)

func unregisterSalesforceNotifications(withCompletionBlock: UserAccount,
completionBlock: (() → Void)?) // for internal use

Objective-C

- (void)registerForRemoteNotifications;
- (void)didRegisterForRemoteNotificationsWithDeviceToken:

(NSData*)deviceTokenData;
- (BOOL)registerForSalesforceNotifications; // for internal use
- (BOOL)unregisterSalesforceNotifications; // for internal use

Mobile SDK calls registerForSalesforceNotifications after login and unregisterSalesforceNotifications
at logout. You call the other two methods from your AppDelegate class.

Mobile SDK 8.2 updates the push notification implementation to use the iOS UNUserNotificationCenter class. This class
authorizes the calling app to receive push notifications from APNS. Mobile SDK iOS template apps request authorization for alerts, sounds,
and badges.

To decode encrypted notifications, you extend the iOS UNNotificationServiceExtension class. Mobile SDK provides a
special app template that includes the boilerplate extension code for you to copy. See Handle Notification Encryption in Salesforce
Mobile SDK Apps.

1. In your AppDelegate class, create an instance method named - (void) registerForRemotePushNotifications.

a. In this method, request authorization to receive push notifications.

- (void)registerForRemotePushNotifications {
[[UNUserNotificationCenter currentNotificationCenter]

requestAuthorizationWithOptions:(UNAuthorizationOptionSound |
UNAuthorizationOptionAlert |
UNAuthorizationOptionBadge)

completionHandler:^(BOOL granted,
NSError * _Nullable error) {

if (granted) {

} else {

}

if (error) {

}
}];

}

b. If authorization is granted, call the SFPushNotificationManager registerForRemoteNotifications
method. If authorization isn’t granted or the operation returned an error, log the appropriate error messages.

- (void)registerForRemotePushNotifications {
[[UNUserNotificationCenter currentNotificationCenter]

requestAuthorizationWithOptions:(UNAuthorizationOptionSound |

15

Enable Push Notifications in a Salesforce Mobile SDK iOS AppSteps for Implementing Mobile Notifications

UNAuthorizationOptionAlert |
UNAuthorizationOptionBadge)

completionHandler:^(BOOL granted,
NSError * _Nullable error) {

if (granted) {
// All good!
dispatch_async(dispatch_get_main_queue(), ^{

[[SFPushNotificationManager sharedInstance]
registerForRemoteNotifications];

});
} else {

// Authorization not granted
[SFLogger d:[self class]

format:@"Push notification authorization denied"];
}

if (error) {
// Operation failed with error message
[SFLogger e:[self class]

format:@"Push notification authorization error: %@",
error];

}
}];

}

2. Call your registerForRemotePushNotifications in the
application:didFinishLaunchingWithOptions: method.

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
self.window = [[UIWindow alloc]

initWithFrame:[UIScreen mainScreen].bounds];
[self initializeAppViewState];

[self registerForRemotePushNotifications];

[[SFAuthenticationManager sharedManager]
loginWithCompletion:self.initialLoginSuccessBlock

failure:self.initialLoginFailureBlock];

return YES;
}

If registration succeeds, Apple passes a device token to the
application:didRegisterForRemoteNotificationsWithDeviceToken: method of your AppDelegate
class.

3. In the application:didRegisterForRemoteNotificationsWithDeviceToken: method, register the device
token from Apple with Mobile SDK’s push notification manager.

16

Enable Push Notifications in a Salesforce Mobile SDK iOS AppSteps for Implementing Mobile Notifications

a. Call the SFPushNotificationManager didRegisterForRemoteNotificationsWithDeviceToken:
method.

- (void)application:(UIApplication*)application
didRegisterForRemoteNotificationsWithDeviceToken:

(NSData*)deviceToken
{

[[SFPushNotificationManager sharedInstance]
didRegisterForRemoteNotificationsWithDeviceToken:deviceToken];

}

b. If the current user’s access token exists, call the SFPushNotificationManager
registerSalesforceNotificationsWithCompletionBlock:failBlock: method.

- (void)application:(UIApplication*)application
didRegisterForRemoteNotificationsWithDeviceToken:

(NSData*)deviceToken
{

[[SFPushNotificationManager sharedInstance]
didRegisterForRemoteNotificationsWithDeviceToken:deviceToken];

if ([SFUserAccountManager sharedInstance].
currentUser.credentials.accessToken != nil) {

[[SFPushNotificationManager sharedInstance]
registerSalesforceNotificationsWithCompletionBlock:nil

failBlock:nil];
}

}

4. To log an error if registration with Apple fails, implement the
application:didFailToRegisterForRemoteNotificationsWithError: method.

- (void)application:(UIApplication*)application
didFailToRegisterForRemoteNotificationsWithError:

(NSError*)error
{

// Example of an implementation
[SFLogger e:[self class] format:@"Push notification authorization error: %@", error];

}

Enable Push Notifications in a Salesforce Mobile SDK Hybrid App
1. (Android only) If your target platform is Android:

a. Add an entry for androidPushNotificationClientId. In assets/www/bootconfig.json:

"androidPushNotificationClientId": "33333344444"

This value is the project number of the Google project that is authorized to send push notifications to an Android device.

17

Enable Push Notifications in a Salesforce Mobile SDK Hybrid
App

Steps for Implementing Mobile Notifications

2. In your callback for cordova.require("com.salesforce.plugin.oauth").getAuthCredentials(), add
the following code:

cordova.require("com.salesforce.util.push").registerPushNotificationHandler(
function(message) {

// add code to handle notifications
},
function(error) {

// add code to handle errors
}

);

Example: This code demonstrates how you might handle messages. The server delivers the payload in message["payload"].

function(message) {
var payload = message["payload"];
if (message["foreground"]) {

// Notification is received while the app is in
// the foreground
// Do something appropriate with payload

}
if (!message["foreground"]) {

// Notification was received while the app was in
// the background, and the notification was clicked,
// bringing the app to the foreground
// Do something appropriate with payload

}
}

Handle Notification Encryption in Salesforce Mobile SDK Apps
Mobile notifications travel from Salesforce, through third-party messaging services to mobile carriers, then on to mobile devices. Such
an indirect path only increases the opportunities for malicious attacks. To guard against snooping or hacking, Salesforce encrypts
Notification Builder notifications. Your app is responsible for decrypting these notifications.

Setting up encryption for notifications requires no configuration on the server. For client-side decryption, Salesforce Mobile SDK does
most of the work for you. Mobile SDK negotiates the encryption policy with the Salesforce server and internally handles the exchange
of public and private keys.

Your tasks for notification decryption on client apps depends on the mobile operating system.

iOS
Apps that are registered for Salesforce notifications must extend the UNNotificationServiceExtension class. A specialized
Mobile SDK template app provides a boilerplate extension that you can bring into your iOS app, provided you’re using Mobile SDK
8.2 or later. Earlier versions of Mobile SDK do not fully support notification encryption.

Android
Mobile SDK for Android handles decryption internally and requires no client-side code changes.

Implementing a Decryption Extension (Swift)
In Mobile SDK 8.2 and later, the forceios iOSNativeSwiftTemplate app requests notification authorization through the iOS
UNUserNotificationCenter object. A specialized version of iOSNativeSwiftTemplate,
iOSNativeSwiftEncryptedNotificationTemplate, extends the UNNotificationServiceExtension iOS class to handle notification

18

Handle Notification Encryption in Salesforce Mobile SDK AppsSteps for Implementing Mobile Notifications

https://github.com/forcedotcom/SalesforceMobileSDK-Templates/tree/master/iOSNativeSwiftTemplate/iOSNativeSwiftTemplate
https://github.com/forcedotcom/SalesforceMobileSDK-Templates/tree/dev/iOSNativeSwiftEncryptedNotificationTemplate

decryption. This extension class, NotificationService, provides boilerplate decryption code that Mobile SDK apps can use
without changes. To support encrypted notifications, you must be using Mobile SDK 8.2 or later, and your app must include this extension.

