
Headless Identity
Implementation Guide

Version 64.0, Summer ’25

Last updated: June 20, 2025



© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Chapter 1: What Is Headless Identity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Headless Login Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Headless Registration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Headless Forgot Password Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Building Native Single Sign-On Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Complete Prerequisites for Headless Identity . . . . . . . . . . . . . . . . . . . . . . . 8

Create a Role to Manage Headless Identity Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Assign the Headless Identity Admin Role to Yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Set Up a Demo Profile for End Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Set Up Cross-Origin Resource Sharing (CORS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Create an Account for End Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Enable the Authorization Code and Credentials Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Implement reCAPTCHA on a Web App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3: Set Up an Authentication Provider for Single Sign-On . . . . . . . . . . . . . . . . 14

Create an Authentication Provider Registration Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Configure a Google Authentication Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 4: Set Up an Experience Cloud Site for Headless Identity . . . . . . . . . . . . . . . . 19

Enable Digital Experiences and Create Your Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Configure Experience Cloud Site Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Create a Headless Registration Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Configure Headless Identity Settings in Experience Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Activate Your Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 5: Set Up a Connected App for Headless Identity . . . . . . . . . . . . . . . . . . . . . 26

Create an OAuth-Enabled Connected App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Configure Connected App Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Get Your Consumer Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 6: Use Postman to Work with Headless Identity APIs . . . . . . . . . . . . . . . . . . 29

Set Up Your Postman Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Headless Registration Flow: Send a Registration Request . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Headless Registration Flow: Send an Authorization Request . . . . . . . . . . . . . . . . . . . . . . . . 32
Headless Registration Flow: Send a Token Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Headless Login: Send an Authorization Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Headless Login: Send a Token Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Headless Registration and Headless Login Flows: Get User Info . . . . . . . . . . . . . . . . . . . . . 35



Headless Forgot Password Flow: Send a Password Reset Request . . . . . . . . . . . . . . . . . . . . 35
Headless Forgot Password Flow: Change the User’s Password . . . . . . . . . . . . . . . . . . . . . . 36
Headlessly Revoke an Access Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 7: JavaScript Examples for Headless Identity APIs . . . . . . . . . . . . . . . . . . . . . 38

Headless Login JavaScript Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Headless Registration JavaScript Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Headless Forgot Password JavaScript Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Building a Native Single Sign-On Experience JavaScript Examples . . . . . . . . . . . . . . . . . . . . 43
Getting User Info JavaScript Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Contents



CHAPTER 1 What Is Headless Identity?

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Salesforce Headless Identity gives you the ability to separate
back-end authentication processes from front-end identity
experiences. By calling Headless Identity APIs, you can use the
power of Customer Identity for authentication while maintaining
complete control over the user experience in an off-platform or
third-party app. Salesforce offers three Headless Identity features:
login with Headless Login API, registration with Headless
Registration API, and password reset with Headless Forgot Password
API. You can also link a single sign-on (SSO) provider to your
headless app to create a native SSO experience.

Headless Identity use cases fall into two categories.

In this chapter ...

• About This Guide

• Headless Login
Overview

• Headless
Registration
Overview

• Headless Forgot
Password Overview

• Building Native Single
Sign-On Experiences • Apps that complement a customer-facing Experience Cloud site. Users fully interact with and log in

to the Experience Cloud site and the app. For example, you build a mobile app in addition to your
main Experience Cloud site because you want to target mobile-first users. You want to fully design
the user experience to suit your company’s branding. You can completely control the user experience
in your app while Salesforce provides identity services. And because you already have an Experience
Cloud site, you can simplify your setup process.

• Standalone apps. Users interact with and log in to your app, but not an Experience Cloud site. For
example, your company builds your own customer-facing apps to align with your digital marketing
strategy. Because you want to use Salesforce to manage customer outreach and store information,
enabling your users to log in and register for your apps is important. But you still want full control
over the user experience in your apps. Headless Identity means you can have it all—you can provide
identity services to your apps, manage customers in Salesforce, and keep up with your company’s
digital marketing strategy.

For use cases in this category, you still create and set up an Experience Cloud site because Headless
Identity APIs are exposed and configured through Experience Cloud. The Experience Cloud site also
functions as a way to store your customer accounts and contact records and manage access to your
app. But your users don’t interact with it directly.

1



About This Guide

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

This guide walks you though an end-to-end Headless Identity implementation, from completing
your Salesforce setup to calling Headless Identity API using a Postman collection. The example
implementation in this guide is designed for a single-page app or public client.

The guide takes you through these high-level tasks.

• Complete prerequisites for Headless Identity.

• Create an authentication provider.

• Configure Experience Cloud settings.

• Configure a connected app.

• Use Postman to call Headless Identity APIs.

The guide also includes some JavaScript examples for implementing Headless Identity with a
single-page app.

To use this guide, you must have a Salesforce admin account. We recommend completing these steps in a non-production environment,
such as a sandbox or developer org, before you customize and deploy your own solution into production.

Headless Login Overview

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

You configure headless login via the Authorization Code and Credentials Flow, which is built on
the OAuth 2.0 Authorization Code grant type. At the end of this flow, a user is logged in and can
access Salesforce data. Here’s a high-level overview of how the flow works with a single-page app.

2

About This GuideWhat Is Headless Identity?



• Your user goes to your custom app, where your login form is natively displayed, and enters their username and password (1).

• If you’re using the Proof Key for Code Exchange (PKCE) extension, the app generates values to verify the authorization code. If you’re
not using PKCE, your flow skips this step. We strongly recommend that you always use PKCE when implementing this flow for
single-page apps (2).

• From the browser, your custom app—via JavaScript—sends a headless authorization request to the Salesforce Headless Login API
authorization endpoint on your Experience Cloud site (3).

• Salesforce returns a 302 redirect to a preconfigured URL containing the authorization code. If the flow is executed in the browser,
the 302 redirect is processed and the response is delivered headlessly to your callback endpoint. For single-page apps, you can use
the OAuth 2.0 echo endpoint, which is designed to make development for this use case easier (4).

• The callback endpoint extracts the authorization code from the 302 redirect and returns it to the app (5).

• The client-side JavaScript receives the redirect URL parameters and initiates the code exchange with a POST request to the token
endpoint (6).

• Salesforce Headless Login API validates the request and returns an access token response to the app (7).

• Client-side JavaScript on the app processes the access token and creates the user’s session (8).

• The user is now logged in, and they perform an action in your custom app that initiates a request for Salesforce data. For example,
they click a button to access their travel booking history, which is stored in the Salesforce Experience Cloud site (9).

• Your custom app makes an authenticated request to a protected Salesforce endpoint, such as a Salesforce API (10).

• The user can now access their protected data in your custom app. For example, they can see their travel booking history (11).

Here are a few key concepts to keep in mind for this flow.

• Your app initiates headless login with an authorization request to Headless Login API.

• You use a callback endpoint to extract the authorization code. To make this process easier, instead of building your own endpoint,
use the Salesforce OAuth 2.0 echo endpoint.

• Your app exchanges the code for an access token with a request to the token endpoint.

Headless Registration Overview

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

The Headless Registration Flow extends the Authorization Code and Credentials Flow. At the end
of this flow, a new user is registered and logged in, and they can access Salesforce data. Here’s a
high-level overview of how the flow works with a single-page app.

• An end user opens your app and clicks Register (1).

• In your app, you natively display a registration form to collect user data. The look and feel of
this form is entirely up to you, and you can fully customize what kind of information that you
want to collect (2).

• The end user enters their information in the app. For example, they enter their new username,
password, and first name (3).

• Your app submits the user information to the Headless Registration API endpoint on your
Experience Cloud site (4).

• Salesforce receives the user information and queues it to be processed later (5a).

• Salesforce then sends an email or an SMS text message containing a one-time password (OTP) to the user (5b).

• In your app, you natively display an OTP verification form. Again, it’s up to you how you want this form to look (6).

• The user receives their OTP and enters it in the verification form (7).

• Your app then initializes the Authorization Code and Credentials Flow with an authorization code request. The request includes the
OTP and the request ID, along with other parameters (8).

3

Headless Registration OverviewWhat Is Headless Identity?



• Salesforce verifies the request ID and OTP. It retrieves the queued user data that it stored earlier and calls the headless registration
handler. The headless registration handler creates a user in Salesforce (9).

• Salesforce returns a 302 redirect to a preconfigured URL containing the authorization code. If the flow is executed in the browser,
the 302 redirect is processed and the response is delivered headlessly to your callback endpoint. For single-page apps, you can use
the OAuth 2.0 echo endpoint, which is designed to make development for this use case easier (10).

• The callback endpoint extracts the code and other parameters from the 302 redirect. It returns this information to your app (11).

• Your app initiates the code exchange via a POST request to the token endpoint (12).

• From the token endpoint, Salesforce returns an access token response to your app (13).

• Your app processes the token response and creates the user’s session (14).

• The user is now registered and logged in. They perform an action in your custom app that initiates a request for Salesforce data. For
example, they click a button to access their travel booking history, which is stored in the Salesforce Experience Cloud site (15).

• Your custom app makes an authenticated request to a protected Salesforce endpoint, such as a Salesforce API (16).

• The customer can now access their protected data in your custom app. For example, they can see their travel booking history (17).

Here are a few key concepts to keep in mind.

• Your app initiates registration with a request to Headless Registration API.

• When Salesforce receives the user information from this request, it queues the information to be processed later. At this point, the
user isn’t registered yet.

4

Headless Registration OverviewWhat Is Headless Identity?



• Your app initializes the Authorization Code and Credentials Flow with an authorization request to Headless Login API.

