salesforce

Publisher and Quick Action
Developer Guide

Salesforce, Summer ‘25

© Copyright 2000-2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc,, as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

GET STARTED e 1
HOW ARE THE APIS DIFFERENT? 2
APl ANy . o e 3
WORKWITHTHEAPIS e 4
Quick Acon APl . .o e 4
CoNSIAEratioNS .« . . . oo 6
getAvailableActions e 7
getAvailableActionFields e 8
gefCUSIOMACHION e 9
getSelectedACHoNS e 9
INVOKEACHON 10
=3 = o 10
SEIECHACHON . . . 10
setActionFieldValues n
PUbliSher APl . . . e 12
CUSTOMIZEWITH VISUALFORCE, 18
Layout and APPEAIANCE ottt e et e e e e e 19
Emdil ACHON . .o e 25
Portal ACHON 27
Log a Call ACHON . . . oo 29
Article OOl . . . o 32
Replicate @ Case PAQe oottt e e 34
Create CUSIOM ACHONS ot o e e e e e e e e e 36

OTHERRESOURCES i 40

GET STARTED WITH THE PUBLISHER AND QUICK ACTION
APIS

Create custom components to interact with the actions on pages in Salesforce Classic and Lightning EDITIONS
Experience apps. Using Aura components, Visualforce, and Apex, you can customize your app’s

experience, including the case feed. For example, you can use a custom component to let users Available in- Salesforce
send an email with a Knowledge article. Classic and Lightning

The Salesforce Classic Publisher JavaScript APIs, also known as the Case Feed Publisher APIs, and Experience
the Lightning Quick Action JavaScript APIs both interact with page actions. The Publisher APIs work
with Visualforce components and pages to interact with publisher actions. The Quick Action APIs
are called by the 1ightning:quickActionAPI component to interact with quick actions.

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,

@ Nofte: Starting with APl version 43.0 of the Publisher API, the methods used in Visualforce and Developer Edifions
components work in Lightning Experience. Just point to the latest version of the Publisher
API script in your Visualforce pages.

To use this guide, it helps if you have a basic familiarity with JavaScript, Visualforce, Apex, Aura components, and the Salesforce user
interface.

SEE ALSO:
How Are the Publisher and Quick Action APIs Different?
Method Parity Between the Publisher APl and the Quick Action API
Quick Action APIs in Lightning Experience
Publisher APIs in Salesforce Classic

Customize Case Feed Actions with Visualforce

HOW ARE THE PUBLISHER AND QUICK ACTION APIS
DIFFERENT?

The user interface in your org can dictate which development tools you can use to interact with actions. In Salesforce Classic, you use
the Salesforce Classic Publisher JavaScript APIs with Visualforce components to interact with actions. In Lightning Experience, you use
the lightning:quickActionAPI component to call the Lightning Quick Action JavaScript APIs to interact with actions.

Different How?

Implementation

Supported Actions, Apps,
and Pages

Available Methods

Lightning Experience and
Salesforce Classic Support

Salesforce Classic Publisher JavaScript APIs

To implement, load the publisher script in your
Visualforce page or component. For example:

<script
type="'text/javascript'

src="/canvas/sdk/js/43.0/publisher.js'/>

Then you can reference the Publisher APIs through
the sfdc.canvas.publisher object. For
example:

Sfdc.canvas.publisher.selectAction ({...})

Works with any quick action on a record page in
Salesforce Classic apps for objects that are
feed-enabled. Supports apps with standard
navigation and console navigation.

Provides the following methods:

e publisher.customActionMessage
e publisher.invokeAction

e refresh

e publisher.selectAction

e publisher.setActionlnputValues

Works in Salesforce Classic and Lightning Experience.

Tip: Starting with APl version 43.0 of the
Salesforce Classic JavaScript Publisher API, the
methods used in Visualforce components and

Lightning Quick Action JavaScript APls

To implement, use the component
lightning:quickActionAPT inyourcustom
Aura component. For example:

<aura:component
inplements="flexipage:availableForRecordHome"
description="My Aura component">

<lightning:quickActionAPI
aura:id="quickActionAPI"
/>

</aura:component>

Then you can reference the Quick Action APIs in your
controller code.

Works with any quick actions on arecord page in any
Lightning Experience app. Supports apps with
standard navigation and console navigation.

Provides the following methods:
e getAvailableActions

e getAvailableActionFields

e getCustomAction

e getSelectedActions

e invokeAction

e refresh

e selectAction

e setActionFieldValues

Works only in Lightning Experience.

0 Tip: Before implementing, review the Quick
Action APl Considerations.

How Are the Publisher and Quick Action APIs Different?

Method Parity Between the Publisher API and the Quick Action

Different How? Salesforce Classic Publisher JavaScript APIs Lightning Quick Action JavaScript APIs

pages workin Lightning Experience. Just point
to the latest version of the Publisher APl script

in your Visualforce pages.

<script

src="/canvas/sdk/js/43.0/publisher.js"

type="text/javascript">

</script>

@ Nofe: The portalPostFields input
value is not supported in Lightning

Experience.

IN THIS SECTION:

Method Parity Between the Publisher APl and the Quick Action API
The Lightning Quick Action JavaScript APl allows you to interact with actions within Aura components similar to how the Salesforce
Classic Publisher JavaScript APl allows you to interact with publisher actions within Visualforce pages.

Method Parity Between the Publisher APl and the Quick Action API

The Lightning Quick Action JavaScript APl allows you to interact with actions within Aura components similar to how the Salesforce
Classic Publisher JavaScript APl allows you to interact with publisher actions within Visualforce pages.

This table shows which Quick Action API methods map to Publisher APl methods.

Quick Action APl Method (in Aura Component)
getAvailableActions

getAvailableActionFields

getCustomAction

getSelectedActions

invokeAction

refresh

selectAction

setActionFieldValues

Publisher APl Method (in Visualforce)
N/A

N/A

customActionMessage

N/A

invokeAction

refresh

selectAction

setActionInputValues

API

WORK WITH THE QUICK ACTION AND PUBLISHER APIS

The Lightning Quick Action JavaScript APl and the Salesforce Classic Publisher JavaScript APl both let you interact with actions. If you're
building out Aura components in Lightning Experience, use the Quick Action API. This APl can interact with all quick actions on a record
page. If you're writing Visualforce pages in Salesforce Classic, use the Publisher API. This APl can interact with any quick actions on record

pages in Salesforce Classic apps for objects that are feed-enabled.

IN THIS SECTION:
Quick Action APIs in Lightning Experience

A lightning:quickActionAPI component allows you to access methods for programmatically controlling quick actions
on record pages. This component is supported in Lightning Experience and supports utility pop-out. This component requires API

version 43.0 and later.

Publisher APIs in Salesforce Classic

The Salesforce Classic Publisher JavaScript API lets your Visualforce pages and components interact with actions you've added to a
record page in a Salesforce Classic app for objects that are feed-enabled. The Publisher APl works in Salesforce Classic apps with
standard navigation and console navigation. For example, you could develop a component that generates customized, pre-written
text, adds that text to a new post in the Case Feed portal action, and submits the post to the portal, all with one click.

Quick Action APIs in Lightning Experience

A lightning:quickActionAPI component allows you to access methods for
programmatically controlling quick actions on record pages. This component is supported in
Lightning Experience and supports utility pop-out. This component requires API version 43.0 and
later.

For example, if you have a custom Aura component that displays Knowledge articles, you can use
the 1ightning:quickActionAPI componenttoattachand sendaKnowledge article from
your custom component using the Email quick action on the case record page.

Toaccess these methods, create aninstance ofthe 1ightning:quickActionAPI component
inside your Aura component or page and assign an aura: id attribute to it.

<lightning:quickActionAPI aura:id="quickActionAPI"/>

This component provides similar functionality to the Publisher APIs in Salesforce Classic.

Sample Code

EDITIONS

Available in: Lightning
Experience

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

This example creates two buttons that interact with the Update Case quick action on a case record page in Lightning Experience. The
controller code uses the following Quick Action API methods: selectAction, setActionFieldValues, and invokeAction.

