
Salesforce Maps Apex
Developer Guide

Version 64.0, Summer ’25

Last updated: May 16, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Overview . 1

Chapter 2: Requirements . 2

Chapter 3: Apex Methods . 3

Assign Records to Owners Using an Assignment Plan . 4
Create a Route . 7
Create Routes for Specific Users . 9
Create Routes from Visit Plan . 11
Get a Route . 13
Get the Boundary Information . 40
Get the Distance Matrix . 42
Get the Geographical Coordinates of an Address . 47
Get the Geographical Coordinates of Addresses in Batch . 48
Permanently Delete Datasets and Alignments . 53
Retrieve Data That Salesforce Maps Hosts . 54
Retrieve the Geographical Data of Country-Specific Shapes . 66
Retrieve the Geographical Data of Polygons . 68
Retrieve the Territories in Which the Records Reside . 70

CHAPTER 1 Overview

Get your sales and service teams to spend more time building customer relationships and less time on
the road when you fine-tune your Salesforce Maps implementation using Apex. For example, return
estimated travel distances and times between locations, get geographical coordinates for addresses,
and retrieve geometric data for areas and perimeters.

API Performance Considerations and Guidelines

If your processes rely heavily on the API, you can experience decreased performance and server errors.
Apex methods don’t count against org API limits.

Potential ResolutionServer Error

Retry your requests.

For better flow control, you can implement an exponential back-off algorithm.
Such algorithms use progressively longer wait times between retries for

(5xx) or throttling

consecutive error responses. Implement a maximum delay interval and a
maximum number of retries.

You can base those maximums on performed operations and other local factors,
such as throughput capacities or request throttling.

Revise your requests to correct any problems before trying again.(4xx)

SEE ALSO:

Salesforce Help: Salesforce Maps

Apex Developer Guide

1

https://help.salesforce.com/articleView?id=sf.salesforce_maps_intro.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_dev_guide.htm

CHAPTER 2 Salesforce Maps Apex Requirements

This guide introduces you to the Apex methods you can use to perform Salesforce Maps operations
without using the UI.

Before using Apex methods, ensure that you have:

• Access to Apex classes using Enterprise, Unlimited, or Developer Editions

• Salesforce Maps installed

• A license for Salesforce Maps or Salesforce Maps Advanced. Methods to get current location and
location history also require a license for Salesforce Maps Live Tracking

• Access to Salesforce Maps objects and Apex classes granted through a permission set: SF Maps, SF
Maps Advanced, SF Maps Live Admin, Maps User, or Maps Admin

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted
work errors when you perform one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one
time in a single transaction and the Salesforce Maps token hasn’t refreshed in the last 24 hours. If
these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is
almost immediate after each qualifying action occurs.

2

CHAPTER 3 Salesforce Maps Apex Methods

Apex is a typed, object-oriented programming language that allows developers to execute flow and
transaction control statements on the Salesforce Platform server, in conjunction with calls to the API.
Use the sample code in this Apex method documentation as a starting point for your Salesforce Maps
implementation.

In this chapter ...

• Assign Records to
Owners Using an
Assignment Plan

• Create a Route

• Create Routes for
Specific Users

• Create Routes from
Visit Plan

• Get a Route

• Get the Boundary
Information

• Get the Distance
Matrix

• Get the Geographical
Coordinates of an
Address

• Get the Geographical
Coordinates of
Addresses in Batch

• Permanently Delete
Datasets and
Alignments

• Retrieve Data That
Salesforce Maps
Hosts

• Retrieve the
Geographical Data of
Country-Specific
Shapes

• Retrieve the
Geographical Data of
Polygons

• Retrieve the
Territories in Which
the Records Reside

3

Assign Records to Owners Using an Assignment Plan

The AssignRecords() Apex method assigns records to users automatically using rules specified in an assignment plan. For example,
suppose that you use a web-to-lead generation form to generate inbound leads in Salesforce. You use the AssignRecords()
method to assign those leads to sales reps as soon as the lead records are created, reducing the time for sales reps to contact leads.

Signature
String, List<sObject> maps.API.AssignRecords(String, List<sObject>)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• AssignRecords() is the method.

Sample Code
This code assigns accounts to reps based on an existing assignment plan. The AssignRecords() method returns a
List<sObject> containing the records that were assigned to an assignment plan, the plan ID, and the records that weren't assigned
to an assignment plan.

The AssignRecords() global method uses the last record cache to assign records. As a best practice, schedule assignment of
records frequently in a batch to keep the cache up to date. For more information, see Salesforce Help: Schedule and Run Record Assignments.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Example

// Get the record ID of the assignment plan.
maps__AssignmentPlan__c plan = [SELECT Id FROM maps__AssignmentPlan__c];

// Get a list of records you want to assign.
// This query includes all fields mapped in the plan.
List<Account> accs = [SELECT Id, BillingLatitude, BillingLongitude FROM Account];

// Call the AssignRecords method with the plan ID and list of account records.
maps.API.AssignRecords(plan.Id, accs);

// Log the record assignment output in JSON format.
Map<String, Object> response = maps.API.AssignRecords(plan.Id, accs);
system.debug(JSON.serialize(response));

4

Assign Records to Owners Using an Assignment PlanSalesforce Maps Apex Methods

https://help.salesforce.com/s/articleView?id=sf.salesforce_maps_setup_autoassignment_run.htm&language=en_US

Invocable Example

public class InvocableTest {

@future(callout=true)
public static void testInvocableFuture(List<Id> accIds) {
// This query includes all fields mapped in the plan.

List<Account> accs = [SELECT Id, BillingLatitude, BillingLongitude, Description,
maps__AssignmentRule__c FROM Account WHERE Id IN :accIds];

// Call the AssignRecords method with the plan ID and list of account records.
maps.API.AssignRecords('a0L54000007oHXqEAM', accs);

// Log the record assignment output in JSON format.
Map<String, Object> response = maps.API.AssignRecords(plan.Id, accs);
system.debug(JSON.serialize(response));

}

public with sharing class testInvocableQueueable implements Queueable,
Database.AllowsCallouts {

List<Id> accIds;

public testInvocableQueueable(List<Id> accIds) {
this.accIds = accIds;

}

public void execute(QueueableContext qc) {
// This query includes all fields mapped in the plan.

List<Account> accs = [SELECT Id, BillingLatitude, BillingLongitude, Description,
maps__AssignmentRule__c FROM Account WHERE Id IN :accIds];

// Call the AssignRecords method with the plan ID and list of account records.

maps.API.AssignRecords('a0L54000007oHXqEAM', accs);

// Log the record assignment output in JSON format.
Map<String, Object> response = maps.API.AssignRecords(plan.Id, accs);
system.debug(JSON.serialize(response));

}
}

@InvocableMethod(label='test invocable' description='test auto assign' callout=true)
public static void testInvocable(List<Id> accIds) {

// CALLING A FUTURE METHOD WORKS.
//testInvocableFuture(accIds);

// CALLING A QUEUEABLE METHOD WORKS.
//System.enqueueJob(new testInvocableQueueable(accIds));

// THIS WON’T WORK AS AN INVOCABLE METHOD. A CALLOUT INSIDE OF A RECORD UPDATE OR
INSERT RESULTS IN AN UNCOMMITTED WORK ERROR.

// INSTEAD, SEPARATE THE TRANSACTION INTO A FUTURE OR QUEUEABLE METHOD.
//List<Account> accs = [SELECT Id, BillingLatitude, BillingLongitude, Description,

maps__AssignmentRule__c FROM Account WHERE Id IN :accIds];

5

Assign Records to Owners Using an Assignment PlanSalesforce Maps Apex Methods

//maps.API.AssignRecords('a0L54000007oHXqEAM', accs);
}

}

Trigger Example

// FOR INSERTS, AFTER WORKS BETTER THAN BEFORE BECAUSE THE ID DOESN’T EXIST IN THE BEFORE
CHECK.
trigger AccountTrigger on Account (after insert, after update) {

List<Id> accIds = new List<Id>();

for (Account acc : Trigger.new) {
if (acc.maps__AssignmentRule__c == null) {

accIds.add(acc.Id);
}

}

// CALLING A QUEUEABLE METHOD WORKS.
//if (!accIds.isEmpty()) {

//System.enqueueJob(new AccountTriggerHelper.testTriggerQueueable(accIds));
//}

// THIS WON’T WORK AS A TRIGGER.
//List<Account> accs = [SELECT Id, BillingLatitude, BillingLongitude, Description,

maps__AssignmentRule__c FROM Account WHERE Id IN :accIds];
//maps.API.AssignRecords('a0L54000007oHXqEAM', accs);

// CALLING A FUTURE METHOD WON’T WORK.
//AccountTriggerHelper.testTriggerFuture(accIds);

}

public class AccountTriggerHelper {

@future(callout=true)
public static void testTriggerFuture(List<Id> accIds) {
// This query includes all fields mapped in the plan.

List<Account> accs = [SELECT Id, BillingLatitude, BillingLongitude, Description,
maps__AssignmentRule__c FROM Account WHERE Id IN :accIds];

// Call the AssignRecords method with the plan ID and list of account records.
maps.API.AssignRecords('a0L54000007oHXqEAM', accs);

}

public with sharing class testTriggerQueueable implements Queueable,
Database.AllowsCallouts {

List<Id> accIds;

public testTriggerQueueable(List<Id> accIds) {
this.accIds = accIds;

}

public void execute(QueueableContext qc) {
// This query includes all fields mapped in the plan.

List<Account> accs = [SELECT Id, BillingLatitude, BillingLongitude, Description,

6

Assign Records to Owners Using an Assignment PlanSalesforce Maps Apex Methods

maps__AssignmentRule__c FROM Account WHERE Id IN :accIds];
// Call the AssignRecords method with the plan ID and list of account records.

maps.API.AssignRecords('a0L54000007oHXqEAM', accs);

// Log the record assignment output in JSON format.
Map<String, Object> response = maps.API.AssignRecords(plan.Id, accs);
system.debug(JSON.serialize(response));
}

}

}

Sample Response
This method returns an Apex Map<String, Object> object that contains the records assigned, the plan ID, and records not
assigned. This JSON response illustrates the essential data returned.

{
assigned: [

{
id="0011700001LTxzwAAD", // ID of record assigned.
rule="0021700001LTxzwAAD", // ID of rule used for assignment.
user="0031700001LTxzwAAD" // ID of user assigned to the matched rule.