• The information sent in this authorization request prompts Salesforce to retrieve the queued user information and pass it to the
headless registration handler. The registration handler creates the user.

• At the end of the flow, the user is registered and logged in.

Headless Forgot Password Overview

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

If your users can log in and register, they must also be able to reset their passwords. Here’s a
high-level overview of how the Headless Forgot Password Flow works with a single-page app.

• An end user clicks a password reset link in your app.

• In your app, you natively display a forgot password page.

• The user enters their username.

• Your app initiates the flow with a request to Headless Forgot Password API. The request includes the user’s username (1).

• Salesforce receives the forgot password details.

• Salesforce returns a success message to your app (2).

• Immediately after, Salesforce generates a one-time password (OTP) and sends it to the user’s email address (3).

• In your app, you natively display an OTP verification form.

• The user receives the OTP email.

• The user enters the OTP and their new password in your verification form.

• Your app finishes resetting the password with another request to Headless Forgot Password API. The request includes the username,
OTP, and new password (4).

• Salesforce verifies the OTP and sets a new password.

• Salesforce returns a success message to your app (5).

• The user logs in with their new password.

Here are a few key concepts to keep in mind for this flow.

5

Headless Forgot Password OverviewWhat Is Headless Identity?



• This flow sends two requests to Headless Forgot Password API.

• The first request initializes the password reset and kicks off the OTP verification process.

• The second request completes the password reset process.

Building Native Single Sign-On Experiences

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

You can configure the OAuth 2.0 web-server and user-agent flows to create a native single sign-on
(SSO) experience in your app. Use this feature to add SSO to your Headless Identity implementation.

To create a native single sign-on experience in your app, you configure SSO with an authentication
provider or SAML identity provider. You add this provider as a login option from your Experience
Cloud settings. Then you configure the OAuth 2.0 web server flow or user-agent flow with your
app. You pass in a parameter that specifies the name of the SSO provider you configured. On your
app, you also build a button to display the option to log in with the SSO provider.

During the flow, when the user clicks the option to log in with the provider, the browser is redirected
to your Experience Cloud site. Here, Salesforce checks for the SSO provider parameter specified in
the authorization flow. The browser is then automatically redirected to the SSO provider. The user
enters their credentials and the flow briefly redirects to your Experience Cloud site again before the
user is redirected back to your app. These redirects happen automatically, giving the user the impression that your app is natively
integrated with the external SSO provider—they don’t see or interact with your Experience Cloud site.

For example, you want to set up SSO between your app and Google, and you want it to feel like your app is natively integrated with
Google. Here’s a simplified overview of the flow works when it’s configured.

• A user goes to your app and clicks a button so that they can log in with an external provider, such as Google (1).

• The browser briefly redirects to the Experience Cloud login page.

• Salesforce confirms that a Google SSO provider is enabled for the Experience Cloud site (2).

• The browser automatically redirects to the Google login page.

• The user enters their Google credentials (3).

6

Building Native Single Sign-On ExperiencesWhat Is Headless Identity?



• Google authenticates the user. The browser is briefly redirected back to the Experience Cloud login page.

• Salesforce finishes logging in the user (4).

• The browser is automatically redirected back to your app.

• The user is now logged in (5).

7

Building Native Single Sign-On ExperiencesWhat Is Headless Identity?



CHAPTER 2 Complete Prerequisites for Headless
Identity

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Cross off some basic setup steps in Salesforce and Google.

In Salesforce, these prerequisites include creating a role to manage
your users, setting up a demo profile, enabling Cross-Origin
Resource Sharing (CORS), and setting up an account to contain
your users. You must also enable the Authorization Code and
Credentials Flow at an org-wide level so that you can set up
headless login and registration.

You must also implement Google reCAPTCHA to get a reCAPTCHA
token so that you can use in the Postman examples. For single-page
apps, with reCAPTCHA, you can secure your flow without passing
secret information, like an integration user’s access token, in any of
your requests to Salesforce.

In this chapter ...

• Create a Role to
Manage Headless
Identity Features

• Assign the Headless
Identity Admin Role
to Yourself

• Set Up a Demo
Profile for End Users

• Set Up Cross-Origin
Resource Sharing
(CORS)

• Create an Account
for End Users

• Enable the
Authorization Code
and Credentials Flow

• Implement
reCAPTCHA on a
Web App

8



Create a Role to Manage Headless Identity Features

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

USER PERMISSIONS

To view roles and role
hierarchy:
• View Roles and Role

Hierarchy

To create, edit, and delete
roles:
• Manage Roles

To assign users to roles:
• Manage Internal Users

For identity and access management, it’s important to define who can access what. Create a role
to ensure that you have the right level of access to manage Headless Identity features.

1. From Setup, in the Quick Find box, enter Roles, and then select Roles.

2. Click Set Up Roles.

3. Under CEO, select Add Role.

4. Enter a label for the role, such as Headless Identity Admin.

The Role Name autofills. You can keep it the same or change it.

5. Save your changes.

Stay on this Setup page to complete the next step.

9

Create a Role to Manage Headless Identity FeaturesComplete Prerequisites for Headless Identity



Assign the Headless Identity Admin Role to Yourself

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

USER PERMISSIONS

To view roles and role
hierarchy:
• View Roles and Role

Hierarchy

To create, edit, and delete
roles:
• Manage Roles

To assign users to roles:
• Manage Internal Users

Assign the role that you created to your System Administrator user.

1. From your role detail page, select Assign Users to Role.

If you left this page, you can get back to it by entering Roles  in the Quick Find box, selecting
Roles, and then selecting the role that you created.

2. If you don’t see your admin user in Available Users, use the dropdown and search bar to refine
your search.

3. Select your admin user, and add them to Selected Users for End Users.

4. Save your changes.

Set Up a Demo Profile for End Users

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

For Headless Identity, you use profiles to define how your end users access data in Salesforce. New
users are automatically assigned to this profile when they register. Create a demo profile so that
you can test your headless login, registration, forgot password, and single sign-on processes as an
end user.

Instead of creating a new profile, you can clone an existing standard profile to get all of its
preconfigured permissions and access settings. You can then customize the profile as needed.
Because you use an Experience Cloud site to call Headless Identity APIs and store user data, your
end users must be able to access Experience Cloud. We recommend cloning only these standard
profiles so that users can log in via an Experience Cloud site.

• Customer Community User

• Customer Community Plus User

• External Identity User

• Partner Community User

• Partner User

For this example, we clone the Customer Community User profile.

1. From Setup, in the Quick Find box, enter Profiles, and then select Profiles.

2. From the profile list, select the checkbox next to Customer Community User.

3. Click Clone.

10

Assign the Headless Identity Admin Role to YourselfComplete Prerequisites for Headless Identity



4. Name the profile Headless Demo Profile.

5. Save your changes.

Set Up Cross-Origin Resource Sharing (CORS)

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

USER PERMISSIONS

To create, read, update, and
delete:
• Modify All Data

In production, to use Headless Identity features in a web app, you must enable Cross-Origin Resource
Sharing (CORS) so that your app can communicate with Salesforce. This step isn’t necessary for the
example implementation in this guide, so you can skip it for now. But if you want to learn how to
set up CORS, here’s how it’s done.

In production, you set up CORS using the domain of your off-platform app. For this example
implementation, if you don’t have a test app in mind, you can create one using Heroku—you can
try a basic account for free. Later in this guide, you can use the same app when you implement
reCAPTCHA.

1. From Setup, in the Quick Find box, enter CORS, and then select CORS.

2. For Allowed Origins List, click New.

3. Enter a URL pattern that can identify your web app. For example, if your app is hosted on
myapp.com, you enter https://www.myapp.com.

4. Save your changes.
Your web app can now request resources from Salesforce.

Create an Account for End Users

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

You must use an account to store information about your end users, including their contact records.
For Headless Identity, you reference the account in your Apex registration handlers. When new
users log in via an authentication provider or sign up directly through your site, they’re added as
contacts.

Salesforce supports two types of accounts: business accounts, which store information about
organizations, and person accounts, which store information about individuals. For this example,
you use a business account to keep all your end-user records in one place.

1. From the App Launcher, find and select Accounts.

2. Click New.

3. For the Account Name, enter My Account.

You can leave the rest of the details blank.

4. Save your new account.

11

Set Up Cross-Origin Resource Sharing (CORS)Complete Prerequisites for Headless Identity

https://www.salesforce.com/editions-pricing/heroku/


Enable the Authorization Code and Credentials Flow

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

The Authorization Code and Credentials Flow is the foundation of headless login and headless
registration. Enable this flow at an org-wide level.

1. From Setup, in the Quick Find box, enter OAuth, and then select OAuth and OpenID Connect
Settings.

2. Turn on Allow Authorization Code and Credentials Flows.
You receive a warning that changing this setting can break your integrations.

3. To accept the warning, click OK.
With this flow enabled, you can access settings to turn it on for a specific connected app.

Example:

Implement reCAPTCHA on a Web App

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

For the Headless Registration Flow and the Headless Forgot Password Flow, you must configure at
least one of two security settings on the Experience Cloud Login & Registration page. These settings
add requirements to the requests that your app sends to Headless Identity APIs. You can require
your app to send an access token issued to an internal integration user. Or you can require your
app to send a reCAPTCHA token. For single-page apps, because you can’t keep the integration
user’s access token private in the browser, we recommend that you require your app to send a
reCAPTCHA token instead. Requiring reCAPTCHA helps you filter out invalid requests, such as
requests from bots. To work with the Headless Identity API Postman collection, you must have a
valid reCAPTCHA token.