Component code:

<aura:component implements="flexipage:availableForRecordHome" description="My Lightning

Component">
<lightning:quickActionAPI aura:id="quickActionAPI" />

Work with the Quick Action and Publisher APIs Quick Action APIs in Lightning Experience

<div>
<lightning:button label="Select Update Case Action"
onclick="{!c.selectUpdateCaseAction}"/>
<lightning:button label="Update Case Status Field"
onclick="{!c.updateCaseStatusAction}"/>
</div>
</aura:component>

Controller code:

({

selectUpdateCaseAction : function(cmp, event, helper) {
var actionAPI = cmp.find("quickActionAPI");
var args = { actionName :"Case.UpdateCase" };

actionAPI.selectAction (args) .then (function (result) {
// Action selected; show data and set field values
}) .catch (function (e) {
if (e.errors) {
// If the specified action isn't found on the page,
// show an error message in the my component

by

updateCaseStatusAction : function(cmp, event, helper) {
var actionAPI = cmp.find("quickActionAPI");
var fields = { Status : { value : "Closed"},
Subject : { value : "Sets by lightning:quickActionAPI component"
}y
accountName : { Id : "accountId" } };
var args = { actionName : "Case.UpdateCase",
entityName : "Case",
targetFields : fields };
actionAPI.setActionFieldValues (args) .then (function() {

actionAPI.invokeAction (args);
}) .catch (function(e) {
console.error (e.errors);
1)

IN THIS SECTION:

Quick Action API Considerations

Before working with the Lightning Quick Action JavaScript APl methods, review some considerations that might impact your
implementation.

getAvailableActions

Allows custom components to get a list of the available actions on a record page.
getAvailableActionFields

Allows custom components to get a list of the available fields for a specific action on a record page.
getCustomAction

Allows custom components to access a custom quick action and pass data or messages to it.

Work with the Quick Action and Publisher APIs Quick Action API Considerations

getSelectedActions
Allows custom components to access selected quick actions on a record page.

invokeAction
Allows custom components to save or submit the quick action on a record page.

refresh
Refreshes the current record page.

selectAction
Allows custom components to select and focus on a quick action on a record page.

setActionFieldValues

Allows custom components to select a quick action on a record page and then specify field values for that action.

SEE ALSO:
Lightning Component Library: lightning:quickActionAPI
Lightning Components Developer Guide

Quick Action API Considerations

Before working with the Lightning Quick Action JavaScript APl methods, review some considerations that might impact your
implementation.

O Tip: The Lightning Quick Action JavaScript APIs can only interact with quick actions that are targetable on the page. Review the
following support.
e Targetable: An action that displays in the highlights panel, including the dropdown action overflow
e Targetable: An action that displays in the publisher, including the More overflow
e Targetable: An action that's nested in an accordion component section or tab that's expanded by default
e Not targetable: An action that's nested in an accordion component section or tab that’s not expanded by default*
*The action becomes targetable after a user opens the accordion section or tab containing the action.

If you use the Lightning Quick Action JavaScript APIs in custom code in a Lightning app, the targeted quick actions must be visible
on the page. If you target an action that isn't visible on the page, it fails.

The Quick Action APIs work with most action types.

Action Type Supported? Notes
Create a Record Yes Supported in all Lightning apps, on any object.
Custom Visualforce Yes Supported in all Lightning apps, on any object.

Note: To work with these action types, use the getCustomAction
method. Other methods aren’t supported for this action type.

Flow No Results in error.

Log a Call Yes Supported in all Lightning apps, on any object.

https://developer.salesforce.com/docs/component-library/bundle/lightning:quickActionAPI/documentation
https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/intro_framework.htm

Work with the Quick Action and Publisher APIs getAvailableActions

Action Type Supported? Notes
Aura Component Yes Supported in all Lightning apps, on any object.

Note: To work with these action types, use the getCustomAction
method. Other methods aren't supported for this action type.

Send Email Yes Supported in all Lightning apps, on any object.

Update a Record Yes Supported in all Lightning apps, on any object.

The 1ightning:quickActionAPI component supports utility popout. However, the getCustomAction method doesn’t
work with utility popout yet. The Salesforce Classic Publisher APIs also support utility popout if you place them in a Visualforce page
that's used in the utility bar. The customActionMessage doesn't support utility popout either.

The Quick Action APIs don't support the following items.

e Opportunity products

e Knowledge articles

e Crew Size field on the Service Crew object

e Social quick action in the case feed publisher provided with Social Customer Service

e Experience Cloud sites—the 1ightning:quickActionAPI component doesn't workin Experience Cloud sites

getAvailableActions

Allows custom components to get a list of the available actions on a record page.

Arguments

None.

Sample Code

getAvailableActions : function(cmp, event, helper) {
var actionAPI = cmp.find("quickActionAPI");
actionAPI.getAvailableActions () .then (function (result) {
//Al1l available actions shown;
}) .catch (function (e) {
if (e.errors) {
//If the specified action isn't found on the page, show an error message
in the my component
}
1)

Work with the Quick Action and Publisher APIs getAvailableActionFields

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: true,

actions:
{actionName: "Case. LightningUpdateCase", recordId: "recordId", type: "QuickAction"}
{actionName: "FeedItem.TextPost", recordId: "recordId", type: "QuickAction"}

{actionName: "Case.LogACall", recordId: "recordId", type: "QuickAction"}
{actionName: "Case.SendEmail", recordId: "recordId", type: "QuickAction"}
errors: []

getAvailableActionFields

Allows custom components to get a list of the available fields for a specific action on a record page.

Arguments
Name Type Description
actionName string The name of the quick action that you want to access.

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.LogACall"

Sample Code

getAvailableActionFields : function(cmp, event, helper) {
var actionAPI = cmp.find("quickActionAPI");
var args = {actionName :"Case.LogACall", entityName:"Case" };
actionAPI.getAvailableActionFields (args) .then (function (result) {
//A11l available action fields shown for Log a Call
}) .catch (function (e) {
if (e.errors) {
//If the specified action isn't found on the page, show an error message
in the my component
}
1) i

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: true,

fields:
{fieldName: "Subject", type: "textEnumLookup"}
{fieldName: "Description", type: "TextArea"}

Work with the Quick Action and Publisher APIs getCustomAction

{fieldName: "WhoId", type: "Lookup"},
errors: []

getCustomAction

Allows custom components to access a custom quick action and pass data or messages to it.

Arguments
Name Type Description
actionName string The name of the quick action that you want to access.

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.MyCustomAction"

Sample Code

actionApi.getCustomAction (args) .then (function (customAction) {
if (customAction) {
customAction.subscribe (function (data) {
// Handle quick action message
}):
customAction.publish ({
message : "Hello Custom Action",
Paraml : "This is a parameter"
}):
}
}) .catch (function (error) {
// We can't find that custom action.

1)

Response

Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,
customAction: {
subscribe: function,
publish: function,
unsubscribe: function
}y
unavailableAction: boolean,
errors: []

getSelectedActions

Allows custom components to access selected quick actions on a record page.

Work with the Quick Action and Publisher APIs invokeAction

Arguments

None.

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,

actions: [{
actionName: "UpdateCase",
recordId: "recordId",
type: "QuickAction"

Pl

errors: []

invokeAction

Allows custom components to save or submit the quick action on a record page.

Arguments
Name Type Description
actionName string The name of the quick action that you want to access.

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.UpdateCase"

Response

Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

refresh

Refreshes the current record page.

Arguments

None.

selectAction

Allows custom components to select and focus on a quick action on a record page.

10

Work with the Quick Action and Publisher APIs setActionFieldValues

Arguments
Name Type Description
actionName string The name of the quick action that you want to access.

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.UpdateCase"

Response
Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,

unavailableAction: boolean,

targetableFields: [{
fieldName: "Status",
type: "PickList"

1

actionName: string,
errors: []

setActionFieldValues

Allows custom components to select a quick action on a record page and then specify field values for that action.

Because this method also selects the quick action, you don't need to use the selectAction method. To submit the quick action
updates, pass submitOnSuccess as true.

Arguments

Name Type Description

actionName string The name of the quick action that you want to access.

parentFields Object Optional. The fields that you want to update on the current
record. For example, if you want to set field values on the
Email quick action on the case record page, the case object
is the parent record.

targetFields Object The fields that you want to update on the quick action.

submitOnSuccess boolean Optional. Set to true if you want to save and submit the quick

action after setting the field values. Default is false.

