
Publisher and Quick Action
Developer Guide

Salesforce, Summer ’25

Last updated: July 11, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

GET STARTED . 1

HOW ARE THE APIS DIFFERENT? . 2
API Parity . 3

WORK WITH THE APIS . 4
Quick Action API . 4

Considerations . 6
getAvailableActions . 7
getAvailableActionFields . 8
getCustomAction . 9
getSelectedActions . 9
invokeAction . 10
refresh . 10
selectAction . 10
setActionFieldValues . 11

Publisher API . 12

CUSTOMIZE WITH VISUALFORCE . 18
Layout and Appearance . 19
Email Action . 25
Portal Action . 27
Log a Call Action . 29
Article Tool . 32
Replicate a Case Page . 34
Create Custom Actions . 36

OTHER RESOURCES . 40

GET STARTED WITH THE PUBLISHER AND QUICK ACTION
APIS

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create custom components to interact with the actions on pages in Salesforce Classic and Lightning
Experience apps. Using Aura components, Visualforce, and Apex, you can customize your app’s
experience, including the case feed. For example, you can use a custom component to let users
send an email with a Knowledge article.

The Salesforce Classic Publisher JavaScript APIs, also known as the Case Feed Publisher APIs, and
the Lightning Quick Action JavaScript APIs both interact with page actions. The Publisher APIs work
with Visualforce components and pages to interact with publisher actions. The Quick Action APIs
are called by the lightning:quickActionAPI component to interact with quick actions.

Note: Starting with API version 43.0 of the Publisher API, the methods used in Visualforce
components work in Lightning Experience. Just point to the latest version of the Publisher
API script in your Visualforce pages.

To use this guide, it helps if you have a basic familiarity with JavaScript, Visualforce, Apex, Aura components, and the Salesforce user
interface.

SEE ALSO:

How Are the Publisher and Quick Action APIs Different?

Method Parity Between the Publisher API and the Quick Action API

Quick Action APIs in Lightning Experience

Publisher APIs in Salesforce Classic

Customize Case Feed Actions with Visualforce

1

HOW ARE THE PUBLISHER AND QUICK ACTION APIS
DIFFERENT?

The user interface in your org can dictate which development tools you can use to interact with actions. In Salesforce Classic, you use
the Salesforce Classic Publisher JavaScript APIs with Visualforce components to interact with actions. In Lightning Experience, you use
the lightning:quickActionAPI component to call the Lightning Quick Action JavaScript APIs to interact with actions.

Lightning Quick Action JavaScript APIsSalesforce Classic Publisher JavaScript APIsDifferent How?

To implement, use the component
lightning:quickActionAPI in your custom
Aura component. For example:

<aura:component

To implement, load the publisher script in your
Visualforce page or component. For example:

<script
type='text/javascript'

src='/canvas/sdk/js/43.0/publisher.js'/>

Implementation

implements="flexipage:availableForRecordHome"

Then you can reference the Publisher APIs through
the Sfdc.canvas.publisher object. For
example:

Sfdc.canvas.publisher.selectAction({...})

description="My Aura component">

<lightning:quickActionAPI
aura:id="quickActionAPI"

/>
</aura:component>

Then you can reference the Quick Action APIs in your
controller code.

Works with any quick actions on a record page in any
Lightning Experience app. Supports apps with
standard navigation and console navigation.

Works with any quick action on a record page in
Salesforce Classic apps for objects that are
feed-enabled. Supports apps with standard
navigation and console navigation.

Supported Actions, Apps,
and Pages

Provides the following methods:Provides the following methods:Available Methods

• getAvailableActions• publisher.customActionMessage

• publisher.invokeAction • getAvailableActionFields

• getCustomAction• refresh

• publisher.selectAction • getSelectedActions

• invokeAction• publisher.setActionInputValues

• refresh

• selectAction

• setActionFieldValues

Works only in Lightning Experience.Works in Salesforce Classic and Lightning Experience.Lightning Experience and
Salesforce Classic Support

Tip: Before implementing, review the Quick
Action API Considerations.

Tip: Starting with API version 43.0 of the
Salesforce Classic JavaScript Publisher API, the
methods used in Visualforce components and

2

Lightning Quick Action JavaScript APIsSalesforce Classic Publisher JavaScript APIsDifferent How?

pages work in Lightning Experience. Just point
to the latest version of the Publisher API script
in your Visualforce pages.

<script

src="/canvas/sdk/js/43.0/publisher.js"

type="text/javascript">
</script>

Note: The portalPostFields input
value is not supported in Lightning
Experience.

IN THIS SECTION:

Method Parity Between the Publisher API and the Quick Action API

The Lightning Quick Action JavaScript API allows you to interact with actions within Aura components similar to how the Salesforce
Classic Publisher JavaScript API allows you to interact with publisher actions within Visualforce pages.

Method Parity Between the Publisher API and the Quick Action API

The Lightning Quick Action JavaScript API allows you to interact with actions within Aura components similar to how the Salesforce
Classic Publisher JavaScript API allows you to interact with publisher actions within Visualforce pages.

This table shows which Quick Action API methods map to Publisher API methods.

Publisher API Method (in Visualforce)Quick Action API Method (in Aura Component)

N/AgetAvailableActions

N/AgetAvailableActionFields

customActionMessagegetCustomAction

N/AgetSelectedActions

invokeActioninvokeAction

refreshrefresh

selectActionselectAction

setActionInputValuessetActionFieldValues

3

Method Parity Between the Publisher API and the Quick Action
API

How Are the Publisher and Quick Action APIs Different?

WORK WITH THE QUICK ACTION AND PUBLISHER APIS

The Lightning Quick Action JavaScript API and the Salesforce Classic Publisher JavaScript API both let you interact with actions. If you’re
building out Aura components in Lightning Experience, use the Quick Action API. This API can interact with all quick actions on a record
page. If you’re writing Visualforce pages in Salesforce Classic, use the Publisher API. This API can interact with any quick actions on record
pages in Salesforce Classic apps for objects that are feed-enabled.

IN THIS SECTION:

Quick Action APIs in Lightning Experience

A lightning:quickActionAPI component allows you to access methods for programmatically controlling quick actions
on record pages. This component is supported in Lightning Experience and supports utility pop-out. This component requires API
version 43.0 and later.

Publisher APIs in Salesforce Classic

The Salesforce Classic Publisher JavaScript API lets your Visualforce pages and components interact with actions you’ve added to a
record page in a Salesforce Classic app for objects that are feed-enabled. The Publisher API works in Salesforce Classic apps with
standard navigation and console navigation. For example, you could develop a component that generates customized, pre-written
text, adds that text to a new post in the Case Feed portal action, and submits the post to the portal, all with one click.

Quick Action APIs in Lightning Experience

EDITIONS

Available in: Lightning
Experience

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

A lightning:quickActionAPI component allows you to access methods for
programmatically controlling quick actions on record pages. This component is supported in
Lightning Experience and supports utility pop-out. This component requires API version 43.0 and
later.

For example, if you have a custom Aura component that displays Knowledge articles, you can use
the lightning:quickActionAPI component to attach and send a Knowledge article from
your custom component using the Email quick action on the case record page.

To access these methods, create an instance of the lightning:quickActionAPI component
inside your Aura component or page and assign an aura:id attribute to it.

<lightning:quickActionAPI aura:id="quickActionAPI"/>

This component provides similar functionality to the Publisher APIs in Salesforce Classic.

Sample Code
This example creates two buttons that interact with the Update Case quick action on a case record page in Lightning Experience. The
controller code uses the following Quick Action API methods: selectAction, setActionFieldValues, and invokeAction.