Though full-blown instructions for implementing reCAPTCHA are outside the scope of this guide,
we show you where to go and what information you need. Salesforce supports reCAPTCHA v2 and
reCAPTCHA v3 for Headless Identity. For this example, we use reCAPTCHA v3.

To get a reCAPTCHA token, you must set up and host reCAPTCHA on a web app. In production, you implement reCAPTCHA on your
off-platform app.

For this example, if you don’t have a test web app in mind, you can create one using Heroku—you can try a basic account for free.

To implement reCAPTCHA, see reCAPTCHA v3 in the reCAPTCHA Developer’s Guide at https://developers.google.com/recaptcha/docs/v3.

When you set up reCAPTCHA for this example, follow these guidelines.

• For the domain, enter the URL for your web app, such as https://www.myapp.com.

12

Enable the Authorization Code and Credentials FlowComplete Prerequisites for Headless Identity

https://www.salesforce.com/editions-pricing/heroku/
https://developers.google.com/recaptcha/docs/v3


• For reCAPTCHA type, choose reCAPTCHA v3.

• Note your API key pair, which you use later in this guide.

• Ensure that you can get a reCAPTCHA token before you move on.

13

Implement reCAPTCHA on a Web AppComplete Prerequisites for Headless Identity



CHAPTER 3 Set Up an Authentication Provider for Single
Sign-On

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Authentication providers are one way of setting up single sign-on
(SSO) from an external identity provider, like Google, into Salesforce.
With a single parameter, you can link an authentication provider
to your app to create an SSO experience that feels native. For this
example, we set up a Google authentication provider so that your
users can log in to Google from your app.

This guide shows you how to create a registration handler, set up
an authentication provider, and add it to your Experience Cloud
site. This guide doesn’t cover a Postman example for configuring
the OAuth 2.0 web server flow or user-agent flow to use the
sso_provider  parameter. For full setup instructions, see Create
a Native Single Sign-On Experience in Your App in Salesforce Help.

In this chapter ...

• Create an
Authentication
Provider Registration
Handler

• Configure a Google
Authentication
Provider

14

https://help.salesforce.com/s/articleView?id=sf.remoteaccess_native_sso.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_native_sso.htm&language=en_US


Create an Authentication Provider Registration Handler

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Create an Apex registration handler to use with your authentication provider. When users log in to
your third-party app with an external single sign-on (SSO) provider, the registration handler creates
and updates their user records.

1. From Setup, in the Quick Find box, enter Apex, and then select Apex Classes.

2. Click New.

3. Fill the class with your registration handler code. You can paste in the code from the example.

4. Save the class, and note its name.

Example: Here’s an example registration handler that you can use with your Google
authentication provider. This class is triggered every time a user logs in with Google. If it’s the
user’s first time logging in to your app, the class creates a user in Salesforce and associates
them with the Headless Identity Demo profile that you created. The class also added the user
to the account that you created earlier. If the user logged in to your app before, the class
updates their record with any new information.

Note:  This sample code is for demonstration only. Always test code before deploying
it to a production environment.

/*
* This class is a sample auth provider registration handler
for a Headless Identity implementation
* It creates an external user and associates them with the
Headless Demo Profile
* It creates or associates the user contact to an Account
called My Account
* It uses the email as the username
* */

global class HeadlessDemoGoogleIDPRegistrationHandler
implements Auth.RegistrationHandler{

static final String headless_account = 'My Account';
static final String headless_profile = 'Headless Demo

Profile';

/*
* Tries to find a user with a username matching the incoming
email
* If not it creates one, associates it to an Account and

Profile
* */
global User createUser(Id portalId, Auth.UserData data)

{
//Find an existing user, we are using username to map

to email as your google email is a google username
List<User> users = [SELECT Id, firstName, lastName,

email FROM User where Username =:data.email LIMIT 1];
User u = null;
if (!users.isEmpty()) {

u = users[0];

15

Create an Authentication Provider Registration HandlerSet Up an Authentication Provider for Single Sign-On



}
//If no user is found we create one
if (u == null) {

u = new User();
prepareUserData(data, u);

//Get the Account, and create it if one is not already present.
Account a;
List<Account> accounts = [SELECT Id FROM Account WHERE name='My Account'];

if(accounts.isEmpty()) {
a = new Account(name = headless_account);
insert(a);

} else {
a = accounts[0];

}

// Get the Profile
Profile p = [SELECT Id FROM Profile WHERE Name =: headless_profile LIMIT

1];

//Create the Contact
Contact c = new Contact();
c.accountId = a.Id;
c.firstName = u.firstName;
c.lastName = u.lastName;
insert(c);

//Associate the Contact to the user along with the profile.
u.profileId = p.Id;
u.contactId = c.Id;

} else {
u.firstName = data.firstName;
u.lastName = data.lastName;
u.email = data.email;
update u;

}

return u;

}

/*
* Basic Update User Method
* */
global void updateUser(Id userId, Id portalId, Auth.UserData data){

User u = new User(id=userId);
u.email = data.email;
u.lastName = data.lastName;
u.firstName = data.firstName;
update(u);

}

16

Create an Authentication Provider Registration HandlerSet Up an Authentication Provider for Single Sign-On



/*
* This method handles filling user data that is required by Salesforce but is not
passed in during registration
*/

void prepareUserData(Auth.UserData data, User u){

String name, firstName, lastName, username, alias, email;

System.debug('----> Passed In User Information');
System.debug('Email: ' + data.email);
System.debug('First Name: ' + data.firstName);
System.debug('Last Name: ' + data.lastName);

for(string key : data.attributeMap.keySet())
{

system.debug('key: ' + key + ' value: ' + data.attributeMap.get(key));
}
// Initialize the attributes essential for creating a new user with dummy

values
// in case they will not be provided by the Auth Provider
firstName = 'change-me';
lastName = 'change-me';
email = 'change@me.com';
if(data.email != null && data.email != '')

email = data.email;
if(data.firstName != null && data.firstName != '')

firstName = data.firstName;
if(data.LastName != null && data.lastName != '')

lastName = data.lastName;
if(data.attributeMap.containsKey('full_name'))

name = data.attributeMap.get('full_name');
if(data.attributeMap.containsKey('name'))

name = data.attributeMap.get('name');
if(firstName == 'change-me' && name != '')

firstName = name.substringBefore(' ');
if(lastName == 'change-me' && name.substringAfter(' ') != '')

lastName = name.substringAfter(' ');

alias = firstName;

//Alias must be 8 characters or less
if(alias.length() > 8)

alias = alias.substring(0, 8);
u.username = email;
u.email = email;
u.lastName = lastName;
u.firstName = firstName;
u.alias = alias;
u.languagelocalekey = UserInfo.getLocale();
u.localesidkey = UserInfo.getLocale();
u.emailEncodingKey = 'UTF-8';
u.timeZoneSidKey = 'America/Los_Angeles';

}

17

Create an Authentication Provider Registration HandlerSet Up an Authentication Provider for Single Sign-On



}

Configure a Google Authentication Provider

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

For this example, configure a Google authentication provider so that users can log in with Google.

Authentication providers require you to use an app on the external identity provider to communicate
with Salesforce. You can either set up an app yourself or use the default global app provided by
Salesforce. In production, we recommend that you create your own app. For testing and for this
example, you can use the global app, so you’re only required to fill in a few fields. Salesforce handles
the rest.

1. From Setup, in the Quick Find box, enter Auth, and then select Auth. Providers.

2. Click New.

3. From the Provider Type dropdown, select Google.

4. For the name, enter Google IDP.

5. Ensure that the URL suffix is Google_IDP.

6.
For Registration Handler, click , and then search for the name of the registration handler Apex class that you created.

7.
For Execute Registration As, click , and then search for a user to run the registration handler Apex class. This user must have
the Manage Users permission. For this example, you can use your admin user.

8. Leave the rest of the values blank, and save your changes.

In production, when you set up your own app on the third-party SSO provider, you must fill in these fields.

18

Configure a Google Authentication ProviderSet Up an Authentication Provider for Single Sign-On



CHAPTER 4 Set Up an Experience Cloud Site for
Headless Identity

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Because Headless Identity APIs are exposed through Experience
Cloud, creating a site is a crucial part of configuring Headless
Identity.

Through your Experience Cloud site, you control enablement and
access for headless flows, including your site membership. You also
control security settings for the Headless Registration Flow and
Headless Forgot Password Flow.

If you already have an Experience Cloud site, we still recommend
creating a new one for this example.

In this chapter ...

• Enable Digital
Experiences and
Create Your Site

• Configure Experience
Cloud Site
Membership

• Create a Headless
Registration Handler

• Configure Headless
Identity Settings in
Experience Cloud

• Activate Your Site

19



Enable Digital Experiences and Create Your Site

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Enabling digital experiences is the first step to creating your Experience Cloud site.

1. From Setup, in the Quick Find box, enter Digital, and then select Digital Experiences |
Settings.

2. Select Enable Digital Experiences.

3. If enhanced domains are enabled in your org, you see your digital experiences domain name.
Otherwise, enter a name, and then to make sure that it isn’t being used, click Check Availability.

4. Save your changes.

5. From Setup, in the Quick Find box, enter Sites, and then select All Sites.

6. Click New.

7. Select a site template. For this example, select Build Your Own (LWR).

8. Click Get Started.

9. Note:  We recommend that you don’t provide a URL suffix for your site. That way, you’re not required to remember it every
time you need the Experience Cloud domain.

Enter a name for the site. For this example, name the site Headless Demo.

10. Click Create.
Your site opens in Experience Workspaces.

Keep your site open in Experience Workspaces for the next step.

Configure Experience Cloud Site Membership

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Because your Experience Cloud site stores all your user information, you must add your end-user
profile to the site’s membership.