The actionName parameter starts with the Salesforce object, followed by the quick action name. For example:

actionName: "Case.UpdateCase"

n

Work with the Quick Action and Publisher APIs

Publisher APIs in Salesforce Classic

The parentFields and targetFields objects contain a list of field names with values for each field. Each field can optionally
specify the insertion behavior using the insertType key, which can be replace (default), cursor, or begin. For example:

var parentFields = { Status: {value: "Closed"},

Subject: {value: "Case subject", insertType:
var targetFields = { ToAddress: {value: "to@to.com"},

TextBody: {value: "the text body", insertType:

We recommend that you don't use this APl with the following items:
e Read-only fields
* Encrypted fields

e Fields within social actions

Response

Returns a Promise. Success resolves to a response object. The Promise is rejected on error response.

success: boolean,
actionName: "LogACall",
unavailableAction: boolean,
targetFieldErrors: [{
Status:
Subject:
1

errors: []

{message: "error"},
{message: "error",

Publisher APIs in Salesforce Classic

"cursor"} }

"cursor"} }

The Salesforce Classic Publisher JavaScript APl lets your Visualforce pages and components interact
with actions you've added to a record page in a Salesforce Classic app for objects that are
feed-enabled. The Publisher APl works in Salesforce Classic apps with standard navigation and
console navigation. For example, you could develop a component that generates customized,
pre-written text, adds that text to a new post in the Case Feed portal action, and submits the post
to the portal, all with one click.

Use the publish method onthe Sfdc.canvas.publisher objecttoallow console
components to interact with quick actions.

O Tip: Starting with APl version 43.0 of the Salesforce Classic JavaScript Publisher AP, the
methods used in Visualforce components work in Lightning Experience. You can use Visualforce
pages in Lightning Experience through custom quick actions, or by adding it to the page in
the Lightning App Builder. Just point to the 43.0 version of the Publisher API script in your
Visualforce pages.

<script src="/canvas/sdk/js/43.0/publisher.js"
type="text/javascript"></script>

If you use the JavaScript Publisher APl methods in custom code in a Lightning app, the targeted
quick actions must be visible on the page. If you target an action thatisn't visible on the page,
it fails.

12

EDITIONS

Available in: Salesforce
Classic (not available in all
orgs)

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

Work with the Quick Action and Publisher APIs Publisher APIs in Salesforce Classic

publisher.selectAction

Description Payload Values Available Versions

Selects the specified action and actionName—The action to select. Supported values are: Available in API versions

puts itin focus. ® action name-Acreate loga call or custom Visualforce quick 290and later.

action. Forexample, action_name for a create contact action
mightbe create contact.

® Case.CaseComment—Case Feed portal action

® Case.ChangeStatus—Case Feed change status action
® Case.Email—Case Feed email action

e Case.LogACall—~Case Feed log a call action

e FeedItem.TextPost—Standard Chatter post action
(Available in APl versions 32.0 and later)

® SocialPostAPIName.SocialPost—Social postaction
(Available in API versions 32.0 and later)

Code Sample
This code snippet selects the email action and puts it in focus.

Sfdc.canvas.publisher.publish ({name:"publisher.selectAction", payload: {actionName:"Case.Email"}});

publisher.setActionInputValues

Description Payload Values Available Versions

Specifies which fields on the action actionName—The action on which fields should be populated. Available in APl versions

should be populated with specific The available field values depend on which action you specify. 290 and later.
values, and what those values are.
® emailFields—Availableon Case.Email;the standard

available fields on the Case Feed email action:
- to
= CcC
- Dbcc
- subject
- body
- template
e portalPostFields-Availableon Case.CaseComment;
the standard available fields on the Case Feed portal action:
- body

- sendEmail (boolean)

13

Work with the Quick Action and Publisher APIs Publisher APIs in Salesforce Classic

Description Payload Values Available Versions

® targetFields-—Availableon Case.ChangeStatus,
Case.LogACall, FeedItem. TextPost,and the Social
action; the standard available fields on those actions.

- On Case.ChangeStatus: commentBody
- On Case.LogACall: description
- On FeedItem.TextPost: body

Attributes on body are value and insertType
(optional). Valid values for insertType are begin, end,
cursor,and replace. The default value is replace.
(Available in APl versions 32.0 and later)

- On SocialPostAPIName.SocialPost: content
and insertType (optional). Valid values for
insertType are begin, end, cursor,and
replace . The default value is replace. (Available in
API versions 32.0 and later)

® parentFields—Availableon Case.ChangeStatus,
Case.Email,and Case.LogACall;standardand custom
fields on case. Lookup fields aren't supported.

Code Sample

This code snippet populates the fields on an email message with predefined values, and sets the status of the associated case to
Closed.

Sfdc.canvas.publisher.publish ({name:"publisher.setActionInputvalues",
payload:{actionName:"Case.Email",parentFields: {Status:{value:"Closed"}},
emailFields: {to:{value:"customer@company.com"},cc:{value:"customer2@company.com"},

bcc:{value:"supervisor@company.com"},
subject:{value:"Your Issue Has Been Resolved"},
body:{value:"Thank you for working with our support department.
We've resolved your issue and have closed this ticket, but
please feel free to contact us at any time if you encounter this
problem again or need other assistance."}}}});

This code snippet inserts the phrase “Hello World” in the body of the Post action at the current cursor position.

Sfdc.canvas.publisher.publish ({name:"publisher.setActionInputvValues",
payload: {actionName:"FeedItem.TextPost", targetFields:{body:{value:"Hello World",
insertType:"cursor"}}}});

14

Work with the Quick Action and Publisher APIs

publisher.invokeAction

Description Payload Values

Triggers the submit function (such actionName—The action on which to trigger the submit function.
as sending an email or postinga Supported actions are:

portal comment) on the specified
action.

® Case.Email

® (Case.CaseComment
® C(Case.ChangeStatus
® (Case.LogACall

® FeedItem.TextPost (Availablein APIversions 32.0 and
later)

® SocialPostAPIName.SocialPost (Availablein API
versions 32.0 and later)

Code Sample

Publisher APIs in Salesforce Classic

Available Versions

Available in APl versions
29.0 and later.

This code snippet triggers the submit function on the email action, sending an email message and generating a related feed item.

Sfdc.canvas.publisher.publish ({name:"publisher.invokeAction",
payload: {actionName:"Case.Email"}});

publisher.customActionMessage

Description Payload Values

Passes a custom eventtoacustom actionName—The Visualforce custom action to pass the event to.
action. Supported for
Visualforce-based custom actions
only.

message—The event to pass to the custom action.

Code Sample

This code snippet passes the Hello world event to the action my_custom_action.

Available Versions

Available in APl versions
29.0 and later.

Sfdc.canvas.publisher.publish ({name:"publisher.customActionMessage",

payload:{actionName:"my custom action", message:"Hello world"}});

This code snippet is what my_custom_action uses to listen to the Hello world event.

Sfdc.canvas.publisher.subscribe ([{name : "publisher.customActionMessage", onData

function(e) {alert(e.message);}}1);

publisher.refresh

Refreshes the current record page. This method has no arguments.

15

Work with the Quick Action and Publisher APIs Publisher APIs in Salesforce Classic

Use Case and Sample Code

Example: Universal Cable serves millions of phone and cable customers throughout the United States, with 4000 support agents
in call centers of varying sizes around the country. Universal wanted to make it easy for agents to access the company’s extensive
collection of articles in Salesforce Knowledge and share them with customers through email to help keep support costs in check.

Universal used the events on publish to create a custom console component that:
e Displays a list of Knowledge articles, from most recently published to oldest.
e Letsagents view an article by clicking its title.

e Letsagents add the full, formatted text of an article to a message in the Case Feed email action by clicking the Email button
in the console component.

% Email 1 LogaCall & Task @@ Post g File 2 Link gJjPoll More ~
2 Email = How to Troubleshoot Your Remote Control
g = select a Template P
Email = How do | activate my DTA
& | v||szejx]l B I B |BEE | =S E =

Is your Universal Cable remote not working? Download the user manualto
get instructions for programming it.

Introduction

Before you program it

Your remote control will automatically work with your Universal cable box. But
you'll need to program the remote for it to work with your TV. To confirm
that you have programmed your remote control, make sure your remote
can:

« Chanoe the channels on vour cable box. A
Strk Iy Remote Control won't

(B Attach Fie

This code sample shows an Apex class containing a custom controller used by the Visualforce page below.

public with sharing class KBController {
public List<FAQ kav> articles {get; set;}

public KBController () {
articles = [select knowledgearticleid, id, title, content c from FAQ kav where

publishstatus = 'Online' and language='en US' order by lastpublisheddate];

}
This code sample shows the Visualforce page that's used as the custom console component in the use case above.