Component code:

<aura:component implements="flexipage:availableForRecordHome" description="My Lightning
Component">

<lightning:quickActionAPI aura:id="quickActionAPI" />

4

<div>
<lightning:button label="Select Update Case Action"

onclick="{!c.selectUpdateCaseAction}"/>
<lightning:button label="Update Case Status Field"

onclick="{!c.updateCaseStatusAction}"/>
</div>

</aura:component>

Controller code:

({
selectUpdateCaseAction : function(cmp, event, helper) {

var actionAPI = cmp.find("quickActionAPI");
var args = { actionName :"Case.UpdateCase" };
actionAPI.selectAction(args).then(function(result) {

// Action selected; show data and set field values
}).catch(function(e) {

if (e.errors) {
// If the specified action isn't found on the page,
// show an error message in the my component

}
});

},

updateCaseStatusAction : function(cmp, event, helper) {
var actionAPI = cmp.find("quickActionAPI");
var fields = { Status : { value : "Closed"},

Subject : { value : "Sets by lightning:quickActionAPI component"
},

accountName : { Id : "accountId" } };
var args = { actionName : "Case.UpdateCase",

entityName : "Case",
targetFields : fields };

actionAPI.setActionFieldValues(args).then(function() {
actionAPI.invokeAction(args);

}).catch(function(e) {
console.error(e.errors);

});
}

})

IN THIS SECTION:

Quick Action API Considerations

Before working with the Lightning Quick Action JavaScript API methods, review some considerations that might impact your
implementation.

getAvailableActions

Allows custom components to get a list of the available actions on a record page.

getAvailableActionFields

Allows custom components to get a list of the available fields for a specific action on a record page.

getCustomAction

Allows custom components to access a custom quick action and pass data or messages to it.

5

Quick Action APIs in Lightning ExperienceWork with the Quick Action and Publisher APIs

getSelectedActions

Allows custom components to access selected quick actions on a record page.

invokeAction

Allows custom components to save or submit the quick action on a record page.

refresh

Refreshes the current record page.

selectAction

Allows custom components to select and focus on a quick action on a record page.

setActionFieldValues

Allows custom components to select a quick action on a record page and then specify field values for that action.

SEE ALSO:

Lightning Component Library: lightning:quickActionAPI

Lightning Components Developer Guide

Quick Action API Considerations
Before working with the Lightning Quick Action JavaScript API methods, review some considerations that might impact your
implementation.

Tip: The Lightning Quick Action JavaScript APIs can only interact with quick actions that are targetable on the page. Review the
following support.

• Targetable: An action that displays in the highlights panel, including the dropdown action overflow

• Targetable: An action that displays in the publisher, including the More overflow

• Targetable: An action that’s nested in an accordion component section or tab that’s expanded by default

• Not targetable: An action that’s nested in an accordion component section or tab that’s not expanded by default*

*The action becomes targetable after a user opens the accordion section or tab containing the action.

If you use the Lightning Quick Action JavaScript APIs in custom code in a Lightning app, the targeted quick actions must be visible
on the page. If you target an action that isn’t visible on the page, it fails.

The Quick Action APIs work with most action types.

NotesSupported?Action Type

Supported in all Lightning apps, on any object.YesCreate a Record

Supported in all Lightning apps, on any object.YesCustom Visualforce

Note: To work with these action types, use the getCustomAction
method. Other methods aren’t supported for this action type.

Results in error.NoFlow

Supported in all Lightning apps, on any object.YesLog a Call

6

Quick Action API ConsiderationsWork with the Quick Action and Publisher APIs

https://developer.salesforce.com/docs/component-library/bundle/lightning:quickActionAPI/documentation
https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/intro_framework.htm

NotesSupported?Action Type

Supported in all Lightning apps, on any object.YesAura Component

Note: To work with these action types, use the getCustomAction
method. Other methods aren’t supported for this action type.

Supported in all Lightning apps, on any object.YesSend Email

Supported in all Lightning apps, on any object.YesUpdate a Record

The lightning:quickActionAPI component supports utility popout. However, the getCustomAction method doesn’t
work with utility popout yet. The Salesforce Classic Publisher APIs also support utility popout if you place them in a Visualforce page
that’s used in the utility bar. The customActionMessage doesn’t support utility popout either.

The Quick Action APIs don’t support the following items.

• Opportunity products

• Knowledge articles

• Crew Size field on the Service Crew object

• Social quick action in the case feed publisher provided with Social Customer Service

• Experience Cloud sites—the lightning:quickActionAPI component doesn’t work in Experience Cloud sites

getAvailableActions
Allows custom components to get a list of the available actions on a record page.

Arguments
None.

Sample Code
getAvailableActions : function(cmp, event, helper) {

var actionAPI = cmp.find("quickActionAPI");
actionAPI.getAvailableActions().then(function(result){

//All available actions shown;
}).catch(function(e){

if(e.errors){
//If the specified action isn't found on the page, show an error message

in the my component
}

});
}

7

getAvailableActionsWork with the Quick Action and Publisher APIs

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: true,
actions:

{actionName: "Case._LightningUpdateCase", recordId: "recordId", type: "QuickAction"}
{actionName: "FeedItem.TextPost", recordId: "recordId", type: "QuickAction"}
{actionName: "Case.LogACall", recordId: "recordId", type: "QuickAction"}
{actionName: "Case.SendEmail", recordId: "recordId", type: "QuickAction"}

errors: []

getAvailableActionFields
Allows custom components to get a list of the available fields for a specific action on a record page.

Arguments

DescriptionTypeName

The name of the quick action that you want to access.stringactionName

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.LogACall"

Sample Code
getAvailableActionFields : function(cmp, event, helper) {

var actionAPI = cmp.find("quickActionAPI");
var args = {actionName :"Case.LogACall", entityName:"Case" };
actionAPI.getAvailableActionFields(args).then(function(result){

//All available action fields shown for Log a Call
}).catch(function(e){

if(e.errors){
//If the specified action isn't found on the page, show an error message

in the my component
}

});
}

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: true,
fields:

{fieldName: "Subject", type: "textEnumLookup"}
{fieldName: "Description", type: "TextArea"}

8

getAvailableActionFieldsWork with the Quick Action and Publisher APIs

{fieldName: "WhoId", type: "Lookup"},
errors: []

getCustomAction
Allows custom components to access a custom quick action and pass data or messages to it.

Arguments

DescriptionTypeName

The name of the quick action that you want to access.stringactionName

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.MyCustomAction"

Sample Code
actionApi.getCustomAction(args).then(function(customAction) {
if (customAction) {
customAction.subscribe(function(data) {
// Handle quick action message

});
customAction.publish({
message : "Hello Custom Action",
Param1 : "This is a parameter"

});
}

}).catch(function(error) {
// We can't find that custom action.

});

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,
customAction: {
subscribe: function,
publish: function,
unsubscribe: function

},
unavailableAction: boolean,
errors: []

getSelectedActions
Allows custom components to access selected quick actions on a record page.

9

getCustomActionWork with the Quick Action and Publisher APIs

Arguments
None.

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,
actions: [{

actionName: "UpdateCase",
recordId: "recordId",
type: "QuickAction"

}],
errors: []

invokeAction
Allows custom components to save or submit the quick action on a record page.

Arguments

DescriptionTypeName

The name of the quick action that you want to access.stringactionName

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.UpdateCase"

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

refresh
Refreshes the current record page.

Arguments
None.

selectAction
Allows custom components to select and focus on a quick action on a record page.

10

invokeActionWork with the Quick Action and Publisher APIs

Arguments

DescriptionTypeName

The name of the quick action that you want to access.stringactionName

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.UpdateCase"

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,
unavailableAction: boolean,
targetableFields: [{

fieldName: "Status",
type: "PickList"

}],
actionName: string,
errors: []

setActionFieldValues
Allows custom components to select a quick action on a record page and then specify field values for that action.

