
Analytics Templates Developer
Guide

Salesforce, Summer ’25

Last updated: August 8, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

WHY CRM ANALYTICS TEMPLATES? . 1
The Source App . 1
Templated App Type . 2
The Configuration Wizard . 4
The Template Object . 4

CHOOSE YOUR TOOL . 8

THE PROCESS AT A GLANCE . 9

PREREQUISITES . 10

STEP 1: CREATE THE WAVETEMPLATE OBJECT . 12
Create a Template with the Command Line Interface . 12
Create and Update a Template with Visual Studio Code . 13

STEP 2: RETRIEVE (EXPORT) THE WAVETEMPLATE OBJECT 14
Use the Salesforce CLI to Retrieve the Template Files . 14
Use Visual Studio Code to Retrieve the Template Files . 14
Template Folder Structure . 15

STEP 3: EDIT THE JSON FILES . 17
Wizard Best Practices . 18
Edit template-info.json . 18
Edit folder.json . 25
Edit auto-install.json . 26
Edit org-readiness.json . 27
Edit variables.json . 28
Edit ui.json . 42
Edit Rules Files . 50
Use the Apex WaveTemplateConfigurationModifier Class . 79
Use the Apex Access Methods . 89

STEP 4: DEPLOY THE WAVETEMPLATE OBJECT . 92

STEP 5: TEST THE TEMPLATE . 93
Use the App Install History Page . 94
Debug the Template . 96
Reading the Template Debug Logs . 96

STEP 6: SHARE THE TEMPLATE . 99

STEP 7: CREATE NEW (DOWNSTREAM) APPS FROM THE TEMPLATE . . . 100

STEP 8: UPDATE AN EXISTING TEMPLATE . 101

SHARE CRM ANALYTICS ASSETS BETWEEN APPS . 103
Create Dependent Templates . 104
Template Dependency Syntax . 104
Best Practices . 105
Creating a Template from a Dependent App . 105

FEATURES NOT SUPPORTED IN THIS RELEASE . 106

RELEASE NOTES . 107

API END-OF-LIFE POLICY . 108

APPENDIX . 109
Add a Recipe to a CRM Analytics Template . 110
Configure Recipe Execution . 111
Add an Einstein Discovery Story to a CRM Analytics Template . 112
Add a Remote Connector to a CRM Analytics Template . 116
Use Live Datasets in a CRM Analytics Template . 117
Work with Embedded App Auto-Install Requests . 118
Feature Parameters for Analytics Templates . 122
template-info.json Attributes . 123
template-info.json Example . 130
ui.json Attributes . 134
variables.json Attributes . 135
org-readiness.json Attributes . 138
folder.json Attributes . 142
auto-install.json Attributes . 143
rules.json Example . 144
rules.json Attributes . 147
Rules Testing with jsonxform/transformation endpoint . 148
VisualForce Events for Customizing the Wizard UI . 151

Contents

WHY CRM ANALYTICS TEMPLATES?

Templates can bring the investment you make in CRM Analytics app development to life.

When you build an app using CRM Analytics Studio, you load data into CRM Analytics, transform it, create visualizations from the data,
and design dashboards in a development or scratch org. Then, you store all the assets in a CRM Analytics app, which is actually a folder
used to contain all an app’s assets.

Instead of having to do all that work, other organizations can use your template to create their own version of your app built around
their own data. After you develop your app in CRM Analytics Studio, turn it into a template with clicks in Analytics Studio, a simple
command in Visual Studio Code, or the Salesforce command line interface (CLI). Then distribute it to customers, partners, and other
teams within your company. They can deploy the template to their own Salesforce orgs and, with CRM Analytics Studio, use it to create
a custom version of the app using their own data—either from Salesforce or another environment.

You can edit the template files to include features that let users customize the version of the app that they create from the template via
a configuration wizard. When they create the app, they can customize the app’s appearance, how it consumes and displays data, which
dashboards and charts to display, and other aspects of the app’s functionality. You can also design your template to create apps that
require no customization or user interaction, but are automatically installed into an organization using a managed package. CRM Analytics
embedded dashboards surface your templated app into orgs without requiring users to have access to CRM Analytics Studio.

The Source App

For the purposes of CRM Analytics Templates, the app you create in CRM Analytics Analytics Studio is called the source app. It’s a
collection of CRM Analytics assets—datasets, dataflows, recipes, lenses, and dashboards— stored together in a folder.

Templated App Type

The app you’re creating a template for can be a standard app that users install using the configuration wizard in CRM Analytics
Studio. Or it can be an embedded app that is automatically installed for users and doesn’t require customization or access to Analytics
Studio. You can also create data templates that users install in the Data Manager. Data templates only create data assets.

The Configuration Wizard

A CRM Analytics template can include a configuration wizard, made up of one or more pages with questions and answers, that
allows users to customize the apps they create from the template. The configuration wizard is an optional but potentially powerful
part of a template.

The Template Object

Turning the source app into a template creates a waveTemplates object. The object contains JSON files that define an app’s
user experience assets and provide instructions to create the app.

The Source App

For the purposes of CRM Analytics Templates, the app you create in CRM Analytics Analytics Studio is called the source app. It’s a collection
of CRM Analytics assets—datasets, dataflows, recipes, lenses, and dashboards— stored together in a folder.

You create the template—actually a set of JSON files—from that source app. If you update the source app in Analytics Studio, you can
also update the template. The same template can also be updated by source apps in different orgs. This lets your team work collaboratively
on the source app and its template. That is, more than one developer can work on the template, at the same time.

1

Note: We use the term source app to refer to the app you work on, the one on which you base your template. When organizations
use your template to create their own apps, we refer to them as downstream apps.

Templates can reuse dashboards, lenses, and datasets that are part of apps other than the source app by creating dependencies on
those assets. The reused assets must be part of apps created from templates. See Share CRM Analytics Assets Between Apps.

Templated App Type

The app you’re creating a template for can be a standard app that users install using the configuration wizard in CRM Analytics Studio.
Or it can be an embedded app that is automatically installed for users and doesn’t require customization or access to Analytics Studio.
You can also create data templates that users install in the Data Manager. Data templates only create data assets.

In this guide, all template types follow the same steps for creation, iterative development, and testing the template. The main difference
between the templates types is how the app or data assets are created in the user org from your template.

Standard App Templates
A standard app template has a templateType of app. A standard app template is listed in the Analytics Studio in the Create App
menu. You can design a custom creation experience for CRM Analytics users by creating a configuration wizard. Users can customize
the app assets after creation, reconfigure the templated app, and upgrade the app, all in Analytics Studio.

Embedded App Templates
An embedded app template has a templateType of embeddedapp. An embedded app doesn’t require users to have access to
Analytics Studio. The embedded app is created when a managed package containing the template and other supporting assets is
installed in a Salesforce org. An embedded template uses the auto-install framework to install the app in an org without user interaction.

2

Templated App TypeWhy CRM Analytics Templates?

Embedded App Considerations
Embedded apps are designed for users who don’t have the full CRM Analytics experience. As a result, the following restrictions apply
for embedded apps:

• Only one embedded app instance per template can be created in a Salesforce org. Multiple embedded app templates can be present
in a org.

• Dashboards can’t contain Apex or SOQL steps.

• Bulk actions aren’t allowed.

• App assets can’t be customized by users after the app is created.

Embedded app templates aren’t visible in Analytics Studio, nor are they returned in the Rest GET call to the wave/templates
endpoint.

To create a successful embedded app template, you must include the folder.json and the auto-install.json files. The
folder.json file specifies the name and label for the templated app along with setting sharing rules for the app. The embedded
app can’t be shared with other users and groups in Analytics Studio. The auto-install.json file specifies the configuration of
the auto-install framework hook and the app installation.

After an embedded app is created, the app dashboards must be surfaced for users using the CRM Analytics Dashboard Lightning
component.

Data Templates
A data template has a templateType of data. A data template only creates data assets, like recipes and datasets. A data template
is listed in the Data Manager using the New Data App button. You can design a custom creation experience for Data Manager users
by creating a configuration wizard. Users can customize and schedule the data assets after creation.

Data Template Considerations
Data templates are designed for users who want to load and transform data in Salesforce. As a result, the following limitations apply for
data templates:

• In the template-info.json:

– Use data for templateType.

– Only the first entry in templatePreviews is shown to the user in the wizard.

– customProperties aren’t shown to the user in the wizard.

• A data template can only contain datasetFiles, externalFiles, and recipes assets.

• The following aren’t currently supported in the Data Manager wizard:

– In template-info.json:

• templateDependencies

– In ui.json:

• displayMessages

• helpUrl

• vfPage

• The following are supported for data templates, but not app templates:

3

Templated App TypeWhy CRM Analytics Templates?

In ui.json:–

DatasetAnyFieldType and ArrayTypes of DatasetAnyFieldType variables can be added to pages•

For more information on the user experience for templated data apps, see Get Started Faster with Data Templates (Beta).

The Configuration Wizard

A CRM Analytics template can include a configuration wizard, made up of one or more pages with questions and answers, that allows
users to customize the apps they create from the template. The configuration wizard is an optional but potentially powerful part of a
template.

Important: If your template is templateType of embeddedapp, the configuration wizard isn’t available for users. Embedded
apps aren’t visible or installable in CRM Analytics Studio. Instead, they use the auto-install framework to install without user
interaction.

The configuration wizard guides users through creation of an app from the template. Users make selections that determine how the
app they create from your template modifies the original. Most CRM Analytics templates developed by Salesforce include wizards. It’s
likely that every customer creates a different version of an app from the template. But every customer starts with the same app template.

A wizard can include questions about the data used to populate app dashboards. For example, it can ask about which Salesforce objects
are used and which fields are used to store specific elements, such as user IDs, geographic location, product information, and revenue.
A wizard can also ask about how to display data in the app and whether the user wants to include or exclude dashboards. Also, it can
let users set elements of the UI, such as labels to identify KPIs or dashboard colors.

Wizards can also include conditional questions. For example, one question can ask if a user wants to display customer satisfaction key
performance indicators about service agents. If the user answers yes, the wizard can then display more questions asking about how the
user wants dashboards to consume and display customer service data.

Further, the wizard can contain an org data check. App datasets and dashboards usually depend on the Salesforce org where it’s created
to contain specific data— certain objects, or fields in objects—to render effective visualizations. The data check reviews the org for the
required data. If it’s in the org, app creation continues. If not, the wizard can display a message telling the user what requires fixing.

To create the configuration wizard, you modify the template JSON files that contain the instructions the CRM Analytics platform uses to
create the app. When a user creates an app from a template, CRM Analytics looks at the template JSON files’ contents, including your
wizard selections. It follows instructions in the JSON to create the app.

The Template Object

Turning the source app into a template creates a waveTemplates object. The object contains JSON files that define an app’s user
experience assets and provide instructions to create the app.

Template objects—called waveTemplates—contain two types of JSON files:

• CRM Analytics app asset JSON files: Files that define the assets you create when you develop a CRM Analytics app using the tools
available through CRM Analytics Studio: dashboards, lenses, datasets, recipes, dataflows, and components. Users also interact with
these elements. Each app must have at least one dashboard and dataset. Dataflows and recipes are optional, but common for
anything but the simplest template. Each asset has a corresponding JSON file.

• CRM Analytics template JSON files: Files with instructions used by CRM Analytics to create app assets from the template. You edit
these files to give users the ability to customize their version of the app.

waveTemplates objects contain the following files.

4

The Configuration WizardWhy CRM Analytics Templates?

https://help.salesforce.com/s/articleView?id=sf.bi_data_templates_overview.htm&language=en_US

DescriptionFile nameFile type

One JSON file for each dashboard in the source app, with the same name
as its corresponding dashboard.

dashboard_name.jsonApp asset JSON

One JSON file for each lens in the source app, with the same name as its
corresponding lens.

lens_name.jsonApp asset JSON

Most templates include datasets to provide meaningful content, but a
template doesn’t require a dataset. Apps without datasets can include a

dataset filesApp asset JSON

• internal datasets
dashboard that’s a shell with layout only, or one that uses a query to– internal dataset files
supply data. Dataset files can be internal or external. The template includes
internal datasets defined by User XMD.– user xmd.json

• external datasets External dataset files refer to CSV datasets such as dataset.csv, but
they also include dataset_schema.json and extended metadata
(user XMD) files, such as xmd.json.

– dataset.csv

– dataset_schema.json
You must have one CSV file for every external dataset in the source app.
Without it, there are no external files in the template.

– user xmd.json

The dataset_schema.json and user xmd.json files are
optional.

Dataflows are one method to create internal datasets for your app,
extracting and processing useful data. Templates support apps with

dataflow filesApp asset JSON

multiple dataflows. Order the files carefully: The last dataflow can
reference datasets inside the first, but the first dataflow can’t reference
the last.

Recipes are another method to create internal datasets for your app,
extracting and processing useful data. Templates support apps with

recipe filesApp asset JSON

multiple recipes. Order the files carefully: recipes are created in listed
order. If dataflows are present, they’re executed before the recipes. For
more information on adding recipes to a template, see Add a Recipe to
a CRM Analytic Template.

Dashboard components are a type of dashboard widget that can contain
other widgets and pages. These components are used to manage and

dashboard component filesApp asset JSON

reuse groups of charts, tables, filters, text, and more in multiple dashboards
in your app. Each app created from your template creates a unique
instance of the component. The app dashboards reference these
components by the unique name to ensure the component functionality
is correct.

Data transforms create internal datasets from Data Cloud data model
objects. In Winter ‘24, data transforms can only be added to a template
manually.

data transform filesApp asset JSON

Include if images are used in dashboards in the source app or referred to
in template-info.json for display in configuration wizard pages,

image files (JSON)Template JSON

such as the template picker or template detail page. One image file for
each image. Images must be stored as Salesforce static resources. If an

5

The Template ObjectWhy CRM Analytics Templates?

https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_xmd.meta/bi_dev_guide_xmd/bi_xmd_intro.htm

DescriptionFile nameFile type

org is namespaced, set the static resources namespace attribute in
the template-info.json entry for the image.

Defines the template metadata referencing all elements of your template,
including all the app asset and template asset JSON files defined in this
table.

template-info.jsonTemplate JSON

Lists the order in which dashboards (featuredAssets) appear. If
not set, dashboards appear in alphabetical order.

folder.jsonTemplate JSON

Defines the text describing the features and benefits of the template.
Update to describe enhancements to a new template version.

releasenotes.htmlTemplate JSON

Defines the variables used by the template JSON files. Includes text for
configuration wizard questions and specifications for the answers

variables.jsonTemplate JSON

Manages the configuration wizard. It defines the number of wizard pages,
the order of wizard questions, and any messages you want the user to

ui.jsonTemplate JSON

see as the make wizard selections. Configuration settings can determine
if a wizard page or question is hidden based on selections made in answer
to other wizard questions.

Defines the validations that check if the org can create an app from the
template successfully. Some validations run when the template is loaded,

org-readiness.jsonTemplate JSON

before the configuration wizard loads, and others run during app creation.
Validation success and error messages can be defined and passed to the
user.

Defines the rules the template follows when creating the app, including
changes made to app assets in response to user selections in answer to

template-to-app-rules.jsonTemplate JSON

wizard questions. For example, a rule can determine that if an org doesn’t
contain data in Salesforce objects, app dashboards don’t refer to those
objects and the objects are excluded from the dataflow. Rules also
determine how the template handles variables. For example, if the wizard
asks which fields to include in filters,
template-to-app-rules.json determines how that choice
is reflected in dashboards. Rules are applied when a user creates an app
from the template. Typically, a template uses multiple rules files, which
must be ordered intentionally. Rules are applied in the order in which
you list them. Rules listed later can reference rules listed earlier, but the
first rule can’t reference any rules listed after it.

Defines rules for changing template files after editing the source app. If
you make a change that impacts many parts of the app, edit this file. For

app_to_template_rules.jsonTemplate JSON

example, a template creates a waterfall chart based on a dataset selected
by the user in the wizard. The sections of the waterfall show a series of
measures, also selected using the wizard. To enable the selections to be
represented as variables, tokenize a field in the dashboard when updating
the template. When the app is created, the value of a variable is replaced.

6

The Template ObjectWhy CRM Analytics Templates?

DescriptionFile nameFile type

To replace the hard-coded value with a token, add a rule to
app_to_template_rules.json, like this:

{
"action":"<action_name>",
"key":"\"<field_name>\"",
"value":"\"${Variables.phoo.fieldName}\""

}

Optional template file to mark the template for automatic installation.
Defines the auto-install hook and app configuration settings for the

auto-install.jsonTemplate JSON

auto-install framework. Templates with this file present must be of
template type app or embeddedapp. This file isn’t generated on
template creation, you must create it. Templates created for the
auto-install framework must be part of a managed package and installed
into customer orgs. On package installation, an auto-install request is
generated from this file configuration and the templated app is created
automatically.

7

The Template ObjectWhy CRM Analytics Templates?

CHOOSE YOUR TOOL

Microsoft Visual Studio (VS) Code together with Analytics plugin for Salesforce command-line interface (CLI) commands is the
recommended way to develop CRM Analytics templates. Or, to create and manage CRM Analytics templates, you can use CRM Analytics
Studio, the Salesforce Analytics CLI by itself, or VS Code.

SEE ALSO:

Analytics Development Tools

8

https://help.salesforce.com/s/articleView?id=sf.bi_dev_tools.htm&language=en_US

THE PROCESS AT A GLANCE

After creating a source app in CRM Analytics, follow these steps to create and work with a template. The next sections of the developer
guide provide details about each step.

Start by developing an app in CRM Analytics Studio. That becomes the source app you use as the basis for your template. We recommend
that you complete Steps 1 through 4 and 8 in Microsoft Visual Studio (VS) Code, issuing command line interface (CLI) commands from
the tool’s Command Palette and using its JSON editor.

1. Create the WaveTemplate object and files. Create the first version of the template from the source app.

2. Retrieve (export) the WaveTemplate object and files. Make the files available on your local file system for editing.

3. Edit the JSON files. Build the configuration wizard user interface, variables, conditions, and rules into your template by editing the
JSON files. You can also customize the wizard with VisualForce and add other enhancements. Use your preferred Integrated
Development Environment (IDE) to edit the files, regardless of whether you create them using CLI or VS Code.

4. Deploy the WaveTemplate object. After editing the files in an IDE, push the them back to your development org for testing.
Deploy the object every time you edit the JSON. Pulling the template files back from the development org overwrites the files on
your local workstation.

5. Test the template. Testers can now create apps from the template in Analytics Studio for testing. After getting test results, retrieve
the template object files again (Step 2), make further edits (Step 3), and redeploy them (Step 4). It’s an iterative cycle. And every time
you change the JSON files, and deploy your template, test the template again.

6. Share the template with users. Enables creation of apps from the template.

7. Create apps from the template. Users create apps in Analytics Studio or by installing a managed package. Based on their feedback,
continue iterative development of the app and template.

8. Update an existing template. Update the template after editing source app assets, including dashboards, lenses, datasets, recipes,
and dataflows in Analytics Studio.

SEE ALSO:

Create an App

9

https://help.salesforce.com/s/articleView?id=sf.bi_app_create.htm&language=en_US

PREREQUISITES

Take care of these tasks before creating CRM Analytics templates.

Licenses and Permission Sets

Make sure you and members of your team each have a CRM Analytics platform license--either CRM Analytics Growth or CRM Analytics
Plus.

Assign the following permission sets to yourself and members of your team:

• For CRM Analytics Growth licenses, CRM Analytics Admin

• For CRM Analytics Plus licenses, CRM Analytics Plus Admin

Org preferences

Set your Org Preferences to enable CRM Analytics templates. In the Admin Setup page, under Settings, select Enable CRM Analytics
Templates. You must enable this preference to create CRM Analytics templates.

Developer Edition Org Namespace

Set up a namespace for your development org to enable the use of Managed Packages. Set up your namespace before creating any
CRM Analytics assets.

CLI Developers

To use CLI for template development, enable the Dev Hub, which lets you create and manage scratch orgs. Also, install the Analytics CLI
Plugin.

1. Enable Dev Hub in your org. See Enable Dev Hub in Your Org.

2. Install the Salesforce Command-Line Interface (CLI). See Install the Salesforce CLI.

3. Create a Salesforce DX project. See Create a Salesforce DX Project.

4. Create a scratch org. See Create Scratch Orgs.

5. Install the CLI Analytics plugin by running the command sf plugins install @salesforce/analytics.

6. Verify the installation by listing the available analytics commands. Run the command sf analytics --help.

For a reference to all available Analytics CLI commands, see the Salesforce Analytics CLI Plugin Command Reference.

Visual Studio Code Developers

Use VS Code as your template IDE for template customization. VS Code provides the CLI commands from the Command Palette and
content assist and validation for the template json files. For more information, see Use Visual Studio (VS) Code and the Salesforce
Extensions for CRM Analytics Template Development.

CRM Analytics REST API access

Refer to the documentation on Authentication to the CRM Analytics REST API to access and use the API.

Source app and its ID

Typically, you build an app and it becomes a source app when you create a template from it. You can also use a template to create a
source app. However you create the app, note the 18-character app ID in the URL. It’s shown here in
boldface:https://salesforce.com/analytics/wave/wave.apexp?tsid=2x0x0002xxx#application/00l0b000002AynIAAS.
The ID becomes the folderId you use as you work with the WaveTemplate object.

Create a Source App From Scratch

10

https://developer.salesforce.com/docs/atlas.en-us.256.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_create.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_cli_reference.meta/bi_dev_guide_cli_reference/bi_cli_reference.htm
https://help.salesforce.com/s/articleView?id=sf.bi_templatesdev_vs_code_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.bi_templatesdev_vs_code_intro.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/bi_rest_authentication.htm

Use CRM Analytics Studio to build an app with lenses, dashboards, datasets, recipes, and the default Salesforce dataflow.

Create a Source App From a Template

1. Create an app from the template using the wizard. Use the Analytics CLI to create the app if you must set variables that the wizard
doesn't expose. In the CLI, use an analytics app create command.

2. Next, turn the app into the source app by coupling it with the template. With the Analytics CLI, use analytics template
update with the folderSourceID. See Step 8: Update an Existing Template. on page 101

Now, the new app becomes the source app in the org. Any updates made to the folder assets in the new source app are tied to the
template.

Org Data Considerations

Creating a template from your app isn’t a way to move data from one org to another. Datasets are templatized with header references.
For datasets built by recipes and dataflows, they’re populated with data from the user org when the app is created. For external datasets
created by CSV uploads, only minimal data is present when a new app is created from the template. For example, if the source app
contains a dataset created with a CSV upload, the template is created with a sample CSV that is only one dataset part of the original CSV.
When a user creates an app from the template, they must upload their own CSV or a CSV provided to them to update and complete the
dataset.

11

Prerequisites

STEP 1: CREATE THE WAVETEMPLATE OBJECT

Once you’ve created an app to serve as your source app, turn it into a template by creating the WaveTemplate object and all its
files.

You can use CRM Analytics Studio, commands in the CLI or Microsoft Visual Studio (VS) Code to turn your app into a template.

To use CRM Analytics Studio, see Create and Manage CRM Analytics Templates in Analytics Studio.

To use the commands, first locate the 18-character app ID—the folder ID—for the source app. You can find it appended to the URL for
the app (in bold):

https://salesforce.com/analytics/application/00l0b000002AynIAAS/edit

Create a Template with the Command Line Interface

Use analytics template commands to create templates with the Salesforce Analytics Command Line Interface (CLI). You
can also use the CLI to manage existing templates.

Create and Update a Template with Visual Studio Code

Use Microsoft Visual Studio (VS) code to create and update a template.

Create a Template with the Command Line Interface

Use analytics template commands to create templates with the Salesforce Analytics Command Line Interface (CLI). You can
also use the CLI to manage existing templates.

1. Get a list of available apps. In the CLI, enter the command sf analytics app list. The command returns a list of all apps
in your org.

>>sf analytics app list

NAME LABEL FOLDERID STATUS TEMPLATESOURCEID
────────── ────────── ─────────── ──────
MyNewApp MyNewTemplate 00l0S000000MmGQQA0 newstatus
SharedApp1 Shared App 00l0S000000Mm9tQAC completedstatus 0Nk0S0000008OJDSA2
SharedApp Shared App 00l0S000000EEVUQA4 newstatus 0Nk0S0000008OJDSA2

2. Look for your source app. If you haven’t already identified its folderID, find it in the response to the list command.

3. Create the template. Enter the command analytics template create. Here’s syntax for the command.

analytics template create -f folderid [-u username --apiversion api_version --json
--loglevel log_level]

Required.

The ID of the source app to use when creating the template. You can use
analytics:app:list to see information about the apps on your org.

folderid

The user name or alias of the target org. If not specified, CRM Analytics uses the default
org.

username

12

https://help.salesforce.com/s/articleView?id=sf.bi_create_manage_templates_intro.htm&language=en_US

The API version to use for this command.api_version

Use this flag to specify format the output as JSON.--json

Specify the log level for this command. Allowed values are trace, debug, info,
warn, error, and fatal

--loglevel

The command returns something like the following: Successfully created analytics template
[0Nk0S0000008OJNSA2]

The WaveTemplate object and all its files are on your scratch org. Next, retrieve the object by pulling the files to your local workstation
for editing.

SEE ALSO:

Salesforce Analytics Plugin CLI Command Reference: template Commands

Create and Update a Template with Visual Studio Code

Use Microsoft Visual Studio (VS) code to create and update a template.

1. Create the template. In the Command Palette, enter Create Analytics Template.

Select the Analytics app from the dropdown list.

The command returns something like the following: Successfully created Analytics template
[0Nk0S0000008OJNSA2]

The WaveTemplate object and all its files are on your scratch org. Next, retrieve the object by pulling the files to your local
workstation for editing.

13

Create and Update a Template with Visual Studio CodeStep 1: Create the WaveTemplate Object

https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_cli_reference.meta/bi_dev_guide_cli_reference/bi_cli_reference_analytics_template_unified.htm

STEP 2: RETRIEVE (EXPORT) THE WAVETEMPLATE OBJECT

CRM Analytics templates are no different than any other metadata (such as Visualforce pages and Apex classes). You can retrieve the
WaveTemplate object and its JSON files for editing using CLI or Microsoft Visual Studio (VS) Code. Then store them in a source code
management system, and work with them using the development environment of your choice.

Note: Performing this step overwrites your template object folder contents. If you’ve edited JSON files (such as rules.json),
make sure you first push those changes back to the development org as described in Step 4: Deploy the WaveTemplate Object
on page 92.

Use the Salesforce CLI to Retrieve the Template Files

Pull the template metadata from the scratch org to your local workspace using the Salesforce CLI command sf project
retrieve start.

Use Visual Studio Code to Retrieve the Template Files

Pull the template metadata from the scratch org to your local workspace using the Command Palette Pull Source from Default
Scratch Org. Use VS Code to view and edit the template files.

Template Folder Structure

Decompressing the exported template file exposes the following folder structure.

Use the Salesforce CLI to Retrieve the Template Files

Pull the template metadata from the scratch org to your local workspace using the Salesforce CLI command sf project retrieve
start.

The command stores the template files on your system under the folder
force-app\main\default\waveTemplates\MyNewTemplate

Access them locally on your file system for further development using the IDE of your choice.

Note: If you created your template in CRM Analytics Studio, use the CLI to log in to your org and then use the sf project
retrieve start --metadata "WaveTemplateBundle:MyTemplate" CLI command to retrieve your files for
editing. For information on setting up and using the CLI for template development, see Prerequisites.

SEE ALSO:

Salesforce CLI Command Reference: project retrieve start

Use Visual Studio Code to Retrieve the Template Files

Pull the template metadata from the scratch org to your local workspace using the Command Palette Pull Source from Default Scratch
Org. Use VS Code to view and edit the template files.

The command stores the template files on your system under the folder main\default\waveTemplates\MyNewTemplate

Use VS Code to edit and customize the template. You must have the Salesforce Analytics Extension Pack installed. To get content assist
and validation when you edit a template json file, make sure the VS Code language mode is set to ADX Template Json.

14

https://developer.salesforce.com/docs/atlas.en-us.256.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm#cli_reference_project_retrieve_start_unified

For information on setting up and using the VS Code for template development, see Prerequisites.

Template Folder Structure

Decompressing the exported template file exposes the following folder structure.

•
<TemplateName>

(top directory)

–
template-info.json

Don’t change the name of this file; processing depends on it.

–
variables.json

–
ui.json

–
template-to-app-rules.json

We recommend this naming convention as the best way to manage your rules files.

–
app-to-template-rules.json

We recommend this naming convention as the best way to manage your rules files.

–
releaseNotes.html

–
dashboards

Subdirectory containing one or more dashboard JSON files corresponding to each dashboard in the source app. If the source
app has no dashboards, this subdirectory doesn’t exist.

–
lenses

Subdirectory containing one or more lens JSON files corresponding to each lens in the source app. If the source app has no
lenses, this subdirectory doesn’t exist.

–
dataflows

Subdirectory containing the dataflow JSON files corresponding to each dataflow in the source app. If the source app has no
dataflows, this subdirectory doesn’t exist.

–
recipes

Subdirectory containing the recipe JSON files corresponding to each recipe in the source app. If the source app has no recipes,
this subdirectory doesn’t exist.

15

Template Folder StructureStep 2: Retrieve (Export) the WaveTemplate Object

–
external_files

Subdirectory containing one or more CSV dataset and related JSON files, such as schema and user XMD files, corresponding to
each dataset in the source app. If the source app has no CSV datasets, this subdirectory doesn’t exist.

