
SETTING UP YOUR .NET DEVELOPER
ENVIRONMENT

Summary

Configure your local dev
environment for integrating
with Salesforce using .NET.

This tipsheet describes how to set up your local environment so that you can start using Salesforce APIs,
such as SOAP API or REST API.

Note: If you're setting up a local environment to develop Salesforce applications using Apex and
custom Metadata API components, take a look at the Salesforce Extensions for Visual Studio Code.

This tipsheet focuses on tools and configurations you need to set up your local development system. It
assumes you already have a working Salesforce organization with the API Enabled permission. API is
enabled by default on Developer Edition, Enterprise Edition, Unlimited Edition, and Performance Edition
organizations.

To create a Developer Edition org, go to developer.salesforce.com/signup and follow the
instructions for signing up for a Developer Edition organization.

If you have a Salesforce organization you can use for development but need to set up a sandbox for
development and testing, see Deploy Enhancements from Sandboxes in Salesforce Help.

Installing Microsoft Visual Studio
You’ll need to install Microsoft Visual Studio to use Salesforce APIs. Visual Studio is a development
environment that enables you to create robust .NET applications.

To install Microsoft Visual Studio, you’ll need a Windows system with Internet access. Depending on your
system, you might also need administrator-level access to install Visual Studio.

Microsoft Visual Studio provides the necessary development tools and SDKs that are required to build
Windows applications. There are several versions and editions of Visual Studio, each with different features
and different Windows platform requirements. See
http://www.visualstudio.com/products/compare-visual-studio-products-vs to compare current editions.
For this tip sheet, we use Visual Studio Express 2013 for Windows on a Windows 7 system.

1. Navigate to http://www.visualstudio.com/downloads/download-visual-studio-vs in your browser.

2. Follow the instructions to download the version of Visual Studio that fits your development needs.

3. Double-click the installer executable and follow the steps to install Visual Studio.

Picking a Path Based on Which API You Use
The next steps for setting up your development environment depend on which Salesforce API you want
to use.

To use SOAP API, CRUD-based Metadata API, or any other WSDL-based Salesforce API, complete the steps
in the following tasks.

• Download Developer WSDL Files (WSDL-Based APIs) on page 2

• Verify the WSDL Environment (WSDL-Based APIs) on page 2

To use REST API, Bulk API, Connect REST API, or any other REST-based Salesforce APIs, complete the steps
in the following tasks.

Last updated: July 11, 2025

https://github.com/forcedotcom/salesforcedx-vscode
https://developer.salesforce.com/signup
https://help.salesforce.com/articleView?id=deploy_sandboxes_parent.htm&language=en_US
http://www.visualstudio.com/products/compare-visual-studio-products-vs
http://www.visualstudio.com/downloads/download-visual-studio-vs

• Setting Up Connected App Access (REST-Based APIs) on page 5

• Verify the REST Environment (REST-Based APIs) on page 5

Tooling API provides SOAP and REST interfaces, so depending on your needs, you can set up your
environment by using one of the paths above.

Download Developer WSDL Files (WSDL-Based APIs)
Salesforce Web Services Definition Language (WSDL) files provide API details that you use in your developer
environment to make API calls.

To download WSDL files directly from your Salesforce organization:

1. Log in to your Salesforce developer organization in your browser.

2. From Setup, enter API in the Quick Find box, then select API.

3. Download the appropriate WSDL files for the API you want to use.

a. If you want to use SOAP API you’ll need either the Enterprise or Partner WSDL. See Choosing a
WSDL in the SOAP API Developer Guide to determine which WSDL to download.

b. If you want to use Metadata API you’ll need the Metadata WSDL. To login and authenticate with
Salesforce you’ll also need either the Enterprise or Partner WSDL.

c. If you want to use Tooling API you’ll need the Tooling WSDL. To login and authenticate with
Salesforce you’ll also need either the Enterprise or Partner WSDL.

Verify the WSDL Environment (WSDL-Based APIs)
You can verify your developer environment with a simple C# test application in Visual Studio.

You should have Visual Studio installed and have the WSDL files that you need to use available. You’ll
need the Enterprise or Partner WSDL to follow the verification steps.

1. Start Visual Studio.

2. Click File > New Project.

3. In the New Project window, navigate to Installed > Templates > Visual C# > Windows. Select
Console Application.

4. In the New Project window, under Name, name the project VerifyWSDLTest. Under Solution
name, name the solution VerifyWSDLTest. Under Location, pick a file location that you’ll
remember. Click Ok. A solution is created, and Program.cs is opened for editing.