To create a Swift project that supports Notification Builder encrypted notifications, you can use the
iOSNativeSwiftEncryptedNotificationTemplate template with forceios. Even if you’re updating an existing Mobile
SDK project, it’s easiest to start fresh with a new forceios template project. If you’d rather update a Swift project manually, skip to “Example:
Add Push Registration Manually (Swift)”.

1. Install the latest forceios version from node.js:

[sudo] npm install -g forceios

2. Call the forceios createWithTemplate command:

forceios createWithTemplate

3. At the first prompt, enter iOSNativeSwiftEncryptedNotificationTemplate:

forceios createWithTemplate
Enter URI of repo containing template application or a Mobile SDK template name:

iOSNativeSwiftEncryptedNotificationTemplate

4. In the remaining prompts, enter your company and project information. If your information is accepted, forceios creates a project
that is ready for encrypted notifications.

5. If you’re updating an older Mobile SDK project, copy your app-specific resources from your old project into the new project.

See Also
• UNNotificationServiceExtension at developer.apple.com

Build Your Own In-App Notification Feature
If you use the Salesforce mobile app, you’re familiar with the Salesforce Bell. The Bell provides an in-app notification tray that lists the
current user’s most recent notifications. With Salesforce Notification APIs, you can design and build your own tray.

Queries calculate results from stored Notification Builder notifications. Salesforce provides REST APIs for the following Notification queries.

Notification
Get a specific notification for the context user.

Notifications
Get notifications for the context user.

Notifications Status
Get the “read” and “seen” properties a range of notifications.

Notification Update
Update the “read” and “seen” properties of a specific notification.

Notifications Update
Update the “read” and “seen” properties of a range of notifications.

For example, using these APIs, an app can

• Display a list of notifications (Notifications)

• When the customer taps a list entry, display the details of a single notification (Notification)

19

Build Your Own In-App Notification FeatureSteps for Implementing Mobile Notifications

https://github.com/forcedotcom/SalesforceMobileSDK-Templates/blob/master/iOSNativeSwiftEncryptedNotificationTemplate/NotificationServiceExtension/NotificationService.swift
https://developer.apple.com/documentation/usernotifications/unnotificationserviceextension
https://developer.apple.com/documentation

• Set the state of a widget that indicates whether a notification has been read or seen (Notification)

• Report how many notifications the customer hasn’t read or seen (Notifications Status)

• Update the “read” or “seen” properties on one or more notifications after the customer visits your tray (Notification Update, Notifications
Update)

Custom In-App Notification Tray Template App
If you’re looking for a head start in Swift, Mobile SDK provides an example of a custom notifications tray in the MobileSyncExplorerSwift
template app. You can create your own app based on this template with the forceios createwithtemplate CLI command:

1. Install the latest forceios version from node.js:

[sudo] npm install -g forceios

2. Call the forceios createWithTemplate command:

forceios createWithTemplate

3. At the first prompt, enter MobileSyncExplorerSwift:

forceios createWithTemplate
Enter URI of repo containing template application or a Mobile SDK template name:

MobileSyncExplorerSwift

4. In the remaining prompts, enter your company and project information. If your information is accepted, forceios creates a project
with a notifications tray that you can customize.

5. If you’re updating an older Mobile SDK project, copy your app-specific resources from your old project into the new project.

See the Reference section for more information on Notification APIs.

Mobile SDK iOS Wrappers for Notification APIs
On iOS, Mobile SDK defines convenience methods for Notification APIs in the following classes:

Swift

RestClient

Objective-C

SFRestApi

The following methods are currently available for native apps only.

Notification
Get a notification.

Delegate Method

Swift

RestClient.shared.request(forNotification:apiVersion:)

20

Build Your Own In-App Notification FeatureSteps for Implementing Mobile Notifications

https://github.com/forcedotcom/SalesforceMobileSDK-Templates/tree/master/MobileSyncExplorerSwift

Objective-C

- (SFRestRequest *)requestForNotification:(NSString *)notificationId apiVersion:(NSString
*)apiVersion;

Block Method

Not available.

Notifications Status
Get the status of a range of notifications, including unread and unseen count.

Delegate Method

Swift

RestClient.shared.request(forNotificationsStatus:)

Objective-C

- (SFRestRequest *)requestForNotificationsStatus:(NSString *)apiVersion;

Block Method

Not available.

Notifications
Get the given number (maximum 20) of archived Notification Builder notifications based on the given “before” or “after” date. In Mobile
SDK, use the Swift FetchNotificationsRequestBuilder object or the Objective-C
SFSDKFetchNotificationsRequestBuilder to create GET requests for notifications.

Delegate Method

Swift

let builder = FetchNotificationsRequestBuilder.init()
builder.setSize(10)
builder.setBefore(Date.init())
let request = builder.buildFetchNotificationsRequest(SFRestDefaultAPIVersion)

Objective-C

SFSDKFetchNotificationsRequestBuilder *builder =
[[SFSDKFetchNotificationsRequestBuilder alloc] init];

[builder setBefore: [NSDate date]];
[builder setSize:10];
SFRestRequest *fetchRequest =

[builder buildFetchNotificationsRequest:kSFRestDefaultAPIVersion];

Block Method

Not available.

21

Build Your Own In-App Notification FeatureSteps for Implementing Mobile Notifications

Notifications Update
Update the “read” and “seen” statuses of a given set of Notification Builder notifications. In Mobile SDK, use the Swift
UpdateNotificationsRequestBuilder object or the Objective-C SFSDKUpdateNotificationsRequestBuilder
object to create update requests.

To update a single notification, set the notificationId property. To update a range of notifications, set either the
notificationIds or the before property. These properties—notificationId, notificationIds, and before—are
mutually exclusive.

Delegate Method

Swift

let builder = UpdateNotificationsRequestBuilder.init()
builder.setBefore(Date.init())
builder.setRead(true)
builder.setSeen(true)
let request = builder.buildUpdateNotificationsRequest(SFRestDefaultAPIVersion)

Objective-C

SFSDKUpdateNotificationsRequestBuilder *builder =
[[SFSDKUpdateNotificationsRequestBuilder alloc] init];

[builder setRead:true];
[builder setSeen:true];
[builder setBefore: [NSDate date]];
SFRestRequest *updateRequest = [builder
buildUpdateNotificationsRequest:kSFRestDefaultAPIVersion];

Block Method

Not available.

Mobile SDK Android Wrappers for Notification APIs
On Android, the RestRequest class defines the following convenience wrappers for Notification APIs.

Notification
Get a notification.

public static RestRequest getRequestForNotification(String apiVersion,
String notificationId)

Notification Update
Update the “read” and “seen” statuses of a given Notification Builder notification.

public static RestRequest getRequestForNotificationUpdate(String apiVersion,
String notificationId, Boolean read, Boolean seen)

22

Build Your Own In-App Notification FeatureSteps for Implementing Mobile Notifications

Notifications
Get the given number (maximum 20) of archived Notification Builder notifications based on the given “before” or “after” date.

public static RestRequest getRequestForNotifications(String apiVersion,
Integer size, Date before, Date after)

Notifications Status
Get the status of a range of notifications, including unread and unseen count.

public static RestRequest getRequestForNotificationsStatus(String apiVersion)

Notifications Update
Update the “read” and “seen” statuses of a given set of Notification Builder notifications.

* public static RestRequest getRequestForNotificationsUpdate(String apiVersion,
List<String> notificationIds, Date before, Boolean read, Boolean seen)

Step 4. Packaging Components for Customer Organizations

To distribute the Apex triggers and the connected app to customers, partners can create a managed package.

When customers install your managed package, they will be able to send push notifications to the connected app from their organizations
when certain events occur on Salesforce records, such as updating records.

