
Designing Record Access for
Enterprise Scale

Salesforce, Summer ’25

Last updated: July 11, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

DESIGNING RECORD ACCESS FOR ENTERPRISE SCALE 1
Introduction . 1
Group Membership Operations and Sharing Recalculation . 1

Ownership Data Skew . 2
Group Membership Locking . 2
Takeaway: Tuning Group Membership for Performance . 5

Object Relationships, Bulk Loading, and Sharing Recalculation . 6
Implicit Sharing . 6
Parent-Child Data Skew . 8
Record-Level Locking . 8
Takeaway: Tuning Data Relationships and Updates for Performance 9

Tools for Large-Scale Realignments . 9
Deferred Sharing Maintenance . 9
Takeaway: Making Realignment Smoother . 10

DESIGNING RECORD ACCESS FOR ENTERPRISE SCALE

Introduction

This guide introduces advanced topics in user record access, and provides recommendations on how to configure your organization to
optimize access control performance.

In particular, this guide focuses on the effects of group maintenance on sharing performance and the built-in sharing behaviors that
support Salesforce applications. It also:

• Addresses how to avoid common configuration traps that can drag down the performance of your record-level access system

• Introduces some key platform features that can help you speed up large-scale sharing realignments

This guide is intended for expert architects working on Salesforce implementations with complex record access requirements or large-scale
sales organization realignments. However, the sharing best practices covered can be applied to orgs of any size.

This guide assumes expertise in Salesforce administration and security, and knowledge of SQL and relational database concepts. It also
assumes a familiarity with the content in Record-Level Access: Under the Hood, which explains the inner workings of the flexible and
powerful Salesforce record access infrastructure.

Group Membership Operations and Sharing Recalculation

The Salesforce role hierarchy, public groups, and territories are closely connected to sharing rules and other security features. Because
of these relationships, seemingly simple changes to groups and group membership can sometimes involve substantial recalculations
of users' access rights.

For example, when an administrator moves a user from one branch of the hierarchy to another, Salesforce performs these actions to
ensure that other users have correct access to data owned by that relocated user.

• If the user:

– Is the first member in his or her new role to own any data, Salesforce adds or removes access to the user’s data for people who
are above the user’s new or old role in the hierarchy.

– Owns any customer or partner accounts, Salesforce removes any child customer or partner account roles from the user’s original
role and adds them as children to the user’s new role.

Note:

• Salesforce also adjusts implicit shares that provide access in the hierarchy to records owned by or shared to customer
or partner users. See Implicit Sharing.

• Salesforce must perform these tasks for every customer or partner account that the user owns.

• Salesforce also recalculates all sharing rules that include the user’s old or new role in the source group. It removes all of the user’s
records from the scope of sharing rules where the old role is the source group and adds those records to the scope of rules where
the new role is the source.

Note: If the user owns customer or partner accounts, and there are sharing rules that use customer or partner account roles
as the source group, Salesforce sometimes must recalculate those rules. Some sharing rules might no longer be valid given
the user’s new location in the hierarchy, in which case an administrator might need to modify or delete them.

1

https://developer.salesforce.com/docs/atlas.en-us.256.0.salesforce_record_access_under_the_hood.meta/salesforce_record_access_under_the_hood/uth_intro.htm

During the user’s move, the managers in the branch above the user’s old role lose access to all the data that the user owns, as well as
to child records shared through the managers’ role settings. Managers in the branch above the user’s new role gain access to the user’s
accounts and to child records according to their own role settings.

From this example, you can see that a lot can happen under the hood when an administrator takes what looks like a simple action, such
as changing the role of a user. We chose this operation to illustrate all the possible types of sharing maintenance, but other common
group and data updates can have a similar impact.

Moving a role to another branch in the hierarchy
One benefit to moving a whole role is that any customer or partner accounts simply move along with their parent role, and Salesforce
doesn't have to change the related sharing. On the other hand, Salesforce must do all of the work involved in moving a single user
for all users in the role being moved and for all of those users' data.