},
{

id="0011700001LTxzwAAG",
rule="0021700001LTxzwAAD",
user="0031700001LTxzwAAD"

}
],
plan: "a0L54000007oHXqEAM", // Assignment plan ID
unassigned: ["0011700001LTxzwAAE", "0011700001LTxzwAAF"] // List of record IDs not

assigned.
}

SEE ALSO:

Salesforce Help: Automate Assignments for Salesforce Records

Create a Route

The CreateRoute() Apex method creates a record that includes a list of waypoints that reps access in Salesforce Maps. The record
doesn't include a route between waypoints.

Signature
maps__Route__c maps.API.CreateRoute(map<string,object> options)

Where,

7

Create a RouteSalesforce Maps Apex Methods

https://help.salesforce.com/s/articleView?id=sf.salesforce_maps_setup_autoassignment_configure.htm&language=en_US

• maps__Route__c is a Salesforce Maps route record containing a list of waypoints.

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• CreateRoute() is the method.

Allocations
This method requires 2–25 waypoints.

Sample Code
This code returns a maps__Route__c record of waypoints of accounts with billing addresses in Atlanta.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format of Waypoints

{
version: '1', // Required. Version of the API endpoint. Must be '1'.
name: 'String', // Name of the new route record.
date: Date, // Time and date in Epoch format that the route is created for. Default is the
current time and date.
waypoints: [{recordId:String, lat:Decimal, lng:Decimal, address:String, order: Integer,
baseobjectid: String, markerlayerid: String, notes:String}, {...}] // List of waypoint
objects.
}

Example

// Create a list of waypoints.
List<Map<String,Object>> waypoints = new List<Map<String,Object>>();

// Retrieve the list of billing addresses from the database and
// add them to the waypoints object.
List<Account> accountList = [Select
Id,BillingStreet,BillingCity,BillingState,BillingPostalcode, BillingLatitude,BillingLongitude
From Account Where BillingCity = 'Atlanta' LIMIT 25];

for(Integer i = 0; i < accountList.size(); i++){
Account thisAccount = accountList[i];
String address = thisAccount.BillingCity + ', ' + thisAccount.BillingState + ' ' +

thisAccount.BillingPostalCode;
waypoints.add(new Map<String,Object>{

'lat' => thisAccount.BillingLatitude,

8

Create a RouteSalesforce Maps Apex Methods

'lng' => thisAccount.BillingLongitude,
'address' => address,
'recordId' => thisAccount.id,
'baseobjectid' => 'a0N0t000002hEyvEAE',
'markerlayerid' => 'a0v0t000001wE91AAE',
'order' => i + 1

});
}

// Build the request.
Map<String,Object> request = new Map<String,Object>();
request.put('version','1');
request.put('name','Atlanta Accounts Route');
request.put('waypoints',waypoints);

// Call the CreateRoute() method with the waypoints.
maps__Route__c response = maps.API.CreateRoute(request);

// Log the route record output in JSON format.
system.debug(JSON.serialize(response));

Sample Response
This method returns a maps__Route__c record, which inserts the waypoints that appear in Salesforce Maps. This JSON response
illustrates the essential data stored in the route record.

{
"attributes": {
"type": "maps__Route__c",
"url": "/services/data/v51.0/sobjects/maps__Route__c/a0y0t000001ht8HAAQ"

},
"Name": "Atlanta Accounts Route",
"maps__Date__c": "2021-05-04",
"Id": "a0y0t000001ht8HAAQ"

}

Create Routes for Specific Users

The StartAdvancedOptimizationForUsers() Apex method creates routes for users assigned to any active Salesforce
Maps Advanced visit plan. Use this method to leverage Salesforce Maps Advanced visit planning from your custom workflow or app,
such as a retail execution app. By using Apex, you can generate routes for reps automatically without having to make field reps click
through the UI to manually generate routes.

The StartAdvancedOptimizationForUsers() Apex method is the equivalent of clicking Plan My Visits for users in Maps
Advanced Route.

When you use this method, only the user’s future shifts are included for planning visits along the route. If a user’s shift has started or is
within 2 hours of starting at the time the method runs, the method doesn’t change visit appointments for today’s date. In that case, one
day is added to the starting date (startDate).

Visits are created from startDate through a visit plan’s end date. If a user is assigned to more than one visit plan, then visits are
planned for the length of time dictated by the visit plan with the end date furthest in the future.

9

Create Routes for Specific UsersSalesforce Maps Apex Methods

Example: A user is assigned to consecutive plans Visit Plan A and Visit Plan B. At the time the method is run, Visit Plan A has 10
days remaining until its end date. Visit Plan B has a start date immediately after Visit Plan A’s end date, and has 30 days remaining
until its end date. When the method runs, visits are scheduled for the user for the remainder of Visit Plan A (10 days), and scheduled
for 20 days in Visit Plan B, for a total of 30 days.

Signature
Map<String, Object> maps.API.StartAdvancedOptimizationForUsers(Set<Id> userIds, Date
startDate)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• StartAdvancedOptimizationForUsers() is the method.

• userIds is a set of IDs of the Salesforce users for which you want to generate routes. Every user must be assigned to an active
visit plan for the date you specify in startDate.

• startDate is optional. If not specified, the method uses today’s date as the date to start planning visits. If startDate occurs
during a user’s shift or within 2 hours of the user’s next shift, then one day is added to the specified startDate.

Sample Code
Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Example

// Create a userIds variable to hold the Salesforce user IDs.
Set<Id> userIds = new Set<Id>();

// Create a variable for the current or future date.
Date today = Date.today();

// Check that each user is assigned to an active visit plan for specified date.
List<maps__AdvRouteTemplate__c> activeTemplates = [SELECT Id FROM maps__AdvRouteTemplate__c
WHERE
maps__StartDate__c <= :today AND (maps__EndDate__c >= :today OR maps__IsRepeating__c =
TRUE) AND
maps__Active__c = TRUE LIMIT 1];

// Query for the IDs of all users for which we want to generate routes.
for (User u : [SELECT Id FROM User WHERE Name IN ('User1, User2')]) {

userIds.add(u.Id);

10

Create Routes for Specific UsersSalesforce Maps Apex Methods

}

// Call the method.
if (!activeTemplates.isEmpty() && !userIds.isEmpty()) {

maps.API.StartAdvancedOptimizationForUsers(userIds, today);
}

Sample Response
This method returns an Apex Map<String, Object> object that contains a boolean flag indicating whether the routes were
created successfully.

{
success: true

}

If the routes weren’t created successfully, an error message is returned. In this context, optimization refers to creating routes.

{
success: false
error: "Please provide either the current or future date in the request to complete

optimization."
}

If the routes were created successfully for some users, but not others, a warning is returned. In this example, some users weren’t assigned
to an active visit plan for the startDate, so those users were skipped.

{
success: true,
warning: "No visit plans are set up for routing on the date you selected for the

following users: [userId]"
}

SEE ALSO:

Knowledge Article: Generate Routes for a Single User Assigned to Maps Advanced Visit Plan

Apex Developer Guide

Create Routes from Visit Plan

The StartAdvancedOptimizationForVisitPlan() Apex method creates routes for all users assigned to a Salesforce
Maps Advanced visit plan. Use this method to leverage Salesforce Maps Advanced visit planning from your custom workflow or app,
such as a retail execution app. By using Apex, you can generate routes for reps automatically without having to make field reps click
through the UI to manually generate routes.

The StartAdvancedOptimizationForVisitPlan() Apex method is the equivalent of clicking Plan Visits on an active
visit plan in Maps Advanced Visit Plans.

When you use this method, only the user’s future shifts are included for planning visits along the route. If a user’s shift has started or is
within 2 hours of starting at the time the method runs, the method doesn’t change visit appointments for today’s date. In that case, one
day is added to the starting date (startDate).

Visits are created from startDate through a visit plan’s end date.

11

Create Routes from Visit PlanSalesforce Maps Apex Methods

https://help.salesforce.com/s/articleView?id=000363030&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_dev_guide.htm

Signature
Map<String, Object> maps.API.StartAdvancedOptimizationForVisitPlan(Id templateId, Date
startDate)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• StartAdvancedOptimizationForVisitPlan() is the method.

• templateId is the Salesforce record id of a visit plan.

• startDate is optional. If not specified, the method uses today’s date as the date to start planning visits. If startDate occurs
during a user’s shift or within 2 hours of the user’s next shift, then one day is added to the specified startDate.

Sample Code
Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Example

// Create a variable for the current or future date.
Date today = Date.today();

// Query for the record ID of an active visit plan.
List<maps__AdvRouteTemplate__c> activeTemplates = [SELECT Id FROM maps__AdvRouteTemplate__c
WHERE Name = 'NAME_OF_VISIT_PLAN' AND
maps__StartDate__c <= :today AND (maps__EndDate__c >= :today OR maps__IsRepeating__c =
TRUE) AND
maps__Active__c = TRUE LIMIT 1];

// Call the method.
if (!activeTemplates.isEmpty()) {
maps.API.StartAdvancedOptimizationForVisitPlan(activeTemplates[0].Id, today);
}

12

Create Routes from Visit PlanSalesforce Maps Apex Methods

Sample Response
This method returns an Apex Map<String, Object> object that contains a boolean flag indicating whether the routes were
created successfully.

{
success: true

}

If the routes weren’t created successfully, an error message is returned. In this context, optimization refers to creating routes.

{
success: false
error: "Please provide either the current or future date in the request to complete

optimization."
}

SEE ALSO:

Knowledge Article: Generate Routes for All Users Assigned to the Maps Advanced Visit Plan

Apex Developer Guide

Get a Route

The getRoute() Apex method returns a route between two or more waypoints for the specified mode of transportation. The travel
time depends on the mode of transportation. The route appears in Salesforce Maps for the users who requested the route, such as a
delivery truck driver and the admin. This method doesn’t optimize the route. Instead, it finds a route between the waypoints in entered
sequence.

Signature
Map<String, Object> maps.API.getRoute(String requestJSON)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• getRoute() is the method.

Sample Code
This code finds a route for someone driving a car from one grocery store to another.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

13

Get a RouteSalesforce Maps Apex Methods

https://help.salesforce.com/s/articleView?id=000362756&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_dev_guide.htm

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format of the Request JSON String

The input format supports standard and custom drive profiles. If your drivers require routes optimized for vehicles other than standard
cars, create a custom drive profile first, and then add it to your driveProfile string.