<apex:page sidebar="false" controller="KBController">
<script type='text/javascript' src='/canvas/sdk/js/publisher.js'/>
<style>
.sampleTitle { background-color: #99A3AC;color:#FFFFFF; font-size:1.lem;
font-weight: bold;padding:3px 6px 3px 6px; }
.sampleHeader { }
.sampleArticlelList { min-width: 250px; padding: 8px 0 5px 0;}
.sampleUl { padding: 0; margin: 0; list-style: none;}
.samplelLi { display: block; position: relative; margin: 0;}

16

Work with the Quick Action and Publisher APIs Publisher APIs in Salesforce Classic

.sampleRow { min-height: 16px; padding: 4px 10px;}
.emailBtn { margin: lpx lpx lpx 3px; padding: 3px 8px; color: #333;
border: 1px solid #b5b5b5; border-bottom-color: #7f7f7f; background: #e8e8e9;

font-weight: bold; font-size: .9em; -moz-border-radius: 3px;
-webkit-border-radius: 3px; order-radius: 3px; }
.emailBtn:active { background-position: right -60px; border-color: #585858;
border-bottom-color: #939393; }
.sampleArticle { padding-left: 4px; padding-bottom: 2px; font-weight: bold;
font-size: lem; color: #222; 1}
.samplelLink { color: #015ba7; text-decoration: none; font-weight: bold;
font-size: .9em; }
</style>
<script>
function emailArticle (content) {
Sfdc.canvas.publisher.publish({name: 'publisher.selectAction',

payload: { actionName: 'Case.Email'}});
Sfdc.canvas.publisher.publish ({name: 'publisher.setActionInputValues',
payload: {

actionName: 'Case.Email',

emailFields: { body: { value:content, format:'richtext',6 insert: true}}
P
}
</script>
<div style="margin-left:-10px;margin-right:-10px;">
<div class="sampleTitle">Latest Articles</div>
<div class="sampleHeader" style=""></div>
<div class="sampleArticleList">
<apex:repeat value="{l!articles}" var="article">
<ul class="sampleUl">
<li class="sampleLi">
<div class="sampleRow">
<div style="display:none;" id="content {!article.id}">
<apex:outputText value="{!article.content c}" escape="false"/>
</div>
<input type="button" title="Email" value="Email" class="emailBtn"

onclick="emailArticle (document.getElementById
('content_{!article.id}').innerHTML);"/>

<a href="/{'!article.knowledgearticleid}"
title="{!article.title}" class="sampleLink">
{larticle.title}

</div>
</1li>

</apex:repeat>
</div>
</div>
</apex:page>

17

CUSTOMIZE CASE FEED ACTIONS WITH VISUALFORCE

The Salesforce-provided Case Feed Visualforce components enable you to create a customized page within a Salesforce Classic app. To
create custom Salesforce console components that interact with Case Feed actions, publish the Case Feed-related events using the
publish method onthe Sfdc.canvas.publisher objectin the Salesforce Classic Publisher JavaScript API.

@ Important: This section of the guides focuses on customizing the Case Feed in a Salesforce Classic console app. However, you
can use the Visualforce components in Salesforce Classic apps with standard navigation that use the case object, too. You can also
use the Case Feed Visualforce components in Lightning Experience. However, there are some issues with refresh for certain
Visualforce components. We recommend that you use these components in Salesforce Classic only.

Requirements

Before customizing Case Feed in the Salesforce console, make sure that:

e (ase Feed, Chatter, and feed tracking on cases are enabled in your organization.

e Your organization has at least one Salesforce console app. For more information, see Set Up a Salesforce Console App in Salesforce
Classic.

e You're familiar with developing with Visualforce. Check out the Visualforce Developer Guide for a comprehensive overview.

@ Nofte: Lookup field filters aren’t supported on any of the Case Feed Visualforce components.

Assigning Custom Pages to Users

Generally, when you create a custom Case Feed page using Visualforce, it's not possible to assign that page only to certain users while
allowing other users to see the standard Case Feed page. However, with the support:CaseFeed component, you can create a
page that replicates the standard Case Feed page, assign that page to certain users, and then create a custom page to assign to a different
set of users. See Replicating a Standard Case Feed Page for more information.

Customization Overview

Here are the Case Feed Visualforce components.

Component Name Description

apex:emailPublisher Displays and controls the appearance and functionality of the Case Feed Email action.
apex:logCallPublisher Displays and controls the appearance and functionality of the Case Feed Log a Call action.
support:caseArticles Displays and controls the appearance and functionality of the Articles tool for cases.
support:.CaseFeed Replicates the standard Case Feed page, including all standard actions, links, and buttons.
support:portalPublisher Displays and controls the appearance and functionality of the Case Feed Portal action.

18

https://help.salesforce.com/articleView?id=console2_define_app.htm&language=en_US
https://help.salesforce.com/articleView?id=console2_define_app.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.pages.meta/pages/

Customize Case Feed Actions with Visualforce Customizing the Layout and Appearance of Case Feed

In addition, the chatter:feed component has two attributes related to Case Feed.
e feedItemType: Letsyou specify how feed items are filtered.

e showPublisher:Letsyou display the Chatter publisher on a page.

Here are the Publisher JavaScript APIs.

Method Name Description

customActionMessage Passes a custom event to a custom action. Supported for Visualforce-based custom actions
only.

invokeAction Triggers the submit function (such as sending an email or posting a portal comment) on

the specified action.

selectAction Selects the specified action and puts it in focus.
refresh Refreshes the current record page.
setActionlnputValues Specifies which fields on the action should be populated with specific values, and what

those values are.

Customizing the Layout and Appearance of Case Feed

Creating a customized Case Feed page with Visualforce lets you control the overall layout and appearance, including which actions and
tools are shown and where they're located on the page. You can also include other standard and custom console components to enhance
the functionality of the page.

In addition to the four case-specific Visualforce components detailed in this guide, you can also use the chatter: feed component
to customize Case Feed. The table below lists its attributes.

chatter: feed Attributes

Attribute Name Attribute Description Required? API Access
Type Version
entityId id Entity ID of the record for which to display the feed; for Yes 25.0

example, Contact.ld

feedItemType String The feed item type on which the Entity or 25.0
UserProfileFeed is filtered. See the Type field on the
Feedltem object listing in the API Object Reference Guide
for accepted values.

id String An identifier that allows the component to be referenced 200 global
by other components on the page.

onComplete String The Javascript function to call after a post or comment 250
is added to the feed
rendered Boolean A Boolean value that specifies whether the additional 200 global

fields defined in the action layout are displayed.

19

https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/

Customize Case Feed Actions with Visualforce Customizing the Layout and Appearance of Case Feed

Attribute Naome Attribute Description Required? API Access
Type Version
reRender Object The ID of one or more components that are redrawn 250

when the result of the action method returns to the
client. This value can be a single ID, a comma-separated
list of IDs, or a merge field expression for a list or
collection of IDs.

showPublisher Boolean Displays the Chatter publisher. 250

Use Case

Acme Entertainment creates online games used by more than a million people on multiple platforms. Acme’s 1500 support agents use
desktop computers, laptops, and tablets, and the company wanted to customize the Case Feed page to standardize its look and feel

a

cross different devices. They also wanted to make it easier for agents to track case activities using filters.

Acme used these steps to create a customized Case Feed page:

1.

Using the chatter:feed component, they positioned the feed in the sidebar so the publisher and other Case Feed tools are always in
the center of the page.

They repositioned the feed filter and auto-selected default filters depending on case origin:
e Ifthe case origin is email,. the default filter is Emails.
e Ifthe case origin is phone, the default filter is Call Logs.

e Ifthe case origin is Web, the default filter is Portal Answers.

In apex:emailPublisher,apex:logCallPublisher,and support:portalPublisher,they made the width
percentage-based so the publisher expands and contracts as the size of the page changes, making its appearance more consistent
across different screen sizes.

4. Theychanged the orientation of the publisher action tabs from their standard left-side vertical arrangement to a horizontal arrangement

at the top of the page.

¢ 00001002 (" 00001003 @ + M
Customer Trouble Downloading Game Status New E
Jon Amos) No Description Priority Medium 3
Global Media Case Owner Admin User b |
(905) 555-1212

a4 [] +

| FeedFiters: Emails - o

£, Cese Yae [Scrt by Post Date [
i — 2
¢ 00001004 e
Admin User sentan emal. []
m Email Customer Log Call Portal Answer Case Details) To info@salesforce.co
m Subject: Trouble
+ Email 5 select a Template Downloading Game
HiJon,
Write email to the customer..
e an ema customer Thanks for letting us
m know about the problem
{ atacn Fie ‘Send Email you had wihen trying to

download one of our
games.