Note: Customers who install a managed package containing a connected app provided by a partner can’t write their own Apex
triggers to send push notifications to the connected app. This is to safeguard the partner’s registration with the mobile OS vendor
from abuse.

23

Step 4. Packaging Components for Customer OrganizationsSteps for Implementing Mobile Notifications

SENDING MOBILE NOTIFICATIONS

To send mobile notifications, Salesforce offers several options: Apex, REST API, and, in some cases, declarative feature-based tools. The
type of notification, the delivery channel, and your skill comfort levels guide your choice.

Send Apex push notifications with the Messaging.PushNotification methods in Apex triggers, or through the
PushNotifications API.

You can send custom notifications through the customNotificationAction API, Process Builder, or Flow.

See Also

• Send Mobile Push Notifications

• Considerations for Notification Builder

• Send Custom Notifications with Notification Builder Platform

• Other Ways to Send a Custom Notification

Using Apex Triggers to Send Push Notifications

After registering with the mobile OS vendor for push notification service and creating a connected app, you can send push notifications
to a mobile client app using Apex triggers.

Note: Legacy Cloud Messaging API users are required to migrate to the new Firebase Cloud Messaging API (HTTP v1) by June
2024. We recommend that you test your app’s compatibility with HTTP v1 before migrating.

Push notification triggers use methods in the Apex Messaging.PushNotification and
Messaging.PushNotificationPayload classes. The connected app in the Salesforce organization represents the mobile
client app that will receive the notifications.

Important: To send push notifications to a connected app, either of the following conditions must be met:

• Apex triggers are added in the same organization in which the connected app is created.

• Apex triggers are installed as part of a partner-provided managed package, along with the connected app.

Sample Apex Trigger
This sample Apex trigger sends push notifications to the connected app named Test_App, which corresponds to a mobile app on
iOS mobile clients. The trigger fires after cases have been updated and sends the push notification to two users: the case owner and the
user who last modified the case.

trigger caseAlert on Case (after update) {

for(Case cs : Trigger.New)
{

// Instantiating a notification
Messaging.PushNotification msg =

new Messaging.PushNotification();

24

https://help.salesforce.com/articleView?id=notif_builder_custom_process.htm&language=en_US
https://help.salesforce.com/articleView?id=flow_ref_elements_actions_sendcustomnotification.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_mobile_push_notifications.htm&language=en_US
https://help.salesforce.com/articleView?id=notif_builder_considerations.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_notifications_custom.htm&language=en_US
https://help.salesforce.com/articleView?id=notif_builder_custom_other.htm&language=en_US
https://firebase.google.com/docs/cloud-messaging/migrate-v1
https://firebase.google.com/docs/cloud-messaging/migrate-v1

// Assembling the necessary payload parameters for Apple.
// Apple params are:
// (<alert text>,<alert sound>,<badge count>,
// <free-form data>)
// This example doesn't use badge count or free-form data.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.
Map<String, Object> payload =

Messaging.PushNotificationPayload.apple(
'Case ' + cs.CaseNumber + ' status changed to: '
+ cs.Status, '', null, null);

// Adding the assembled payload to the notification
msg.setPayload(payload);

// Getting recipient users
String userId1 = cs.OwnerId;
String userId2 = cs.LastModifiedById;

// Adding recipient users to list
Set<String> users = new Set<String>();
users.add(userId1);
users.add(userId2);

// Sending the notification to the specified app and users.
// Here we specify the API name of the connected app.
msg.send('Test_App', users);

}
}

Sample Android Payload
The trigger sample uses Messaging.PushNotificationPayload to create a payload for an iOS notification. Unlike iOS,
Android doesn’t have special attributes or requirements for the payload; it just needs to be in JSON format. In Apex, you create the
Android payload as a MAP<String,ANY> object. The Messaging.PushNotification class handles conversion to JSON. Here’s
a sample Android payload.

Map<String, Object> androidPayload = new Map<String, Object>();
androidPayload.put('number', '1');
androidPayload.put('name', 'test');

PushNotification Class
PushNotification is used to configure push notifications and send them from an Apex trigger.

Namespace
Messaging

25

PushNotification ClassSending Mobile Notifications

Example
This sample Apex trigger sends push notifications to the connected app named Test_App, which corresponds to a mobile app on
iOS mobile clients. The trigger fires after cases have been updated and sends the push notification to two users: the case owner and the
user who last modified the case.

trigger caseAlert on Case (after update) {

for(Case cs : Trigger.New)
{

// Instantiating a notification
Messaging.PushNotification msg =

new Messaging.PushNotification();

// Assembling the necessary payload parameters for Apple.
// Apple params are:
// (<alert text>,<alert sound>,<badge count>,
// <free-form data>)
// This example doesn't use badge count or free-form data.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.
Map<String, Object> payload =

Messaging.PushNotificationPayload.apple(
'Case ' + cs.CaseNumber + ' status changed to: '
+ cs.Status, '', null, null);

// Adding the assembled payload to the notification
msg.setPayload(payload);

// Getting recipient users
String userId1 = cs.OwnerId;
String userId2 = cs.LastModifiedById;

// Adding recipient users to list
Set<String> users = new Set<String>();
users.add(userId1);
users.add(userId2);

// Sending the notification to the specified app and users.
// Here we specify the API name of the connected app.
msg.send('Test_App', users);

}
}

PushNotification Constructors
The following are the constructors for PushNotification.

PushNotification()

Creates a new instance of the Messaging.PushNotification class.

26

PushNotification ClassSending Mobile Notifications

Signature

public PushNotification()

PushNotification(payload)

Creates a new instance of the Messaging.PushNotification class using the specified payload parameters as key-value pairs.
When you use this constructor, you don’t need to call setPayload to set the payload.

Signature

public PushNotification(Map<String,Object> payload)

Parameters

payload
Type:Map<String, Object>

The payload, expressed as a map of key-value pairs.

PushNotification Methods
The following are the methods for PushNotification. All are global methods.

send(application, users)

Sends a push notification message to the specified users.

Signature

public void send(String application, Set<String> users)

Parameters

application
Type: String

The connected app API name. This corresponds to the mobile client app the notification should be sent to.

users
Type: Set

A set of user IDs that correspond to the users the notification should be sent to.

Example

See the Push Notification Example.

setPayload(payload)

Sets the payload of the push notification message.

27

PushNotification ClassSending Mobile Notifications

Signature

public void setPayload(Map<String,Object> payload)

Parameters

payload
Type: Map<String, Object>

The payload, expressed as a map of key-value pairs.

Payload parameters can be different for each mobile OS vendor. For more information on Apple’s payload parameters, search for
“Apple Push Notification Service” at https://developer.apple.com/library/mac/documentation/.

To create the payload for an Apple device, see the PushNotificationPayload Class.

Example

See the Push Notification Example.

setTtl(ttl)

Reserved for future use.

Signature

public void setTtl(Integer ttl)

Parameters

ttl
Type: Integer

Reserved for future use.

Push Notifications Resource
Send a mobile push notification to connected apps on users’ devices. This resource is only accessible when the session is established
with a connected app that is developed in the same organization or installed in the same package as the recipient’s connected app.

Resource

/connect/notifications/push

Available version
31.0

HTTP methods
POST

Request body for POST

Root XML tag
<pushNotification>

28

Push Notifications ResourceSending Mobile Notifications

https://developer.apple.com/library/mac/documentation

JSON example

{ "appName" : "TestApp",
"namespace" : "abc",
"userIds" : ["005x00000013dPK", "005x00000013dPL"],
"payload" : "{'aps':{'alert':'test', 'badge':0, 'sound':'default'}}"

}

Properties

Available
Version

Required or
Optional

DescriptionTypeName

31.0RequiredThe API name of the connected app that
the push notification is sent to.

