salesforce

esforce Console Developer
ide

© Copyright 2000-2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc,, as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Salesforce Console Developer Guide 1
Get to Know Lightning Console 1
Getto Know the Utility Bar 3
Chapter 2: Lightning Console APl i e e e 4
How are the Classic and Lightning Console APIs Different? 4
Console API Method Parity oo 6
Salesforce Classic Methods Supported in Lightning Experience 10
Utility Bar APl Method Parity 17
Lightning Console JavaScript APl 18
Lightning Console JavaScript API SYNtaXo e e e e e e e e e e e e 19
Using Background Utility ltems 23
Using Pop-Out Utilifieso 24
Using Events with the Lightning Console JavaScript APl 28
Use Page Context in the Utility Bar APl e 30
Using Page References to Open Console Workspace Tabs and Subtabs 31
DEbUGGING .« . . 36
Methods for Lightning Console JavaScript APL o i 36
Events for Lightning Console JavaScript APl 136
Chapter 3: Salesforce ClassiC AP e e e e 170
When to Use the Salesforce Console Integration Toolkit 7
Salesforce Console Integration Toolkit Support Policy 172
Backward Compatibility 172
End-of-Life 173
Change a Visualforce Page by Using the Salesforce Console Integration Toolkit 173
Working with the Salesforce Console Integration Toolkit 174
Connecttothe Toolkito 175
Asynchronous Calls with the Salesforce Console Integration Toolkit 176
Working with Lightning Platform Canvaso oo 176
Salesforce Console Integration Toolkit Best Practices 177
Methods for Salesforce ClaSSIC 178
Methods for Primary Tabs and Subtabs 178
Methods for Navigation Tabs 233
Methods for Computer-Telephony Integration (CTI)o o .. 238
Methods for Application-Level Custom Console Components 250
Methods for Push Notifications 272
Methods for Console Events 275

Methods for Chat e 281

Contents

Methods for Omni-Channel 324
Chapter 4: Ofther RESOUICES . . . oot i ettt ettt e 339
Console API Typographical Conventionst 339

CHAPTER 1 Salesforce Console Developer Guide

The Lightning Console JavaScript APl and the Salesforce Console Integration Toolkit both interact with Salesforce console apps. This
guide provides reference material for both.

Starting with APl version 42.0 of the Salesforce Console Integration Toolkit, many of the methods used in existing Visualforce pages and
third-party web tabs now work in Lightning Experience. Just point to the latest version of the toolkit script in your Visualforce pages or
third-party web tabs. Third-party content must be allowlisted in the Trusted URLs list to be used in Lightning Experience. See Classic
Console API Methods Supported in the Lightning Console API for a list of supported methods.

To use this guide, it helps if you have a basic familiarity with:

e JavaScript

e Visualforce

e Web services

e Software development

e Salesforce console

e Lightning

e Lightning console apps

@ Note: As of Spring 19 (API version 45.0), you can build Lightning components using two programming models: the Lightning
Web Components model, and the original Aura Components model. Lightning web components are custom HTML elements built

using HTML and modern JavaScript. Lightning web components and Aura components can coexist and interoperate on a page.
This developer guide covers Aura components only.

IN THIS SECTION:
Get to Know Lightning Console

Get started with the Salesforce console in Lightning Experience.

Get to Know the Utility Bar

The utility bar is a specialized type of Lightning page that gives your users quick access to common productivity tools. Utility bars
are supported in Lightning Experience for desktop only.

SEE ALSO:
How are the Classic and Lightning Console APIs Different?
Lightning Console JavaScript AP

Salesforce Console Integration Toolkit for Salesforce Classic

Get to Know Lightning Console

Get started with the Salesforce console in Lightning Experience.

Salesforce Console Developer Guide Get to Know Lightning Console

Use workspace API methods from Lightning pages either in the utility bar or in a Lightning console app. Here’s how a Lightning console
app works:

Lightning Console App User Interface

p——

. @2 oa
s Console | accours tgemsLogiicson.. v x| Be oge Communica v

e The App Launcher (1) lets you switch between apps. To switch to another console app or back to a standard app, use the App
Launcher. The name of the app you're currently in is displayed next to the App Launcher.

e The navigation menu (2) displays the navigation item you currently have selected. To open the navigation menu, click . From there,
you can view or edit your navigation items. Selecting a navigation item opens the navigation item’s home page. Objects open in
table view. Opening a record changes the view to split view. Once in split view, click the navigation item again to switch back to
table view, or use the Display as dropdown.

e Records open in workspace tabs, and related records opened from inside a workspace tab open in subtabs (3). You can refresh, pin,
customize, and close a tab using the tab menu. You can also open navigation items in a new workspace tab by using Ctrl+click or
Cmd-+click.

e The split view panel (4) can be hidden with. Records opened from the split view panel open in new workspace tabs.

e The utility bar (5) lets you access common processes and tools like History and Notes.

Salesforce Console Developer Guide Get to Know the Utility Bar

Get to Know the Utility Bar

The utility bar is a specialized type of Lightning page that gives your users quick access to common productivity tools. Utility bars are
supported in Lightning Experience for desktop only.

A utility is broadly defined as a single-column Lightning page. Salesforce provides you with several ready-to-use utilities, such as Recent
[tems, History, and Notes. You can also make your own, and customize the utility bar in Setup. From Setup, enter App Managerin
the Quick Find box, then select App Manager. Either click New Lightning App to create an app, or click Edit next to an existing
Lightning app to add a utility bar or edit the existing one. The utility bar APl includes a set of methods for working with utilities and the
utility bar.

To add a utility bar, add at least one utility item that isn't a background utility item. To remove a utility bar, remove all non-background
utility items from your app.

Opportunities . Mew
My Opportunities v %
32 ftems - Sarted by Opportunity Name - Filtersd by my oppartunities - Updated a minute ago Search this list & ¢c £ 7
OPPORTUNITY NAME 1 ~ ACCOUNT NAME ~ AMOUNT ~ CLOSE DATE v STAGE ~ OPPORT.. v
1 Burlington Textiles Weaving Plant Generator Burlington Textiles Corp of America 5$235,000.00 3/ =
2 Dickenson Mobile Generators Dickenson pic $15,000.00 3 F © History -
3 Edge Emergency Generator Edge Communi 5£75,000.00 3f
4 Edge Emergency Generator Edge Communic $35,000.00 3/21/2016 RecENTTAES peton
s Edge Installation Edge Communications $50,000.00 3/21/2016 4 B Grand Hotels & Resort &
6 Edge Portable Generators Edge Communications 575,000.00 4/19/2018 3 Burlington Textiles We. &
T Edge 5LA Edge Communications 560,000.00 3/21/2016 [} 5 B Edge Communications @
8 Edge Standby Generators Edge Communications 550,000.00 4/4/2018 t .
g Express Logistics Portable Truck Generators ess Logistics and Transport $80,000.00 3/21/2016 A B Fprs Rt et @
10 Express Logistics SLA Logistics and Transport $120,000.00 3/21/2016 i ﬂ Carolyn Crenshaw &
11 Express Logistics Standby Generator Express Logistics and Transport $220,000.00 3/21/2016 { ﬂ Betty Bair &
12 GenePoint Lab Generators GenePoint SE60,000.00 3/21/2016 I Sandra Eberhard &
13 GenePoint 5L GenePoint 530,000.00 3/21/2016 [4 Patricia Feager @
14 GenePoint 5 GenePoint 585,000.00 3/21/2016 [4 .
15 Grand Hotels Generators Grand Hotels & Resorts Ltd $210,000.00 3/21/2016 [E o @ .
16 Grand Hotels Genfirator Installations Grand Hotels & Resorts Ltd $350,000.00 3/21/2016 [i Clear History
17 Grand Hotels Gualit Portable Generators Grand Hotels & Resorts Ltd $250,000.00 3/21/2016 ! P >
4 ChatterFeed & Quip § @ History J& MNotes

1. The utility bar. This utility bar includes four utilities: Chatter Feed, Quip, History, and Notes. Each utility has an icon and label.

2. The selected utility. The selected utility opens in a panel.

3. The panel header, showing the panel icon and label.

SEE ALSO:
Salesforce Help: Add a Utility Bar to Lightning Apps

Methods for the Utility Bar in Lightning Experience

Using Background Utility Items

https://help.salesforce.com/articleView?id=apps_lightning_utilities.htm&language=en_US

CHAPTER 2 Lightning Console AP

Lightning console apps allow users to quickly find the information they need, and make edits while EDITIONS
viewing multiple records on one screen. The Lightning Console JavaScript APl gives you
programmatic access to Lightning console apps, so you can fully integrate Lightning console apps Available in: Lightning
with Aura components and Lightning web components while extending them to meet your business Experience

needs.

Available in: Essentials,
Professional, Enterprise,
Performance, Unlimited,

The Lightning Console JavaScript APl includes three libraries, the navigation item API, the utility
bar API, and the workspace API.

e The navigation item APl provides methods that can be used from Aura components to interact and Developer Editions
with the console’s navigation menu. This APl is used in Lightning console apps only. Lightning console apps are

e The utility bar API provides methods that can be used from Aura components and Lightning available for an extra cost to
web components in the utility bar to open, resize, or minimize a utility. This APl is used in users with Salesforce
Lightning apps with standard or console navigation. Platform user licenses for

certain products. Some
restrictions apply. For pricing
details, confact your
Salesforce account

For a full list of methods in each API, see Methods for Lightning Console JavaScript API. executive.

e The workspace API provides methods for Aura components and Lightning web components
for opening, closing, and getting information about workspace tabs and subtabs. This APl is
used in Lightning console apps only.