{
driveProfile: 'string' // Mode of transportation. Standard profile values are 'car' and
'bicycle'. For a custom profile, specify its record ID.
waypoints: [{id:String, lat:Decimal, lng:Decimal, id:String}, ...] // List of waypoints
hideGeoJSON: boolean // Optional. If set to true, the GeoJSON is excluded from the response
}

Example

// Create a list of waypoints.
List<Map<String,Object>> waypoints = new List<Map<String,Object>>();
waypoints.add(new Map<String,Object>{

'lat' => 33.917760,
'lng' => -84.379750,
'id' => 'groceryNorth'

});

waypoints.add(new Map<String,Object>{
'lat' => 33.840630,
'lng' => -84.381920,
'id' => 'grocerySouth'

});

// Build the request.
Map<String,Object> request = new Map<String,Object>();
request.put('waypoints',waypoints);
request.put('driveProfile','car'); // For a custom drive profile, replace 'car' with the
ID of your custom drive profile.
request.put('hideGeoJSON', true); // Optional. Add only if removing the GeoJSON from the
response
String routeRequest = JSON.serialize(request);

// Call the getRoute() method with the waypoints and mode of transportation.
Map<String,Object> response = maps.API.getRoute(routeRequest);

// Log the resulting route.
system.debug(response);

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

{
"profile": {
"width": null,
"weightPerAxle": null,

14

Get a RouteSalesforce Maps Apex Methods

https://help.salesforce.com/s/articleView?id=000389632&type=1&language=en_US

"weight": null,
"type": "car",
"trailers": null,
"length": null,
"height": null,
"hazmat": null,
"axles": null

},
"request": {
"profile": {
"type": "car"

},
"timebased": false,
"waypoints": [
{
"id": "groceryNorth",
"lat": 33.91776,
"lng": -84.37975

},
{
"id": "grocerySouth",
"lat": 33.84063,
"lng": -84.38192

}
]

},
"response": {
"success": true,
"geojson": {
"features": [
{
"geometry": {
"coordinates": [
[
[
-84.37935,
33.91775