1. From Experience Workspaces, select Administration.

If you’re not in Experience Workspaces, here’s how you can get back to it. In the Quick Find box,
enter Sites, select All Sites, and then next to your site name, select Workspaces.

2. From the Administration page, select Members.

3. Search for the Headless Demo Profile that you created earlier, and add it to Selected Profiles.
You can use the Search dropdown to filter profile types.

4. Save your changes.

20

Enable Digital Experiences and Create Your SiteSet Up an Experience Cloud Site for Headless Identity



Create a Headless Registration Handler

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Create an Apex class for your registration handler. You reference this Apex class when you configure
Experience Cloud settings on the Login & Registration page.

1. From Setup, in the Quick Find box, enter Apex, and then select Apex Classes.

2. Click New.

3. Fill the class with your headless registration handler code. You can paste in the code from the
example.

4. Save the class, and note its name.

Example: Here’s an example headless registration handler. This registration handler creates
a user and links it to the account and profile that you created earlier in this guide.

Note:  This sample code is for demonstration only. Always test code before deploying
it to a production environment.

/*
* Sample Headless Self Registration Handler class for Headless
Identity implementation
*/

global class HeadlessSelfRegistrationHandler implements
Auth.HeadlessSelfRegistrationHandler{

static final String headless_account = 'My Account';

// Creates a Standard salesforce or a community user
global User createUser(Id profileId, Auth.UserData data,

String customUserDataMap, String experienceId, String
password){

User u = new User();
//Ensures the user will save as all required fields

are pre-filled in with dummy values
prepareUserData(data, u);

//Get the Account, and create it if one is not already
present.

Account a;
List<Account> accounts = [SELECT Id FROM Account WHERE

name='My Account'];
if(accounts.isEmpty()) {

a = new Account(name = headless_account);
insert(a);

} else {
a = accounts[0];

}

handleCustomData(customUserDataMap);

// Create the Contact
Contact c = new Contact();
c.accountId = a.Id;
c.firstName = u.firstName;

21

Create a Headless Registration HandlerSet Up an Experience Cloud Site for Headless Identity



c.lastName = u.lastName;
insert(c);

//Associate the Contact to the user along with the profile.
u.profileId = profileId;
u.contactId = c.Id;
return u;

}

/*
* We support the ability to pass in complex structures in the custom user data

map
* You can build Apex classes that represent your complex structure
* Then deserialize that structure into your Apex class
* In this case we have a class at the bottom of this file called

"ContactInformation"
* This class deserializes the incoming request and prints out the fields
* */
void handleCustomData(String customUserDataMap) {

System.debug('Custom Data: ' + customUserDataMap);
ContactInformation contactInfo = null;
try {

contactInfo =
(HeadlessSelfRegistrationHandler.ContactInformation)JSON.deserialize(customUserDataMap,
HeadlessSelfRegistrationHandler.ContactInformation.class);

System.debug('ContactInfo.mobilePhone: ' + contactInfo.mobilePhone);
System.debug('ContactInfo.streetAddress: ' + contactInfo.streetAddress);

System.debug('ContactInfo.city: ' + contactInfo.city);
System.debug('ContactInfo.state: ' + contactInfo.state);

} catch (Exception e) {
System.debug('JSON was not formed correctly for the apex class');

}

}

/*
* This method handles filling user data that is required by Salesforce but is not
passed in during registration

* It is not strictly necessary but helpful as it centralizes the management of
unnecessary fields to the IDP instead of the client.
*/

void prepareUserData(Auth.UserData data, User u){

String name, firstName, lastName, username, alias, email;

System.debug('----> Passed In User Information');
System.debug('Email: ' + data.email);
System.debug('First Name: ' + data.firstName);
System.debug('Last Name: ' + data.lastName);

for(String key : data.attributeMap.keySet())
{

22

Create a Headless Registration HandlerSet Up an Experience Cloud Site for Headless Identity



System.debug('key: ' + key + ' value: ' + data.attributeMap.get(key));
}
// Initialize the attributes required to create a new user with dummy values
// in case they are not provided by the Auth Provider
firstName = 'change-me';
lastName = 'change-me';
email = 'change@me.com';
if(data.email != null && data.email != '')

email = data.email;
if(data.firstName != null && data.firstName != '')

firstName = data.firstName;
if(data.LastName != null && data.lastName != '')

lastName = data.lastName;
if(data.attributeMap.containsKey('full_name'))

name = data.attributeMap.get('full_name');
if(data.attributeMap.containsKey('name'))

name = data.attributeMap.get('name');
if(firstName == 'change-me' && name != '')

firstName = name.substringBefore(' ');
if(lastName == 'change-me' && name.substringAfter(' ') != '')

lastName = name.substringAfter(' ');

// Generate a random username
Integer rand = Math.round(Math.random()*100000000);
if(data.attributeMap.containsKey('username')){

username = data.attributeMap.get('username');
}else{

username = lastName + '.' + rand + '@social-sign-on.com';
}
alias = firstName;

//Alias must be 8 characters or less
if(alias.length() > 8)

alias = alias.substring(0, 8);
u.username = username;
u.email = email;
u.lastName = lastName;
u.firstName = firstName;
u.alias = alias;
u.languagelocalekey = UserInfo.getLocale();
u.localesidkey = UserInfo.getLocale();
u.emailEncodingKey = 'UTF-8';
u.timeZoneSidKey = 'America/Los_Angeles';

}

/*
* Apex Class Representation of Contact Information
* which was passed in the custom data map
* */
global class ContactInformation {

String mobilePhone;
String streetAddress;
String city;
String state;

23

Create a Headless Registration HandlerSet Up an Experience Cloud Site for Headless Identity



Boolean privacyPolicy;
}

}

Configure Headless Identity Settings in Experience Cloud

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

You control enablement, access, and security for the Headless Registration Flow and the Headless
Forgot Password Flow on the Experience Cloud Login & Registration page. For this example, configure
settings to support headless identity for a single-page app.

The Login & Registration page is also where you configure identity features for users who interact with your Experience Cloud site directly.
Most of the settings on this page, including settings for login, logout, password, and registration pages, affect the identity experiences
for your site users.

The settings in the Headless Identity Configuration section are separate and affect how your app calls Headless Identity APIs via your
site. Headless Identity Configuration settings don’t affect how users interact with your Experience Cloud site.

In general, only the settings in Headless Identity Configuration are relevant for setting up your implementation. There’s one exception,
though. To create a native single sign-on (SSO) experience in your app, you must add the SSO provider to the Experience Cloud login
page. During the flow, the browser is briefly redirected to the login page URL so that Salesforce can check to see if the SSO provider is
enabled. The browser is then redirected to the provider. The redirection happens so quickly that the user never sees the Experience
Cloud login page. The experience feels like headless SSO, even though it technically isn’t.

1. Go to the Login & Registration page. From Setup, in the Quick Find box, enter Sites, and then select All Sites. Next to your site
name, click Workspaces, select Administration, and then select Login & Registration.

2. Add your SSO provider to the Experience Cloud login page. Under Login Page Setup, for login options, enable the Google IDP
authentication provider you set up.

3. Enable headless registration.

a. Select Allow self-registration via the Headless Registration API.
Enabling this setting exposes other settings related to headless registration.

b. Select Require reCAPTCHA to access this API, and leave Require authentication to access this API deselected.

24

Configure Headless Identity Settings in Experience CloudSet Up an Experience Cloud Site for Headless Identity



These settings control whether you need extra information—either a reCAPTCHA token or an access token— in your initial POST
request to Headless Registration API. When you configure headless registration, you must require either authentication or
reCAPTCHA—you can’t save your settings without at least one of these settings turned on. For this example, which is focused
on single-page apps, requiring authentication isn’t recommended. A single-page app submits the registration POST request via
the browser, and it can’t keep an access token safe. So requiring reCAPTCHA is the way to go.

c. For Default Profile, select the Headless Demo profile you set up. This profile gets assigned to new users automatically.

d.
For Registration Handler, click , and then select your headless registration handler class.

e.
For Run As, click , and then select your admin user.

This user runs the headless registration handler. They must be able to access the account that contains your end users, and they
must be assigned to the Headless Identity Admin role that you created. For this example, you can select yourself as the Run As
user to make testing easier. In production, select a user that isn’t tied to a real person. That way, you don’t experience service
disruptions if someone leaves the company and their account is disabled.

4. Enable headless password reset.

a. Select Allow password reset via the Headless Forgot Password API.

b. Select Require reCAPTCHA to access this API, and leave Require authentication to access this API deselected.

These settings work the same way for headless password reset as they do for headless registration. Similarly, we recommend
requiring reCAPTCHA and not authentication for this example.

c. For the maximum number of password reset attempts, keep the default of 5 attempts.

5. Configure reCAPTCHA options.

The reCAPTCHA options apply to Headless Registration API and Headless Forgot Password API.

a. For Secret Key, enter the secret key from your reCAPTCHA API key pair. You get this information from Google when you set up
reCAPTCHA.

b. For Score Threshold, enter 0.7.

The score threshold is the lowest value that you accept for the reCAPTCHA score issued by Google. This score helps you determine
whether new registration requests are valid. Scores closer to 0 are more likely to be bots, while scores closer to 1 are more likely
to be valid users. The minimum score threshold that Salesforce allows is 0.5.

6. Save your settings.

Activate Your Site

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

To complete your Experience Cloud site setup for headless identity, activate your site. This important
but often overlooked step is required to expose Headless Identity API endpoints.

1. From Administration workspaces, click Settings.

2. Click Activate.

3. Click OK to accept the warning.
You receive an email when the site’s activated.

Your Experience Cloud site is now fully prepared for headless identity.