StringappName

31.0Required if the
namespace is set

The namespace of the connected app
that the push notification is sent to.

Stringnamespace

31.0RequiredThe push notification payload in JSON
format.

Stringpayload

31.0RequiredThe push notification recipient user ids.String[]userIds

Request parameters for POST

Available
Version

Required or
Optional

DescriptionTypeParameter
Name

31.0RequiredThe API name of the connected app that
the push notification is sent to.

StringappName

31.0Required if the
namespace is set

The namespace of the connected app that
the push notification is sent to.

Stringnamespace

31.0RequiredThe push notification payload in JSON
format.

Stringpayload

31.0RequiredThe push notification recipient user ids.String[]userIds

Custom Notification Actions

Send custom notifications to recipients via desktop or mobile channels.

Before you send a custom notification, you must first create a notification type.

Important: In orgs created in Winter ’21 or later, the Send Custom Notifications user permission is required to trigger the Send
Custom Notification action in flows that run in user context, REST API calls, and Apex callouts.

The Send Custom Notifications user permission isn’t required to trigger the Send Custom Notification action in processes or flows
that run in system context.

This object is available in API version 46.0 and later.

29

Custom Notification ActionsSending Mobile Notifications

https://help.salesforce.com/articleView?id=flow_distribute_context.htm&type=5&language=en_US

Supported REST HTTP Methods
URI

/services/data/vXX.X/actions/standard/customNotificationAction

Formats
JSON, XML

HTTP Methods
GET, HEAD, POST

Authentication
Authorization: Bearer token

Inputs

DetailsInput

Type
reference

customNotifTypeId

Description
Required. The ID of the Custom Notification Type being used for the notification.

Type
reference

recipientIds

Description
Required. The ID of the recipient or recipient type of the notification. Valid recipient or recipient
type values are:

• UserId — The notification is sent to this user, if this user is active.

• AccountId — The notification is sent to all active users who are members of this account’s
Account Team.

This recipient type is valid if account teams are enabled for your org.

• OpportunityId — The notification is sent to all active users who are members of this
opportunity’s Opportunity Team.

This recipient type is valid if team selling is enabled for your org.

• GroupId — The notification is sent to all active users who are members of this group.

• QueueId — The notification is sent to all active users who are members of this queue.

Values can be combined in a list up to the maximum of 500 values.

Type
reference

senderId

Description
Optional. The User ID of the sender of the notification.

30

Custom Notification ActionsSending Mobile Notifications

DetailsInput

Type
string

title

Description
Required. The title of the notification, as seen by recipients. Maximum characters: 250.

The content of mobile push notifications depends on the content push notification setting.

Type
string

body

Description
Required. The body of the notification, as seen by recipients. Maximum characters: 750.

The content of mobile push notifications depends on the content push notification setting..

Type
reference

targetId

Description
Optional. The Record ID for the target record of the notification.

You must specify either a targetID or a targetPageRef.

Type
string

targetPageRef

Description
Optional. The PageReference for the navigation target of the notification.

To see how to specify the target using JSON, see pageReference.

You must specify either a targetID or a targetPageRef.

Usage
GET

The following example shows how to get information about the custom notification action type:

curl --include --request GET \
--header "Authorization: Authorization: Bearer 00DR...xyz" \
--header "Content-Type: application/json" \
"https://instance.salesforce.com/services/data/v46.0/actions/standard/customNotificationAction"

POST

The following example shows how to create a custom notification action:

curl --include --request POST \
--header "Authorization: Authorization: Bearer 00DR...xyz" \
--header "Content-Type: application/json" \
--data '{ "inputs" :
[

31

Custom Notification ActionsSending Mobile Notifications

https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/components_navigation_page_definitions.htm

{
"customNotifTypeId" : "0MLR0000000008eOAA",
"recipientIds" : ["005R0000000LSqtIAG"],
"title" : "Custom Notification",
"body" : "This is a custom notification.",
"targetId" : "001R0000003fSUDIA2"

}
]

}' \
"https://instance.salesforce.com/services/data/v46.0/actions/standard/customNotificationAction"

The response is:

[
{

"actionName" : "customNotificationAction",
"errors" : null,
"isSuccess" : true,
"outputValues" : {

"SuccessMessage" : "Your custom notification is processed successfully."
}

}
]

32

Custom Notification ActionsSending Mobile Notifications

USING THE CONNECT REST API PUSH NOTIFICATION
RESOURCE (OPTIONAL)

If you prefer to send push notifications without looping through the Apex engine—in other words, if you just want to push a simple
message from a connected app on one mobile device to another—use the Connect REST API push notification resource. This resource
is useful for sending notifications of events that occur outside of Salesforce and can be handled entirely within the mobile connected
app. You can use this resource in any type of custom app: a native Mobile SDK app, a hybrid Mobile SDK app, or an HTML5 app.

The Connect REST API resource establishes an HTTP session to send POST requests from the sending device to one or more receiving
devices. This means that:

• The sending app and the receiving apps must either be developed in the same organization or be installed from the same package.

• Only the receiving apps are required to be registered for push notifications with Apple or Google.

• Only the receiving apps are required to implement the Salesforce Mobile SDK push notification protocols.

• Each app requires a connected app, but only the receiving connected apps must be configured for push notifications.

SEE ALSO:

Push Notifications Resource

33

REFERENCE

PushNotificationPayload Class

Contains methods to create the notification message payload for an Apple device.

Namespace
Messaging

Usage
Apple has specific requirements for the notification payload. and this class has helper methods to create the payload. For more information
on Apple’s payload parameters, search for “Apple Push Notification Service” at https://developer.apple.com/library/mac/documentation/.

Example
See the Push Notification Example.

IN THIS SECTION:

PushNotificationPayload Methods

PushNotificationPayload Methods
The following are the methods for PushNotificationPayload. All are global static methods.

IN THIS SECTION:

apple(alert, sound, badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

apple(alertBody, actionLocKey, locKey, locArgs, launchImage, sound, badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

apple(alert, sound, badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

Signature
public static Map<String,Object> apple(String alert, String sound, Integer badgeCount,
Map<String,Object> userData)

34

https://developer.apple.com/library/mac/documentation/

Parameters
alert

Type: String

Notification message to be sent to the mobile client.

sound
Type: String

Name of a sound file to be played as an alert. This sound file should be in the mobile application bundle.

badgeCount
Type: Integer

Number to display as the badge of the application icon.

userData
Type: Map<String, Object>

Map of key-value pairs that contains any additional data used to provide context for the notification. For example, it can contain IDs
of the records that caused the notification to be sent. The mobile client app can use these IDs to display these records.

Return Value
Type:Map<String, Object>

Returns a formatted payload that includes all of the specified arguments.

Usage
To generate a valid payload, you must provide a value for at least one of the following parameters: alert, sound, badgeCount.

Example
See the Push Notification Example.

apple(alertBody, actionLocKey, locKey, locArgs, launchImage, sound,
badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

Signature
public static Map<String,Object> apple(String alertBody, String actionLocKey, String
locKey, String[] locArgs, String launchImage, String sound, Integer badgeCount,
Map<String,Object> userData)

Parameters
alertBody

Type: String

Text of the alert message.

35

PushNotificationPayload MethodsReference

actionLocKey
Type: String

If a value is specified for the actionLocKey argument, an alert with two buttons is displayed. The value is a key to get a localized
string in a Localizable.strings file to use for the right button’s title.

locKey
Type: String

Key to an alert-message string in a Localizable.strings file for the current localization.

locArgs
Type: List<String>

Variable string values to appear in place of the format specifiers in locKey.

launchImage
Type: String

File name of an image file in the application bundle.

sound
Type: String

Name of a sound file to be played as an alert. This sound file should be in the mobile application bundle.

badgeCount
Type: Integer

Number to display as the badge of the application icon.

userData
Type: Map<String, Object>

Map of key-value pairs that contains any additional data used to provide context for the notification. For example, it can contain IDs
of the records that caused the notification to be sent. The mobile client app can use these IDs to display these records.