],
[
-84.37935,
33.91744

],
[
-84.37913,
33.91743

],
[
-84.37915,
33.91725

],
[
-84.37916,
33.91717

],

15

Get a RouteSalesforce Maps Apex Methods

[
-84.37916,
33.91704

],
[
-84.37916,
33.91698

],
[
-84.37919,
33.91667

],
[
-84.37919,
33.91661

],
[
-84.37922,
33.91622

],
[
-84.37923,
33.91609

],
[
-84.37925,
33.91601

],
[
-84.37925,
33.91592

],
[
-84.37928,
33.91574

],
[
-84.37929,
33.91558

],
[
-84.37932,
33.91503

],
[
-84.37932,
33.9148

],
[
-84.37932,
33.91461

],
[
-84.37929,

16

Get a RouteSalesforce Maps Apex Methods

33.91418
],
[
-84.37928,
33.914

],
[
-84.37925,
33.91384

],
[
-84.37925,
33.91371

],
[
-84.37923,
33.91363

],
[
-84.37922,
33.91348

],
[
-84.37921,
33.91323

],
[
-84.37913,
33.91276

],
[
-84.37907,
33.91231

],
[
-84.37905,
33.91212

],
[
-84.379,
33.91167

],
[
-84.37886,
33.9116

],
[
-84.37871,
33.91157

],
[
-84.37852,
33.91157

],

17

Get a RouteSalesforce Maps Apex Methods

[
-84.37777,
33.91165

],
[
-84.37728,
33.9117

],
[
-84.37643,
33.91176

],
[
-84.3761,
33.91178

],
[
-84.37571,
33.91176

],
[
-84.37529,
33.91171

],
[
-84.37417,
33.91152

],
[
-84.37369,
33.91144

],
[
-84.37343,
33.91139

],
[
-84.37324,
33.91136

],
[
-84.37313,
33.91139

],
[
-84.37292,
33.91144

],
[
-84.37153,
33.91117

],
[
-84.37092,

18

Get a RouteSalesforce Maps Apex Methods

33.91107
],
[
-84.36998,
33.91088

],
[
-84.36943,
33.91078

],
[
-84.36906,
33.91072

],
[
-84.36879,
33.91067

],
[
-84.36782,
33.91049

],
[
-84.3675,
33.91043

],
[
-84.36641,
33.91025

],
[
-84.36613,
33.91019

],
[
-84.36534,
33.91009

],
[
-84.3648,
33.91004

],
[
-84.36428,
33.90999

],
[
-84.36374,
33.90998

],
[
-84.36349,
33.90999

],

19

Get a RouteSalesforce Maps Apex Methods

[
-84.36326,
33.91001

],
[
-84.3631,
33.90993

],
[
-84.363,
33.90993

],
[
-84.36278,
33.90993

],
[
-84.36248,
33.90994

],
[
-84.36225,
33.90996

],
[
-84.36181,
33.90999

],
[
-84.36171,
33.90999

],
[
-84.36162,
33.91001

],
[
-84.36152,
33.91001

],
[
-84.36094,
33.91006

],
[
-84.36046,
33.91007

],
[
-84.36024,
33.91007

],
[
-84.36004,

20

Get a RouteSalesforce Maps Apex Methods

33.91004
],
[
-84.35985,
33.91001

],
[
-84.35965,
33.90994

],
[
-84.35949,
33.90987

],
[
-84.35931,
33.90979

],
[
-84.35917,
33.90969

],
[
-84.35902,
33.90959

],
[
-84.35888,
33.90948

],
[
-84.35875,
33.90936

],
[
-84.35862,
33.90923

],
[
-84.3585,
33.90909

],
[
-84.3584,
33.90894

],
[
-84.3583,
33.90879

],
[
-84.35821,
33.90864

],

21

Get a RouteSalesforce Maps Apex Methods

[
-84.35815,
33.90845

],
[
-84.35811,
33.90829

],
[
-84.35801,
33.90758

],
[
-84.35801,
33.90731

],
[
-84.35801,
33.90721

],
[
-84.35804,
33.90692

],
[
-84.3582,
33.90634

],
[
-84.35837,
33.90592

],
[
-84.35853,
33.90552

],
[
-84.3586,
33.90531

],
[
-84.35876,
33.90493

],
[
-84.35901,
33.90441

],
[
-84.35914,
33.90417

],
[
-84.35968,

22

Get a RouteSalesforce Maps Apex Methods

33.9032
],
[
-84.35975,
33.90306

],
[
-84.36027,
33.9022

],
[
-84.3605,
33.9018

],
[
-84.36052,
33.90177

],
[
-84.36081,
33.9013

],
[
-84.36122,
33.90061

],
[
-84.36133,
33.90037

],
[
-84.36168,
33.89976

],
[
-84.36184,
33.89944

],
[
-84.36229,
33.89863

],
[
-84.36259,
33.89807

],
[
-84.3631,
33.89714

],
[
-84.36326,
33.89685

],

23

Get a RouteSalesforce Maps Apex Methods

[
-84.36332,
33.89672

],
[
-84.36339,
33.8966

],
[
-84.36342,
33.89638

],
[
-84.36352,
33.89619

],
[
-84.36358,
33.89611

],
[
-84.36397,
33.89543

],
[
-84.36422,
33.89503

],
[
-84.36444,
33.89469

],
[
-84.36448,
33.89459

],
[
-84.36455,
33.89445

],
[
-84.36457,
33.8944

],
[
-84.36465,
33.89419

],
[
-84.36476,
33.89395

],
[
-84.36484,

24

Get a RouteSalesforce Maps Apex Methods

33.89369
],
[
-84.36493,
33.89344

],
[
-84.365,
33.89318

],
[
-84.36505,
33.89292

],
[
-84.36507,
33.89273

],
[
-84.36509,
33.89266

],
[
-84.36516,
33.89215

],
[
-84.36519,
33.89161

],
[
-84.36519,
33.89109

],
[
-84.36519,
33.8908

],
[
-84.36518,
33.88977

],
[
-84.36516,
33.8885

],
[
-84.36513,
33.88722

],
[
-84.36512,
33.88563

],

25

Get a RouteSalesforce Maps Apex Methods

[
-84.3651,
33.88468

],
[
-84.36509,
33.8842

],
[
-84.36509,
33.88399

],
[
-84.36507,
33.88254

],
[
-84.36507,
33.8813

],
[
-84.36506,
33.88016

],
[
-84.36507,
33.87937

],
[
-84.36509,
33.87882

],
[
-84.36509,
33.87847

],
[
-84.36509,
33.8781

],
[
-84.3651,
33.8773

],
[
-84.36512,
33.87648

],
[
-84.36507,
33.87545

],
[
-84.36506,

26

Get a RouteSalesforce Maps Apex Methods

33.87501
],
[
-84.36506,
33.87478

],
[
-84.36503,
33.87435

],
[
-84.365,
33.87371

],
[
-84.36497,
33.87306

],
[
-84.36496,
33.87266

],
[
-84.36497,
33.87221

],
[
-84.36502,
33.87197

],
[
-84.36506,
33.87173

],
[
-84.36515,
33.87145

],
[
-84.36522,
33.87123

],
[
-84.36536,
33.87081

],
[
-84.36547,
33.87061

],
[
-84.36558,
33.87037

],

27

Get a RouteSalesforce Maps Apex Methods

[
-84.36586,
33.86994

],
[
-84.36635,
33.86933

],
[
-84.36654,
33.86912

],
[
-84.36687,
33.86875

],
[
-84.36741,
33.86815

],
[
-84.36792,
33.86754

],
[
-84.36809,
33.86734

],
[
-84.36824,
33.86711

],
[
-84.36838,
33.8669

],
[
-84.3685,
33.86667

],
[
-84.36863,
33.86645

],
[
-84.36873,
33.8662

],
[
-84.36882,
33.86597

],
[
-84.36889,

28

Get a RouteSalesforce Maps Apex Methods

33.86574
],
[
-84.36895,
33.86548

],
[
-84.36905,
33.86499

],
[
-84.36912,
33.86447

],
[
-84.36915,
33.8641

],
[
-84.36925,
33.86289

],
[
-84.36937,
33.86156

],
[
-84.36947,
33.86029

],
[
-84.3695,
33.85995

],
[
-84.36954,
33.85932

],
[
-84.36957,
33.85893

],
[
-84.36966,
33.85792

],
[
-84.36969,
33.85755

],
[
-84.36969,
33.85752

],

29

Get a RouteSalesforce Maps Apex Methods

[
-84.36973,
33.85713

],
[
-84.36976,
33.85673

],
[
-84.3698,
33.85618

],
[
-84.37002,
33.85525

],
[
-84.37008,
33.85483

],
[
-84.37017,
33.8543

],
[
-84.37024,
33.85388

],
[
-84.37027,
33.8533

],
[
-84.37031,
33.85279

],
[
-84.37031,
33.8525

],
[
-84.37034,
33.85216

],
[
-84.37037,
33.852

],
[
-84.3704,
33.85192

],
[
-84.37044,

30

Get a RouteSalesforce Maps Apex Methods

33.85188
],
[
-84.37056,
33.85179

],
[
-84.37092,
33.85168

],
[
-84.37121,
33.85156

],
[
-84.37134,
33.85149

],
[
-84.37149,
33.85138

],
[
-84.37159,
33.85131

],
[
-84.37169,
33.85124

],
[
-84.37202,
33.85092

],
[
-84.37233,
33.85063

],
[
-84.37311,
33.84989

],
[
-84.37313,
33.84986

],
[
-84.37326,
33.84975

],
[
-84.37347,
33.84954

],

31

Get a RouteSalesforce Maps Apex Methods

[
-84.37359,
33.84943

],
[
-84.3739,
33.8491

],
[
-84.37407,
33.84886

],
[
-84.37419,
33.8487

],
[
-84.3743,
33.84854

],
[
-84.3741,
33.84846

],
[
-84.37394,
33.84836

],
[
-84.37388,
33.84833

],
[
-84.37378,
33.84825

],
[
-84.37369,
33.84817

],
[
-84.37365,
33.84812

],
[
-84.37362,
33.84805

],
[
-84.37356,
33.84799

],
[
-84.37345,

32

Get a RouteSalesforce Maps Apex Methods

33.84783
],
[
-84.37337,
33.84772

],
[
-84.37334,
33.84765

],
[
-84.3733,
33.84759

],
[
-84.37329,
33.84754

],
[
-84.37321,
33.8474

],
[
-84.3731,
33.84715

],
[
-84.373,
33.84695

],
[
-84.37278,
33.84651

],
[
-84.3726,
33.84615

],
[
-84.3724,
33.84569

],
[
-84.37233,
33.84556

],
[
-84.37214,
33.84514

],
[
-84.37204,
33.84495

],

33

Get a RouteSalesforce Maps Apex Methods

[
-84.37192,
33.84474

],
[
-84.37188,
33.84466

],
[
-84.37182,
33.84456

],
[
-84.37166,
33.84423

],
[
-84.37159,
33.84411

],
[
-84.37141,
33.84379

],
[
-84.37146,
33.84376

],
[
-84.37188,
33.84352

],
[
-84.37208,
33.84339

],
[
-84.37224,
33.84329

],
[
-84.37233,
33.84323

],
[
-84.37249,
33.84312

],
[
-84.37259,
33.84304

],
[
-84.37285,

34

Get a RouteSalesforce Maps Apex Methods

33.84283
],
[
-84.37297,
33.84275

],
[
-84.37304,
33.8427

],
[
-84.37317,
33.8426

],
[
-84.37329,
33.84252

],
[
-84.37343,
33.84241

],
[
-84.37359,
33.84228

],
[
-84.37368,
33.84223

],
[
-84.37414,
33.84191

],
[
-84.37424,
33.84186

],
[
-84.3744,
33.84175

],
[
-84.37449,
33.8417

],
[
-84.37468,
33.84157

],
[
-84.37481,
33.84149

],

35

Get a RouteSalesforce Maps Apex Methods

[
-84.37507,
33.84135

],
[
-84.37526,
33.84123

],
[
-84.37533,
33.8412

],
[
-84.37562,
33.84106

],
[
-84.37603,
33.84086

],
[
-84.37609,
33.84083

],
[
-84.37616,
33.8408

],
[
-84.37646,
33.84066

],
[
-84.37684,
33.84051

],
[
-84.377,
33.84043

],
[
-84.3772,
33.84038

],
[
-84.37736,
33.84035

],
[
-84.37742,
33.84035

],
[
-84.37755,

36

Get a RouteSalesforce Maps Apex Methods

33.84033
],
[
-84.37771,
33.84032

],
[
-84.37793,
33.84032

],
[
-84.37809,
33.84032

],
[
-84.37828,
33.8403

],
[
-84.37842,
33.84025

],
[
-84.37861,
33.84022

],
[
-84.37878,
33.84011

],
[
-84.37899,
33.84001

],
[
-84.37912,
33.83993

],
[
-84.37921,
33.83988

],
[
-84.37947,
33.8397

],
[
-84.37987,
33.83941

],
[
-84.38009,
33.83946

],

37

Get a RouteSalesforce Maps Apex Methods

[
-84.38039,
33.83954

],
[
-84.38063,
33.83963

],
[
-84.38074,
33.83969

],
[
-84.38082,
33.83972

],
[
-84.38111,
33.83983

],
[
-84.38116,
33.83987

],
[
-84.38131,
33.83995

],
[
-84.38141,
33.84001

],
[
-84.38169,
33.84014

],
[
-84.38176,
33.84017

],
[
-84.38192,
33.84025

],
[
-84.38183,
33.84043

],
[
-84.38199,
33.84051

],
[
-84.38196,

38

Get a RouteSalesforce Maps Apex Methods

33.84063
]

]
],
"type": "LineString"

},
"properties": {},
"type": "Feature"

}
],
"type": "FeatureCollection"

},
"waypoints": [
{
"maneuvers": [],
"departuretime": 1619794087,
"start": 1619794087,
"arrivaltime": 1619794087,
"idletime": 0,
"totaltraveltime": 945,
"nontraffictime": 798,
"traffictime": 147,
"distance": 9274,
"duration": 0,
"lng": -84.37975,
"lat": 33.91776,
"id": "groceryNorth",
"success": true

},
{
"maneuvers": [],
"departuretime": 1619795032,
"start": 1619795032,
"arrivaltime": 1619795032,
"idletime": 0,
"totaltraveltime": 0,
"nontraffictime": 0,
"traffictime": 0,
"distance": 0,
"duration": 0,
"lng": -84.38192,
"lat": 33.84063,
"id": "grocerySouth",
"success": true

}
],
"summary": {
"totaltraveltime": 945,
"nontraffictime": 798,
"traffictime": 147,
"distance": 9274

},
"boundingbox": {
"southwest": {

39

Get a RouteSalesforce Maps Apex Methods

"lng": -84.38192,
"lat": 33.84063

},
"northeast": {
"lng": -84.37975,
"lat": 33.91776

}
},
"status": "Completed",
"jobid": "mare-routing-11-1619794088.349843-505"

},
"success": true

}

Get the Boundary Information

The GetBoundaryInformation() Apex method returns geographical IDs of locations that fit the specified search criteria.

Salesforce Maps works with data providers that supply property data. Periodically, these providers update their data, which can affect
custom code. If the providers change their data formats, update your custom code accordingly. Salesforce Maps can update, replace, or
remove property data at any time.

Signature
Map<String, Object> maps.API.GetBoundaryInformation(String parameters)

Where,

• maps is the namespace of the Salesforce Maps package. It’s automatically available when the package is installed.

• API is the class that contains the global methods exposed to developers.

• GetBoundaryInformation() is the method.

Sample Code
This code finds the geographical IDs of states in the USA beginning with “A”.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Example

// Create the search criteria in JSON format.
String parameters =

40

Get the Boundary InformationSalesforce Maps Apex Methods

'{"overlay":"USA","level":"1","filters":[{"field_id":"label","operator":"starts
with","values":["A"]}]}';

// Call the GetBoundaryInformation() method with the search criteria.
Map<String, Object> response= maps.API.GetBoundaryInformation(parameters);

// Log the resulting Geo IDs.
system.debug(response);

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

{
"endPoint": "https://internal.na.sfmapsapi.com/boundary/search/1",
"limitInfo": {
"QueryRows": "12 / 50000",
"Queries": "8 / 100",
"HeapSize": "71096 / 6000000",
"CPUTime": "133 / 10000"

},
"request":

"{\"overlay\":\"USA\",\"level\":\"1\",\"filters\":[{\"field_id\":\"label\",\"operator\":\"starts
with\",\"values\":[\"A\"]}]}",
"params": {
"filters": [
{
"values": [
"A"

],
"operator": "starts with",
"field_id": "label"

}
],
"level": "1",
"overlay": "USA"

},
"success": true,
"data": {
"geoids": [
{
"label": "Alabama",
"value": "USA-01"

},
{
"label": "Alaska",
"value": "USA-02"

},
{
"label": "Arizona",
"value": "USA-04"

},

41

Get the Boundary InformationSalesforce Maps Apex Methods

{
"label": "Arkansas",
"value": "USA-05"

}
]

}
}

Get the Distance Matrix

The GetDistanceMatrix() Apex method takes a set of locations and returns the estimated travel distance in meters and the
time in seconds between the locations.

Example: With two locations A and B, you can use this method to return matrices of travel distance and times between A–B and
B–A. The diagonal elements of the matrices A–A and B–B are zero because the travel distance and the time from one spot to the
same spot is zero.

The values for A–B and B–A can differ because the returning path isn’t always the same. The travel times are calculated for eight
predefined time windows based on historical traffic data. Each time window has its own travel time matrix.

Signature
Map<String, Object> maps.API.GetDistanceMatrix(List<Map<String, Object>>)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• GetDistanceMatrix() is the method.

Allocations
Include as many as 20 locations. To catch exceptions, put a try-catch block around your code.

Sample Code
This code finds the estimated travel distance in meters and time between two grocery stores.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

42

Get the Distance MatrixSalesforce Maps Apex Methods

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

// Create a list of locations.
List<Map<String, Object>> locations =
new List<Map<String, Object>>();

// Create and add location 1.
Map<String, Object> groceryNorth =
new Map<String, Object> {
'location_id' => 'groceryNorth',
'latitude' => 33.917760,
'longitude' => -84.379750
};
locations.add(groceryNorth);

// Create and add location 2.
Map<String, Object> grocerySouth =
new Map<String, Object> {
'location_id' => 'grocerySouth',
'latitude' => 33.840630,
'longitude' => -84.381920
};
locations.add(grocerySouth);

// Call the GetDistanceMatrix() method with the list of locations.
Map<String, Object> matrix = maps.API.GetDistanceMatrix(locations);

// Log the resulting distance matrix.
system.debug(matrix);

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data that you
receive in the resulting map.