Because this method also selects the quick action, you don't need to use the selectAction method. To submit the quick action
updates, pass submitOnSuccess as true.

Arguments

DescriptionTypeName

The name of the quick action that you want to access.stringactionName

Optional. The fields that you want to update on the current
record. For example, if you want to set field values on the

ObjectparentFields

Email quick action on the case record page, the case object
is the parent record.

The fields that you want to update on the quick action.ObjecttargetFields

Optional. Set to true if you want to save and submit the quick
action after setting the field values. Default is false.

booleansubmitOnSuccess

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.UpdateCase"

11

setActionFieldValuesWork with the Quick Action and Publisher APIs

The parentFields and targetFields objects contain a list of field names with values for each field. Each field can optionally
specify the insertion behavior using the insertType key, which can be replace (default), cursor, or begin. For example:

var parentFields = { Status: {value: "Closed"},
Subject: {value: "Case subject", insertType: "cursor"} }

var targetFields = { ToAddress: {value: "to@to.com"},
TextBody: {value: "the text body", insertType: "cursor"} }

We recommend that you don’t use this API with the following items:

• Read-only fields

• Encrypted fields

• Fields within social actions

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,
actionName: "LogACall",
unavailableAction: boolean,
targetFieldErrors: [{
Status: {message: "error"},
Subject: {message: "error",

}],
errors: []

Publisher APIs in Salesforce Classic

EDITIONS

Available in: Salesforce
Classic (not available in all
orgs)

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

The Salesforce Classic Publisher JavaScript API lets your Visualforce pages and components interact
with actions you’ve added to a record page in a Salesforce Classic app for objects that are
feed-enabled. The Publisher API works in Salesforce Classic apps with standard navigation and
console navigation. For example, you could develop a component that generates customized,
pre-written text, adds that text to a new post in the Case Feed portal action, and submits the post
to the portal, all with one click.

Use the publish method on the Sfdc.canvas.publisher object to allow console
components to interact with quick actions.

Tip: Starting with API version 43.0 of the Salesforce Classic JavaScript Publisher API, the
methods used in Visualforce components work in Lightning Experience. You can use Visualforce
pages in Lightning Experience through custom quick actions, or by adding it to the page in
the Lightning App Builder. Just point to the 43.0 version of the Publisher API script in your
Visualforce pages.

<script src="/canvas/sdk/js/43.0/publisher.js"
type="text/javascript"></script>

If you use the JavaScript Publisher API methods in custom code in a Lightning app, the targeted
quick actions must be visible on the page. If you target an action that isn’t visible on the page,
it fails.

12

Publisher APIs in Salesforce ClassicWork with the Quick Action and Publisher APIs

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

publisher.selectAction

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The action to select. Supported values are:Selects the specified action and
puts it in focus. • action_name–A create, log a call, or custom Visualforce quick

action. For example, action_name for a create contact action
might be create_contact.

• Case.CaseComment—Case Feed portal action

• Case.ChangeStatus—Case Feed change status action

• Case.Email—Case Feed email action

• Case.LogACall—Case Feed log a call action

• FeedItem.TextPost—Standard Chatter post action
(Available in API versions 32.0 and later)

• SocialPostAPIName.SocialPost—Social post action
(Available in API versions 32.0 and later)

Code Sample

This code snippet selects the email action and puts it in focus.

Sfdc.canvas.publisher.publish({name:"publisher.selectAction",payload:{actionName:"Case.Email"}});

publisher.setActionInputValues

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The action on which fields should be populated.

The available field values depend on which action you specify.

Specifies which fields on the action
should be populated with specific
values, and what those values are.

• emailFields–Available on Case.Email; the standard
available fields on the Case Feed email action:

– to

– cc

– bcc

– subject

– body

– template

• portalPostFields–Available on Case.CaseComment;
the standard available fields on the Case Feed portal action:

– body

– sendEmail (boolean)

13

Publisher APIs in Salesforce ClassicWork with the Quick Action and Publisher APIs

Available VersionsPayload ValuesDescription

• targetFields–Available on Case.ChangeStatus ,
Case.LogACall, FeedItem.TextPost, and the Social
action; the standard available fields on those actions.

– On Case.ChangeStatus: commentBody

– On Case.LogACall: description

– On FeedItem.TextPost: body

Attributes on body are value and insertType
(optional). Valid values for insertType are begin, end,
cursor, and replace. The default value is replace.
(Available in API versions 32.0 and later)

– On SocialPostAPIName.SocialPost: content
and insertType (optional). Valid values for
insertType are begin, end, cursor, and
replace . The default value is replace. (Available in
API versions 32.0 and later)

• parentFields—Available on Case.ChangeStatus,
Case.Email, and Case.LogACall; standard and custom
fields on case. Lookup fields aren’t supported.

Code Sample

This code snippet populates the fields on an email message with predefined values, and sets the status of the associated case to
Closed.

Sfdc.canvas.publisher.publish({name:"publisher.setActionInputValues",
payload:{actionName:"Case.Email",parentFields: {Status:{value:"Closed"}},
emailFields: {to:{value:"customer@company.com"},cc:{value:"customer2@company.com"},

bcc:{value:"supervisor@company.com"},
subject:{value:"Your Issue Has Been Resolved"},

body:{value:"Thank you for working with our support department.
We've resolved your issue and have closed this ticket, but
please feel free to contact us at any time if you encounter this
problem again or need other assistance."}}}});

This code snippet inserts the phrase “Hello World” in the body of the Post action at the current cursor position.

Sfdc.canvas.publisher.publish({name:"publisher.setActionInputValues",
payload:{actionName:"FeedItem.TextPost", targetFields:{body:{value:"Hello World",
insertType:"cursor"}}}});

14

Publisher APIs in Salesforce ClassicWork with the Quick Action and Publisher APIs

publisher.invokeAction

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The action on which to trigger the submit function.
Supported actions are:

Triggers the submit function (such
as sending an email or posting a
portal comment) on the specified
action.

• Case.Email

• Case.CaseComment

• Case.ChangeStatus

• Case.LogACall

• FeedItem.TextPost (Available in API versions 32.0 and
later)

• SocialPostAPIName.SocialPost (Available in API
versions 32.0 and later)

Code Sample

This code snippet triggers the submit function on the email action, sending an email message and generating a related feed item.

Sfdc.canvas.publisher.publish({name:"publisher.invokeAction",
payload:{actionName:"Case.Email"}});

publisher.customActionMessage

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The Visualforce custom action to pass the event to.

message–The event to pass to the custom action.

Passes a custom event to a custom
action. Supported for
Visualforce-based custom actions
only.

Code Sample

This code snippet passes the Hello world event to the action my_custom_action.

Sfdc.canvas.publisher.publish({name:"publisher.customActionMessage",
payload:{actionName:"my_custom_action", message:"Hello world"}});

This code snippet is what my_custom_action uses to listen to the Hello world event.

Sfdc.canvas.publisher.subscribe([{name : "publisher.customActionMessage", onData :
function(e) {alert(e.message);}}]);

publisher.refresh
Refreshes the current record page. This method has no arguments.

15

Publisher APIs in Salesforce ClassicWork with the Quick Action and Publisher APIs

Use Case and Sample Code
Example: Universal Cable serves millions of phone and cable customers throughout the United States, with 4000 support agents
in call centers of varying sizes around the country. Universal wanted to make it easy for agents to access the company’s extensive
collection of articles in Salesforce Knowledge and share them with customers through email to help keep support costs in check.

Universal used the events on publish to create a custom console component that:

• Displays a list of Knowledge articles, from most recently published to oldest.

• Lets agents view an article by clicking its title.

• Lets agents add the full, formatted text of an article to a message in the Case Feed email action by clicking the Email button
in the console component.