–
dataset_files

Subdirectory containing User XMD files for SFDC datasets. If the source app has no SFDC datasets with User XMD defined, this
subdirectory doesn’t exist.

–
images

Subdirectory containing one or more image files. If the source app has no images, this subdirectory doesn’t exist.

–
folder.json

–
auto-install.json

Optional file to create the app with an auto-install request. You must create this file, It is not generated at template creation. The
template must be installed as a managed package for app creation.

16

Template Folder StructureStep 2: Retrieve (Export) the WaveTemplate Object

https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_xmd.meta/bi_dev_guide_xmd/bi_xmd_intro.htm

STEP 3: EDIT THE JSON FILES

Your source app looks fantastic, with widgets rendered beautifully in their dashboards. Next, create a template that gives users the same
experience as your app but with data unique to their Salesforce orgs. For standard apps, add a configuration wizard to customize app
creation. The wizard helps an admin using your template add data, name a dashboard, label a chart, or add their own touches. For
embedded apps, add the auto-install.json file. You control the process by editing the files that constitute the template assets,
thetemplate-info.json, ui.json, variables.json, and any number of rules.json files. These JSON files open a
world of flexibility and power in the template creation universe.

The files interact as follows:

• The ui.json file uses the variables in the variables.json file to dictate what goes on each page of the wizard. The
ui.json file can contain conditionals that dictate which questions or pages are displayed in the wizard.

• variables.json contains all template variables, including text for wizard questions and specifications for the answers. The file
can also define conditional questions. For example, a question only appears if an org contains certain data. Or if a wizard question
is answered in a way that requires more detail, the wizard presents other conditional questions.

• The template-info.json file identifies all the template components, including the references to the rules, variables, and UI
files. The template-info.json file can contain conditionals that dictate whether assets are generated in the downstream
app.

• The template-to-app-rules.json files use variables to set constants, and then use rules to set values that dictate how
assets within the downstream app are generated. The most common uses for rules include adding and removing dashboard widgets
and dataflow actions.

• The app-to-template-rules.json file defines templatizing the source app. It’s edited only when you change the source
app to change the template.

• The folder.json file enables you to set a preferred order of the dashboards in the downstream app, as opposed to leaving
them alphabetized.

• The optional auto-install.json file is used when a template is part of a managed package. It defines the auto-install hook
and the automated app configuration settings used to generate an auto-install request when the package is installed. This file is
created manually, it isn’t generated on template creation.

And yet, editing these JSON files is an optional step. A template is complete even without you touching any of these files. Such a minimal
template creates apps that mirror the source app without any customization. You can test your template without any editing to validate
that app creation works before moving on to more complex customizations.

Don’t confuse the template assets discussed here with the JSON files representing the source app assets. For example,
dashboard_name.json and lens_name.json are also exported as part of the Metadata API retrieval. We recommend that
you alter app assets and widgets in CRM Analytics Studio, remembering to update the template object using Analytics Studio to update
the template. That means you don’t manually edit their corresponding JSON files.

Wizard Best Practices

To deliver an optimal user experience, adopt these best practices when creating a wizard.

Edit template-info.json

template-info.json describes the template. It references all the information required to create an app from the template.

Edit folder.json

The folder.json file describes the featuredAssets for the application.

17

Edit auto-install.json

auto-install.json configures the template for the auto-install framework. Always create this optional file if you plan to
design your template for auto-installation via a managed package with an auto-install request.

Edit org-readiness.json

The org-readiness.json file configures the validations to run on a user org to ensure it can create an app successfully.

Edit variables.json

The variables.json file describes all the variables used in the template-info.json, ui.json, and the different
rules.json files.

Edit ui.json

The ui.json file determines how your template displays the configuration wizard questions defined in variables.json.

Edit Rules Files

Rules files define how an app gets created by the template.

Use the Apex WaveTemplateConfigurationModifier Class

The WaveTemplateConfigurationModifier class checks an org’s data. Also, to simplify app creation, it can modify the
template configuration wizard accordingly.

Use the Apex Access Methods

The Access class provides utility methods to check Integration User access to sObjects and sObjectFields. Use these methods in
your WaveTemplateConfigurationModifier implementation.

Wizard Best Practices

To deliver an optimal user experience, adopt these best practices when creating a wizard.

• Strike a balance between too few questions and too many. Too few questions provide insufficient flexibility for the user creating the
app, while too many questions can be daunting.

• Strike a balance between the number of questions on each wizard page and the number of pages in the wizard. Too many questions
on each wizard page require the user to scroll down, a practice to avoid. A wizard with too many pages is cumbersome. We recommend
a page that contains 5-8 questions.

• Group wizard questions by theme. For example, questions about quotas on one page and questions about products on another.

• Use templates without a configuration wizard for testing the creation of the template object.

• Organize like variables together. For instance, group variables about the Product dimension together.

• Consider using the Apex WaveTemplateConfigurationModifier class to create a smart wizard that can automatically
check the data in your org. See Use the Apex WaveTemplateConfigurationModifier Class on page 79.

• You can customize smart wizard pages using VisualForce pages and a JavaScript library.

• For embedded apps, don’t create any questions that depend on user interaction unless you create your own user interface for
installation or you add a WaveTemplateConfigurationModifier class. Auto-install requests automatically create the
app in customer orgs on package install of the template, with no CRM Analytics Studio configuration wizard for users.

Edit template-info.json

template-info.json describes the template. It references all the information required to create an app from the template.

template-info.json can also contain conditions. For example, a source app can have a dashboard with charts. You can include
conditions in the template-info.json file to remove specific charts when the user creates the app. Conditions can include

18

Wizard Best PracticesStep 3: Edit the JSON Files

overrides that enable the addition or exclusion of assets and data from the app. The override is defined in variables.json. See
Complex variables.json Variable Types.

The template-info.json file has multiple parts:

• Metadata information for the template: Name, description, icons, tags, and custom attributes.

{
"label": "Analytics Training Materials",
"name": "analyticsEducation",
"description": "An example template to generate datasets, dashboards and lenses for

the Analytics introduction course.",
"assetVersion": 49,
"templateType": "app",
"icons": {

"templateBadge" : {
"name" : "learn"

},
"appBadge" : {

"name" : "16.png"
},
"templatePreviews" : [

{
"name": "preview_education",
"label": "Analytics Training",
"description": "Learn about templates to generate Analytics assets."

}
]

},
"tags": [

"Learn",
"Templates",
"Apps"

],
"customAttributes": [

{
"label" : "Features",
"values" : [

"Prebuilt Apps",
"Mobile Ready"

]
}

]
},

– label contains the user’s name for the app. Analytics Studio displays in the app creation wizard, such as in the template picker
and template details page.

19

Edit template-info.jsonStep 3: Edit the JSON Files

– The name attribute is the unique developer ID for the template ID. Changing it generates a new template.

– description specifies the description of the template. The template picker displays the contents of description, as
shown in the previous image.

– assetVersion specifies the version for the template assets. The version is set at the time of creation, generating a snapshot
of the asset JSON files. The version doesn't update unless indicated when updating a template. For more information, see Update
an Existing Template.

– templateType specifies the type of template:

• app: a standard app

• embeddedapp: an embedded app

• data: a collection of data assets

• dashboard: a single dashboard

– icons attribute contains three possible options:

• templateBadge defines the small icon that appears in the app picker (shown in the previous image) and at the top of
the template details window (shown in the next image). Don't use file extension with name attribute, for example "learn",
not "learn.png".

• appBadge defines the icon shown by Analytics Studio for the app after creation. Must be "1.png" through "21.png".
Use file extension with name attribute, for example "16.png", not "16".

• templatePreviews defines preview images displayed on the template details window during the app creation process.
Supports multiple images. Don't use file extension with name attribute, for example "preview_education", not
"preview_education.png".

– tags specifies tags that are used in template search and that appear on the template details page (shown in the next image).

– customAttributes specifies information describing the template in the app creation wizard, such as Salesforce objects
used or notable features (shown in the next image).

20

Edit template-info.jsonStep 3: Edit the JSON Files

• Template version information: The templateVersion is a string validated as “#.#”. The notesFile, when present, must
be an HTML file. If releaseInfo is present, users can reconfigure or upgrade an app that’s been created from the template from
Analytics Studio.

"releaseInfo":{
"templateVersion": "1.0",
"notesFile": "releaseNotes.html"

},

Note: After creating an app from a template for the first time, users can reconfigure the app based on the existing version of
the template. When you update the number in templateVersion, CRM Analytics prompts users who created an app
from the template to upgrade the app to the new version. for more information about reconfiguring and upgrading apps from
templates, see Reconfigure an Analytics App and Upgrade an Analytics App.

• Reference to the variables file: The file that contains all the variables used in the template is variables.json.

"variableDefinition": "variables.json",

• Reference to the configuration wizard file: The file that defines the wizard the user fills out, answering questions to set variables, is
ui.json.

"uiDefinition": "ui.json",

• Reference to the org readiness file: The file that defines the validations to perform when the wizard loads is org-readiness.json.
These validations verify that the org has the necessary data and setup to support creating an app from the template without failing.

"readinessDefinition" : "org-readiness.json"

• Reference to one or more rules files: The file or files defining any rules to be applied to the template assets is rules.json.

"rules" : [{
"type" : "templateToApp",
"file" : "template-to-app-rules.json"

}, {
"type" : "appToTemplate",

21

Edit template-info.jsonStep 3: Edit the JSON Files

https://help.salesforce.com/articleView?id=bi_app_upgrade.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_app_upgrade.htm&type=5&language=en_US

"file" : "app-to-template-rules.json"
}

],

The templateToApp rules file defines rules that run when a downstream app is created or updated from a template. These rules
are the rules you’re most likely to edit.

The appToTemplate rules file defines rules that run when a template is created or updated from a source app. These rules are
created by the framework code. You aren’t likely to edit them.

• List of objects defining dashboards and lenses: A dashboard or lens entry can contain a condition statement to determine whether
the asset is added at app creation time based on a given variable. This condition statement can be an empty list ("[]").

"dashboards": [
{
"file": "dashboards/Elections_2012_Dashboard.json",
"label": "elections_dashboard",
"name": "Elections Dashboard",
"condition" : "${Variables.StringValueInclude == 'Yes'}"

}
],
"lenses":[
{
"file": "lenses/Election_Breakdown_By_State.json",
"name": "Election Breakdown By State"

}
],

• Reference to external datasets: List of files that define external datasets (CSVs) to create, can include XMD. Each dataset entry can
contain an entry for a conditional statement, allowing for decisions to be made by variables on whether a dataset asset is added at
app creation time. This condition statement can be an empty list ("[]").

"externalFiles":[
{
"type" : "CSV",
"name" : "State_Codes",
"file" : "external_files/StateCode.csv",
"schema" : "external_files/StateCode_schema.json"

},
{
"type" : "CSV",
"name" : "Election_2012",
"file" : "external_files/Election_2012.csv",
"schema" : "external_files/Election_2012_schema.json", (optional)
"userXmd" : "external_files/Election_2012_XMD.json" (optional)

}
],

• References to datasets: The SFDC dataset builder creates these datasets. Label is optional.

"datasetFiles": [
{
name": "Election_1980",
"label": "Election 1980",
"userXmd": "dataset_files/Election_1980_XMD.json"

},

22

Edit template-info.jsonStep 3: Edit the JSON Files

{
"name": "Election_2012",
"label": "Election 2012"

}
],

User XMD is NOT required. If it’s present, there's an XMD JSON file in the dataset_files directory. Otherwise, no XMD JSON
file is present. If User XMD exists, it must be v2.0.

Each dataflow or recipe file must contain a reference to the corresponding dataset (Extract and Register steps). That enables the
dataset to be recreated in the creation process of any downstream app.

Live datasets are supported with the liveConnection parameter. For more information, see Use Live Datasets in a CRM Analytics
Template.

• Reference to dataflow files: List of files that define dataflows. This reference can be an empty list ("[]"). If your app includes multiple
dataflows, reference each dataflow file. When a user creates an app from the template, dataflows are created in the order they’re
entered here.

"eltDataflows" : [
{
"label" : "One DF",
"name" : "One_DF",
"file" : "dataflow/One_DF.json"

},
{
"label" : "Two DF",
"name" : "Two_DF",
"file" : "dataflow/Two_DF.json"

}
],

• Reference to recipe files: List of files that define recipes. This reference can be an empty list ("[]"). If your app includes multiple
recipes, reference each recipe file. When a user creates an app from the template, recipes are created in the order they’re entered
here. Edit the order as needed. If dataflows exist in the app, they execute before the recipes. For more information, see Add a Recipe
to a CRM Analytics Template You can also specify whether a recipe should sync and execute during app creation with the
executeCondition attribute. For more information, see Configure Recipe Execution.

"recipes" : [
{
"label" : "Filter States Recipe",
"name" : "Filter_States_Recipes",
"file" : "recipes/filterRecipe.json"

},
{
"label" : "Append Cities Recipe",
"name" : "Append_Cities_Recipe",
"file" : "recipes/appendRecipe.json",
"executeCondition" : "CreateOnly"

}
],

• Reference to dashboard components: List of files that define components in dashboards. This reference can be an empty list ("[]").
Each dashboard component in the app’s dashboards gets a unique entry in this list. Each component entry can contain an entry for

23

Edit template-info.jsonStep 3: Edit the JSON Files

a conditional statement, allowing for decisions to be made by variables on whether a component asset is added at app creation
time. This condition statement can be an empty list ("[]").

"components" : [
{
"label" : "ImageComponent",
"name" : "ImageComponent_tp",
"file" : "components/ImageComponent.json"

}
],

• Reference to dependencies: For templates with dependencies, add a line to template-info.json that refers to templates
to include in the dependency. See Create Dependent Templates.

• Reference to the images: These images associated with the app and used in dashboard files. Each image can contain an entry for a
condition statement. Specifying a condition enables decisions to be made with variables on whether an image is added at app
creation time. Images must be stored as static resources. References to each image must specify a namespace attribute if the org
uses namespace.

"imageFiles" : [
{
"name" : "image1",
"condition" : "${Variables.ShowImage1}",
"file" : "images/image1.png"
"namespace" : "${Org.Namespace}"

},
{
"name" : "image2",
"file" : "images/image2.png"
"namespace" : "${Org.Namespace}"

}
],

• Reference to the folder file: The file that contains the folder information including featuredAssets and shares is
folder.json.

"folderDefinition": "folder.json",

• Reference to the auto-install file: The file that contains the auto-install hook configuration and the installed app configuration is
auto-install.json. This file must exist if your template is installed with a managed package and the app is created with an
auto-install request.

"autoInstallDefinition": "auto-install.json",

You can also call a smart wizard from template-info.json to perform computations or detection on the user's data. The call to
the smart wizard must be backed up with an Apex callback class. The Apex callback class can run the smart wizard before or after the
configuration wizard runs and when the creation of the app is kicked off. You call the Apex class from template-info.json with
something like this:

"apexCallback": {
"namespace": "${Org.Namespace}",
"name": "GenericConfigurationModifier"

},

24

Edit template-info.jsonStep 3: Edit the JSON Files

For more about the smart wizard, refer to the Best Practices section.

SEE ALSO:

template-info.json Attributes

Edit folder.json

The folder.json file describes the featuredAssets for the application.

Note: This file is required for embedded apps because it specifies the name and label for the templated app along with setting
sharing rules for the app. The embedded app can’t be shared with other users and groups using CRM Analytics Studio.

Template developers can use it to specify the order of the dashboards in the application instead of accepting the default behavior of
alphabetizing by dashboard label.

Example:

{
"name": "My Templated App",
"featuredAssets": {

"default": {
"assets": [

{"id": "${App.Dashboards['ZDashboard'].Id}"},
{"id": "${App.Dashboards['BDashboard'].Id}"},
{"id": "${App.Dashboards['ADashboard'].Id}"}

]
}

},
"shares": [

{
"shareType": "Organization",
"accessType": "View"

}
]

}

The previous example tells the application to display the "ZDashboard" first, as the most prominent dashboard, rather than the
default of A, B, then Z. If a dashboard has a conditional attribute in template-info.json that resolves so that the dashboard
isn’t added at app creation time, a rule must be added to the template-to-app-rules.json to remove the dashboard
from the folder.json file. This rule removes that dashboard entry from the featuredAssets list at runtime and prevents
app creation from failing with a "Dashboard not found" error. The rule looks like this:

{
"name": "RemoveDashboardZFromFolderJson",
"condition": "${!Variables.HasDashboardZ}",
"appliesTo": [

{
"type": "folder",
"name": "*"

}
],
"actions": [

{

25

Edit folder.jsonStep 3: Edit the JSON Files

"action": "delete",
"description": "Remove conditional dashboard",
"path": "$.featuredAssets.default.assets..[?(@.id=~ /^.DashboardZ.$/i)]"

}
]

}

SEE ALSO:

folder.json Attributes

Edit auto-install.json

auto-install.json configures the template for the auto-install framework. Always create this optional file if you plan to design
your template for auto-installation via a managed package with an auto-install request.

Template developers use this file to specify the configuration of the auto-install framework hook and the app installation. When this file
is created, add the autoInstallDefinition attribute to the template-info.json file.

Example:

{
"hooks": [
{
"type" : "PackageInstall",
"requestName" : "Hook for the Auto-Install Template"

}
],
"configuration" : {
"appConfiguration" :{
"failOnDuplicateNames" : false,
"autoShareWithLicensedUsers" : true,
"autoShareWithOriginator" : true,
"deleteAppOnConstructionFailure" : true,
"values" : {
"value1" : "testString",
"value2" : false

}
}

}
}

The example creates an auto-install hook to install the template via a managed package, naming the auto-install request Hook
for the Auto-Install Template. The supported auto-install hooks are PackageInstall only.

The appConfiguration specifies that the installed app will:

• not fail creation if an app or assets exist with the same developer name

• be automatically shared with appropriately licensed users

• be automatically shared with the user that created the auto-install request

• be deleted if app creation fails for any reason; for create requests only, it doesn’t apply to app upgrades

• be created with the template variable values in the values map

26

Edit auto-install.jsonStep 3: Edit the JSON Files

Important: Because users don’t use the CRM Analytics Studio wizard to create the app, an app name attribute is required.
To specify the app name, add a name attribute in the template’s folder.json file.

Note: Templates packaged for automatic install can’t be dependent templates. The creation of auto-install requests can’t
guarantee dependent templates are installed in the correct order.

SEE ALSO:

auto-install.json Attributes

Edit org-readiness.json

The org-readiness.json file configures the validations to run on a user org to ensure it can create an app successfully.

The org readiness file defines the values to use for validation, the template requirements for the org with success and failure messages
to display to the user, and the validation definitions. The evaluated result of each definition is stored in the template context as
Readiness['<definition_name>'].

{
"values" : {
"Sentiment_Analysis_transformField": {

"sobjectName": "Case",
"fieldName": "Description"

},
"Sentiment_Analysis_dataset_sourceObjectAdditionalFields" : []

},
"templateRequirements": [
{
"expression": "${Readiness['Total Accounts'] > Variables.MinimumNumberOfAccounts}",

"type": "SobjectRowCount",
"successMessage": "Congratulations! The expected number of accounts matched!",
"failMessage": "Sorry, you don't have enough accounts, you need at least

${Variables.MinimumNumberOfAccounts} accounts in your org.",
"tags": ["Account"],
"image": { "name": "sales.png" }

}
],
"definition": {
"Total Accounts": {
"type": "SobjectRowCount",
"sobject": "Account"

}
}

}

SEE ALSO:

org-readiness.json Attributes

27

Edit org-readiness.jsonStep 3: Edit the JSON Files

Edit variables.json

The variables.json file describes all the variables used in the template-info.json, ui.json, and the different
rules.json files.

variables.json includes text for wizard questions, descriptions, and specifications for the answers. Variables also define conditional
questions. For example, if you want some questions to appear in the wizard only if an org contains certain data. Or you want to add
more specific questions based on the answers to more general wizard questions.

Variables enable the customization of apps; without them, everything is hard-coded. Variables allow the framework to replace tokenized
data with customer-specific data.

Variables Syntax
Variables are declared in the following format:

{
"<variableName>" : <variableDefinition>

}

Each variable has a unique name. Here are the parts of a variable definition:

• label—(Required) Text for label in the wizard, formatted as a question the user selection answers.

• description—(Optional) Text for description in the wizard, formatted to help the user select the correct response.

• defaultValue—(Optional) Default value for the answer to wizard question.

• required—(Optional) Indicates whether an answer to wizard question is required (true) or not (false). The default is false.

• variableType—(Optional) The type of the variable. The list of valid variable types is here on page 137. Defaults to StringType
if not specified.

• excludes—(Optional) Defines values to exclude from selections in response to wizard question. The values are a list of
comma-separated field names or regex tokens to not show in a picker.

• excludeSelected—(Optional) Excludes previously selected values from selections in response to subsequent wizard questions.
The default is false. If there are two or more pickers with same source and variable type and this field is true for both, the
selected option is excluded from the list of options in the other picker.

Examples
• Generic variable

"<Name of a variable>" : {

"label" : "<Question to display>",
"description" : "<Text to help user select/provide the right value>",

"variableType" : { "type" : "SobjectType" },
"defaultValue" : { "sobjectName": "User" },

"required" : true,
"excludes" : ["AboutMe", "Division"],

28

Edit variables.jsonStep 3: Edit the JSON Files

"excludeSelected" : true
}

• NumberType variable with enumerated values

"numberExampleByTens" : {
"label" : "What's the maximum number to use for the offset?",
"description" : "Choose a value between 10 and 100",
"defaultValue" : 80,
"required" : true,
"variableType" : {

"type" : "NumberType",
"min" : 0,
"max" : 100,
"enums" : [10,20,30,40,50,60,70,80,90,100]

}
}

• BooleanType variable

"booleanExample" : {
"label" : "Please define the boolean parameter?",
"description" : "Some boolean value.",
"defaultValue": false,
"required" : true,
"variableType" : {

"type" : "BooleanType",
}

}

• array SobjectFieldType variable

"sobjectFieldArrayExample" : {
"label" : "Select the user name fields?",
"description" : "The user fields to use.",
"defaultValue" : [

{"sobjectName" : "User", "fieldName" : "FirstName"},
{"sobjectName" : "User", "fieldName" : "LastName"},

],
"required" : true,
"variableType" : {

"type":"array"
}
"itemsType" : {

"type" : "SobjectFieldType",
"dataType" : "xsd:string"

}
}

}

To use this variable call it with the following.

${Variables.sobjectFieldArrayExample[0].sobjectName}
${Variables.sobjectFieldArrayExample[0].fieldName}
${Variables.sobjectFieldArrayExample[0]}

29

Edit variables.jsonStep 3: Edit the JSON Files

See additional detail and examples in the sections that follow.

Simple Variable Types for variables.json

We call the following variable types “simple” because they’re standard, predefined datatypes.

Complex variables.json Variable Types

Complex variable types are unique to Salesforce, for example, sobject, sobjectField. Use them to query the org for access
to data from Salesforce objects. Scroll to the right to view example values. Examples for each type appear below the chart.

Array Variable Type for variables.json

Use an ArrayType variable to create a wizard question that accepts multiple selections. The user can make multiple choices from
a list of values. Define a minimum and maximum for the number of items that can be selected.

excludes and excludeSelected Attributes in Variables

In variables, use the excludes attribute in variables to define values to exclude from selections in response to wizard questions.
Use the excludeSelected attribute to exclude values that have already been selected in previous wizard questions.

Use Case and Syntax for Variables with Related Values

Construct variables that reference related values, for example an object and fields from the object, and a dataset and dates, dimensions,
and measures from the dataset.

SEE ALSO:

variables.json Attributes

Simple Variable Types for variables.json
We call the following variable types “simple” because they’re standard, predefined datatypes.

Type DeclarationDescriptionType Name

"variableType" : { "type": "BooleanType" }References true or
false values.

BooleanType

"variableType" : { "type": "StringType" }References a string. Can
use Array<String>

StringType

to define restricted valid
values for the string. If
null or empty, any value
is allowed.

"variableType" : { "type": "NumberType" }References numerical
values.

NumberType

"variableType" : { "type": "NumberType", "min":0,
"max":100 }

References range of
numerical values. Use
min to specify minimum

NumberType (Range)

value and max to specify
maximum value.
Optional.

30

Simple Variable Types for variables.jsonStep 3: Edit the JSON Files

Enumerated Values
The StringType and NumberType can both contain lists of values, enums, and an optional array of labels for those values,
enumsLabels. The order of values in enumsLabels must match the order of values in enums.

Example:

"Colors": {
"label": "Select a color",
"variableType": {
"type": "StringType",
"enums": ["#ff0000", "#00ff00", "#0000ff"],
"enumsLabels": ["Red", "Green", "Blue"]

}
}

Complex variables.json Variable Types
Complex variable types are unique to Salesforce, for example, sobject, sobjectField. Use them to query the org for access to
data from Salesforce objects. Scroll to the right to view example values. Examples for each type appear below the chart.

SobjectType

References an sObject within your org.

"variableType" : {
"type": "SobjectType"
}

Example: SobjectType Example

"AccountObjVariable": {
"label": "What object do you use to represent accounts?",
"description": "The default is the Account object. If you use a different object,

select it from the list below.",
"variableType": {
"type": "SobjectType"

},
"defaultValue": {
"sobjectName": "Account"

}
}

SobjectFieldType

References a field within an sObject.

"variableType" : { "type": "SobjectFieldType", "dataType":"xsd:double" }

The dataType limits values for sObjectField. For example, specify xsd:double to limit the list of fields to numeric sObject
fields only. See Primitive Data Types in the Salesforce Object Reference for more values for dataType.

31

Complex variables.json Variable TypesStep 3: Edit the JSON Files

https://developer.salesforce.com/docs/atlas.en-us.256.0.object_reference.meta/object_reference/primitive_data_types.htm

Example: SobjectFieldType Example

AccountObjFieldsVariable" : {
"label" : "Which field in the Account object do you use to track annual revenue?",
"description" : "The default is the AnnualRevenue. If you use a different field,

select it from the list below.",
"variableType" : {
"type" : "SobjectFieldType",
"dataType" : "xsd:string"

},
"defaultValue": {
"fieldName" : "AnnualRevenue",
"sobjectName" : "{{Variables.AccountObjVariable.sobjectName}}"

}
}

ConnectorType

References a connector within your org to use for recipes or dataflows. For more information, see Add a Remote Connector to a CRM
Analytics Template.

"variableType" : { "type": "ConnectorType" , "connectorType" : "SalesforceExternal" }

Example: ConnectorType Example

"ConnectorVariable" : {
"label" : "Select a connector",
"description" : "A connector that exists in this org.",
"variableType" : {
"type" : "ConnectorType",
"connectorType" : "SalesforceExternal"

}
}

DatasetType

References a dataset within your org.

"variableType" : { "type": "DatasetType" }

Example: DatasetType Example

"DatasetVariable" : {
"label" : "Select a dataset",
"description" : "A dataset that exists in this org.",
"variableType" : {
"type" : "DatasetType"

}
}

32

Complex variables.json Variable TypesStep 3: Edit the JSON Files

DatasetDimensionType

References a dimension within a dataset. Use to let app creators select dataset dimension fields to populate app dashboards. Requires
that a DatasetType variable is set so datasetId is referenced at runtime.

"variableType" : { "type": "DatasetDimensionType" }

Example: DatasetDimensionType Example

"DimensionVariable" : {
"label" : "Select a dimension",
"description" : "A dimension from the selected dataset.",
"variableType" : {
"type" : "DatasetDimensionType"

},
"defaultValue" : {
"datasetId" : "{{Variables.DatasetVariable.datasetId}}",
"fieldName" : ""

}
}

DatasetMeasureType

References a measure within a dataset. Use to let app creators select dataset measure fields to populate app dashboards. Requires that
a DatasetType variable is set so datasetId is referenced at runtime.

"variableType" : { "type": "DatasetMeasureType" }

Example: DatasetMeasureType Example

"MeasureVariable" : {
"label" : "Select a measure",
"description" : "A measure from the selected dataset.",
"variableType" : {
"type" : "DatasetMeasureType"

},
"defaultValue" : {
"datasetId" : "{{Variables.DatasetVariable.datasetId}}",
"fieldName" : ""

}
}

DatasetDateType

References a date within a dataset. Use to let app creators select dataset date fields to populate app dashboards. Requires that a
DatasetType variable is set so datasetId is referenced at runtime.

"variableType" : { "type": "DatasetDateType" }

Example: DatasetDateType Example

"DateVariable" : {
"label" : "Select a date",
"description" : "A date from the selected dataset.",
"variableType" : {

33

Complex variables.json Variable TypesStep 3: Edit the JSON Files

"type" : "DatasetDateType"
},
"defaultValue" : {
"datasetId" : "{{Variables.DatasetVariable.datasetId}}",
"dateAlias" : ""

}
}

DatasetAnyField

References any type of field within a dataset. Use to let app creators select dataset dimensions, measures, and dates to populate app
dashboards from a single list. Requires that a DatasetType variable is set so datasetId is referenced at runtime.

"variableType" : { "type": "DatasetAnyField" }

Example: DatasetAnyType Example

"AnyFieldVariable" : {
"label" : "Select any field",
"description" : "Any field from the selected dataset.",
"variableType" : {
"type" : "DatasetAnyFieldType"

},
"defaultValue" : {
"datasetId" : "{{Variables.DatasetVariable.datasetId}}",
"fieldName" : ""

}
}

DateTimeType

References a time and date. Can’t be used in non-VisualForce page in ui.json. Value must be an ISO 8601 formatted date time string, as
per RFC 3339, section 5. For example, 2020-02-19T14:31:42-0700.

