
Best Practices for Deployments
with Large Data Volumes

Salesforce, Summer ’25

Last updated: July 25, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

BEST PRACTICES FOR DEPLOYMENTS WITH LARGE DATA VOLUMES 1
Introduction . 1
Underlying Concepts . 2

Multitenancy and Metadata Overview . 2
Search Architecture . 3

Infrastructure for Systems with Large Data Volumes . 4
Lightning Platform Query Optimizer . 4
Database Statistics . 6
Skinny Tables . 7
Indexes . 8
Divisions . 11

Techniques for Optimizing Performance . 11
Using Mashups . 12
Defer Sharing Calculation . 12
Using SOQL and SOSL . 13
Deleting Data . 15
Search . 15

Best Practices . 15
Reporting . 16
Loading Data from the API . 16
Extracting Data from the API . 18
Searching . 18
SOQL and SOSL . 19
Deleting Data . 20
General . 20

Large Data Volumes Case Studies . 21
Data Aggregation . 21
Custom Search Functionality . 22
Indexing with Nulls . 22
Rendering Related Lists with Large Data Volumes . 23
API Performance . 23
Sort Optimization on a Query . 24
Multi-Join Report Performance . 24

Summary . 25

BEST PRACTICES FOR DEPLOYMENTS WITH LARGE DATA
VOLUMES

Introduction

Who Should Read This
This paper is for experienced application architects who work with Salesforce deployments that contain large data volumes.

A “large data volume” is an imprecise, elastic term. If your deployment has tens of thousands of users, tens of millions of records, or
hundreds of gigabytes of total record storage, you have a large data volume. Even if you work with smaller deployments, you can still
learn something from these best practices.

To understand the parts of this paper that deal with details of Salesforce implementation, read
https://developer.salesforce.com/page/Multi_Tenant_Architecture.

Overview
Salesforce enables customers to easily scale up their applications from small to large amounts of data. This scaling usually happens
automatically, but as data sets get larger, the time required for certain operations grows. The ways in which architects design and
configure data structures and operations can increase or decrease those operation times by several orders of magnitude.

The main processes affected by differing architectures and configurations are:

• Loading or updating of large numbers of records, either directly or with integrations

• Extraction of data through reports and queries, or through views

The strategies for optimizing those main processes are:

• Following industry-standard practices for accommodating schema changes and operations in database-enabled applications

• Deferring or bypassing business rule and sharing processing

• Choosing the most efficient operation for accomplishing a task

What’s in This Paper
• Techniques for improving the performance of applications with large data volumes

• Salesforce mechanisms and implementations that affect performance in less-than-obvious ways

• Salesforce mechanisms designed to support the performance of systems with large data volumes

Salesforce Big Objects
Salesforce provides big data technology called Big Objects. A big object stores and manages massive amounts of data on the Salesforce
platform. You can archive data from other objects or bring massive datasets from outside systems into a big object to get a full view of
your customers. A big object provides consistent performance, whether you have 1 million records, 100 million, or even 1 billion. This
scale gives a big object its power and defines its features.

1

https://developer.salesforce.com/page/Multi_Tenant_Architecture

This paper focuses on optimizing large data volumes stored in standard and custom objects, not big objects. For optimal performance
and a sustainable long-term storage solution for even larger data sets, use Bulk API or Batch Apex to move your data into big objects.

SEE ALSO:

Salesforce Developers: Big Objects Implementation Guide

Underlying Concepts

This section outlines two key concepts, multitenancy and search architecture, to explain how Salesforce:

• Provides its application to customers’ instances and organizations

• Keeps supported customizations secure, self contained, and high performing

• Tracks and stores application data

• Indexes that data to optimize searching

IN THIS SECTION:

Multitenancy and Metadata Overview

Search Architecture

Multitenancy and Metadata Overview
Multitenancy is a means of providing a single application to multiple organizations, such as different companies or departments within
a company, from a single hardware-software stack. Instead of providing a complete set of hardware and software resources to each
organization, Salesforce inserts a layer of software between the single instance and each organization’s deployment. This layer is invisible
to the organizations, which see only their own data and schemas while Salesforce reorganizes the data behind the scenes to perform
efficient operations.

Multitenancy requires that applications behave reliably, even when architects are making Salesforce-supported customizations, which
include creating custom data objects, changing the interface, and defining business rules. To ensure that tenant-specific customizations
do not breach the security of other tenants or affect their performance, Salesforce uses a runtime engine that generates application
components from those customizations. By maintaining boundaries between the architecture of the underlying application and that of
each tenant, Salesforce protects the integrity of each tenant’s data and operations.

When organizations create custom objects, the platform tracks metadata about the objects and their fields, relationships, and other
object definition characteristics. Salesforce stores the application data for all virtual tables in a few large database tables, which are
partitioned by tenant and serve as heap storage. The platform’s engine then materializes virtual table data at runtime by considering
the corresponding metadata.

2

Underlying ConceptsBest Practices for Deployments with Large Data Volumes

https://developer.salesforce.com/docs/atlas.en-us.256.0.bigobjects.meta/bigobjects/big_object.htm

Instead of attempting to manage a vast, ever-changing set of actual database structures for each application and tenant, the platform
storage model manages virtual database structures using a set of metadata, data, and pivot tables. Thus, if you apply traditional
performance-tuning techniques based on the data and schema of your organization, you might not see the effect you expect on the
actual, underlying data structures.

Note: As a customer, you also cannot optimize the SQL underlying many application operations because it is generated by the
system, not written by each tenant.

Search Architecture
Search is the capability to query records based on free-form text. The Salesforce search architecture is based on its own data store, which
is optimized for searching for that text.

Salesforce provides search capabilities in many areas of the application, including:

• The sidebar

• Advanced and global searches

• Find boxes and lookup fields

• Suggested Solutions and Knowledge Base

• Web-to-Lead and Web-to-Case

• Duplicate lead processing

• Salesforce Object Search Language (SOSL) for Apex and the API

For data to be searched, it must first be indexed. The indexes are created using the search indexing servers, which also generate and
asynchronously process queue entries of newly created or modified data. After a searchable object’s record is created or updated, it
could take about 15 minutes or more for the updated text to become searchable.