25

Activate Your SiteSet Up an Experience Cloud Site for Headless Identity



CHAPTER 5 Set Up a Connected App for Headless
Identity

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

A connected app is a framework that allows your off-platform app
to request data from Salesforce APIs. To integrate your single-page
app with Headless Identity APIs, create a connected app and
configure its settings and access policies.

As part of the connected app setup, you enable the Authorization
Code and Credentials Flow. With this flow, you can set up headless
login. Enabling this flow is also a prerequisite for enabling headless
registration. You also define what Salesforce data your app can
access with scopes and configure additional security settings and
access policies. And you define a callback URL, which you use as
the redirect_uri  parameter during headless flows.

In this chapter ...

• Create an
OAuth-Enabled
Connected App

• Configure Connected
App Policies

• Get Your Consumer
Key

After you create a connected app, you get a consumer key, or client_id. During headless flows,
your app passes the consumer key to Salesforce to identify itself.

26



Create an OAuth-Enabled Connected App

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Create your connected app for headless identity, add the required scopes, and enable the
Authorization Code and Credentials flow at the app level.

1. From Setup, in the Quick Find box, enter App, and then select App Manager.

2. Click New Connected App.

3. Enter a name for your connected app, such as Headless Demo App.
The API Name autofills based on the name that you enter.

4. For Contact Email, enter your email address.

5. Under API (Enable OAuth Settings), select Enable OAuth Settings.

6. For Callback URL, enter
https://MyExperienceCloudSite.my.site.com/services/oauth2/echo, where
https://MyExperienceCloudSite.my.site.com  is your Experience Cloud site domain.

This URL points to the Salesforce OAuth 2.0 echo endpoint on your Experience Cloud site. The echo endpoint handles the code
extraction step for headless login and headless registration, which saves you the work of writing and hosting your own code extraction
endpoint. It returns the authorization code and other parameters from the 302 redirect as a JSON object that you can easily parse.

7. Add the Manage user data via APIs (api) and Access unique user identifiers (openid) scopes to Selected OAuth scopes.

8. Deselect the Require Secret for Web Server Flow and Require Secret for Refresh Token Flow settings.

Because this example is focused on single-page apps, which can’t keep information private, you must deselect these settings for
security.

9. Select Enable Authorization Code and Credentials Flow.
Enabling the flow exposes another setting to require user credentials in the POST body of your authorization request. Leave this
setting deselected—again, your app can’t keep this information secret.

10. Save your connected app settings.

Now that you have an OAuth-enabled connected app, you can get your consumer key and consumer secret.

Configure Connected App Policies

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

In a standard OAuth flow, users often see an approval screen where they confirm that an app is
allowed to access their Salesforce data. With headless identity flows, you don’t want to show users
a Salesforce approval screen. To preapprove access, configure OAuth policies on your connected
app.

1. Go to your connected app policy page.

a. From Setup, in the Quick Find box, enter App, and then select App Manager.

b. Next to your app, click , and then select Manage.

2. Click Edit Policies.

3. Under OAuth Policies, set the Permitted Users policy to Admin approved users are
pre-authorized.

4. Save the policy change.

5. On the connected app policy page, scroll down to and select Manage Profiles.

27

Create an OAuth-Enabled Connected AppSet Up a Connected App for Headless Identity



6. Select the headless demo profile that you created.

7. Save the policy change.

Get Your Consumer Key

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

When you create a connected app, it generates a consumer key, also known as a client ID. This
value allows Salesforce to identify your third-party app during headless identity flows. Learn how
to get your consumer key so that you can use it when configuring headless flows.

1. If you’re not on the connected app detail page from the previous step, go to your app’s page.

a. From Setup, in the Quick Find box, enter App, and then select App Manager.

b. Next to your app, click , and then select View.

2. From the connected app detail page, click Manage Consumer Details.
Salesforce prompts you to verify your identity with one of your registered methods.

3. Complete the identity verification challenge.
When you complete the challenge, you can see your consumer key.

28

Get Your Consumer KeySet Up a Connected App for Headless Identity



CHAPTER 6 Use Postman to Work with Headless
Identity APIs

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Now that you configured org-wide settings, Experience Cloud
settings, and a connected app, you can configure and test out the
headless identity flows. To make this process easier, we provide
Postman examples that are customized for this example single-page
app implementation. Use these examples to walk through the flows
for headless registration, headless login, and headless password
reset. The collection also contains examples for calling the User Info
endpoint and logging out a user.

In this chapter ...

• Set Up Your Postman
Workspace

• Headless
Registration Flow:
Send a Registration
Request

• Headless
Registration Flow:
Send an
Authorization
Request

Note:  For simplicity, these examples don’t use the OAuth
2.0 Proof Key for Code Exchange (PKCE) extension. For
security, we strongly recommend that you always use PKCE
when configuring these flows with public clients.

The examples in this collection are divided into four sections, each with examples representing key steps
in the flow.

• Headless
Registration Flow:
Send a Token
Request

• Headless Registration Flow—This section contains three examples.

– Registration - Initialize—Send a registration request to Headless Registration API.• Headless Login: Send
an Authorization
Request

– Registration - Authorize—Send an authorization request to Headless Login API.

– Registration - Token Exchange—Send an access token request to the token endpoint.
• Headless Login: Send

a Token Request • Headless Login via the Authorization Code and Credentials Flow—This section contains two examples.

– Username Password Login - Authorize—Send an authorization request to Headless Login API.• Headless
Registration and – Username Password Login - Token Exchange—Send an access token request to the token

endpoint.Headless Login
Flows: Get User Info

• Confirming a successful login by calling the User Info endpoint—This section contains one example.
You can use it to confirm the success of headless registration and headless login.

• Headless Forgot
Password Flow: Send
a Password Reset
Request

– Get User Info—Send a request to the User Info endpoint.

• Forgot Password Flow—This section contains two examples.
• Headless Forgot

Password Flow: – Forgot Password - Initialize—Send the initial password reset request to Headless Forgot Password
API.Change the User’s

Password – Forgot Password - Change Password—Finish changing the password. with another request to
Headless Forgot Password API.• Headlessly Revoke

an Access Token
• Logging out the user by revoking the access token—This section contains one example. You can

use it to revoke the access token you get during headless registration and headless login.

– Revoke Token—Send a request to the token revocation endpoint.

29



Set Up Your Postman Workspace

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

To get started with Postman, fork the public Salesforce Developers collection and set your variables.

To work with this collection, you must have a Postman account that’s connected to Salesforce,
meaning that the Salesforce Postman collection must be authorized to access your org. If you’re
using Postman in a browser, you must also add the Postman URL patterns to your Cross-Origin
Resource Sharing (CORS) allowlist. For instructions on completing these steps, see the Quick Start:
Connect Postman to Salesforce Trailhead module.

Note:  If you’re using the Postman desktop app, you can skip configuring your CORS allowlist.

1. If you haven’t already, fork the Salesforce Platform APIs collection from the public Salesforce
Developers workspace. By forking the collection, you can modify it on your local workspace
without changing the parent version.

a. Open the Salesforce Developers workspace.

b. In Collections, select Salesforce Platform APIs, click , and then select Create a Fork.

c. Name the fork, add it to your workspace, and click Fork Collection.

2. Reset the collection variables to use your own.

a. Select the forked Salesforce Platform APIs collection in your workspace.

b. Select the Variables tab.

The variables here apply to the entire Salesforce Platform APIs collection, so only a few of them are relevant to this example. You
can ignore the ones that aren’t.

c. Replace the current value for url  with your Experience Cloud site domain, such as
MyExperienceCloudSite.my.site.com.

d. Replace the current value for clientId  with your connected app consumer key.

e. Replace the current value for redirectUrl  with
https://MyExperienceCloudSite.my.site.com/services/oauth2/echo, where
https://MyExperienceCloudSite.my.site.com is your Experience Cloud site domain. This value must match
your connected app callback URL.

The variable list also contains a site  variable, which you can use to store an Experience Cloud site suffix if your site has one. For
this example implementation, we didn’t add a suffix, so leave this value blank.

3. To see the Headless Identity examples, expand the Salesforce Platform APIs collection, select Auth, and then select Headless Identity
API Demo.

30

Set Up Your Postman WorkspaceUse Postman to Work with Headless Identity APIs

https://trailhead.salesforce.com/content/learn/projects/quick-start-connect-postman-to-salesforce
https://trailhead.salesforce.com/content/learn/projects/quick-start-connect-postman-to-salesforce
https://www.postman.com/salesforce-developers/workspace/salesforce-developers/overview


Headless Registration Flow: Send a Registration Request

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

To configure the Headless Registration Flow, start with a request to Headless Registration API. This
example walks you through sending a request with Postman.

For the Headless Registration Flow, we use these three examples from the headless Postman
collection.

• Registration - Initialize

• Registration - Authorize

• Registration - Token Exchange

1. From the Headless Identity API Demo folder in Postman, select Registration - Initialize.

Note the location of the POST request. It’s the
/services/auth/headless/init/registration  endpoint on your Experience
Cloud site.

2. To see the request body, click Body. The body for the initial registration request includes these parameters.

• userdata—Contains basic information about the user, including their first name, last name, email address, and username.

• customdata—Contains custom information that you want to collect in addition the data in the userdata  parameter. In
this example, it contains the user’s mobile phone number, street address, city, state, ZIP code, and privacy policy.

• password—The user’s password.

• recaptcha—A reCAPTCHA token. Because you configured your flow to require reCAPTCHA, this parameter is required.