This code sample shows an Apex class containing a custom controller used by the Visualforce page below.

public with sharing class KBController {
public List<FAQ__kav> articles {get; set;}

public KBController() {
articles = [select knowledgearticleid, id, title, content__c from FAQ__kav where

publishstatus = 'Online' and language='en_US' order by lastpublisheddate];
}

}

This code sample shows the Visualforce page that’s used as the custom console component in the use case above.

<apex:page sidebar="false" controller="KBController">
<script type='text/javascript' src='/canvas/sdk/js/publisher.js'/>
<style>

.sampleTitle { background-color: #99A3AC;color:#FFFFFF;font-size:1.1em;
font-weight: bold;padding:3px 6px 3px 6px; }
.sampleHeader { }
.sampleArticleList { min-width: 250px; padding: 8px 0 5px 0;}
.sampleUl { padding: 0; margin: 0; list-style: none;}
.sampleLi { display: block; position: relative; margin: 0;}

16

Publisher APIs in Salesforce ClassicWork with the Quick Action and Publisher APIs

.sampleRow { min-height: 16px; padding: 4px 10px;}

.emailBtn { margin: 1px 1px 1px 3px; padding: 3px 8px; color: #333;
border: 1px solid #b5b5b5; border-bottom-color: #7f7f7f; background: #e8e8e9;

font-weight: bold; font-size: .9em; -moz-border-radius: 3px;
-webkit-border-radius: 3px; order-radius: 3px; }

.emailBtn:active { background-position: right -60px; border-color: #585858;
border-bottom-color: #939393; }

.sampleArticle { padding-left: 4px; padding-bottom: 2px; font-weight: bold;
font-size: 1em; color: #222; }

.sampleLink { color: #015ba7; text-decoration: none; font-weight: bold;
font-size: .9em; }

</style>
<script>

function emailArticle(content) {
Sfdc.canvas.publisher.publish({name: 'publisher.selectAction',
payload: { actionName: 'Case.Email'}});
Sfdc.canvas.publisher.publish({name: 'publisher.setActionInputValues',
payload: {

actionName: 'Case.Email',
emailFields: { body: { value:content, format:'richtext', insert: true}}

}});
}

</script>
<div style="margin-left:-10px;margin-right:-10px;">

<div class="sampleTitle">Latest Articles</div>
<div class="sampleHeader" style=""></div>
<div class="sampleArticleList">

<apex:repeat value="{!articles}" var="article">
<ul class="sampleUl">

<li class="sampleLi">
<div class="sampleRow">
<div style="display:none;" id="content_{!article.id}">

<apex:outputText value="{!article.content__c}" escape="false"/>
</div>

<input type="button" title="Email" value="Email" class="emailBtn"

onclick="emailArticle(document.getElementById
('content_{!article.id}').innerHTML);"/>

<a href="/{!article.knowledgearticleid}"
title="{!article.title}" class="sampleLink">
{!article.title}

</div>

</apex:repeat>
</div>

</div>
</apex:page>

17

Publisher APIs in Salesforce ClassicWork with the Quick Action and Publisher APIs

CUSTOMIZE CASE FEED ACTIONS WITH VISUALFORCE

The Salesforce-provided Case Feed Visualforce components enable you to create a customized page within a Salesforce Classic app. To
create custom Salesforce console components that interact with Case Feed actions, publish the Case Feed-related events using the
publish method on the Sfdc.canvas.publisher object in the Salesforce Classic Publisher JavaScript API.

Important: This section of the guides focuses on customizing the Case Feed in a Salesforce Classic console app. However, you
can use the Visualforce components in Salesforce Classic apps with standard navigation that use the case object, too. You can also
use the Case Feed Visualforce components in Lightning Experience. However, there are some issues with refresh for certain
Visualforce components. We recommend that you use these components in Salesforce Classic only.

Requirements

Before customizing Case Feed in the Salesforce console, make sure that:

• Case Feed, Chatter, and feed tracking on cases are enabled in your organization.

• Your organization has at least one Salesforce console app. For more information, see Set Up a Salesforce Console App in Salesforce
Classic.

• You’re familiar with developing with Visualforce. Check out the Visualforce Developer Guide for a comprehensive overview.

Note: Lookup field filters aren’t supported on any of the Case Feed Visualforce components.

Assigning Custom Pages to Users

Generally, when you create a custom Case Feed page using Visualforce, it’s not possible to assign that page only to certain users while
allowing other users to see the standard Case Feed page. However, with the support:CaseFeed component, you can create a
page that replicates the standard Case Feed page, assign that page to certain users, and then create a custom page to assign to a different
set of users. See Replicating a Standard Case Feed Page for more information.

Customization Overview

Here are the Case Feed Visualforce components.

DescriptionComponent Name

Displays and controls the appearance and functionality of the Case Feed Email action.apex:emailPublisher

Displays and controls the appearance and functionality of the Case Feed Log a Call action.apex:logCallPublisher

Displays and controls the appearance and functionality of the Articles tool for cases.support:caseArticles

Replicates the standard Case Feed page, including all standard actions, links, and buttons.support:CaseFeed

Displays and controls the appearance and functionality of the Case Feed Portal action.support:portalPublisher

18

https://help.salesforce.com/articleView?id=console2_define_app.htm&language=en_US
https://help.salesforce.com/articleView?id=console2_define_app.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.pages.meta/pages/

In addition, the chatter:feed component has two attributes related to Case Feed.

• feedItemType: Lets you specify how feed items are filtered.

• showPublisher: Lets you display the Chatter publisher on a page.

Here are the Publisher JavaScript APIs.

DescriptionMethod Name

Passes a custom event to a custom action. Supported for Visualforce-based custom actions
only.

customActionMessage

Triggers the submit function (such as sending an email or posting a portal comment) on
the specified action.

invokeAction

Selects the specified action and puts it in focus.selectAction

Refreshes the current record page.refresh

Specifies which fields on the action should be populated with specific values, and what
those values are.

setActionInputValues

Customizing the Layout and Appearance of Case Feed

Creating a customized Case Feed page with Visualforce lets you control the overall layout and appearance, including which actions and
tools are shown and where they’re located on the page. You can also include other standard and custom console components to enhance
the functionality of the page.

In addition to the four case-specific Visualforce components detailed in this guide, you can also use the chatter:feed component
to customize Case Feed. The table below lists its attributes.

chatter:feed Attributes

AccessAPI
Version

Required?DescriptionAttribute
Type

Attribute Name

25.0YesEntity ID of the record for which to display the feed; for
example, Contact.Id

identityId

25.0The feed item type on which the Entity or
UserProfileFeed is filtered. See the Type field on the

StringfeedItemType

FeedItem object listing in the API Object Reference Guide
for accepted values.

global20.0An identifier that allows the component to be referenced
by other components on the page.

Stringid

25.0The Javascript function to call after a post or comment
is added to the feed

StringonComplete

global20.0A Boolean value that specifies whether the additional
fields defined in the action layout are displayed.

Booleanrendered

19

Customizing the Layout and Appearance of Case FeedCustomize Case Feed Actions with Visualforce

https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/

AccessAPI
Version

Required?DescriptionAttribute
Type

Attribute Name

25.0The ID of one or more components that are redrawn
when the result of the action method returns to the

ObjectreRender

client. This value can be a single ID, a comma-separated
list of IDs, or a merge field expression for a list or
collection of IDs.

25.0Displays the Chatter publisher.BooleanshowPublisher

Use Case
Acme Entertainment creates online games used by more than a million people on multiple platforms. Acme’s 1500 support agents use
desktop computers, laptops, and tablets, and the company wanted to customize the Case Feed page to standardize its look and feel
across different devices. They also wanted to make it easier for agents to track case activities using filters.