3

Search ArchitectureBest Practices for Deployments with Large Data Volumes

Salesforce performs indexed searches by first searching the indexes for appropriate records, then narrowing down the results based on
access permissions, search limits, and other filters. This process creates a result set, which typically contains the most relevant results.
After the result set reaches a predetermined size, the remaining records are discarded. The result set is then used to query the records
from the database to retrieve the fields that a user sees.

Tip: Search can also be accessed with SOSL, which in turn can be invoked using the API or Apex.

Infrastructure for Systems with Large Data Volumes

This section outlines:

• Salesforce components and capabilities that directly support the performance of systems with large data volumes

• Situations in which Salesforce uses those components and capabilities

• Methods of maximizing the benefits you get from the Salesforce infrastructure

IN THIS SECTION:

Lightning Platform Query Optimizer

The Salesforce multitenant architecture uses the underlying database in such a way that the database system’s optimizer can’t
effectively optimize search queries. The Lightning Platform query optimizer helps the database’s optimizer produce effective queries
by providing efficient data access in Salesforce.

Database Statistics

Skinny Tables

Indexes

Divisions

Lightning Platform Query Optimizer
The Salesforce multitenant architecture uses the underlying database in such a way that the database system’s optimizer can’t effectively
optimize search queries. The Lightning Platform query optimizer helps the database’s optimizer produce effective queries by providing
efficient data access in Salesforce.

Important: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

The Lightning Platform query optimizer works on automatically generated queries that handle reports, list views, and SOQL queries. The
optimizer also handles other queries that rely on these generated queries.

Specifically, the optimizer:

• Determines the best index from which to drive the query, if possible, based on filters in the query

• Determines the best table from which to drive the query, if no good index is available

• Determines how to order the remaining tables to minimize cost

• Injects custom foreign key value tables that are required to create efficient join paths

• Influences the execution plan for the remaining joins, including sharing joins, to minimize database input and output (I/O)

• Updates statistics

4

Infrastructure for Systems with Large Data VolumesBest Practices for Deployments with Large Data Volumes

Creating Efficient Queries
When you’re working with large volumes of data, it’s important to build efficient SOQL queries, reports, and list views, which all depend
on selectivity and indexes. The Lightning Platform query optimizer determines filter condition selectivity for a SOQL query, report, or list
view. With some simple SOQL queries, you can easily get the necessary statistics to determine whether a specific filter condition is
selective. After you index a selective field, your queries with related filter conditions can execute more efficiently and your users can be
more productive.

Review the following practical considerations for gauging the selectivity of your filter conditions.

Determine the Selectivity of Your Filter Condition
To better understand selectivity, let’s use an example. You build a SOQL query, report, or list view for the Opportunity object, one of the
largest objects in your org. You have a filter condition, for example, a WHERE clause that fetches only the rows you want from the object.
Is your filter condition selective enough for the optimizer to use an available index?

With a simple SOQL query, you can quickly get the statistics that help you figure out whether a value in a given field is selective.

Use SOQL to Determine the Selectivity of a Filter Condition
Consider a query that uses a basic, unary WHERE clause condition.

SELECT Id, Name FROM Opportunity
WHERE Stagename = 'Closed Won'

Using the query tool of your choice, for example the Developer Console Query Editor, execute the following query to get some statistics
related to your filter condition’s selectivity. The following is a sample query for the Stagename field:

SELECT Stagename, COUNT(id) FROM Opportunity
GROUP BY ROLLUP (Stagename)

The result set shows you the distribution of records for each value of the Stagename picklist field, including the total number of
records in the object. You now have the statistics necessary to determine the selectivity for a filter condition involving the Stagename
field.

Determine the Selectivity of More Complex Filter Conditions
Using GROUP BY ROLLUP in a query similar to the previous example makes it easy to get the necessary statistics to evaluate the
selectivity of various conditions.

Here’s an example of a query with a more complex filter condition. This query uses a date field (CloseDate) along with the AND
operator:

SELECT Id, Name FROM Opportunity
WHERE Stagename = 'Closed Won'
AND CloseDate = THIS_WEEK

You already know the statistics for the Stagename field from the previous query. To get the same statistics for the CloseDate
field, grouped by week for each year, use the following query.

SELECT WEEK_IN_YEAR(CloseDate), CALENDAR_YEAR(CloseDate), COUNT(id)
FROM Opportunity
GROUP BY ROLLUP(WEEK_IN_YEAR(CloseDate),CALENDAR_YEAR(CloseDate))
ORDER BY CALENDAR_YEAR(CloseDate), WEEK_IN_YEAR(CloseDate)

5

Lightning Platform Query OptimizerBest Practices for Deployments with Large Data Volumes

The query returns statistics about the distribution of Opportunity records across every week of every year by CloseDate.

For filter conditions that combine two or more conditions (using AND), the query optimizer considers the overall filter condition selective
when the filter targets less than:

• Twice the selectivity thresholds for each filter

• The selectivity thresholds for the intersection of those fields

For the third example in this topic, this means:

• Status = ‘Closed Won’ is selective (49,899 < 150,000)

• CloseDate = THIS_WEEK is selective (~3000 < 150,000)

Overall, the filter condition is selective, for both of these reasons.

If one of the filter conditions is nonselective, for example, Status=’Closed Won’ corresponds to 250,000 records, two possibilities
can make the overall filter condition selective.

• Each filter condition corresponds to less than 300,000 records (twice the selectivity thresholds for each filter)

• The intersection of Status=’Closed Won’ AND CloseDate = THIS_WEEK is less than 150,000 records.

The filter condition in the example is less than 300,000 records, so the overall condition is selective.

Tip: With the OR operator, each filter must meet the threshold individually.

Understand the Impact of Deleted Records on Selectivity
When gathering selectivity statistics, you can incorporate or exclude deleted records using the Boolean field, IsDeleted. This field
is available in every standard and custom object.

The previous query that uses the ROLLUP function collects data for all Opportunity records. It doesn’t matter whether IsDeleted
is true or false. To collect the selectivity statistics for Opportunity.StageName and explicitly exclude deleted records, try
the following query.