Return Value
Type: Map<String, Object>

Returns a formatted payload that includes all of the specified arguments.

Usage
To generate a valid payload, you must provide a value for at least one of the following parameters: alert, sound, badgeCount.

Apex Limits Functions for Push Notifications

Use the Apex limits functions for push notifications to get usage information.

System.Limits class:

getLimitMobilePushApexCalls()
Returns the total number of Apex calls that are allowed per transaction for mobile push notifications.

getMobilePushApexCalls()
Returns the number of Apex calls that have been used by mobile push notifications during the current metering interval.

36

Apex Limits Functions for Push NotificationsReference

Push Notification Limits

Push notification limits apply to test push notifications as well as to production notifications.

An org can send up to 20,000 iOS and 10,000 Android push notifications per hour (for example, 4:00 to 4:59 UTC).Only deliverable
notifications count toward this limit. For example, a notification is sent to 1,000 employees in your company, but 100 employees haven’t
installed the mobile app yet. Only the notifications sent to the 900 employees who have installed the mobile app count toward this
limit.Each test push notification that is generated through the Test Push Notification page is limited to a single recipient. Test push
notifications count toward an org’s hourly push notification limit.When an org's hourly push notification limit is met, any additional
notifications are still created for in-app display and retrieval via REST API.

Note:

• For Flow Builder notification limits, see
https://help.salesforce.com/articleView?id=flow_ref_elements_actions_sendcustomnotification.htm

• The limits described here are for core Salesforce push notifications. They do not apply to Marketing Cloud MobilePush
notifications. For further information on Marketing Cloud usage, see
developer.salesforce.com/docs/atlas.en-us.mc-sdks.meta/mc-sdks/mobile-push-sdk.htm.

Error Messages for Push Notifications

If you get an error message while sending a push notification from the Send Test Notification page, check the following table for
suggestions on how to fix the error.

Suggested ResolutionMessage

Because the daily limit is nonnegotiable, no resolution is available.Daily push rate limit has been exceeded for this connected
application

Replace the certificate with a valid type.Certificate is not accepted by Apple Push Notification service

Supply valid certificate.Certificate is revoked

Renew certificate.Certificate expired

Retry later.Certificate not valid yet

Replace the certificate with a valid type.Invalid certificate or password

Check your input for errors.Invalid recipient or payload

Reduce size of payload.Payload exceeds maximum size

Confirm that settings are present on connected app.Unable to load push notifications settings

Provide valid device token.Recipient field contains invalid device token

Token was entered incorrectly or is corrupt. Re-enter token.Invalid device token length

Confirm that correct certificate is being used (for example, sandbox
versus production).

Error while sending notification. Confirm certificate is for the correct
Apple environment.

Retry later.Apple Push Notification service is unavailable.

Retry later.Unable to connect to Apple Push Notification service

37

Push Notification LimitsReference

https://help.salesforce.com/articleView?id=flow_ref_elements_actions_sendcustomnotification.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-sdks.meta/mc-sdks/mobile-push-sdk.htm

Suggested ResolutionMessage

Retry later.Unable to connect to Salesforce proxy. Contact Salesforce support
if issue persists.

Retry later.Request blocked by Salesforce proxy. Contact Salesforce support
if issue persists.

Contact Apple or retry later.Apple Push Notification service returned unknown error

Re-enter the badge value as an integer.Badge must be a number

Format payload correctly.Payload must be in a valid JSON format

Enter a valid value for one of the fields.You must enter a value for at least one of the following fields: Alert,
Badge, Sound, or Custom Payload

Provide device token.Recipient is required

Consult the FCM documentation at developer.android.com.
Possible causes:

Firebase Cloud Messaging authentication error

• Authorization header is missing or contains invalid syntax.

• Invalid project number was sent as key.

• Key is valid, but FCM service is disabled.

• Request originated from a server that is not white-listed in the
server key IP addresses.

Retry later.Internal error in the Firebase Cloud Messaging server, or the server
is temporarily unavailable

Verify that mobile app is providing valid registration ID, or manually
enter valid registration ID.

Registration ID in the Recipient field is formatted incorrectly

Reduce size of payload.Payload exceeds maximum size

Provide correct server key for the app.Recipient field contains registration ID that is not valid for the
connected application’s API server key

Select recipient or provide registration ID.Recipient is required

Update recipient’s device registration ID.Recipient field contains invalid registration ID

Contact Salesforce.FCM server returned an unexpected error. Please contact the SFDC
support team.

Contact Salesforce.An unexpected error occurred. Please contact the SFDC support
team.

Debug Log Events

The mobile push notification service logs events that are useful to understand when you are monitoring an Apex debug log.

38

Debug Log EventsReference

https://developer.android.com

Events
The following events are supported:

• PUSH_NOTIFICATION_INVALID_APP

• PUSH_NOTIFICATION_INVALID_CERTIFICATE

• PUSH_NOTIFICATION_INVALID_NOTIFICATION

• PUSH_NOTIFICATION_NO_DEVICES

• PUSH_NOTIFICATION_NOT_ENABLED

• PUSH_NOTIFICATION_SENT

For more information on these events, log levels and categories, and how to use the Developer Console or monitor a debug log, see
the Apex Code Developer's Guide.

Notifications Resources

Get or update notifications. Get the status of notifications.

Available resources are:

DescriptionResource

Get notifications for the context user. Mark notifications as read,
unread, seen, or unseen.

/connect/notifications

Get a notification for the context user. Mark a notification as read,
unread, seen, or unseen.

/connect/notifications/notificationId

Get the status of notifications for the context user./connect/notifications/status

IN THIS SECTION:

Notification

Get a notification for the context user. Mark a notification as read, unread, seen, or unseen.

Notifications

Get notifications for the context user. Mark notifications as read, unread, seen, or unseen.

Notifications Status

Get the status of notifications for the context user.

Notification App Setting

Get, set, and reset a notification app setting for the org.

Notification App Settings

Get notification app settings for the org.

Notification Setting

Get, set, and reset a notification setting for the org.

Notification Settings

Get notification settings for the org.

39

Notifications ResourcesReference

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/code_setting_debug_log_levels.htm

CustomNotificationType

Stores information about custom notification types. This object is available in API version 46.0 and later.

Notification
Get a notification for the context user. Mark a notification as read, unread, seen, or unseen.

Resource
/connect/notifications/notificationId

Available since version
49.0

HTTP methods
GET, PATCH

Request parameters for GET

Available VersionRequired or OptionalDescriptionReturn TypeParameter

50.0OptionalSpecifies whether the content of a
notification is trimmed (true) or returned

BooleantrimMessages

in full (false). If true, the title of a
notification returns up to 120 characters
and the body returns up to 320 characters.
If false, the title of a notification returns
up to 250 characters and the body returns
up to 750 characters. If unspecified, the
default is true.

Request body for PATCH

Root XML tag
<notification>

JSON example

{ "read" : "true" }

Properties

Available
Version

Required or
Optional

DescriptionTypeName

49.0Required if seen isn’t
specified

Marks a notification as read (true) or
unread (false).

If a notification is marked as read, it is
also marked as seen. If you set read

Booleanread

to true and seen to false, you
get an error.

49.0Required if read isn’t
specified

Marks a notification as seen (true) or
unseen (false).

Booleanseen

40

NotificationReference

Request parameters for PATCH

Available VersionRequired or OptionalDescriptionTypeParameter

49.0Required if seen isn’t
specified

Marks a notification as read (true) or
unread (false).

Booleanread

49.0Required if read isn’t
specified

Marks a notification as seen (true) or
unseen (false).

Booleanseen

Response body for GET and PATCH
Notification

IN THIS SECTION:

Notification

Notification.