5. Click Project > Add Service Reference.

6. In the Add Service Reference window, under Address, enter the file URL path to your Enterprise or
Partner WSDL file. For example, if enterprise.wsdl is saved in c:\wsdls, enter
file://c:\wsdls\enterprise.wsdl. Click Go. The Services list is populated with an entry
that is named SforceService.

7. Select SforceService. Under Namespace enter sforce. Your Add Service Reference window should
look something like the following image.

2

Download Developer WSDL Files (WSDL-Based APIs)Setting Up Your .NET Developer Environment

https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/sforce_api_quickstart_intro.htm#choose_wsdl
https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/sforce_api_quickstart_intro.htm#choose_wsdl

Click Ok. The WSDL services are imported under the sforce namespace in your project.

8. Replace the code in Program.cs as described in the following section.

Use the following simple login example code for your Program.cs contents. Replace YOUR DEVORG
USERNAME with your developer organization username, and replace YOUR DEVORG PASSWORD
AND SECURITY TOKEN with your developer organization password appended with your security
token. If you did not set a security token in your organization, just provide your password. A GitHub Gist
of this code is available here: https://gist.github.com/anonymous/7d533cf2b4822fb29317.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.ServiceModel;
using VerifyWSDLTest.sforce;

namespace VerifyWSDLTest
{

class Program
{

private static SoapClient client;
private static LoginResult loginResult;

private static bool login()
{

client = new SoapClient();

string acctName = "YOUR DEVORG USERNAME";
string acctPw = "YOUR DEVORG PASSWORD AND SECURITY TOKEN";

3

Verify the WSDL Environment (WSDL-Based APIs)Setting Up Your .NET Developer Environment

https://gist.github.com/anonymous/7d533cf2b4822fb29317

try
{

loginResult = client.login(null, acctName, acctPw);
}
catch (Exception e)
{

Console.WriteLine("Unexpected login error: " +
e.Message);

Console.WriteLine(e.StackTrace);
return false;

}
return true; // success

}

static void Main(string[] args)
{

if (login())
{

// display some current login settings
Console.Write("Service endpoint: " +

loginResult.serverUrl + "\n");
Console.Write("Username: " +

loginResult.userInfo.userName + "\n");
Console.Write("SessionId: " + loginResult.sessionId +

"\n");
Console.Write("Press any key to continue:\n");
Console.ReadKey();

}
}

}
}

The following example output shows a typical successful run of this code.

Service endpoint:
https://yourInstance.salesforce.com/services/Soap/c/29.0/00DU0000000T5f0/0DFU00000008XpB
Username: myUser@my_devedition.com
SessionId:
00DU0000000L5f0!ARoAQOYUBIRHn9tDOCf...zESyoJ2JwHN2ovyY2vIP1TGjc8vn_C
Press any key to continue:

If the verification project runs and displays output that matches your organization, your developer
environment is set up and you can start developing .NET applications that integrate with Salesforce. If you
have additional WSDL files you can add them to your project via the Add Service Reference dialog as
described in steps 5 and 6 above.

If you are using Microsoft Visual Studio 2010 or earlier, in step 5, Add Service Reference might be unavailable.
Use Add Web Reference instead. Under URL, enter the file path to your WSDL, such as
file://c:\wsdls\enterprise.wsdl. Name the web reference sforce, and click Add
Reference. If you have to use a web reference, use an instance of SforceService to call
SforceService.login() instead of SoapClient.login().

4

Verify the WSDL Environment (WSDL-Based APIs)Setting Up Your .NET Developer Environment

Setting Up Connected App Access (REST-Based APIs)
Because Salesforce REST APIs use OAuth authentication, create a connected app to integrate your
application with Salesforce.

A connected app integrates an application with Salesforce using APIs. Connected apps use standard SAML
and OAuth protocols to authenticate, provide single sign-on, and provide tokens for use with Salesforce
APIs. In addition to standard OAuth capabilities, connected apps allow Salesforce admins to set various
security policies and have explicit control over who can use the corresponding apps.

Specify basic information about your app. See Configure Basic Connected App Settings in Salesforce Help.

Next, provide OAuth settings. See See Enable OAuth Settings for API Integration in Salesforce Help.

For more information, see Create a Connected App in Salesforce Help.

Verify the REST Environment (REST-Based APIs)
You can verify your developer environment with a simple C# test application in Visual Studio.

You must have Visual Studio installed to create a C# test application.