"variableType" : { "type": "DateTimeType" }

Example: DateTimeType Example

"dateExample" : {
"label" : "Select a date",
"description" : "The date and time",
"variableType" : {
"type" : "DateTimeType"

}
}

ObjectType

References a user-defined object in your org. ObjectType isn’t supported in the UI and referencing it in ui.json results in app creation
errors. Use ObjectType for runtime functionality, such as Overrides.

"variableType" : { "type": "ObjectType" }

34

Complex variables.json Variable TypesStep 3: Edit the JSON Files

https://tools.ietf.org/html/rfc3339#section-5

Example: ObjectType Example

"ObjectVariable" : {
"label" : "Define some object...",
"variableType" : {
"type" : "ObjectType",
"properties" : {
"stringVar" : {
"type" : "StringType"

},
"booleanVar" : {
"type" : "BooleanType"

},
"numberVar" : {
"type" : "NumberType",
"min" : 5,
"max" : 10

}
},
"strictValidation" : true,
"required" : ["stringVar", "numberVar"]

}
}

DataLakeObjectType

References a data lake object within your org.

"variableType" : { "type": "DataLakeObjectType" }

Example: DataLakeObjectType Example

"DataLakeObjectVariable" : {
"label" : "Select a data lake object",
"description" : "A data lake object that exists in this org.",
"variableType" : {
"type" : "DataLakeObjectType"

}
}

DataLakeObjectFieldType

References a field within a data lake object.

"variableType" : { "type": "DataLakeObjectFieldType", "dataType":"number" }

The dataType limits values for dataLakeObjectField. For example, specify number to limit the list of to numeric fields
only. Valid values are number string, date, date_time, or null for all values.

Example: DataLakeObjectFieldType Example

"DataLakeObjectNumberFieldVariable" : {
"label" : "Select a numeric field from your data lake object.",
"variableType" : {

35

Complex variables.json Variable TypesStep 3: Edit the JSON Files

"type" : "DataLakeObjectFieldType",
"dataType" : "number"

},
"defaultValue" : {
"objectName" : "{{Variables.DataLakeObjectVariable.objectName}}",
"fieldName" : ""

}
}

DataModelObjectType

References a data model object within your org.

"variableType" : { "type": "DataModelObjectType" }

Example: DataModelObjectType Example

"DataModelObjectVariable" : {
"label" : "Select a data model object",
"description" : "A data model object that exists in this org.",
"variableType" : {
"type" : "DataModelObjectType"

}
}

DataModelObjectFieldType

References a field within a data model object.

"variableType" : { "type": "DataModelObjectFieldType", "dataType":"string" }

The dataType limits values for dataModelObjectField. For example, specify string to limit the list to string fields only.
Valid values are number string, date, date_time, or null for all values.

Example: DataModelObjectFieldType Example

"DataModelObjectStringFieldVariable" : {
"label" : "Select a text field from your date model object.",
"variableType" : {
"type" : "DataModelObjectFieldType",
"dataType" : "string"

},
"defaultValue" : {
"objectName" : "{{Variables.DataModelObjectVariable.objectName}}",
"fieldName" : "

}
}

CalculatedInsightType

References a calculated insight within your org.

"variableType" : { "type": "CalculatedInsightType" }

36

Complex variables.json Variable TypesStep 3: Edit the JSON Files

Example: CalculatedInsightType Example

"CalculatedInsightVariable" : {
"label" : "Select a calculated insight",
"description" : "A calculated insight that exists in this org.",
"variableType" : {
"type" : "CalculatedInsightType"

}
}

CalculatedInsightFieldType

References a field within a calculated insight.

"variableType" : { "type": "CalculatedInsightFieldType", "dataType":"dimension" }

The dataType limits values for calculatedInsightField. For example, specify dimension to limit the list of dimension
fields only. Valid values are dimension measure, date, date_time, or null for all values.

Example: CalculatedInsightFieldType Example

"CalculatedInsightFieldVariable" : {
"label" : "Select a dimension field from your calculated insight.",
"variableType" : {
"type" : "CalculatedInsightFieldType",
"dataType" : "dimension"

},
"defaultValue" : {
"objectName" : "{{Variables.CalculatedInsightVariable.objectName}}",
"fieldName ": ""

}
}

Generated Overrides in variables.json
The variables.json file generated upon template creation contains an Overrides variable for app assets. Overrides are
referenced in template-info.json as a conditional for whether assets are created at runtime or not. It’s best practice to edit
Overrides. Overrides can be removed as long as all references to Overrides are also removed from
template-info.json.

Example: Overrides Variable Example

{
"Overrides" : {
"label" : "Overrides",
"description" : "Internal configuration to allow asset creation overrides, not to

be displayed in UI.",
"defaultValue" : {
"createAllDashboards" : true,
"createAllLenses" : true,
"createAllExternalFiles" : true,
"createDataflow" : true,
"createAllDatasetFiles" : true,
"createAllImages" : true

37

Complex variables.json Variable TypesStep 3: Edit the JSON Files

},
"required" : true,
"excludeSelected" : false,
"excludes" : [],
"variableType" : {
"required" : [
"createAllExternalFiles",
"createAllDashboards",
"createAllImages",
"createAllDatasetFiles",
"createAllLenses",
"createDataflow"

],
"type" : "ObjectType",
"properties" : {
"createAllDashboards" : {
"type" : "BooleanType",
"enums" : [
true,
false

]
},
"createAllLenses" : {
"type" : "BooleanType",
"enums" : [
true,
false

]
},
"createAllExternalFiles" : {
"type" : "BooleanType",
"enums" : [
true,
false

]
},
"createDataflow" : {
"type" : "BooleanType",
"enums" : [
true,
false

]
},
"createAllDatasetFiles" : {
"type" : "BooleanType",
"enums" : [
true,
false

]
},
"createAllImages" : {
"type" : "BooleanType",
"enums" : [
true,

38

Complex variables.json Variable TypesStep 3: Edit the JSON Files

false
]

}
},
"strictValidation" : true

}
}

}

Array Variable Type for variables.json
Use an ArrayType variable to create a wizard question that accepts multiple selections. The user can make multiple choices from a
list of values. Define a minimum and maximum for the number of items that can be selected.

"variableType" : {

"type" : "ArrayType",

"itemsType" : {

"type" : "NumberType"

}
"sizeLimit" :{
"min" : 1,
"max" : 100

}

}

Example for ArrayType with enum:

"variableType" : {
"type" : "ArrayType",
"itemsType" : {
"type" : "StringType",
"enums" : [
"Leads",
"Campaigns",
"Campaign Members"
]

},
"sizeLimit" : {
"max" : 3

}
}

excludes and excludeSelected Attributes in Variables
In variables, use the excludes attribute in variables to define values to exclude from selections in response to wizard questions. Use
the excludeSelected attribute to exclude values that have already been selected in previous wizard questions.

39

Array Variable Type for variables.jsonStep 3: Edit the JSON Files

"excludes" Attribute
Regex Token Definition: "/<regex pattern>/flags"

Flags are characters that Javascript RegEx global object takes, for example: g, i, m, u, and so on. Refer to the RegEx Object API documentation
for details.

Example excludes statements:

• "excludes" : ["Name", "/^(Billing).+/"]—Excludes Name field and all the fields that start with Billing.

• "excludes" : ["/^(?!Billing)^(?!Shipping).+/"]—Excludes all fields except fields that start with Billing
or Shipping.

• "excludes" : ["/.+(_kav)$/"]—Excludes all fields that end with _kav.

• "excludes" : ["/^(?:(?!_kav).)*$/"]—Excludes all fields except fields that end with _kav.

• "excludes" : ["/(?!^Case$|^Account$)(^.*$)/"]—Excludes all objects except Case and Account.

Note: Including a value in defaultValue that is excluded results in an error.

excludeSelected Attribute
In this example, the option selected in SObjectField1 picker isn’t available in SObjectField2 picker.

"SObjectField1" : {
"label" : "Select a field from account",
"description" : "First account field.",
"defaultValue" : {
"sobjectName" : "Account",
"fieldName" : ""

},
"required" : true,
"excludeSelected" : true,
"variableType" : {
"type" : "SobjectFieldType"
}

},
"SObjectField2" : {
"label" : "Select another field from account",
"description" : "Second account field.",
"defaultValue" : {
"sobjectName" : "Account",
"fieldName" : ""

},
"required" : true,
"excludeSelected" : true,
"variableType" : {
"type" : "SObjectFieldtype"

}
}

Use Case and Syntax for Variables with Related Values
Construct variables that reference related values, for example an object and fields from the object, and a dataset and dates, dimensions,
and measures from the dataset.

40

Use Case and Syntax for Variables with Related ValuesStep 3: Edit the JSON Files

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

For example, the first question on a wizard page asks the user to select an object (sObjectType variable). The next questions can
ask the user to select fields (sObjectFields variable) from that object. The wizard populates the questions about fields with
sObjectFields from the sObject selected in the first question. The following image shows an sObject picker first, followed
by an sObjectField picker.

You can take the same approach with datasets and dataset dates, measures, and dimensions. The first question references a dataset
(datasetType variable). Subsequent questions reference dates (datasetDateType), dimensions (datasetDimensionType),
and measures (datasetMeasureType) from the dataset selected in the first question.

Following is template JSON used to render the UI shown in the image, using sObject and sObjectFields variables. In the
variables section, notice CSATField variable's type info: the defaultValue contains a reference to the variable's value
CSATObj and the syntax is {{Variables.CSATObj.sobjectName}}. The intention here’s to replace
{{Variables.CSATObj.sobjectName}} with the value that the user picked for the variable CSATObj.

The ui.json file for the template, shown at the top of the example, orders the wizard questions defined in variables.json.

{
"ui" : {
"pages" : [
{
"title ": "Page1",
"variables" : [
{
"name" : "CSATObj"

},
{
"name" : "CSATField"

}
]

}
]

},
"variables" : {
"CSATObj" : {
"description" : "Service Analytics defaults to the Case object. If you use a different

object to track CSAT, select it from the list below",
"label" : "1. What object do you use to track customer satisfaction?",

41

Use Case and Syntax for Variables with Related ValuesStep 3: Edit the JSON Files

"required" : true,
"variableType" : {
"type" : "SObjectType"

},
"defaultValue" : {
"sobjectName" : "Case"

}
},
"CSATField" : {
"description" : "Service Analytics uses your choice to provide a single numerical

score to indicate customer satisfaction rating.",
"label" : "2. Which field on the object you just selected do you use to track CSAT?",

"defaultValue" : {
"datasetId" : "{{Variables.CSATObj.sobjectName}}",
"fieldName" : ""

},
"required" : true,
"excludeSelected" : true,
"variableType" : {
"type" : "SobjectFieldType",
"datatype" : "xsd:double"

}
}

}
}

Variable Value Reference Syntax
"${Variables.Dataset1.datasetId}
${Variables.<SObjectVariableName>.sobjectName}"

Edit ui.json

The ui.json file determines how your template displays the configuration wizard questions defined in variables.json.

Note: This file isn’t used in an embedded app. Templates with a templateType of embeddedapp aren’t visible in CRM
Analytics Studio for install.

The UI file determines wizard page layout, defining the order in which variables described in variables.json appear on a page.

{

"ui" :{

"pages": [
{
"title":"Customization Questions",
"variables":[

{ "name": "customizeUserObjectInfo" }

42

Edit ui.jsonStep 3: Edit the JSON Files

]
}

,
{

"title":"User Object Information",
// Only show this page if the user checked the "customizeUserObjectInfo" checkbox.

"condition":"{{Variables.customizeUserObjectInfo == 'Yes'}}",

"variables":[

{ "name": "userObjectUsernameField" },

{ "name": "userObjectName" },
{ "name": "pageConditionVariable" },

{ "name": "showBoolean" }
],
"helpUrl":"https://salesforce.com/wave/salesapp/page1/help.html"

},

{

"title":"Job Information",

"variables":[

{ "name": "maxAllowedOffset" },
{ "name": "booleanExample", "visibility": "{{Variables.showBoolean ? 'Visible' :

'Hidden'}}" },
],
"helpUrl":"https://salesforce.com/wave/salesapp/page2/help.html"

}

],
"displayMessages": [
{
"text":"When we're done creating the app, we'll send you an email.",
"location": "AppLandingPage"

}
]

}

The displayMessages text is visible to the user on the page that displays the app creation progress.

43

Edit ui.jsonStep 3: Edit the JSON Files

Page Condition Syntax for ui.json

You can make a page's appearance conditional on the value of a variable. For example, if the user answers “No” when asked if there
is a Products dimension, you can use a conditional to ensure that no Products-related page displays in the wizard. Adding page
conditions enables wizard page flow. If the condition is met, then the page with the condition will display; if the condition is not
met, the page will not display. Use the following syntax to instruct which conditionals control the display of pages.

Variables Array in ui.json

Use a variables array to display a question to users conditionally. You can optionally display a question as disabled in the case
where an answer has been found or computed using Apex Class. To accommodate variable condition and other fields, the
variables array must be an array of objects instead of an array of variable names.

Use VisualForce To Customize the Wizard UI

To customize wizard appearance beyond the default interface, use VisualForce and a JavaScript library.

SEE ALSO:

ui.json Attributes

Page Condition Syntax for ui.json
You can make a page's appearance conditional on the value of a variable. For example, if the user answers “No” when asked if there is
a Products dimension, you can use a conditional to ensure that no Products-related page displays in the wizard. Adding page conditions
enables wizard page flow. If the condition is met, then the page with the condition will display; if the condition is not met, the page will
not display. Use the following syntax to instruct which conditionals control the display of pages.

44

Page Condition Syntax for ui.jsonStep 3: Edit the JSON Files

ExampleSupported OperationsVariable Type

{{Variables.x == 'Yes'}}==, !=
StringType

{{Variables.x == true}}==, !=
BooleanType

{{Variables.x == 5}}==, !=, <, <=, >, >=
NumberType

{{Variables.x.sobjectName ==
'x'}}

==, !=
SobjectType

{{Variables.x.fieldName ==
'x'}}

==, !=
SobjectFieldType

{{Variables.x contains
'x'`123}}

contains
ArrayType --> StringType

{{Variables.x contains 5}}contains
ArrayType --> NumberType

Variables Array in ui.json
Use a variables array to display a question to users conditionally. You can optionally display a question as disabled in the case
where an answer has been found or computed using Apex Class. To accommodate variable condition and other fields, the variables
array must be an array of objects instead of an array of variable names.

Variable Object
A variable object can have following fields:

{
"name": "userObjectUsernameField",

"visibility": "{{Variables.orgHasUserObject == 'Yes'}}"
}

Value DescriptionRequiredKey

Name of the variable.Yesname

Novisibility • Display condition:

– If the condition is evaluated to
'true', then this variable
(question+input control) is
displayed.

45

Variables Array in ui.jsonStep 3: Edit the JSON Files

Value DescriptionRequiredKey

– If evaluated to 'false', this
variable won't be displayed.

– If evaluated to 'disabled', this
variable is grayed out.

• This is evaluated on the client side.

• Valid values 'Disabled' |
'Visible' | 'Hidden'

• Example Expressions:

– "{{Variables.booleanType
? 'Visible' :
'Hidden'}}"

– "{{Variables.orgHasUserObject
== 'Yes' ? 'Visible' :
'Hidden'}}"

– "{{Variables.orgHasUserObject
== 'Yes' ? 'Disabled'
: 'Visible' }}"

Example: Example of variable object:

{

"ui" :{

"pages": [

{

"title":"User Object Information",
// Only show this page if the user checked the "Customize" button.

"condition":"{{Variables.customizeOpportunities == 'Yes'}}",

"variables":[
{

"name": "userObjectUsernameField",

"visibility": "{{Variables.orgHasUserObject == 'Yes' ? 'Visible'
: 'Hidden'}}"

},
{

"name": "userObjectName",

"visibility": "{{Variables.orgHasUserObject == 'Yes' ? 'Visible'
: 'Hidden'}}"

}

46

Variables Array in ui.jsonStep 3: Edit the JSON Files

],
"helpUrl":"https://salesforce.com/wave/salesapp/page1/help.html"

},

{

"title":"Job Information",

"variables":[

"maxAllowedOffset"
],
"helpUrl":"https://salesforce.com/wave/salesapp/page2/help.html"

}
],
"displayMessages": [

{
"text":"When we're done creating the app, we'll send you an email.

Before you access the dashboards, you need to wait for the dataflow for the app to
finish running. After that, refresh this page and start exploring.",

"location": "AppLandingPage"
}

]
}

}

Use VisualForce To Customize the Wizard UI
To customize wizard appearance beyond the default interface, use VisualForce and a JavaScript library.

CRM Analytics runs the wizard before generating the app from the template. The wizard consists of a set of pages, each of which contains
questions or other elements you use to set up the app.

The framework lets you run a custom APEX class at any time during app creation. This class can answer questions about the org
automatically or validate the org to ensure it meets the requirements to create the app. CRM Analytics uses a default format for the error
messages generated by the validation process. VisualForce and a JavaScript library lets you customize the format and include links to
help the admin edit the org to meet app-creation requirements.

VisualForce lets you replace any or all of the autogenerated wizard pages with a custom VisualForce page that can display anything you
want. The illustration shows how you can integrate a custom VisualForce page into the app creation flow.

47

Use VisualForce To Customize the Wizard UIStep 3: Edit the JSON Files

The VisualForce renders everything inside the red lines in the example wizard shown here. It interacts with the wizard through a JavaScript
SDK.

48

Use VisualForce To Customize the Wizard UIStep 3: Edit the JSON Files

The JavaScript SDK is essentially be a pub/sub eventing mechanism with a set of events fired and consumed during a well-defined
lifecycle. The SDK is versioned and can be included in any VisualForce page as follows:

<script type="text/javascript"
src="/analytics/wave/sdk/js/<version_number>/wizard.js"></script>

Here’s example code for the VisualForce page:

// Subscribe to event that gets fired when the page first loads
Wave.wizard.publish(

{name : 'wizard.ready', "payload" : {}, callback : function (response) {
var payload = response.payload;
var metadata = {

page : payload.page,
variableDefinitions : payload.variableDefinitions,
values : payload.initialValues

}
}});

// Update and validate a single answer to a question

49

Use VisualForce To Customize the Wizard UIStep 3: Edit the JSON Files

Wave.wizard.publish({
name: "wizard.update",
payload: {name: "Fiscal_Month", value: "01 - January"},
function(response) {

var errors = response.payload;
}

});

Declaring the VisualForce Page in ui.json
In order to replace the default rendering of a wizard page the application developer simply specifies the Visualforce name in ui.json
page as follows:

"pages" : [
{

"title": "These questions focus on how CRM Analytics displays data for Accounts”,
"variables": [

{ "name": "Customer" },
{ "name": "Customer_L2" },
{ "name": "Source" },
{ "name": "Geo_Maps" },
{ "name": "Geography" },
{ "name": "Geography_L2" }

],
"vfPage":{

"namespace": "<visualforce_namespace>",
"name": "<visualforce_page_name>"

}

}]

Important: Make sure any Visualforce page included in a class can be accessed by users in the organization with Manage Analytics
Templated Apps user permission. Otherwise, trying to create an app from your template results in an error. In Setup, go to
Visualforce Pages, click Security next to the page, then add the profile with the Manage Analytics Templated Apps user permission.

Refer to the "VisualForce Events for Customizing the Wizard UI" reference section at the end of this guide for details on the events to
which you can subscribe or publish.

Edit Rules Files

Rules files define how an app gets created by the template.

There are two type of rules files: template-to-app-rules.json and app-to-template-rules.json. They use the
same syntax, but serve different purposes.

• template-to-app-rules.json defines the rules that the template follows when creating an app. For example, you can
define a rule that specifies that if an org doesn’t use certain objects, the app doesn't use them in dashboards or the dataflow. Another
rule can replace a label name in a chart with the name of a field from a Salesforce object selected in a wizard question. Rules also
define how variables are handled. For example, if the wizard asks which fields to include in filters for accounts,
template-to-app-rules.jsondetermines how that choice is reflected in dashboards.

• app-to-template-rules.json provides rules for converting an updated source app back to template form. After changing
the source app, you update the template object with a PUT call to the CRM Analytics REST API. For example, you can tokenize all

50

Edit Rules FilesStep 3: Edit the JSON Files

asset files every time they are pulled out of the source app. You use app-to-template rules infrequently, because you're unlikely to
update the source app often.

The rules file is referenced from template-info.json:

"rules" : [
{ "type" : "appToTemplate", "file" : "appToTemplateRules.json" },
{ "type" : "templateToApp", "file" : "templateToAppRules.json" }

],

The bulk of what follows details the use of template-to-app-rules.json.

Rules Files Structure

Rules files can contain three sections: rules, constants, and macros.

Structuring and Organizing Rules

The rules section of template-to-app-rules.json defines the rules followed by the template.

Rules Syntax

The rules object may contain any number of rule objects. A rule object is made up of:

Actions in Rules

Actions define what a rule does. Use constants to make it easier to perform any action.

Actions Syntax for Rules

Use Functions in Rules

Functions make rules more powerful. For example, use functions to apply rules iteratively to arrays or to make rules conditional on
the content of a string or an array. CRM Analytics Templates supports string, array, and json functions as well as static math and
sfdc_fma functions.

Macros in Rules

Use a macro when a single rule executes repeatedly on different JSON node paths.

SEE ALSO:

rules.json Attributes

Rules Files Structure
Rules files can contain three sections: rules, constants, and macros.

• Rules. This is where you define the rules followed by the template for creating the app.

• Constants. Use constants to create shortcuts for longer expressions. Constants are like variables, but are not passed in or declared
in the UI. Constants can be referenced in the document via the normal expression language ${Constants.<constantName>}.

• Macros. Rule macros let you define repeatable, well-tested rule code units that can be called within the context of any JSON
transformation, simplifying and making the rule definition source easier to maintain

Structuring and Organizing Rules
The rules section of template-to-app-rules.json defines the rules followed by the template.

The section is made up of three parts:

• Action: Designates the operation to perform.

51

Rules Files StructureStep 3: Edit the JSON Files

• Path: Defines the path to the location where the action is performed.

• AppliesTo: Determines the asset files to apply the rules to. Consists of a name.

Rules can be divided into multiple files, which are executed in the order in which you list them in template-info.json. Be sure
that a rule that runs first doesn’t refer to a constant referenced in a rule that runs later.

Here are a few guidelines to consider when working with multiple rules files:

• One rules file can contain all constants, another all actions.

• Use multiple rules when actions grow to 500 lines. You could divide them into a rules file for dashboards, another for datasets or the
dataflow.

• If you have content to be used by many rules, include it in the first rules file to be executed.

Here is a simple example, a rule for changing the title text on a dashboard:

{
"name": "Update dashboard title",
"appliesTo": [

{
"type": "dashboard",
"name": "DashboardOne"

}
],
"actions": [

{
"action": "set",
"description": "change the title text of the dashboard",
"path": "$.state.widgets.title_text.parameters.text",
"value": "${Variables.DashboardTitle}"

}
]

}

Make rules more powerful using functions. See Use Functions in Rules.

Rules Syntax
The rules object may contain any number of rule objects. A rule object is made up of:

NotesRequiredExampleTypeAttribute

Yes
"name":
"ruleName"

Stringname

Use freemarker
conditions to apply the

No
"condition":
"${Variables.foo
== "Yes"}"

Stringcondition

rule (same syntax as
conditions used in
template-info.json)

Use "type": "*" to
apply to all JSON assets.

Yes
{

"type":

ArrayappliesTo

Other valid values are"dashboard",

52

Rules SyntaxStep 3: Edit the JSON Files

NotesRequiredExampleTypeAttribute

"name":
"dashboardOne"
}

"dashboard" ,
"lens",
"workflow",
"schema", and
"xmd"

The "name" string
allows specific JSON
assets to be referenced

The "name" can take
"*" as well, to apply to
all of one asset type or a
group of one asset type

Note:

NOTE: for workflow type,
name has to be "*"

Stringlabel

4 actions types: add,
put, set, and
delete

Can have as many actions
as needed in array

Yes
{

"action":
"set",

"description"
: "A desc",

Arrayactions

"path":
"$.json.path",

"value":
"setValue"
}

Actions in Rules
Actions define what a rule does. Use constants to make it easier to perform any action.

Actions
Actions define the way rules change an app’s JSON files. Valid actions are:

• delete: Delete a node in the document.

• put: Add a node to an object.

• set: Set the value of an existing node in the document.

• add: Add an element to an array

• eval: Evaluate a specified expression and assign results to a variable.

• replace: Search and replace a text string globally.

53

Actions in RulesStep 3: Edit the JSON Files

Each action has a path attribute, which is a JsonPath that points to a node in the document. JsonPath is to JSON as XPath is to XML.
Practice it in the Jayway JsonPath Evaluator.

Note: If a template is updated to change the assetVersion, it can impact the JsonPath. Always test the rules for app creation
after a template update.

Actions can be conditionally applied to a document. Set the condition on a set of actions or on a collection of actions.

Actions Syntax for Rules

NotesExampleAction

Adds an entry to an existing array.

Needs "index" and "value".
{

"action": "add",

add

"description" : "Add "index" should be 0 for first element in
array, any number after that for middle of
array.

desc",
"path":

"$.json.path.to.existing.json,array",

If "index" is larger than array size, value
is added to end of array."index": 0,

"value": "value to add"
}

Add an attribute and value to an existing
JSON value.

Needs "key" and "value".

{
"action": "put",
"description" : "Put

desc",

put

"value" can be a string or an array.
"path":

"$.json.path.to.existing.json",

"key":
"jsonAttributeName",

"value": "new value"
}

Set a value on an existing JSON attribute.

Needs "value".
{

"action": "set",
"description" : "Set

set

desc",
"path":

"$.json.path.to.attribute",
"value": "setValue"

}

Remove a node in the existing JSON tree.
{

"action": "delete",

delete

"description" : "Delete
desc",

"path":

54

Actions Syntax for RulesStep 3: Edit the JSON Files

http://goessner.net/articles/JsonPath/
http://jsonpath.herokuapp.com

NotesExampleAction

"$.json.path.to.delete"
}

Evaluate the expression specified in
'value' and assign results to the context

[
eval

variable specified by 'key' (if set).{
Context attribute can be referenced using
the expression:
${Rules.Eval.<variable_name>}.

Scope of the eval variable is one of the
following:

"action": "eval",

"key": "helloResult",

"value": • The entire document if performed in a
rule."${myMacros:sayHello('Hello')}"

• The macro if performed within a macro.

},

{

"action": "set",

"path":
"$.path.json.node",

"value":
"${Rules.Eval.helloResult}"

}
]

Replace any text string throughout entire
document. Use when regular expressions
are not an option. Can still use expressions.

{
"action": "replace",
"key":
"RPLCM_Opportunity_Amount_Field",

replace

Instead of using the ‘replace’ action,
you can perform targeted search and"value":
replace (JSON Path) with
${string:replace(...)}.

"${Variables.Opportunity_Amount.fieldName}"
},

In cases requiring regular expressions, use
${string:replaceFirst(...)},
${string:replaceAll(...)}.

Use Functions in Rules
Functions make rules more powerful. For example, use functions to apply rules iteratively to arrays or to make rules conditional on the
content of a string or an array. CRM Analytics Templates supports string, array, and json functions as well as static math and sfdc_fma
functions.

55

Use Functions in RulesStep 3: Edit the JSON Files

Use the "Rules.CurrentNode" property in conjunction with functions. It contains the last results of the JSON 'path' argument
supplied in the action of your rule.

Use the EL Expression Language to invoke custom functions with an expression. Functions can appear in the static text of an EL expression,
for example:

"name" : "my name in lowercase is
${string:toLowerCase(Variables.myName)}",

See the sections that follows for complete information about each function type.

string Functions

Use string functions in rules to manipulate text strings in asset JSON at runtime.

array Functions

Use array functions in rules to manipulate arrays in asset JSON at runtime.

json Functions

Use json functions in rules to manipulate JSON at runtime. For example, find all the JSON paths in a dashboard that have a link widget
and update the links at runtime.

Static Functions

Static functions have specialized use in template rules.

string Functions
Use string functions in rules to manipulate text strings in asset JSON at runtime.

For instance, a string function can replace all occurrences of one string with another or convert strings from uppercase to lowercase. If
a user enters a dashboard title in the wizard using all lowercase letters, the string function changes the text to sentence case at runtime.

toUpperCase

Parameters: Object

Returns: Object

Recursive: Supported

Description: Converts all characters in an object to uppercase. The object can be a single string or a JSON object with multiple strings

Example: This JSON

"objecttest" : {
"obj" : {

"greeting1" : "hello world",
"greeting2" : "salut world",
"greeting3" : "hallo world"

},
"list" : ["hello world", "salut world", "hallo world"]

},

And the rule:

{
"action": "set",
"description": "Convert all strings to upper case",

56

Use Functions in RulesStep 3: Edit the JSON Files

"path": "$.objecttest",
"value" : "${string:toUpperCase(Rules.CurrentNode)}"

}

Returns:

"objecttest" : {
"obj" : {

"greeting1" : "HELLO WORLD",
"greeting2" : "SALUT WORLD",
"greeting3" : "HALLO WORLD"

},
"list" : ["HELLO WORLD", "SALUT WORLD", "HALLO WORLD"]

},

toLowerCase

Parameters: Object

Returns: Object

Recursive: Supported

Description: Converts all characters in a string to lowercase.

replace

Parameters: Object obj, String oldStr, String newStr

Returns: Object

Recursive: Supported

Description: Returns a new object with all occurrences of oldStr replaced with newStr.

replaceAll

Parameters: Object obj, String regex, String newStr

Returns: Object

Recursive: Supported

Description: Replaces all substrings of this string that match the given regular expression.

replaceFirst

Parameters: Object obj, String regex, String newStr

Returns: Object

Recursive: Supported

Description: Replaces the first substring of this string that matches the given regular expression.

split

Parameters: Object obj, String regex

57

Use Functions in RulesStep 3: Edit the JSON Files

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#sum
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#sum

Returns: Object

Recursive: Supported

Description: Parses a string and splits it into an array defined by the specified delimiter. For example:

${string:split('one:two:three', ':')}

Results in array of strings:

['one','two','three']

If more complex regular expression matching is required, use match (next).

match

Parameters: Object obj, String regex

Returns: Object

Recursive: Supported

Description:

Performs complex regular expression matching and returns an array of matching results. For example, to capture items surrounded by
square single quote and square brackets:

${string:match('['foo']['bar']['baz']', '\\\\[\\'(.*?)\\'\\\\]')

Returns the following array:

foo

bar
baz

join

Parameters: Object obj, String delimiter

Returns: Object

Recursive: Supported

Description: Creates a string from an array of strings and separates each item by the specified delimiter.