Notification Collection

Collection of notifications.

Notification Status

Status of notifications for the context user.

Notification
Notification.

Available
Version

Filter Group
and Version

DescriptionTypeProperty

49.0Small, 49.0Reserved for future use.Stringadditional
Data

49.0Small, 49.0ID of the Experience Cloud site for the notification.StringcommunityId

49.0Small, 49.0Name of the Experience Cloud site for the notification.StringcommunityName

49.0Small, 49.0Total number of events for the notification. For custom
notifications that are exposed to third-party developers,
the value is 1.

Integercount

49.0Small, 49.0ID of the notification.Stringid

49.0Medium, 49.0URL to the image associated with the notification.Stringimage

49.0Small, 49.0Date and time when the notification was last modified.StringlastModified

49.0Small, 49.0Body of the message for the notification.StringmessageBody

49.0Small, 49.0Title of the message for the notification.StringmessageTitle

49.0Small, 49.0Date and time of the most recent activity for the
notification.

StringmostRecent
ActivityDate

41

NotificationReference

Available
Version

Filter Group
and Version

DescriptionTypeProperty

49.0Small, 49.0ID of the notification recipient’s org.Stringorganization
Id

49.0Small, 49.0Specifies whether the notification is marked read
(true) or unread (false).

Booleanread

49.0Small, 49.0ID of the recipient of the notification.StringrecipientId

49.0Small, 49.0Specifies whether the notification is marked seen
(true) or unseen (false).

Booleanseen

49.0Medium, 49.0ID of the record associated with the notification.Stringtarget

50.0Medium, 50.0Page reference for notification target.StringtargetPageRef

49.0Small, 49.0Type of notification. For custom notifications, this is the
custom notification type ID.

Stringtype

49.0Small, 49.0URL to the notification.Stringurl

Notification Collection
Collection of notifications.

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

49.0Small, 49.0Collection of notifications.Notification[]notifications

Notification Status
Status of notifications for the context user.

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

49.0Small, 49.0Date and time of latest activity date for any
notifications or, if none, the current date and
time.

StringlastActivity

49.0Small, 49.0Date and time of oldest unread notification
or, if none, the current date and time.

StringoldestUnread

49.0Small, 49.0Date and time of oldest unseen notification
or, if none, the current date and time.

StringoldestUnseen

49.0Small, 49.0Count of unread notifications.IntegerunreadCount

49.0Small, 49.0Count of unseen notifications.IntegerunseenCount

42

NotificationReference

Notifications
Get notifications for the context user. Mark notifications as read, unread, seen, or unseen.

When the context user makes a GET request, the API returns the context user’s notifications. The API uses the context of the requesting
connected app and returns notifications for the appropriate types.

If a connected app makes a GET request, the API returns only custom notifications for the types that the connected app subscribes to
with org-level settings applied. For example, if an admin disabled a notification type for the app, the API doesn’t return notifications for
that type.

If a third party (not a connected app) makes a GET request, the API returns only custom notifications for the types that are enabled for
desktop.

Resource
/connect/notifications

Available since version
49.0

HTTP methods
GET, PATCH

Request parameters for GET

Available VersionRequired or OptionalDescriptionReturn TypeParameter

49.0OptionalNotifications occurring after this ISO 8601
formatted date string to mark as read,
unread, seen, or unseen.

This parameter can’t be used with the
before parameter.

Stringafter

49.0OptionalNotifications occurring before this ISO 8601
formatted date string to mark as read,

Stringbefore

unread, seen, or unseen. If unspecified, the
default is the current date and time.

49.0OptionalNumber of notifications to return. Values
are from 1 through 50. If you specify a

Integersize

number greater than 50, only 50
notifications are returned. If unspecified,
the default is 10.

50.0OptionalSpecifies whether the content of
notifications is trimmed (true) or returned

BooleantrimMessages

in full (false). If true, the title of
notifications returns up to 120 characters
and the body returns up to 320 characters.
If false, the title of notifications returns
up to 250 characters and the body returns
up to 750 characters. If unspecified, the
default is true.

43

NotificationsReference

Request body for PATCH

Root XML tag
<notifications>

JSON example

{
"before": "2019-06-25T18:24:31.000Z",
"read" : "true"

}

Properties

Available
Version

Required or
Optional

DescriptionTypeName

49.0OptionalNotifications occurring before this ISO
8601 formatted date string to mark as

Stringbefore

read, unread, seen, or unseen. If
unspecified, the default is the current
date and time.

49.0OptionalList of up to 50 notification IDs to mark
as read, unread, seen, or unseen.

This property can’t be used with the
before property.

String[]notificationIds

49.0Required if seen
isn’t specified

Marks notifications as read (true) or
unread (false).

If notifications are marked as read, they
are also marked as seen. If you set read

Booleanread

to true and seen to false, you get
an error.

49.0Required if read
isn’t specified

Marks notifications as seen (true) or
unseen (false).

Booleanseen

Request parameters for PATCH

Available VersionRequired or
Optional

DescriptionReturn TypeParameter

49.0OptionalNotifications occurring before this ISO 8601
formatted date string to mark as read, unread,

Stringbefore

seen, or unseen. If unspecified, the default is the
current date and time.

49.0OptionalList of up to 50 notification IDs to mark as read,
unread, seen, or unseen.

String[]notification
Ids

44

NotificationsReference

Available VersionRequired or
Optional

DescriptionReturn TypeParameter

49.0Required if seen
isn’t specified

Marks notifications as read (true) or unread
(false).

If notifications are marked as read, they are also
marked as seen. If you set read to true and
seen to false, you get an error.

Booleanread

49.0Required if read
isn’t specified

Marks notifications as seen (true) or unseen
(false).

Booleanseen

Response body for GET and PATCH
Notification Collection

Notifications Status
Get the status of notifications for the context user.

Resource
/connect/notifications/status

Available since version
49.0

HTTP methods
GET

Response body for GET
Notification Status

Notification App Setting
Get, set, and reset a notification app setting for the org.

Notification app settings have default values that come from the notification type definition and application settings. Admins can disable
standard notification app settings that are enabled by default; however, they can’t enable standard notification app settings that are
disabled by default. If your app accepts custom notification app settings, admins can enable custom notification app settings that are
disabled by default.

Resource

/connect/notifications/app-settings/organization/notificationTypeOrId

Available version
47.0

HTTP methods
GET, POST, DELETE

45

Notifications StatusReference

Request parameters for GET

Available
Version

Required or
Optional

DescriptionTypeParameter
Name

47.0OptionalID of the connected app or external client
app. If not specified and called from a

StringapplicationId

connected app or external client app,
defaults to the app information from the
session.

Response body for GET
Notification App Settings Collection

Request body for POST
Use POST to set a notification app setting.

Root XML tag
<notificationAppSetting>

JSON example

{
"enabled":"false"

}

Properties

Note: Starting in API version 64.0, the Notification App Setting Input request body supports external client apps, in addition
to connected apps. Mobile, push notification, and notification plugins for external client apps (beta) are available in API
version 64.0.

Available
Version

Required or
Optional

DescriptionTypeName

47.0OptionalID of the connected app or external client
app. If not specified and called from a

StringapplicationId

connected app or external client app,
defaults to the app information from the
session.

47.0OptionalSpecifies whether to enable delivery of
the notification type for the connected

Booleanenabled

app or external client app (true) or not
(false).

46

Notification App SettingReference

Request parameters for POST

Available
Version

Required or
Optional

DescriptionTypeParameter
Name

47.0OptionalID of the connected app or external client
app. If not specified and called from a

StringapplicationId

connected app or external client app,
defaults to the app information from the
session.

47.0OptionalSpecifies whether to enable delivery of the
notification type for the connected app or

Booleanenabled

external client app (true) or not
(false).

Response body for POST
Notification App Setting

Request parameters for DELETE
Use DELETE to reset a notification app setting to the default.