Can you let me know
wihich game you had
trouble with? Also, were
you downloading it from
the Acme Entertainment
site or from another
website? ... lore

E il Reply | | Reply Al il

« i » < [v

20

Customize Case Feed Actions with Visualforce Customizing the Layout and Appearance of Case Feed

Code Sample
This code sample shows a Visualforce page with custom Email, Portal, Log a Call, and Case Details tabs.

<apex:page standardController="Case'">

<!-- Repositions publisher tabs to a horizontal arrangement on top of the page -->
<ul class="demoNav" style="list-style: none; overflow: hidden">
<li style="float:left">
<a id="custom email tab" class="selected" href="javascript:void(0);"
onclick="getDemoSidebarMenu () .selectMenultem('custom email tab');">
Email Customer

</1li>
<li style="float:left">
<a id="custom log call tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu () .selectMenultem('custom log call tab');">
Log Call

</1i>
<li style="float:left">
<a id="custom portal tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu () .selectMenultem('custom portal tab');">
Portal Answer

</1li>
<li style="float:left">
<a id="custom detail tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu () .selectMenultem('custom detail tab');">
Case Details

</1li>

<!-- Email action -->

<div id="custom email pub vf">
<apex:emailPublisher entityId="{!case.id}"

width="80%"
emailBodyHeight="10em"
showAdditionalFields="false"
enableQuickText="true"
toAddresses="{!case.contact.email}l"
toVisibility="readOnly"
fromAddresses="support@cirrus.com"
onSubmitSuccess="refreshFeed();" />

</div>

<!-- Log call action -->
<div id="custom log call vf" style="display:none">
<apex:logCallPublisher entityId="{!case.id}"

width="80%"
logCallBodyHeight="10em"
reRender="demoFeed"
onSubmitSuccess="refreshFeed();" />

</div>

21

Customize Case Feed Actions with Visualforce Customizing the Layout and Appearance of Case Feed

<!-- Portal action -->
<div id="custom portal vf" style="display:none">
<support:portalPublisher entityId="{!case.id}"
width="80%"
answerBodyHeight="10em"
reRender="demoFeed"
answerBody="Dear {!Case.Contact.FirstName},
\n\nHere is the solution to your case.\n\nBest regards, \n\nSupport"
onSubmitSuccess="refreshFeed();" />
</div>

<!-- Case detail page -->
<div id="custom detail vf" style="display:none">

<apex:detail inlineEdit="true" relatedList="true" rerender="demoFeed" />
</div>

<!-- Include library for using service desk console API -->
<apex:includeScript value="/support/console/25.0/integration.js"/>

<!-- Javascript for switching publishers -->
<script type="text/javascript">
function DemoSidebarMenu () {

var menus = {"custom email tab" : "custom email pub vf",
"custom log call tab" : "custom log call vf",
"custom portal tab" : "custom portal vf",
"custom detail tab" : "custom detail vf"};

this.selectMenulItem = function (tabId) {
for (var index in menus) {
var tabEl = document.getElementById (index) ;

var viEl = document.getElementById (menus|[index]) ;
if (index == tabId) {
tabEl.className = "selected";
vfEl.style.display = "block";
} else {
tabEl.className = "";
vfEl.style.display = "none";

}i
}
var demoSidebarMenu;
var getDemoSidebarMenu = function() {
if (!demoSidebarMenu) {
demoSidebarMenu = new DemoSidebarMenu () ;
}
return demoSidebarMenu;
i
</script>

<!-- Javascript for firing event to refresh feed in the sidebar -->
<script type="text/javascript">

22

Customize Case Feed Actions with Visualforce Customizing the Layout and Appearance of Case Feed

function refreshFeed () {
sforce.console.fireEvent
('Cirrus.samplePublisherVFPage.RefreshFeedEvent', null, null);
}
</script>
</apex:page>

The following sample shows an Apex class containing a controller extension to be used with the Visualforce page above.

public class MyCaseExtension {
private final Case mycase;
private String curFilter;

public MyCaseExtension (ApexPages.StandardController stdController) ({
this.mycase = (Case)stdController.getRecord();

// initialize feed filter based on case origin

if (this.mycase.origin.equals('Email')) {
curFilter = 'EmailMessageEvent';

} else if (this.mycase.origin.equals ('Phone')) {
curFilter = 'CallLogPost';

} else if (this.mycase.origin.equals('Web')) {
curFilter = 'CaseCommentPost';

public String getCurFilter () {
return curFilter;

public void setCurFilter (String c) {
if (c.equals('All'")) {
curFilter = null;

} else {
curFilter = c;
}
}
public PageReference refreshFeed() {

return null;

}

This sample shows a Visualforce page with custom feed filters and Chatter feed for cases. You can use this page in the sidebar of a
Salesforce console.

<apex:page standardController="Case" extensions="MyCaseExtension">

<!-- Feed filter -->
<div>
Feed Filters:
<select onchange="changeFilter (this.options[selectedIndex].value); ;"
id="custom filterSelect">
<option value="All" id="custom all option">All</option>
<option value="EmailMessageEvent"

23

Customize Case Feed Actions with Visualforce Customizing the Layout and Appearance of Case Feed

id="custom email option">Emails</option>
<option value="CaseCommentPost"
id="custom web option">Portal Answers</option>
<option value="CallLogPost"
id="custom phone option">Call Logs</option>
</select>
</div>

<apex:form >
<!-- actionFunction for refreshing feed when the feed filter is updated -->
<apex:actionFunction action="{!refreshFeed}" name="changeFilter"
reRender="custom demoFeed" immediate="true" >
<apex:param name="firstParam" assignTo="{!curFilter}" value="" />
</apex:actionFunction>

<!-- actionFunction for refreshing feed when there is an event fired for
updating the feed -->
<apex:actionFunction action="{!refreshFeed}" name="updateFeed"
reRender="custom demoFeed" immediate="true" />
</apex:form>

<!-- Chatter feed -->
<chatter:feed entityId="{!case.id}" showPublisher="false"
feedItemType="{!curFilter}" id="custom demoFeed" />

<!-- Include library for using service desk console API -->
<apex:includeScript value="/support/console/25.0/integration.js"/>

<!-- Javascript for adding event listener for refreshing feed -->
<script type="text/javascript">

var listener = function (result) {
updateFeed() ;
}i

// add a listener for the 'Cirrus.samplePublisherVFPage.RefreshFeedEvent'
event type
sforce.console.addEventListener ('Cirrus.samplePublisherVFPage.RefreshFeedEvent',

listener);
</script>
<!-- Javascript for initializing select option based on case origin -->
<script type="text/javascript">
window.onload = function() {
var caseOrigin = "{!case.origin}";
if (!caseOrigin) {
caseOrigin = "all";
} else {
caseOrigin = caseOrigin.toLowerCase();

}

var selectElem = document.getElementById('custom ' + caseOrigin + ' option');

if (selectElem) {
selectElem.selected = true;

24

Customize Case Feed Actions with Visualforce

}
}
</script>

</apex:page>

Customizing the Email Action

Customizing the Email Action

The Email action in Case Feed lets support agents connect with customers via email. With the apex : emailPublisher component,

you can:

e Customize the dimensions of the Email action.

e Define defaults and visibility for fields.

e Define the visibility and label of the send button.

e Define onSubmit functionality.

e Support email templates and attachments in the action.

@ Nofe: The apex:emailPublisher component closes a task in Open Activities created by Email-to-Case inbound email.

apex:emailPublisher Afiributes

Attribute Name

autoCollapseBody

bccVisibility

ccVisibility

emailBody

emailBodyFormat

emailBodyHeight

enableQuickText

entityId

expandableHeader

fromAddresses

Attribute
Type
Boolean
String

String

String
String

String

Boolean

Boolean

String

Description Requied? API Access
Version

A Boolean value that specifies whether the email body 25.0

collapses to a small height when it is empty.

The visibility of the BCC field can be 'editable’, 250

‘editableWithLookup', 'readOnly’, or 'hidden'.

The visibility of the CC field can be 'editable’, 250

‘editableWithLookup', 'readOnly’, or 'hidden'.

The default text value of the email body. 250

The format of the email body can be 'text’, 'HTML', or 25.0

‘textAndHTML'.

The height of the email body in em. 25.0

A Boolean value that specifies whether the Quick Text 25.0

autocomplete functionality is available in the action.

Entity ID of the record for which to display the Email ~ Yes 250

action. In the current version, only Case record ids are

supported.

A Boolean value that specifies whether the header is 250

expandable or fixed.