1. Start Visual Studio.

2. Click File > New Project.

3. In the New Project window, navigate to Installed > Templates > Visual C# > Windows. Select
Console Application.

4. In the New Project window, under Name, name the project VerifyRESTTest. Under Solution
name, name the solution VerifyRESTTest. Under Location, pick a file location that you’ll
remember. Click Ok. A solution is created, and Program.cs is opened for editing.

5. Click Project > Add Reference.

6. In the Reference Manager window, navigate to Assemblies > Framework. Select
System.Runtime.Serialization. Ensure that the checkbox is selected, and click Ok.

7. Replace the code in Program.cs as described in the following section.

Use the following simple login example code for your Program.cs file. Replace YOUR DEVORG
USERNAME with your developer organization username, and replace YOUR DEVORG PASSWORD
+ SECURITY TOKEN with your developer organization password appended with your security token.
If you did not set a security token in your organization, just provide your password. Replace YOUR OAUTH
CONSUMER KEY with the consumer key from your development organization’s connected app. Replace
YOUR OAUTH CONSUMER SECRET with the consumer secret from your development organization’s
connected app. A GitHub Gist of this code is available here:
https://gist.github.com/anonymous/db367194e6e24faa081b.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Net;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;

namespace VerifyRESTTest

5

Setting Up Connected App Access (REST-Based APIs)Setting Up Your .NET Developer Environment

https://help.salesforce.com/articleView?id=connected_app_create_basics.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_create_api_integration.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_create.htm&language=en_US
https://gist.github.com/anonymous/db367194e6e24faa081b

{
class Program
{

// Class used for serializing the OAuth JSON response
[DataContract]
public class OAuthUsernamePasswordResponse
{

[DataMember]
public string access_token { get; set; }
[DataMember]
public string id { get; set; }
[DataMember]
public string instance_url { get; set; }
[DataMember]
public string issued_at { get; set; }
[DataMember]
public string signature { get; set; }

}

private static string accessToken = "";
private static string instanceUrl = "";

private static void login()
{

string acctName = "YOUR DEVORG USERNAME";
string acctPw = "YOUR DEVORG PASSWORD AND SECURITY TOKEN";

string consumerKey = "YOUR OAUTH CONSUMER KEY";
string consumerSecret = "YOUR OAUTH CONSUMER SECRET";

// Just for testing the developer environment, we use the
simple username-password OAuth flow.

// In production environments, make sure to use a stronger
OAuth flow, such as User-Agent

string strContent = "grant_type=password" +
"&client_id=" + consumerKey +
"&client_secret=" + consumerSecret +
"&username=" + acctName +
"&password=" + acctPw;

string urlStr =
"https://login.salesforce.com/services/oauth2/token?" + strContent;

HttpWebRequest request = WebRequest.Create(urlStr) as
HttpWebRequest;

request.Method = "POST";

try
{

using (HttpWebResponse response = request.GetResponse()
as HttpWebResponse)

{
if (response.StatusCode != HttpStatusCode.OK)

throw new Exception(String.Format(

6

Verify the REST Environment (REST-Based APIs)Setting Up Your .NET Developer Environment

"Server error (HTTP {0}: {1}).",
response.StatusCode,
response.StatusDescription));

// Parse the JSON response and extract the access
token and instance URL

DataContractJsonSerializer jsonSerializer = new
DataContractJsonSerializer(typeof(OAuthUsernamePasswordResponse));

OAuthUsernamePasswordResponse objResponse =
jsonSerializer.ReadObject(response.GetResponseStream()) as
OAuthUsernamePasswordResponse;

accessToken = objResponse.access_token;
instanceUrl = objResponse.instance_url;

}
}
catch (Exception e)
{

Console.WriteLine("\nException Caught!");
Console.WriteLine("Message :{0} ", e.Message);

}
}

static void Main(string[] args)
{

login();
if (accessToken != "")
{

// display some current login settings
Console.Write("Instance URL: " + instanceUrl + "\n");

Console.Write("Access Token: " + accessToken + "\n");

Console.Write("Press any key to continue:\n");
Console.ReadKey();

}
}

}
}

The following example output shows a typical successful run of this code.

Instance URL: https://yourInstance.salesforce.com
Access Token:
00DU0000000L3f0!ARoAQKl4rimMZ7kh11QpvHv....VreCvYJafmsCd2MgBM1UltPflQ
Press any key to continue:

If the verification C# project runs and displays output that matches your organization, your developer
environment is set up and you can start developing .NET applications that integrate with Salesforce REST
APIs.

7

Verify the REST Environment (REST-Based APIs)Setting Up Your .NET Developer Environment