Available
Version

Required or
Optional

DescriptionTypeParameter
Name

40.0OptionalID of the connected app or external client
app. If not specified and called from a

StringapplicationId

connected app or external client app,
defaults to the app information from the
session.

Response for DELETE
204: Successful Delete

Notification App Settings
Get notification app settings for the org.

Resource

/connect/notifications/app-settings/organization

Available version
47.0

Note: Starting in API version 64.0, this resource supports external client apps, in addition to connected apps. Mobile, push
notification, and notification plugins for external client apps (beta) are available in API version 64.0.

HTTP methods
GET

47

Notification App SettingsReference

Request parameters for GET

Available
Version

Required or
Optional

DescriptionTypeParameter
Name

47.0OptionalID of the connected app or external client
app. If not specified and called from a

StringapplicationId

connected app or external client app,
defaults to the app information from the
session.

Response body for GET
Notification App Settings Collection

IN THIS SECTION:

Notification App Setting

Notification app setting.

Notification App Settings Collection

Notification app settings.

Notification App Setting
Notification app setting.

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

47.0Medium, 47.0Developer name of the connected app.StringapplicationDev
Name

47.0Small, 47.0ID of the connected app.StringapplicationId

47.0Small, 47.0Name of the connected app.StringapplicationName

47.0Medium, 47.0Namespace of the connected app if it’s
installed with a managed package.

Stringapplication
Namespace

47.0Small, 47.0Specifies whether the notification type is
enabled for the connected app (true) or

Booleanenabled

not (false). If true, notifications of this
type are displayed in the tray.

47.0Small, 47.0Display label of the notification.StringnotificationLabel

47.0Medium, 47.0API name of the custom notification type.StringnotificationType
Name

47.0Medium, 47.0Namespace of the custom notification type
if it’s installed with a managed package.

StringnotificationType
Namespace

48

Notification App SettingsReference

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

47.0Small, 47.0Notification type or ID of the custom
notification type.

StringnotificationType
OrId

47.0Small, 47.0Specifies whether push is enabled for the
notification type in the connected app
(true) or not (false).

BooleanpushEnabled

Notification App Settings Collection
Notification app settings.

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

47.0Small, 47.0Collection of notification app settings.Notification App
Setting[]

notification
AppSettings

Notification Setting
Get, set, and reset a notification setting for the org.

Notification settings have default values that come from the notification type definition and application settings. Admins can disable
notification settings that are enabled by default; however, they can’t enable notification settings that are disabled by default.

Resource

/connect/notifications/settings/organization/notificationTypeOrId

Available version
47.0

HTTP methods
GET, POST, DELETE

Request body for POST
Use POST to set a notification setting.

Root XML tag
<notificationTargetSetting>

JSON example

{
"desktopEnabled":"false"

}

49

Notification SettingReference

Properties

Available
Version

Required or
Optional

DescriptionTypeName

47.0OptionalSpecifies whether to enable desktop
delivery for the notification type (true)

BooleandesktopEnabled

or not (false). If not specified, the
setting doesn’t change.

47.0OptionalSpecifies whether to enable email
delivery for the notification type (true)

BooleanemailEnabled

or not (false). If not specified, the
setting doesn’t change.

47.0OptionalSpecifies whether to enable mobile
delivery for the notification type (true)

BooleanmobileEnabled

or not (false). If not specified, the
setting doesn’t change.

52.0OptionalReserved for future use.BooleanslackEnabled

Request parameters for POST

Available
Version

Required or
Optional

DescriptionTypeParameter
Name

47.0OptionalSpecifies whether to enable desktop
delivery for the notification type (true)

BooleandesktopEnabled

or not (false). If not specified, the
setting doesn’t change.

47.0OptionalSpecifies whether to enable email delivery
for the notification type (true) or not

BooleanemailEnabled

(false). If not specified, the setting
doesn’t change.

47.0OptionalSpecifies whether to enable mobile
delivery for the notification type (true)

BooleanmobileEnabled

or not (false). If not specified, the
setting doesn’t change.

52.0OptionalReserved for future use.BooleanslackEnabled

Response body for GET and POST
Notification Setting

Response for DELETE
Use DELETE to reset a notification setting to the default.

204: Successful Delete

50

Notification SettingReference

IN THIS SECTION:

Notification Setting

Notification setting.

Notification Setting
Notification setting.

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

47.0Small, 47.0Specifies whether desktop delivery is
enabled for the notification type (true) or
not (false).

BooleandesktopEnabled

47.0Small, 47.0Specifies whether email delivery is enabled
for the notification type (true) or not
(false).

BooleanemailEnabled

47.0Small, 47.0Specifies whether mobile delivery is enabled
for the notification type (true) or not
(false).

BooleanmobileEnabled

47.0Small, 47.0Display label of the notification.Stringnotification
Label

47.0Medium, 47.0API name of the custom notification type.Stringnotification
TypeName

47.0Medium, 47.0Namespace of the custom notification type
if it’s installed with a managed package.

Stringnotification
TypeNamespace

47.0Small, 47.0Notification type or ID of the custom
notification type.

Stringnotification
TypeOrId

52.0Small, 52.0Reserved for future use.BooleanslackEnabled

Notification Settings
Get notification settings for the org.

Resource

/connect/notifications/settings/organization

Available version
47.0

HTTP methods
GET

Response body for GET
Notification Settings Collection

51

Notification SettingsReference

IN THIS SECTION:

Notification Settings Collection

Notification settings.

Notification Settings Collection
Notification settings.

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

47.0Small, 47.0Collection of notification settings.Notification Setting[]notification
Settings

CustomNotificationType
Stores information about custom notification types. This object is available in API version 46.0 and later.

Important: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Supported Calls
create(), delete(), describeSObjects(), query(), retrieve(), update(), upsert()

Fields

DetailsField

Type
string

CustomNotifTypeName

Properties
Create, Filter, Group, idLookup, Sort, Unique, Update

Description
Specifies a notification type name. The notification type name is unique within your
organization. Maximum number of characters: 80.

Type
textarea

Description

Properties
Create, Filter, Group, Nillable, Sort, Update

Description
Specifies a general description of the notification type, which is displayed with the notification
type name. Maximum number of characters: 255.

52

CustomNotificationTypeReference

DetailsField

Type
boolean

Desktop

Properties
Create, Defaulted on create, Filter, Group, Sort, Update

Description
Indicates whether the desktop delivery channel is enabled (true) or not (false). The
default value is false.

Type
string

DeveloperName

Properties
Create, Filter, Group, Sort, Update

Description
Specifies the API name of the notification type.

Type
boolean

IsSlack

Properties
Reserved for future use.

Description
Reserved for future use.

Type
picklist

Language

Properties
Create, Defaulted on create, Filter, Group, Nillable, Restricted picklist, Sort, Update

Description
Specifies the language of the custom notification type. The value for this field is the language
value of the org.

Type
ManageableState enumerated list

ManageableState

Properties
Filter, Group, Nillable, Restricted picklist, Sort

Description
Indicates the manageable state of the specified component that is contained in a package:

• beta

• deleted

• deprecated

• deprecatedEditable

• installed

53

CustomNotificationTypeReference

DetailsField

• installedEditable

• released

• unmanaged

Type
string

MasterLabel

Properties
Create, Filter, Group, Sort, Update

Description
Specifies the notification type label.

Type
boolean

Mobile

Properties
Create, Defaulted on create, Filter, Group, Sort, Update

Description
Indicates whether the mobile delivery channel is enabled (true) or not (false). The
default value is false.

Type
string

NamespacePrefix

Properties
Filter, Group, Nillable, Sort

Description
Specifies the namespace of the notification type, if installed with a managed package.

Note: CustomNotificationType is exposed in Tooling API to user profiles with the View Setup and Configuration permission. To
create and edit notification types, the Customize Application permission is required.