Arestricted set of from addresses. 25.0

25

Customize Case Feed Actions with Visualforce Customizing the Email Action

Attribute Name Attribute Description Requied? API Access
Type Version
fromVisibility String The visibility of the From field can be 'selectable’ or 25.0
‘hidden'.
id String An identifier that allows the component to be 250 Global
referenced by other components on the page.
onSubmitFailure String The JavaScript invoked if the email is not successfully 25.0
sent.
onSubmitSuccess String The JavaScript invoked if the email is successfully sent. 25.0
rendered Boolean A Boolean value that specifies whether the component 25.0 Global

is rendered on the page. If not specified, this value
defaults to true.

reRender Object The ID of one or more components that are redrawn 25.0
when the email is successfully sent. This value can be
asingle ID, a comma-separated list of IDs, or a merge
field expression for a list or collection of IDs.

sendButtonName String The name of the send button in the Email action. 250

showAdditionalFields Boolean A Boolean value that specifies whether the additional 25.0
fields defined in the action layout are displayed.

showAttachments Boolean A Boolean value that specifies whether the attachment 25.0
selector is displayed.

showSendButton Boolean A Boolean value that specifies whether the send button 250
is displayed.
showTemplates Boolean A Boolean value that specifies whether the template 250

selector is displayed.
subject String The default value of the Subject. 250

subjectVisibility String The visibility of the Subject field can be 'editable’, 25.0
'readOnly’, or 'hidden'.

submi tFunctionName String The name of a function that can be called from 25.0
JavaScript to send the email.

title String The title displayed in the Email action header. 25.0
toAddresses String The default value of the To field. 250
toVisibility String The visibility of the To field can be 'editable’, 25.0

‘editableWithLookup', 'readOnly’, or 'hidden'.

width String The width of the action in pixels (px) or percentage (%). 25.0

26

Customize Case Feed Actions with Visualforce

Use Case

Cirrus Computers, a multinational hardware company with technical support agents in 10 support centers throughout the world, wanted
to customize the Email action to increase standardization in outgoing messages and to limit the fields agents could edit.

Cirrus used the apex:emailPublisher component to create an Email action that:

Has read-only To and Subject fields.

Customizing the Portal Action

Pre-populates those fields, ensuring consistency and increasing agents’ efficiency when writing email messages.

= Case

" 00001053

Eg=17]

Email Customer Log Call Portal Answer Case Details
— Email 5 select a Template
o [o wom[5]
[3 o [o@acms con |
Agdce
subject [vour Cimus supporteuest [2) |

Virite an email to the customer.

{} Attach File

[send Email |

Code Sample

<apex:page standardController="Case" >

<apex:emailPublisher entityId="{!case.id}"
fromVisibility="selectable"
subjectVisibility="readOnly"
subject="Your Cirrus support request"
toVisibility="readOnly"
toAddresses="{!case.contact.email}"
emailBody=""/>

</apex:page>

Customizing the Portal Action

The Portal action makes it easy for support agents to compose and post messages to customers on portals. With the
support:portalPublisher component, you can:

Customize the dimensions of the Portal action.
Define a default value for the portal message text.
Define the visibility and label of the submit button.

Define onSubmit functionality.

support:portalPublisher Afiributes

Aftribute Name

answerBody

Attribute Type Description

String

27

The default text value of the answer body.

Access

Requied? API

Version

250

Customize Case Feed Actions with Visualforce Customizing the Portal Action

Attribute Name Attribute Type Description Requied? API Access
Version

answerBodyHeight String The height of the answer body in ems (em). 250

autoCollapseBody Boolean A Boolean value that specifies whether the answer 25.0

body is collapsed when it is empty.

entityId id Entity ID of the record for which to display the Portal Yes 250
action. In the current version, only Case record ids are
supported.
id String An identifier that allows the component to be 250 Global

referenced by other components on the page.

onSubmitFailure String The JavaScript invoked if the answer failed to be 250
published to the portal.

onSubmitSuccess String The JavaScript invoked if the answer was successfully 250
published to the portal.

rendered Boolean ABoolean value that specifies whether the component 250 Global
is rendered on the page. If not specified, this value
defaults to true.

reRender Object The ID of one or more components that are redrawn 250
when the answer is successfully published. This value
can be asingle ID, a comma-separated list of IDs, or a
merge field expression for a list or collection of IDs.

showSendEmailOption Boolean A Boolean value that specifies whether the option to 25.0
send email notification should be displayed.

showSubmitButton Boolean A Boolean value that specifies whether the submit 250
button should be displayed.

submitButtonName String The name of the submit button in the portal action. 25.0

submitFunctionName String The name of a function that can be called from 250
JavaScript to publish the answer.

title String The title displayed in the portal action header. 250
width String The width of the action in pixels (px) or percentage 250
(%).
Use Case

The Wellness Group is a healthcare company with 300 support agents in three tiers of support. Wellness wanted to customize the Portal
action to reduce the amount of standard text, such as greetings and closings, agents had to type when replying to customers, which
would help increase agents' efficiency and improve the standardization of portal communications.

Wellness used the support:portalPublisher component to create a Portal action that:

28

Customize Case Feed Actions with Visualforce Customizing the Log a Call Action

* Pre-populates the message body with a standard opening (“Hello {name}, and thanks for your question.”) and a standard closing
(“Please let me know if there’s anything else | can do to help.”).

e Letsagents edit the pre-populated text if needed.

& Case

¢~ 00001004

Email Customer Log Call Portal Answer Case Details

Portal

Hello Jon, and thanks for your question

Please let me know if there's anything else | can do to help.

Send Email Hotification [Answer Customer |

Code Sample

<apex:page standardController="Case">
<support:portalPublisher entityId="{!case.id}" width="800px"
answerBody="Hello {!Case.Contact.FirstName}, and thanks for your question.
\n\nPlease let me know if there's anything else I can do to help.">
</support:portalPublisher>
</apex:page>

Customizing the Log a Call Action

The Log a Call action lets support agents record notes and information about customer calls. With the apex: 1ogCallPublisher,
you can:

e Customize the appearance and dimensions of the Log a Call action.
e Specify which fields are displayed in the action.
e Define the visibility and label of the submit button.

e Define onSubmit functionality.

apex:logCallPublisher Atfiributes

Attribute Name Attribute Type Description Requied? API Access
Version
autoCollapseBody Boolean A Boolean value that specifies whether the Log a 25.0

Call body is collapsed when it is empty.

entityId id Entity ID of the record for which to display the Log ~ Yes 250
aCallaction. In the current version, only Case record
ids are supported.

id String An identifier that allows the component to be 25.0 Global
referenced by other components on the page.

29

Customize Case Feed Actions with Visualforce

Attribute Name Attribute Type Description Requied? API Access
Version
logCallBody String The initial text value of the Log a Call body when 250
the action is rendered.
logCallBodyHeight String The height of the Log a Call body in em. 250
onSubmitFailure String The JavaScript invoked if the call is not successfully 250
logged.
onSubmitSuccess String The JavaScript invoked if the call is successfully 250
logged.
rendered Boolean A Boolean value that specifies whether the 250 Global
component is rendered on the page. If not specified,
this value defaults to true.
reRender Object The ID of one or more components that are redrawn 250
when the call is successfully logged. This value can
be a single ID, a comma-separated list of IDs, or a
merge field expression for a list or collection of IDs.
showAdditionalFields Boolean ABoolean value that specifies whether the additional 250
fields defined in the action layout should be
displayed.
showSubmitButton Boolean A Boolean value that specifies whether the submit 250
button should be displayed.
submitButtonName String The name of the submit button in the Log a Call 250
action.
submitFunctionName String The name of a function that can be called from 250
JavaScript to publish the call log.
title String The title displayed in the Log a Call action header. 250
width String The width of the action in pixels (px) or percentage 250
(%).
Use Case

Customizing the Log a Call Action

Stellar Wireless is a mobile phone provider with several high-volume call centers, where agents are rewarded both for solving customers’
issues quickly and for keeping detailed, accurate records of customer interactions. Stellar wanted to customize the Log a Call action so
it was open and available to agents at all times, even when they were working with another action, giving them a quick and easy way
of taking notes about incoming calls.

Stellar used the apex:1logCallPublisher component to create a Log a Call action that:

e Appears in the footer of the page, replacing the standard interaction log.

e Isopen and available by default each time a support agent opens a case.

30

Customize Case Feed Actions with Visualforce

Code Sample

+

o Case
£ 00001037

Email Customer Log Call Portal Answer Case Details

+ Email
Virite an email to the customer...