{
"endPoint": "https://internal.na.sfmapsapi.com/core/routing/matrix/1",
"limitInfo": {
"QueryRows": "12 / 50000",
"Queries": "8 / 100",
"HeapSize": "73745 / 6000000",
"CPUTime": "150 / 10000"

},
"request":

"{\"vehicle\":{\"type\":\"car\"},\"locations\":[{\"longitude\":-84.379750,\"latitude\":33.917760,\"location_id\":\"groceryNorth\"},{\"longitude\":-84.381920,\"latitude\":33.840630,\"location_id\":\"grocerySouth\"}]}",

"params": {
"locations": [
{
"location_id": "groceryNorth",
"latitude": 33.91776,
"longitude": -84.37975

43

Get the Distance MatrixSalesforce Maps Apex Methods

},
{
"location_id": "grocerySouth",
"latitude": 33.84063,
"longitude": -84.38192

}
],
"vehicle": {
"type": "car"

}
},
"success": true,
"data": {
"Solution": {
"travel_costs": {
"grocerySouth": {
"grocerySouth": [// The values of the matrix diagonals are zero because the

distance and time between grocerySouth and grocerySouth are zero.
0, // Matrix 0 index 0: Travel distance in meters
0, // Matrix 1 index 0: Travel time for time window 0
0, // Matrix 2 index 0: Travel time for time window 1
0, // And so forth...
0,
0,
0,
0,
0

],
"groceryNorth": [// The values for grocerySouth to groceryNorth.
9210, // Matrix 0 index 1: Travel distance in meters
794.6, // Matrix 1 index 1: Travel time for time window 0
810.5, // Matrix 2 index 1: Travel time for time window 1
890, // And so forth...
920.7,
965.7,
1047.2,
1048.8,
952.5

]
},
"groceryNorth": {
"grocerySouth": [// The values for groceryNorth to grocerySouth.
9274.1, // Matrix 0 index 2: Travel distance in meters
797.9, // Matrix 1 index 2: Travel time for time window 0
808.3, // Matrix 2 index 2: Travel time for time window 1
879, // And so forth...
905.3,
944.2,
974.6,
963.5,
920.5

],
"groceryNorth": [// The values for the matrix diagonals are zero.
0, // Matrix 0 index 3: Distance in meters

44

Get the Distance MatrixSalesforce Maps Apex Methods

0, // Matrix 1 index 3: Time for time window 0
0, // Matrix 2 index 3: Time for time window 1
0, // And so forth...
0,
0,
0,
0,
0

]
}

},
"traffic_windows": [
{ // Time window for matrix 1: midnight to 6:30 am and 7 pm to midnight.
"traffic_window_start_times": [
"00:00:00",
"19:00:00"

],
"traffic_window_index": 0,
"traffic_window_end_times": [
"06:30:00",
"00:00:00"

]
},
{ // Time window for matrix 2: 6:30 am to 7:30 am.
"traffic_window_start_times": [
"06:30:00"

],
"traffic_window_index": 1,
"traffic_window_end_times": [
"07:30:00"

]
},
{ // And so forth...
"traffic_window_start_times": [
"07:30:00"

],
"traffic_window_index": 2,
"traffic_window_end_times": [
"08:30:00"

]
},
{
"traffic_window_start_times": [
"08:30:00"

],
"traffic_window_index": 3,
"traffic_window_end_times": [
"09:30:00"

]
},
{
"traffic_window_start_times": [
"09:30:00"

],

45

Get the Distance MatrixSalesforce Maps Apex Methods

"traffic_window_index": 4,
"traffic_window_end_times": [
"16:00:00"

]
},
{
"traffic_window_start_times": [
"16:00:00"

],
"traffic_window_index": 5,
"traffic_window_end_times": [
"17:00:00"

]
},
{
"traffic_window_start_times": [
"17:00:00"

],
"traffic_window_index": 6,
"traffic_window_end_times": [
"18:00:00"

]
},
{
"traffic_window_start_times": [
"18:00:00"

],
"traffic_window_index": 7,
"traffic_window_end_times": [
"19:00:00"

]
}

],
"status": "Ok",
"locations": [
{
"time_zone": "America/New_York", // Time zone of the location.
"location_id": "groceryNorth"

},
{
"time_zone": "America/New_York",
"location_id": "grocerySouth"

}
]

},
"JobStatus": "Completed",
"JobMessage": {
"comment": "MARE job succeeded"

},
"JobId": "mare-matrix-11-1619788548.552854-151"

}
}

46

Get the Distance MatrixSalesforce Maps Apex Methods

Get the Geographical Coordinates of an Address

The Geocode() Apex method takes a single address and returns the geographical coordinates and the formatted address.

To get the geographical coordinates of more than one address, use the BatchGeocode() on page 48 Apex method.

Signature
Map<String, Object> maps.API.Geocode(Map<String, Object> options)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• Geocode() is the method.

Sample Code
This code returns the geographical coordinates of the Salesforce headquarters. The output also returns the formatted address and adds
missing information, such as postal code and country, if available.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format of the Address

String address = '{HouseNumber} {Street}, {City}, {State} {PostalCode} {Country}';
String address = '{HouseNumber} {Street}, {City}, {State}';

Example

// Create and add an address.
String salesforceAddress = '415 Mission Street, San Francisco, CA 94105 USA';

Map<string,object> options = new Map<String,Object> {
'version' => '1', // Required. Version of the API endpoint. Must be '1'.
'address' => salesforceAddress

};

// Call the Geocode() method with the address.
Map<String, Object> response = maps.API.Geocode(options);

// Log the resulting geographical coordinates and formatted address.
system.debug(response);

47

Get the Geographical Coordinates of an AddressSalesforce Maps Apex Methods

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

If you invoke this method within a flow, process builder, or trigger and want to use the data from the JSON response, implement logic
to retrieve that data. For example, you want to save the latitude and longitude coordinates from the JSON response to your records.

{
"baseUrl":

"https://internal.na.sfmapsapi.com/core/geocoding/2?address=415+Mission+Street%2C+San+Francisco%2C+CA+94105+USA",

"data": {
"houseNumber": "415",
"matchLevel": "Address",
"score": 100,
"country": "USA",
"postal": "94105",
"state": "CA",
"city": "San Francisco",
"street": "Mission St",
"fullAddress": "415 Mission St, San Francisco, CA 94105, United States",
"position": {
"lng": -122.397,
"lat": 37.78977

}
},
"source": "http",
"success": true

}

Sample Response If Not Geocoded
If an address can't be geocoded, you receive this response. Although the return value is an Apex Map<String, Object> object,
this JSON response illustrates the essential data you receive in the resulting map.

{
"success": false,
"message": "No results for that particular address."

}

Get the Geographical Coordinates of Addresses in Batch

The BatchGeocode() Apex method takes addresses and returns their geographical coordinates and formatted addresses.

Signature
Map<String, Object> maps.API.BatchGeocode(Map<String, Object>)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

48

Get the Geographical Coordinates of Addresses in BatchSalesforce Maps Apex Methods

• API is the class that contains the global methods exposed to developers.

• BatchGeocode() is the method.

API Call Allocations
• For geocoding, submit up to 120 requests per minute.

• Send batches of up to 50 addresses per request.

Sample Code
This code returns the geographical coordinates of the White House and Washington Monument. The output also returns the formatted
address and adds missing information, such as postal code and country, if available.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format of an Address

String address = '{HouseNumber} {Street}, {City}, {State} {PostalCode} {Country}';
String address = '{HouseNumber} {Street}, {City}, {State}';

Example

public with sharing class exampleBatchGeocode {
public exampleBatchGeocode() {}

public exampleBatchGeocodeWithSFMaps(){
List<Account> accountList = [SELECT Id, Name, BillingAddress FROM Account WHERE

Name like 'W%' AND BillingLongitude = Null];
Map<String, Account> accounts = new Map<String, Account>(); // Map of the Accounts

to link the results back to
Map<String, Map<String, String>> addresses = new Map<String, Map<String, String>>();

for (Account acc : accounts) {
// It is recommended to prevent sending null fields. Not done here for

illustrative purposes.
Map<String, String> address = new Map<String, String>{

'address' => acc.BillingAddress.getStreet() + ', ' +
acc.BillingAddress.getCity() + ', ' + acc.BillingAddress.getPostalCode() + ', ' +
acc.BillingAddress.getCountry()

};
String idstr = Id.valueOf(acc.id);
addresses.put(idstr, address);
accounts.put(idstr.toLowerCase(), acc);// Ids will be lowercase in results.
// Illustrative Sample: Three accounts in list.

49

Get the Geographical Coordinates of Addresses in BatchSalesforce Maps Apex Methods

// [{
// id: '005B0000005LDrUIA1',
// name: 'White House',
// address: '1600 Pennsylvania Ave NW, Washington, DC 20500, United States'

// }, {
// id: '005B0000005LDrUIA2',
// name: 'Washington Monument'
// address: '2 15th St NW, Washington, null, United States'
// }, {
// id: '005B0000005LDrUIA3',
// name: 'Wash and Ride',
// address: 'null, null, null, United States'
// }]

}

Map<String, Object> response; // Deserialized Untyped Response
try {

response = maps.API.BatchGeocode(new Map<String, Object> {
'version' => '2', // Required. Hardcode value to 2. Has no impact on results

or process.
'address_info' => JSON.serialize(addresses)

});
}
catch (Exception ex) {

// Handle exception. Simple log for illustrative purposes.
System.debug(ex);
return;

}
List<Account> accountsWithBadData = new List<Account>();
Boolean callSuccess = (Boolean)response.get('success');
if(callSuccess != null){

Map<String, Object> results = (Map<String, Object>)response.get('results');
for(String accountId: results.keySet()){

Account acc = accounts.get(accountId);
Map<String, Object> record = (Map<String, Object>)results.get(accountId);

if((Boolean) record.get('success')){
Map<String, Object> data = (Map<String, Object>)record.get('data');
Map<String, Object> position = (Map<String, Object>)

data.get('position');
acc.BillingLatitude = (Decimal) position.get('lat');
acc.BillingLongitude = (Decimal) position.get('lng');
if((Integer) data.get('score') < 50) {

// Low confidence in address match. Marking the accounts needed
for review.

accountsWithBadData.add(acc);
}

}
else {

// Unable to match address provided.
accountsWithBadData.add(acc);

}
}

50

Get the Geographical Coordinates of Addresses in BatchSalesforce Maps Apex Methods

update accountList; // Update records with Latitude and Longitude.
reviewBadAccounts(accountsWithBadData); // Pushing accounts with bad data to

another process to be handled.
}
else {

// Three primary types of failed requests.
String errorCode = (String) response.get('error_code');
if(errorCode == 'GC-0500'){

// Internal Server Error
// Retry the request at a later time and/or reach out to support.
return;

}
else if(errorCode == 'GC-0429'){

// Too many requests. Perform an exponential back off for the retries.
// Bad requests count against limits. Be sure to not waste calls on bad

addresses and improperly created requests.
return;

}
else if(errorCode.startsWith('GC-1')){

System.debug(response);
// Improperly created requests. Fix errors before trying again.
return;

}
else {

// Fail safe catch for future error codes.
System.debug(response);
return;

}
}

}

}

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

If you invoke this method within a flow, process builder, or trigger and want to use the data from the JSON response, implement logic
to retrieve that data. For example, you want to save the latitude and longitude coordinates from the JSON response to your records.