${string:join(<string>, <delimiter>)}

array Functions
Use array functions in rules to manipulate arrays in asset JSON at runtime.

Array functions can use the answer to a configuration wizard question to set runtime conditions. For example, array functions can check
all selected values and set a condition to true or false. They can also take multiple values from an answer and iterate over a JSON array
to put those values into the runtime JSON correctly.

Or, say that your wizard contains multiple questions with limited values to choose from, such as Yes/No, or a time frame in days or
months. An array function can replace them with one question that asks the user to select multiple features to include in dashboards.
In this case, the array function loops over the one question to check for values and set the features that the user picked via a conditional.

58

Use Functions in RulesStep 3: Edit the JSON Files

Function Name: forEach

Parameters: Collection<Object> array, String returnValue

Returns: Collection<Object>

Recursive: Not supported>

Description: Evaluates returnValue as an EL expression for each item in the given array and collects each eval result in an array and returns
it.

Example: JSON template:

{
"fields": "${array:forEach(Variables.myArray, '{\"name\": \"${var}\"}')}"

}

Produces:

{
"fields": [{"name": "ProductName"},

{"name": "Amount"},
{"name": "CompanyName"},
{"name": "Revenue"}]

};

forEachIndex

Parameters: Int start, Int end, String returnValue

Returns: Collection<Object>

Recursive: Not supported

Description: Evaluates returnValue as an EL expression for the index number(s) int the array where the string is found.

concat

Parameters: Collection<Object> array1, Collection<Object> array2

Returns: Collection<Object>

Recursive: Not supported

Description: Returns an array after concatenating the given array1 and array2.

unique

Parameters: Collection<String> array

Returns: Collection<String>

Recursive: Not supported

Description: Returns an array of unique items. Uniqueness determined by the underlying objects contained in the array. For example, if
the collection is an array of strings, all strings with identical values (case sensitive) are removed.

uniqueBy

Parameters: String byFieldName, Collection<Object> array

59

Use Functions in RulesStep 3: Edit the JSON Files

Returns: Collection<Object>

Recursive: Not supported

Description: Returns an array of unique items. Expects an array of complex objects of similar shape. Uniqueness determined by comparing
the value of a field identified by the given byFieldName.

union

Parameters: Collection<Object> array1, Collection<Object> array2

Returns: Collection<Object>

Recursive: Not supported

Description: Returns a unique union between array1 and array2. Uniqueness determined by the underlying objects contained
in the array.

unionBy

Parameters: String byFieldName, Collection<Object> array1, Collection<Object> array2

Returns: Collection<Object>

Recursive: Not supported

Description: Returns an array which is a union of array1 and array2 items. Expects an array of complex objects of similar shape. Uniqueness
determined by comparing the value of a field identified by the given byFieldName.

contains

Parameters: Collection <Object> array, Object item

Returns: Boolean

Recursive: Not supported

Description: Returns true if the given item is in the given array, otherwise false.

size

Parameters: Collection <Object> array

Returns: Integer

Recursive: Not supported

Description: Return the size of the array.

last

Parameters: Collection <Object> array

Returns: Object

Recursive: Not supported

Description: Return the last item of the array.

60

Use Functions in RulesStep 3: Edit the JSON Files

Use Array Functions for Multi-Select Widgets and Looping

Here’s how to use an array function to create a configuration wizard widget that lets the user select multiple values.

Use Array Functions for Multi-Select Widgets and Looping
Here’s how to use an array function to create a configuration wizard widget that lets the user select multiple values.

The following code

"Account_Fields": {
"label": "Pick the fields for your dataset",
"description": "Multiselect sobjectfield test",
"defaultValue": [
{
"sobjectName": "Account",
"fieldName": "Name"

}
],
"required": false,
"variableType": {

"type": "ArrayType",
"itemsType": {

"type": "SobjectFieldType"
}

},
"excludeSelected": true

}

Results in the following wizard widget:

The ArrayType variable contains an itemsType attribute, which accepts the following:

• SObjectType

• SObjectFieldType

• DatasetType

• DatasetDateType

• DatasetDimensionType

• DatasetMeasureType

• StringType, or

• NumberType

The widget places values in an array. The following show how the widget displays values for the user to select:

61

Use Functions in RulesStep 3: Edit the JSON Files

Items in the array can be referenced by index. Arrays of StringType and NumberType are easy to work with, but arrays of
SObjectType and SObjectFieldType contain multiple attributes for each item in the array:

Array of SobjectFieldType:

• ${Variables.Account_Fields[0]} returns (sobjectName=Account, fieldName=Name,
sobjectLabel=Account, fieldLabel=Account Name)

• ${Variables.Account_Fields[0].fieldName} returns Name

• ${Variables.Account_Fields[0].fieldLabel} returns Account Name

• fieldName is required for dataflow

The selection values from the widget are stored in the variable and there are two ways to access them in the template files (rules,
dashboards, workflow):

62

Use Functions in RulesStep 3: Edit the JSON Files

• Use array values from SobjectFieldType without looping, accessing by index

"fields":[
{"name":"${Variables.Account_Fields[0].fieldName}"},
{"name":"${Variables.Account_Fields[1].fieldName}"},
{"name":"${Variables.Account_Fields[2].fieldName}"},
{"name":"${Variables.Account_Fields[3].fieldName}"},
{"name":"${Variables.Account_Fields[4].fieldName}"}

]

This example, without looping, would be tricky to use, because there would always need to be at least five items in the array. Any
fewer would fail, and anything over five would not be used.

• Use array values from SobjectFieldType with looping via the array:forEach function. In this example, a “set”
action is going to loop through the SObjectFieldTypes in the array and add them to the “fields” attribute in the
Extract_Account step of the workflow. Each entry in “fields” will need “name” and “var.fieldName”.

• rules.json

"name": "AddAccountFilesToDataflow",
"appliesTo": [

–

{
"type": "workflow",
"name": "*"

}
],
"actions": [
{
"action": "set",
"description": "use selected values for sfdcDigest in dataflow",
"path": "$.workflowDefinition.Extract_Account.parameters.fields",
"value": "${array:forEach(Variables.Account_Fields, '{\"name\":

\"${var.fieldName}\"}')}"
}

]

– dataflow.json

"Extract_Account":{
"action":"sfdcDigest",
"parameters":{

"fields":[],
"object":"Account"

}
}

– Results after processing if Account Name, Account Source, and Industry are selected

"Extract_Account":{
"action":"sfdcDigest",
"parameters":{

"fields":[
{"name":"Name"},
{"name":"AccountSource"},
{"name":"Industry"}

]

63

Use Functions in RulesStep 3: Edit the JSON Files

}
]

Here are more ways to work with arrays that extend the power of the array:forEach function:

• array:union (only uses unique values, so no duplicated values)

"value": "${array:union(array:forEach(Variables.Account_Fields,
'{\"name\": \"${var.fieldName}\"}'),array:forEach(Variables.Account_Fields2,
'{\"name\": \"${var.fieldName}\"}'))}"

• array:concat (2 new arrays)

"value": "${array:concat(array:forEach(Variables.Account_Fields,
'{\"name\": \"${var.fieldName}\"}'),array:forEach(Variables.Account_Fields2,
'{\"name\": \"${var.fieldName}\"}'))}"

• array:concat (1 new array with existing array)

"value":"${array:concat(Rules.CurrentNode,
array:forEach(Variables.Account_Fields,
'{\"name\":\"${var.fieldName}\"}'))}"

• You can use array functions in the “set” and “put” actions, but not in the “add” or “delete”.

– In “add”, the value is being added to an existing array, so the result is an array inside an array, which is not well-formed json.
To add more array values to an existing array, use “set” with the array:concat function

– For “delete”, value is not used

• Use array values from StringType (same for NumberType)

– variables.json

"Account_Fields_String": {
"label": "Pick string fields for your dataset",
"description": "Multiselect string test",
"defaultValue": ["Name"],
"required": true,
"variableType": {

"type": "ArrayType",
"itemsType": {

"type": "StringType",
"enums": ["Name", "AccountSource", "Industry", "Type"]

}
}

}

– rules.json

"value": "${array:forEach(Variables.Account_Fields_String,
'{\"name\":

\"${var}\"}')}"

• You can also use the multiselect widget to replace the current use of multiple StringType widgets with “Yes” and “No”
selections. The following is an example using three StringType widgets on one wizard page:

64

Use Functions in RulesStep 3: Edit the JSON Files

You can replace this with a single ArrayType widget:

65

Use Functions in RulesStep 3: Edit the JSON Files

The JSON for this variable is:

"SelectedFeatures": {
"label": "Please select the features you would like to enable?",
"description": "The selected features for this app",
"defaultValue": [
"Apex Execution"
],
"variableType": {
"type": "ArrayType",
"itemsType" : {
"type" : "StringType",
"enums" : [
"Apex Execution",
"API",
"Content Transfer",
"Dashboard",
"Login",
"Report Export",
"Rest API",
"Setup Audit Trail",
"UI Tracking",
"URI",
"Visualforce Request",

66

Use Functions in RulesStep 3: Edit the JSON Files

"Wave Change",
"Wave Interaction",
"Wave Performance"
]

}
},
"required": true

}

You can use the selected values to set constants in rules.json, which you can then reference in conditionals for actions or in
template-info.json.

"constants" : [
{"name":"hasApexExecution", "value": "${array:contains(Variables.SelectedFeatures,
'Apex Execution')}"},
{"name":"hasAPI", "value": "${array:contains(Variables.SelectedFeatures, 'API')}"},
{"name":"hasContentTransfer", "value": "${array:contains(Variables.SelectedFeatures,
'Content Transfer')}"},
{"name":"hasDashboard", "value": "${array:contains(Variables.SelectedFeatures,
'Dashboard')}"},
{"name":"hasLogin", "value": "${array:contains(Variables.SelectedFeatures, 'Login')}"},

{"name":"hasReport", "value": "${array:contains(Variables.SelectedFeatures, 'Report
Export')}"},
{"name":"hasRestApi", "value": "${array:contains(Variables.SelectedFeatures, 'Rest
API')}"}
]

json Functions
Use json functions in rules to manipulate JSON at runtime. For example, find all the JSON paths in a dashboard that have a link widget
and update the links at runtime.

Function Name: searchPaths

Parameters: String jsonPath

Returns: Collection<String> See Description for detail.

Recursive: Not supported

Description: Searches the current JSON document and returns matching fully qualified JSON paths. If no results are found, returns an
empty array. If more than one item is found, returns an array of JSON paths.

Example:

${json:searchPaths('$.state.widget..[?(@.type in [\"link\"])]')}

run on a dashboard returns all JSON paths in the dashboard with link widgets:

["$['state']['widgets']['link3']", "$['state']['widgets']['link4']",
"$['state']['widgets']['link1']", "$['state']['widgets']['link2']"].

These paths can be used to make runtime updates to the links in the dashboard.

67

Use Functions in RulesStep 3: Edit the JSON Files

Function Name: searchValues

Parameters: String jsonPath

Returns: Collection<Object> See Description for detail.

Recursive: Not supported

Description: Searches the current JSON document and returns values of the matching nodes. If no results are found, returns an empty
array. If more than one item is found, returns an array of objects.

Example:

${json:searchValues('$.path.to.json.object')}

If this function is called outside of rules execution, an error is thrown.

Static Functions
Static functions have specialized use in template rules.

Function Name: math:pow

Parameters: Double a, Double b

Returns: Double

Recursive: Not supported

Description: Returns the value of the first argument raised to the power of the second argument.

Function Name: math:min

Parameters: Double a, Double b

>Returns: Double

Recursive: Not supported

Description: Returns the smaller of the two values.

Function Name: math:max>

Parameters: Double a, Double b

Returns: Double

Recursive: Not supported

Description: Returns the greater of the two values.

Function Name: math:round

Parameters: Double x, Int scale

Returns: Double

Recursive: Not supported

Description: Rounds the given value to the specified number of decimal places.

68

Use Functions in RulesStep 3: Edit the JSON Files

Function Name: math:round

Parameters: Double x, Int scale

Returns: Double

Recursive: Not supported

Description: Rounds the given value to the specified number of decimal places.

Function Name: sfdc_fma:checkInteger

Parameters: String apiName

Returns: Int

Recursive: Not supported

Description: Returns the integer value of the LMO to subscriber FMA value for checkPackageIntegerValue. See
FeatureManagement Class.

Function Name: sfdc_fma:checkBoolean

Parameters: String apiName

Returns: Boolean

Recursive: Not supported

Description: Returns the boolean value of the LMO to subscriber FMA value for checkPackageBooleanValue. See
FeatureManagement Class.

Function Name: sfdc_fma:checkDate

Parameters: String apiName

Returns: Date

Recursive: Not supported

Description: Returns the date value of the LMO to subscriber FMA value for checkPackageDateValue. See FeatureManagement
Class.

Macros in Rules
Use a macro when a single rule executes repeatedly on different JSON node paths.

Rule macros enable template developers to define repeatable, well-tested rule code units that can be called within the context of any
JSON transformation, simplifying and making the rule definition source easier to maintain.

You invoke macros using standard function syntax. Reference them anywhere a traditional expression is resolved within a rule action.
In template rules, macros can be referenced by an ‘eval’ action. Macros can include actions and can reference other macros, and macro
recursion is supported. Template support a macro depth of 10; beyond that results in an overflow error and app creation failure.

For example, consider the following macro for multiplying two numbers:

{
"namespace": "testMacroNamespace",
"definitions": [

{

69

Macros in RulesStep 3: Edit the JSON Files

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm

"name": "multiplyTwoNumbers",
"parameters": [

"firstNumber",
"secondNumber"

],
"returns": "${p.firstNumber * p.secondNumber}"

},
{

"name": "shouldExecuteAction",
"returns": true

}
]

}

It can be invoked in rules actions as follows:

{
"rules": [

{
"name": "Testing of example macro",
"actions": [

{
"action": "set",
"key": "macroResult",
"path": "$.path.to.a.number",
"value": "${testMacroNamespace:multiplyTwoNumbers(3,3)}"

},
{

"action": "put",
"condition": "${testMacroNamespace:shouldExecuteAction()}",
"path": "$.my.json.path",
"value": {

"foo": "bar",
"anotherNumber": “${testMacroNamespace:multiplyTwoNumbers(5,5)}”

}
}

]
}

]
}

Rule Macro And Macro Definition Attributes

A rule macro object contains a collection of macro definition objects. Macro definition objects define the logic of macros and their
return values.

Macro Examples

The following examples show the structure and syntax of macros in rules.

Macro Use Case: Recursive Operations

Here’s an example of a macro that deletes an sfdcDigest node. It also deletes the digest node and all other nodes that depend
on that node.

Macro Use Case: Delete Workflow Nodes

Use this macro to delete multiple nodes from the workflow without having to write multiple actions.

70

Macros in RulesStep 3: Edit the JSON Files

Macro Use Case: Add an Array of SObject Names to Extract Workflow

Here’s a macro that adds an array of sObject names to the extract workflow.

Rule Macro And Macro Definition Attributes
A rule macro object contains a collection of macro definition objects. Macro definition objects define the logic of macros and their return
values.

Macro object attributes are as follows:

• namespace: A unique string identifier (to the template) used to scope the collection of macro definitions.

• definitions: Array of macro definition objects defined within the rule macro..

Macro definition object attributes are as follows:

• name: The name of the macro.

• description: A string that describes what the macro does.

• parameters: An array of zero or more parameter names that the macro expects.

• actions: An array of zero or more rule actions to perform as part of the macro.

• returns: An expression or literal value to be returned from the macro.

Macro Definition Parameters
The number of parameters passed in the macro function call must match the number of parameters defined in the macro. They’re passed
in the order defined in the macro definition. You can use a maximum of 10 parameters per macro.

Parameters can be referenced in the body of the macro using standard expression syntax: ${p.<parameter_name>}. Parameters
can be referenced in any action that accepts expressions. Macros in actions support “path” statements so that expressions can be
used for more dynamic JSON path handling. See Macro Examples.

Parameters are scoped to the execution of the macro call and any references to ${p.<parameter_name>) fails outside the
scope of the macro.

Macro Examples
The following examples show the structure and syntax of macros in rules.

Here’s an example macro showing the use of attributes, parameters, and “path” statements.

"macros":
[

{

"namespace": "myMacroNamespace",

"definitions": [

{

"name": "multiplyTwoNumbers",

"parameters": [

71

Macros in RulesStep 3: Edit the JSON Files

"firstNumber",

"secondNumber"

],

"returns": "${p.firstNumber * p.secondNumber}"

},

{

"name": "deleteWidget",

"description": "Deletes a widget and any references to the widget.",

"parameters": [

"widgetName"

],

"actions": [

{

"action": "eval",

"key": "results",

"path": "${json:searchPaths(\”$.state.widget['p.widgetName']\”)}”

},

{

"condition": "${!empty results}",

"action": "delete",

"path": "$.state.widgets['${p.widgetName}']"

},

{

"condition": "${!empty results}",

"action": "delete",

"path":
"$.state.gridLayouts..pages..widgets[?(@.name=='${p.widgetName}')]"

72

Macros in RulesStep 3: Edit the JSON Files

}

]

}

]

}

],

"constants": [...],

"rules": [...]
}

The following example calls a macro with namespace 'myNS' and macro name 'getSomething' defined with no parameters.
Results of the macro are stored in the template context, and can be referenced using this expression:
${Rules.Eval.macroResults}.

{
"action": "eval",
"key": "macroResults",
"value": "${myNS:getSomething()}"

}

This example sets the JSON node at path $.path.to.json.node with the result of macro myNS:getJsonValue defined with no
parameters. This action will only be called if the macro myNS:shouldExecute (defined with one parameter) returns true.

{
"action": "set",
"condition": "${myNS:shouldExecute(true)}",
"path": "$.path.to.json.node",
"value": "${myNS:getJsonValue()}"

}

Macro Use Case: Recursive Operations
Here’s an example of a macro that deletes an sfdcDigest node. It also deletes the digest node and all other nodes that depend on
that node.

This macro deletes the specified node and dynamically queries the JSON document to delete each dependency of those nodes.

Consider the simplified JSON below. To delete 'node3' and its dependencies, the result should delete: node3, node4, node5 (depends
on node4), node6 (depends on node5), node7, node8, node9.

Example: Example JSON

{
"node1": { },
"node2": {

"dependsOn": "node1"
},
"node3": {

73

Macros in RulesStep 3: Edit the JSON Files

"dependsOn": "node2"
},
"node4": {

"dependsOn": "node3"
},
"node5": {

"dependsOn": "node4"
},
"node6": {

"dependsOn": "node5"
},
"node7": {

"dependsOn": "node3"
},
"node8": {

"dependsOn": "node3"
},
"node9": {

"dependsOn": "node3"
}

}

Example: Without Macro

Without using a macro (and associated enhancements), nodes would have to be deleted individually.

{
"actions": [

{
"action": "delete",
"path": "$.node3"

},
{

"action": "delete",
"path": "$.node4"

},
{

"action": "delete",
"path": "$.node5"

},
{

"action": "delete",
"path": "$.node6"

},
{

"action": "delete",
"path": "$.node7"

},
{

"action": "delete",
"path": "$.node8"

},
{

"action": "delete",

74

Macros in RulesStep 3: Edit the JSON Files

"path": "$.node9"
}

]
}

This code is rigid and difficult to maintain because rules would need to be modified as node dependencies are added and removed
from the JSON payload.

Example: Macro Source

{

"namespace": "macroRecursion",

"definitions": [

{

"name": "deleteNodeAndDependencies",

"description": "Delete a node and its dependencies. Returns an array of
json paths of all the nodes that were deleted.",

"parameters": [

"nodeName"

],

"actions": [

{"action": "eval", "key": "fullNodePath", "value": "$.${p.nodeName}"
},

{"action": "eval", "key": "dependencies", "value":
"${macroRecursion:getDependents(p.nodeName)}"},

{

"action": "eval",

"value": "${array:forEach(Rules.Eval.dependencies,
'${macroRecursion:deleteNodeAndDependencies(macroRecursion:deleteSingleNodeByFullJsonPath(var))}')}"

},

{

"action": "eval",

"value":
"${macroRecursion:deleteSingleNodeByFullJsonPath(Rules.Eval.fullNodePath)}"

75

Macros in RulesStep 3: Edit the JSON Files

}

]

},

{

"name": "deleteSingleNodeByFullJsonPath",

"description": "Deletes a node by full json path.",

"parameters": [

"fullJsonPath"

],

"actions": [

{"action": "eval", "key": "pathSegments",
"value": "${string:match(p.fullJsonPath,'\\\\[\\'(.*?)\\'\\\\]')}"},

{ "action": "delete", "path": "${p.fullJsonPath}"}

],

"returns": "${array:last(Rules.Eval.pathSegments)}"

},

{

"name": "getDependents",

"description": "Returns the full json path to search results",

"parameters": [

"nodeName"

],

"actions": [

{ "action": "eval", "key": "searchString", "value":
"$.*[?(@.dependsOn=='${p.nodeName}')]"},

{ "action": "eval", "key": "paths", "value":
"${json:searchPaths(Rules.Eval.searchString)}"}

],

"returns": "${Rules.Eval.paths}"

76

Macros in RulesStep 3: Edit the JSON Files

}

]
}

Example: Rule Calling the Macro

{
"rules": [

{
"name": "Recursively delete node3 and dependencies",
"actions": [

{"action": "eval", "value":
"${macroRecursion:deleteNodeAndDependencies('node3')}" }

]
}

]
}

Macro Use Case: Delete Workflow Nodes
Use this macro to delete multiple nodes from the workflow without having to write multiple actions.

Example: Macro

{
"name": "deleteWorkflowNode",
"description": "Deletes a workflow node.",
"parameters": [

"nodeName"
],
"actions": [

{ "action": "delete", "path": "$.workflowDefinition.${p.nodeName}"}
]

},
{

"name": "deleteArrayOfWorkflowNodes",
"description": "Deletes a set of workflow nodes.",
"parameters": [

"nodeNameArray"
],
"actions": [

{ "action": "eval",
"value": "${array:forEach(p.nodeNameArray,

'${macros:deleteWorkflowNode(var)}')}"}
]

}

Example: Rule Calling the Macro

{"action":"eval","key" :
"myArray","value":["Extract_Queue","Add_Fields_To_Queue","Append_Queue_User"]},

77

Macros in RulesStep 3: Edit the JSON Files

{
"action": "eval",
"description": "remove multiple nodes in dataflow",
"value": "${macros:deleteArrayOfWorkflowNodes(Rules.Eval.myArray)}"

}

Macro Use Case: Add an Array of SObject Names to Extract Workflow
Here’s a macro that adds an array of sObject names to the extract workflow.

Example: Macro

{
"name" : "concatArrayFieldName",
"description" : "Concatenates field names from an sobject array node",
"parameters" :
[
"variable"
],
"returns": "${array:concat(Rules.CurrentNode,

array:forEach(p.variable,'{\"name\":\"${var.fieldName}\"}'))}"

},
{
"name" : "addToExtractCaseWorkflow",
"description" : "Adds array fields to Extract Case node",
"parameters" :
[
"variable"
],
"actions": [
{
"action": "set",

"description": "put selected values for sfdcDigest in dataflow",
"path": "$.workflowDefinition.Extract_Case.parameters.fields",
"value" : "${macros:concatArrayFieldName(p.variable)}"
}
]

}

Example: Rule Calling the Macro

{
"action": "eval",
"description": "put selected values for sfdcDigest in dataflow",
"value": "${macros:addToExtractCaseWorkflow(Variables.CaseMoreDims)}"

}

78

Macros in RulesStep 3: Edit the JSON Files

Use the Apex WaveTemplateConfigurationModifier Class

The WaveTemplateConfigurationModifier class checks an org’s data. Also, to simplify app creation, it can modify the
template configuration wizard accordingly.

Apex is the object-oriented Salesforce programming language that allows developers to execute flow and transaction control statements
on the Lightning Platform server along with calls to the API.

Using WaveTemplateConfigurationModifier in a smart wizard simplifies standard app creation in these ways:

• Checks if the org has data required to create the app.

• Checks if security settings enable app creation. For example, it determines if the Analytics Integration User has access to all fields
required to create the app.

• Checks the org’s fiscal year start date. Based on the outcome, the wizard can use a default setting, such as January 1, or require the
user to choose a fiscal year start date for use in the app.

• Hides or exposes a wizard question (variable) based on the org data. For example, say that your wizard includes a question about
opportunities. The smart wizard can check an org for the Opportunity object and, if it detects use of the object., display the question.

• Sets the values included in a wizard question’s answer field. The smart wizard can include or exclude specific fields and expand or
limit the number of values displayed.

The WaveTemplateConfigurationModifier can also be used with embedded apps to check the org’s data and security
settings. In this use case, you can fail app creation with a clear message for the Auto-Install request. You can also set template variables
based on org settings to be used in app creation.

Declare the class in template-info.json.

If you implement the modifier and unit test classes in your Visual Studio project, include your classes in the classes directory along
with the class metadata files.

For complete details about Apex, see Apex Developer Guide.

WaveTemplateConfigurationModifier Interfaces

The main class is WaveTemplateConfigurationModifier with these supporting classes and their methods.

WaveTemplateConfigurationModifier Methods

Extend WaveTemplateConfigurationModifier with the following methods.

WaveTemplateConfigurationModifier Apex Examples

Examples include setting computed values for questions, hiding a question, managing enum values, working with array type variables,
and more.

TemplateApexException Apex Examples

Use the TemplateApexException class to handle errors cleanly and provide clear information to template users.

TemplateInterruptException Apex Example

Use the TemplateInterruptException class to handle template runtime errors cleanly and provide clear information to
template users.

Test WaveTemplateConfigurationModifier

Test the WaveTemplateConfigurationModifier before deploying a template that uses it.

WaveTemplateConfigurationModifier Interfaces
The main class is WaveTemplateConfigurationModifier with these supporting classes and their methods.

79

Use the Apex WaveTemplateConfigurationModifier ClassStep 3: Edit the JSON Files

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_dev_guide.htm

WaveTemplateInfo
Provides access to a template's release information, UI information, and variable definitions

DescriptionMethod

Gets the release information for the template.ReleaseInfo getReleaseInfo();

Gets the UI information for the template configuration wizard.UI getUI();

Gets the variable definitions for the template.Map<String, VariableDefinition>
getVariables();

ReleaseInfo
The release information for a template.

DescriptionMethod

Gets the version of the template.String getTemplateVersion();

UI
The UI information used to dynamically build the configuration wizard for the template.

DescriptionMethod

Gets a list of all the pages for the configuration wizard.List<UIPage> getPages();

UIPage
The information for a page in the configuration wizard.

DescriptionMethod

Gets the title of the configuration wizard page.String getTitle();

Gets the condition expression of the configuration wizard page.String getCondition();

Gets the variables for the configuration wizard page.Map<String, Variable> getVariables();

Set the title for the configuration wizard page. This value overrides
the value specified in the JSON file.

void setTitle(String title);

Answers
Contains a collection of all the answers to the variables.

80

WaveTemplateConfigurationModifier InterfacesStep 3: Edit the JSON Files

DescriptionMethod

Get the value (answer) of a specific variable (question).Object get(String name);

Update the value (answer) for a specific variable (question).void put(String name, Object obj);

Variable
Represents a template variable on a template configuration page.

DescriptionMethod

Get the name of the variable.String getName();

Get the visibility of the variable in the configuration wizard. Returns
a string as the value can contain a ternary operator.

String getVisibility();

Set the visibility of the variable in the configuration wizard. This
value overrides the value specified in the JSON file. Valid values
are:

void setVisibility(VisibilityEnum
visibility);

• Disabled

• Hidden

• Visible

VariableDefinition
Represents a template variable definition.

DescriptionMethod

Get the name for the variable definition.String getName();

Get the label for the variable definition.String getLabel();

Get the description for the variable definition.String getDescription();

Get the default value for the variable definition.Object getDefaultValue();

Get the variable type information for the variable definition.VariableType getVariableType();

Indicates whether a variable value is required for this variable
definition (true) or not (false).

Boolean isRequired();

Indicates whether values selected in other variables should be
excluded from this variable definition (true) or not (false).

Boolean isExcludeSelected();

Return a list of variable values to be excluded from the pick list
displayed to the user. This can be a single regex.