SELECT Stagename, COUNT(id) FROM Opportunity WHERE IsDeleted=false GROUP BY Stagename

Make Sure Fields Have Indexes

Before putting a query, report, or list view into production, confirm that a given filter condition is selective. However, the fields that make
the condition selective must have indexes to be effective. Without the necessary indexes, the query optimizer must perform a full scan
to fetch the target rows. The index can help make your query execute faster and improve the productivity of your org’s users.

The Database Query & Search Optimization Cheat Sheet lists the standard fields that have an index by default, including Id, Name,
OwnerId, CreatedDate, SystemModstamp, and RecordType, as well as all master-detail and lookup fields.

If your filter condition involves a custom field, work with Customer Support to create a custom index on the field your filter uses. Not all
fields can have an index, such as non-deterministic formula fields.

Database Statistics
Modern databases gather statistics on the amount and types of data stored inside of them, and they use this information to execute
queries efficiently. Because of Salesforce’s multitenant approach to software architecture, the platform must keep its own set of statistical
information to help the database understand the best way to access the data. As a result, when large amounts of data are created,
updated, or deleted using the API, the database must gather statistics before the application can efficiently access data. Currently, this
statistics-gathering process runs on a nightly basis.

6

Database StatisticsBest Practices for Deployments with Large Data Volumes

https://resources.docs.salesforce.com/194/0/en-us/sfdc/pdf/salesforce_query_search_optimization_developer_cheatsheet.pdf

Skinny Tables
Salesforce can create skinny tables to contain frequently used fields and to avoid joins. This can improve the performance of certain
read-only operations. Skinny tables are kept in sync with their source tables when the source tables are modified.

If you want to use skinny tables, contact Salesforce Customer Support. When enabled, skinny tables are created and used automatically
where appropriate. You can’t create, access, or modify skinny tables yourself. If the report, list view, or query you’re optimizing changes—for
example, to add new fields—you’ll need to contact Salesforce to update your skinny table definition.

How Skinny Tables Can Improve Performance
For each object table that’s visible to you, Salesforce maintains other, separate tables at the database level for standard and custom
fields. This separation, which is invisible to customers, ordinarily requires a join when a query contains both kinds of fields. A skinny table
contains both kinds of fields and also omits soft-deleted records.

This table shows an Account view, a corresponding database table, and a skinny table that can speed up Account queries.

Read-only operations that reference only fields in a skinny table don’t require an extra join, and can consequently perform better. Skinny
tables are most useful with tables containing millions of records to improve the performance of read-only operations, such as reports.

Important: Skinny tables aren’t a magic wand to wave at performance problems. There’s overhead in maintaining separate tables
that hold copies of live data. Using them in an inappropriate context can lead to performance degradation instead of improvement.

Skinny tables can be created on custom objects, and on Account, Contact, Opportunity, Lead, and Case objects. They can enhance
performance for reports, list views, and SOQL.

Skinny tables can contain the following types of fields.

• Checkbox

• Currency

• Date

• Date and time

• Email

• Number

7

Skinny TablesBest Practices for Deployments with Large Data Volumes

• Percent

• Phone

• Picklist (multi-select)

• Text

• Text area

• Text area (long)

• URL

Skinny tables and skinny indexes can also contain encrypted data.

Here is an example of how a skinny table can speed up queries. Instead of using a date range like 01/01/11 to 12/31/11—which
entails an expensive, repeated computation to create an annual or year-to-date report—you can use a skinny table to include a Year
field and to filter on Year = '2011'.

Considerations
• Skinny tables can contain a maximum of 200 columns.

• Skinny tables can’t contain fields from other objects.

• For Full sandboxes: Skinny tables are copied to your Full sandbox orgs.

For other types of sandboxes: Skinny tables aren’t copied to your sandbox organizations. To have production skinny tables activated
for sandbox types other than Full sandboxes, contact Salesforce Customer Support.

Indexes
Important: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Salesforce supports custom indexes to speed up queries. You can create custom indexes by contacting Salesforce Customer Support or
by deploying a custom index XML file via the Metadata API.

Note: The custom indexes that Salesforce Customer Support creates in your production environment are copied to all sandboxes
that you create from that production environment.

The platform maintains indexes on the following fields for most objects.

• RecordTypeId

• Division

• CreatedDate

• Systemmodstamp (LastModifiedDate)

• Name

• Email (for contacts and leads)

• Foreign key relationships (lookups and master-detail)

• The unique Salesforce record ID, which is the primary key for each object

Salesforce also supports custom indexes on custom fields, except for multi-select picklists, text areas (long), text areas (rich),
non-deterministic formula fields, and encrypted text fields.

External IDs cause an index to be created on that field. The query optimizer then considers those fields.

You can create External IDs only on the following fields.

8

IndexesBest Practices for Deployments with Large Data Volumes

https://developer.salesforce.com/docs/atlas.en-us.256.0.api_meta.meta/api_meta/meta_intro.htm

• Auto Number

• Email

• Number

• Text

To create custom indexes for other field types, including standard fields, contact Salesforce Customer Support.

Index Tables
The Salesforce multitenant architecture makes the underlying data table for custom fields unsuitable for indexing. To overcome this
limitation, the platform creates an index table that contains a copy of the data, along with information about the data types.

The platform builds a standard database index on this index table. The index table places upper limits on the number of records that an
indexed search can effectively return.

By default, the index tables don’t include records that are null (records with empty values). You can work with Salesforce Customer
Support to create custom indexes that include null rows. Even if you already have custom indexes on your custom fields, you must
explicitly enable and rebuild them to get the empty-value rows indexed.

Standard and Custom Indexed Fields
The query optimizer maintains a table containing statistics about the distribution of data in each index. It uses this table to perform
pre-queries to determine whether using the index can speed up the query.

For example, assume that the Account object has a field called Account_Type—which can take the value Large, Medium, or
Small—and that the field has a custom index.