You can build Lightning components using two programming models: the Lightning Web

Components model and Aura Components model. Although both models can coexist and

interoperate on a page, we recommend that you build your apps with Lightning Web Components, which use HTML and modern
JavaScript.

@ Note: Only the utility bar and workspace APIs are currently supported for Lightning web components.

IN THIS SECTION:

How are the Classic and Lightning Console APIs Different?
The user interface of your org dictates which development tools you can use with the Salesforce console.

Lightning Console JavaScript API

Lightning console apps allow users to quickly find the information they need, and make edits while viewing multiple records on
one screen. The Lightning Console JavaScript API gives you programmatic access to Lightning console apps, so you can fully integrate
Lightning console apps with Aura components and Lightning web components while extending them to meet your business needs.

How are the Classic and Lightning Console APIs Different?

The user interface of your org dictates which development tools you can use with the Salesforce console.

Lightning Console API How are the Classic and Lightning Console APIs Different?

Console Integration Toolkit versus Lightning Console JavaScript API

Both the Lightning Console JavaScript APl and the Salesforce Console Integration Toolkit are JavaScript APIs that allow you to interact
with Classic or Lightning console apps. Methods are implemented differently in each API, however.

Here's what's different between the Lightning Console JavaScript APl and the Salesforce Console Integration Toolkit.

You Use the Methods in Different Places
e In Aura components, use the Lightning Console JavaScript APl methods in the JavaScript controller of a Lightning component.

e InLightning web components, you can use only the utility bar and workspace API methods, wire adapters, and Lightning message
channels. Lightning web components don't currently support working with navigation items.

e Visualforce or iframed, third-party pages work in both Lightning Experience and Salesforce Classic. For Visualforce and iframe
pages, use the Classic methods from the Salesforce Console Integration Toolkit. However, there are limitations regarding which
methods you can use. Classic Console API Methods Supported in the Lightning Console API, provides details on the supported
methods.

When you are using the Salesforce Console Integration Toolkit in Salesforce Classic, you use methods within <script> tags
for Visualforce pages or iframed, third-party pages.

The Input Syntax for Methods is Different
Methods in the Lightning Console JavaScript APl (Aura components) take a JSON array of arguments:

workspace.openTab ({

url: '#https://salesforce.com',
focus: true,
label: 'Salesforce',

)i

Similarly, methods in the Lightning Console JavaScript API (LWC) take a JSON array of arguments:

openTab ({
url: '#/sObject/001R0000003HgssIAC/view',
label: 'Global Media',
focus: true

Note: For Aura components, required parameters are passed to the method in an object. For LWC, required parameters are
explicitly passed to the method.

Methods in the Salesforce Console Integration Toolkit don't:

sforce.console.openPrimaryTab (null, 'https://salesforce.com', false,
'salesforce', openSuccess, 'salesforceTab');
The APIs Provide Different Methods

Although some of the methods in the Lightning Experience methods are similar to the Salesforce Classic methods, they have different
names and provide different functionality.

The Lightning Console JavaScript APl also provides methods for use with the utility bar, which is available in Lightning Experience
only.

IN THIS SECTION:

Console API Method Parity—What's Different Between Lightning Experience and Salesforce Classic?
The Lightning Console JavaScript API provides methods similar to those methods in the Salesforce Console Integration Toolkit.

Lightning Console API Console APl Method Parity—What's Different Between
Lightning Experience and Salesforce Classic?

Classic Console API Methods Supported in the Lightning Console API
Visualforce pages and third-party web tabs that use some Salesforce Console Integration Toolkit methods work in Lightning Experience
as-is. Just point to the latest version of the toolkit script in your Visualforce pages or third-party web tabs. Third-party content must
be allowlisted with CSP directives via Trusted URLs. This table lists the Salesforce Console Integration Toolkit methods that you can
use in Lightning Console JavaScript API starting with APl version 42.0.

Utility Bar APl Method Parity
The utility bar API provides methods for Aura Components and Lightning Web Components (LWC) in Lightning Experience only.
Salesforce Classic isn't supported.

SEE ALSO:
Lightning Console JavaScript API

Salesforce Console Integration Toolkit for Salesforce Classic

Console APl Method Parity—What's Different Between Lightning Experience
and Salesforce Classic?

The Lightning Console JavaScript API provides methods similar to those methods in the Salesforce Console Integration Toolkit.

This table shows which Salesforce Console Integration Toolkit (Salesforce Classic) methods map to Lightning Console JavaScript API
(Lightning Experience) methods and events. Not every Salesforce Console Integration Toolkit has a Lightning analog. You can replicate
some Classic methods using Lightning events, combining Lightning Experience methods, or using iterative and conditional logic with
methods and events.

@ Important: Only Salesforce Console Integration Toolkit methods with a Lightning Console JavaScript APl or workaround appear
in this table. Methods without alternatives or workarounds are not listed.

For Lightning Experience, you can build your apps using Lightning Web Components (LWC) and Aura components. Both can interoperate
on the same page.

Methods for Primary Tabs and Subtabs

Salesforce Console Integration ' Lightning Console JavaScript APl Method (Aura LWC Support
Toolkit (Salesforce Classic) Components for Lightning Experience)

closeTab() closeTab() Same as Aura Components.
focusPrimaryTabByld() focusTab() Same as Aura Components.
focusSubtabByld() focusTab() Same as Aura Components.

Use the EnclosingTabId wire
adapter.

getEnclosingPrimaryTabld() Use the Lightningmethod getEnclosingTabId ().

If the calling component is within a subtab, then the
subtab ID is returned. If the calling component is within
a workspace tab, then the workspace ID is returned.

getEnclosingPrimaryTabObjectld() Use getEnclosingTabId () togetthe tabID. Use the EnclosingTabId wire
Then, use the tab ID to call getTablInfo(tabld), which adapter.
includes the object ID in the response payload (if
applicable).

Lightning Console API

Console APl Method Parity—What's Different Between
Lightning Experience and Salesforce Classic?

Salesforce Console Integration ' Lightning Console JavaScript APl Method (Aura LWC Support

Toolkit (Salesforce Classic)

getEnclosingTabld()

getFocusedPrimaryTabld()
getFocusedPrimaryTabObjectld()
getFocusedSubtabld()
getPagelnfo()

getPrimaryTablds()

getSubtablds()

getTabLink()

onEnclosingTabRefresh()

onFocusedPrimaryTab()

onFocusedSubtab()

onTabSave()
openConsoleUrl()
openPrimaryTab()
openSubtab()
refreshPrimaryTabByld()

Components for Lightning Experience)

Use the Lightning method getEnclosingTabId (). Use the EnclosingTabId wire

If the calling component is within a subtab, then the adapter.
subtab ID is returned. If the calling component is within
a workspace tab, then the workspace ID is returned.
getFocusedTablInfo() Same as Aura Components.
getFocusedTablnfo() Same as Aura Components.
getFocusedTablnfo() Same as Aura Components.
getTabinfo() Same as Aura Components.
Not supported. Same as Aura Components.
Workaround: Call getAllTabInfo ().
Not supported. Same as Aura Components.
Workaround: Call getA11TabInfo () togetalist
of all workspace tab objects. Iterate through each
workspace tab object, collecting subtab IDs where
applicable
getTabURL() Use getTablInfo().
Use lightning:tabRefreshed with Use the
getEnclosingTabId(). lightning tabRefreshed
Lightning message channel.
lightning:tabFocused Use the
lightning tabFocused
Lightning message channel.
lightning:tabFocused Use the
lightning tabFocused
Lightning message channel.
Not supported. Not supported.
openConsoleUrl() Not supported.
openTab() Same as Aura Components.
openSubtab() Same as Aura Components.
Use refreshTab() and specify a workspace tab ID. Same as Aura Components.

The activate argumentisn't supported in the
Lightning API. Use refreshTab () with focusTab().
instead.

Lightning Console API Console APl Method Parity—What's Different Between
Lightning Experience and Salesforce Classic?

Salesforce Console Integration ' Lightning Console JavaScript APl Method (Aura LWC Support

Toolkit (Salesforce Classic) Components for Lightning Experience)

refreshSubtabByld() Use refreshTab() and specify a subtab ID. Same as Aura Components.

The activate argumentisn't supported in the
Lightning APl. Use refreshTab () with focusTab().

instead.
setTablcon() setTablcon() Same as Aura Components.
setTabTitle() setTabLabel() Same as Aura Components.
setTabUnsavedChanges() Use the lightning:unsavedChanges component. Not supported.

Methods for Navigation Tabs

The force:navigateToObjectHome Lightning event allows you to complete actions for many navigation tab methods in

Salesforce Classic.

@ Note: LWC doesn't currently support working with navigation tabs.