Set<String> getExcludes();

Set the label for the variable definition. This value overrides the
label specified in the JSON file.

void setLabel(String label);

81

WaveTemplateConfigurationModifier InterfacesStep 3: Edit the JSON Files

DescriptionMethod

Set the description for the variable definition. This value overrides
the description specified in the JSON file.

void setDescription(String description);

Set the computed value for the variable definition. This value
overrides the value specified in the JSON file and replaces the
defaultValue.

void setComputedValue(String Object);

Set the isRequired value for the variable definition. This value
overrides the value specified in the JSON file.

void setRequired(Boolean required);

Set the excludes list value for the variable definition. This value
overrides the value specified in the JSON file.

void setExcludes(Set<String> excludes);

VariableType
The variable type of a variable definition.

DescriptionMethod

Gets the variable type for the variable definition. Valid values are:VariableTypeEnum getType();

• BooleanType

• StringType

• NumberType

• ArrayType

• DateTimeType

• ObjectType

• SobjectType

• SobjectFieldType

• DatasetType

• DatasetDimensionType

• DatasetMeasureType

• DatasetDateType

Gets the SOAP data type for a SObjectFieldType variable
definition. Valid values are:

String getDataType();

• xsd:int

• xsd:string

• xsd:datetime,

• xsd:boolean

• xsd:any

Gets the variable type for the variable definition. Valid values are:VariableTypeEnum getType();

• BooleanType

82

WaveTemplateConfigurationModifier InterfacesStep 3: Edit the JSON Files

DescriptionMethod

• StringType

• NumberType

• ArrayType

• DateTimeType

• ObjectType

• SobjectType

• SobjectFieldType

• DatasetType

• DatasetDimensionType

• DatasetMeasureType

• DatasetDateType

Gets the variable type for each entry in an ArrayType variable
definition.

VariableType getItemsType();

Gets the enumerated values for a StringType or
NumberType variable definition.

Set<Object> getEnums();

Set the enumerated values for a StringType or
NumberType variable definition. These values overrides the
values specified in the JSON file.

void setEnums(Set<Object> enums);

WaveTemplateConfigurationModifier Methods
Extend WaveTemplateConfigurationModifier with the following methods.

• onConfigurationRetrieval. Runs before the wizard starts. This method is for standard apps only. If the org lacks required
data or settings, you can customize the wizard (variables) based on the org data check or disable app creation. Requires
WaveTemplateInfo:

onConfigurationRetrieval(wavetemplate.WaveTemplateInfo waveTemplate)

• beforeAppCreate. Runs after completion of the wizard for standard apps or on app creation for embedded apps. Use this
method to avoid errors during app creation as the result of invalid user selections or org settings. Requires WaveTemplateInfo
and Answers:

beforeAppCreate(wavetemplate.WaveTemplateInfo template, wavetemplate.Answers answers)

• beforeAppUpdate. Runs before app updates based on new version of the template for standard and embedded apps. Use this
method to validate that org data is compatible with new version. Requires WaveTemplateInfo, Answers, and the previous
app version:

beforeAppUpdate(wavetemplate.WaveTemplateInfo template, String previousAppVersion,
wavetemplate.Answers answers)

The methods are optional and all of them can be overridden.

83

WaveTemplateConfigurationModifier MethodsStep 3: Edit the JSON Files

WaveTemplateConfigurationModifier Apex Examples
Examples include setting computed values for questions, hiding a question, managing enum values, working with array type variables,
and more.

Example: Create your class:

public class ExampleWaveTemplateConfigurationModifier
extends wavetemplate.WaveTemplateConfigurationModifier

{
public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)

{
// Method implementation

}
}

Example: Set the computed value for one of the questions:

public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)
{

Map<string, wavetemplate.VariableDefinition> variables = template.getVariables();

variables.get('Has_Product').setComputedValue('No');
}

Example: Hide one of the questions:

public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)
{

template.getUI().getPages().get(0).getVariables()
.get('Has_Product').setVisibility(wavetemplate.VisibilityEnum.Hidden);

}

Example: Remove an enum value from the dropdown list box using the specified array index:

public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)
{

Map<string, wavetemplate.VariableDefinition> variables = template.getVariables();

wavetemplate.VariableDefinition hasProduct = variables.get('Has_Product');
List<object> enums = hasProduct.getVariableType().getEnums();
enums.remove(1);
hasProduct.getVariableType().setEnums(enums);

}

Example: Populate the enum values in the dropdown list box (StringType variable):

public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)
{

Map<string, wavetemplate.VariableDefinition> variables = template.getVariables();

wavetemplate.VariableDefinition caseRecordTypes =
variables.get('IncludeCaseRecordTypes');

84

WaveTemplateConfigurationModifier Apex ExamplesStep 3: Edit the JSON Files

List<object> enums = caseRecordTypes.getVariableType().getEnums();
RecordType [] results = [SELECT Name FROM RecordType where sobjectType = 'Case'];

for (RecordType record : results){
//adds the record type names to the drop down list
enums.add((string)record.get('Name'));

}
caseRecordTypes.getVariableType().setEnums(enums);

}

Example: Given the following ArrayType variable:

"OpptyRecordType":
{

"label": "Select OpptyRecordTypes that you want to bring in to Salesforce",
"description": "Choose OpptyRecordTypes that you want to bring in to Salesforce.",

"required": false,
"variableType": {

"type": "ArrayType",
"itemsType": {

"type": "StringType",
"enums": ["Test", "Test2"]

}
}

}

Add more values to the ArrayType variable enums:

Map<string, wavetemplate.VariableDefinition> variables = template.getVariables();

wavetemplate.VariableDefinition enumsTest = variables.get('OpptyRecordType');
List<object> enums = enumsTest.getVariableType().getItemsType().getEnums();
//create an empty list if you want to overwrite the original enums.
RecordType [] results = [SELECT Name FROM RecordType where sobjectType

= 'Opportunity' AND IsActive = true];
for (RecordType record : results) {

enums.add((string)record.get('Name'));
}
enumsTest.getVariableType().getItemsType().setEnums(enums);

Example: Reduce the possible answers via the excludes:

public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)
{

Map<string, wavetemplate.VariableDefinition> variables = template.getVariables();

wavetemplate.VariableDefinition hasProduct = variables.get('Has_Product');
Set<string> excludes = new Set<string>();
excludes.add('Foo');
excludes.add('Bar');
hasProduct.setExcludes(excludes);

}

85

WaveTemplateConfigurationModifier Apex ExamplesStep 3: Edit the JSON Files

Example: Set a variable answer before the app creates. Updating answers overwrites any value the user selected in
the wizard:

public override void beforeAppCreate(wavetemplate.WaveTemplateInfo waveTemplate,
wavetemplate.Answers answers)

{
answers.put('Has_Product', 'No');

}

Example: Set a variable answer before the app updates. Updating answers overwrites any value the user selected in
the wizard:

public override void beforeAppUpdate(wavetemplate.WaveTemplateInfo waveTemplate,
String previousAppVersion, wavetemplate.Answers answers)

{
answers.put('Has_Product', 'Yes');

}

TemplateApexException Apex Examples
Use the TemplateApexException class to handle errors cleanly and provide clear information to template users.

Note: Throwing an exception fails the configuration wizard. You can also create variables to track errors and report them to the
user in the wizard without failing.

Example: Report an error to the user with a TemplateApexException:

public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)
{

// Run a query if Forecast History is enabled and report failure if isn't
List<User> usersWithForecast = Database.query('SELECT Id FROM User WHERE

ForecastEnabled = true LIMIT 1');
if (usersWithForecast.isEmpty()) {

// Report issue to user
throw new TemplateApexException('Forecast history is not enabled. Please have

your admin enable it.');
}

}

Example: Handle database exceptions with a TemplateApexException

public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo template)
{

String query = 'SELECT DeveloperName, MasterLabel, SplitField, SplitEntity FROM
OpportunitySplitType WHERE IsActive = true AND SplitEntity = \'Opportunity\'';

try {
List<SObject> activeSplitTypes = Database.query(query);
if (activeSplitTypes.isEmpty()) {

template.getVariables().get('Has_OpportunitySplits').setComputedValue('No');

}
else {

86

TemplateApexException Apex ExamplesStep 3: Edit the JSON Files

template.getVariables().get('Has_OpportunitySplits').setComputedValue('Yes');
}

}
catch (Exception e) {

throw new TemplateApexException('Database query to determine Opportunity
Splits failed: ' + e.getMessage());

}
}

TemplateInterruptException Apex Example
Use the TemplateInterruptException class to handle template runtime errors cleanly and provide clear information to
template users.

Note: Throwing an exception fails the app creation process.

Example: Report an error to the user with a TemplateInterruptException:

public override void beforeAppCreate(wavetemplate.WaveTemplateInfo template.
wavetemplate.Answers answers)
{
// Validate that an answer is present and has a value.
String includeCasesAnswer = (String)answers.get('IncludeCases');
if (includeCasesAnswer.isEmpty() || includeCasesAnswer == null) {
// Report issue to user
throw new TemplateInterruptException('You didn't answer "yes" to the question that

asked if you use Cases. Go back to the wizard and answer this question.');
}
}

Test WaveTemplateConfigurationModifier
Test the WaveTemplateConfigurationModifier before deploying a template that uses it.

Before you can deploy your template or package it for the Salesforce AppExchange that uses a
WaveTemplateConfigurationModifier class, a unit test class must be present and all of the tests must complete successfully.
The unit test is designed to call and run the modifier methods and nothing more. Use the following examples when creating your own
unit test class.

Use the wavetemplate.Test helper methods for testing.

• wavetemplate.Test.getWaveTemplateInfoForApexTesting. Retrieves the runtime template information object
for testing. Requires templateName:

getWaveTemplateInfoForApexTesting(String templateName)

• wavetemplate.Test.getDefaultAnswersForApexTesting. Retrieves the variable answers set by user selections
and/or the configuration modifier methods. Requires templateName:

getDefaultAnswersForApexTesting(String templateName)

The following code examples show how to test the methods from the Apex Examples page.

87

TemplateInterruptException Apex ExampleStep 3: Edit the JSON Files

Example: Generic Test Class Example

@isTest
private class ExampleWaveTemplateConfigurationModifierTest
{

@isTest
static testMethod void testModifier()
{

// Test modifier methods
}

}

Example: beforeAppCreate Test Method Example

@isTest static testMethod void testBeforeAppCreate()
{

wavetemplate.WaveTemplateInfo template =
wavetemplate.Test.getWaveTemplateInfoForApexTesting('my_template');

wavetemplate.Answers answers =
wavetemplate.Test.getDefaultAnswersForApexTesting('my_template');

ExampleWaveTemplateConfigurationModifier mod =
new ExampleWaveTemplateConfigurationModifier();

//Test the beforeAppCreate method in your Apex Modifier Class
System.assertEquals('Yes', answers.get(Has_Product));
mod.beforeAppCreate(template, answers);
System.assertEquals('No', answers.get(Has_Product));

}

Example: beforeAppUpdate Test Method Example

@isTest static testMethod void testBeforeAppUpdate()
{

wavetemplate.WaveTemplateInfo template =
wavetemplate.Test.getWaveTemplateInfoForApexTesting('my_template');

wavetemplate.Answers answers =
wavetemplate.Test.getDefaultAnswersForApexTesting('my_template');

ExampleWaveTemplateConfigurationModifier mod =
new ExampleWaveTemplateConfigurationModifier();

//Test the beforeAppUpdate method in your Apex Modifier Class
System.assertEquals('No', answers.get(Has_Product));
mod.beforeAppUpdate(template, '2.0', answers);
System.assertEquals('Yes', answers.get(Has_Product));

}

Example: onConfigurationRetrieval Test Method Example

@isTest static testMethod void testOnConfig()
{

wavetemplate.WaveTemplateInfo template =
wavetemplate.Test.getWaveTemplateInfoForApexTesting('my_template');

88

Test WaveTemplateConfigurationModifierStep 3: Edit the JSON Files

ExampleWaveTemplateConfigurationModifier mod =
new ExampleWaveTemplateConfigurationModifier();

//Test the onConfigurationRetrieval method in your Apex Modifier Class
mod.onConfigurationRetrieval(template);
System.assertEquals('No',

template.getVariables().get('Has_Product').getComputedValue());
}

For complete information, see Testing Apex.

Use the Apex Access Methods

The Access class provides utility methods to check Integration User access to sObjects and sObjectFields. Use these methods in your
WaveTemplateConfigurationModifier implementation.

Apex is the object-oriented Salesforce programming language that allows developers to execute flow and transaction control statements
on the Lightning Platform server along with calls to the API.

Using Access in a smart wizard simplifies standard app creation in these ways:

• Checks if the Integration User has access to sObjects.

• Checks if the Integration User has access to sObjectFields.

• Checks if the Integration User has access to enough records in an sObject to continue with template processing.

The Access methods can also be used with embedded apps to check if the org has given access to the Integration User for the
necessary sObjects and sObjectFields. In this use case, you can fail app creation with a clear message for the Auto-Install request.

For complete details about Apex, see Apex Developer Guide.

Access Methods

Use the Access features with the following methods.

Access Apex Examples

Examples include checking the Integration User access inside your WaveTemplateConfigurationModifier implementation.

Access Methods
Use the Access features with the following methods.

• checkIntegUserAccessToArrayOfSObjectFields. Checks an array of sObjectFields from a template answer and
returns a list of fields the Integration User doesn't have access to. Requires the variable name, WaveTemplateInfo, and
Answers:

global static List<String> checkIntegUserAccessToArrayOfSObjectFields(String variableName,
wavetemplate.WaveTemplateInfo template, wavetemplate.Answers answers)

• getCountOfRecordsAsIntegUser. Returns the number of records visible to the Integration User. Use this method to gauge
if the number of records is high enough to continue with template processing. There’s a limit of 10K rows. Requires the sObject
name to use for the count:

global static Integer getCountOfRecordsAsIntegUser(String sObjectName)

89

Use the Apex Access MethodsStep 3: Edit the JSON Files

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_testing.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/apex_dev_guide.htm

• integUserHasAccessToSObjectField. Checks an sObjectField answer to verify that the Integration User has access to
it. Requires the variable name, WaveTemplateInfo, and Answers:

global static boolean integUserHasAccesstoSObjectField(String variableName,
wavetemplate.WaveTemplateInfo template, wavetemplate.Answers answers)

• integUserHasAccessToSObjectField. Checks a single sObject and one of its fields to verify that the Integration User
has access to it. Requires the sObject name and WaveTemplateInfo:

global static boolean integUserHasAccessToSObjectField(String sObjectName,
wavetemplate.WaveTemplateInfo template)

Access Apex Examples
Examples include checking the Integration User access inside your WaveTemplateConfigurationModifier implementation.

Example: In the onConfigurationRetrival implementation, verify the Integration User access to the Account
sObject. Add the access result to the template variables.

public class ExampleWaveTemplateConfigurationModifier
extends wavetemplate.WaveTemplateConfigurationModifier

{
public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo

waveTemplate)
{

String accessResult = null;
if (!wavetemplate.Access.integUserHasAccessToSObjectField('Account', 'Industry'))

{
accessResult = 'No Access';

} else {
accessResult = 'Access found';

}
template.getVariables().get('accountAccess').setComputedValue(accsssResult);

}
}

Example: In the onConfigurationRetrival implementation, verify the Integration User has access more than
100 records in the Account sObject. Add the result to the template variables.

public class ExampleWaveTemplateConfigurationModifier
extends wavetemplate.WaveTemplateConfigurationModifier

{
public override void onConfigurationRetrieval(wavetemplate.WaveTemplateInfo

waveTemplate)
{

Boolean enoughAcctRecords = true;
if (!wavetemplate.Access.getCountOfRecordsAsIntegUser('Account') > 100) {

enoughAcctRecords = false;
}

template.getVariables().get('sufficientAcctRecordsFound').setComputedValue(enoughAcctRecords);

90

Access Apex ExamplesStep 3: Edit the JSON Files

}
}

Example: Before creating the app, verify Integration User access to an sObject field selected during template wizard
processing:

public class ExampleWaveTemplateConfigurationModifier
extends wavetemplate.WaveTemplateConfigurationModifier

{
public override void beforeAppCreate(wavetemplate.WaveTemplateInfo waveTemplate,

String previousAppVersion, wavetemplate.Answers answers)
{

Boolean access =
wavetemplate.Access.integUserHasAccessToSObjectField('sObjectFieldExample', template,
answers);

if (!access) {
throw new wavetemplate.TemplateInterruptException('Integ User doesn't have

access to sObjectFieldExample');
}

}
}

Example: Before creating the app, verify if there are any sObject fields the Integration User doesn't have access from
an array of fields selected during template wizard processing:

public class ExampleWaveTemplateConfigurationModifier
extends wavetemplate.WaveTemplateConfigurationModifier

{
public override void beforeAppCreate(wavetemplate.WaveTemplateInfo waveTemplate,

String previousAppVersion, wavetemplate.Answers answers)
{

List<String> noAccessFields =
wavetemplate.Access.checkIntegUserAccessToArrayOfSObjectFields('sobjectFieldArray',
template, answers);

if (!noAccessFields.isEmpty()) {
throw new wavetemplate.TemplateInterruptException('Integ User doesn't have

access to ' + noAccessFields.get(0));
}

}
}

91

Access Apex ExamplesStep 3: Edit the JSON Files

STEP 4: DEPLOY THE WAVETEMPLATE OBJECT

After editing its JSON files, deploy the template object back to the development org to see the results of your work and for testing.

Deploying your edited files pushes the changes you’ve made to the development org for testing and collaborative development by the
rest of your team. Before you deploy your changes, they reside only in your local file system. Deploying your changes overwrites any
files in your development org. Retrieving them again from the development org overwrites your local files.

• Deploy with CLI. Use the force:source:push command to push them back to your scratch org.

• Deploy with Salesforce Extensions for Visual Studio Code. Use the Command Palette Push Source from Default Scratch Org

92

STEP 5: TEST THE TEMPLATE

Test the template throughout the development process. After creating the template and exporting its files, you edit them, and then
deploy them for testing. Based on the results, reexport the files and edit, deploy, and test again until you’ve achieved the result that you
want.

1. Create the source app.

2. Create the template object with CRM Analytics Studio, CLI, or VS Code.

 Test 1—Create an app from the unmodified template to make sure that everything works.

Note: CRM Analytics usually tokenizes the template correctly, but there are occasionally problems that require manual editing.
Incorrect tokens in the template cause app creation to fail because CRM Analytics doesn't know what to substitute for the
incorrect token. When app creation fails, you usually see a message like the following: Expression error occurred
[Error processing expression "${App.Dashboards.SupportingDashboard..Name}".
Variable part [SupportingDashboard] not found in context map, check for typo in
EL Expression.]. The message indicates that the referenced piece of the context doesn't exist. To fix that, edit
template-info.json to add the context piece with the correct name.

3. Create an app from your template.

a. For app templates, create the app from the template in Analytics Studio. You can view the app creation log after app creation
completes. With the app open, select Details. The App Log shows each asset that was created in the order it that was created,
the asset status, and the overall app status. If app creation fails, the error messages are logged here.

b. For data templates, create the data assets from the template in Data Manager.

c. For embedded app and data templates, the installation process can be monitored on the Auto-Installed Apps page. For more
details on how to find and use this page, see Monitor, Update, and Delete Auto-Installed Apps

4. To inspect and debug the app in detail, use the App Install History page in Setup. This page contains detailed logs and the runtime
state for each install task. For more details, see the Use the App Install History Page.

5. Retrieve the template object using CLI or VS Code.

6. Edit the JSON files.

7. Deploy the updates with CLI or VS Code.

 Test 2— To evaluate the wizard and the app assets that it creates, create an app from the updated template.

8. Most likely you’ll make many changes, mostly to the template assets, but sometimes also to the source app.

a. Make changes in the source app to the dashboards, lenses, or dataset. Update the template object by using Analytics Studio to
update the template, with CLI (analytics:template:update), or the VS Code Update Analytics Template From
App command. These changes probably require more changes to the wizard or other template assets, so export the template
files again and edit them. Update the template object again.

Run Test 2 again.

OR

b. Make changes to the wizard, rules, or variables. Update the template object again.

Run Test 2 again.

93

https://help.salesforce.com/s/articleView?id=sf.bi_auto_install_overview.htm&language=en_US

9. If you’re using Smart Wizard functionality, test the Apex class after you have a fully functional template wizard. Test it to make sure
that the Apex class is working as expected; giving variables programmatically assigned values, hiding or changing the visibility of
variables and UI pages, giving feedback to the user, and so forth.

Save your template in the source control system of your choice, such as GitHub.

Use the App Install History Page

Use the App Install History page to monitor installations in progress, track the assets created for the app, and view logs to troubleshoot
any installation issues.

Debug the Template

CRM Analytics provides debug logs for templated apps to inspect the app creation lifecycle. These debug logs give you visibility into
asset creation and the processing of any rules or Apex configuration modifier classes that you created. Use the debug logs during
template testing when app creation isn’t working as expected.

Reading the Template Debug Logs

Each Analytics Templated App Poller log contains multiple log lines generated from different log events.

Use the App Install History Page

USER PERMISSIONS

To manage installed apps:
• Manage Analytics

Templates

Use the App Install History page to monitor installations in progress, track the assets created for the
app, and view logs to troubleshoot any installation issues.

For an overview of the App Install History page, see Monitor and Troubleshoot Templated App

Installations. The default view on this page is for App Templates. Use the filter to select Data
Templates.

Templates use tokens to assign IDs, names, and labels at runtime, along with replacing variables
and constants. The app state is the runtime state of the templated app during creation or upgrade. It stores the context information of
the tokens used to create and update the app assets, along with data prep uploads and job runs.

The state for each install task detail record contains context information about the user, org, apps, app, variables, and constants, represented

as a tree. For each item, click to expand the elements of the tree.

94

Use the App Install History PageStep 5: Test the Template

https://help.salesforce.com/s/articleView?id=bi_monitor_app_install.htm&language=en_US
https://help.salesforce.com/s/articleView?id=bi_monitor_app_install.htm&language=en_US

User: The user context information for installing the templated app, which includes user ID, username, first name, and last name.

Org: The org context information for installing the templated app, which includes the org ID, the org name, and the org namespace.

Apps: The dependent app context information. This information includes the template name for dependent apps, the assets in those
apps, and the asset source names.

App: The asset context information for the app. The list of assets updates with each installation step, as the runtime determines which
assets are created or updated and then processes the assets. Possible assets for a templated app include:

• Dashboards: a list of dashboards with ID, name, and label

• Components: a list of components with ID, name, and label

• Lenses: a list of lenses with ID, name, and label

• Datasets: a list of datasets with ID, version ID, alias, fully qualified name, name, and label

• EdgeMarts: same as the list of datasets (Deprecated)

• Folder: the folder ID, name, and fully qualified name

• Images: a list of images with ID, name, and namespace

• Dataflows: a list of dataflows with ID

• Recipes: a list of recipes with ID, name, and label

• Connections: a list of connections with name

Variables: The runtime variables that are used to generate the templated app. The variables are a list of name and value pairs to display
the value of each variable at runtime.

Constants: The runtime constants that are used to generate the templated app. The constants are a list of name and value pairs to display
the value of each constant at runtime.

95

Use the App Install History PageStep 5: Test the Template

Debug the Template

CRM Analytics provides debug logs for templated apps to inspect the app creation lifecycle. These debug logs give you visibility into
asset creation and the processing of any rules or Apex configuration modifier classes that you created. Use the debug logs during template
testing when app creation isn’t working as expected.

These steps cover setting up your trace flag to create your debug logs, creating your app to generate debug logs, and viewing the
generated debug logs.

1. From Setup, in the Quick Find box, enter Debug Logs, then click Debug Logs.

2. Click New.

3. Select the entity to trace. For apps created in CRM Analytics Studio, the entity type must be User and the entity name must be
your username. For apps created by the auto-install process, the entity type must be Automated Process.

4. The default time period to collect logs is set for 30 minutes. If a different or longer time period is required, update the Start Date or
the Expiration Date values.

5. To create your debug level, click New Debug Level. Find the Wave debug log category and set it to Finest. Save your changes.
You can reuse this debug level each time you create a trace flag.

6. To activate your trace flag, click Save.

7. From Analytics Studio, create an app from your template or kick off the automated process that creates the templated app. When
app creation begins, debug logs are generated.

8. On the Debug Logs page, all debug logs are listed. To see your generated debug logs, refresh the page.

9. View the Analytics Templated App Poller log for details on the templated app creation process. Other logs listed
from the templated app process include REST API calls to load the template wizard configuration and create the app folder and any
Apex WaveTemplateConfigurationModifier output. If your template loads external data files, this process creates multiple Analytics
Templated App Poller logs.

Download any logs to save past the specified expiration date. Open your downloaded logs in a syslog viewer to allows filtering and
easier reading.

Reading the Template Debug Logs

Each Analytics Templated App Poller log contains multiple log lines generated from different log events.

Multiple logs are written out during the templated app lifecycle of create, reset, or upgrade, usually 3–4 separate logs containing different
details from the processing. Each log is a Analytics Templated App Poller log.

Note: Each log entry has a 2-MB limit controlled by org limits and is truncated when the limit is exceeded.

The Analytics Templated App Poller log includes these details.

96

Debug the TemplateStep 5: Test the Template

Example Log LineDetailsApex Log EventLog Level

14:04:00.399 (51399277642)
|WAVE_APP_LIFECYCLE|CREATE

The app action, app
lifecycle phase, app id,
and app name.

WAVE_APP_LIFECYCLEInfo

|CREATE_UPDATE_DASHBOARDS
|00lRM000000gP2LYAU|Sales
Analytics Test

13:06:42.63 (2341994782)
|TEMPLATE_PROCESSING_ERROR|CREATE

Displays any template
processing errors.

TEMPLATE_PROCESSING_ERRORError

|Application Sales Analytics Test
(00lRM000000gP2LYAU) failed

14:01:55.50 (15050452403)
|APP_CONTAINER_INITIATED
|{"User":{"Id":"005xx00000xxxxx”,”UserName”:”admin@na44stmfa.com","FirstName":"Admin","LastName":"User"},"Org":{"Id":"00DRM000000xxxx”,”Name”:”STMFA”,”Namespace":""},"Apps":{},"App":{"Dashboards":{},"Lenses":{},"Datasets":{},"Images":{},"StoredQueries":{}},"Variables":{"autoconfig":"false","DefaultsVisible":true,…}}

The template values and
variables.

APP_CONTAINER_INITIATEDFine

14:03:24.627 (15627342211)
|TEMPLATED_ASSET|Successfully

The app asset status,
which is created,
updated, or deleted.

TEMPLATED_ASSETFine

created/updated dashboard
[Executive
Overview(Exec_Overview_Pipeline_Performance1)]...

14:03:25.684 (16692521613)
|TRANSFORMATION_SUMMARY

The template asset name
and type being
transformed to an app
asset.

TRANSFORMATION_SUMMARYFine

|ASSET_CREATE_UPDATE|Transforming
template with name
[Account_Summary] and type
[dashboardTemplate]

14:03:15.266 (7081461905)
|RULES_EXECUTION_SUMMARY

The rule name,
appliesTo types,
actions, and any
conditions.

RULES_EXECUTION_SUMMARYFine

|ASSET_CREATE_UPDATE, Processing
action [Action {action='delete',
path='$.workflowDefinition..[?(@.name=='HasRevenueSchedule')]',
value='null', description='delete
node from workflow'}]

15:09:24.682 (9748463760)
|ASSET_DIFF_SUMMARY|Action:

The summary of
differences for an asset
on an app reset or
upgrade.

ASSET_DIFF_SUMMARYFine

UPDATE, Reason:
DIFFERENCES_DETECTED, Asset ID:
0FKRM0000000boU4AQ, Label:
Trending, Type: dashboard,
Template: Trending
(Sales_Rep_Pipeline_Changes)

15:09:21.493 (6865203874)
|JSON_DIFF_SUMMARY|ASSET_DIFF

The summary of
differences for JSON on
an app reset or upgrade.

JSON_DIFF_SUMMARYFine

|Found [106] differences between
existing dashboard and new

97

Reading the Template Debug LogsStep 5: Test the Template

Example Log LineDetailsApex Log EventLog Level

dashboard [0FKRM0000000boN4AQ]
[Summary of Account]

14:03:35.872 (26905199214)
|RULES_EXECUTION_DETAIL

The rule results for each
action of a rule.

RULES_EXECUTION_DETAILFiner

|ASSET_CREATE_UPDATE, set,
$['state']['gridLayouts'][0]['pages'][0]['widgets'][33]['column'],
20

15:09:24.682 (9729246304)
|JSON_DIFF_DETAIL|ASSET_DIFF

The detailed difference
for JSON on an app
upgrade or reset.

JSON_DIFF_DETAILFinest

|Action {action='set',
path='$.Extract_Account.parameters.fields[8].name',
value='BillingPostalCode',
description='Change 11: 'String
values are not equal: new
[BillingPostalCode] old
[BillingCountry]''}

Setting the Wave category log level to Finest includes all the log events in the log file.

Example: A sample Analytics Templated App Poller log file:

Note: The templated app debug log files are also visible via the Salesforce Dev Console after the debug trace flags are
created.

98

Reading the Template Debug LogsStep 5: Test the Template

STEP 6: SHARE THE TEMPLATE

Distribute the template to others in your Salesforce org or other orgs by deploying to the Metadata API. Others with the correct permissions
can then retrieve the template object from the Metadata API and make their own contributions. See the Prerequisites section in this
document.

• Create and install a first or second-generation package with WaveTemplate as the component type.

• For templates that create embedded apps via the auto-install framework, to use the install hooks, you must include the
auto-install.json file in the managed package with the other template files. When your managed package is deployed
in a customer org, the app is automatically created from your packaged template with an auto-install request.