Acme used these steps to create a customized Case Feed page:

1. Using the chatter:feed component, they positioned the feed in the sidebar so the publisher and other Case Feed tools are always in
the center of the page.

2. They repositioned the feed filter and auto-selected default filters depending on case origin:

• If the case origin is email,. the default filter is Emails.

• If the case origin is phone, the default filter is Call Logs.

• If the case origin is Web, the default filter is Portal Answers.

3. In apex:emailPublisher, apex:logCallPublisher, and support:portalPublisher, they made the width
percentage-based so the publisher expands and contracts as the size of the page changes, making its appearance more consistent
across different screen sizes.

4. They changed the orientation of the publisher action tabs from their standard left-side vertical arrangement to a horizontal arrangement
at the top of the page.

20

Customizing the Layout and Appearance of Case FeedCustomize Case Feed Actions with Visualforce

Code Sample
This code sample shows a Visualforce page with custom Email, Portal, Log a Call, and Case Details tabs.

<apex:page standardController="Case">

<!-- Repositions publisher tabs to a horizontal arrangement on top of the page -->
<ul class="demoNav" style="list-style: none; overflow: hidden">

<li style="float:left">
<a id="custom_email_tab" class="selected" href="javascript:void(0);"

onclick="getDemoSidebarMenu().selectMenuItem('custom_email_tab');">
Email Customer

<li style="float:left">

<a id="custom_log_call_tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu().selectMenuItem('custom_log_call_tab');">
Log Call

<li style="float:left">

<a id="custom_portal_tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu().selectMenuItem('custom_portal_tab');">
Portal Answer

<li style="float:left">

<a id="custom_detail_tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu().selectMenuItem('custom_detail_tab');">
Case Details

<!-- Email action -->
<div id="custom_email_pub_vf">

<apex:emailPublisher entityId="{!case.id}"
width="80%"
emailBodyHeight="10em"
showAdditionalFields="false"
enableQuickText="true"
toAddresses="{!case.contact.email}"
toVisibility="readOnly"
fromAddresses="support@cirrus.com"
onSubmitSuccess="refreshFeed();" />

</div>

<!-- Log call action -->
<div id="custom_log_call_vf" style="display:none">

<apex:logCallPublisher entityId="{!case.id}"
width="80%"
logCallBodyHeight="10em"
reRender="demoFeed"
onSubmitSuccess="refreshFeed();" />

</div>

21

Customizing the Layout and Appearance of Case FeedCustomize Case Feed Actions with Visualforce

<!-- Portal action -->
<div id="custom_portal_vf" style="display:none">

<support:portalPublisher entityId="{!case.id}"
width="80%"
answerBodyHeight="10em"
reRender="demoFeed"
answerBody="Dear {!Case.Contact.FirstName},

\n\nHere is the solution to your case.\n\nBest regards,\n\nSupport"
onSubmitSuccess="refreshFeed();" />

</div>

<!-- Case detail page -->
<div id="custom_detail_vf" style="display:none">

<apex:detail inlineEdit="true" relatedList="true" rerender="demoFeed" />
</div>

<!-- Include library for using service desk console API -->
<apex:includeScript value="/support/console/25.0/integration.js"/>

<!-- Javascript for switching publishers -->
<script type="text/javascript">

function DemoSidebarMenu() {
var menus = {"custom_email_tab" : "custom_email_pub_vf",

"custom_log_call_tab" : "custom_log_call_vf",
"custom_portal_tab" : "custom_portal_vf",
"custom_detail_tab" : "custom_detail_vf"};

this.selectMenuItem = function(tabId) {
for (var index in menus) {

var tabEl = document.getElementById(index);
var vfEl = document.getElementById(menus[index]);

if (index == tabId) {
tabEl.className = "selected";
vfEl.style.display = "block";

} else {
tabEl.className = "";
vfEl.style.display = "none";

}
}

};
}
var demoSidebarMenu;
var getDemoSidebarMenu = function() {

if (!demoSidebarMenu) {
demoSidebarMenu = new DemoSidebarMenu();

}
return demoSidebarMenu;

};
</script>

<!-- Javascript for firing event to refresh feed in the sidebar -->
<script type="text/javascript">

22

Customizing the Layout and Appearance of Case FeedCustomize Case Feed Actions with Visualforce

function refreshFeed() {
sforce.console.fireEvent

('Cirrus.samplePublisherVFPage.RefreshFeedEvent', null, null);
}

</script>
</apex:page>

The following sample shows an Apex class containing a controller extension to be used with the Visualforce page above.

public class MyCaseExtension {
private final Case mycase;
private String curFilter;

public MyCaseExtension(ApexPages.StandardController stdController) {
this.mycase = (Case)stdController.getRecord();

// initialize feed filter based on case origin
if (this.mycase.origin.equals('Email')) {

curFilter = 'EmailMessageEvent';
} else if (this.mycase.origin.equals('Phone')) {

curFilter = 'CallLogPost';
} else if (this.mycase.origin.equals('Web')) {

curFilter = 'CaseCommentPost';
}

}

public String getCurFilter() {
return curFilter;

}

public void setCurFilter(String c) {
if (c.equals('All')) {

curFilter = null;
} else {

curFilter = c;
}

}

public PageReference refreshFeed() {
return null;

}
}

This sample shows a Visualforce page with custom feed filters and Chatter feed for cases. You can use this page in the sidebar of a
Salesforce console.

<apex:page standardController="Case" extensions="MyCaseExtension">

<!-- Feed filter -->
<div>

Feed Filters:
<select onchange="changeFilter(this.options[selectedIndex].value);"

id="custom_filterSelect">
<option value="All" id="custom_all_option">All</option>
<option value="EmailMessageEvent"

23

Customizing the Layout and Appearance of Case FeedCustomize Case Feed Actions with Visualforce

id="custom_email_option">Emails</option>
<option value="CaseCommentPost"

id="custom_web_option">Portal Answers</option>
<option value="CallLogPost"

id="custom_phone_option">Call Logs</option>
</select>

</div>

<apex:form >
<!-- actionFunction for refreshing feed when the feed filter is updated -->
<apex:actionFunction action="{!refreshFeed}" name="changeFilter"

reRender="custom_demoFeed" immediate="true" >
<apex:param name="firstParam" assignTo="{!curFilter}" value="" />

</apex:actionFunction>

<!-- actionFunction for refreshing feed when there is an event fired for
updating the feed -->

<apex:actionFunction action="{!refreshFeed}" name="updateFeed"
reRender="custom_demoFeed" immediate="true" />

</apex:form>

<!-- Chatter feed -->
<chatter:feed entityId="{!case.id}" showPublisher="false"

feedItemType="{!curFilter}" id="custom_demoFeed" />

<!-- Include library for using service desk console API -->
<apex:includeScript value="/support/console/25.0/integration.js"/>

<!-- Javascript for adding event listener for refreshing feed -->
<script type="text/javascript">

var listener = function (result) {
updateFeed();

};

// add a listener for the 'Cirrus.samplePublisherVFPage.RefreshFeedEvent'
event type

sforce.console.addEventListener('Cirrus.samplePublisherVFPage.RefreshFeedEvent',
listener);

</script>

<!-- Javascript for initializing select option based on case origin -->
<script type="text/javascript">

window.onload = function() {
var caseOrigin = "{!case.origin}";
if (!caseOrigin) {

caseOrigin = "all";
} else {

caseOrigin = caseOrigin.toLowerCase();
}
var selectElem = document.getElementById('custom_' + caseOrigin + '_option');

if (selectElem) {
selectElem.selected = true;

24

Customizing the Layout and Appearance of Case FeedCustomize Case Feed Actions with Visualforce

}
}

</script>

</apex:page>

Customizing the Email Action

The Email action in Case Feed lets support agents connect with customers via email. With the apex:emailPublisher component,
you can:

• Customize the dimensions of the Email action.