Salesforce Console Integration Toolkit Lightning Console JavaScript APl Method (Lightning Experience)
(Salesforce Classic)

focusNavigationTab() focusNavigationltem()

getNavigationTabs() getNavigationltems()

getSelectedNavigationTab() getSelectedNavigationltem()

refreshNavigationTab() refreshNavigationltem()

setSelectedNavigationTab() force:navigateToObjectHome

Methods for Application-Level Custom Console Components
Salesforce Console Integration Lightning Console JavaScript APl Method
Toolkit (Salesforce Classic) (Aura Components for Lightning Experience)
blinkCustomConsoleComponentButtonText() Not supported.

Workaround: Use setUtilityLabel.
isCustomConsoleComponentWindowHidden() = getUstilitylnfo()
onCustomConsoleComponentButtonClicked() = onUtilityClick()

setCustomConsoleComponentButtonlconUrl() setUtilitylcon()

setPanelHeaderlcon()

setCustomConsoleComponentButtonStyle() | setUtilityHighlighted

LWC Support

updateUtility()

getinfo()
Same as Aura Components.

updateUtility()

updateUtility()

https://developer.salesforce.com/docs/component-library/bundle/lightning:unsavedChanges/documentation
https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/ref_force_navigateToObjectHome.htm

Lightning Console API

Salesforce Console Integration
Toolkit (Salesforce Classic)

setCustomConsoleComponentButtonText()
setCustomConsoleComponentHeight()

setCustomConsoleComponentVisible()

setCustomConsoleComponentWidth()

Methods for Live Agent

Lightning Console JavaScript APl Method

Console APl Method Parity—What's Different Between
Lightning Experience and Salesforce Classic?

LWC Support

(Aura Components for Lightning Experience)

setUtilityLabel

setPanelHeight(

openUtility()

updateUtility()
) updatePanel()

minimize()

minimizeUtility()

setPanelWidth()

updatePanel()

@ Note: LWC doesn't currently support working with Live Agent.

Salesforce Console Integration Toolkit (Salesforce ' Lightning Console JavaScript APl Method (Lightning

Classic)

endChat()
getChatlLog()
sendCustomEvent()

sendMessage()

Methods for Omni-Channel

Experience)
endChat()
getChatLog()
sendCustomEvent()

sendMessage()

@ Notfe: LWC doesn't currently support working with Omni-Channel.

Salesforce Console Integration Toolkit (Salesforce ' Lightning Console JavaScript APl Method (Lightning

Classic)

acceptAgentWork()
closeAgentWork()
declineAgentWork()
getAgentWorkload()
getAgentWorks()
getServicePresenceStatusChannels()
getServicePresenceStatusld()

login()

logout()

sertServicePresenceStatus()

Experience)

acceptAgentWork()
closeAgentWork()
declineAgentWork()
getAgentWorkload()
getAgentWorks()
getServicePresenceStatusChannels()
getServicePresenceStatusld

login()

logout()

setServicePresenceStatus()

Lightning Console API Classic Console API Methods Supported in the Lightning
Console API

Methods for Computer-Telephony Integration (CTI)

@ Note: LWC doesn't currently support working with CTl.

Salesforce Console Integration Toolkit (Salesforce ' Lightning Console JavaScript APl Method (Lightning

Classic) Experience)

onCallBegin() Not supported for both Aura and LWC.
onCallEnd() Not supported for both Aura and LWC.
onCallLogSaved() Not supported for both Aura and LWC..

Classic Console APl Methods Supported in the Lightning Console API

Visualforce pages and third-party web tabs that use some Salesforce Console Integration Toolkit methods work in Lightning Experience
as-is. Just point to the latest version of the toolkit script in your Visualforce pages or third-party web tabs. Third-party content must be

allowlisted with CSP directives via Trusted URLs. This table lists the Salesforce Console Integration Toolkit methods that you can use in

Lightning Console JavaScript APl starting with API version 42.0.

Salesforce Console Integration Toolkit methods that aren't supported in Lightning Experience result in a failure error message.

@ Important: Only APl versions 42.0 and above of the Salesforce Console Integration Toolkit are supported in the Lightning Console
JavaScript API. Only API versions 43.0 and above are supported in Open CTl.

Methods for Primary Tabs and Subtabs

@ Note: Methods using objectId return 18-character, case-insensitive record IDs when invoked from within a Lightning console.
When invoked from within a Salesforce Classic console, they return 15-character, case-sensitive record IDs.

Workspace tab and subtab IDs in a Lightning console use a different format from Salesforce Classic console primary tab and subtab
IDs. Any code that validates the format of tab IDs must be updated or removed to account for the change. A Salesforce Classic
console tab ID can look like scc-pt-1 or scc-st-1. A Lightning console tab ID looks like ctabl or ctabl 3.

Salesforce Classic Method Supported in Supported in Lightning Notes About Use in Lightning Console
Lightning Console (LWC)
Console
(Aura)
closeTab () " L4
disableTabClose () o W
focusPrimaryTabById () o L4
focusPrimaryTabByName () ® S
focusSidebarComponent () % S
focusSubtabById/() o W
focusSubtalByNameAndPrimary/TabId () 3% %

10

Lightning Console API Classic Console API Methods Supported in the Lightning

Console API
Salesforce Classic Method Supported in Supported in Lightning Notes About Use in Lightning Console
Lightning Console (LWC)
Console
(Aura)
focusSuotaByNareAndPrimaryTald\are () % %
generateConsoleUrl () % ®
getEnclosingPrimaryTabId () o %
getEnclosingTabId () g «
getFocusedPrimaryTabId () o a
getFocusedPrimaryTabObjectId () « pv
getFocusedSubtabId () w =
getFocusedSubtabObjectId () g 3¢
getPageInfo () See notes 3¢ These fields aren't supported and aren't
returned in the response:
e object
e displayName
e accountld
e contactld
e personAccount
getPrimaryTabIds () " «
getSubtabIds () «
getTabLink () See notes ® The level argument
sforce.amnsole. TaoLink. PARENT AND CHITTREN
isn't supported.
isInConsole () " W
onEnclosingTabRefresh () « ®
onFocusedPrimaryTab () « ®
onFocusedSubtab () « 2 Utility items aren’t supported in the Lightning
API.
onTabSave () &3 x®
openConsoleUrl () %
openPrimaryTab () See notes Make sure to add

third-party domains to the
Trusted URLs list.

n

https://help.salesforce.com/articleView?id=trusted_urls_manage.htm&language=en_US

Lightning Console API

Classic Console API Methods Supported in the Lightning

Console API
Salesforce Classic Method Supported in Supported in Lightning Notes About Use in Lightning Console
Lightning Console (LWC)
Console
(Aura)
The following aren’t
supported in the Lightning
API:
e id argument
® name argument. As
an alternative, save the
tabId that's
returned and use itin
your API calls.
openSubtab () See notes Make sure to add
third-party domains to the
Trusted URLs list.
The following aren’t
supported in the Lightning
API:
e id argument
® name argument. As
an alternative, save the
tabId that's
returned and use itin
your API calls.
openSubtabByPrimaryTabName () 32 o
refreshPrimaryTabById() See notes See notes The fullRefresh argumentisn’t
supported in the Lightning API.
refreshPrimaryTabByName () % W
refreshSubtabById() See notes See notes The fullRefresh argumentisn’t
supported in the Lightning API.
refreshSubtaByNarmeAndPrimaryTabId () 32 3¢
refreshSiotaByNeePndPrimaryTadare () 3 x®
reopenlLastClosedTab () 53 3¢
resetSessionTimeOut () % 3¢
setTabUnsavedChanges () 53 3¢

12

https://help.salesforce.com/articleView?id=trusted_urls_manage.htm&language=en_US

Lightning Console API Classic Console API Methods Supported in the Lightning

Console API
Salesforce Classic Method Supported in Supported in Lightning Notes About Use in Lightning Console
Lightning Console (LWC)
Console
(Aura)
setTabIcon () See notes See notes Only Salesforce Lightning Design Systemicons
are supported for iconUr1. URLs and
custom icons aren't supported.
Sample supported values:
* sfore.arsole.setTadlan (“stardhrd:arail”)
® sforce.amsole.setTablom (Yaction:new’)
* sfore.arsole.setldblam (“Youstan:astanl”)
setTabLink () g 3¢
setTabStyle () % S
setTabTextStyle () 53 3¢
setTabTitle () " W

Methods for Application-Level Custom Console Components
@ Note: LWC doesn't currently support working with these methods.

The following methods must be called from within a Lightning utility.

Salesforce Classic Method Supportedin Notes About Use in Lightning Console
Lightning Console
addToBrowserTitleQueue () v

blinkCustomConsoleComponentButtonText ()
isCustomConsoleComponentPoppedOut ()
isCustomConsoleComponentHidden ()
isInCustomConsoleComponent ()
onCustomConsoleComponentButtonClicked ()
removeFromBrowserTitleQueue ()
runSelectedMacro ()

scrollCustomConsoleComponentButtonText ()

X X B 4 4 4 4 ¢4 =

selectMacro ()

13

https://www.lightningdesignsystem.com/icons/#utility

Lightning Console API

Salesforce Classic Method

setCustomConsoleComponentButtonIconUrl ()

setCustomConsoleComponentButtonStyle ()
setCustomConsoleComponentButtonText ()
setCustomConsoleComponentHeight ()
setCustomConsoleComponentVisible ()
setCustomConsoleComponentWidth ()
setCustomConsoleComponentPopoutable ()
setCustomConsoleComponentWindowVisible ()

setSidebarVisible ()

Methods for Navigation Tabs

@ Note: LWC doesn't currently support working with these methods.