Each org can only allow 10 auto-install requests to run at one time. If an org has 10 requests that are in progress, any subsequent
requests are marked as new and must be manually started from the Auto-Installed Apps setup page. Use this page to monitor
auto-install requests and app creation statuses and possible failures.

Embedded apps may also be installed using custom Apex pages to generate auto-install requests for app creation.

SEE ALSO:

First-Generation Managed Packages

Second-Generation Managed Packages

99

https://help.salesforce.com/s/articleView?id=sf.bi_auto_install_overview.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/sharing_apps.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm

STEP 7: CREATE NEW (DOWNSTREAM) APPS FROM THE
TEMPLATE

Users can now create apps using your template as follows:

1. Create a Standard App

a. In CRM Analytics Studio, select Create-->App.

b. Select the template you shared in the template picker.

c. Follow the configuration wizard!

If there were changes made to the template since the downstream app's last use, the user receives a prompt to upgrade the
app anytime they open the app. It's important to accept this prompt to keep their downstream apps on the upgrade path and
in sync with the source app and the template.

2. Create an Embedded App

a. Install your managed package in a customer org.

b. Verify the embedded app installed in the customer org using the Auto-Installed Apps setup page. Reference details in the
Monitor, Update, and Delete Auto-Installed Apps help.

c. To give users access to the embedded apps dashboard(s), use the Lightning App Builder and CRM Analytics Dashboard component
to embed the dashboards(s) inside Salesforce. For details, see Embed CRM Analytics Dashboards in Lightning Pages.

100

https://help.salesforce.com/articleView?id=bi_auto_install_overview.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_embed_lightning.htm&type=5&language=en_US

STEP 8: UPDATE AN EXISTING TEMPLATE

Update a template after changing the source app’s dashboards, lenses, and datasets in CRM Analytics Studio.

• Using Analytics Studio. Update the template. For more information, see Managing Your Templates.

• Using Analytics CLI. Use the analytics template update command.

• Using VS Code. Use the Update Analytics Template command.

Important: You update a template only after changing the source app in Analytics Studio. When you edit template JSON files in
your IDE, you deploy those changes to the template using the CLI or VS Code push command. See Step 4, Deploy the
WaveTemplate Object.

When you update the template, it’s saved to your development org with a new version. For example, the version 1.0 becomes 2.0. You
can then update the existing managed package for the template with the new version and deploy it. Admins managing standard apps
based on the previous version of the template are prompted to upgrade their apps.

Upgraded Apps From New Versions Overwrite Customizations to Downstream Apps

Note: Overwriting customizations applies to standard apps only. Embedded apps can’t be customized by users.

If the admin upgrades the app from a new template version, any customizations made to downstream apps are overwritten. To preserve
customizations, we advise admins to save customized app assets before upgrading so they can copy the customizations into the new
version.

Admins can elect to not upgrade from a new version and preserve the original downstream app with its customizations. To help admins
determine the value of upgrading, provide details about the new template version in the releaseNotes.html file referred to by
template-info.json.

Updating the Asset Version

When a template is created from an app, each asset is represented as a JSON file, generated at the current API version. The API version
is stored as the assetVersion in template-info.json. When the template is installed in an org and used, in each subsequent
release the Analytics assets are created using the template assetVersion, not the current API version. Updating the assetVersion
allows the template to provide the latest features for the assets in the app.

Note: Updating a template without specifying the assetVersion downgrades assets to the assetVersion stored in
template-info.json, even if the asset was created or updated at the current API version. Recipes are the only assets that
are always created and updated with the current API version.

To update the API version of the template assets, the assetVersion must be specified on the template update call via the CLI. The
assetVersion takes an Integer that is a valid Salesforce API version.

For the CLI, use the -v parameter to specify the assetVersion. For example, analytics:template:update -v 54.0.

Specifying the assetVersion on a template update impacts all the template assets, including dashboards, datasets, and dataflows.
Recipe assets are always created with the current API version, regardless of the assetVersion.

We recommend template developers complete these steps when updating the assetVersion.

• Retain a copy of the template before using the update call, in case template assets fail to update as expected.

• Test the template update by creating apps in a test org. Verify that the updated assets work and have the new features for the version.

101

https://help.salesforce.com/s/articleView?id=sf.bi_template_manage.htm&language=en_US

• If there are template rules, it’s possible the JSON path attributes must be corrected to reflect any changes made by the
assetVersion update. Test that all rules and any conditionals still work.

102

Step 8: Update an Existing Template

SHARE CRM ANALYTICS ASSETS BETWEEN APPS

Use the Template Dependencies feature to reuse CRM Analytics dashboards, datasets, and lenses across apps.

Create dependencies between app templates with Template Dependencies. Create the dependency from one app template (the
dependent app template, Template D in the image) to assets in another (the supporting app template, Template A in the image) that
reside in the same org. Apps created from the dependent template can include dashboards, datasets, and lenses from the supporting
template. A template (Template B) can be both a dependent template and a supporting template at the same time.

Important: Template dependencies can’t be used with templates packaged for automatic install. The creation of auto-install
requests can’t guarantee dependent templates are installed in the correct order.

While a template declares dependencies on other templates, it is really the apps that get created from the templates that have
dependencies on each other. If Template B declares a dependency on Template A, it means that to create an app from Template B, you
must first create one or more apps from Template A. The dependent and supporting apps must both reside in the same org.

Note: You can only create dependencies on apps created from templates. That’s because the dependency refers to the template.
There is template-to-template dependency in creating token references and app-to-app dependency when app assets are created
from the dependent template.

Create Dependent Templates

Follow these steps to create templates with dependencies.

Template Dependency Syntax

The syntax you use to specify dependencies in the template-info.json file for templateVersion is flexible. The value
can take on any of the following.

Best Practices

When creating template dependencies, follow these guidelines.

Creating a Template from a Dependent App

Apps with dependencies on assets on other apps can be templatized using the same template creation process as standalone
templates.

103

Create Dependent Templates

Follow these steps to create templates with dependencies.

1. Create supporting app template. Supporting apps’ dashboards, lenses, and datasets can be reused by other apps.

2. Add a line to your dependent app templates’ template-info.json file that refers to templates to include in the dependency:

"templateDependencies" : [{
"name" : "<Template_A_devname>",
"namespace" : "<Template_A_mynamespace>",
"templateVersion" : "1.0",
// optional condition in which to include this dependency.
"condition" : "${Variables.dependOnAnotherTemplate}"

}]

3. In your templatized asset JSON files (dashboard.json and so on) based on the dependent template, use the supporting app’s
assets in context with the following:

${Apps.<templatename>.<Dashboards|Lenses|Datasets>.<assetSourceName>.<Name|Label|Alias|Id>}:

Examples:

"${Apps.namespacedone__SupportingDashboard.Dashboards.Comparision_tp.Name}"
"${Apps.namespacedone__SupportingDashboard.Datasets.MyDataset.Alias}"

4. Load all templates into the same org.

5. Create apps from the supporting templates.

6. Create the app from the dependent template. The requirements for creating a dependent app are:

• The supporting app templates must exist in the org, and the user creating the dependent app must have access to them.

• At least one app from the supporting template at the right version and namespace must exist and have a Completed status.

Template Dependency Syntax

The syntax you use to specify dependencies in the template-info.json file for templateVersion is flexible. The value
can take on any of the following.

• Choose any version.

• A specific version.

• Versions greater than or less than the one indicated.

Here is the syntax:

1. If no version is specified, any version found is used. If a version is specified, but no operator (for example, 3.0), only that version is
used.

2. If the operator is “=” (=3.0), only that version is used.

3. If the operator is “>” (>3.0), any app with a version greater than the specified version is used

4. If the operator is “<” (<3.0), any app with a version less than the specified version is used.

5. If the operator is “>=” (>=3.0), any app with a version greater than or equal to the specified version is used.

6. If the operator is “<=” (<=3.0), any app with a version less than or equal to the specified version is used.

104

Create Dependent TemplatesShare CRM Analytics Assets Between Apps

Best Practices

When creating template dependencies, follow these guidelines.

1. Make the templateVersion as broad as possible.

2. Always include namespace.

3. For ease of maintenance, keep your template dependencies simple. There’s no technical limitation to the number of dependencies
you can create. But in practice, it’s best to avoid creating multiple dependencies from one template to others. Also, avoid making
supporting templates dependent on other templates.

Creating a Template from a Dependent App

Apps with dependencies on assets on other apps can be templatized using the same template creation process as standalone templates.

To create a template with dependencies on other apps, the supporting apps must be templatized first. If they aren’t, the template creation
process returns an error that reminds you to create a template for the supporting app. Aside from that consideration, use the same steps
to templatize an app that has dependencies as a template that has no dependencies.

105

Best PracticesShare CRM Analytics Assets Between Apps

FEATURES NOT SUPPORTED IN THIS RELEASE

The following Analytics features are not supported by the Analytics Templates framework.

• Custom Maps and Charts

• Einstein Discovery count analysis prediction type

106

ANALYTICS TEMPLATES RELEASE NOTES

Use the Salesforce Release Notes to learn about the most recent updates and changes to Analytics Templates.

Analytics Templates use several different tool sets, including the CRM Analytics Connect REST API, the Salesforce Analytics CLI Plugin,
Apex classes, and Lightning Web Components.

For a list of all current developer changes, see CRM Analytics in the Salesforce Release Notes.

Note: If the Analytics Development section in the Salesforce Release Notes isn’t present, there aren’t any updates for that release.

107

https://help.salesforce.com/s/articleView?id=release-notes.rn_bi_analytics_cloud.htm&language=en_US

API END-OF-LIFE POLICY

Salesforce is committed to supporting each API version for a minimum of three years from the date of first release. In order to mature
and improve the quality and performance of the API, versions that are more than three years old might cease to be supported.

When an API version is to be deprecated, advance notice is given at least one year before support ends. Salesforce will directly notify
customers using API versions planned for deprecation.

Version Retirement InfoVersion Support StatusSalesforce API Versions

Supported.Versions 31.0 through 64.0

Salesforce Platform API Versions 21.0 through 30.0
Retirement

As of Summer ’25, these versions are retired
and unavailable.

Versions 21.0 through 30.0

Salesforce Platform API Versions 7.0 through 20.0
Retirement

As of Summer ’22, these versions are retired
and unavailable.

Versions 7.0 through 20.0

If you request any resource or use an operation from a retired API version, REST API returns 410:GONE error code.

To identify requests made from old or unsupported API versions of REST API, access the free API Total Usage event type.

108

https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US

APPENDIX

The reference section of this document contains detailed examples, attribute lists and descriptions, and other in-depth reference materials
that build on the concepts we have discussed up to this point.

Add a Recipe to a CRM Analytics Template

Data prep recipes are a unique CRM Analytics asset, as they aren’t stored in folders like dashboards, lenses, and datasets. The only
way to connect a recipe to an app is via the relationship of the datasets in the folder to the recipes that consume or output those
datasets.

Configure Recipe Execution

Data Prep recipes can be complex and add to app creation time if they sync and execute while the templated app is generating.
Recipes can also change the shape of your existing data. The executeCondition attribute for recipe entries allows you to
specify if a templated recipe syncs and executes during templated app creation or not.

Add an Einstein Discovery Story to a CRM Analytics Template

Einstein Discovery stories can be added to an app template by referring to the story in the template-info.json file.

Add a Remote Connector to a CRM Analytics Template

Add remote connectors to the digest node of a template dataflow by referencing connectors in variables.json and editing
ui.json and rules.json.

Use Live Datasets in a CRM Analytics Template

Use live datasets in your CRM Analytics template with the liveConnection attribute to bring in live connections to Snowflake
source tables. Creating a template from a source app with live datasets generates the dataset information, but there are considerations
for successful app creation for your users.

Work with Embedded App Auto-Install Requests

Embedded app templates can create apps without any custom code, but you can add customizations to your embedded app
lifecycle. Create Apex classes that use the CRM Analytics auto-installer to create and manage auto-install requests for your embedded
app.

Feature Parameters for Analytics Templates

Feature parameters are available to control behavior in the template-to-app process for CRM Analytics apps. Feature parameters are
defined as metadata that is deployed as part of the managed package. When feature parameters are deployed with the template,
the parameter values are set using the LMA application.

template-info.json Attributes

The template-info.json file is the main file that describes the template. It includes or references all the information required
to create a downstream app.

template-info.json Example

Here are two example template-info.json files.

ui.json Attributes

The ui.json file attributes are:

variables.json Attributes

Named nodes, each representing a single variable. Each node contains the following attributes:

109

org-readiness.json Attributes

The org-readiness.json file attributes are:

folder.json Attributes

The folder.json file attributes are:

auto-install.json Attributes

The auto-install.json file attributes are:

rules.json Example

Refer to this example of the rules.json file.

rules.json Attributes

The rules.json file attributes are:

Rules Testing with jsonxform/transformation endpoint

Test the results of a rule before deployment by calling the jsonxform/transformation endpoint.

VisualForce Events for Customizing the Wizard UI

This reference section explains the details of using VisualForce for customizing the Wizard user interface.

Add a Recipe to a CRM Analytics Template

Data prep recipes are a unique CRM Analytics asset, as they aren’t stored in folders like dashboards, lenses, and datasets. The only way
to connect a recipe to an app is via the relationship of the datasets in the folder to the recipes that consume or output those datasets.

When a recipe creates a dataset for a CRM Analytics app, the dataset connects the recipe to the folder ID for the app. These recipes are
automatically added to the app template when it’s created from the app. Only recipes that run successfully and create a dataset are
added to the app template.

If a recipe doesn’t contain a dataset, like a recipe that reads and writes from a connector, there’s no way for the app framework to
determine which app the recipe belongs to. To solve this issue, in v55.0 and above, the Connect REST API for creating and updating a
template supports a list of recipe IDs in the request.

Note: Only the REST APIs and the Analytics CLI support creation with recipe IDs. Users can’t specify recipe IDs when creating a
template from an app in Analytics Studio.

When the app framework adds recipes to a template, it doesn’t know the order in which the recipes must be run. On template creation,
the app framework first adds any recipes specified in the request. Then the framework finds recipes used to create datasets for this app
and adds them to the end of the list. If a duplicate recipe ID is specified, the app framework ignores it.

During app creation, the recipes are run in the order in which they’re defined in the template-info.json file. If the recipes must
run in specific order, you must edit the template-info.json file manually to put the recipes in run order.

Example: Use the Connect REST API

Use the template REST API to create a template from an app and include 2 recipes. In the POST request body, use the recipeIds
parameter to specify any additional recipes to add to the app template.

POST /wave/templates/
{

"folderSource": {
"id": "00lxx000000xxxxxx"

},
"name": "myAppTemplate",
"label": "My App Template",

110

Add a Recipe to a CRM Analytics TemplateAppendix

"description": "My app template with recipes",
"recipeIds": [

"05vxx000000xxxxx1",
"05vxx000000xxxxx2"

]
}

When updating an existing template to add recipes, specify the recipeIds in the PUT request body.

PUT /wave/templates/0Nk1k000000xxxxxx
{

"folderSource": {
"id": "00lxx000000xxxxxx"

},
"recipeIds": [

"05vxx000000xxxxx3"
]

}

This request adds another recipe to the existing template. If the recipe exists in the template, the PUT request does a no-op.

Note: The PUT only adds recipes to an existing template. If you need to remove a recipe, you must download the template
and modify the template-info.json file manually.

Example: Use the Analytics CLI Plugin

First, get a list of recipes in your org:

sf analytics recipe list

returning:

RECIPEID NAME NAMESPACE LABEL STATUS
_________________ _____________ __________________ ______________ _______
05vxx000000xxxxx1 Recipe_One Recipe One New
05vxx000000xxxxx2 Recipe_Two Recipe Two New

Then, create a template from an app and include the recipe IDs:

sf analytics template create -f 00lxx000000xxxxxx -l "My App Template" -r
"05vxx000000xxxxx1, 05vxx000000xxxxx2"

Note: When specifying multiple recipe IDs, they must be enclosed in quotes.

To add a recipe to an existing template:

sf analytics template update -t 0Nk1k000000xxxxxx -f 00lxx000000xxxxxx -r
05vxx000000xxxxx3

Configure Recipe Execution

Data Prep recipes can be complex and add to app creation time if they sync and execute while the templated app is generating. Recipes
can also change the shape of your existing data. The executeCondition attribute for recipe entries allows you to specify if a
templated recipe syncs and executes during templated app creation or not.

111

Configure Recipe ExecutionAppendix

To specify the execution selection for a recipe entry in template-info.json, add the executeCondition attribute. The
valid values for this attribute are:

• CreateOnly—Create the recipe during templated app creation, but don’t sync or execute it.

• CreateExecute—Create and execute the recipe during templated app creation, but don’t sync it.

• CreateSyncExecute—(Default) Create, sync, and execute the recipe during templated app creation.

The executeCondition attribute is optional. When not specified, the default behavior during templated app creation is to create,
sync, and execute the recipe.

After app creation, all recipes created are visible in the Data Manager. You can verify a recipe was created correctly for your data, then
configure it for data sync, execution, and scheduling.

Here are examples for recipe entries using executeCondition in template-info.json.

Example: Specify a recipe that is created at templated app runtime, but data sync and recipe execution aren’t run.

"recipes": [
{
"label": "Sentiment Analysis Recipe",
"name": "Sentiment_Analysis_Recipe",
"file": "sentiment_analysis_recipe.json",
"executeCondition": "CreateOnly"

}
]

Example: Specify a recipe where the executeCondition is determined by an EL expression, like a variable value. The EL
expression used must evaluate to one of the valid values.

"recipes": [
{
"label": "Contact Import Recipe",
"name": "Contact_Import_Recipe",
"file": "contact_import_recipe.json",
"executeCondition": "${Variables.executionType}"

}
]

Add an Einstein Discovery Story to a CRM Analytics Template

Einstein Discovery stories can be added to an app template by referring to the story in the template-info.json file.

Create the Story
Before adding the story to a template, create it using Einstein Discovery. (See Create a Story.) We recommend testing your story in CRM
Analytics Studio before adding it to a template. Also, add the story JSON to the template. See the following section “Configure a Story”
for instructions about editing the story JSON dynamically with a template rule.

Note: Templates only support Einstein Discovery stories with a numeric, binary, and multiclass analysis prediction types in the
outcome. The count analysis prediction type isn't supported.

112

Add an Einstein Discovery Story to a CRM Analytics TemplateAppendix

https://help.salesforce.com/articleView?id=bi_edd_create.htm&type=5&language=en_US

Reference the Story in template-info.json
To include the story in the template, add the following to template-info.json:

"extendedTypes":{
"discoveryStories": [
{
"label": "AcquiredAccounts",
"name": "acquired_accounts",
"file": "acquired-accounts-story.json"
"condition" : "${Variables.StringValueInclude == 'Yes'}"

},
{
"label": "AcquiredAccounts2",
"name": "acquired_accounts2",
"file": "acquired-accounts-story2.json"

}
]

}

To add multiple stories to a template, add a discoveryStories entry for each story.

Add a conditional to exclude or include the story based on a variable the user selects in the wizard, available org data, or some other
condition.

Story Metadata Examples
Here’s an example acquired-accounts-story.json file for a story with a non-Boolean outcome.

{
"outcome": {

"type": "Number",
"label": "CLV",
"name": "CLV",
"goal": "Maximize"

},
"autopilot": {

"enabled": true
},
"setup": {

"dataset": {
"id": "${App.Datasets.opportunities.Id}"

},
"outcome": {

"type": "Number",
"label": "CLV",
"name": "CLV",
"goal": "Maximize"

},
"fields": [{

"type": "text",
"name": "Account Id"

},
{

"type": "text",

113

Add an Einstein Discovery Story to a CRM Analytics TemplateAppendix

"name": "BillingState"
},
{

"type": "date",
"name": "StartDate"

},
{

"type": "number",
"name": "example"

}
...

]
}

}

For a boolean outcome, use something like the following:

"outcome": {
"failureValue": "False",
"goal": "Maximize",
"label": "IsWon",
"name": "IsWon",
"successValue": "True",
"type": "Text"

},
"setup": {

"outcome": {
"type": "text",
"name": "IsWon",
"displayName": "IsWon",
"success": "True",
"failure": "False",
"goal": "Maximize"

},...
}

Syntax notes:

• The id value in dataset must match a dataset specified in template-info.json. You can only create one story per
dataset in a template.

• Story metadata is case-sensitive. Capitalize the first letter in outcome, and use lowercase for fields.

• All fields are required in the outcome object.

• outcome and setup.outcome must be the same.

• The outcome name is the variable we want the story to identify. For example, in the above, we want to learn if the outcome is
IsWon.

• Number of fields can be a minimum of 2 and maximum of 50

• Fields are the columns of data analyzed by Einstein Discovery and included in the story.

• The autopilot object is optional. The default value is false.

114

Add an Einstein Discovery Story to a CRM Analytics TemplateAppendix

Configure a Story
You can add filters to fields in the story. In the following example, we only consider rows where IsClosed = true.

"fields": [
{

"type": "text",
"name": "IsClosed",
"includeOther": false,
"values":
[
{
"name" : "true",
"ignored":false

},
{
"name" : "false",
"ignored":true
}

]
}

]

Use caution when adding date fields. Adding a field that shows individual dates (for example, 2019-07-01), isn’t helpful in the story.
Instead, it makes more sense to show months.

{
"type": "date",
"name": "CloseDate",
"periodicIntervals": [

"MONTH_OF_YEAR"
],
"interval": "NONE"

}

Multivalue fields can’t be included in a story. They’re excluded from the list in the story UI and must not be added to the story json.

Create or alter the story JSON using template rules. For example, the following rule loops through a measures variable and adds each
field to the story JSON:

{
"condition": "${!empty(Variables.Dataset_Measures[0].fieldName)}",
"action": "set",
"description": "put selected fields in ED Story json",
"path": "$.setup.fields",
"value": "${array:union(Rules.CurrentNode,

array:forEach(Variables.Dataset_Measures,'{\"type\":\"number\", \"name\":
\"${var.fieldName}\"}'))}"
}

Here’s a rule that conditionally adds a competitor name if it’s selected in the wizard:

{
"condition": "${!empty(Variables.Competitor.fieldName)}",
"type": "text",
"name": "${Variables.Competitor.fieldName}"

}

115

Add an Einstein Discovery Story to a CRM Analytics TemplateAppendix

Here’s another that adds only month of the year values to the story:

{
"condition": "${!empty(Variables.Dataset_Dates[0].dateAlias)}",
"action": "set",
"description": "put selected fields in ED Story json",
"path": "$.setup.fields",
"value": "${array:union(Rules.CurrentNode,

array:forEach(Variables.Dataset_Dates,'{\"type\":\"date\", \"name\": \"${var.dateAlias}\",
\"periodicIntervals\": [\"MONTH_OF_YEAR\"], \"interval\": \"NONE\"}'))}"
}

Add a Remote Connector to a CRM Analytics Template

Add remote connectors to the digest node of a template dataflow by referencing connectors in variables.json and editing
ui.json and rules.json.

Using the ConnectorType Variable in variables.json
If your app includes a connection to a remote data source, add the connection to the template using a ConnectorType variable to
variables.json. ConnectorType is a variation of the StringType variable with an added connectorType attribute.
The attribute lets you specify types of connectors to add to the template dataflow, as follows:

"ExternalConnector" : {
"label" : "my connector",
"description" : "This will be the connector.",
"variableType" : {

"type" : "ConnectorType",
"connectorType" : "SalesforceExternal”

},
"required" : true

}

The connectorType attribute must be a string. It corresponds to values in WaveDataConnectorTypeEnum. The value is a
“starts with” instead of an “equals,” so using Salesforce includes any connector beginning with that string, such as
SalesforceExternal, SalesforceMarketingCloud, and SalesforceMarketingCloudOAuth2. Leave the
connectorType value blank to include all defined connectors in the org. You can also use a ConnectorType variable as the
itemType in an ArrayType variable.

After using the ConnectorType variable in variables.json, add the variable to ui.json so a user creating an app can
choose connectors in the template wizard. The user’s org must have at least one connector of the specified type already authenticated,
but that connector doesn’t need existing replicated objects. The wizard displays all remote connectors that match the connectorType
attribute’s criteria, as shown here.

116

Add a Remote Connector to a CRM Analytics TemplateAppendix

Add a Rule to Replace the connectionName in the Dataflow
Use the ConnectorType variable in a rule to update the dataflow's digest node connectionName at app creation time. Here’s
an example rule:

{
"rules" : [
{

"name" : "UpdateConnectors",
"appliesTo" : [{

"type" : "workflow",
"name" : "*"

}],
"actions" : [
{

"action" : "set",
"description" : "Use connector for digest node",
"path" : "$..workflowDefinition.digest_Account.parameters.connectionName",
"value" : "${Variables.ExternalConnector}"

}]
}]

}

Avoid using ${Variables.ExternalConnector} directly in the template workflow JSON. Every time the template is updated
from the source app, this variable token is overwritten and removed.

Use Live Datasets in a CRM Analytics Template

Use live datasets in your CRM Analytics template with the liveConnection attribute to bring in live connections to Snowflake
source tables. Creating a template from a source app with live datasets generates the dataset information, but there are considerations
for successful app creation for your users.

Live Datasets in template-info.json
Live datasets are generated when a template is created from the source app containing a live connection to Snowflake. Like a standard
SFDC dataset, a live dataset contains a name attribute and an optional label attribute. Live datasets also contain a liveConnection
attribute with the Snowflake source table information.

"datasetFiles": [
{

"name": "my_live_data",
"label": "My Live Dataset",
"liveConnection": {

"connectionName": "myuniquelongconnectioname",
"sourceObjectName": "Account"

}
}

]

117

Use Live Datasets in a CRM Analytics TemplateAppendix

Live Datasets in Templated Assets
When you create your template from your source app with a live dataset, the template generation tokenizes the live dataset, just as it
does for standard SFDC datasets. Here’s an example of a tokenized live dataset in a dashboard template file.

"connectionName" : "${App.Connections.myuniquelongconnectioname.Name}",
"datasets" : [

{
"name" : "${App.Datasets.my_live_data.Name}"

}
],

Considerations for Templates with Live Datasets
For a user to create an app from your template, their consumer org must have an existing connection to Snowflake. This Snowflake
connection must have a developer name with the exact value that is specified for the connectionName of the dataset entry in the
template-info.json file. As a template developer, you must document that your template relies on a Snowflake connection with a specific
name in order for app creation from the template to succeed. Prompt your users to verify a Snowflake connection on a custom Visualforce
page that you can create and use in the configuration wizard.

Warning: If a Snowflake connection developer name doesn’t match the connectionName in the consumer org, app creation
from the template fails. The app creation notification email notifies the user of the failure.

To clarify that a Snowflake connection is for use in a templated app, it’s recommended that you create a unique, longer
connectionName value. The previous examples highlight using a unique and long connection name.

When an app instance is created from your template, the connection information is cloned for each instance. When an app instance is
deleted, the cloned connection associated with that app is also deleted, as long as no other live datasets are referencing the connection.
The original Snowflake connection created to support templated app instances isn’t deleted, in case other app instances are using the
connection.

SEE ALSO:

Create an App

Work with Embedded App Auto-Install Requests

Embedded app templates can create apps without any custom code, but you can add customizations to your embedded app lifecycle.
Create Apex classes that use the CRM Analytics auto-installer to create and manage auto-install requests for your embedded app.

What Is the CRM Analytics Auto-Installer?
The CRM Analytics auto-installer is a metadata-based API that manages the lifecycle of a CRM Analytics templated app. No user access
to CRM Analytics Studio and the template configuration wizard is required.

The auto-installer provides management functionality for embedded apps. Creating customized runtime functionality requires knowledge
of Apex. Auto-install requests can also be managed via Analytics CLI Plugin commands or using Connect API REST calls.

Limits and Restrictions
Concurrent Auto-Install Requests

118

Work with Embedded App Auto-Install RequestsAppendix

https://help.salesforce.com/s/articleView?id=sf.bi_explorer_direct_data_snowflake_create_connection.xml&language=en_US

The auto-installer uses asynchronous processing that allows a maximum of 10 Enqueued, InProgress, or AppInProgress
requests at a time. Until existing requests complete their cycle or their RequestStatus is updated to Cancelled, no more
requests can transition from New to Enqueued.

App-Specific Concurrent Requests

No app-specific auto-install WaveAppDelete, StartDataflow, WaveAppUpdate requests can be Enqueued until existing
requests that are in progress are completed or canceled with the same folder id.

Cancellation Policy

If an auto-install request is canceled, the auto-installer attempts to abort the request, but there’s no guarantee when or if the request
can be aborted.

Auto-Installer Use Cases
These use cases show how to create customized auto-install app management using Apex code. Examples include enabling CRM
Analytics in the install org, configuring the app creation settings, and creating and updating embedded apps.

CRM Analytics Enablement

Any use of a CRM Analytics templated app requires the CRM Analytics preference to be enabled before an app can be created and
managed.

The CRM Analytics auto-installer can automatically enable this preference so any other auto-installer task can be taken. The auto-installer
can enable or disable any of these preferences based on the Auto-Installer configuration specified by the API caller:

• CRM Analytics Replication

• Sharing Inheritance

Apex Example

Map<String, Object> configuration = new Map<String, Object>();
Map<String, Object> waveEnableConfiguration = new Map<String,Object>();
waveEnableConfiguration.put('replicationEnabled', true);
waveEnableConfiguration.put('templatesEnabled', true);
waveEnableConfiguration.put('inheritedSharingEnabled', true);
configuration.put('waveEnableConfiguration', waveEnableConfiguration);
WaveAutoInstallRequest newRequest = new WaveAutoInstallRequest();
newRequest.put('Name', 'Test WaveEnable request');
newRequest.put('RequestStatus', 'Enqueued');
newRequest.put('RequestType', 'WaveEnable');
newRequest.put('Configuration', JSON.serialize(configuration));
insert newRequest;

For information on auto-install requests and auto-install configuration metadata, see:

• WaveAutoInstallRequest reference

• AutoInstallAppConfigurationRepresentation reference.