{ atacn Fie

Log a Call

Customer Name Scoft Beechuk Q)

(=

] select a Template

<apex:page standardController="Case">
<apex:logCallPublisher entityId="{!case.id}"

width="100%"

title="Log a Call"
autoCollapseBody="false"
showAdditionalFields="false"
submitButtonName="Save Log" />

</apex:page>

Customizing the Log a Call Action

After you create a Visualforce page with this code, follow these steps to use the Log a Call action you create as a replacement for the

standard interaction log:

1. From the object management settings for cases, go to Page Layouts.

Click Save.

¥ ®©® N o v & W N

Click OK.
10. Click Save.

SEE ALSO:

Click the Custom Console Components link at the top of the page.

Specify the height of the action.

In the page layout editor, click Layout Properties.

Uncheck Interaction Log.

Salesforce Help: Find Object Management Settings

31

Select the layout you're using from the Page Layouts for Case Feed Users list, and then select Edit detail view.

In the Subtab Components section, use the lookup to select the page you created as the component to use for the bottom sidebar.

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

Customize Case Feed Actions with Visualforce Customizing the Articles Tool

Customizing the Arficles Tool

The Articles tool lets support agents browse Salesforce Knowledge articles, see whether articles are attached to a case, and share relevant
articles with customers. With the support:caseArticles component, you can:

e Customize the appearance and dimensions of the Articles tool.

e Define how the tool's search function works, including which article types and keywords are used by default and whether advanced
search is available.

e Specify whether agents can attach articles to emails.

support:caseArticles Affributes

Attribute Name Attribute Type Description Required? API Access
Version
articleTypes String Article types to be used to filter the search. Multiple 250

article types can be defined, separated by commas.

attachToEmailEnabled Boolean A Boolean value that specifies whether articles can 250
be attached to emails.

bodyHeight String The height of the body in pixels (px) or 'auto' to 25.0
automatically adjust to the height of the currently
displayed list of articles.

caseId id Case ID of the record for which to display the case ~ Yes 250
articles.
categories String Data categories to be used to filter the search. The 250

format of this value should be:
'CatgeoryGroup1:Category1' where CategoryGroup 1
and Category1 are the names of a Category Group
and a Category respectively. Multiple category filters
can be specified separated by commas but only one
per category group.

defaultKeywords String The keywords to be used when the 25.0
defaultSearchType attribute is 'keyword'. If
no keywords are specified, the Case subject is used
as a default.

defaultSearchType String Specifies the default query of the article search form 250
when it is first displayed. The value can be 'keyword',
'mostViewed', or 'lastPublished".

id String An identifier that allows the component to be 250 Global
referenced by other components on the page.

language String The language used for filtering the search if 250
multilingual Salesforce Knowledge is enabled.

32

Customize Case Feed Actions with Visualforce

Attribute Name Attribute Type
logSearch Boolean
mode String

onSearchComplete String

rendered Boolean

Object

reRender

searchButtonName String
searchFieldwWidth String
searchFunctionName String

showAdvancedSearch Boolean

title String

titlebarStyle String

width String

Use Case

Description

A Boolean value that specifies whether keyword
searches should be logged.

Specifies whether the component displays articles
currently attached to the case, an article search form,
or both. The value can be 'attached’, 'search’,
‘attachedAndSearch’, or 'searchAndAttached'.

The JavaScript invoked after an article search has
completed.

A Boolean value that specifies whether the
component is rendered on the page. If not specified,
this value defaults to true.

The ID of one or more components that are redrawn
when the result of the action method returns to the
client. This value can be a single ID, a
comma-separated list of IDs, or a merge field
expression for a list or collection of IDs.

The display name of the search button.
The width of the keyword search field in pixels (px).

The name of a function that can be called from
JavaScript to search for articles if the widget is
currently in search mode.

A Boolean value that specifies whether the advanced
search link should be displayed.

The title displayed in the component's header.

The style of the title bar can be 'expanded',
‘collapsed', fixed', or 'none'.

The width of the component in pixels (px) or
percentage (%).

Customizing the Articles Tool

Requied? AP

Version

250

250

250

250

250

250

250

250

250

250

250

250

Access

Global

Cirrus Computers wanted to customize the Case Feed articles tool so agents could more easily find articles to help resolve customers’

issues.

Cirrus used the support:caseArticles component to create an articles tool that:

1. Appears in the right sidebar of the page and is open by default on all case pages.

Uses search-as-you-type functionality to show suggested articles quickly.

2
3. Letsagents attach articles to messages they write with the email action.
4

Displays the most recently published articles when no articles are attached to a case.

33

Customize Case Feed Actions with Visualforce

Replicating a Standard Case Feed Page

Customer Overheating issue with my new VX12 Status
Scott Beechuk Hello Cirrus, | have installed my new VX12 and it is getting very, very hot! I'm not sure ifthis is Priority
Acme normal as the outside of the unit is difficult to touch due to the heat. Can you please contact Case O

(415) 123-1234 me to provide guidance? Thanks, age Uwner
info@acme.com Case Origin

¢ 00001053

Email Customer Log Call Pordal Answer Case Defails

— Email

From 'support@cimus.com” <support@cimus.com:

To

. Articles i
e D

@8 Select a Template

| info@acme.com

Add Cc

Subject

| “Your Cirrus support reguest

Write an email to the customer...

{} Attach File

‘Send Email

|*] | Search
Advanced Article Search
- Why does the VX12 overheat? m‘

Th—ininie pverheating in certal mstances. Ifac...

E Email to customer
Aftach to case

Closed
Wedium
Admin User
Email

Code Sample

<apex:page standardController="Case">

<div style="margin-left:-10px;margin-right:-10px;">

<div style="background-color:

#99A3AC; color:#FFFFFF; font-size:1.lem; font-weight:

bold;padding:3px 6px 3px 6px;">Articles</div>

<support:caseArticles caselId="{!case.id}"

bodyHeight="auto"
titlebarStyle="none"

searchButtonName="Search"

searchFieldWidth="200px"

defaultSearchType="lastPublished"

/>
</div>

</apex:page>

Replicating a Standard Case Feed Page

The support:CaseFeed componentincludes all of the elements of the standard Case Feed page:

Email, Portal, Log a Call, and Case Note actions
Case activity feed

Feed filters

Highlights panel

Case following icon

Case followers list

Layout, print, and help links

34

Customize Case Feed Actions with Visualforce Replicating a Standard Case Feed Page

support :CaseFeed Aftributes

Attribute Name Attribute Type

caseld id

id String
rendered Boolean
Use Case

Description Requied? API Access
Version

ID of the case record to display in Case Feed. Yes 26.0

An identifier that allows the component to be referenced 26.0 global

by other components in the page.

A Boolean value that specifies whether the component is 26.0 global
rendered on the page. If not specified, this value defaults to
true.

National Foods is a food service company supplying restaurants and corporate cafeterias throughout the United States. National's support
operations includes both call center agents who work primarily on desktop computers and field agents who work mainly on mobile
devices. The company wanted a simplified Case Feed page that would be easy for its field agents to use, and also wanted to give its call
center agents access to the full Case Feed functionality.

National used the support : CaseFeed component to recreate the standard Case Feed page for its call center agents working on
desktops, and created a custom page for its field agents working on mobile devices.

Standard Case Feed page created with support:CaseFeed

Customer
Edward Stamos
Acme

(212) 555-5555 %

Answer Customer

Log a Call

Write Case Note

Change Status

View Case Details

FEED FILTERS
All Updates

Emails

Status Changes

¢ case 00001018 Created Date $M5/20125:15PM Status New

Question about 8/20 shipment to Bravissimo Friority - Medium

Case Owner Karen Williams
Customer has a question about the items included in the next shipment to Bravissimo restaurant

+ Email ~ [EH] Select a Template #oe
& Follow

Write an email to the customer.. Followers

g Aftach File No followers.