• verificationmethod—The method you want to use to verify the user’s identity. They can use email or SMS. For this
example, we use email.

3. For the request body, update the parameter values that aren’t filled out already.

a. In the userdata  parameter, change userFirstName  and userLastName  to your own first name and last name.

b. For email, enter your own email address.

c. For username, enter a test username. You can use your email address for the username.

d. For recaptcha, enter a valid reCAPTCHA token from Google.

Generating this token is out of the scope of this guide. Google provides several examples, which you can find at
https://developers.google.com/recaptcha/docs/v3.

4. To send the request to Headless Registration API, click Send.
Salesforce receives the request and queues the user data to be processed later. It creates an identifier to track the request. If the
request is successful, Salesforce sends you a response that includes your verification method and request identifier. Here’s an example
response from Postman.

{
"status": "success",
"email": "testemail@example.com",
"identifier": "dg3o**********"

}

Because you configured email as the verification method, Salesforce also sends an email containing a one-time password (OTP) to
your email address.

5. Check your email for the OTP. You use it in the next step.

31

Headless Registration Flow: Send a Registration RequestUse Postman to Work with Headless Identity APIs

https://developers.google.com/recaptcha/docs/v3


Next, you send an authorization request to initialize the Authorization Code and Credentials Flow and log the user in.

Headless Registration Flow: Send an Authorization Request

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

After you send a registration request to Headless Registration API, initialize the Authorization Code
and Credentials Flow to complete the registration and log the user in. For this part of the flow, you
call Headless Login API.

1. From the Headless Identity API Demo folder in Postman, select Registration - Authorize.

Note the location of the POST request. It’s the /services/oauth2/authorize  endpoint
on your Experience Cloud site.

2. To see the headers, click Headers. The authorization request for registration includes these
headers and values.

• An Auth-Request-Type  header set to user-registration

• An Auth-Verification-Type  header set to email. This header specifies the
method that was used to verify the user’s identity—note that its value matches the verificationmethod  body parameter
from your initial registration request.

• An Authorization  header with the value Basic <base64Encoded identifier:otp>

3. Update the Authorization header.

a. In a text editor, paste the request ID from the registration response from the previous step.

b. After the request ID, enter a colon, and then paste the one-time password (OTP) that you received from Salesforce, such as
identifier:OTP.

c. Base64-encode the resulting value. For example, if you Base64-encode the string identifier:OTP, you get
aWRlbnRpZmllcjpPVFA=.

d. In Postman, paste this value into the Authorization header to replace <base64Encoded identifier:otp>.

4. To see the request body, click Body. The authorization request for registration includes these parameters, some of which you already
entered when you set your variables.

• response_type—The type of response you want to receive. For this flow, it’s set to code_credentials.

• client_id—The connected app consumer key

• redirect_uri—The connected app callback URL, which points to the OAuth 2.0 echo endpoint on your Experience Cloud
site

• scope—An optional comma-separated list of scopes. For this demo, you can leave it blank.

5. To send the request to Headless Login API, click Send.
Salesforce verifies the request ID and OTP and uses the request ID to retrieve the queued user data from the registration request.
Salesforce then calls the headless Apex registration handler that you configured in your Experience Cloud site. The registration
handler uses the queued data to create a user.

If the request is successful, Salesforce returns a 302 redirect to a preconfigured URL containing the authorization code. The echo
endpoint extracts the code and other parameters from the 302 redirect and returns them to your app in JSON format. Here’s an
example response in Postman.

{
"code": "aPrxCdr***************",
"sfdc_community_url": "https://MyExperienceCloudSite.my.site.com",

32

Headless Registration Flow: Send an Authorization RequestUse Postman to Work with Headless Identity APIs



"sfdc_community_id": "0DBXXXXXXXXXXXXXXXX"
}

Next, you exchange the authorization code for an access token.

Headless Registration Flow: Send a Token Request

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

After you receive the authorization code from Salesforce, exchange the code for an access token.
This example walks you through initializing the code exchange with Postman.

1. From the Headless Identity API Demo folder in Postman, select Registration - Token Exchange.

Note the location of the POST request. It’s the /services/oauth2/token  endpoint on
your Experience Cloud site.

2. To see the request body, click Body. The token request for registration includes these parameters.

• code—The authorization code from Salesforce

• grant_type—Defines the OAuth 2.0 grant type. Because the OAuth 2.0 authorization
code grant type is the foundation of this flow, this parameter is set to
authorization_code.

• client_id—The connected app consumer key

• redirect_uri—The connected app callback URL, which points to the OAuth 2.0 echo endpoint on your Experience Cloud
site

3. For the code, enter the authorization code that you received after sending the authorization request.

4. To send the request to the token endpoint, click Send.
Salesforce validates the token request and returns an access token to your app.

Headless Login: Send an Authorization Request

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

To configure headless login, set up the Authorization Code and Credentials Flow. This Postman
example walks you through the Authorization Code and Credentials Flow with a single-page app.

1. From the Headless Identity API Demo folder in Postman, select Username Password Login -
Authorize.

Note the location of the POST request. It’s the /services/oauth2/authorize  endpoint
on your Experience Cloud site.

2. To see the headers, click Headers. The authorization POST request includes these headers and
values.

• An Auth-Request-Type  header set to Named-User

• An Authorization  header with the value Basic <username:password>,
which contains the Base64-encoded username and password value

3. Update the Authorization header.

a. In a text editor, paste the username that you registered during headless registration.

b. After the username, enter a colon, and then paste the password that you registered, such as username:password.

33

Headless Registration Flow: Send a Token RequestUse Postman to Work with Headless Identity APIs



c. Base64-encode the resulting value. For example, if you Base64-encode the string username:password, you get
dXNlcm5hbWU6cGFzc3dvcmQ=.

d. In Postman, paste this value into the Authorization header to replace <username:password>.

4. To see the request body, click Body. The authorization request for registration includes these parameters.

• response_type—The type of response you want to receive. For this example, it’s set to code_credentials.

• client_id—The connected app consumer key

• redirect_uri—The connected app callback URL, which points to the OAuth 2.0 echo endpoint on your Experience Cloud
site

5. To send the request to Headless Login API, click Send.
Salesforce validates the user credentials and returns a 302 redirect to a preconfigured URL containing the authorization code.
Salesforce then automatically sends the redirect response to the redirect URL. The echo endpoint extracts the code and other
parameters from the 302 redirect and returns them to your app in JSON format. Here’s an example response in Postman.

{
"code": "aPrxCdr***************",
"sfdc_community_url": "https://MyExperienceCloudSite.my.site.com",
"sfdc_community_id": "0DBXXXXXXXXXXXXXXXX"

}

Headless Login: Send a Token Request

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

After you send the authorization request and get a code, exchange the code for an access token.

1. From the Headless Identity API Demo folder in Postman, select Username Password Login -
Token Exchange.

Note the location of the POST request. It’s the /services/oauth2/token  endpoint on
your Experience Cloud site.

2. To see the request body, click Body. The token request for headless login includes these
parameters.

• code—The authorization code from Salesforce.

• grant_type—Defines the OAuth 2.0 grant type. Because the OAuth 2.0 authorization
code grant type is the foundation of this flow, this parameter is set to
authorization_code.

• client_id—The connected app consumer key.

• redirect_uri—The connected app callback URL, which points to the OAuth 2.0 echo endpoint.

3. For the code, enter the authorization code that you received in your response from the previous step.

4. To send the request to the token endpoint, click Send.
Salesforce validates the token request and returns a response to your app. The response contains an access token that can be used
to access Salesforce APIs and other identifying parameters. Here’s an example access token response in Postman.

{
"access_token": "00DR**********",
"sfdc_community_url": "https://MyExperienceCloudSite.my.site.com",
"sfdc_community_id": "0DBXXXXXXXXXXXXXXXX",

34

Headless Login: Send a Token RequestUse Postman to Work with Headless Identity APIs



"signature": "CPk2JprUcxOmRHND71gJFn+SxyKe7jWqA1rQnFz9zZg=",
"token_format": "opaque",
"scope": "openid api",
"id_token": "eyJr**************",
"instance_url": "https://yourInstance.salesforce.com",
"id": "https://yourInstance.salesforce.com/id/00Dxxxxxxxxxxxx/005xxxxxxxxxxxx",
"token_type": "Bearer",
"issued_at": "1667600739962"

}

Headless Registration and Headless Login Flows: Get User Info

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Both headless registration and headless login are built on the Authorization Code and Credentials
Flow, where you exchange an authorization code for an access token. After your app receives the
access the token, the next step is processing it and creating the user session. This example walks
you through calling the User Info endpoint to confirm that the login was successful and to provide
the user information required for your app to create a session. You can use this example for both
headless registration and headless login.

1. From the Headless Identity API Demo folder in Postman, select Get User Info.

Note the location of the POST request. It’s the /services/oauth2/userinfo  endpoint
on your Experience Cloud site.

2. To see the headers, click Headers. The request for User Info includes these headers and values.

• An Authorization  header with the value Bearer <Token>

• A Content-Type  header set to application/json

3. For the Authorization  header, replace <token>  with the access token that you received during headless registration or
headless login, depending on which process you’re testing.

4. To send the request to the User Info endpoint, click Send.
If the login was successful, you get a response containing information about the user.

Headless Forgot Password Flow: Send a Password Reset Request

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

To initialize the Headless Forgot Password Flow, send a password reset request. This example walks
you through sending a request with Postman.

1. From the Headless Identity API Demo folder in Postman, select Forgot Password - Initialize.

Note the location of the POST request. It’s the
/services/auth/headless/forgot_password  endpoint on your Experience
Cloud site.