For example, Salesforce generates a query like:

SELECT *
FROM Account
WHERE Account_Type__c = 'Large'

The query optimizer performs a pre-query to its internal statistics table to determine the number of records with Large in the
Account_Type field. If this number exceeds 10% of the object’s total records or 333,333 records, the query doesn’t use the custom
index.

The query optimizer determines what an index is used with.

9

IndexesBest Practices for Deployments with Large Data Volumes

Standard Indexed Fields
Used if the filter matches less than 30% of the first million records and less than 15% of additional records, up to a maximum of one
million records.

For example, a standard index is used if:

• A query is executed against a table with 2 million records, and the filter matches 450,000 or fewer records.

• A query is executed against a table with 5 million records, and the filter matches 900,000 or fewer records.

Custom Indexed Fields
Used if the filter matches less than 10% of the total records, up to a maximum of 333,333 records.

For example, a custom index is used if:

• A query is executed against a table with 500,000 records, and the filter matches 50,000 or fewer records.

• A query is executed against a table with 5 million records, and the filter matches 333,333 or fewer records.

If the criteria for an indexed field aren’t met, only that index is excluded from the query. If they are in the WHERE clause and meet the
thresholds for records, other indexes are sometimes used.

The query optimizer uses similar considerations to determine whether to use indexes when the WHERE clause contains AND, OR, or
LIKE.

• For AND, the query optimizer uses the indexes unless one of them returns more than 20% of the object’s records or 666,666 total
records.

• For OR, the query optimizer uses the indexes unless they all return more than 10% of the object’s records or 333,333 total records.

Note: All fields in the OR clause must be indexed for any index to be used.

• For LIKE, the query optimizer doesn’t use its internal statistics table. Instead, it samples up to 100,000 records of actual data to
decide whether to use the custom index.

Custom indexes can be created on deterministic formula fields. Because some values vary over time or change when a transaction
updates a related entity, the platform can’t index non-deterministic formulas.

Here are examples of things that make formula fields non-deterministic.

Non-deterministic formula fields can:

• Reference other entities (like fields accessible through lookup fields)

• Include other formula fields that span over other entities

• Use dynamic date and time functions (for example, TODAY and NOW)

These formula fields are also considered non-deterministic

• Owner, autonumber, divisions, or audit fields (except for CreatedDate and CreatedByID fields

– References to fields that Lightning Platform can’t index

– Multi-select picklists

– Currency fields in a multicurrency organization

– Long text area fields

– Binary fields (blob, file, or encrypted text)

• Standard fields with special functionalities

– Opportunity: Amount, TotalOpportunityQuantity, ExpectedRevenue, IsClosed, IsWon

– Case: ClosedDate, IsClosed

– Product: ProductFamily, IsActive, IsArchived

10

IndexesBest Practices for Deployments with Large Data Volumes

– Solution: Status

– Lead: Status

– Activity: Subject, TaskStatus, TaskPriority

Note: If the formula is modified after the index is created, the index is rebuilt.

Cross-object indexes are typically used if specified using the cross-object notation, as they are in the following example.

SELECT Id
FROM Score__c
WHERE CrossObject1__r.CrossObject2__r.IndexedField__c

You can use this approach to replace formula fields that can’t be custom-indexed because they reference other objects. As long as the
referenced field is indexed, the cross-object notation can have multiple levels.

Two-Column Custom Indexes
Two-column custom indexes are a specialized feature of the Salesforce platform. They’re useful for list views and situations where you
want to use one field to select records to display and another field to sort them. For example, an Account list view that selects by State
and sorts by City can use a two-column index with State in the first column and City in the second.

When a combination of two fields is a common filter in the query string, two-column indexes typically help you sort and display records.
For example, for the following SOQL, which appears in pseudo code, a two-column index on f1__c,f2__c is more efficient than
single indexes on f1__c and f2__c.

SELECT Name
FROM Account
WHERE f1__c = 'foo'

AND f2__c = 'bar'

Note: Two-column indexes are subject to the same restrictions as single-column indexes, with one exception. Two-column
indexes can have nulls in the second column, whereas single-column indexes can’t unless Salesforce Customer Support explicitly
enabled the option to include nulls.

Divisions
Divisions are a means of partitioning the data of large deployments to reduce the number of records returned by queries and reports.
For example, a deployment with many customer records might create divisions called US, EMEA, and APAC to separate the customers
into smaller groups that are likely to have few interrelationships. Divisions are beneficial for organizations with large amounts of data.
To use divisions, your organization must have over one million records in a single object and more than 35 licenses.

Salesforce provides special support for partitioning data by divisions, which you can enable by contacting Salesforce Customer Support.

Techniques for Optimizing Performance

This section outlines:

• Techniques for optimizing Salesforce performance

• The arrangements, features, mechanisms, and options underpinning those techniques

• Circumstances in which you should use those techniques and tailor them to your needs

11

DivisionsBest Practices for Deployments with Large Data Volumes

IN THIS SECTION:

Using Mashups

Defer Sharing Calculation

Using SOQL and SOSL

Deleting Data

Search

Using Mashups
One approach to reducing the amount of data in Salesforce is to maintain large data sets in a different application, and then make that
application available to Salesforce as needed. Salesforce refers to such an arrangement as a mashup because it provides a quick, loosely
coupled integration of the two applications. Mashups use Salesforce presentation to display Salesforce-hosted data and externally hosted
data.

Salesforce supports the following mashup designs.

External Website
The Salesforce UI displays an external website, and passes information and requests to it. With this design, you can make the website
look like part of the Salesforce UI.

Callouts
Apex code allows Salesforce to use Web services to exchange information with external systems in real time.

Because of their real-time restrictions, mashups are limited to short interactions and small amounts of data.

See Apex Developer Guide.

Advantages of Using Mashups
• Data is never stale.

• No proprietary method needs to be developed to integrate the two systems.

Disadvantages of Using Mashups
• Accessing data takes more time.

• Functionality is reduced. For example, reporting and workflow do not work on the external data.

Defer Sharing Calculation
In some circumstances, it might be appropriate to use a feature called defer sharing calculation, which allows users to defer the processing
of sharing rules until after new users, rules, and other content have been loaded.