ET3

+ Articles

All Updates for this case Sort by: Post Date ™

Karen Williams created this case
Comment - Like - Today at 5:15 PM

Code Sample

<apex:page standardController="Case"
extensions="CasePageSelectorExtension" showHeader="true" sidebar="false">
<apex:dynamicComponent componentValue="{!casePage}"/>

</apex:page>

The following sample shows an Apex class containing a controller extension to be used with the Visualforce page above.

public class CasePageSelectorExtension {

boolean isFieldAgent;

35

Customize Case Feed Actions with Visualforce Create Custom Actions

String caseld;

public CasePageSelectorExtension (ApexPages.StandardController controller) {
List<UserRole> roles = [SELECT Id FROM UserRole WHERE Name = 'FieldAgent'];
isFieldAgent = !roles.isEmpty () && UserInfo.getUserRolelId() == roles[0].Id;
caseld = controller.getRecord() .id;

public Component.Apex.OutputPanel getCasePage() {
Component.Apex.OutputPanel panel = new Component.Apex.OutputPanel () ;
if (isFieldAgent) {
Component .Apex.Detail detail = new Component.Apex.Detail () ;
detail.subject = caseld;
panel.childComponents.add (detail) ;
} else {
Component.Support.CaseFeed caseFeed = new Component.Support.CaseFeed() ;
caseFeed.caseld = caseld;
panel.childComponents.add (caseFeed) ;
}

return panel;

Create Custom Actions

You can create Visualforce pages to use as custom actions in Case Feed. For example, you can create a Map and Local Search action that
lets agents look up the customer’s location and find nearby service centers.

You can use any Visualforce page that uses the standard case controller as a custom action.

Use Case

Viaggio Italiano is a boutique travel agency specializing in tours of Italy. The company tracks multiple details for each client, including
flights, ground transportation specifics, dietary preferences, and itineraries. Viaggio Italiano’s agents needed the ability to create long
case comments but were limited to 1000 characters for standard case notes. The company wanted a way to bypass this limit.

Viaggio ltaliano used Visualforce to create a page that includes the ability to post a case comment, which can be up to 4000 characters
long. The company then added the page as a custom action by editing the Case Feed page layout.

Customer & Case 00001017 Created Date 8/15/2012 11:07 AM

Helen Ingersoll H H
o Add a Montepulciano excursion
Customer wants to add a side trip to Montepulciano to her Tuscany vacation package
Customer Details -
Answer Customer * Solo traveler, 45 years old
* Special occasion?: Yes—birthday
LogaCall *Tuscan Explorer package, Octaber 10-22, 2012

m

* Firsttime in laly, but has been to France and Spain before
Write Case Note * Interests: Renaissance art, wine, cooking, farm stags
*Found us through website
Change Status Flying from Chicago, IL; see below for specific arrival and departure details.

View Case Details Rnnkinn 2 Mantenilriana avrirsinn Alsn synressad infarsst in ather addans: lue cant her

Post Case Comment
Post Case Comment —

36

Customize Case Feed Actions with Visualforce Create Custom Actions

Code Samples

The following code sample shows a custom Post Case Comment action for an organization that doesn't have actions in the publisher

enabled, or that has actions in the publisher enabled but uses the Case Feed Settings page, not the page layout editor, to choose and
configure the actions in the Case Feed publisher.

<apex:page standardcontroller="Case"
extensions="CaseCommentExtension" showHeader="false">

<apex:includeScript value="/support/api/26.0/interaction.js"/>
<diwv>

<apex:form >
<!-- Creates a case comment and on complete notifies the Case Feed page
that a elated list and the feed have been updated -->
<apex:actionFunction action="{!addComment}" name="addComment" rerender="out"

oncomplete="sforce.interaction.entityFeed.refreshObject ('{!case.id}"’,
false, true, true);"/>

<apex:outputPanel id="out" >

<apex:inputField value="{!comment.commentbody}" style="width:98%;
height:160px;" />
</apex:outputPanel>
</apex:form>

<button type="button" onclick="addComment ();" style="position:fixed; bottom:0px;

right:2px; padding: 5px 10px; font-size:13px;" id="cpbutton" >Post Case Comment
</button>
</div>

</apex:page>

This is the code to use for the custom Post Case Comment action if your organization has actions in the publisher enabled and you've
opted to use the page layout editor to choose and configure actions in the Case Feed publisher.

<apex:page standardcontroller="Case"

extensions="CaseCommentExtension" showHeader="false">

<!-- Uses publisher.js rather than interaction.js -->
<apex:includeScript value="/canvas/sdk/js/28.0/publisher.js"/>
<diwv>

<apex:form >
<!-- Creates a case comment and on complete notifies the Case Feed page
that a related list and the feed have been updated -->
<apex:actionFunction action="{'!addComment}" name="addComment" rerender="out"

<!-- Different oncomplete function using publisher.js -->

oncomplete="Sfdc.canvas.publisher.publish (

{name : 'publisher.refresh', payload

{feed: true, objectRelatedLists: {}}});"/>

<apex:outputPanel id="out" >
<apex:inputField value="{!comment.commentbody}" style="width:98%;
height:160px;" />

</apex:outputPanel>

</apex:form>

<button type="button" onclick="addComment ();" style="position:fixed; bottom:0px;

right:2px; padding: 5px 10px; font-size:13px;" id="cpbutton" >Post Case Comment
</button>

37

Customize Case Feed Actions with Visualforce Create Custom Actions

</div>
</apex:page>

The following sample shows an Apex class containing a controller extension to be used with either version of the Visualforce page above.

public with sharing class CaseCommentExtension {
private final Case caseRec;
public CaseComment comment {get; set;}

public CaseCommentExtension (ApexPages.StandardController controller) {
caseRec = (Case)controller.getRecord();
comment = new CaseComment () ;
comment .parentid = caseRec.id;

public PageReference addComment () {
insert comment;
comment = new CaseComment () ;
comment .parentid = caseRec.id;
return null;

Additional Steps

After creating a Visualforce page, make it available to users.

First, give profiles access to the page:

1. From Setup, enter Visualforce Pages inthe Quick Find box, then select Visualforce Pages.

2. C(lick Security next to the name of the page you created.

3. Choose the profiles you want to be able to access the page.

4. C(lick Save.

Then include the page as a custom action. If you're using the Case Feed Settings page to choose and configure actions:

1. From the object management settings for cases, go to Page Layouts.

2. How you access the Case Feed Settings page depends on what kind of page layout you're working with..

e Foralayoutin the Case Page Layouts section, click Edit, and then click Feed View in the page layout editor.

e Foralayoutin the Page Layouts for Case Feed Users section, click the down arrow and choose Edit feed view. (This
section appears only for organizations created before Spring '14.)

In Custom Actions, click + Add a Visualforce page.

Choose the page you want to add.

Specify the height of the action. For the best appearance, we recommend a height of 200 pixels.

In Select Actions, move the custom action from Available to Selected.

Click Save.

N o v o w

=

you've opted to use the page layout editor to choose and configure actions, you first need to create the custom action:
1. From the object management settings for cases, go to Buttons, Links, and Actions.

2. C(lick New Action.

38

Customize Case Feed Actions with Visualforce Create Custom Actions

N oo ok ow

Select Custom Visualforce.

Select the Visualforce page you created, then specify the height of the action window. (The width is fixed.)
Type a label for the action. This is the text users will see for the action in the publisher.

If necessary, change the name of the action.

Type a description for the action. The description appears on the detail page for the action and in the list on the Buttons, Links, and
Actions page. The description isn't visible to your users.

Optionally, click Change Icon to select a different icon for the action. This icon appears only when you use the action through the
API.

Then add the action to a page layout:

1.
2.

From the object management settings for cases, go to Page Layouts.
How you access the page layout editor depends on what kind of page layout you're working with.

e Foralayoutin the Case Page Layouts section, click Edit, and then click Feed View in the page layout editor.

e Fora layout in the Page Layouts for Case Feed Users section, click the down arrow and choose Edit detail view. (This
section appears only for organizations created before Spring 14.)

3. C(lick Quick Actions in the palette.

Drag the action from the palette to the Quick Actions in the Salesforce Classic Publisher section.
Click Save.

SEE ALSO:

Salesforce Help: Find Object Management Settings

39

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

OTHER RESOURCES

In addition to this guide, there are other resources available for you as you learn how to use the Salesforce Classic Publisher JavaScript
APl and Lightning Quick Action JavaScript API.

Use these resources to learn more about Aura components, Visualforce, and Case Feed.

e Lightning Aura Components Developer Guide

e Visualforce Developer Guide

40

https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/intro_framework.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.pages.meta/pages/

	Get Started
	How are the APIs Different?
	API Parity

	Work with the APIs
	Quick Action API
	Considerations
	getAvailableActions
	getAvailableActionFields
	getCustomAction
	getSelectedActions
	invokeAction
	refresh
	selectAction
	setActionFieldValues

	Publisher API

	Customize with Visualforce
	Layout and Appearance
	Email Action
	Portal Action
	Log a Call Action
	Article Tool
	Replicate a Case Page
	Create Custom Actions

	Other Resources