54

CustomNotificationTypeReference

Notification Builder Platform Push Payloads

EDITIONS

Available in: Lightning
Experience

Connected Apps can be
created in: Group,
Essentials, Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

Connected Apps can be
installed in: All Editions

Learn about how we handle push payload content for custom notifications.

Notification Builder Platform provides mobile push notifications for iOS apps through the Apple
Push Notification Service (APNs) and for Android apps through the Firebase Cloud Messaging (FCM).

Push payloads are sent with encrypted content when the mobile app supplies an RSA public
encryption key upon push registration with the Salesforce push notification service. When a payload
is sent from a customer org to a user’s device, the mobile app processes and decrypts the payload.
For more details about key registration and payload decryption, see the Mobile SDK Development
Guide.

Push payloads are sent with unencrypted content if the mobile app doesn’t provide an encryption
key.

IN THIS SECTION:

iOS Custom Push Payload Content

Use these keys and values to create custom iOS push notifications for your connected app.

Android Custom Push Payload Content

Use these keys and values to create custom Android push notifications for your connected app.

iOS Custom Push Payload Content

EDITIONS

Available in: Lightning
Experience

Connected Apps can be
created in: Group,
Essentials, Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

Connected Apps can be
installed in: All Editions

Use these keys and values to create custom iOS push notifications for your connected app.

Table 1: APS Dictionary Keys

ValueDescriptionPayload Key

defaultSound played on alert display.sound

Count of unseen notificationsNumber displayed in a badge
on your app’s icon.

badge

trueIndicates payload content that
requires handling by the
notification extension.

Included with encrypted
payloads only.

mutable-content

Table 2: Alert Dictionary Keys

ValueDescriptionPayload Key

Empty stringAlert title. Displayed by default for iOS
remote notifications

title

For encrypted payloads, the MSDK
notification extension extracts and displays

55

Notification Builder Platform Push PayloadsReference

https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm

ValueDescriptionPayload Key

the custom alertTitle key value
supplied in encrypted content.

The custom notification title is supplied as
the value for this key. For MSDK notification

Alert body. Displayed by default for iOS
remote notifications

body

extension failures only, use this value in a
body-only alert.

Table 3: Custom Keys

ValueDescriptionPayload Key

AES encrypted and base64 encoded payload
content

Encrypted payload content

See the Encrypted Content Keys table for
content details.

content

RSA encrypted and base64 encoded AES
key and IV bytes

Symmetric encryption keysecret

trueEncrypted payload indicatorencrypted

Table 4: Encrypted Content Keys

ValueDescriptionPayload Key

ID of org where notification originatedOrganization IDoid

ID of notification recipientRecipient User IDuid

ID of the notificationNotification IDnid

-1Notification type classtype

ID of record associated with notificationSource IDsid

N/A (reserved for future use)Related IDrid

ID of Experience Cloud site for the
notification

Experience Cloud site IDcid

ID of the custom notification typeNotification type IDnotifType

Notification alert titlealertTitle • If full content push notifications are
enabled for the app: Custom notification
title

• If full content push notifications aren’t
enabled for the app: Empty string

56

iOS Custom Push Payload ContentReference

ValueDescriptionPayload Key

Notification alert bodyalertBody • If full content push notifications are
enabled for the app: Custom notification
body

• If full content push notifications aren’t
enabled for the app: Custom notification
title

Android Custom Push Payload Content

EDITIONS

Available in: Lightning
Experience

Connected Apps can be
created in: Group,
Essentials, Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

Connected Apps can be
installed in: All Editions

Use these keys and values to create custom Android push notifications for your connected app.

Table 5: Payload Keys

ValueDescriptionPayload Key

AES encrypted and base64
encoded payload content

Encrypted payload content

See the Encrypted Content
Keys table for content details.

content

RSA encrypted and base64
encoded AES key and IV bytes

Symmetric encryption keysecret

trueEncrypted payload indicatorencrypted

Table 6: Encrypted Content Keys

ValueDescriptionPayload Key

Count of unseen notificationsNumber displayed in a badge on your app’s
icon

badge

Seconds since 00:00:00 UTC on January 1,
1970

Time notification was senttimestamp

ID of the org of the recipient of the
notification

Organization IDoid

ID of notification recipientRecipient User IDuid

ID of the notificationNotification IDnid

The custom notification title is supplied as
the value for this key regardless of the

Notification alertalert

Enable full content push notifications
setting.

Notification alert titlealertTitle • If full content push notifications are
enabled for the app: Custom notification
title

57

Android Custom Push Payload ContentReference

ValueDescriptionPayload Key

• If full content push notifications aren’t
enabled for the app: Empty string

Notification alert bodyalertBody • If full content push notifications are
enabled for the app: Custom notification
body

• If full content push notifications aren’t
enabled for the app: Custom notification
title

-1Notification type classtype

ID of record associated with notificationSource IDsid

N/A (reserved for future use)Related IDrid

ID of Experience Cloud site for the
notification

Experience Cloud site IDcid

ID of the custom notification typeNotification type IDnotifType

Invocable Actions Custom

Represents custom invocable actions that can be statically invoked. You can also get basic information for each type of action.

58

Invocable Actions CustomReference

INDEX

A
Apex

debug logs 38

C
classes

PushNotification 25
Classes

PushNotificationPayload 34
Connect REST API push resource 33

D
Debug logs 38

L
limits

Apex functions 36

M
Mobile Push Notification Service

check user device registrations 13
developer registration with OS vendors 6

mobile push notifications
PushNotification class 25

P
push notifications

limits 36
PushNotification class 25

PushNotification
classes 25

PushNotificationPayload
classes 34

59

	Mobile Notifications Overview
	Push Notification Registration and Flow

	Steps for Implementing Mobile Notifications
	Step 1. Developer Registration with Mobile OS Vendors
	Step 2. Creating a Connected App
	Create a Connected App for Android
	Create a Connected App for Apple iOS
	Testing Your Connected App Push Configuration
	Send Test Push Notifications to APNS
	Send Test Push Notifications to FCM for Android
	Check a User's Mobile Push Registrations

	Step 3. Configure Your Mobile SDK App
	Enable Push Notifications in a Salesforce Mobile SDK Android App
	Enable Push Notifications in a Salesforce Mobile SDK iOS App
	Enable Push Notifications in a Salesforce Mobile SDK Hybrid App
	Handle Notification Encryption in Salesforce Mobile SDK Apps
	Build Your Own In-App Notification Feature

	Step 4. Packaging Components for Customer Organizations

	Sending Mobile Notifications
	Using Apex Triggers to Send Push Notifications
	PushNotification Class
	PushNotification Constructors
	PushNotification()
	PushNotification(payload)

	PushNotification Methods
	send(application, users)
	setPayload(payload)
	setTtl(ttl)

	Push Notifications Resource

	Custom Notification Actions

	Using the Connect REST API Push Notification Resource (Optional)
	Reference
	PushNotificationPayload Class
	PushNotificationPayload Methods
	apple(alert, sound, badgeCount, userData)
	apple(alertBody, actionLocKey, locKey, locArgs, launchImage, sound, badgeCount, userData)

	Apex Limits Functions for Push Notifications
	Push Notification Limits
	Error Messages for Push Notifications
	Debug Log Events
	Notifications Resources
	Notification
	Notification (Response)
	Notification Collection (Response)
	Notification Status (Response)

	Notifications
	Notifications Status
	Notification App Setting
	Notification App Settings
	Notification App Settings (Response)
	Notification App Settings Collection (Response)

	Notification Setting
	Notification Setting (Response)

	Notification Settings
	Notification Settings Collection (Response)

	CustomNotificationType (Tooling API)

	Notification Builder Platform Push Payloads
	iOS Custom Push Payload Content
	Android Custom Push Payload Content

	Invocable Actions Custom

	Index