Salesforce Classic Method

focusNavigationTab ()
getNavigationTabs ()
getSelectedNavigationTab ()
refreshNavigationTab ()

setSelectedNavigationTab ()

Methods for Live Agent

@ Note: LWC doesn't currently support working with these methods.

Salesforce Classic Method

acceptChat ()

Supported in
Lightning Console

See notes

B 8 4 4 4 <4 4 =

Supported in
Lightning Console

«

X 4 & <&

Supported in
Lightning Console

14

Classic Console API Methods Supported in the Lightning
Console API

Notes About Use in Lightning Console

In Lightning Console, URL values for icons aren't supported
in utility bar utilities. Only Salesforce Lightning Design
System are supported.

Sample supported iconUr1l values:
® setCustarConsoleCarponentRuttonTconUrl ("clock™) ;
* ssstoCrsoleCnporentRiattanTaa i ("utility:clock™) ;

Notes About Use in Lightning Console

Notes About Use in Lightning Console

https://www.lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/icons/#utility

Lightning Console API Classic Console API Methods Supported in the Lightning
Console API

Salesforce Classic Method Supportedin Notes About Use in Lightning Console
Lightning Console
cancelFileTransferByAgent () 3%
declineChat ()
endChat ()
getAgentInput ()
getAgentState ()
getChatLog ()
getChatRequests ()
getDetailsByChatKey ()
getDetailsByPrimaryTabId()
getEngagedChats ()
getMaxCapacity ()
initFileTransfer ()
onAgentSend ()
onAgentStateChanged ()
onChatCanceled ()
onChatCriticalWaitState ()
onChatbDeclined ()
onChatEnded ()
onChatRequested()
onChatStarted()
onChatTransferredOut ()
onCurrentCapacityChanged ()
onCustomEvent ()
onFileTransferCompleted/ ()
onNewMessage ()
onTypingUpdate ()
sendCustomEvent ()

sendMessage ()

X 4 €4 X X X X X X X X X X X 2 X X X X 2 2 2 x <4 X ® 4 4

setAgentInput ()

15

Lightning Console API Classic Console API Methods Supported in the Lightning

Console API
Salesforce Classic Method Supportedin Notes About Use in Lightning Console
Lightning Console
setAgentState () x®
Methods for Omni-Channel
@ Note: LWC doesn't currently support working with these methods.
Salesforce Classic Method Supportedin Notes About Use in Lightning Console
Lightning Console
acceptAgentWork () a
closeAgentWork () a
declineAgentWork () +
getAgentWorkload () v
getAgentWorks () @
getServicePresenceStatusChannels () +
getServicePresenceStatusId () v
login () L
logout () e
setServicePresenceStatus () a
Methods for Console Events
@ Note: LWC doesn't currently support working with these methods.
Salesforce Classic Method Supportedin Notes About Use in Lightning Console
Lightning Console
addEventListener () v sforce.console.ConsoleEvent . CONSOLE LOGOUT

isn't supported in the Lightning API.

sforce.console.ConsoleEvent.CLOSE TAB
returns the ID of the closed tab only. The Lightning API
doesn't return the objectld or the tabObjectld.

The Lightning APl doesn't return special message
responses from custom keyboard shortcuts. However, if
the response is from a console event, the message includes
payload details.

16

Lightning Console API

Salesforce Classic Method

fireEvent ()

removeEventListener ()

Utility Bar API Method Parity

Utility Bar APl Method Parity

Supported in Notes About Use in Lightning Console
Lightning Console

See notes fireEvent () returns success true evenwhen
eventlisteners for the given eventType are removed.

The utility bar API provides methods for Aura Components and Lightning Web Components (LWC) in Lightning Experience only. Salesforce

Classic isn't supported.

This table shows how the LWC methods map to Aura Components methods. Both can interoperate on the same page. We recommend
using LWC to build user interfaces using modern web standards.

@ Important: Before you can use the utility bar APl with LWC, Lightning Web Security must be enabled in your organization.

Methods for Utility Bars

Utility Bar Methods for LWC
enableModal()

enablePopout()
getAllUtilitylnfo()

getinfo()

minimize()

onUtilityClick()

open()

updatePanel()

updateUtility()

EnclosingUtilityld context wire adapter

Utility Bar Methods for Aura Components
toggleModalMode()

disableUtilityPopOut()

Same as LWC.

getUtilitylnfo()

minimizeUtility()

Same as LWC.

openUtility()

Update a utility panel using one or more of these methods.
e setPanelHeaderlcon()

e setPanelHeaderLabel()

e setPanelHeight()

e setPanelWidth()

Update a utility using one or more of these methods.
e setUtilityHighlighted()

e setUtilitylcon()

e setUtilityLabel()

getEnclosingUtilityld()

17

Lightning Console API Lightning Console JavaScript API

Utility Bar API Considerations

Consider these additional guidelines.

e ForWC the utilityId parameter is always required. For Aura Components, utilityId can be optionalifit's called from
within a utility.

e For LWG, to retrieve the record context from a component in a utility, use the Current PageReference wire adapter on page
30. For Aura Components, implement the force:hasRecordId interface on your custom component.

e TheisUtilityPoppedOut() Aura Components method doesn't have an LWC equivalent. You can use the getAllUtilityInfo() method to
retrieve the same information.

Lightning Console JavaScript API

Lightning console apps allow users to quickly find the information they need, and make edits while EDITIONS
viewing multiple records on one screen. The Lightning Console JavaScript APl gives you
programmatic access to Lightning console apps, so you can fully integrate Lightning console apps Available in: Lightning
with Aura components and Lightning web components while extending them to meet your business Experience

needs.

Available in: Essentials,
Professional, Enterprise,
Performance, Unlimited,

The Lightning Console JavaScript APl includes three libraries: the navigation item API, the utility
bar API, and the workspace API.

e The navigation item API provides methods that can be used from Aura components to interact and Developer Editions
with the console’s navigation menu. This APl 'is used in Lightning console apps only. Lightning console apps are

e The utility bar API provides methods that can be used from Aura components and Lightning available for an extra cost to
web components in the utility bar to open, resize, or minimize a utility. This APl is used in users with Salesforce
Lightning apps with standard or console navigation. Platform user licenses for

certain products. Some
restrictions apply. For pricing
details, contact your
Salesforce account

For a full list of methods in each API, see Methods for Lightning Console JavaScript API. executive.

e The workspace API provides methods for Aura components and Lightning web components
for opening, closing, and getting information about workspace tabs and subtabs. This APl is
used in Lightning console apps only.

You can build Lightning components using two programming models: the Lightning Web

Components model and Aura Components model. Although both models can coexist and

interoperate on a page, we recommend that you build your apps with Lightning Web Components, which use HTML and modern
JavaScript.

@ Note: Only the utility bar and workspace APIs are currently supported for Lightning web components.

IN THIS SECTION:

Lightning Console JavaScript API Syntax

Use Lightning Console JavaScript APl methods in the JavaScript file of a Lightning web component or in the JavaScript controller
of an Aura component.

Using Background Utility Items

Implementthe 1ightning:backgroundUtilityIteminterface to create acomponent thatfires and responds to events
without rendering in the utility bar.

Using Pop-Out Utilities

Utilities that support pop-out can be “popped out” of the utility bar and into their own separate child windows.

18

Lightning Console API Lightning Console JavaScript API Syntax

Using Events with the Lightning Console JavaScript AP
The Lightning framework uses event-driven programming, which allows you to create handlers to respond to interface events as
they occur. The Lightning Console JavaScript APl provides several events specific to Lightning console apps.

Use Page Context in the Utility Bar APl

In both Lightning console apps and standard navigation apps, utilities can respond to the context of the current page. For a Lightning
web component, use the CurrentPageReference wire adapter. For an Aura component, specify
implements="force:hasRecordId" toaccessthe recordId of therecord a useris viewing.

Using Page References to Open Console Workspace Tabs and Subtabs

You can navigate to different page types, including a URL addressable custom component. To make a custom component URL
addressable using LWC, use the 1ightning UrlAddressable target. To make an Aura component URL addressable,
implement the 1ightning:isUrlAddressable interface on your custom component.

Debugging

Use your browser's console and JavaScript error messages generated within Salesforce to debug Lightning pages built with the
Lightning Console JavaScript API. The methods in the Lightning Console JavaScript APIs are asynchronous and return their results
using promises.

Methods for Lightning Console JavaScript API

If your org is using Lightning Experience, use Lightning Console JavaScript APl methods.

Events for Lightning Console JavaScript AP

Use events and handlers in your Aura components and controllers to respond to events like workspace tabs opening, closing, or
gaining focus. In Lightning web components, subscribe to Aura application events using their corresponding Lightning message
channels.

SEE ALSO:
Methods for Lightning Console JavaScript API

Lightning Console JavaScript API Syntax

Use Lightning Console JavaScript APl methods in the JavaScript file of a Lightning web component or in the JavaScript controller of an
Aura component.