2. To see the request body, click Body. The password reset request includes these parameters.

• username—The user’s registered username

• recaptcha—A reCAPTCHA token. Because you configured your flow to require
reCAPTCHA , you must include this parameter.

3. Replace the body parameter values with your own information.

35

Headless Registration and Headless Login Flows: Get User
Info

Use Postman to Work with Headless Identity APIs



a. For username, enter the username that you registered and logged in with.

b. For recaptcha, enter a valid reCAPTCHA token from Google. You get this token when you implement reCAPTCHA on your
app.

4. To send the request to Headless Forgot Password API, click Send.
If the request is successful, Salesforce sends a one-time password (OTP) to your email address. Here’s an example response in Postman.
To avoid leaking user information, Salesforce always returns this response if reCAPTCHA validation succeeds, even if the user doesn’t
exist.

{
"status_code": "otp_sent"

}

5. Check your email to confirm that you received the OTP.

Next, use the OTP to finish changing your password.

Headless Forgot Password Flow: Change the User’s Password

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

After you receive a one-time password (OTP) from Salesforce, you can change your password with
a new request to the forgot password endpoint. This example walks you through changing the
password in Postman.

1. From the Headless Identity API Demo folder in Postman, select Forgot Password - Change
Password.

Note the location of the POST request. It’s the
/services/auth/headless/forgot_password  endpoint on your Experience
Cloud site, which is the same endpoint you used for the initial reset request.

2. To see the request body, click Body. The password reset request includes these parameters.

• username—The user’s registered username

• newpassword—The user’s new password.

• otp—The one-time password (OTP) sent to the user’s email

3. Replace the body parameter values with your own information.

a. For username, enter the username that you registered and logged in with.

b. For newpassword, enter a new password that includes uppercase and lowercase characters, a number, and a special character.

c. For otp, enter the OTP that you received from your initial request to the forgot password endpoint.

4. To send the request to Headless Forgot Password API, click Send.
Salesforce validates the OTP and finishes resetting the password. If the request is successful, Salesforce sends a success response.
Here’s an example response in Postman.

{
"status_code": "success"

}

36

Headless Forgot Password Flow: Change the User’s PasswordUse Postman to Work with Headless Identity APIs



Headlessly Revoke an Access Token

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

To log out of your headless app, you can revoke the access token. This example walks you through
headlessly revoking a token with Postman.

1. From the Headless Identity API Demo folder in Postman, select Revoke Token.

Note the location of the POST request. It’s the /services/oauth2/revoke  endpoint
on your Experience Cloud site, which is the same endpoint that you used for the initial reset
request.

2. To see the request body, click Body. The revocation request includes only a token  parameter.

3. For the token  parameter, replace <Token>  with an access token that you obtained during
headless registration or headless login.

4. To send the request to the revocation endpoint, click Send.
If the request is successful, you’re logged out.

37

Headlessly Revoke an Access TokenUse Postman to Work with Headless Identity APIs



CHAPTER 7 JavaScript Examples for Headless Identity
APIs

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Unlimited, and Developer
Editions

Postman is great for testing and learning how to set up headless
identity flows, but it doesn’t show you how your app can interact
with Headless Identity APIs. Use these high-level JavaScript
examples to understand how your app can call these APIs in a
real-world implementation. Like the rest of this guide, the examples
here apply to single-page apps, also known as public clients. These
examples don’t show you how to use these flows with client-server
apps or private clients.

These examples are for demonstration only and aren’t meant to be
used in production. Always test code before deploying it to a
production environment.

In this chapter ...

• Headless Login
JavaScript Examples

• Headless
Registration
JavaScript Examples

• Headless Forgot
Password JavaScript
Examples

• Building a Native
Single Sign-On

Unlike the Postman examples, these examples use the Proof Key for Code Exchange (PKCE) extension,
which improves security. We strongly recommend that you always use PKCE when configuring these
flows with public clients.

Experience JavaScript
Examples

• Getting User Info
JavaScript Examples The examples present a simplified overview of each headless flow for public clients. For in-depth

descriptions of the flows for both public and private clients, see these resources in Salesforce Help.

• Headless Identity APIs for Customers and Partners

• Authorization Code and Credentials Flow for Public Clients

• Authorization Code and Credentials Flow for Private Clients

• Headless Registration Flow for Public Clients

• Headless Registration Flow for Private Clients

• Headless Forgot Password Flow—You can use this resource for public and private clients.

38

https://help.salesforce.com/s/articleView?id=sf.headless_identity_customers_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_authcodecreds_singlepageapp.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_authorization_code_credentials_flow.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_headless_registration_public_clients.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_headless_registration_private_clients.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.remoteaccess_headless_forgot_password_flow.htm&language=en_US


Headless Login JavaScript Examples

Use these high-level examples to understand how to implement headless login for a single-page app.

Authorization Request
The Authorization Code and Credentials Flow enables users to log in with a username and password. A core concept of this flow is
making an authorization request to Headless Login API. This client-side JavaScript example shows you how to send an authorization
request.

// Make a POST Request to Authorize
client = new XMLHttpRequest();
client.open("POST", expDomain + authorizationURI, true);
client.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

//Headers for the Username and Password Code and Cred Flow
client.setRequestHeader("Auth-Request-Type", "Named-User");
client.setRequestHeader("Authorization", "Basic " + btoa(username + ':' + password));

//Request Body
requestBody = "response_type=code_credentials&client_id=" + clientId + "&redirect_uri="
+ callbackURL;

// Add State
if (state != null) {
requestBody = requestBody + '&state=' + storeState(state);

}

// Add Scopes
if (scopes != null) {
requestBody = requestBody + '&scope=' + scopes;

}

// PKCE Enabled
requestBody = requestBody + "&code_challenge=" + generateCodeChallenge();

// Send the Authorization Request
client.send(requestBody);

// Handle the Authorization Response
client.onreadystatechange = function() {
if(this.readyState == 4) {
if (this.status == 200) {

//Auth Code has been returned, perform token exchange
tokenExchange(JSON.parse(client.response), null, authorizeType, uniqueVisitorId);

} else {
onError("An Error Occured during Authorize", client.response);

}
}

}

39

Headless Login JavaScript ExamplesJavaScript Examples for Headless Identity APIs



Token Exchange
After receiving the authorization request, Salesforce validates the username and password and returns an authorization code. The app
then calls the token endpoint to exchange the code for an access token. This client-side JavaScript example shows the token exchange.

function tokenExchange(response, codeChallenge, authorizeType, uniqueVisitorId) {
// Get Values from Code Response
code = response.code;
stateIdentifier = response.state;
baseURL = response.sfdc_community_url;

state = null;
// validate state if it was present
if (stateIdentifier != null) {
state = getState(stateIdentifier, true);
if (state == null) {
onError("A state param was sent back but no state was found");
return;
}

}

// Create Client
client = new XMLHttpRequest();
client.open("POST", expDomain + tokenURI, true);
client.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

// Build Request Body
requestBody = "code=" + code + "&grant_type=authorization_code&client_id=" + _this.clientId
+ "&redirect_uri=" + _this.callbackURL;

// Add PKCE
requestBody = requestBody + "&code_verifier=" + generateCodeVerifier();

// Send Request
client.send(requestBody);
client.onreadystatechange = function() {
if(this.readyState == 4) {
if (this.status == 200) {
//Access Tokens have been returned
console.log("Code and Credntial Flow, token response: ");
console.log(JSON.parse(client.response));

} else {
onError("An error occured during token exchange for " + authorizeType,

client.response)
}

}
}

}

The result is an access token that you can use to request user information and establish the user’s session.

Headless Registration JavaScript Examples

Use these high-level examples to understand how to implement headless registration for a single-page app.

40

Headless Registration JavaScript ExamplesJavaScript Examples for Headless Identity APIs



Authorization Request
The authorization request for headless registration is similar to the request for headless login, but instead of passing the username and
password in the header, you pass in the request identifier and OTP. The request also contains a few additional headers that aren’t required
for headless login. Here’s an example.

// Make a POST Request to Authorize
client = new XMLHttpRequest();
client.open("POST", expDomain + authorizationURI, true);
client.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

//Headers for registration variation of the Code and Credentials flow
client.setRequestHeader("Auth-Request-Type", "user-registration");
client.setRequestHeader("Auth-Verification-Type", verificationMethod);
//Request identifier is returned from the /init/registration endpoint, and

requestCredential is the OTP sent in the email or SMS.
client.setRequestHeader("Authorization", "Basic " + btoa(requestIdentifier + ':' +

requestCredential));

//Request Body
requestBody = "response_type=code_credentials&client_id=" + clientId + "&redirect_uri="
+ callbackURL;

// Add State
if (state != null) {
requestBody = requestBody + '&state=' + storeState(state);

}

// Add Scopes
if (scopes != null) {
requestBody = requestBody + '&scope=' + scopes;

}

// PKCE Enabled
requestBody = requestBody + "&code_challenge=" + generateCodeChallenge();

// Send the Authorization Request
client.send(requestBody);

// Handle the Authorization Response
client.onreadystatechange = function() {
if(this.readyState == 4) {
if (this.status == 200) {
//Auth Code has been returned, perform token exchange
tokenExchange(JSON.parse(client.response), null, authorizeType, uniqueVisitorId);

} else {
onError("An Error Occured during Authorize", client.response);
}

}
}

Salesforce validates the request identifier and OTP and registers the user by calling the headless registration handler. When the user is
created, Salesforce returns an authorization code response. You use a callback endpoint to extract the code and other parameters and
return them to your app.