Changing the owner of a customer or partner account
The effort required for what looks like a simple data update—changing the name of the user in the Account Owner field—can be
surprising. When the old and new owners are in different roles, Salesforce isn’t only moving the customer and partner account roles
to a new parent role but also adjusting the sharing for all the data associated with the customer or partner account.

Ownership Data Skew
Even with all of the work that Salesforce does to maintain correct access, most customers never encounter performance issues unless
they’re performing updates that affect many users or large amounts of data. However, there are certain common configurations that
greatly increase the probability of performance problems, such as ownership data skew.

Ownership data skew is when a single user owns more than 10,000 records of an object. This situation commonly occurs when
concentrating ownership of data so that a single user or queue, or all the members of a single role or public group, owns most or all
records for a particular object.

For example, a customer can assign all unassigned leads to a dummy user. This practice can seem like a convenient way to park unused
data. However, it can cause performance issues if those users are moved around the hierarchy, or moved in to or out of a role or group
that is the source group for a sharing rule. In both cases, Salesforce must adjust a very large number of entries in the sharing tables,
which can lead to a long-running recalculation of access rights.

Distributing ownership of records across a greater number of users decreases the chance of long-running updates occurring.

If you do have a compelling reason for assigning ownership to a small number of users, you can minimize possible performance impacts
by not assigning the users to a role.

Tip: You can take the same approach when dealing with a large amount of data that is owned by or visible to the users under a
single partner or customer account—changing the owner of that account or moving those users in the hierarchy requires the
system to recalculate all the sharing and inheritance for all the data under the account.

If the users must have a role to share data, we recommend that you:

• Place them in a separate role at the top of the hierarchy. (Note that this user inherits access to all data owned by or shared with users
below them in the hierarchy).

• Don't move them out of that top-level role to avoid triggering sharing recalculations.

• Keep them out of public groups that can be used as the source for sharing rules.

Group Membership Locking
When updating the role hierarchy or group membership in Setup or through the API, customers can occasionally receive a “could not
acquire lock” or "Group membership operation already in progress" error and have to repeat the operation. This error occurs because
the sharing system locks the tables holding group membership information during updates to prevent incompatible simultaneous
updates or timing issues, both of which could lead to inaccurate data about users’ access rights.

2

Ownership Data SkewDesigning Record Access for Enterprise Scale

Typically, these locks are held only very briefly, so most customers never see a lock conflict error. In some scenarios—such as a change
in role triggering a sharing rule recalculation—locks can be held for a longer time, and conflicts can occur.

Customers who experience these locking errors are typically executing large-scale data loads or integrations with other internal systems
that are making changes to role and group structure, user assignments to roles and groups, or both. When these processes are
running—and an administrator tries to change a user’s role, or the customer tries to provision a new external user—one of these
simultaneous operations might be unable to secure the lock it requires. The most likely time for this failure to occur is during periodic
organizational realignment events, such as end-of-year or end-of-quarter processing, where many account assignments and user roles
are changing.

Customers can lessen the chance of locking errors by:

• Scheduling separate group maintenance processes carefully so they don’t overlap

• Implementing retry logic in integrations and other automated group maintenance processes to recover from a failure to acquire a
lock

Note: You can also receive locking errors if you’re updating the role hierarchy or group membership while running other
deployments that also update group membership information or have Apex tests that do so. If you receive locking errors, wait for
the deployment operation or Apex tests to finish.

By default, granular locking is enabled, which allows some group maintenance operations to proceed simultaneously if there’s no
hierarchical or other relationship between the roles or groups involved in the updates. Administrators can adjust their maintenance
processes and integration code to take advantage of this limited concurrency to process large-scale updates faster, all while still avoiding
locking errors.

The key advantages of granular locking are that:

• Groups that are in separate hierarchies can be manipulated concurrently.

• Public groups and roles that don't include territories aren't blocked by territory operations.

• Users can be added concurrently to territories and public groups.

• User provisioning can occur in parallel.

– External user creation requires locks only if new external roles are being created.

– Provisioning new external users in existing accounts occurs concurrently.

• A single-long running process, such as a role delete, blocks only a small subset of operations.