LWC Syntax

To use LWC Workspace API, import 1ightning/platformiWorkspaceApi inyour JavaScript code.

The 1ightning/platformiWorkspaceApi module givesyou access to workspace APl methods, wire adapters, and Lightning
message channels. Access Lightning message channels on page 141 by importing from
@salesforce/messageChannel/lightning tab*.Forexample,
@salesforce/messageChannel/lightning tabClosed

The following example shows a Lightning web component that uses the openSubtab APl method on page 63 and
EnclosingTabId wire adapter on page 53.

import { LightningElement, wire } from 'lwc';
import { EnclosingTabId, openSubtab } from 'lightning/platformWorkspaceApi';

export default class MyComponent extends LightningElement ({
@wire (EnclosingTabId) tabId;

19

Lightning Console API Lightning Console JavaScript API Syntax

handleClick () {
if (!this.tabId) {
return;

}

// Open a record as a subtab of the current tab
openSubtab (this.tabId, { recordId: 'YourRecordId', focus: true });

}
Configure the component’s . §s-meta.xml file so the component can be accessed in the Lightning App Builder.

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata™>
<apiVersion>59.0</apiVersion>
<isExposed>true</isExposed>
<targets>
<target>lightning RecordPage</target>
<target>lightning AppPage</target>
<target>lightning HomePage</target>
</targets>
</LightningComponentBundle>

LWC supports Workspace APl methods only. Similar to the Aura counterpart, methods in the Workspace API take a JSON object as an
argument. The values included in the object depend on the method. For example, openTab takes an object that includes the url
and focus (whether the new tab has focus). Check the reference section of this guide before using a method so that you know which
arguments to pass to it.

@ Example: The Iwc-recipes repo contains many LWC Workspace APl examples. Look for components that start with
workspaceApi, for example, workspaceAPICloseTab

Aura Components Syntax

To use the Lightning Console JavaScript AP, include 1ightning:navigationItemAPI, lightning:workspaceAPT,or
lightning:utilityBarAPI inyour Aura component.

The lightning:navigationItemAPI, lightning:workspaceAPI,and lightning:utilityBarAPI components
give you access to their coordinating APIs. Give each componentan aura: id so that you can reference it from the component’s
controller.

The following example shows a simple Aura component that uses the API libraries:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItem" />
<lightning:workspaceAPI aura:id="workspace" />
<lightning:utilityBarAPI aura:id="utilityBar" />
<lightning:button label="Focus Navigation Item" onclick="{!c.focusNavigationItem }"
/>
<lightning:button label="Open Utility" onclick="{!c.openUtilityBar }"/>
<lightning:button label="Open Tab" onclick="{!c.openTab }" />
</aura:component>

This componentimplements flexipage:availableForAllPageTypes 50 thatit can be accessed in the Lightning App
Builder.

20

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPICloseTab

Lightning Console API Lightning Console JavaScript API Syntax

The component’s JavaScript controller looks like this.

({
openUtilityBar : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.openUtility();
by

openTab: function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
pageReference: {
"type": "standard recordPage",
"attributes": {
"recordId":"500xx000000Ykt2AAC",
"actionName":"view"
s
"state": {}
I
focus: true
}) .then (function (response) {
workspaceAPI.getTabInfo ({
tabId: response
}) .then (function (tabInfo) {
console.log ("The recordId for this tab is: " + tabInfo.recordId);
})
}) .catch (function(error) {
console.log(error);
}) i
by

focusNavigationItem : function (component, event, helper) ({
var navigationItemAPI = component.find("navigationItem");
navigationItemAPI.focusNavigationItem() .then (function (response) {
console.log(response) ;
})
.catch (function (error) {
console.log(error) ;

)

H)

The controller has three functions, each of which uses an APl method. To use a method in a controller, use component . £ind with
the aura:id yougavetothe l1ightning:navigationItemAPI, lightning:workspaceAPT,or
lightning:utilityBarAPI.

Methods in the Workspace APl and the Utility Bar API take a JSON object as an argument. The values included in the object depend on
the method. openTab, for example, takes an object that includes the ur1 and focus (whether the new tab has focus). Check the
reference section of this guide before using a method so that you know which arguments to pass to it.

LWC VS Aura Guidelines

When working with the Lightning Console JavaScript API, consider these guidelines.

21

Lightning Console API Lightning Console JavaScript API Syntax

e InLWC, required parameters are explicitly passed to the method like focusTab (tabId) ;.In Aura, required parameters are
passed to the method in an object like workspaceAPI. focusTab ({tabId : response});.

e InLWC, passin a URL that matches a Lightning Experience page, for example,
/lightning/r/Account/001R0000003HgssIAC/view

IN THIS SECTION:

JavaScript Promises
Methods in the Lightning Console JavaScript APl return results using promises.
Error Handling with Promises

Promises can simplify code that handles the success or failure of asynchronous calls. To use error handling with promises, use the
catch () method on the promise that is returned from calling an API method.

JavaScript Promises

Methods in the Lightning Console JavaScript APl return results using promises.

@ Note: Examples in this guide don'tinclude the $A.getCallback () wrapper because the Lightning Console JavaScript API
returns promises that already include the $A.getCallback () wrapper around callback functions. This is reflected in the
sample code throughout this guide.

Use JavaScript Promises in LWC

This example uses the openTab () to get the tab ID of the focused tab. Then the function calls focusTab () withthe tabId
that's returned by the openTab () method.

import { LightningElement } from 'lwc';
import { openTab, focusTab } from 'lightning/platformWorkspaceApi';

export default class MyComponent extends LightningElement {
focusNewTab (event) {

openTab ({
url: '/lightning/r/Account/001R0000003HgssIAC/view"',
label: 'Global Media'

}) .then ((tabId) => {
focusTab (tabId) ;

}) .catch ((error) => {
console.log(error);

)i

}

You can also simplify the JavaScript promise as follows.

openTab ({
url: '/lightning/r/Account/001R0000003HgssIAC/view',
label: 'Global Media',
focus: true
}) .catch ((error) => {
console.log(error);

)i

22

Lightning Console API Using Background Utility Iltems

Use JavaScript Promises in Aura

Here's the same example as using JavaScript promises in LWC, written for Aura components.

({
focusNewTab : function (component, event, helper) {

var workspaceAPI = component.find("workspace");

workspaceAPI.openTab ({
url: '#/sObject/001R0000003HgssIAC/view',
label: 'Global Media'

}) .then (function (response) {
workspaceAPI.focusTab ({tabId : response});

1)
.catch (function (error) {
console.log(error) ;
1)

Error Handling with Promises

Promises can simplify code that handles the success or failure of asynchronous calls. To use error handling with promises, use the
catch () method on the promise that is returned from calling an API method.

The catch () method returns a promise and accepts a single function parameter that's called if the promise is rejected. This function
has one argument that shows the reason for the rejection. The promise returned by catch () is rejected if the function that is passed
in either throws an error or returns a promise that's rejected. Otherwise, the promise is resolved.

Using Background Utility ltems

Implementthe 1ightning:backgroundUtilityIteminterface to create a component that fires and responds to events
without rendering in the utility bar.

@ Nofte: Lightning Web Components (LWC) doesn't currently support working with background utility items.

This componentimplements 1ightning:backgroundUtilityItem andlistensfor 1ightning:tabCreated events
when the app loads. The component prevents more than 5 tabs from opening.

<aura:component implements="lightning:backgroundUtilityItem">
<aura:attribute name="1limit" default="5" type="Integer" />
<aura:handler event="lightning:tabCreated" action="{!c.onTabCreated}" />
<lightning:workspaceAPI aura:id="workspace" />

</aura:component>

When a tab is created, the event handler calls onTabCreated in the component’s controller and checks how many tabs are open.
If the number of tabs is more than 5, the leftmost tab automatically closes.

({
onTabCreated: function (cmp) {
var workspace = cmp.find("workspace");
var limit = cmp.get("v.limit");
workspace.getAllTabInfo () .then(function (tabInfo) {
if (tabInfo.length > limit) {
workspace.closeTab ({

23

Lightning Console API Using Pop-Out Utilities

tabId: tabInfo[0].tabId

Background utility items are added to an app the same way normal utility items are, but they don't appear in the utility bar. The ¢ icon
appears next to background utility items on the utility item list. If you have only background utility items in your utility bar, the utility
bar doesn’t appear in your app. You need at least one non-background utility item in your utility bar for it to appear.

SEE ALSO:
Salesforce Help: Add a Utility Bar to Lightning Apps

Using Pop-Out Utilities
Utilities that support pop-out can be “popped out” of the utility bar and into their own separate child windows.

To pop a utility out, click the ' icon. From there, you can pop the utility back into the utility bar with the ¥ icon, or close the utility.
Pop-out utilities are the Lightning equivalent to multi-monitor components in Classic.

@ Nofe: Popping-out docked utility bar items isn't supported in Lightning Experience on iPad Safari.