An organization’s administrator can use a defer sharing calculation permission to suspend and resume sharing calculations, and to
manage two processes: group membership calculation and sharing rule calculation. The administrator can suspend these calculations
when performing a large number of configuration changes, which might lead to very long sharing rule evaluations or timeouts, and
resume calculations during an organization’s maintenance period. This deferral can help users process a large number of sharing-related
configuration changes quickly during working hours, and then let the recalculation process run overnight between business days or
over a weekend.

12

Using MashupsBest Practices for Deployments with Large Data Volumes

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_dev_guide.htm

Using SOQL and SOSL
A SOQL query is the equivalent of a SELECT SQL statement, and a SOSL query is a programmatic way of performing a text-based
search.

SOSLSOQL

Search indexesDatabaseExecutes with

search() callquery() callUses the

Use SOQL when:

• You know in which objects or fields the data resides.

• You want to:

– Retrieve data from a single object or from multiple objects that are related to one another

– Count the number of records that meet specified criteria

– Sort results as part of the query

– Retrieve data from number, date, or checkbox fields

Use SOSL when:

• You don’t know in which object or field the data resides, and you want to find it in the most efficient way possible.

• You want to:

– Retrieve multiple objects and fields efficiently, and the objects might or might not be related to one another

– Retrieve data for a particular division in an organization using the divisions feature, and you want to find it in the most efficient
way possible

Consider the following when using SOQL or SOSL.

• Both SOQL WHERE filters and SOSL search queries can specify text you should look for. When a given search can use either language,
SOSL is generally faster than SOQL if the search expression uses a CONTAINS term.

• SOSL can tokenize multiple terms within a field (for example, multiple words separated by spaces) and builds a search index off this.
If you’re searching for a specific distinct term that you know exists within a field, you might find SOSL is faster than SOQL for these
searches. For example, you might use SOSL if you were searching for “John” against fields that contained values like “Paul and John
Company”.

• In some cases, when multiple WHERE filters are being used in SOQL, indexes can’t be used even though the fields in the WHERE
clause can be indexed. In this situation, decompose the single query into multiple queries, each of which should have one WHERE
filter, and then combine the results.

• Executing a query with a WHERE filter that has null values for picklists or foreign key fields doesn’t use the index, and should be
avoided.

For example, the following customer query performs poorly.

SELECT Contact__c, Max_Score__c, CategoryName__c, Category__Team_Name__c
FROM Interest__c
WHERE Contact__c != null

AND Contact__c IN :contacts
AND override__c != 0
AND (

13

Using SOQL and SOSLBest Practices for Deployments with Large Data Volumes

(override__c != null AND override__c > 0)
OR
(score__c != null AND score__c > 0)

)
AND Category__c != null
AND (

(Category_Team_IsActive__c = true OR CategoryName__c IN :selectvalues)
AND
(

Category_Team_Name__c != null
AND
Category_Team_Name__c IN :selectTeamValues

)
)

(Items preceded by colons, such as :contacts, are Apex variables. See Using Apex Variables in SOQL and SOSL Queries in the
Apex Developer Guide.) Nulls in the criteria prevented the use of indexes, and some of the criteria were redundant causing the
execution time to increase. Design the data model so that it doesn’t rely on nulls as valid field values.

The query can be rewritten as:

SELECT Contact__c, Max_Score__c, CategoryName__c, Category_Team_Name__c
FROM Interest__c
WHERE Contact__c IN :contacts

AND (override__c > 0 OR score__c > 0)
AND Category__c != 'Default'
AND (

(Category_Team_IsActive__c = true OR CategoryName__c IN :selectvalues)
AND
Category_Team_Name__c IN :selectTeamValues

)

For the field Category__c, the value Default is substituted for NULL, allowing an index to be used for that field.

As another example, if dynamic values are being used for the WHERE field, and null values can be passed in, don’t let the query run
to determine there are no records; instead, check for nulls and avoid the query, if possible.

A query to retrieve an account by its foreign key account number can look like this (in pseudo code).

SELECT Name
FROM Account
WHERE Account_ID___c = :acctid;

if (rows found == 0) return "Not Found"

If acctid is null, the entire Account table is scanned row by row until all data is examined.

It’s better to rewrite the code as:

if (acctid != null) {
SELECT Name

FROM Account
WHERE Account_Id___c = :acctid

}
else {

return "Not Found"
}

14

Using SOQL and SOSLBest Practices for Deployments with Large Data Volumes

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/langCon_apex_SOQL_variables.htm

• When designing custom query-search user interfaces, it’s important to:

– Keep the number of fields to be searched or queried to a minimum. Using many fields leads to many permutations, which can
be difficult to tune.

– Determine whether SOQL, SOSL, or a combination of the two is appropriate for the search.

Deleting Data
The Salesforce data deletion mechanism can have a profound effect on the performance of large data volumes. Salesforce uses a Recycle
Bin metaphor for data that users delete. Instead of removing the data, Salesforce flags the data as deleted and makes it visible through
the Recycle Bin. This process is called soft deletion. While the data is soft deleted, it still affects database performance because the data
is still resident, and deleted records have to be excluded from any queries.

The data stays in the Recycle Bin for 15 days, or until the Recycle Bin grows to a specific size. The data is then hard deleted from the
database after 15 days; when the size limit is reached; or when the Recycle Bin is emptied using the UI, the API, or Apex.

In addition, Bulk API and Bulk API 2.0 support a hard delete option, which allows records to bypass the Recycle Bin and become immediately
available for deletion. We recommend that you use the Bulk API 2.0’s hard delete function to delete large data volumes.

If you want to delete records in a sandbox organization’s custom objects immediately, you can try to truncate those custom objects. You
can contact Salesforce Customer Support for assistance with this task.

Search
When large volumes of data are added or changed, the search system must index that information before it becomes available for search
by all users, and this process might take a long time.

See Search Architecture on page 3.

Best Practices

This section lists best practices for achieving good performance in deployments with large data volumes.

The main approaches to performance tuning in large Salesforce deployments rely on reducing the number of records that the system
must process. If the number of retrieved records is sufficiently small, the platform might use standard database constructs like indexes
or de-normalization to speed up the retrieval of data.