This table lists all the operations that can occur in parallel. Note that certain operations, such as reparenting (moving roles within the
role hierarchy), still block almost all other group updates.

Can be Performed Concurrently with...Group Operation

Role creation • User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

• Addition of user to territory

• User provisioning2

Role deletion • Territory reparenting

• Territory deletion

3

Group Membership LockingDesigning Record Access for Enterprise Scale

Can be Performed Concurrently with...Group Operation

• Territory insertion

• Removal of user from territory

• Addition of user to territory

Territory creationRole reparenting (includes change of customer or partner account
owner)

Adding user to territory • Role deletion

• Role insertion

• Territory creation

• Addition of user to territory

• User provisioning3

Removing user from territory • Role deletion

• Role insertion

• Territory creation

• User provisioning3

Territory reparenting • Role deletion

• Role insertion

• User provisioning3

Territory deletion • Role deletion

• Role insertion

• User provisioning3

Territory creation • Role reparenting

• Role deletion

• Role insertion

• User role change1

• Addition of user to territory

• Removal of user from territory

• User provisioning3

Provisioning internal user with an existing role • Role insertion

• User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

4

Group Membership LockingDesigning Record Access for Enterprise Scale

Can be Performed Concurrently with...Group Operation

• Addition of user to territory

• User provisioning3

Changing user role (User must not own any customer or partner
accounts.)

• Role insertion

• Territory insertion

• User provisioning3

Provisioning first customer or partner user under an account • User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

• Addition of user to territory

• User provisioning2

Creating second customer or partner user under an account • Role insertion

• User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

• Addition of user to territory

• User provisioning3

Any group membership operationProvisioning high-volume Experience Cloud site user

Territory creationChanging customer or partner account owner

Territory creationChanging role of a user who owns a customer or partner account

1 The user must not own any customer or partner accounts.
2 Provisioning standard user or external user in an existing role
3 Provisioning any standard or external user, including the first customer or partner user under an account

Takeaway: Tuning Group Membership for Performance
Understand the performance characteristics of the various group maintenance operations that you’re performing. Always test substantial
configuration changes in a full copy sandbox that's been recently refreshed so you know what to expect in production.

Here are some specific suggestions.

• Identify user and group updates that are complex, such as user role and customer or partner account ownership changes, or updates
that involve a large amount of associated data. Allow for additional time to process these changes.

5

Takeaway: Tuning Group Membership for PerformanceDesigning Record Access for Enterprise Scale

• When making changes to the hierarchy, process changes to the bottom (leaf) nodes first, then move upward to avoid duplicate
processing.

• Limit the number of records of an object owned by a single user to 10,000.

• Tune your updates for maximum throughput by experimenting with batch sizes and using the bulk API, where possible.

• Remove redundant paths of access, such as sharing rules that provide access to people who already have it through the hierarchy.

• Schedule large group membership operations during off-peak hours.

• Run batch operations in serial mode.

Object Relationships, Bulk Loading, and Sharing Recalculation

Choices that you make when designing your data models can have a major impact on sharing performance when data is loaded, updated,
or transferred between users. Understanding how Salesforce handles the relationships between objects and protects data integrity
during updates can help you optimize the performance of data operations.

Implicit Sharing

The sharing capabilities of the Salesforce Platform include a wide variety of features that you can use to explicitly grant access to
data for individuals and groups. In addition to these more familiar features, there are a number of sharing behaviors that are built
into Salesforce. This kind of sharing is called implicit because it’s defined and maintained by the system to support collaboration
among members of sales teams, customer service representatives, and clients or customers.

Parent-Child Data Skew

Implicit sharing behaviors simplify the task of managing security for users. They handle the most common data access use cases
without requiring additional roles, groups, and sharing rules to be configured. However, like data ownership skew, some parent-child
configurations can slow the performance of large data loads and updates, and sometimes even of single-record operations.

Record-Level Locking

Many customers regularly upload large amounts of data to the service, and maintain integrations with other systems that update
their data in scheduled batches or continuously in real time. Like other transactional systems, Salesforce employs record-level database
locking to preserve the integrity of data during these updates.