App Create

The WaveAppCreate auto-install task creates a CRM Analytics app based on the TemplateApiName and values specified by
the caller.

119

Work with Embedded App Auto-Install RequestsAppendix

https://developer.salesforce.com/docs/atlas.en-us.256.0.object_reference.meta/object_reference/sforce_api_objects_waveautoinstallrequest.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/bi_resources_autoinstallrequests_id.htm#AutoInstallAppConfigurationRepresentation

After the app creation process is complete, the auto-install request is updated automatically by the app template framework. If
deleteAppOnConstructionFailure is set to true and the app fails to create, the app is automatically deleted.

Map<String, Object> configuration = new Map<String, Object>();
Map<String, Object> values = new Map<String, Object>();
values.put(‘myVariableName1’,’someValue’);
Map<String, Object> appConfiguration = new Map<String,Object>();
appConfiguration.put('deleteAppOnConstructionFailure', true);
appConfiguration.put('values', values);
configuration.put('appConfiguration', appConfiguration);
WaveAutoInstallRequest newRequest = new WaveAutoInstallRequest();
newRequest.put('Name', 'Test WaveAppCreate request');
newRequest.put(‘TemplateApiName’, 'template_test');
newRequest.put('RequestStatus', 'Enqueued');
newRequest.put('RequestType', 'WaveAppCreate');
newRequest.put('Configuration', JSON.serialize(configuration));
insert newRequest;

App Update

The WaveAppUpdate auto-install task performs an upgrade or reset on an existing CRM Analytics app based on the
TemplateApiName, the FolderId of the app, and values specified by the caller.

After the app update is completed, the app template framework automatically updates the auto-install request. If
deleteAppOnConstructionFailure is set to true and the app fails to update, the app is automatically deleted.

Map<String, Object> configuration = new Map<String, Object>();
Map<String, Object> values = new Map<String, Object>();
values.put(‘myVariableName1’,’someValue’);
Map<String, Object> appConfiguration = new Map<String,Object>();
appConfiguration.put('deleteAppOnConstructionFailure', true);
appConfiguration.put('values', values);
configuration.put('appConfiguration', appConfiguration);
WaveAutoInstallRequest newRequest = new WaveAutoInstallRequest();
newRequest.put('Name', 'Test WaveAppUpdate request');
newRequest.put(‘TemplateApiName’, 'template_test');
newRequest.put('RequestStatus', 'Enqueued');
newRequest.put('FolderId', '<folder_id>');
newRequest.put('RequestType', 'WaveAppUpdate');
newRequest.put('Configuration', JSON.serialize(configuration));
insert newRequest;

App Delete

The WaveAppDelete auto-install task simply deletes an existing CRM Analytics app based on the TemplateApiName and
FolderId that the caller specifies.

No auto-install requests can be in progress for the specified folder id when the delete request is enqueued.

WaveAutoInstallRequest newRequest = new WaveAutoInstallRequest();
newRequest.put('Name', 'Test WaveAppDelete request');
newRequest.put('RequestStatus', 'Enqueued');
newRequest.put('FolderId', '<folder_id>');
newRequest.put('RequestType', 'WaveAppDelete');
// Not required, but best practice is to add the attribute so that related
// requests are aggregated together by template api name and folder.

120

Work with Embedded App Auto-Install RequestsAppendix

newRequest.put(‘TemplateApiName’, 'template_test');
insert newRequest;

Start Dataflow

The StartDataflow auto-install task executes a dataflow for the specified folder. Dataflow execution is only allowed for apps that
are based on an Embedded App template.

After the dataflow is completed, the templating framework automatically marks the auto-install request as completed.

WaveAutoInstallRequest newRequest = new WaveAutoInstallRequest();
newRequest.put('Name', 'Test StartDataflow request');
newRequest.put('RequestStatus', 'Enqueued');
newRequest.put('FolderId', '<folder_id>');
newRequest.put('RequestType', 'StartDataflow');
insert newRequest;

Guaranteed Execution Order

The CRM Analytics Auto-Install Request framework is dependent on asynchronous processing, making it impossible to assure ordering
of multiple auto-install requests.

To create request ordering, that auto-installer uses auto-install request dependencies, which guarantee that one auto-install request
runs and finishes before another related auto-install request executes. Auto-install request dependencies don’t guarantee that dependencies
are executed before other enqueued requests that aren’t part of the dependency chain.

Auto-install requests that have dependencies on other requests must have a status of New to be auto-enqueued by the framework.
Dependencies with any other status are ignored.

If any auto-install request in the request hierarchy fails for any reason (including canceled), subsequent related requests auto-fail as well.

Request dependencies have these limits:

• A single auto-install request can depend on up to 10 other auto-install requests, directly or indirectly through the dependency chain.

• All parent auto-install requests must exist and be in New status before the child can declare a dependency on a parent request.

//Create first request with a new status (do not enqueue yet)
sObject firstRequest = Schema.getGlobalDescribe().get('WaveAutoInstallRequest').newSObject();
firstRequest.put('Name', requestName);
firstRequest.put('RequestStatus', 'New');
firstRequest.put('RequestType', 'WaveAppCreate');
firstRequest.put('TemplateApiName', 'template_test');
insert firstRequest;

//Create second request with a new status. This is enqueued after the first request is
done.
sObject secondRequest =
Schema.getGlobalDescribe().get('WaveAutoInstallRequest').newSObject();
secondRequest.put('Name', 'Dependant Request');
secondRequest.put('RequestStatus', 'New');
secondRequest.put('RequestType', 'WaveAppCreate');
secondRequest.put('TemplateApiName', 'template_test');

//Set up configuration for the second request, containing the id from the first
Map<String, Object> configuration = new Map<String, Object>();
configuration.put('parentRequestIds', new List<String>{firstRequest.Id});
secondRequest.put('Configuration', JSON.serialize(configuration));

121

Work with Embedded App Auto-Install RequestsAppendix

insert secondRequest;

//update the first request to enqueue.
firstRequest.put('RequestStatus', 'Enqueued');
update firstRequest;

Monitoring Auto-Install Requests
To monitor auto-install requests, use the Auto-Installed App page in Setup. For more information, see Monitor, Update, and Delete
Auto-Installed Apps.

Working with Auto-Install Requests
You can also create and manage auto-install requests using the Salesforce Analytics Plugin CLI and CRM Analytics REST API endpoints.

To use the Analytics Plugin auto-install commands, see the autoinstall Commands reference.

To use the CRM Analytics REST API, see the Auto-Install Requests List Resource and the Auto-Install Requests Resource references.

Feature Parameters for Analytics Templates

Feature parameters are available to control behavior in the template-to-app process for CRM Analytics apps. Feature parameters are
defined as metadata that is deployed as part of the managed package. When feature parameters are deployed with the template, the
parameter values are set using the LMA application.

For more information on feature parameters, see Feature Parameter Metadata Types and Customs Objects in the First-Generation
Managed Packaging Developer Guide.

For implementation examples, view and clone the Project Force App in Github.

Analytics Template Metadata
For Analytics templates, the managed package component is WaveTemplateBundle. The template metadata reads feature
parameter values set in the LMA application as EL expressions and uses them to control the behavior of app creation. The supported
types of feature parameter values are Boolean, Date, and Integer.

Example: Use an Integer Feature Parameter Value in Dashboard Creation

For this example, the feature parameter is deployed using
/featureParameters/FinancingAmount.featureParameterInteger-meta.xml.

<FeatureParameterInteger xmlns="http://soap.sforce.com/2006/04/metadata">
<dataflowDirection>LmoToSubscriber</dataflowDirection>
<masterLabel>Amount Financed</masterLabel>
<value>250000</value>

</FeatureParameterInteger>

The feature parameter metadata is referenced in the template-to-app-rules.json file:

{
"constants":[
{
"name": "FinancingAmount",

122

Feature Parameters for Analytics TemplatesAppendix

https://help.salesforce.com/s/articleView?id=sf.bi_auto_install_overview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.bi_auto_install_overview.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_cli_reference.meta/bi_dev_guide_cli_reference/bi_cli_reference_analytics_autoinstall.htm#bi_cli_reference_analytics_autoinstall
https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/bi_resources_autoinstallrequests.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/bi_resources_autoinstallrequests_id.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/fma_types_objects.htm
https://github.com/forcedotcom/project-force

"value": "${sfdc_fma:checkInteger('[namespace__FinancingAmount')}"
}

],
"rules": [
{
"name": "Use Feature Parameter",
"appliesTo": [
{
"type": "dashboard"

}
],
"actions": [
{
"action": "set",
"path": "$.state..text_1.parameters.content.displayTemplate",
"value": "${Constants.FinancingAmount}"

}
]

}
]

}

template-info.json Attributes

The template-info.json file is the main file that describes the template. It includes or references all the information required
to create a downstream app.

DescriptionRequiredAttribute

The unique developer name of the template. If changed, it creates a new template; if it’s
changed to an existing template devName, it overwrites the existing template.

Yesname

The template name visible to users in the Analytics template picker and wizard.Yeslabel

The template description. Shown in the app creation wizard template picker.Nodescription

Three types available:Noicons

• templateBadge defines the small icon that appears in the app picker and at the
top of the template details window. Don’t use file extension with name attribute,
for example "learn", not "learn.png".

• appBadge defines the icon shown by Analytics Studio for the app after creation.
Must be "1.png" through "21.png". Use file extension with name attribute,
for example "16.png", not "16"

• templatePreviews defines preview images displayed on the template details
window during the app creation process. Supports multiple images. Don’t use file
extension with name attribute, for example "preview_education", not
"preview_education.png". Name of the icon image must use all lower case
letters.

123

template-info.json AttributesAppendix

DescriptionRequiredAttribute

If images are stored as static resources and org uses namespace, must also specify a
namespace attribute for each icon. For example,

"appBadge": {
"name": "15.png"
"namespace": "${Org.Namespace}"

}

Array of tags used in template search and shown on template details page.Notags

Refers to the numbered API version to use when creating Analytics assets, such as
dashboards, datasets, XMDs, and dataflows. Recipes are always on the current API version.
To update this version, see Update an Existing Template.

YesassetVersion

Container attribute only.YesreleaseInfo

The version of the template, tracked for the upgrade process. Calling wave/templates
PUT automatically increments this number, but it can be changed manually as well. The
format is ##.##, although it’s a string.

YesreleaseInfo
template
Version

A template dev defined HTML file to describe new release details. Basic HTML formatting
is supported, but not links or javascript. Defaults to using the template description as
release notes if file isn’t specified.

NoreleaseInfo
notesFile

Container attribute only - can contain 1 or more rule file definitions (loaded first to last
and order matters for dependencies).

Norules

appToTemplate - rules to apply when updating the template from the source app (Rest
API PUT call).

Yes, if rules is
used.

rules type

templateToApp - rules to apply when creating an app from a template.

Path to the rules file.Yesrules file

Can specify either app, embeddedapp, data, or dashboard.YestemplateType

Path the ui.json file.NouiDefinition

Path to the variables.json file.Novariable
Definition

Path to the folder.json file.Nofolder
Definition

Path to the auto-install.json file. Only specify this file for auto-install templates.Yes for auto-installed
templates, No for

autoInstall
Definition

templates that use
the configuration
wizard

Path to the orgReadiness.json file.Noreadiness
Definition

124

template-info.json AttributesAppendix

DescriptionRequiredAttribute

Container attribute only. Registers an Apex class that runs on wizard load, app create, and
app upgrade. The Apex class examines the org and sets variable values. For example, the

NoapexCallback

Sales Analytics template uses an Apex class to check whether the org uses the Products
object. If it doesn’t, the has_product variable is set to no.

Important: Make sure the Apex class can be accessed by users in the organization
with Manage Analytics Templated Apps user permission. Otherwise, trying to
create an app from your template results in an error. In Setup, go to Apex Classes,
click Security next to the class, then add the profile with the Manage Analytics
Templated Apps user permission.

The namespace for the org, if it has one. Required for Apex classes in the development
org or packaged with the template.

Yes, if
apexCallback
is used and org uses
namespace.

apexCallback
namespace

The name of the Apex class to be used.YesapexCallback
name

Specifies information describing your template in the app creation wizard, such as
Salesforce objects used or notable features. Takes a label and an array of values. Example:

customAttributes" : [
{ "label" : "Features",

Nocustom
Attributes

"values" : ["CUSTOM OBJECTS", "MOBILE READY"]
},
{"label": "Salesforce objects",
"values" : ["ACCOUNT","PRODUCT","LEADS",”CASES”]
}],

Container attribute only. Array of dashboard JSON files to be used, can be empty if there
are no dashboard files.

Nodashboards

Path to the dashboard file.Yes, if
dashboards is
used. Otherwise no.

dashboards
file

The dashboard label. Must match the “label” attribute in the dashboard fileYes, if
dashboards is
used. Otherwise no.

dashboards
label

The dashboard name. Must match the “name” attribute in the dashboard file.Yes, if
dashboards is
used. Otherwise no.

dashboards
name

If condition is met, then the dashboard is created in the app; if the condition isn’t met,
the dashboard isn’t created. Can include Overrides, which are defined in
variables.json. See Complex variables.json Variable Types on page 31.

Nodashboards
condition

125

template-info.json AttributesAppendix

DescriptionRequiredAttribute

Indicates if asset is overwritten during the reset/upgrade process. Uses Always,
IfDifferent, Never, or an expression that evaluates to one these values. Case
sensitive. Example:

"overwriteOnUpgrade": "${Variables.DontOverwriteQuota ?
'Never' : 'IfDifferent'}",

Nodashboards →
overwriteOn
Upgrade

Container attribute only - array of dashboard JSON files to be used, can be empty if there
are no dashboard files.

Nolenses

Path to the lens file.Yes, if lenses is
used. Otherwise no.

lenses file

The lens label. Must match the “label” attribute in the lens file.Yes, if lenses is
used. Otherwise no.

lenses label

The lens name. Must match the “name” attribute in the lens file.Yes, if lenses is
used. Otherwise no.

lenses name

If the condition is met, then the lens is created in the app; if the condition isn’t met, the
dashboard isn’t created. Can include Overrides, which are defined in
variables.json. See Complex variables.json Variable Types on page 31

Nolenses
condition

Indicates if asset is overwritten during the reset/upgrade process. Uses Always,
IfDifferent, Never, or an expression that evaluates to one these values. Case
sensitive. Example:

"overwriteOnUpgrade": "${Variables.DontOverwriteQuota ?
'Never' : 'IfDifferent'}",

Nolenses →
overwriteOn
Upgrade

Container attribute only – array of dataflow JSON files to be used, can be empty if there
are no dataflow files.

NoeltDataflows

Path to the dataflow file.Yes, if
eltDataflows

eltDataflows
file

is used. Otherwise
no.

The dataflow label. Must match the sourceLabel attribute in dataflow file.Yes, if
eltDataflows

eltDataflows
label

is used. Otherwise
no.

The dataflow name. Must match the name attribute in the dataflow file.Yes, if
eltDataflows

eltDataflows
name

is used. Otherwise
no.

If condition is met, then the dataflow is created in the app; if the condition isn’t met, the
dataflow isn’t created. Can include Overrides, which are defined in
variables.json. See Complex variables.json Variable Types on page 31

NoeltDataflows
condition

126

template-info.json AttributesAppendix

DescriptionRequiredAttribute

Indicates if asset is overwritten during the reset/upgrade process. Uses Always,
IfDifferent, Never, or an expression that evaluates to one these values. Case
sensitive. Example:

"overwriteOnUpgrade": "${Variables.DontOverwriteQuota ?
'Never' : 'IfDifferent'}",

NoeltDataflows
overwriteOnUpgrade

Container attribute only – array of recipes JSON files to be used, can be empty if there
are no recipe files.

Norecipes

Path to the recipe file.Yes, if recipes is
used. Otherwise no.

recipes file

The recipe label.Yes, if recipes is
used. Otherwise no.

recipes label

The recipe name.Yes, if recipes is
used. Otherwise no.

recipes name

If condition is met, then the recipe is created in the app; if the condition isn’t met the
recipe isn’t created. Can include Overrides, which are defined in variables.json.
See Complex variables.json Variable Types on page 31

Norecipes
condition

Indicates if asset is overwritten during the reset/upgrade process. Uses Always,
IfDifferent, Never, or an expression that evaluates to one these values. Case
sensitive. Example:

"overwriteOnUpgrade": "${Variables.DontOverwriteQuota ?
'Never' : 'IfDifferent'}",

Norecipes
overwriteOn
Upgrade

Container attribute only - array of external files, CSV and descriptive files, to be used, can
be empty if there are no external files.

YesexternalFiles

Path to the CSV file.NoexternalFiles
 file

The externalFile name.Yes, if
externalFiles

externalFiles
 name

is used. Otherwise
no.

The number of rows to stub out in the dataset created from the CSV, before data upload.
If not specified, defaults to 5. By default, a file has 5 rows until the user uploads their own
version of the file.

NoexternalFiles
 rows

Path to the schema file (describes the format of the data)NoexternalFiles
 schema

Path to the user XMD file (describes the display format of the data).NoexternalFiles
 userXmd

Must be CSV.YesexternalFiles
 type

127

template-info.json AttributesAppendix

DescriptionRequiredAttribute

If condition is met, then the external file is created in the app; if the condition isn’t met,
the external file isn’t created. Can include Overrides, which are defined in
variables.json. See Complex variables.json Variable Types on page 31

NoexternalFiles
 condition

Indicates if asset is overwritten during the reset/upgrade process. Uses Always,
IfDifferent, Never, or an expression that evaluates to one these values. Case
sensitive. Example:

"overwriteOnUpgrade": "${Variables.DontOverwriteQuota ?
'Never' : 'IfDifferent'}",

NoexternalFiles
 overwriteOn
Upgrade

Container attribute only – array of SFDC dataset to be used, can be empty if there are no
SFDC dataset.

NodatasetFiles

Path to the user XMD file, if it exists.NodatasetFiles
userXmd

The dataset label.YesdatasetFiles
label

The dataset name.YesdatasetFiles
name

If condition is met, then the dataset is created in the app; if the condition isn’t met, the
dataset isn’t created. Can include Overrides, which are defined in
variables.json. See Complex variables.json Variable Types on page 31

NodatasetFiles
condition

The container attribute for Snowflake connection live dataset settings.NodatasetFiles
live
Connection

The connection name for the Snowflake connector. This name must match the developer
name of the connector in the consumer org.

Yes, if
liveConnection
is used. Otherwise
no.

datasetFiles
live
Connection
connection
Name

The Snowflake source table name.Yes, if
liveConnection

datasetFiles
live

is used. Otherwise
no.

Connection
sourceObject
Name

Container attribute only: array of app images to be used.NoimageFiles

A label for the image.Yes, if
imagesFiles is
used. Otherwise no.

imageFiles
label

The image name.Yes, if
imagesFiles is
used. Otherwise no.

imageFiles
name

128

template-info.json AttributesAppendix

DescriptionRequiredAttribute

If the condition is met, then the image is uploaded into the app; if the condition isn’t met,
the image isn’t uploaded.

NoimageFiles
condition

Includes reference to namespace for static resources, for example
${Org.Namespace}.

Yes, if org uses a
namespace.

imageFiles
namespace

Add extended type to a template.NoextendedTypes

Add Einstein Discovery story extended type to template. Uses label, name, file,
condition. See Add an Einstein Discovery Story to an Analytics Template

NoextendedTypes
 discovery
Stories

Array of other templates the template is dependent on. See Share Analytics Assets Between
Apps on page 103

Notemplate
Dependencies

Developer name of the template.Yes, if
dependencies

template
Dependencies
→ name is used. Otherwise

no.

Namespace of the org, if used.Notemplate
Dependencies
→ namespace

Number of the template version.Notemplate
Dependencies
→
templateVersion

Condition in which to include this dependency.Notemplate
Dependencies
→ condition

Container attribute only. Array of dashboard component JSON files to be used, can be
empty if there are no dashboard components files.

Nocomponents

Path to the dashboard component file.Yes, if
components is
used. Otherwise no.

components
file

A label for the dashboard component.Yes, if
components is
used. Otherwise no.

components
label

The dashboard component name.Yes, if
components is
used. Otherwise no.

components
name

129

template-info.json AttributesAppendix

DescriptionRequiredAttribute

If the condition is met, then the dashboard component is created in the app. If the
condition isn’t met, the dashboard component isn’t created.

Nocomponents
condition

SEE ALSO:

Edit template-info.json

template-info.json Example

template-info.json Example

Here are two example template-info.json files.

Example:

{
"templateType": "app",
"label": "Generic Analytics",
"name": "GenericAnalytics",
"description": "The Generic Analytics template creates an app that visualizes business
data. v1.0 #160",
"assetVersion": 43,
"releaseInfo": {
"templateVersion": "1.0",
"notesFile": "releaseNotes.html"
},
"variableDefinition": "variables.json",
"uiDefinition": "ui.json",
"readinessDefinition": "org-readiness.json",
"apexCallback": {
"namespace": "wavetemplate",
"name": "GenericConfigurationModifier"
},
"icons": {
"appBadge": {
"name": "15.png"
},
"templateBadge": {
"name": "Generic.png"
},
"templatePreviews": [{
"name": "preview_Generic.jpg",
"label": "Generic Analytics",
"description": "Explore impact to sales."
}]
},
"tags": [
"Marketing",
"Sales"
],
"customAttributes": [{

130

template-info.json ExampleAppendix

"label": "Features",
"values": [
"Prebuilt Dashboard",
"Mobile Ready",
"Dataflow",
"KPI Rich Datasets"
]
},
{
"label": "Salesforce Objects",
"values": [
"Customizable Generic Influence"
]
},
{
"label": "Publisher",
"values": [
"Analytics"
]
}
],
"rules": [{
"type": "templateToApp",
"file": "template-to-app-rules.json"
},
{
"type": "appToTemplate",
"file": "app-to-template-rules.json"
}
],
"externalFiles": [],
"lenses": [],
"dashboards": [{
"file": "dashboard/Generic_Influence.json",
"name": "Generic_Influence",
"label": "Generic Influence"
}],
"eltDataflows": [{
"label": "GenericAnalyticsDataflow",
"name": "GenericAnalyticsDataflow",
"file": "dataflow/GenericAnalyticsDataflow.json"
}],
"datasetFiles": [{
"label": "GenericInfluence",
"name": "GenericInfluence",
"userXmd": "dataset_files/GenericInfluence_XMD.json"
},
{
"label": "Generic",
"name": "Generic",
"userXmd": "dataset_files/Generic_XMD.json"
}
],
"imageFiles": [{

131

template-info.json ExampleAppendix

"name": "GenericLogo",
"file": "images/Generic_logo.png"
"namespace": "${Org.Namespace}" //if org is namespaced
}]
}

Example:

{
"templateType": "app",
"label": "Corporate Sales Results",
"name": "My_Sales",
"description": "Create an app from this template to get actionable insights about the
sales team.",
"assetVersion": 46.0,
"variableDefinition": "variables.json",
"uiDefinition": "ui.json",
"rules": [{
"type": "templateToApp",
"file": "template-to-app-rules.json"
},
{
"type": "appToTemplate",
"file": "app-to-template-rules.json"
}
],
"releaseInfo": {
"templateVersion": "1.1",
"notesFile": "releaseNotes.html"
},
"folderDefinition": "folder.json",
"autoInstallDefinition": "auto-install.json",
"externalFiles": [],
"lenses": [],
"dashboards": [{
"label": "Sales",
"name": "Sales_SAMPLE_tp",
"condition": "${Variables.Overrides.createAllDashboards}",
"file": "dashboards/DTC_Sales_SAMPLE.json"
},
{
"label": "Opportunity Details",
"name": "Opportunity_Details_tp",
"condition": "${Variables.Overrides.createAllDashboards}",
"file": "dashboards/Opportunity_Details.json"
},
{
"label": "Regional Sales Results",
"name": "Regional_Sales_SAMPLE_tp",
"condition": "${Variables.Overrides.createAllDashboards}",
"file": "dashboards/Regional_Sales_SAMPLE.json"
},
{
"label": "Sales Performance with Selectable Measures",

132

template-info.json ExampleAppendix

"name": "Sales_Performance_with_Selectable_Measures_Trailhead_tp",
"condition": "${Variables.Overrides.createAllDashboards}",
"file": "dashboards/Sales_Performance_with_Selectable_Measures_Trailhead.json"
}
],
"recipes": [{
"label": "Filter Accounts Recipe",
"name": "Filter_Accounts_Recipe",
"file": "recipes/Filter_Account_Recipe.json"
}
],
"datasetFiles": [{
"label": "Opportunity",
"name": "Opportunity_SAMPLE_tp",
"condition": "${Variables.Overrides.createAllDatasetFiles}",
"userXmd": "dataset_files/Opportunity_SAMPLE_XMD.json"
}
],
"components": [{
"label": "Image Component",
"name": "ImageComponent_tp",
"condition": "${Variables.Overrides.createAllComponents}",
"file": "components/ImageComponent.json"
}
],
"imageFiles": [{
"name": "LayingOutjpg",
"condition": "${Variables.Overrides.createAllImages}",
"file": "images/LayingOut.jpg"
"namespace": "${Org.Namespace}" //if org is namespaced
},
{
"name": "png1",
"condition": "${Variables.Overrides.createAllImages}",
"file": "images/head.png"
"namespace": "${Org.Namespace}" //if org is namespaced
}
],
"extendedTypes": {},
"templateDependencies": [],
"icons": {
"appBadge": {
"name": "3.png"
},
"templateBadge": {
"name": "dtc_sales"
},
"templatePreviews": [{
"name": "home_dashboard",
"label": "The Sales Home Dashboard",
"description": "Get an overview of your sales team and dig into the key performance

indicators that matter most to you."
},
{

133

template-info.json ExampleAppendix

"name": "sales_results",
"label": "Sales Performance with Selectable Measures",
"description": "Key metrics about your sales team's performance, including details

for each team member."
}
]
},
"tags": [
"Sales",
"Team leaders",
"Operations"
],
"customAttributes": [{
"label": "Features",
"values": [
"Prebuilt apps",
"External CSV data",
"Mobile ready"
]
},
{
"label": "Data Source",
"values": [
"External CSV data",
"Salesforce Opportunities Object"
]
},
{
"label": "Developer",
"values": [
"Manny"
]
}
]
}

SEE ALSO:

template-info.json Attributes

ui.json Attributes

The ui.json file attributes are:

DescriptionRequiredAttribute

Container attribute only - array of UI pages
to be displayed.

Nopages

String title to be displayed at the top of the
page.

Yespages title

134

ui.json AttributesAppendix

DescriptionRequiredAttribute

Array of variables to display on a page, 1
variable is necessary.

Yespages variables

Variable name, must match name of variable
defined in variables.json.

Yespages variables name

Variable visibility (visible, disabled, hidden)
defined by conditional.

Nopages variables visibility

If condition is met, then the page will
display; if the condition is not met, the page
will not display.

Nopages condition

URL provided by template dev to additional
content to help user with creating app.

Nopages helpUrl

Container attribute only: defines the
VisualForce Page to customize this page.

Nopages vfPage

The name of VisualForce class to use.Yespages vfPage name

The namespace for the org.Yes, if org uses namespace.pages vfPage namespace

Container attribute only - array of custom
display message, currently only 1
displayMessage is supported.

NodisplayMessages

Text to display on the app creation progress
landing page (running Astro page).

YesdisplayMessages text

“AppLandingPage” is only supported
location.

YesdisplayMessages location

SEE ALSO:

Edit ui.json

variables.json Attributes

Named nodes, each representing a single variable. Each node contains the following attributes:

variable Attributes

DescriptionRequiredAttribute

The computed value for the variable. The
computed value is set by the

NocomputedValue

WaveTemplateConfigurationModifier
implementation.

135

variables.json AttributesAppendix

DescriptionRequiredAttribute

Additional text that appears under the label
for more information.

Nodescription

The default value for the variable, if the user
doesn’t change the value in the wizard. Can
be the most likely value a user would use.

NodefaultValue

Indicates whether values selected for
another variable are excluded from the list

NoexcludeSelected

of values for this variable () or not (). For use
with variable types like SObjectType
or SObjectFieldType. The default is
false.

Allows specific values to be excluded from
the picker selections

Noexcludes

The visible label for the variable in the UI
wizard. The format is typically a question
like “Do you use product?”.

Nolabel

Indicates whether the variable value
required in the UI. The default is false.

Norequired

The variable type.NovariableType

variableType Attributes

DescriptionRequiredAttribute

Specifies the data type for a FieldType
variable types.

The data type value format for
SObjectFieldType is

NodataType

xsd:string. See Primitive Data Types
in the Salesforce Object Reference for more
values.

For DataLakeObjectFieldType
and DataModelObjectFieldType,
valid values are string, number, date,
and date_time.

Specifies the field type for a
CalculatedInsightsFieldType

NofieldType

variable. Valid values are dimension and
measure.

136

variables.json AttributesAppendix

https://developer.salesforce.com/docs/atlas.en-us.256.0.object_reference.meta/object_reference/primitive_data_types.htm

DescriptionRequiredAttribute

Specifies a list of values for an enumerated
variable type for a StringType or
NumberType variable type.

Noenums

Specifies a list of labels for the enumerated
values of a StringType or
NumberType variable only.