Standard Utilities

Pop-out is supported for these standard utilities. Standard utilities are utilities that are included with Salesforce.
e Open (Tl Softphone
e History

e Rich Text

e Report Chart

e Visualforce

e Flow

e List View

e Recent Iltems

e (Chatter Feed

e Chatter Publisher

e Notes

Custom Utilities

Pop-out is available for custom utilities. To enable pop-out for custom utilities, activate the Utility Bar: Enable Pop-Out for Custom
Utilities critical update. The critical update enables pop-out for all utilities in the “Custom” and “Custom — Managed" categories. Test
your custom utilities in a sandbox environment before you enable the update.

Disabling Pop-Out

If you don't want your custom utility to be popped out, you can disable pop-out in two ways.

24

https://help.salesforce.com/articleView?id=apps_lightning_utilities.htm&language=en_US

Lightning Console API Using Pop-Out Utilities

Disabling Pop-Out within the Component

Usethe 1ightning:utilityIteminterfaceinyourcomponentandsetthe supportsPopOut attributeto falsetodisable
pop-out.

<aura:component implements="lightning:utilityItem">
<aura:attribute name="supportsPopOut" type="Boolean" default="false" />
</aura:component>

Disabling pop-out within the component itself is a useful and simple way to ensure that the component can never be popped out.
Disabling Pop-Out with the Lightning Console JavaScript API
Use the disableUtilityPopOut () method and setthe disabled argumentto true to disable utility pop-out.

If you're migrating from a Classic console app and using a Visualforce page for your utility, we automatically respect if
setCustomConsoleComponentPopoutable is setto false.

Disabling pop-out with the Lightning Console JavaScript APl allows you to enable and disable pop-out in real time.

IN THIS SECTION:

Supported APIs
A'list of methods and events that support utility pop-out.

SEE ALSO:
disableUtilityPopOut() for Lightning Experience

Supported APIs

A'list of methods and events that support utility pop-out.

@ Note: Custom events aren't supported while a utility is popped out. If custom events are critical to your utility’s functionality, we
recommend disabling pop-out for your utility.

Lightning Web Components (LWC) doesn't currently support working with background utility items.
Lightning Console JavaScript APl Methods for Navigation Items

Methods Supports Pop-Out Notes
focusNavigationltem() for Lightning «
Experience

getNavigationltems() for Lightning «
Experience

getSelectedNavigationltem() for Lightning «
Experience

refreshNavigationltem() for Lightning «
Experience

setSelectedNavigationltem() for Lightning «
Experience

25

Lightning Console API Using Pop-Out Utilities

Lightning Console JavaScript APl Methods for Workspace Tabs and Subtabs

Methods Supports Pop-Out Notes
closeTab() for Lightning Experience «
disableTabClose() for Lightning Experience W
focusTab() for Lightning Experience o
generateConsoleUrl() for Lightning «
Experience

getAllTabInfo() for Lightning Experience «
getEnclosingTabld() for Lightning «
Experience

getFocusedTablnfo() for Lightning >
Experience

getTablnfo() for Lightning Experience «
getTabURL() for Lightning Experience o
isConsoleNavigation() for Lightning o
Experience

isSubtab() for Lightning Experience W
openConsoleUrl() for Lightning Experience «
openSubtab() for Lightning Experience W
openTab() for Lightning Experience W
refreshTab() for Lightning Experience «
setTabHighlighted() for Lightning «
Experience

setTablcon() for Lightning Experience «
setTabLabel() for Lightning Experience W

Lightning Console JavaScript APl Methods for the Utility Bar

Methods Supports Pop-Out Notes

getAllUtilitylnfo() for Lightning Experience o

getEnclosingUtilityld() for Lightning «

Experience

getUtilityInfo() for Lightning Experience «

minimizeUtility() for Lightning Experience « Returns false when popped out

26

Lightning Console API Using Pop-Out Utilities

Methods Supports Pop-Out Notes
onUtilityClick() for Lightning Experience %
openUtility() for Lightning Experience «
setPanelHeaderlcon() for Lightning «
Experience

setPanelHeaderLabel() for Lightning «
Experience

setPanelHeight() for Lightning Experience o
setPanelWidth() for Lightning Experience W
setUtilityHighlighted() for Lightning «
Experience

setUtilitylcon() for Lightning Experience «
setUtilityLabel() for Lightning Experience o
toggleModalMode() for Lightning %
Experience

Lightning Console JavaScript APl Events

Events Supports Pop-Out Notes
lightning:tabClosed

lightning:tabCreated
lightning:tabFocused
lightning:tabRefreshed

lightning:tabReplaced

L 4 4 4 4 ¢

lightning:tabUpdated

Salesforce Classic Console APl Methods for Primary Tabs and Subtabs

Methods Supports Pop-Out Notes

isinConsole() >

Salesforce Classic Console API Events

Events Supports Pop-Out Notes

removeEventListener() W

27

Lightning Console API Using Events with the Lightning Console JavaScript API

Events Supports Pop-Out Notes

fireEvent() W fireEvent () returns success
true even when eventListeners for the
given eventType are removed.

addEventListener() W

Using Events with the Lightning Console JavaScript AP

The Lightning framework uses event-driven programming, which allows you to create handlers to respond to interface events as they
occur. The Lightning Console JavaScript APl provides several events specific to Lightning console apps.

Work with Events in Lightning Web Components (LWC)

A Lightning Message Service (LMS) channel is created for each of Aura tab events on page 136. The payloads on the LMS channels are
the same as those on the Aura events. Subscribe to the Lightning message channels corresponding to the Aura application events you
want to listen for.

Table 1: Aura Events and LMS Channels

Aura Event LMS Channel Payload

lightning:tabClosed lightning tabClosed tabId

lightning:tabCreated lightning tabCreated tabId

lightning:tabFocused lightning tabFocused previousTabld, currentTablId
lightning:tabRefreshed lightning tabRefreshed tabId

lightning:tabReplaced lightning tabReplaced tabld

lightning:tabUpdated lightning tabUpdated tabId

Subscribe to LMS Channels in LWC

To subscribe to an LMS channel, import the 1ightning/messageService module and the channel you want. This example
imports the @salesforce/messageChannel/lightning tabCreated channel and subscribes to messages that are
published over the channel.

Subscribe when the component is created and unsubscribe when the component is destroyed. For more information, see Subscribe
and Unsubscribe from a Message Channel.

import { LightningElement, wire} from 'lwc';
import { MessageContext, subscribe, unsubscribe } from 'lightning/messageService';
import tabCreatedChannel from "@salesforce/messageChannel/lightning tabCreated";

export default class MyComponent extends LightningElement ({
@wire (MessageContext) messageContext;

messageSubscription = null;

connectedCallback () {

28

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html

Lightning Console API Using Events with the Lightning Console JavaScript API

this.unsubscribe () ;
this.messageSubscription = subscribe (this.messageContext, tabCreatedChannel, (message)
=
this.handleMessage (message) ;
1)

}
disconnectedCallback () {

this.unsubscribe () ;

unsubscribe () {
if (!'this.messageSubscription) {
return;

}
unsubscribe (this.messageSubscription);
this.messageSubscriptions = null;

handleMessage (message) {

if (!message || !message.tabId) {
return;

}

const tabId = { message };

console.log(Tab with tabId of ${tabId} is created.’);

Work with Events in Aura Components

Events are fired from JavaScript controller actions. Events can contain attributes that can be set before the event is fired and read when
the event is handled. Each event that works with Lightning console apps returns attributes that can be read once the event is fired. See
the reference section of this guide for a list of attributes returned by each event.

To use console events, set up a handler in your Aura component. The following handler, for example, listens for the
lightning:tabCreated event andcallsthe onTabCreated functioninthe component’s controller when the event occurs.

<aura:handler event="lightning:tabCreated" action="{! c.onTabCreated }"/>
Let’s look at a more fleshed out example. The following component uses the 1ightning:tabClosed event.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<aura:handler event="lightning:tabClosed" action="{! c.onTabClosed }"/>

</aura:component>

When atabis closed, the event handler calls onTabClosed inthe component’s controller, which logs the tabId of the closed tab.

({

onTabClosed : function (component, event, helper) {
var tabId = event.getParam("tabId");
alert (“Tab with tabId of “ + tabId + “ was just closed.”);

29

Lightning Console API Use Page Context in the Utility Bar API

You can use Lightning console events with the Workspace APl and Utility Bar API to customize your users’ experience. You can, for
example, give a tab focus when it's refreshed, or notify the user with a modal dialogue when a tab is replaced.

SEE ALSO:
Events for Lightning Console JavaScript AP
Trailhead: Connect Components with Events

Lightning Aura Components Developer Guide: Communicating with Events

Use Page Context in the Utility Bar API

In both Lightning console apps and standard navigation apps, utilities can respond to the context of the current page. For a Lightning
web component, use the CurrentPageReference wire adapter. For an Aura component, specify
implements="force:hasRecordId" toaccessthe recordId of the record a useris viewing.

Lightning Web Components (LWC)
The CurrentPageReference wire adapter provides the page reference that describes the current page.

import { LightningElement, wire } from "lwc";
import { CurrentPageReference } from "lightning/navigation";

export default class UtilityBarRecordExample extends LightningElement ({
recordId;

@wire (CurrentPageReference)
wireCurrentPageReference (currentPageReference) {
if (currentPageReference?.type === "standard recordPage") {
this.recordId = currentPageReference.attributes?.recordId;
} else {
this.recordId = undefined;

}
The component displays the record ID when the utility bar is loaded on a record page.