Takeaway: Tuning Data Relationships and Updates for Performance

Understand the performance characteristics of the various maintenance operations that you’re performing and always test substantial
data uploads and changes to object relationships in a full copy sandbox that's been recently refreshed so you know what to expect.

Implicit Sharing
The sharing capabilities of the Salesforce Platform include a wide variety of features that you can use to explicitly grant access to data
for individuals and groups. In addition to these more familiar features, there are a number of sharing behaviors that are built into Salesforce.
This kind of sharing is called implicit because it’s defined and maintained by the system to support collaboration among members of
sales teams, customer service representatives, and clients or customers.

This table describes the different kinds of implicit sharing built into Salesforce applications and the record access that each kind provides.

ExampleDetailsProvidesType of Sharing

Henry is a Standard User with
access to an opportunity

Read-only access to the parent
account for a user with access to

Parent • Not used when sharing on
the child is controlled by its
parenta child case, contact, or

opportunity
through an owner-based sharing
rule. He can view data about the

6

Object Relationships, Bulk Loading, and Sharing RecalculationDesigning Record Access for Enterprise Scale

ExampleDetailsProvidesType of Sharing

opportunity’s parent account,
but he can’t edit the account’s
data.

• Expensive to maintain with
many account children

• When a user loses access to
a child, Salesforce must
check all other children to
see if it can delete the
implicit parent.

• Not granted by the View All
permission on the child
object

Henry is a Standard User who
owns an account. The Salesforce

Access to child case, contact, or
opportunity records for the
owner of the parent account

Child • Not used when sharing on
the child is controlled by its
parent admin set up Henry’s role so that

assigned users can view all
• Controlled by child access

settings for the account
owner’s role

opportunities, cases, and
contacts associated with
accounts they own. Henry can

• Supports account sharing
rules that grant child record
access

therefore view data for all of the
child opportunities, cases, and
contacts for the account he
owns, but he can’t edit this data.• Supports account team

access based on team
settings

• When a user loses access to
the parent, Salesforce
removes the user’s access to
all children records

• Not granted by the View All
permission on the parent
object

Sarah is a Customer Community
Plus User added under the

Account and associated contacts
shared with the lowest role

Access to a customer or partner
account and all associated

Experience Cloud Site

“Acme” account. Sarah has Readunder the customer or partner
account

contacts for all customer or
partner users under that
account. Access to a case for the

access to the “Acme” account as
well as Read access to all the

customer or partner user that’s
the contact on the case.

other contacts related to the
account.

For your site, a sharing set is
created to grant high-volume

All members of the sharing set’s
share group gain full access to

Full access to data owned by
high-volume users associated

High Volume1

users on the same account Readevery record owned by everywith a sharing set for members
of the sharing set's share group Only access to each other’s

cases. Internal users added to
high-volume user associated
with that sharing set

the sharing set’s share group
have full access to these cases.

7

Implicit SharingDesigning Record Access for Enterprise Scale

ExampleDetailsProvidesType of Sharing

For your site, the same sharing
set for cases mentioned in the

Maintains the ability to see the
parent account when users are

Read only access to the parent
account of records shared

High Volume Parent

previous example automaticallygiven access to account children
owned by high-volume users

through a sharing set's share
group for members of the share
group

gives the internal users added
to the share group read access
to the cases’ parent accounts.

1To allow external users to scale into the millions, high-volume users have a streamlined sharing model that doesn’t rely on roles or
groups, and functions similarly to calendar events and activities. High-volume users include the Customer Community, High Volume
Customer Portal, and Authenticated Website license types.

Parent-Child Data Skew
Implicit sharing behaviors simplify the task of managing security for users. They handle the most common data access use cases without
requiring additional roles, groups, and sharing rules to be configured. However, like data ownership skew, some parent-child configurations
can slow the performance of large data loads and updates, and sometimes even of single-record operations.