• Define defaults and visibility for fields.

• Define the visibility and label of the send button.

• Define onSubmit functionality.

• Support email templates and attachments in the action.

Note: The apex:emailPublisher component closes a task in Open Activities created by Email-to-Case inbound email.

apex:emailPublisher Attributes

AccessAPI
Version

Required?DescriptionAttribute
Type

Attribute Name

25.0A Boolean value that specifies whether the email body
collapses to a small height when it is empty.

BooleanautoCollapseBody

25.0The visibility of the BCC field can be 'editable',
'editableWithLookup', 'readOnly', or 'hidden'.

StringbccVisibility

25.0The visibility of the CC field can be 'editable',
'editableWithLookup', 'readOnly', or 'hidden'.

StringccVisibility

25.0The default text value of the email body.StringemailBody

25.0The format of the email body can be 'text', 'HTML', or
'textAndHTML'.

StringemailBodyFormat

25.0The height of the email body in em.StringemailBodyHeight

25.0A Boolean value that specifies whether the Quick Text
autocomplete functionality is available in the action.

BooleanenableQuickText

25.0YesEntity ID of the record for which to display the Email
action. In the current version, only Case record ids are
supported.

identityId

25.0A Boolean value that specifies whether the header is
expandable or fixed.

BooleanexpandableHeader

25.0A restricted set of from addresses.StringfromAddresses

25

Customizing the Email ActionCustomize Case Feed Actions with Visualforce

AccessAPI
Version

Required?DescriptionAttribute
Type

Attribute Name

25.0The visibility of the From field can be 'selectable' or
'hidden'.

StringfromVisibility

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

25.0The JavaScript invoked if the email is not successfully
sent.

StringonSubmitFailure

25.0The JavaScript invoked if the email is successfully sent.StringonSubmitSuccess

Global25.0A Boolean value that specifies whether the component
is rendered on the page. If not specified, this value
defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the email is successfully sent. This value can be

ObjectreRender

a single ID, a comma-separated list of IDs, or a merge
field expression for a list or collection of IDs.

25.0The name of the send button in the Email action.StringsendButtonName

25.0A Boolean value that specifies whether the additional
fields defined in the action layout are displayed.

BooleanshowAdditionalFields

25.0A Boolean value that specifies whether the attachment
selector is displayed.

BooleanshowAttachments

25.0A Boolean value that specifies whether the send button
is displayed.

BooleanshowSendButton

25.0A Boolean value that specifies whether the template
selector is displayed.

BooleanshowTemplates

25.0The default value of the Subject.Stringsubject

25.0The visibility of the Subject field can be 'editable',
'readOnly', or 'hidden'.

StringsubjectVisibility

25.0The name of a function that can be called from
JavaScript to send the email.

StringsubmitFunctionName

25.0The title displayed in the Email action header.Stringtitle

25.0The default value of the To field.StringtoAddresses

25.0The visibility of the To field can be 'editable',
'editableWithLookup', 'readOnly', or 'hidden'.

StringtoVisibility

25.0The width of the action in pixels (px) or percentage (%).Stringwidth

26

Customizing the Email ActionCustomize Case Feed Actions with Visualforce

Use Case
Cirrus Computers, a multinational hardware company with technical support agents in 10 support centers throughout the world, wanted
to customize the Email action to increase standardization in outgoing messages and to limit the fields agents could edit.

Cirrus used the apex:emailPublisher component to create an Email action that:

• Has read-only To and Subject fields.

• Pre-populates those fields, ensuring consistency and increasing agents’ efficiency when writing email messages.

Code Sample
<apex:page standardController="Case" >
<apex:emailPublisher entityId="{!case.id}"

fromVisibility="selectable"
subjectVisibility="readOnly"
subject="Your Cirrus support request"
toVisibility="readOnly"
toAddresses="{!case.contact.email}"
emailBody=""/>

</apex:page>

Customizing the Portal Action

The Portal action makes it easy for support agents to compose and post messages to customers on portals. With the
support:portalPublisher component, you can:

• Customize the dimensions of the Portal action.

• Define a default value for the portal message text.

• Define the visibility and label of the submit button.

• Define onSubmit functionality.

support:portalPublisher Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0The default text value of the answer body.StringanswerBody

27

Customizing the Portal ActionCustomize Case Feed Actions with Visualforce

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0The height of the answer body in ems (em).StringanswerBodyHeight

25.0A Boolean value that specifies whether the answer
body is collapsed when it is empty.

BooleanautoCollapseBody

25.0YesEntity ID of the record for which to display the Portal
action. In the current version, only Case record ids are
supported.

identityId

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

25.0The JavaScript invoked if the answer failed to be
published to the portal.

StringonSubmitFailure

25.0The JavaScript invoked if the answer was successfully
published to the portal.

StringonSubmitSuccess

Global25.0A Boolean value that specifies whether the component
is rendered on the page. If not specified, this value
defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the answer is successfully published. This value

ObjectreRender

can be a single ID, a comma-separated list of IDs, or a
merge field expression for a list or collection of IDs.

25.0A Boolean value that specifies whether the option to
send email notification should be displayed.

BooleanshowSendEmailOption

25.0A Boolean value that specifies whether the submit
button should be displayed.

BooleanshowSubmitButton

25.0The name of the submit button in the portal action.StringsubmitButtonName

25.0The name of a function that can be called from
JavaScript to publish the answer.

StringsubmitFunctionName

25.0The title displayed in the portal action header.Stringtitle

25.0The width of the action in pixels (px) or percentage
(%).

Stringwidth

Use Case
The Wellness Group is a healthcare company with 300 support agents in three tiers of support. Wellness wanted to customize the Portal
action to reduce the amount of standard text, such as greetings and closings, agents had to type when replying to customers, which
would help increase agents’ efficiency and improve the standardization of portal communications.

Wellness used the support:portalPublisher component to create a Portal action that:

28

Customizing the Portal ActionCustomize Case Feed Actions with Visualforce

• Pre-populates the message body with a standard opening (“Hello {name}, and thanks for your question.”) and a standard closing
(“Please let me know if there’s anything else I can do to help.”).

• Lets agents edit the pre-populated text if needed.

Code Sample
<apex:page standardController="Case">

<support:portalPublisher entityId="{!case.id}" width="800px"
answerBody="Hello {!Case.Contact.FirstName}, and thanks for your question.

\n\nPlease let me know if there's anything else I can do to help.">
</support:portalPublisher>

</apex:page>

Customizing the Log a Call Action

The Log a Call action lets support agents record notes and information about customer calls. With the apex:logCallPublisher,
you can:

• Customize the appearance and dimensions of the Log a Call action.

• Specify which fields are displayed in the action.

• Define the visibility and label of the submit button.

• Define onSubmit functionality.

apex:logCallPublisher Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0A Boolean value that specifies whether the Log a
Call body is collapsed when it is empty.

BooleanautoCollapseBody

25.0YesEntity ID of the record for which to display the Log
a Call action. In the current version, only Case record
ids are supported.

identityId

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

29

Customizing the Log a Call ActionCustomize Case Feed Actions with Visualforce

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0The initial text value of the Log a Call body when
the action is rendered.

StringlogCallBody

25.0The height of the Log a Call body in em.StringlogCallBodyHeight

25.0The JavaScript invoked if the call is not successfully
logged.

StringonSubmitFailure

25.0The JavaScript invoked if the call is successfully
logged.

StringonSubmitSuccess

Global25.0A Boolean value that specifies whether the
component is rendered on the page. If not specified,
this value defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the call is successfully logged. This value can

ObjectreRender

be a single ID, a comma-separated list of IDs, or a
merge field expression for a list or collection of IDs.