Approaches for reducing the number of records include:

• Reducing scope by writing queries that are narrow or selective

For example, if the Account object contains accounts distributed evenly across all states, then a report that summarizes accounts
by cities in a single state is much broader—and takes longer to execute—than a report that summarizes accounts by a single city
in a single state.

• Reducing the amount of data kept active

For example, if your volume of data is increasing, performance can degrade as time goes by. A policy of archiving or discarding data
at the same rate at which it comes into the system can prevent this effect.

These tables feature major goals and the best practices to follow to achieve those goals.

IN THIS SECTION:

Reporting

15

Deleting DataBest Practices for Deployments with Large Data Volumes

Loading Data from the API

Extracting Data from the API

Searching

SOQL and SOSL

Deleting Data

General

Reporting

Best PracticeGoal

Reduce the number of records to query—use a value in the data
to segment the query. For example, query for only a single state
instead of for all states. (See Divisions on page 11.)

Maximizing reporting performance by:

• Partitioning data to match its likely use

• Minimizing the number of records per object

Reducing the number of joins • Minimize the number of:

– Objects queried in the report

– Relationships used to generate the report

• De-normalize data when practical—“over de-normalizing” the
data results in more overhead. Use summarized data stored
on the parent record for the report. This practice is more
efficient than having the report summarize the child records.

Reduce the number of fields queried—only add fields to a report,
list view, or SOQL query that is required.

Reducing the amount of data returned

Reducing the number of records to query • Reduce the amount of data by archiving unused
records—move unused records to a custom object table to
reduce the size of the report object.

• Use report filters that emphasize the use of standard or custom
indexed fields. Use index fields in report filters, whenever
possible.

Loading Data from the API

Best PracticeGoal

Any data operation that includes more than 2,000 records is a good
candidate for Bulk API 2.0 to successfully prepare, execute, and

Improving performance

manage an asynchronous workflow that makes use of the Bulk
framework. Jobs with fewer than 2,000 records should involve
“bulkified” synchronous calls in REST (for example, Composite) or
SOAP.

16

ReportingBest Practices for Deployments with Large Data Volumes

Best PracticeGoal

Using the most efficient operations • Use the fastest operation possible—insert() is fastest,
update() is next, and upsert() is next after that. If
possible, also break upsert() into two operations:
create() and update().

• Ensure that data is clean before loading when using the Bulk
API 2.0. Errors in batches trigger single-row processing for that
batch, and that processing heavily impacts performance.

When updating, send only fields that have changed (delta-only
loads).

Reducing data to transfer and process

For custom integrations:Reducing transmission time and interruptions

• Authenticate once per load, not on each record.

• Use GZIP compression and HTTP keep-alive to avoid drops
during lengthy save operations.

For custom integrations, authenticate once per load, not on each
record.

Avoiding unnecessary overhead

Use Public Read/Write security during initial load to avoid sharing
calculation overhead

Avoiding computations

Reducing computations • If possible for initial loads, populate roles before populating
sharing rules.

1. Load users into roles.

2. Load record data with owners, triggering calculations in
the role hierarchy.

3. Configure public groups and queues, and let those
computations propagate.

4. Add sharing rules one at a time, letting computations for
each rule finish before adding the next one.

• If possible, add people and data before creating and assigning
groups and queues.

1. Load the new users and new record data.

2. Optionally, load new public groups and queues.

3. Add sharing rules one at a time, letting computations for
each rule finish before adding the next one.

Disable Apex triggers, workflow rules, and validations during loads;
investigate the use of batch Apex to process records after the load
is complete.

Deferring computations and speeding up load throughput

17

Loading Data from the APIBest Practices for Deployments with Large Data Volumes

Best PracticeGoal

When using the SOAP API, use as many batches as possible—up
to 200—that still avoid network timeouts if:

Balancing efficient batch sizes against potential timeouts

• Records are large.

• Save operations entail a lot of processing that cannot be
deferred.

Use WSC instead of other Java API clients, like Axis.Optimizing the Lightning Platform Web Service Connector (WSC)
to work with Salesforce

When changing child records, group them by parent—group
records by the field ParentId in the same batch to minimize
locking conflicts.

Minimizing parent record-locking conflicts

Use the defer sharing calculation permission to defer sharing
calculations until after all data has been loaded. (See Defer Sharing
Calculation on page 12.)

Deferring sharing calculations

Use mashups to create coupled integrations of applications. (See
Using Mashups on page 12.)

Avoiding loading data into Salesforce

Extracting Data from the API

Best PracticeGoal

Using the most efficient operations • Use the getUpdated() and getDeleted() SOAP API
to sync an external system with Salesforce at intervals greater
than 5 minutes. Use the outbound messaging feature for more
frequent syncing.

• When using a query that can return more than one million
results, consider using the query capability of the Bulk API 2.0,
which might be more suitable.

Searching

Best PracticeGoal

Keep searches specific and avoid using wildcards, if possible. For
example, search with Michael instead of Mi*.

Reducing the number of records to return

Use single-object searches for greater speed and accuracy.Reducing the number of joins

Use the setup area for searching to enable language optimizations,
and turn on enhanced lookups and auto-complete for better
performance on lookup fields.

Improving efficiency

18

Extracting Data from the APIBest Practices for Deployments with Large Data Volumes

Best PracticeGoal

In some cases, partition data with divisions. (See Divisions on page
11.)

Improving search performance

See Search Architecture on page 3.Reducing the time it takes to index inserts and updates for large
data volumes

SOQL and SOSL

Best PracticeGOAL

Decompose the query. If you use two indexed fields joined by an
OR in the WHERE clause, your search results can exceed the index
threshold. Break the query into two queries and join the results.

Allow indexed searches when SOQL queries with multiple WHERE
filters can’t use indexes

If you have to query on formula fields, use formulas. Avoid filtering
with formula fields that contain dynamic, non-deterministic
references. See Standard and Custom Indexed Fields on page 9.