A common configuration that can lead to poor performance is the association of a large number of child records (10,000 or more) with
a single parent account. For example, a customer can have tens or hundreds of thousands of contacts generated by marketing campaigns
or purchased from mailing lists—without any association to formal business accounts. If a contact is required to have an associated
account, what's best for an administrator to do? It can be convenient to park all those unallocated contacts under a single dummy
account until their real business value and relationship can be determined.

While this option seems reasonable, this kind of parent-child data skew can cause serious performance problems in the maintenance of
implicit sharing.

For example, assume that you have 300,000 contacts all under the same account. A user with access to one of these contacts also has
a parent implicit share in the account sharing table that gives the user access to that account. Now what happens if that user loses access
to the contact?

In order to determine whether to remove the user's sharing to the account, Salesforce must scan all of the other 299,999 contacts to
ensure that the user doesn’t have access to them either. This practice can become expensive if Salesforce is processing many visibility
changes on these highly skewed accounts.

Record-Level Locking
Many customers regularly upload large amounts of data to the service, and maintain integrations with other systems that update their
data in scheduled batches or continuously in real time. Like other transactional systems, Salesforce employs record-level database locking
to preserve the integrity of data during these updates.

The locks are held very briefly and don’t present the same performance risks as some of the other organization locks. However, they can
still cause updates to fail, so you must still be careful not to run updates to the same collections of records in multiple threads.

In addition to taking this standard precaution, developers and administrators should know that for objects with a master-detail relationship,
when you update child records, the system locks the parent and the child records to prevent inconsistencies. For example, updating a
child record whose parent has just been deleted in another thread. When objects being processed have a master-detail relationship,
two situations in particular pose a risk of producing locking errors.

• Updates to parent records and their children are being processed simultaneously in separate threads.

• Updates to child records that have the same parent records are being processed simultaneously in separate threads.

8

Parent-Child Data SkewDesigning Record Access for Enterprise Scale

Because Salesforce holds these locks very briefly, customers who experience a small number of locking errors might be able to handle
the problem by adding retry logic to their integration code. If you experience frequent locking from integrations and mass updates,
sequence batches so that the same records aren’t updated in multiple threads simultaneously.

Takeaway: Tuning Data Relationships and Updates for Performance
Understand the performance characteristics of the various maintenance operations that you’re performing and always test substantial
data uploads and changes to object relationships in a full copy sandbox that's been recently refreshed so you know what to expect.

Here are some specific suggestions.

• Use a Public Read Only or Read/Write organization-wide default sharing model for all non-confidential data.

• To avoid creating parent implicit shares, configure child objects to be Controlled by Parent wherever this configuration meets security
requirements.

• Configure parent-child relationships with no more than 10,000 children to one parent record.

• If you encounter only occasional locking errors, see if the addition of retry logic is sufficient to solve the problem.

• Sequence operations on parent and child objects by ParentID and ensure that different threads are operating on unique sets
of records.

• Tune your updates for maximum throughput by working with batch sizes, timeout values, Bulk API 2.0, and other
performance-optimizing techniques.

Tools for Large-Scale Realignments

The most demanding maintenance activity that customers perform is a large-scale realignment of sales teams, territories, and account
assignments. Whether you do realignments annually, quarterly, or more frequently, the realignments typically involve extensive changes
to an organization’s structure and updates to large amounts of data, both of which result in many changes to record access.

At the same time, sales realignments are very time sensitive—failing to complete them quickly can adversely affect revenue. Optimizing
the performance of sales realignments is naturally a key concern of many enterprise administrators, and Salesforce provides features to
help with the planning and execution of realignments.

Deferred Sharing Maintenance

Performing a large number of configuration changes can lead to long sharing rule evaluations or timeouts. To avoid these issues,
you can suspend sharing calculations, specifically for sharing rules and group membership, then resume calculations during an
organization's maintenance period.

Takeaway: Making Realignment Smoother

Understand the pros and cons of the performance tools, and make sure they fit well with the process and timing of your realignment.
Always test these tools and new realignment processes in a full copy sandbox that's been recently refreshed so you know what to
expect.

Deferred Sharing Maintenance
Performing a large number of configuration changes can lead to long sharing rule evaluations or timeouts. To avoid these issues, you
can suspend sharing calculations, specifically for sharing rules and group membership, then resume calculations during an organization's
maintenance period.