25.0A Boolean value that specifies whether the additional
fields defined in the action layout should be
displayed.

BooleanshowAdditionalFields

25.0A Boolean value that specifies whether the submit
button should be displayed.

BooleanshowSubmitButton

25.0The name of the submit button in the Log a Call
action.

StringsubmitButtonName

25.0The name of a function that can be called from
JavaScript to publish the call log.

StringsubmitFunctionName

25.0The title displayed in the Log a Call action header.Stringtitle

25.0The width of the action in pixels (px) or percentage
(%).

Stringwidth

Use Case
Stellar Wireless is a mobile phone provider with several high-volume call centers, where agents are rewarded both for solving customers’
issues quickly and for keeping detailed, accurate records of customer interactions. Stellar wanted to customize the Log a Call action so
it was open and available to agents at all times, even when they were working with another action, giving them a quick and easy way
of taking notes about incoming calls.

Stellar used the apex:logCallPublisher component to create a Log a Call action that:

• Appears in the footer of the page, replacing the standard interaction log.

• Is open and available by default each time a support agent opens a case.

30

Customizing the Log a Call ActionCustomize Case Feed Actions with Visualforce

Code Sample
<apex:page standardController="Case">
<apex:logCallPublisher entityId="{!case.id}"

width="100%"
title="Log a Call"
autoCollapseBody="false"
showAdditionalFields="false"
submitButtonName="Save Log" />

</apex:page>

After you create a Visualforce page with this code, follow these steps to use the Log a Call action you create as a replacement for the
standard interaction log:

1. From the object management settings for cases, go to Page Layouts.

2. Select the layout you’re using from the Page Layouts for Case Feed Users list, and then select Edit detail view.

3. Click the Custom Console Components link at the top of the page.

4. In the Subtab Components section, use the lookup to select the page you created as the component to use for the bottom sidebar.

5. Specify the height of the action.

6. Click Save.

7. In the page layout editor, click Layout Properties.

8. Uncheck Interaction Log.

9. Click OK.

10. Click Save.

SEE ALSO:

Salesforce Help: Find Object Management Settings

31

Customizing the Log a Call ActionCustomize Case Feed Actions with Visualforce

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

Customizing the Articles Tool

The Articles tool lets support agents browse Salesforce Knowledge articles, see whether articles are attached to a case, and share relevant
articles with customers. With the support:caseArticles component, you can:

• Customize the appearance and dimensions of the Articles tool.

• Define how the tool’s search function works, including which article types and keywords are used by default and whether advanced
search is available.

• Specify whether agents can attach articles to emails.

support:caseArticles Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0Article types to be used to filter the search. Multiple
article types can be defined, separated by commas.

StringarticleTypes

25.0A Boolean value that specifies whether articles can
be attached to emails.

BooleanattachToEmailEnabled

25.0The height of the body in pixels (px) or 'auto' to
automatically adjust to the height of the currently
displayed list of articles.

StringbodyHeight

25.0YesCase ID of the record for which to display the case
articles.

idcaseId

25.0Data categories to be used to filter the search. The
format of this value should be:

Stringcategories

'CatgeoryGroup1:Category1' where CategoryGroup1
and Category1 are the names of a Category Group
and a Category respectively. Multiple category filters
can be specified separated by commas but only one
per category group.

25.0The keywords to be used when the
defaultSearchType attribute is 'keyword'. If

StringdefaultKeywords

no keywords are specified, the Case subject is used
as a default.

25.0Specifies the default query of the article search form
when it is first displayed. The value can be 'keyword',
'mostViewed', or 'lastPublished'.

StringdefaultSearchType

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

25.0The language used for filtering the search if
multilingual Salesforce Knowledge is enabled.

Stringlanguage

32

Customizing the Articles ToolCustomize Case Feed Actions with Visualforce

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0A Boolean value that specifies whether keyword
searches should be logged.

BooleanlogSearch

25.0Specifies whether the component displays articles
currently attached to the case, an article search form,

Stringmode

or both. The value can be 'attached', 'search',
'attachedAndSearch', or 'searchAndAttached'.

25.0The JavaScript invoked after an article search has
completed.

StringonSearchComplete

Global25.0A Boolean value that specifies whether the
component is rendered on the page. If not specified,
this value defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the result of the action method returns to the

ObjectreRender

client. This value can be a single ID, a
comma-separated list of IDs, or a merge field
expression for a list or collection of IDs.

25.0The display name of the search button.StringsearchButtonName

25.0The width of the keyword search field in pixels (px).StringsearchFieldWidth

25.0The name of a function that can be called from
JavaScript to search for articles if the widget is
currently in search mode.

StringsearchFunctionName

25.0A Boolean value that specifies whether the advanced
search link should be displayed.

BooleanshowAdvancedSearch

25.0The title displayed in the component's header.Stringtitle

25.0The style of the title bar can be 'expanded',
'collapsed', 'fixed', or 'none'.

StringtitlebarStyle

25.0The width of the component in pixels (px) or
percentage (%).

Stringwidth

Use Case
Cirrus Computers wanted to customize the Case Feed articles tool so agents could more easily find articles to help resolve customers’
issues.

Cirrus used the support:caseArticles component to create an articles tool that:

1. Appears in the right sidebar of the page and is open by default on all case pages.

2. Uses search-as-you-type functionality to show suggested articles quickly.

3. Lets agents attach articles to messages they write with the email action.

4. Displays the most recently published articles when no articles are attached to a case.

33

Customizing the Articles ToolCustomize Case Feed Actions with Visualforce

Code Sample
<apex:page standardController="Case">

<div style="margin-left:-10px;margin-right:-10px;">
<div style="background-color: #99A3AC;color:#FFFFFF;font-size:1.1em;font-weight:

bold;padding:3px 6px 3px 6px;">Articles</div>
<support:caseArticles caseId="{!case.id}"

bodyHeight="auto"
titlebarStyle="none"
searchButtonName="Search"
searchFieldWidth="200px"
defaultSearchType="lastPublished"

/>
</div>

</apex:page>

Replicating a Standard Case Feed Page

The support:CaseFeed component includes all of the elements of the standard Case Feed page:

• Email, Portal, Log a Call, and Case Note actions

• Case activity feed

• Feed filters

• Highlights panel

• Case following icon

• Case followers list

• Layout, print, and help links

34

Replicating a Standard Case Feed PageCustomize Case Feed Actions with Visualforce

support:CaseFeed Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

26.0YesID of the case record to display in Case Feed.idcaseId

global26.0An identifier that allows the component to be referenced
by other components in the page.

Stringid

global26.0A Boolean value that specifies whether the component is
rendered on the page. If not specified, this value defaults to
true.

Booleanrendered

Use Case
National Foods is a food service company supplying restaurants and corporate cafeterias throughout the United States. National’s support
operations includes both call center agents who work primarily on desktop computers and field agents who work mainly on mobile
devices. The company wanted a simplified Case Feed page that would be easy for its field agents to use, and also wanted to give its call
center agents access to the full Case Feed functionality.

National used the support:CaseFeed component to recreate the standard Case Feed page for its call center agents working on
desktops, and created a custom page for its field agents working on mobile devices.