Avoid querying on formula fields, which are computed in real time

See Using SOQL and SOSL on page 13.Use the most appropriate language, SOQL or SOSL, for a given
search

Use values such as NA to replace NULLS options. (See Using
SOQL and SOSL on page 13.)

Execute queries with null values in a WHERE filter for picklists or
foreign key fields

Use SOQL and SOSL where appropriate, keep queries focused, and
minimize the amount of data being queried or searched. (See Using
SOQL and SOSL on page 13.)

Design efficient custom query and search user interfaces

Use filters and specific terms in your queries.Build efficient SOQL and SOSL queries

For SOQL:

• Use selective filters, which reduce the number of rows the
Query Optimizer has to scan. For example, use filters that
reference indexed fields and fields that have a wider range of
possible values. If filters aren’t selective, the optimizer doesn’t
use indexed columns.

• When filtering on FirstName and LastName, use the
Name field instead. For example, Select id, Email
from Lead where Name=’Sam Kennedy’

• Avoid negative filters. For example, status !=’failed’
or status != NULL

• Use IN instead of a large list of OR statements. For example,
id in (‘001xxx’,‘001xxy’, ‘001xxz’).

• Avoid cross-object reference formula fields. Don’t filter on these
objects. They aren’t indexable.

For SOSL:

19

SOQL and SOSLBest Practices for Deployments with Large Data Volumes

Best PracticeGOAL

• For SOSL, selective filters reduce the number of irrelevant
results. If the filters aren’t selective and there are search terms
matches for more than 2,000 records, results can be impacted
by search crowding.

• Don’t index custom objects that you don’t want searched. It
adds to the number of records available to search, which can
lead to search crowding.

• Filter out objects you don’t want searched.

• Use specific search terms.

• Use targeted search groups. Search groups include NAME,
EMAIL, and PHONE fields. For example, FIND ‘Avery
Smith’ IN NAME FIELDS RETURNING
Account(Id,Name), Lead(Id,Name)

Tune the SOQL query, reducing query scope, and using selective
filters. Consider using Bulk API 2.0 with Bulk API 2.0 Query. If you’ve

Avoid timeouts on large SOQL queries

used the previous suggestions and still get timeouts, consider
adding a LIMIT clause (starting with 100,000 records) to your
queries. If using batch Apex for your queries, use chaining to get
sets of records (using LIMIT) or consider moving filter logic to the
execute method.

Deleting Data

Best PracticeGoal

When deleting large volumes of data, a process that involves
deleting one million or more records, use the hard delete option

Deleting large volumes of data

of the Bulk API or Bulk API 2.0 . Deleting large volumes of data
might take significant time due to the complexity of the deletion
process. (See Deleting Data on page 20.)

When deleting records that have many children, delete the children
first.

Making the data deletion process more efficient

General

Best PracticeGoal

Avoid having any user own more than 10,000 records.Avoiding sharing computations

Use a data-tiering strategy that spreads data across multiple objects,
and brings in data on demand from another object or external
store.

Improving performance

20

Deleting DataBest Practices for Deployments with Large Data Volumes

https://help.salesforce.com/s/articleView?id=sf.search_crowding_considerations.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.api_asynch.meta/api_asynch/query_bulk_api_2_0.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_limit.htm
https://developer.salesforce.com/blogs/engineering/2013/02/force-com-batch-apex-and-large-data-volumes.html
https://developer.salesforce.com/blogs/engineering/2013/02/force-com-batch-apex-and-large-data-volumes.html

Best PracticeGoal

When creating copies of production sandboxes, exclude field
history if it isn’t required, and don’t change a lot of data until the
sandbox copy is created.

Reducing the time it takes to create full copies of production
sandboxes with large data volumes

Distribute child records so that no parent has more than 10,000
child records. For example, in a deployment that has many contacts

Making deployments more efficient

but does not use accounts, set up several dummy accounts and
distribute the contacts among them.

Large Data Volumes Case Studies

This section contains:

• Large data volume-related problems that customers have had

• Solutions that customers used—or could have used—to fix those problems

To recognize and solve similar issues, read the following case studies:

IN THIS SECTION:

Data Aggregation

Custom Search Functionality

Indexing with Nulls

Rendering Related Lists with Large Data Volumes

API Performance

Sort Optimization on a Query

Multi-Join Report Performance

Data Aggregation

Situation
The customer needed to aggregate monthly and yearly metrics using standard reports. The customer’s monthly and yearly details were
stored in custom objects with four million and nine million records, respectively. The reports were aggregating across millions of records
across the two objects, and performance was less than optimal.

Solution
The solution was to create an aggregation custom object that summarized the monthly and yearly values into the required format for
the required reports. The reports were then executed from the aggregated custom object. The summarization object was populated
using batch Apex.

21

Large Data Volumes Case StudiesBest Practices for Deployments with Large Data Volumes

Custom Search Functionality

Situation
The customer needed to search in large data volumes across multiple objects using specific values and wildcards. The customer created
a custom Visualforce page that would allow the user to enter 1–20 different fields, and then search using SOQL on those combinations
of fields.

Search optimization became difficult because:

• When many values were entered, the WHERE clause was large and difficult to tune. When wildcards were introduced, the queries
took longer.

• Querying across multiple objects was sometimes required to satisfy the overall search query. This practice resulted in multiple queries
occurring, which extended the search.

• SOQL is not always appropriate for all query types.

Solutions
The solutions were to:

• Use only essential search fields to reduce the number of fields that could be searched. Restricting the number of simultaneous fields
that could be used during a single search to the common use cases allowed Salesforce to tune with indexes.

• De-normalize the data from the multiple objects into a single custom object to avoid having to make multiple querying calls.

• Dynamically determine the use of SOQL or SOSL to perform the search based on both the number of fields searched and the types
of values entered. For example, very specific values (i.e., no wild cards) used SOQL to query, which allowed indexes to enhance
performance.

Indexing with Nulls

Situation
The customer needed to allow nulls in a field and be able to query against them. Because single-column indexes for picklists and foreign
key fields exclude rows in which the index column is equal to null, an index could not have been used for the null queries.