In addition to all the technical concerns administrators must manage to perform a major realignment, they must also coordinate closely
with the business to ensure that end users aren’t adversely affected when access rights are being adjusted. In an enterprise environment

9

Takeaway: Tuning Data Relationships and Updates for
Performance

Designing Record Access for Enterprise Scale

in which multiple systems are continually processing updates, it can be difficult to schedule an organization or sharing rule change that
can take substantial time to complete. Deferred sharing maintenance can help with increasing the predictability of these kinds of updates.

Here’s how deferred sharing maintenance works.

1. Based on requests from the business, an administrator identifies a number of changes to the role hierarchy and group membership,
or updates to sharing rules.

2. Given best estimates of the remaining overall work, the administrator negotiates a maintenance window for completing the
processing.

Tip: This window should be modeled in a full copy sandbox to get the best estimate possible.

3. Instead of processing each separate update and waiting for it to complete, the administrator prepares all the information required
to perform all updates ahead of the planned maintenance window.

4. At the start of the maintenance window, the administrator uses the deferral feature to essentially “turn off” processing of group
maintenance operations, and then makes all the desired changes to role and group membership at the same time.

Note: Sharing rule processing is also deferred at this time so the administrator can perform all sharing rule updates.

5. After the changes have completed, the administrator resumes processing group maintenance, and the system performs a recalculation
to make all the role and group changes take effect.

6. At this point, the system is in a state that requires a full recalculation of all sharing rules for user access rights to be complete and
accurate. The administrator can resume sharing rule processing immediately or wait to start the process at a later time. After the
sharing rule recalculation has completed, all the access changes take effect.

When using the deferred sharing features, it's especially important to test the whole process in a full copy sandbox. This practice helps
benchmark how long the overall recalculation is likely to take in production and smooth out any kinks in orchestrating deferred sharing
maintenance. The full copy sandbox should mimic your current product environment as closely as possible. We recommend using a
sandbox refreshed within the last 30 days that reflects all major changes.

Note: Deferred sharing maintenance doesn’t defer the recalculation of some sharing changes in order to preserve data integrity.
These calculations that can't be suspended can take significant time to process based on the org's settings and data volume.

Who’s a Good Candidate for Deferred Sharing?
There are two main criteria for determining whether deferred sharing maintenance is the right tool for your organization: the size and
complexity of your realignment activities, and the flexibility you have to arrange a maintenance window with your customers. If you find
that organizational changes and sharing rule updates typically complete quickly enough to be scheduled into the workday and weekend
downtimes in your use of the service, you’re unlikely to benefit substantially from this feature. On the other hand, if you’re able to
negotiate downtime with your business customers and have been struggling to complete updates in a timely fashion, deferred sharing
can be a good solution to your problem.

Takeaway: Making Realignment Smoother
Understand the pros and cons of the performance tools, and make sure they fit well with the process and timing of your realignment.
Always test these tools and new realignment processes in a full copy sandbox that's been recently refreshed so you know what to expect.

• Consider whether it’s more efficient to:

– Set aside specific maintenance windows

– Defer organizational or sharing rule maintenance while processing your updates

10

Takeaway: Making Realignment SmootherDesigning Record Access for Enterprise Scale

Note: While making your decision, remember that deferring organizational maintenance requires recalculating sharing
rules for all objects.

11

Takeaway: Making Realignment SmootherDesigning Record Access for Enterprise Scale

	Designing Record Access for Enterprise Scale
	Introduction
	Group Membership Operations and Sharing Recalculation
	Ownership Data Skew
	Group Membership Locking
	Takeaway: Tuning Group Membership for Performance

	Object Relationships, Bulk Loading, and Sharing Recalculation
	Implicit Sharing
	Parent-Child Data Skew
	Record-Level Locking
	Takeaway: Tuning Data Relationships and Updates for Performance

	Tools for Large-Scale Realignments
	Deferred Sharing Maintenance
	Takeaway: Making Realignment Smoother