Standard Case Feed page created with support:CaseFeed

Code Sample
<apex:page standardController="Case"

extensions="CasePageSelectorExtension" showHeader="true" sidebar="false">
<apex:dynamicComponent componentValue="{!casePage}"/>

</apex:page>

The following sample shows an Apex class containing a controller extension to be used with the Visualforce page above.

public class CasePageSelectorExtension {
boolean isFieldAgent;

35

Replicating a Standard Case Feed PageCustomize Case Feed Actions with Visualforce

String caseId;

public CasePageSelectorExtension(ApexPages.StandardController controller) {
List<UserRole> roles = [SELECT Id FROM UserRole WHERE Name = 'FieldAgent'];
isFieldAgent = !roles.isEmpty() && UserInfo.getUserRoleId() == roles[0].Id;
caseId = controller.getRecord().id;

}

public Component.Apex.OutputPanel getCasePage() {
Component.Apex.OutputPanel panel = new Component.Apex.OutputPanel();
if (isFieldAgent) {

Component.Apex.Detail detail = new Component.Apex.Detail();
detail.subject = caseId;
panel.childComponents.add(detail);

} else {
Component.Support.CaseFeed caseFeed = new Component.Support.CaseFeed();
caseFeed.caseId = caseId;
panel.childComponents.add(caseFeed);

}
return panel;

}
}

Create Custom Actions

You can create Visualforce pages to use as custom actions in Case Feed. For example, you can create a Map and Local Search action that
lets agents look up the customer’s location and find nearby service centers.

You can use any Visualforce page that uses the standard case controller as a custom action.

Use Case
Viaggio Italiano is a boutique travel agency specializing in tours of Italy. The company tracks multiple details for each client, including
flights, ground transportation specifics, dietary preferences, and itineraries. Viaggio Italiano’s agents needed the ability to create long
case comments but were limited to 1000 characters for standard case notes. The company wanted a way to bypass this limit.

Viaggio Italiano used Visualforce to create a page that includes the ability to post a case comment, which can be up to 4000 characters
long. The company then added the page as a custom action by editing the Case Feed page layout.

36

Create Custom ActionsCustomize Case Feed Actions with Visualforce

Code Samples
The following code sample shows a custom Post Case Comment action for an organization that doesn’t have actions in the publisher
enabled, or that has actions in the publisher enabled but uses the Case Feed Settings page, not the page layout editor, to choose and
configure the actions in the Case Feed publisher.

<apex:page standardcontroller="Case"
extensions="CaseCommentExtension" showHeader="false">
<apex:includeScript value="/support/api/26.0/interaction.js"/>
<div>

<apex:form >
<!-- Creates a case comment and on complete notifies the Case Feed page

that a elated list and the feed have been updated -->
<apex:actionFunction action="{!addComment}" name="addComment" rerender="out"

oncomplete="sforce.interaction.entityFeed.refreshObject('{!case.id}',
false, true, true);"/>
<apex:outputPanel id="out" >

<apex:inputField value="{!comment.commentbody}" style="width:98%;
height:160px;" />

</apex:outputPanel>
</apex:form>

<button type="button" onclick="addComment();" style="position:fixed; bottom:0px;

right:2px; padding: 5px 10px; font-size:13px;" id="cpbutton" >Post Case Comment
</button>

</div>
</apex:page>

This is the code to use for the custom Post Case Comment action if your organization has actions in the publisher enabled and you’ve
opted to use the page layout editor to choose and configure actions in the Case Feed publisher.

<apex:page standardcontroller="Case"
extensions="CaseCommentExtension" showHeader="false">
<!-- Uses publisher.js rather than interaction.js -->
<apex:includeScript value="/canvas/sdk/js/28.0/publisher.js"/>
<div>

<apex:form >
<!-- Creates a case comment and on complete notifies the Case Feed page

that a related list and the feed have been updated -->
<apex:actionFunction action="{!addComment}" name="addComment" rerender="out"

<!-- Different oncomplete function using publisher.js -->
oncomplete="Sfdc.canvas.publisher.publish(
{name : 'publisher.refresh', payload :
{feed: true, objectRelatedLists: {}}});"/>
<apex:outputPanel id="out" >

<apex:inputField value="{!comment.commentbody}" style="width:98%;
height:160px;" />

</apex:outputPanel>
</apex:form>

<button type="button" onclick="addComment();" style="position:fixed; bottom:0px;

right:2px; padding: 5px 10px; font-size:13px;" id="cpbutton" >Post Case Comment
</button>

37

Create Custom ActionsCustomize Case Feed Actions with Visualforce

</div>
</apex:page>

The following sample shows an Apex class containing a controller extension to be used with either version of the Visualforce page above.

public with sharing class CaseCommentExtension {
private final Case caseRec;
public CaseComment comment {get; set;}

public CaseCommentExtension(ApexPages.StandardController controller) {
caseRec = (Case)controller.getRecord();
comment = new CaseComment();
comment.parentid = caseRec.id;

}

public PageReference addComment() {
insert comment;
comment = new CaseComment();
comment.parentid = caseRec.id;
return null;

}
}

Additional Steps
After creating a Visualforce page, make it available to users.

First, give profiles access to the page:

1. From Setup, enter Visualforce Pages in the Quick Find box, then select Visualforce Pages.

2. Click Security next to the name of the page you created.

3. Choose the profiles you want to be able to access the page.

4. Click Save.

Then include the page as a custom action. If you’re using the Case Feed Settings page to choose and configure actions:

1. From the object management settings for cases, go to Page Layouts.

2. How you access the Case Feed Settings page depends on what kind of page layout you’re working with..

• For a layout in the Case Page Layouts section, click Edit, and then click Feed View in the page layout editor.

• For a layout in the Page Layouts for Case Feed Users section, click the down arrow and choose Edit feed view. (This
section appears only for organizations created before Spring ’14.)

3. In Custom Actions, click + Add a Visualforce page.

4. Choose the page you want to add.

5. Specify the height of the action. For the best appearance, we recommend a height of 200 pixels.

6. In Select Actions, move the custom action from Available to Selected.

7. Click Save.

If you’ve opted to use the page layout editor to choose and configure actions, you first need to create the custom action:

1. From the object management settings for cases, go to Buttons, Links, and Actions.

2. Click New Action.

38

Create Custom ActionsCustomize Case Feed Actions with Visualforce

3. Select Custom Visualforce.

4. Select the Visualforce page you created, then specify the height of the action window. (The width is fixed.)

5. Type a label for the action. This is the text users will see for the action in the publisher.

6. If necessary, change the name of the action.

7. Type a description for the action. The description appears on the detail page for the action and in the list on the Buttons, Links, and
Actions page. The description isn’t visible to your users.

8. Optionally, click Change Icon to select a different icon for the action. This icon appears only when you use the action through the
API.

Then add the action to a page layout:

1. From the object management settings for cases, go to Page Layouts.

2. How you access the page layout editor depends on what kind of page layout you’re working with.

• For a layout in the Case Page Layouts section, click Edit, and then click Feed View in the page layout editor.

• For a layout in the Page Layouts for Case Feed Users section, click the down arrow and choose Edit detail view. (This
section appears only for organizations created before Spring ’14.)

3. Click Quick Actions in the palette.

4. Drag the action from the palette to the Quick Actions in the Salesforce Classic Publisher section.

5. Click Save.

SEE ALSO:

Salesforce Help: Find Object Management Settings

39

Create Custom ActionsCustomize Case Feed Actions with Visualforce

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

OTHER RESOURCES

In addition to this guide, there are other resources available for you as you learn how to use the Salesforce Classic Publisher JavaScript
API and Lightning Quick Action JavaScript API.

Use these resources to learn more about Aura components, Visualforce, and Case Feed.

• Lightning Aura Components Developer Guide

• Visualforce Developer Guide

40

https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/intro_framework.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.pages.meta/pages/

	Get Started
	How are the APIs Different?
	API Parity

	Work with the APIs
	Quick Action API
	Considerations
	getAvailableActions
	getAvailableActionFields
	getCustomAction
	getSelectedActions
	invokeAction
	refresh
	selectAction
	setActionFieldValues

	Publisher API

	Customize with Visualforce
	Layout and Appearance
	Email Action
	Portal Action
	Log a Call Action
	Article Tool
	Replicate a Case Page
	Create Custom Actions

	Other Resources