Solution
The best practice would have been to not use null values initially. If you find yourself in a similar situation, use some other string, such
as N/A, in place of NULL. If you cannot do that, possibly because records already exist in the object with null values, create a formula
field that displays text for nulls, and then index that formula field.

For example, assume the Status field is indexed and contains nulls.

Issuing a SOQL query similar to the following prevents the index from being used.

SELECT Name
FROM Object
WHERE Status__c = ''

Instead, you can create a formula called Status_Value.

Status_Value__c = IF(ISBLANK(Status__c), "blank", Status__c)

22

Custom Search FunctionalityBest Practices for Deployments with Large Data Volumes

This formula field can be indexed and used when you query for a null value.

SELECT Name
FROM Object
WHERE Status_Value__c = 'blank'

This concept can be extended to encompass multiple fields.

SELECT Name
FROM Object
WHERE Status_Value__c = '' OR Email = ''

For more information about standard and custom indexed fields, see Indexes in Best Practices for Deployments with Large Data Volumes.

To avoid long execution times of SOQL queries, see Improve Performance of SOQL Queries using a Custom Index.

Rendering Related Lists with Large Data Volumes
Important: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Situation
The customer had hundreds of thousands of account records and 15 million invoices, which were within a custom object in a master-detail
relationship with the account. Each account record took a long time to display because of the Invoices related list’s lengthy rendering
time.

Solution
The delay in displaying the Invoices related list was related to data skew. While most account records had few invoice records, there
were some records that had thousands of them.

To reduce the delay, the customer tried to reduce the number of invoice records for those parents and keep data skew to a minimum
in child objects. Using the Enable Separate Loading of Related Lists setting allowed the account detail to render
while the customer was waiting for the related list query to complete.

API Performance

Situation
The customer designed a custom integration to synchronize Salesforce data with external customer applications.

The integration process involved:

• Querying Salesforce for all data in a given object

• Loading this data into the external systems

• Querying Salesforce again to get IDs of all the data, so the integration process could determine what data had been deleted from
Salesforce

The objects contained several million records. The integration also used a specific API user that was part of the sharing hierarchy to limit
the records retrieved. The queries were taking minutes to complete.

23

Rendering Related Lists with Large Data VolumesBest Practices for Deployments with Large Data Volumes

https://developer.salesforce.com/docs/atlas.en-us.256.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_infrastructure_indexes.htm
https://help.salesforce.com/s/articleView?id=000385213&type=1&language=en_US

In Salesforce, sharing is a very powerful mechanism for making certain records visible to a certain user, and it works very well for UI
interactions. However, when used as a high-volume data filter in a SOQL query, performance can suffer because data access is more
complex and difficult to process when you use sharing as a filter, especially if you are trying to filter out records in a large data volume
situation.

Solution
The solution was to give the query access to all the data, and then to use selective filters to get the appropriate records. For example,
using an administrator as the API user would have provided access to all of the data and prevented sharing from being considered in
the query.

An additional solution would have been to create a delta extraction, lowering the volume of data that needed to be processed.

You can find more information about how sharing can affect performance in Platform Sharing Architecture.

Sort Optimization on a Query

Situation
The customer had the following query.

SELECT Id,Product_Code__c
FROM Customer_Product__c
WHERE CreatedDate = Last_N_Days:3

The query was looking for all the records created in the last three days, but the amount of data in the object exceeded the threshold for
standard indexes: 30% of the total records up to one million records. The query performed poorly.

Solution
The query was rewritten as:

SELECT Id,Product_Code__c
FROM Customer_Product__c
WHERE CreatedDate = Last_N_Days:3
ORDER BY CreatedDate LIMIT 99999

In this query, the threshold checks were not done, and the CreatedDate index was used to find the records. This kind of query
returns a maximum of 99,999 records in the order that they were created within the last three days, assuming that 99,999 or fewer
records were created during the last three days.

Note: In general, when querying for data that has been added over the Last_N_Days, if you specify an ORDER BY query
on an indexed field with a limit of fewer than 100,000 records, the ORDER BY index is used to do the query.

Multi-Join Report Performance

Situation
The customer created a report that used four related objects: Accounts (314,000), Sales Orders (769,000), Sales Details (2.3 million), and
Account Ownership (1.2 million). The report had very little filtering and needed to be optimized.

24

Sort Optimization on a QueryBest Practices for Deployments with Large Data Volumes

https://architect.salesforce.com/fundamentals/platform-sharing-architecture

Solution
To optimize the report, the customer:

• Added additional filters to make the query more selective and ensured that as many filters as possible were indexable

• Reduced the amount of data in each object, whenever possible

• Kept the Recycle Bin empty. Data in the Recycle Bin affects query performance.

• Ensured that no complex sharing rules existed for the four related objects. Complex sharing rules can have a noticeable impact on
performance.

Summary

The Salesforce platform is a robust environment in which native and custom applications can scale to large volumes of data very quickly
while continuing to perform well.

You can maximize the benefits of these capabilities by:

• Making queries selective—ensure that reports, list views, and SOQL are using appropriate filters.

• Reducing the amount of active data—use archiving, mashups, and other techniques to reduce the amount of data stored in Salesforce.

Following these two broad principles and the best practices that support them can reduce the impact of large data volumes on Salesforce
application performance.

25

SummaryBest Practices for Deployments with Large Data Volumes

	Best Practices for Deployments with Large Data Volumes
	Introduction
	Underlying Concepts
	Multitenancy and Metadata Overview
	Search Architecture

	Infrastructure for Systems with Large Data Volumes
	Lightning Platform Query Optimizer
	Database Statistics
	Skinny Tables
	Indexes
	Divisions

	Techniques for Optimizing Performance
	Using Mashups
	Defer Sharing Calculation
	Using SOQL and SOSL
	Deleting Data
	Search

	Best Practices
	Reporting
	Loading Data from the API
	Extracting Data from the API
	Searching
	SOQL and SOSL
	Deleting Data
	General

	Large Data Volumes Case Studies
	Data Aggregation
	Custom Search Functionality
	Indexing with Nulls
	Rendering Related Lists with Large Data Volumes
	API Performance
	Sort Optimization on a Query
	Multi-Join Report Performance

	Summary