Responses include geocoding confidence scores based on address accuracy and completeness. For example, addresses missing city and
state information result in scores lower than 100. Success results can include:

• False, which indicates no match.

• Partial, which indicates scores less than 100.

• Full, which indicates scores of 100.

{
"baseUrl":

"https://sfmapsgateway-uengage1.sfdc-lywfpd.svc.sfdcfc.net/core/batchgeocode/3",
"results": {

"001ru00000ca1teiad": {
"message": "Invalid address",

51

Get the Geographical Coordinates of Addresses in BatchSalesforce Maps Apex Methods

"success": false
},
"001ru00000ca1tdiad": {

"success": true,
"source": "http",
"data": {

"city": "Washington",
"country": "USA",
"fullAddress": "2 15th St NW, Washington, DC 20004, United States",
"houseNumber": "2",
"matchLevel": "Address",
"position": {

"lat": 38.889043,
"lng": -77.0330958

},
"postal": "20004",
"score": 86,
"state": "DC",
"street": "15th St NW",

}
},
"001ru00000ca1tciad": {

"data": {
"city": "Washington",
"country": "USA",
"fullAddress": "1600 Pennsylvania Ave NW, Washington, DC 20500, United

States",
"houseNumber": 1600,
"matchLevel": "Address",
"position": {

"lat": 38.89768,
"lng": -77.03655

},
"postal": "20500",
"score": 100,
"state": "DC",
"street": "Pennsylvania Ave NW"

}
}

},
"success": true

}

Sample Error Response
If you submit improperly created requests, expect a response similar to this.

{
"api_info": {

"method": "POST",
"request_id": "fcad404b-ea52-429e-8989-40df1daccf4b",
"uri": "/core/batchgeocode/3"

},
"baseUrl":

52

Get the Geographical Coordinates of Addresses in BatchSalesforce Maps Apex Methods

"https://sfmapsgateway-uengage1.sfdc-lywfpd.svc.sfdcfc.net/core/batchgeocode/3",
"error": {

"data": {
"minimum": 1,
"property": "root map"

},
"message": "Property mimimum not met"

},
"error_code": "GC-1011"

}

Permanently Delete Datasets and Alignments

The DoCleanup() Apex method permanently removes, or cleans up, datasets and related alignments that a user already deleted
using Territory Planning Data Sets or Territory Planning Alignments > Delete in the UI. Use this method to reduce object size and
improve Territory Planning load time and performance.

The DoCleanup() Apex method is the equivalent of clicking Permanently Delete in Territory Planning Data Management in Setup.
You can permanently delete datasets only with a Deleted status as shown on the Territory Planning Data Sets page. When you permanently
delete a dataset, all alignments created from that dataset’s source are also permanently removed.

Dataset and alignment cleanups can run at scheduled times or after a user deletes a dataset in the UI.

Signature
AsyncApexJob maps.TPSDK.DoCleanup()

Where,

• AsyncApexJob represents an individual Apex sharing recalculation job, a batch Apex job, a method with the future annotation,
or a job that implements Queueable. Use this object to query Apex batch jobs in your organization.

• maps is the namespace that's available after you install Salesforce Maps.

• TPSDK is the class that contains the Salesforce Maps Territory Planning global methods exposed to developers.

• DoCleanup() is the method.

Sample Code
This code runs dataset and alignment cleanups at scheduled times. The DoCleanup() method returns an AsyncApexJob
containing the number of items processed, the date and time of job completion, and other details.

Warning: If you invoke methods within a flow, process builder, or trigger, do one of the following to avoid uncommitted work
errors:

• Call the methods through a future method

• Call the methods as queueable

Use the sample code in this method documentation as a guide.

Example

// Implement as Schedulable to run the Apex class at regular intervals.
public with sharing class TerritoryPlanningCleanupSchedule implements Schedulable {

53

Permanently Delete Datasets and AlignmentsSalesforce Maps Apex Methods

// Invoke the scheduled Apex class with the execute() method.
public void execute(SchedulableContext SC) {

AsyncApexJob cleanupJob = maps.TPSDK.DoCleanup();
System.debug('Cleanup job is ' +cleanupJob.Status+ '. '

+cleanupJob.JobItemsProcessed+ ' of ' +cleanupJob.TotalJobItems+ ' batches processed.');
}

}

SEE ALSO:

Knowledge Article: Data Set and Alignment Browser Window

SOAP API Developer Guide: AsyncApexJob

Apex Developer Guide: Apex Scheduler

Retrieve Data That Salesforce Maps Hosts

The GetHostedData() Apex method retrieves geographical IDs for properties and displays them in Salesforce Maps. We accomplish
this retrieval in two requests while using the same method. The first request returns geographical IDs for properties that Salesforce Maps
hosts for a specified area and filter criteria. The second request takes these geographical IDs and display parameters, such as legend and
popup information, and displays them in Salesforce Maps.

Salesforce Maps works with data providers that supply property and business data. Periodically, these providers update their data, which
can affect custom code. If the providers change their data formats, update your custom code accordingly. Salesforce Maps can update,
replace, or remove property data at any time.

Signature
Map<String, Object> maps.API.GetHostedData(String parameters)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• GetHostedData() is the method.

Sample Code to Retrieve Geographical IDs
The first example request using the GetHostedData() method returns geographical IDs for women-owned businesses that
Salesforce Maps host. Those businesses produce revenue between $100,000 and $1,000,000 in a specified area.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

54

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

https://help.salesforce.com/s/articleView?id=000356008&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/sforce_api_objects_asyncapexjob.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_scheduler.htm

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format of the Parameters

{
"mapinfo": { // Boundary area.
"offset": integer, // Pagination when the number of results is large.
"limit": integer, // Maximum number of geographical IDs to return in response.
"celng": decimal, // Longitude coordinate to search closest records.
"celat": decimal, // Latitude coordinate to search closest records.
"swlng": decimal, // South-Western longitude coordinate for map boundary.
"swlat": decimal, // South-Western latitude coordinate for map boundary.
"nelng": decimal, // North-Eastern longitude coordinate for map boundary.
"nelat": decimal // North-Eastern latitude coordinate for map boundary.

},
"data": {
"filters": [{}], // Filters to limit the results.
"defaultMarkerColor": "String:String", // Hex color : Type of marker to be returned
"level_id": "String", // Sub-section of the data specified by file_id.
"file_id": "String" // Data being queried, for example, business, property, political

boundaries, etc.
}

}

Example

// Create the boundary area.
Map<String,Decimal> mapInfo = new Map<String,Decimal>{

'nelat' => 49.92293,
'nelng' => -55.72265,
'swlat' => 29.49698,
'swlng' => -140.00976,
'celat' => 40.48038,
'celng' => -97.86621,
'limit' => 6,
'offset' => 0

};

// Create the filters.
Map<String,Object> femaleOwned = new Map<String,Object>{

'topic_id' => 'female_owned',
'operator' => 'equals',
'values' => new List<String>{'Yes'}

};
Map<String,Object> locationSalesTotal = new Map<String,Object>{

'topic_id' => 'location_sales_total',
'operator' => 'range',
'min' => '100000',
'max' => '1000000'

};

List<Map<String,Object>> filters = new List<Map<String,Object>>();
filters.add(femaleOwned);
filters.add(locationSalesTotal);

55

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

// Add the filters and additional 'data' parameters.
Map<String,Object> dataMap = new Map<String,Object>{

'filters' => filters,
'defaultMarkerColor' => '93c47d:Circle',
'level_id' => '42',
'file_id' => 'business'

};

// Build the request.
Map<String,Object> request = new Map<String,Object>();
request.put('data', dataMap);
request.put('mapinfo', mapInfo);
String requestString = JSON.serialize(request);

// Call the GetHostedData() method with the boundary area and filter criteria.
Map<String, Object> response = maps.API.GetHostedData(requestString);

// Log the resulting locations.
System.debug(JSON.serialize(response));

Sample Response of Geographical IDs
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

{
"endPoint":"https://internal.na.sfmapsapi.com/data/markers/2",
"limitInfo":{

"QueryRows":"12 / 50000",
"Queries":"8 / 100",
"HeapSize":"70683 / 6000000",
"CPUTime":"171 / 10000"

},

"request":"{\"mapinfo\":{\"offset\":0,\"limit\":6,\"celng\":-97.86621,\"celat\":40.48038,\"swlng\":-140.00976,\"swlat\":29.49698,\"nelng\":-55.72265,\"nelat\":49.92293},\"data\":{\"filters\":[{\"values\":[\"Yes\"],\"operator\":\"equals\",\"topic_id\":\"female_owned\"},{\"max\":\"1000000\",\"min\":\"100000\",\"operator\":\"range\",\"topic_id\":\"location_sales_total\"}],\"defaultMarkerColor\":\"93c47d:Circle\",\"level_id\":\"42\",\"file_id\":\"business\"}}",

"params":{
"data":{

"file_id":"business",
"level_id":"42",
"defaultMarkerColor":"93c47d:Circle",
"filters":[

{
"topic_id":"female_owned",
"operator":"equals",
"values":[

"Yes"
]

},
{

"topic_id":"location_sales_total",
"operator":"range",

56

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

"min":"100000",
"max":"1000000"

}
]

},
"mapinfo":{

"nelat":49.92293,
"nelng":-55.72265,
"swlat":29.49698,
"swlng":-140.00976,
"celat":40.48038,
"celng":-97.86621,
"limit":6,
"offset":0

}
},
"success":true,
"data":{ // List of geographical IDs.