<template>
<div class="slds-var-m-around medium">
<p lwc:if={recordId}>You are viewing record: {recordId}</p>
</div>
</template>

For more information about working with the page reference, see the Lightning Web Components Developer Guide.

Aura Components

This simple componentimplements force : hasRecordId and listensfor changesto the record being viewed. When this component
is added to a utility bar, it displays the record1d of the record currently being viewed.

<aura:component implements="force:hasRecordId,flexipage:availableForAllPageTypes"
access="global">
<aura:handler name="change" value="{!v.recordId}" action="{!c.onRecordIdChange}"/>

30

https://trailhead.salesforce.com/modules/lex_dev_lc_basics/units/lex_dev_lc_basics_events
https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/events_intro.htm
https://developer.salesforce.com/docs/platform/lwc/guide/use-navigate-basic.html

Lightning Console API Using Page References to Open Console Workspace Tabs
and Subtabs

<diwv>
<p>The current recordId is {!v.recordId}.</p>
</div>
</aura:component>

The component’s controller listens for changes to the record1d, and prints the new recordId to the developer console upon a
change.

({
onRecordIdChange : function (component, event, helper) {
var newRecordId = component.get ("v.recordId");
console.log (newRecordId) ;

})

This image shows what the component looks like in the utility bar of a Lightning console app.

RELATED DETAILS NEWS ACTIVITY CHATTER

We found no potential duplicates of this contact.
New Task =~ New Event Email More

Opportunities (0) New

fr \ Create a task... “
J’

Utility Bar Page Context —

New

The current recordld is 003R0000001dhkkIAA. Activity Timeline Yy @ Expand All

16 we received are the wron... Next Steps

Mo next steps. To get things moving, add a task orsetup a
v meeting.

2k our order.

Past Activity

\(Utility Bar Page Context 4 Chatter Feed j

Using Page References to Open Console Workspace Tabs and Subtabs

You can navigate to different page types, including a URL addressable custom component. To make a custom component URL addressable
using LWC, use the 1ightning UrlAddressable target. To make an Aura component URL addressable, implement the
lightning:isUrlAddressable interface on your custom component.

Use Page References in LWC

You can use a page reference to open different page types in a tab or subtab. This example opens a subtab using openTab() to display
the view page on a specified PersonAccount record.

import { LightningElement, wire } from 'lwc';
import { EnclosingTabId, openSubtab } from 'lightning/platformWorkspaceApi';

export default class MyComponent extends LightningElement ({

31

Lightning Console API

@wire (EnclosingTabId) enclosingTabId;

openAnotherSubTab () {
if (!this.enclosingTabId) {
return;
}
openSubtab (this.enclosingTabId, {
pageReference: {
type: 'standard objectPage',
attributes: {
recordId: '001xx000003DGgOAAG',
objectApiName: 'PersonAccount',
actionName: 'view'

Using Page References to Open Console Workspace Tabs
and Subtabs

Navigate to a URL Addressable Component in LWC

Making a component URL addressable provides the following benefits for console apps:

e Future-proofs your apps from changes in URL formats.

e Generates a user-friendly URL for your tabs.

e Opens an Aura component as a subtab, even if called from a utility, a hover, or another page.

e Allows a mechanism to conditionally open a given component more than once or redirect to an already open workspace or subtab

using the uid parameter.

Warning: Other uses for the uid parameter that are not explicitly outlined in this document are not supported.

For example, you have a URL addressable myComponent component,and a workspaceOpenTab component that navigates to

the addressable component.

To make myComponent available for navigation, set the <i sExposed> tag to true in the myComponent.js-meta.xml
configuration file. The <apiVersion> tag has noimpacton the 1ightning UrlAddressable targetand can be setto an

earlier version.

<!-- myComponent.js-meta.xml -->
<?xml version="1.0" encoding="UTF-8"7?>

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>61.0</apiVersion>
<isExposed>true</isExposed>
<targets>

<target>lightning UrlAddressable</target>

</targets>
</LightningComponentBundle>

myComponent displays the URL and page reference information that the workspaceOpenTab component passes in.

<!-- myComponent.html -->
<template>
<div class="slds-var-m-around medium">

<p>Component URL: {connectedCallbackUrl}</p>

32

Lightning Console API Using Page References to Open Console Workspace Tabs
and Subtabs

<p>Current page reference:</p>
<pre><code>{currentPageRefFormatted}</code></pre>
</div>
</template>

The component's JavaScript uses the Cur rent PageRe ference wire adapter to return page reference information. In this example,

the URL
reunshttps : //MyDomainName .my . salesforce.com/lightning/cmp/c myComponent?c mystate=value&uid= uniqueld .

// myComponent.js
import { LightningElement, wire } from 'lwc';
import { CurrentPageReference } from 'lightning/navigation';

export default class MyComponent extends LightningElement ({
@wire (CurrentPageReference)
currentPageRef;

connectedCallbackUrl;

connectedCallback () {
this.connectedCallbackUrl = window.location.href;

get currentPageRefFormatted() {
return JSON.stringify(this.currentPageRef, undefined, 2);

}

This workspaceOpenTab has a button that opens the URL addressable component in a new workspace tab.
Its . js-meta.xml configuration file includes the 1ightning AppPage target only. It assumes that you add
the workspaceOpenTab component to a Lightning console app.

<!-- workspaceOpenTab.html -->
<template>
<div class="slds-m-around medium">
<lightning-button label="Open Tab" onclick={handleOpen}>
</lightning-button>
</div>
</template>

The component's JavaScript calls the openTab() method from 1ightning/platformWorkspaceApi. To prevent the app from
opening a new tab if the tab with the component is already opened, pass in a uid value to the state object.

// workspaceOpenTab. s

import { LightningElement, wire } from 'lwc';

import { NavigationMixin } from 'lightning/navigation';

import { IsConsoleNavigation, openTab } from 'lightning/platformWorkspaceApi';

export default class WorkspaceOpenTab extends NavigationMixin (LightningElement) {
@wire (IsConsoleNavigation) isConsoleNavigation;

async handleOpen () {

if (!'this.isConsoleNavigation) {
return;

33

Lightning Console API

try |
await openTab ({
pageReference: {
type: 'standard component',
attributes: {

componentName: 'c myComponent',
Hs
state: {

c_ stateKey: 'stateValue',

uid: "1",

}y
by
icon: 'utility:sparkles',
label: 'My Component',
1)
} catch (error) {
// handle error

Use Page References in Aura Components

To create a page reference we can use to open workspace tabs and subtabs, let’s create greetings . cmp, and implement

Using Page References to Open Console Workspace Tabs

and Subtabs

lightning:isUrlAddressable. Thiscomponent displays “Hello, <name>" where a URL parameter, ¢ name, provides the

name when the component is opened. The component also defines a pageReference that we can use to navigate to it.

<aura:component implements="lightning:isUrlAddressable">

<aura:attribute name="name" type="String" description="The person that will be greeted"

/>

<aura:handler name="init" value="{!this}" action="{!c.init}" />

<aura:handler name="change" value="{!v.pageReference}" action="{!c.handlePageChange}"

/>
<hl1>Greeting Page</hl>
<div>Hello, {!v.name}</div>
</aura:component>

The JavaScript controller greetingsController. js handles URL parametersin the init method and assigns the name

attribute using that URL parameter.

({

init: function(cmp, evt, hlp) {
var myPageRef = cmp.get ("v.pageReference");
var name = myPageRef && myPageRef.state ? myPageRef.state.c name : "World";
cmp.set ("v.name", name);

s

handlePageChange: function(cmp, evt, hlp) {
var myPageRef = cmp.get ("v.pageReference");

var name = myPageRef && myPageRef.state ? myPageRef.state.c name : "World";

cmp.set ("v.name", name);

34

Lightning Console API Using Page References to Open Console Workspace Tabs
and Subtabs

Now let's create openGreetings . cmp, whichincludes an input field to set the ¢ name URL parameter when we open

greetings.cmp.

<aura:component>
<aura:attribute name="pageReference" type="Object"/>
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Open Greeting in Subtab" onclick="{!c.openSubtab}"/>

<lightning:input label="Name" name="myname"/>

</aura:component>

The controller openGreetingsController.js uses openSubtab () onpage 63 and sets ¢ name to the value of the
myname input field. You can use the uid parameter to conditionally dedupe tabs and subtabs. Omit the uid to open a new tab or

subtab every time.

({
openSubtab: function (component, event, helper) ({
var workspaceAPI = component.find("workspace");
workspaceAPI.getEnclosingTabId () .then (function(enclosingTabId) {
workspaceAPI.openSubtab ({
parentTabId: enclosingTablId,
pageReference: {
"type": "standard component",
"attributes": {
"componentName": "c greetings"
by
"state": {
"uid": "1",

"c name": component.get ("v.myName")

}
}) .then (function (subtabId) {
console.log ("The new subtab ID is:" + subtabId);

}) .catch (function (error) {
console.log("error");

Now that we have everything set up, we can test our components by creating a custom tab in Setup for openGreetings.cmp.
Add the custom tab to a console app and open the console app. Select the custom tab from the nav menu to open
openGreetings.cmp. Entera name and click “Open Greeting in Subtab.” greetings. cmp opens as a subtab and displays its

greeting with the provided name.