41

Headless Registration JavaScript ExamplesJavaScript Examples for Headless Identity APIs



Token Exchange
When your app receives the authorization code, it exchanges the code for an access token. This part of the flow is identical to the token
exchange in headless login.

function tokenExchange(response, codeChallenge, authorizeType, uniqueVisitorId) {
// Get Values from Code Response
code = response.code;
stateIdentifier = response.state;
baseURL = response.sfdc_community_url;

state = null;
// validate state if it was present
if (stateIdentifier != null) {
state = getState(stateIdentifier, true);
if (state == null) {
onError("A state param was sent back but no state was found");
return;

}
}

// Create Client
client = new XMLHttpRequest();
client.open("POST", expDomain + tokenURI, true);
client.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

// Build Request Body
requestBody = "code=" + code + "&grant_type=authorization_code&client_id=" + _this.clientId
+ "&redirect_uri=" + _this.callbackURL;

// Add PKCE
requestBody = requestBody + "&code_verifier=" + generateCodeVerifier();

// Send Request
client.send(requestBody);
client.onreadystatechange = function() {
if(this.readyState == 4) {
if (this.status == 200) {

//Access Tokens have been returned
console.log("Code and Credntial Flow, token response: ");
console.log(JSON.parse(client.response));

} else {
onError("An error occured during token exchange for " + authorizeType,

client.response)
}

}
}

}

The result is an access token that you can use to request user information and establish the user’s session.

Headless Forgot Password JavaScript Examples

Use these high-level examples to understand how to implement the Headless Forgot Password Flow for a single-page app.

42

Headless Forgot Password JavaScript ExamplesJavaScript Examples for Headless Identity APIs



The Headless Forgot Password Flow contains two requests to the same endpoint. You initialize the flow with a request to Headless
Forgot Password API. Here’s a function that you can call to initialize the password reset.

//This is the function call to initialize the forgot password request
forgotPasswordRequest(username, null, null, recapchaToken, forgotPasswordProcess.init,
callbackFunction);

This request results in Salesforce sending the user a one-time password (OTP).

For the second request, you pass the username, new password, and OTP to Headless Forgot Password API. Here’s a function that you
can call to complete the password change.

//This is the function call to complete the forgot password request
forgotPasswordRequest(username, password, otp, null, forgotPasswordProcess.changePassword,
callbackFunction)

Because both requests call the same endpoint, you can use one function for both calls.

function forgotPasswordRequest(username, password, otp, recapchaToken,
forgotPasswordProcessStep, callbackFunction) {

client = new XMLHttpRequest();
client.open("POST", expDomain + forgotPasswordURI, true);
client.setRequestHeader("Content-Type", "application/json");

requestBody = {
username: username,
newpassword: password,
otp: otp,
recaptcha: recapchaToken
}

client.send(JSON.stringify(requestBody));

client.onreadystatechange = function() {
if(this.readyState == 4) {
if (this.status == 200) {
callbackFunction(JSON.parse(client.response), username, forgotPasswordProcessStep)

} else {
this.onError("An Error Occured during Forgot Password Step: " +

forgotPasswordProcessStep, client.response);
}

}
}

}

Building a Native Single Sign-On Experience JavaScript Examples

Use these high-level examples to understand how to create a native single sign-on (SSO) experience for a single-page app. This
configuration uses a redirect-based flow to make it seem like your app natively integrates with an SSO provider. It isn’t technically
headless, but the user experience is the same as the headless flows.

43

Building a Native Single Sign-On Experience JavaScript
Examples

JavaScript Examples for Headless Identity APIs



Constructing an Authorization URL
A key part of this configuration is the sso-provider  parameter. You use this parameter to identify the SSO provider configured in
Salesforce, whether it’s an authentication provider or a SAML identity provider. During the redirect-based flow, Salesforce checks for this
parameter and redirects to the SSO provider so the user can log in.

To use the sso-provider  parameter with a redirect-based flow, you must first construct an authorization URL. This example
constructs the URL and redirects the browser to the Experience Cloud site.

//Setup the Authorization URL
redirectURL = expDomain + _authorizationURI;

//Add Params to the Authorization URL
redirectURL = redirectURL + '?client_id=' + _this.clientId;
redirectURL = redirectURL + '&redirect_uri=' + _this.ssoCallbackURL;
redirectURL = redirectURL + '&state=' + storeState(state);
redirectURL = redirectURL + '&response_type=code';

//Specificy the SSO Provider
redirectURL = redirectURL + '&sso_provider=' + ssoProviderDevName;

//Add Scopes
if (scopes!= null) {

redirectURL = redirectURL + '&scopes=' + scopes;
}

//Add Code Challenge
requestBody = requestBody + "&code_challenge=" + generateCodeChallenge();

//Redirect the Browser
window.location.href = redirectURL;

The browser is redirected to the Experience Cloud site briefly, so the user never sees the Experience Cloud login page. The browser then
automatically redirects to the SSO provider and loads the provider’s login page. The user logs in with their credentials from the provider.
The browser is again briefly redirected to Salesforce before being automatically redirected to your app.

Token Exchange
The app must process the redirect to get the authorization code.

// Get URL Params from the callback URL
queryString = window.location.search;
urlParams = new URLSearchParams(queryString);
console.log('Loading Callback Params: ' + urlParams);

//Create the Code Response from the URL params
codeResponse = new Object;
codeResponse.code = urlParams.get('code');
codeResponse.state = urlParams.get('state');
codeResponse.sfdc_community_url = urlParams.get('sfdc_community_url');

// Call the common token exhcange method.
tokenExchange(codeResponse, getCodeChallenge(), authorizationType.SSOLogin, null);

44

Building a Native Single Sign-On Experience JavaScript
Examples

JavaScript Examples for Headless Identity APIs



In the last line, this example calls a token exchange function. Here’s an example of this function.

function tokenExchange(response, codeChallenge, authorizeType, uniqueVisitorId) {
// Get Values from Code Response
code = response.code;
stateIdentifier = response.state;
baseURL = response.sfdc_community_url;

state = null;
// validate state if it was present
if (stateIdentifier != null) {
state = getState(stateIdentifier, true);
if (state == null) {
onError("A state param was sent back but no state was found");
return;

}
}

// Create Client
client = new XMLHttpRequest();
client.open("POST", expDomain + tokenURI, true);
client.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

// Build Request Body
requestBody = "code=" + code + "&grant_type=authorization_code&client_id=" + _this.clientId
+ "&redirect_uri=" + _this.callbackURL;

// Add PKCE
requestBody = requestBody + "&code_verifier=" + generateCodeVerifier();

// Send Request
client.send(requestBody);
client.onreadystatechange = function() {
if(this.readyState == 4) {
if (this.status == 200) {

//Access Tokens have been returned
console.log("Code and Credntial Flow, token response: ");
console.log(JSON.parse(client.response));

} else {
onError("An error occured during token exchange for " + authorizeType,

client.response)
}

}
}

}

Getting User Info JavaScript Examples

When you get an access token via headless registration or headless login, you can retrieve user information with a request to the User
Info endpoint. Use this example to understand how.

45

Getting User Info JavaScript ExamplesJavaScript Examples for Headless Identity APIs



In this example, the access token is passed in an Authorization Bearer header.

function getUserInfo(accessToken) {
client = new XMLHttpRequest();
client.open("GET", expDomain + userInfoURI, true);
client.setRequestHeader("Content-Type", "application/json");
client.setRequestHeader("Authorization", 'Bearer ' + accessToken);
client.send();

client.onreadystatechange = function() {
if(this.readyState == 4) {

if (this.status == 200) {
//User Info response
console.log(client.response);

} else {
console.log(client.response)
onError("An Error Occured during Forgot Password Step: " +

forgotPasswordProcessStep, client.response);
}

}
}

}

46

Getting User Info JavaScript ExamplesJavaScript Examples for Headless Identity APIs


	What Is Headless Identity?
	About This Guide
	Headless Login Overview
	Headless Registration Overview
	Headless Forgot Password Overview
	Building Native Single Sign-On Experiences

	Complete Prerequisites for Headless Identity
	Create a Role to Manage Headless Identity Features
	Assign the Headless Identity Admin Role to Yourself
	Set Up a Demo Profile for End Users
	Set Up Cross-Origin Resource Sharing (CORS)
	Create an Account for End Users
	Enable the Authorization Code and Credentials Flow
	Implement reCAPTCHA on a Web App

	Set Up an Authentication Provider for Single Sign-On
	Create an Authentication Provider Registration Handler
	Configure a Google Authentication Provider

	Set Up an Experience Cloud Site for Headless Identity
	Enable Digital Experiences and Create Your Site
	Configure Experience Cloud Site Membership
	Create a Headless Registration Handler
	Configure Headless Identity Settings in Experience Cloud
	Activate Your Site

	Set Up a Connected App for Headless Identity
	Create an OAuth-Enabled Connected App
	Configure Connected App Policies
	Get Your Consumer Key

	Use Postman to Work with Headless Identity APIs
	Set Up Your Postman Workspace
	Headless Registration Flow: Send a Registration Request
	Headless Registration Flow: Send an Authorization Request
	Headless Registration Flow: Send a Token Request
	Headless Login: Send an Authorization Request
	Headless Login: Send a Token Request
	Headless Registration and Headless Login Flows: Get User Info
	Headless Forgot Password Flow: Send a Password Reset Request
	Headless Forgot Password Flow: Change the User’s Password
	Headlessly Revoke an Access Token

	JavaScript Examples for Headless Identity APIs
	Headless Login JavaScript Examples
	Headless Registration JavaScript Examples
	Headless Forgot Password JavaScript Examples
	Building a Native Single Sign-On Experience JavaScript Examples
	Getting User Info JavaScript Examples