"ids":[
"11140017125231",
"11140017127280",
"11140017102994",
"11140017127285",
"11132553548894",
"11140017127286"

]
}

}

Sample Code to Display Geographical IDs
The second request using the GetHostedData() method takes the geographical IDs and display parameters, such as legend and
popup information, and displays them in Salesforce Maps.

Input Format of the Parameters

{
"mapinfo": {
"offset": integer, // Pagination when the number of results is large.
"limit": integer, // Maximum number of geographical IDs to return in response.
"celng": decimal, // Longitude coordinate to search closest records.
"celat": decimal, // Latitude coordinate to search closest records.
"swlng": decimal, // South-Western longitude coordinate for map boundary.
"swlat": decimal, // South-Western latitude coordinate for map boundary.
"nelng": decimal, // North-Eastern longitude coordinate for map boundary.
"nelat": decimal // North-Eastern latitude coordinate for map boundary.

},
"data": {
"popup": { // Popup information for the displayed locations.
"tabs": [{}],// Array of tab objects to be displayed in the popup.
"header": [{}] // Array of objects containing information of the tab headers.

},
"legend": { // Map legend.
"rows": [{}], // Array of objects containing information of each row in the legend.

57

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

"subTitle": "String", // Subtitle of the legend.
"title": "String" // Title of the the legend.

},
"defaultMarkerColor": "String:String", // Hex color : Type of marker to be returned.
"level_id": "String", // Sub-section of the data specified by file_id.
"file_id": "String" // Data being queried, for example, business, property, political

boundaries, etc.
},
"aggregates": Boolean, // Aggregated data of all the records returned. It contains the

min, max, sum, and averages of the records.
"details": Boolean, // Return the details for the requested records.
"ids": [] // Array of geographical IDs.

}

Example

// Create the map legend.
Map<String,Object> row1 = new Map<String,Object>
{

'topic_id' => 'female_owned',
'operator' => 'equals',
'values' => new List<String>{'Yes'},
'color' => '38d84a:Marker'

};

Map<String,Object> row2 = new Map<String,Object>
{

'topic_id' => 'location_sales_total',
'operator' => 'range',
'min' => '10',
'max' => '1000000',
'color' => '38d87c:Marker'

};

List<Map<String,Object>> legendRows = new List<Map<String,Object>>();
legendRows.add(row1);
legendRows.add(row2);

Map<String,Object> legend = new Map<String,Object>{
'title' => 'Total Company Sales',
'subTitle' => 'Breakdown of businesses based on company sales',
'rows' => legendRows

};

// Create the popup header.
List<Map<String,String>> header = new List<Map<String,String>>();
header.add(new map<String,String>{

'file_id' => 'business',
'topic_id' => 'location_sales_total'

}
);

// Create the popup tabs.
List<Map<String,String>> tabData = new List<Map<String,String>>();

58

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

tabData.add(new map<String,String>{'file_id' => 'business', 'topic_id' =>
'location_sales_total'});

Map<String,Object> tab = new map<String,Object>{
'tab_id' => '1520003558209',
'tab_label' => 'Additional info',
'data' => tabData

};

List<Map<String,Object>> tabs = new List<Map<String,Object>>();
tabs.add(tab);

// Build the popup object.
Map<String,Object> popup = new Map<String,Object>{

'header' => header,
'tabs' => tabs

};

// Build the 'data' object.
Map<String,Object> data = new Map<String,Object>{

'file_id' => 'business',
'level_id' => '42',
'defaultMarkerColor' => '93c47d:Circle',
'legend' => legend,
'popup' => popup

};

// Create the boundary area.
Map<String,Decimal> mapInfo = new Map<String,Decimal>{

'nelat' => 49.92293,
'nelng' => -55.72265,
'swlat' => 29.49698,
'swlng' => -140.00976,
'celat' => 40.48038,
'celng' => -97.86621,
'limit' => 6,
'offset' => 0

};

// Create the array of geographical IDs.
List<String> returnedIds = new
List<String>{'11140017125231','11140017127280','11140017102994','11140017127285','11132553548894','11140017127286'};

// Build the request.
Map<String,Object> request = new Map<String,Object>{

'ids' => returnedIds,
'details' => true, // Return the details of the requested records.
'aggregates' => true, // Get the aggregated record data.
'data' => data,
'mapinfo' => mapInfo

};

String requestString = JSON.serialize(request);

59

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

// Call the GetHostedData() method with the geographical IDs and display parameters.
Map<String, Object> response = maps.API.GetHostedData(requestString);

//Log the results.
System.debug(JSON.serialize(response));

Sample Response of Displaying the Geographical IDs
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

{
"endPoint": "https://internal.na.sfmapsapi.com/data/markers/2",
"limitInfo": {
"QueryRows": "12 / 50000",
"Queries": "8 / 100",
"HeapSize": "79714 / 6000000",
"CPUTime": "129 / 10000"

},
"request":

"{\"mapinfo\":{\"offset\":0,\"limit\":6,\"celng\":-97.86621,\"celat\":40.48038,\"swlng\":-140.00976,\"swlat\":29.49698,\"nelng\":-55.72265,\"nelat\":49.92293},\"data\":{\"popup\":{\"tabs\":[{\"data\":[{\"topic_id\":\"location_sales_total\",\"file_id\":\"business\"}],\"tab_label\":\"Additional

info\",\"tab_id\":\"1520003558209\"}],\"header\":[{\"topic_id\":\"location_sales_total\",\"file_id\":\"business\"}]},\"legend\":{\"rows\":[{\"color\":\"38d84a:Marker\",\"values\":[\"Yes\"],\"operator\":\"equals\",\"topic_id\":\"female_owned\"},{\"color\":\"38d87c:Marker\",\"max\":\"1000000\",\"min\":\"10\",\"operator\":\"range\",\"topic_id\":\"location_sales_total\"}],\"subTitle\":\"Breakdown
of businesses based on company sales\",\"title\":\"Total Company
Sales\"},\"defaultMarkerColor\":\"93c47d:Circle\",\"level_id\":\"42\",\"file_id\":\"business\"},\"aggregates\":true,\"details\":true,\"ids\":[\"11140017125231\",\"11140017127280\",\"11140017102994\",\"11140017127285\",\"11132553548894\",\"11140017127286\"]}",

"params": {
"ids": [
"11140017125231",
"11140017127280",
"11140017102994",
"11140017127285",
"11132553548894",
"11140017127286"

],
"details": true,
"aggregates": true,
"data": {
"file_id": "business",
"level_id": "42",
"defaultMarkerColor": "93c47d:Circle",
"legend": {
"title": "Total Company Sales",
"subTitle": "Breakdown of businesses based on company sales",
"rows": [
{
"topic_id": "female_owned",
"operator": "equals",
"values": [
"Yes"

],
"color": "38d84a:Marker"

},

60

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

{
"topic_id": "location_sales_total",
"operator": "range",
"min": "10",
"max": "1000000",
"color": "38d87c:Marker"

}
]

},
"popup": {
"header": [
{
"file_id": "business",
"topic_id": "location_sales_total"

}
],
"tabs": [
{
"tab_id": "1520003558209",
"tab_label": "Additional info",
"data": [
{
"file_id": "business",
"topic_id": "location_sales_total"

}
]

}
]

}
},
"mapinfo": {
"nelat": 49.92293,
"nelng": -55.72265,
"swlat": 29.49698,
"swlng": -140.00976,
"celat": 40.48038,
"celng": -97.86621,
"limit": 6,
"offset": 0

}
},
"success": true,
"data": {
"aggregates": [
{
"avg": 329333.3333333333,
"sum": 1976000,
"max": 461000,
"min": 303000,
"label": "Sales: Total (USD)"

}
],
"legend": {
"rows": [

61

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

{
"values": [
"Yes"

],
"row_id": "row-0",
"operator": "equals",
"color": "38d84a:Marker",
"topic_id": "female_owned"

},
{
"max": "1000000",
"min": "10",
"row_id": "row-1",
"operator": "range",
"color": "38d87c:Marker",
"topic_id": "location_sales_total"

},
{
"values": [
"--Other--"

],
"row_id": "row-other",
"operator": "equals",
"color": "93c47d:Circle",
"topic_id": "female_owned"

}
],
"subTitle": "Breakdown of businesses based on company sales",
"title": "Total Company Sales"

},
"markers": [
{
"popup": {
"tabs": [
{
"data": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
],
"tab_id": "1520003558209",
"tab_label": "Additional info"

}
],
"header": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}

62

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

]
},
"position": {
"lng": "-97.886011",
"lat": "40.441185"

},
"color": "38d84a:Marker",
"rowid": "row-0",
"datatype": "business",
"c2c": true,
"uid": "11140017125231",
"geoid": "11140017125231",
"label": "Urbauer Family Farm"

},
{
"popup": {
"tabs": [
{
"data": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
],
"tab_id": "1520003558209",
"tab_label": "Additional info"

}
],
"header": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
]

},
"position": {
"lng": "-97.800868",
"lat": "40.466693"

},
"color": "38d84a:Marker",
"rowid": "row-0",
"datatype": "business",
"c2c": true,
"uid": "11140017102994",
"geoid": "11140017102994",
"label": "Rauscher Family Farm"

},
{
"popup": {
"tabs": [

63

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

{
"data": [
{
"formatted_value": "$461,000.00",
"value": "461000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
],
"tab_id": "1520003558209",
"tab_label": "Additional info"

}
],
"header": [
{
"formatted_value": "$461,000.00",
"value": "461000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
]

},
"position": {
"lng": "-97.850325",
"lat": "40.408435"

},
"color": "38d84a:Marker",
"rowid": "row-0",
"datatype": "business",
"c2c": true,
"uid": "11132553548894",
"geoid": "11132553548894",
"label": "Johnson Insurance & Financial Services"

},
{
"popup": {
"tabs": [
{
"data": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
],
"tab_id": "1520003558209",
"tab_label": "Additional info"

}
],
"header": [
{
"formatted_value": "$303,000.00",
"value": "303000",

64

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
]

},
"position": {
"lng": "-97.861957",
"lat": "40.549917"

},
"color": "38d84a:Marker",
"rowid": "row-0",
"datatype": "business",
"c2c": true,
"uid": "11140017127285",
"geoid": "11140017127285",
"label": "Schmer Family Farm"

},
{
"popup": {
"tabs": [
{
"data": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
],
"tab_id": "1520003558209",
"tab_label": "Additional info"

}
],
"header": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
]

},
"position": {
"lng": "-97.863180",
"lat": "40.557545"

},
"color": "38d84a:Marker",
"rowid": "row-0",
"datatype": "business",
"c2c": true,
"uid": "11140017127286",
"geoid": "11140017127286",
"label": "Leininger Family Farm"

},

65

Retrieve Data That Salesforce Maps HostsSalesforce Maps Apex Methods

{
"popup": {
"tabs": [
{
"data": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
],
"tab_id": "1520003558209",
"tab_label": "Additional info"

}
],
"header": [
{
"formatted_value": "$303,000.00",
"value": "303000",
"topic_id": "location_sales_total",
"label": "Sales: Total (USD)"

}
]

},
"position": {
"lng": "-97.900864",
"lat": "40.509699"

},
"color": "38d84a:Marker",
"rowid": "row-0",
"datatype": "business",
"c2c": true,
"uid": "11140017127280",
"geoid": "11140017127280",
"label": "Cloet Family Farm"

}
]

}
}

Retrieve the Geographical Data of Country-Specific Shapes

The GetBoundaryGeoJSON() Apex method returns the geographical data, area, and perimeter for a list of geographical IDs.