NoenumsLabels

Specifies the items type for an
ArrayType variable. The items type must
be a valid variable type.

NoitemsType

Specifies the maximum value for a
NumberType variable only.

Nomax

Specifies the minimum value for a
NumberType variable only.

Nomin

The type of the variable. Valid types are:Yestype

• ArrayType (Enumerated)

• BooleanType (Enumerated)

• CalculatedInsightFieldType
(Object)

• CalculatedInsightType
(Object)

• ConnectorType (String)

• DataLakeFieldObjectType
(Object)

• DataLakeObjectType (Object)

• DataModelFieldObjectType
(Object)

• DataModelObjectType (Object)

• DatasetAnyFieldType (Object)

• DatasetDateType (Object)

• DatasetDimensionType (Object)

• DatasetMeasureType (Object)

• DatasetType (Object)

• DateTimeType

• NumberType (Enumerated)

• SObjectFieldType (Object)

• SObjectType (Object)

137

variables.json AttributesAppendix

DescriptionRequiredAttribute

• StringType (Enumerated)

SEE ALSO:

Edit variables.json

org-readiness.json Attributes

The org-readiness.json file attributes are:

Org Readiness Attributes

DescriptionRequiredAttribute

The variable values to use for readiness
checks. Values provided by the API call
override these values.

Novalues

An array that defines the requirements for
the template to validate successfully.

YestemplateRequirements

The requirement definitions used by the
template requirements.

Yesdefinition

values Attributes
Each entry must match a variable from the variables.json file, with a defined value to use for the readiness validation. values
can contain 0 or more variables.

This example illustrates how to define values for different variable types.

"values": {
"booleanVar" : true,
"stringVar" : "My string",
"numericVar" : 10,
"sobjectFieldVar" : {
"sobjectName": "Opportunity",
"fieldName": "StageName"

}
}

templateRequirements Attributes
An array of requirements to use for validating the template. A requirement uses a definition to evaluate at runtime. The optional
type, image, tags, and message attributes define how the requirement results are displayed to end users.

138

org-readiness.json AttributesAppendix

DescriptionRequiredAttribute

The expression to evaluate for validation.Yesexpression

The readiness type of the requirement,
which must match the definition

Notype

type. In this context, it’s used by the UI for
badging purposes.

An image that best represents the template
requirement. The image can be a static
resource or a standard CRM Analytics image.

Noimage

The message to display when the expression
evaluates to true. EL expressions can be
used to create dynamic messages.

NosuccessMessage

The message to display when the expression
evaluates to false. EL expressions can be
used to create dynamic messages.

NofailMessage

A collection of strings to use as categories
to describe the template requirement. The

Notags

tags are user-defined and are used to group
multiple template requirements together
into common themes.

This example illustrates how to define requirements of different complexity.

”templateRequirements” : [
{
"expression" : "${Readiness.numberOfAccounts > Variables.numericValue}",
"type" : "SobjectRowCount",
"image" : {
"namespace" : "my_namespace",
"name" : "accounts_required.jpg"

},
"successMessage" : "Your org contains enough accounts to proceed.",
"failMessage" : "You only have ${Readiness.numberOfAccounts} accounts. You must have

${Variables.numericValue} or more accounts to proceed."
"tags" : ["Accounts", "Cases"]

},
{
"expression" : "${Readiness.numberOfCases > 5}",
"failMessage" : "You must have 5 or more cases to proceed."

}
]

definition Attributes
Each entry defines a readiness check. There must be at least 1 definition that is used in the templateRequirements. The
evaluated result of each definition is stored in the template context as Readiness['<definition_name>'].

139

org-readiness.json AttributesAppendix

These examples illustrate definitions for different requirement types.

The OrgPreferenceCheck validates one or more org preferences.

"Example Org Readiness Check": {
"type" : "OrgPreferenceCheck",
"names" : ["DashboardSavedViewEnabled"]

}

EL Expression: ${Readiness['Example Org Readiness Check'].DashboardSavedViewEnabled}

The SobjectRowCount performs a SOQL query to retrieve a row count for the specified sObject and optional filters. Both the
sobject and filter attributes can contain EL expressions that are resolved at runtime. This example validates that there are a
specific number of accounts with an annual revenue greater than the minimum value specified at runtime. This check is performed
before app creation and the results are available for templateReadiness.

"Count of Accounts Revenue" : {
"type" : "SobjectRowCount",
"sobject" : "Account",
"filters" : [
{
"field" : "AnnualRevenue",
"operator" : "GreaterThan",
"value" : "${Variables.MinimumAnnualRevenue}"

}
]

}

EL Expression: ${Readiness['Count of Accounts Revenue'] >= 500}

The OrgDatasetRowCount performs a SQL query on an existing dataset to determine row count based on the dataset id or name
and optional filters. This check can query datasets outside of the scope of the current or future app, which is useful for templates that
have template dependencies on other apps. This check is performed before app creation and the results are available for
templateReadiness.

"Query Parent App Dataset" : {
"type" : "OrgDatasetRowCount",
"dataset" : "${Apps.parentTemplateApp.Datasets.quota.Id}",
"filters" : [
{
"field" : "QuotaDollarValue",
"operator" : "LessThan",
"value" : "100000"

}
]

}

EL Expression: ${Readiness['Query Parent App Dataset'] >= 500}

The AppDatasetRowCount performs a SQL query on an existing dataset to determine row count based on the dataset id or name
and optional filters. This check queries datasets that are created by the template. It validates if a dataset dependent asset, such as a
dashboard or Einstein Discovery story can or should be created. This check is performed during app construction, after the datasets are

140

org-readiness.json AttributesAppendix

created and recipes are run to populate the datasets. The results of this check can’t be referenced by templateRequirements,
but they can be referenced by template asset conditions in template-info.json.

"Query App Dataset" : {
"type" : "AppDatasetRowCount",
"dataset" : "${App.Datasets.quota.Id}",
"filters" : [
{
"field" : "QuotaDollarValue",
"operator" : "LessThan",
"value" : "100000"

}
]

}

EL Expression: ${Readiness['Query App Dataset'] >= 500}

The ApexCallout performs a check using a custom Apex method in the template’s implementation of
WaveTemplateConfigurationModifier. The method must be a non-static, global method with an arbitrary number of
arguments. The method return value is also arbitrary or void and is place into the template context for reference in the
templateRequirements or in rules processing.

"Global Apex Method Readiness Check" : {
"type" : "ApexCallout",
"method" : "checkReadiness",
"arguments" : {
"booleanArg" : true

}
}

EL Expression: ${Readiness['Global Apex Method Readiness Check'] == true}

Example Apex method for the readiness check

global Boolean checkReadiness(Boolean booleanArg) {
if (booleanArg) {
return true;

}
return false;

}

The DataCloudRowCount performs a SQL query on an existing Data Cloud object, DLO, DMO, or Calculated Insight, to determine
row count based on the object name or id and optional filters. This check can query Data Cloud objects outside of the scope of the
current or future app. This check is for templates that have dependencies on the existence and status of specific Data Cloud objects. This
check is performed before app creation and the results are available for templateReadiness.

"Row Count of DMO" : {
"type" : "DataCloudRowCount",
"object" : "ssot__Account__dlm",
"filters" : [
{
"field" : "Id__c",
"operator" : "In",
"value" : ["001RO00004KkxxLxxx", "001RO00004KkxxMxxx"]

}

141

org-readiness.json AttributesAppendix

]
}

EL Expression: ${Readiness['Row Count of DMO'] >= 0}

SEE ALSO:

Edit org-readiness.json

folder.json Attributes

The folder.json file attributes are:

DescriptionRequiredAttribute

Folder developer name. For apps created
from auto-installed templates, the folder

Yes for auto-installed templates, No for
templates that use the configuration wizard

name

developer name is required for the creation
of app.

Folder label.Nolabel

Folder description.Nodescription

Container for assets; this can be empty if no
featuredAssets are present.

YesfeaturedAssets

Container for assets.NofeaturedAssets default

Container for array of assets.NofeaturedAssets default
assets

Tokenized ID of dashboard asset.NofeaturedAssets default
assets id element

Asset name.NofeaturedAssets default
assets name

Asset namespace.NofeaturedAssets default
assets namespace

Asset type, such as dashboards,
lenses, or eltDatflows. Can be
null.

NofeaturedAssets default
assets type

Sharing rules for the folder.Noshares

User ID or Group ID to share this folder with.Yes, if shares is used.shares sharedWithID

Access type for the sharing rule. Valid values
are EDIT, MANAGE, and VIEW.

Yes, if shares is used.shares accessType

The sharing type for the sharing rule. Valid
values are Group, Organization,

Yes, if shares is used.shares shareType

142

folder.json AttributesAppendix

DescriptionRequiredAttribute

Role, RoleAndSubordinates,
RoleAndSubordinatesInternal,
User, PortalRole,
PortalRoleAndSubordinates,
AllCspUsers, AllPrmUsers,
PartnerUsers, and
CustomerPortalUser.

SEE ALSO:

Edit folder.json

auto-install.json Attributes

The auto-install.json file attributes are:

DescriptionRequiredAttribute

Container for hook types.Nohooks

The type of auto-install hook. Valid values
are: PackageInstall.

Yeshooks type

The name for the auto-install request.Nohooks requestName

The configuration to use for creating the
app.

Noconfiguration
appConfiguration

Indicates whether the app is automatically
shared with users that have the

Noconfiguration
appConfiguration
autoShareWithLicensedUsers AnalyticsViewOnlyEmbeddedApp license

(true) or not (false). The default value
is false.

Indicates whether the app is automatically
shared with the user who initiated the

Noconfiguration
appConfiguration
autoShareWithOriginator auto-install request (true) or not (false).

The default value is true.

Indicates whether the app is deleted when
the auto-install request fails due to a

Noconfiguration
appConfiguration
deleteAppOnConstructionFailure construction error (true) or not (false).

The default value is false.

Indicates whether the app creation fails
when an existing app or asset exists with

Noconfiguration
appConfiguration
failOnDuplicateName the same developer name (true) or not

(false). The default value is false.

143

auto-install.json AttributesAppendix

DescriptionRequiredAttribute

A map of variable values to use when
creating the app. The variable names must

Noconfiguration
appConfiguration values

correspond to variables defined in the
variables.json file

SEE ALSO:

Edit auto-install.json

rules.json Example

Refer to this example of the rules.json file.

Example:

{
"constants":[

{
"name":"ChartType",

"value":"pie"
}

],
"rules":[w

{
"name":"rule1",
"appliesTo":[

"type":"dashboard",
"name":"dashboardOne",

],
"actions":[

{
"action":"put",
"description":"Put a section back in, but with different attributes",
"path":"$.state.widgets.chart_1",
"key":"pos",
"value":{

"w":"501",
"y":"41",
"h":"121",
"x":"51"

}
},
{

"action":"delete",
"description":"Delete a section",
"path":"$.state.widgets.chart_2"

144

rules.json ExampleAppendix

}
]

The corresponding dashboardOne.json file that uses the above rules files looks like:

{
"_type": "dashboardTemplate",
"name": "Dashboard From Template With Rules",
"edgemarts": {

"${Variables.Dataset1.datasetAlias}": {
"_type": "edgemart",
"_uid": "${Variables.Dataset1.datasetId}"

},
"${Variables.Dataset2.datasetAlias}": {

"_type": "edgemart",
"_uid": "${Variables.Dataset2.datasetId}"

}
},
"folder": {

"_type": "folder",
"_uid": "${App.Folder.Id}"

},
"tags": [

],
"state": {

"widgets": {
"chart_1": {

"params": {
"chartType": "${Constants.ChartType}",
"minColumnWidth": 30,
"maxColumnWidth": 200,
"legend": false,
"selectMode": "single",
"sqrt": false,
"legendHideHeader": false,
"legendWidth": 145,
"step": "step_1"

},
"type": "ChartWidget",
"pos": {

"w": "500",
"y": 60,
"h": "120",
"x": 40

}
},
"chart_2": {

"params": {
"chartType": "${Constants.ChartType}",
"minColumnWidth": 30,
"maxColumnWidth": 200,
"legend": false,
"selectMode": "single",
"sqrt": false,

145

rules.json ExampleAppendix

"legendHideHeader": false,
"legendWidth": 145,
"step": "step_2"

},
"type": "ChartWidget",data
"pos": {

"w": "500",
"y": 190,
"h": "120",
"x": 40

}
}

},
"steps": {

"step_1": {
"isFacet": true,
"start": null,
"query": {

"measures": [
[

"count",
"*"

]
]

},
"selectMode": "single",
"useGlobal": true,
"em": "${Variables.Dataset1.datasetId}",
"type": "aggregate",
"isGlobal": false

},
"step_2": {

"isFacet": true,
"start": null,
"query": {

"measures": [
[

"count",
"*"

]
]

},
"selectMode": "single",
"useGlobal": true,
"em": "${Variables.Dataset2.datasetId}",
"type": "aggregate",
"isGlobal": false

}
},
"type": "hbar"

}
}

146

rules.json ExampleAppendix

When the rules are applied to the dashboard, the chart_1 widget will have a chartType of “pie” and the “pos” will be updated
to w=501, y=41, h=121, and x=51. The chart_2 widget will be removed.

rules.json Attributes

The rules.json file attributes are:

DescriptionRequiredAttribute

Container attribute only - array of constants
to be defined, can be empty if no constants
are needed

Noconstants

Unique name for a constant, used to
reference the constant in other places

Noconstants --> name

Value of the constantNoconstants --> value

Container attribute only - array of rules to
be defined, can be empty if no rules are
needed

Norules

Nolabel

Unique name for a ruleYesrules --> name

If condition is met, then the rule will run, if
the condition is not met, the rule will not
run.

Norules --> condition

Container attribute only - array of assets the
rule should be be applied to (dashboards,
dataflow, recipes, schemas, XMDs)

Yesrules --> appliesTo

Name of asset (can be * in case of
dashboards for all dashboards); must match

No. Best practice is to specify name. If null,
defaults to *, and rule applies to all
template assets.

rules --> appliesTo --> name

the “name” defined in the template-info for
the asset

Type of asset (dashboard, workflow, lens,
schema, xmd)

No. Best practice is to specify type. If null,
defaults to *, and rule applies to all asset
types*

rules --> appliesTo --> type

Container attribute only - array of actions
the rule should invoke (one or more action
is necessary)

Yesrules --> actions

Type of action - set, add, delete, put, replaceYesrules --> actions --> action

Description of the rule action - for
maintainability

Norules --> actions -->
description

JSONPath to take the action onYesrules --> actions --> path

147

rules.json AttributesAppendix

DescriptionRequiredAttribute

Value needed for set/add/put, defines the
value to put in the JSONPath

Norules --> actions --> value

Index needed for add action onlyNorules --> actions --> index

Key needed for put action onlyNorules --> actions --> key

SEE ALSO:

Edit Rules Files

Rules Testing with jsonxform/transformation endpoint

Test the results of a rule before deployment by calling the jsonxform/transformation endpoint.

Process for Using jsonxform/transformation
Use cURL or Postman to execute a Post call on the /services/data/v51.0/jsonxform/transformation REST
endpoint. See the examples for starting points on what the POST request body must contain.

If the rule works, the POST response contains the transformed JSON results. If the rule doesn’t work, the POST response contains any
errors with guidance to fix the rule.

The following examples show how you can take advantage of the built-in tokens we provide.

Example: Post Transform
A “put” rule that adds a name/value pair to the JSON.

{
"document": {
"user": {
"firstName": "${User.FirstName}",
"lastName": "${User.LastName}",
"userName": "${User.UserName}",
"id": "${User.Id}",
"hello": "${Variables.hello}"
},
"company": {
"id": "${Org.Id}",
"name": "${Org.Name}",
"namespace": "${Org.Namespace}"
}

},
"values": {

"Variables": {
"hello": "world"
}

148

Rules Testing with jsonxform/transformation endpointAppendix

},
"definition": {
"rules": [{
"name": "Example",
"actions": [{
"action": "put",
"description": "add hobby to user",
"key": "hobby",
"path": "$.user",
"value": "mountain biking"
}]
}]
}
}

Example: Constant Array
Tests an array function (contains) to determine the right value to add to the final JSON.

{
"document": {
"user": {
"firstName": "${User.FirstName}",
"lastName": "${User.LastName}",
"userName": "${User.UserName}",
"id": "${User.Id}",
"hello": "${Variables.hello}"
},
"company": {
"id": "${Org.Id}",
"name": "${Org.Name}",
"namespace": "${Org.Namespace}"
}

},
"values": {
"Variables": {
"hello": "world",
"choices": ["Products", "Cases"]
}
},
"definition": {
"constants": [{
"name": "ConstantTest",
"value": "${array:contains(Variables.choices, 'Products') ? 'Products' : 'No Products'}"

}],
"rules": [{
"name": "Example",
"actions": [{
"action": "put",
"description": "add hobby to user with constant",
"key": "hobby",
"path": "$.user",

149

Rules Testing with jsonxform/transformation endpointAppendix

"value": "${Constants.ConstantTest}"
}]
}]
}
}

Example: Macro Transform
Tests a macro with a rule.

{
"document": {
"user": {
"firstName": "${User.FirstName}",
"lastName": "${User.LastName}",
"userName": "${User.UserName}",
"id": "${User.Id}",
"favorite": null
}
},
"values": {},
"definition": {
"macros": [{
"namespace": "jsonTest",
"definitions": [{
"name": "setNodeByPath",
"parameters": [
"jsonPath",
"value"
],
"actions": [{
"action": "set",
"path": "${p.jsonPath}",
"value": "${p.value}"
}]
}]
}],
"rules": [{
"name": "Example",
"actions": [{
"action": "put",
"description": "add hobby to user",
"key": "hobby",
"path": "$.user",
"value": "mountain biking"
},
{
"action": "eval",
"description": "Set the value of 'favorite' with the value from 'hobby'",
"path": "$.user.hobby",
"value": "${jsonTest:setNodeByPath('$.user.favorite', Rules.CurrentNode)}"
}

]

150

Rules Testing with jsonxform/transformation endpointAppendix

}]
}
}

For reference on the jsonxform/transformation REST endpoint, see JsonXform Transformation Resource in the Analytics REST
API Developer Guide.

VisualForce Events for Customizing the Wizard UI

This reference section explains the details of using VisualForce for customizing the Wizard user interface.

Table 1: List of Events to Which You Can Subscribe or Publish

ResponseDescriptionSubscribe/PublishEvent Name

Response contains all the
metadata: page,

Fired from client indicating they
are ready to receive events.

publishready

variableDefinitions, initialValues
needed to render the questions
and possible answers for the
page.

Variables with errors messages.Fired from client when ready to
update one or more variables.

publishupdate

Variables and their visibility
enum.

Fired from client to check
‘visibility’ of one or more
questions.

publishvisibility

The values of all variables in the
entire wizard.

Fired from client to request the
most up-to-date values of each
question.

publishvalues

A list of variables that are
required with no values.

Fired from parent when user
clicks “continue” button. May or
may not advance the page. If

subscribenext

there are errors in the variable
values, the page will not
advance.

None.Fired from client to change the
size of the VisualForce page.

publishresize

List will be filtered for
“queryable,” “excludes,” “exclude

Fired from client to get a list of
‘options’ for filling in drop-down
list boxes.

publishoptions

selected.” “Tags” will be applied
to indicate which option values
are “default,” “recommended,”
or “previous” values.

You can use this for sObjects,
sObjectFields, string enums, and
number enums.

151

VisualForce Events for Customizing the Wizard UIAppendix

https://developer.salesforce.com/docs/atlas.en-us.256.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/bi_resources_jsonxform_transformation.htm

ResponseDescriptionSubscribe/PublishEvent Name

Variables with success or error
messages.

Fired from client to set the
computed (suggested) values
for a variable.

publishcomputed

None.Fired from client to close the
wizard. No actions are taken as
part of the close.

publishclose

Change the text of the Back and
Next button. Can also enable or
disable the Back or Next button.

publishbuttons

The status of the POST call.
Success if app creation is kicked

Fired from the client to create an
app before the final screen. Calls

publishcreate

off successfully (not final app
status), otherwise Fail.

POST /wave/folder and
returns results.

Coming soon; not currently
supported in this release. We

DatasetCOMING SOONdataset

intend to implement this as an
‘options’ event.

Coming soon; not currently
supported in this release. We

Dimensions, Measures tied to
parent datasets

COMING SOONdataset fields

intend to implement this as an
‘options’ event.

Event: wizard.ready
• Subscribe/Publish: publish

• Input/Multiple: optional

– Size: small, medium, large

– Banner: visible, title, progress

Note: for VisualForce pages, the banner is hidden by default.

• Response: Yes

• Normalized Input: N/A

• Input Examples:

– {}

– {size : “large” }

– {banner : visible : true, title : “My Custom title”, progress : “Almost done”}}

– {size : “small”, banner : {visible : false}}

• Output Example:

{
"page": {

152

VisualForce Events for Customizing the Wizard UIAppendix

"condition": null,
"helpUrl": null,
"title": "Page 1",
"variables": [
{
"name": "stringExample",
"visibility": "Visible"

},
{
"name": "visibilityControl"
"visibility": "Visible"

},
{
"name": "visibilityTest",
"visibility": "Hidden"

}
]

},
"variableDefinitions": {
"stringExample": {
"label": "What is the value of the string?",
"description": "The String.",
"defaultValue": null,
"variableType": {
"type": "StringType",
"enums": [
"foo",
"bar",
"baz",
"testStr"

]
}

},
"stringExample2": {
"label": "What is the value of this string?",
"description": "The String2.",
"defaultValue": null,
"variableType": {
"type": "StringType"

}
},
"visibilityControl": {
"label": "Do you want to answer more questions?",
"description": "Check to test visibility",
"variableType": {
"type": "BooleanType"

},
"defaultValue": false,
"required": true

},
"visibilityTest": {
"label": "I should only be visible when visibilityControl is checked",
"variableType": {
"type": "StringType",

153

VisualForce Events for Customizing the Wizard UIAppendix

"enums": [
"aaa",
"bbb",
"ccc"

]
}

},
"visibilityTest2": {
"label": "I should only be enabled when visibilityControl is checked",
"variableType": {
"type": "StringType"

}
},
"datasetExample": {
"label": "Pick a dataset",
"description": "Interesting dataset",
"variableType": {
"type": "DatasetType"

}
},
"dimensionExample": {
"label": "Pick a dimension",
"description": "Dim testing",
"defaultValue": {
"datasetId": "{{Variables.datasetExample.datasetId}}",
"fieldName": "test"

},
"variableType": {
"type": "DatasetDimensionType"

},
"required": false

}
},
"initialValues": {
"stringExample": null,
"stringExample2": null,
"visibilityControl": false,
"dimensionExample": {
"datasetId": "{{Variables.datasetExample.datasetId}}",
"fieldName": "test"

}
}

}

Event: wizard.update
• Subscribe/Publish: publish

• Input/Multiple: yes

• Response: yes

• Normalized Input: yes

• Input Examples:

154

VisualForce Events for Customizing the Wizard UIAppendix

{name : “myVariable”, value : “some value” }–

– [{name : “myVariable”, value : “some value” }]

– [{name : “myVariable”, value : “some value” }, {name : “myNumber”, value : 123}]

– {myVariable : “some value”, myNumber: 123, myBoolean : true}

– {name : “mySObject”, value : {sobjectName : “Account”}}

• Output Example: always an array

[
{name : “myVariable”: value : “some value”, valid : true },
{name : “myNumber”: value : null, valid : false, errorMessage : “Not a valid value”}

{name : “mySObject”: value : {sobjectName : “Account”}, valid : true}
]

Event: wizard.visibility
• Subscribe/Publish: publish

• Input/Multiple: yes

• Response: yes

• Normalized Input: yes

• Input Examples:

– [“myVariable”, “myNumber”]

– [{name : “myVariable”}]

– {name : “myVariable”}

– “myVariable”

• Output Example: always an array

[

{name : “myVariable”: visibility : “Hidden”},

{name : “myNumber”: visibility : “Visible”},

{name : “myOtherVariable”: visibility : “Disabled”}

]

Event: wizard.values
• Subscribe/Publish: publish

• Input/Multiple: n/a

• Response: yes

• Normalized Input: n/a

• Input Examples:

155

VisualForce Events for Customizing the Wizard UIAppendix

{}–

• Output Example:

{
values : {

myVariable: “foo”,
myNumber: 123,
myBoolean: true,
myDimension: {fieldName : “days”}

}
}

Event: wizard.next
• Subscribe/Publish: subscribe

• Input/Multiple: n/a

• Response: yes

• Normalized Input: n/a

• Output Example: Page will not advance if required fields are not met.

– {
“myVariable”: {

errorMessage: “Not a valid value”,
isRequired : true,
variableName : “myVariable”

}
}

– {}

Event: wizard.resize
• Subscribe/Publish: publish

• Input/Multiple: n/a

• Response: no

• Normalized Input: n/a

• Input Examples:

– {size : “small”}

– {size : “medium”}

– {size : “large”}

Event: wizard.options
• Subscribe/Publish: publish

• Input/Multiple: no

156

VisualForce Events for Customizing the Wizard UIAppendix

• Response: yes

• Normalized Input: n/a

• Input Examples:

– {name : “mySObjectVariableName”}

– {name : “mySObjectFieldVariableName”}

– {name : “myStringVariableName”}

– {name : “myNumbertVariableName”}

• Output Example:

{
"options": [
{
"label": "Account",
"value": "Account",
"tags": [
{
"tag": "Default",
"toolTip": "Default answer"

}
]

},
{
"label": "Oppty",
"value": "Opportunities"

}
]
}

Event: wizard.buttons
• Subscribe/Publish: publish

• Input/Multiple: n/a

• Response: no

• Normalized Input: n/a

• Input Examples:

157

VisualForce Events for Customizing the Wizard UIAppendix

{buttons : {
next : {disabled : true, text : “Fix error before continue”},

–

back : {disabled : false, text : “Go Back”}
}

}

– { buttons : {
back : {disabled : true}

}
}

– { buttons : {
next: {“text” : “Proceed at Own Risk”}

}
}

• Output Example:

None. Buttons should update accordingly.

Event: wizard.create
• Subscribe/Publish: publish

• Input/Multiple: no

• Response: yes

• Normalized Input: yes

• Input Examples:

– {folder : {label : "vfTest", description : "my desc"}}

158

VisualForce Events for Customizing the Wizard UIAppendix

	Why CRM Analytics Templates?
	The Source App
	Templated App Type
	The Configuration Wizard
	The Template Object

	Choose Your Tool
	The Process at a Glance
	Prerequisites
	Step 1: Create the WaveTemplate Object
	Create a Template with the Command Line Interface
	Create and Update a Template with Visual Studio Code

	Step 2: Retrieve (Export) the WaveTemplate Object
	Use the Salesforce CLI to Retrieve the Template Files
	Use Visual Studio Code to Retrieve the Template Files
	Template Folder Structure

	Step 3: Edit the JSON Files
	Wizard Best Practices
	Edit template-info.json
	Edit folder.json
	Edit auto-install.json
	Edit org-readiness.json
	Edit variables.json
	Simple Variable Types for variables.json
	Complex variables.json Variable Types
	Array Variable Type for variables.json
	excludes and excludeSelected Attributes in Variables
	Use Case and Syntax for Variables with Related Values

	Edit ui.json
	Page Condition Syntax for ui.json
	Variables Array in ui.json
	Use VisualForce To Customize the Wizard UI

	Edit Rules Files
	Rules Files Structure
	Structuring and Organizing Rules
	Rules Syntax
	Actions in Rules
	Actions Syntax for Rules
	Use Functions in Rules
	string Functions
	array Functions
	Use Array Functions for Multi-Select Widgets and Looping

	json Functions
	Static Functions

	Macros in Rules
	Rule Macro And Macro Definition Attributes
	Macro Examples
	Macro Use Case: Recursive Operations
	Macro Use Case: Delete Workflow Nodes
	Macro Use Case: Add an Array of SObject Names to Extract Workflow

	Use the Apex WaveTemplateConfigurationModifier Class
	WaveTemplateConfigurationModifier Interfaces
	WaveTemplateConfigurationModifier Methods
	WaveTemplateConfigurationModifier Apex Examples
	TemplateApexException Apex Examples
	TemplateInterruptException Apex Example
	Test WaveTemplateConfigurationModifier

	Use the Apex Access Methods
	Access Methods
	Access Apex Examples

	Step 4: Deploy the WaveTemplate Object
	Step 5: Test the Template
	Use the App Install History Page
	Debug the Template
	Reading the Template Debug Logs

	Step 6: Share the Template
	Step 7: Create New (Downstream) Apps from the Template
	Step 8: Update an Existing Template
	Share CRM Analytics Assets Between Apps
	Create Dependent Templates
	Template Dependency Syntax
	Best Practices
	Creating a Template from a Dependent App

	Features Not Supported in This Release
	Release Notes
	API End-of-Life Policy
	Appendix
	Add a Recipe to a CRM Analytics Template
	Configure Recipe Execution
	Add an Einstein Discovery Story to a CRM Analytics Template
	Add a Remote Connector to a CRM Analytics Template
	Use Live Datasets in a CRM Analytics Template
	Work with Embedded App Auto-Install Requests
	Feature Parameters for Analytics Templates
	template-info.json Attributes
	template-info.json Example
	ui.json Attributes
	variables.json Attributes
	org-readiness.json Attributes
	folder.json Attributes
	auto-install.json Attributes
	rules.json Example
	rules.json Attributes
	Rules Testing with jsonxform/transformation endpoint
	VisualForce Events for Customizing the Wizard UI