Signature
Map<String, Object> maps.API.GetBoundaryGeoJSON(List<String> geoIds, Boolean mergeShape)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

66

Retrieve the Geographical Data of Country-Specific ShapesSalesforce Maps Apex Methods

• API is the class that contains the global methods exposed to developers.

• GetBoundaryGeoJSON() is the method.

Sample Code
This code takes two geographical IDs and returns their total and individual geometric data, area, and perimeter.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format of the Parameters

• A list of geographical IDs with the format {countrycode}-{level}-{id}.

• A Boolean that determines whether the returned information of the shape is merged (true) or separated (false).

Example

// Create a list of geographical IDs and set the shape merging parameter.
List<String> geoIds = new List<String>{'CAN-5-24360123', 'CAN-5-24360125'};
Boolean mergeShape = false;

// Call the GetBoundaryGeoJSON() method with the geographical IDs and shape merging
parameter.
Map<String, Object> response = maps.API.GetBoundaryGeoJSON(geoIds, mergeShape);

// Log the resulting boundary.
system.debug(response);

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

{
"total": {
"perimeter": 76052.889956049, // Total length in meters of all boundary perimeters.
"area": 92743880.3549741 // Total area in square meters inside of all boundaries.

},
"unit": "meters",
"geometries": {
"CAN-5-24360125": {
"perimeter": 64556.086852368, // Length in meters of the boundary perimeter.
"area": 88393467.4191344 // Area in square meters inside the boundary.

},
"CAN-5-24360123": {

67

Retrieve the Geographical Data of Country-Specific ShapesSalesforce Maps Apex Methods

"perimeter": 11496.803103681,
"area": 4350412.93583968

}
},
"count": 2,
"custom": false

}

Retrieve the Geographical Data of Polygons

The getPolygonGeometry() Apex method returns the geometric data, such as the area and perimeter, for the requested
geographical shape or custom polygon.

Signature
Map<String, Object> maps.API.getPolygonGeometry(Map<String, Object> polygon)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• getPolygonGeometry() is the method.

Sample Code of a Circle
This code passes a circular geographical region to the Salesforce Maps API.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format of a Circle

{
type: 'circle', // Shape.
radius: Decimal, // Radius in meters from the center of the polygon.
lat: Decimal, // Latitude coordinate of the center of the circle.
lng: Decimal // Longitude coordinate of the center of the circle.

}

Example

// Create a circular geographical region.
Map<String,Object> polygon = new Map<String,Object>{

'type' => 'circle',

68

Retrieve the Geographical Data of PolygonsSalesforce Maps Apex Methods

'radius' => 50,
'lat' => 33.917760,
'lng' => -84.379750

};

// Call the getPolygonGeometry() method with the new polygon.
Map<String,Object> response = maps.API.getPolygonGeometry(polygon);

// Log the information about the resulting polygon.
system.debug(response);

Sample Code of a Rectangle
This code passes a rectangular geographical region to the Salesforce Maps API.

Input Format of a Rectangle

{
type: 'rectangle', // Shape.
NE: Map<String,Decimal>, // North-Eastern corner of the rectangle.
SW: Map<String,Decimal> // South-Western corner of the rectangle.

}

Example

// Add the geographical coordinates of the North-Eastern and South-Western corners.
Map<String,Decimal> northEast = new Map<String,Decimal>{

'lat' => 33.943360,
'lng' => -84.515541

};

Map<String,Decimal> southWest = new Map<String,Decimal>{
'lat' => 33.559707,
'lng' => -84.101929

};

// Create the rectangular geographical region.
Map<String,Object> polygon = new Map<String,Object>{

'type' => 'rectangle',
'NE' => northEast,
'SW' => southWest

};

// Call the getPolygonGeometry() method with the new polygon.
Map<String,Object> response = maps.API.getPolygonGeometry(polygon);

// Log the information about the resulting polygon.
system.debug(response);

Sample Code of a Polygon
This code passes a polygonal geographical region to the Salesforce Maps API.

69

Retrieve the Geographical Data of PolygonsSalesforce Maps Apex Methods

Input Format of a Polygon

{
type: 'polygon', // Shape.
points: List<Map<String,Decimal>> // List of latitude and longitude coordinates of the

polygon corners.
}

Example

// Create an array with the geographical coordinates of the corners of the polygon.
String pointsArray =
'[{"lat":34.29494470071453,"lng":-83.86492811369591},{"lat":34.167779992443144,"lng":-85.15032850432091},{"lat":32.80256665568334,"lng":-84.63397108244591},{"lat":33.32736906742004,"lng":-82.72234998869591}]';

// Create the polygonal geographical region.
Map<String,Object> polygon = new Map<String,Object>{

'type' => 'polygon',
'points'=> JSON.deserializeUntyped(pointsArray)

};

// Call the getPolygonGeometry() method with the new polygon.
Map<String,Object> response = maps.API.getPolygonGeometry(polygon);

// Log the information about the resulting polygon.
system.debug(response);

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

{
"unit": "meters",
"geometries": {
"custom": {
"area": 7803.6128806207,
"perimeter": 313.654849054103

}
},
"count": 1,
"custom": true

}

Retrieve the Territories in Which the Records Reside

The PointInPolygon() Apex method returns the territory shape in which each record resides. It reads in the geographical
coordinates of one or more records and compares each against the surrounding territory shape. Review Considerations for Retrieving
Territory Shapes.

70

Retrieve the Territories in Which the Records ResideSalesforce Maps Apex Methods

https://help.salesforce.com/s/articleView?id=004388105&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=004388105&type=1&language=en_US

Signature
Map<String, Object> maps.API.PointInPolygon(Map<String, Object>)

Where,

• maps is the namespace that's available after you install Salesforce Maps.

• API is the class that contains the global methods exposed to developers.

• PointInPolygon() is the method.

Sample Code
This code reads in the geographical coordinates of two records and returns the territory shape in which each resides.

Warning: If you invoke methods within a flow, process builder, or trigger, avoid uncommitted work errors when you perform
one of the following.

• Call the methods through a future method

• Call the methods as queueable

Uncommitted work errors can also arise if calling out to Salesforce Maps methods more than one time in a single transaction and
the Salesforce Maps token hasn’t refreshed in the last 24 hours. If these errors occur, separate each callout into individual transactions.

Different processes refresh the token, such as plotting a route or schedule. The refresh process is almost immediate after each
qualifying action occurs.

Input Format

{
version: 'int' // Required. Version of the API endpoint.
points: [{id:String, lat:Decimal, lng:Decimal, id:String}, ...] // Array of record IDs,
latitudes and longitutes.
MATerritoryIds: List<String> // List of Maps territory IDs.
}

Example

// Create a list of records.
List<Map<String, Object>> coordinateList = new List<Map<String, Object>> {

new Map<String, Object> {
'id' => 'recordId_1',
'lat' => 34.0441233,
'lng' => -84.0076379

},
new Map<String, Object> {

'id' => 'recordId_2',
'lat' => 54.0441233,
'lng' => -84.0076379

}
};

// Create a list of territory IDs.
List<String> MATerritoryIds = new List<String>();
for (maps__ShapeLayer__c sl : [SELECT Id FROM maps__ShapeLayer__c]) {

MATerritoryIds.add(sl.Id);

71

Retrieve the Territories in Which the Records ResideSalesforce Maps Apex Methods

}

// Build the request. Only version 2 is valid.
Map<String, Object> request = new Map<String, Object> {

'version' => '2',
'points' => coordinateList,
'MATerritoryIds' => MATerritoryIds

};

// Call the PointInPolygon() method.
Map<String,Object> response = maps.Api.PointInPolygon(request);

// Log the resulting territory shapes of the regions.
system.debug(response);

Sample Response
Although the return value is an Apex Map<String, Object> object, this JSON response illustrates the essential data you receive
in the resulting map.

{
"results": [

{
"polygons":["a130t000000nNefAAE-1"], // The ID of the polygon in which the record

resides, followed by its unique ID for all geometry records associated with the polygon.

"point":{
"id":"recordId_1",
"lat":34.0441233,
"lng":-84.0076379

}
},
{

"polygons":[],
"point":{

"id":"recordId_2",
"lat":54.0441233,
"lng":-84.0076379

}
}

]
}

72

Retrieve the Territories in Which the Records ResideSalesforce Maps Apex Methods

	Overview
	Requirements
	Apex Methods
	Assign Records to Owners Using an Assignment Plan
	Create a Route
	Create Routes for Specific Users
	Create Routes from Visit Plan
	Get a Route
	Get the Boundary Information
	Get the Distance Matrix
	Get the Geographical Coordinates of an Address
	Get the Geographical Coordinates of Addresses in Batch
	Permanently Delete Datasets and Alignments
	Retrieve Data That Salesforce Maps Hosts
	Retrieve the Geographical Data of Country-Specific Shapes
	Retrieve the Geographical Data of Polygons
	Retrieve the Territories in Which the Records Reside