SEE ALSO:
Lightning Web Components Developer Guide: Basic Navigation
Lightning Web Components Developer Guide: pageRe ference Types

Aura Components Developer Guide: Navigate Across Your Apps with Page References

35

https://developer.salesforce.com/docs/platform/lwc/guide/use-navigate-basic.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-page-reference-type.html
https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/components_navigation.htm

Lightning Console API Debugging

Debugging

Use your browser’s console and JavaScript error messages generated within Salesforce to debug Lightning pages built with the Lightning
Console JavaScript API. The methods in the Lightning Console JavaScript APIs are asynchronous and return their results using promises.

To print messages to your browser's console, use console.log () inyour component controller code.

Salesforce also displays JavaScript errors at runtime, which provide the stack trace when there’s a bug.

Methods for Lightning Console JavaScript AP

If your org is using Lightning Experience, use Lightning Console JavaScript APl methods.

IN THIS SECTION:

Methods for Navigation Items in Lightning Experience
Lightning console apps display an item menu that lets users select navigation items, such as cases, contacts, and accounts. Salesforce
admins choose which navigation items to display in the navigation menu.

Methods for Workspace Tabs and Subtabs in Lightning Experience

A Lightning console app displays Salesforce pages as workspace tabs or subtabs. A workspace tab displays the main work item or
record, such as an account. A subtab displays related records, such as an account’s contacts or opportunities.

Methods for the Utility Bar in Lightning Experience

The utility bar houses Aura components and Lightning web components, providing users quick access to tools they use often. The
utility bar is available in Lightning Experience only. Both Lightning Web Components (LWC) and Aura Components support the
utility bar methods, with usage differences noted on each method.

LWC Methods for Enhanced Messaging in Lightning Experience

The Conversation Toolkit API for Enhanced Messaging provides methods to interact with a Messaging customer from a Lightning
web component (LWC). These methods apply to Lightning web components in Lightning Experience only.

Aura Methods for Enhanced Messaging in Lightning Experience

Enable your developers to customize the agent experience by allowing custom components to interact with the Enhanced Conversation
Component. These methods apply to Aura components in Lightning Experience only.

Methods for Chat in Lightning Experience

Let customers chat with your agents on your web page.

Methods for Omni-Channel in Lightning Experience
Omni-Channel lets your call center route any type of incoming work item to the most qualified, available agents.

Methods for Navigation ltems in Lightning Experience

Lightning console apps display an item menu that lets users select navigation items, such as cases, contacts, and accounts. Salesforce
admins choose which navigation items to display in the navigation menu.

These methods work with navigation items in Lightning console apps.

36

Lightning Console API Methods for Lightning Console JavaScript API

IN THIS SECTION:

focusNavigationltem() for Lightning Experience
Focuses on the selected navigation object and opens the object's home page. Typically, standard and custom objects open the
object's list view. If split view is open, focus remains on the selected navigation object. This method works only in Lightning console

apps.
getNavigationltems() for Lightning Experience

Returns information about all the items in the navigation menu. This method works only in Lightning console apps.

getSelectedNavigationltem() for Lightning Experience
Returns information about the selected navigation item. This method works only in Lightning console apps.

refreshNavigationltem() for Lightning Experience
Refreshes the selected navigation object's home page. Typically, standard and custom objects open the object's list view. If split
view is open, it's refreshed. This method works only in Lightning console apps.

setSelectedNavigationltem() for Lightning Experience
Sets the selected navigation item to a specific ID. This method works only in Lightning console apps.

focusNavigationItem() for Lightning Experience

Focuses on the selected navigation object and opens the object's home page. Typically, standard and custom objects open the object's
list view. If split view is open, focus remains on the selected navigation object. This method works only in Lightning console apps.

Keep these things in mind when working with this method.
e Ifatabisalready open for the navigation item, the focus is set on the tab.
e If split view is open, the focus is set on the navigation tab.

e If split view is collapsed, the navigation item’s tab is opened and focus is set on the tab.

Arguments

None

Sample Code

This component has a button that, when pressed, focuses on the navigation item and opens the navigation item’s home page. For most
objects, the home page is the object’s list view.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Focus navigation item" onclick="{!c.focusNavigationItem}"/>
</aura:component>

Controller code:

(1
focusNavigationItem : function (component, event, helper) ({
var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.focusNavigationItem() .then (function (response) {
console.log(response);
})

.catch (function (error) {

37

Lightning Console API Methods for Lightning Console JavaScript API

console.log(error) ;

)

Response

This method returns a promise that, upon success, resolves to true. The promise is rejected on error.

getNavigationItems () for Lightning Experience

Returns information about all the items in the navigation menu. This method works only in Lightning console apps.

Arguments

None

Sample Code
This component has a button that, when pressed, returns information about the navigation items in a console app.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Get navigation item" onclick="{!c.getNavigationItems}"/>
</aura:component>

Controller code:

({

getNavigationItems : function (component, event, helper) {
var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.getNavigationItems () .then (function (response) {

console.log (response);

})
.catch (function (error) {
console.log(error);

)

Response

This method returns a promise that, upon success, resolves to an array of navigationItemInfo objects. The promise is rejected
on error.

The navigationItemInfo object contains the following fields.

Name Type Description

label string The navigation item’s label, such as Account or Case.

38

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

developerName string The navigation item’s developer name that uniquely
identifies the item. For example,
Salesforce Account or Your VF Page Name

selected boolean True if the tab is currently selected, false otherwise.

pageReference object The representation of the current page. The object returns
information such as: page type (for example
standard objectPage or
standard _navItemPage), object APl name, and
state information for the page.

Here's the structure of a navigationItemInfo object.

{
developerName : string,
label : string,
pageReference: object,
selected : boolean

getSelectedNavigationItem () for Lightning Experience

Returns information about the selected navigation item. This method works only in Lightning console apps.

Arguments

None

Sample Code
This component has a button that, when pressed, returns information about the selected navigation item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Get selected navigation item"
onclick="{!c.getSelectedNavigationItem}"/>
</aura:component>

Controller code:

({
getSelectedNavigationItem : function (component, event, helper) ({

var navigationItemAPI = component.find("navigationItemAPI");

navigationItemAPI.getSelectedNavigationItem() .then (function (response) {
console.log(response) ;

})

.catch (function (error) {
console.log(error) ;

39

Lightning Console API

Response

Methods for Lightning Console JavaScript API

This method returns a promise that, upon success, resolves to a navigationItemInfo object. The promise is rejected on error.

The navigationItemInfo object has the following fields.

Name Type
label string
developerName string
selected boolean
pageReference object

Here's the structure of a navigationItemInfo object.

refreshNavigationItem() for Lightning Experience

{
developerName : string,
label : string,
pageReference: object,
selected : boolean

Description
The navigation item’s label, such as Account or Case.

The navigation item’s developer name that uniquely
identifies the item. For example,
Salesforce Account Of Your VF Page Name

True if the tab is currently selected, false otherwise.

The representation of the current page. The object returns
information such as: page type (for example

standard objectPage Or
standard__navItemPage), object APl name, and
state information for the page.

Refreshes the selected navigation object's home page. Typically, standard and custom objects open the object's list view. If split view is

open, it's refreshed. This method works only in Lightning console apps.

This method refreshes in the background. If the list view has unsaved changes, the method returns false and doesn't refresh the navigation
item. The method doesn't set focus on the navigation tab.

The following navigation items aren’t supported:

Custom Visualforce tabs
Custom Aura component tabs
Custom web tabs

Dashboards

Reports

40

Lightning Console API Methods for Lightning Console JavaScript API

Arguments

None

Sample Code
This Aura component has a button that, when pressed, refreshes the navigation item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Refresh navigation item" onclick="{!c.refreshNavigationItem}"/>
</aura:component>

Controller code:

({
refreshNavigationItem : function (component, event, helper) ({
var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.refreshNavigationItem() .then (function (response) {
console.log(response) ;

1)
.catch (function(error) {
console.log(error) ;

)i

Response

This method returns a promise that, upon success, resolves to true. The promise is rejected on error.

setSelectedNavigationItem() for Lightning Experience

Sets the selected navigation item to a specific ID. This method works only in Lightning console apps.

Arguments
Name Type Description
developerName string The ID of the navigation item.
Sample Code

This Aura component has a button that, when pressed, sets the specified ID as the selected navigation item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" description="My Lightning
Component">
<lightning:navigationItemAPI aura:id="navigationItemAPI" />
<lightning:button label="Set Navigation Item" onclick="{! c.setSelectedNavigationItem

4

Lightning Console API Methods for Lightning Console JavaScript API

}n />
</aura:component>

Controller code:

({

setSelectedNavigationItem : function (component, event, helper) {

var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.setSelectedNavigationItem ({
"developerName": "standard-Account"

}) .then (function (response) {
console.log(response);
})
.catch (function(error) {
console.log(error);

1)

Response

This method returns a promise that, upon success, resolves to true.

Methods for Workspace Tabs and Subtabs in Lightning Experience

A Lightning console app displays Salesforce pages as workspace tabs or subtabs. A workspace tab displays the main work item or record,
such as an account. A subtab displays related records, such as an account’s contacts or opportunities.

These methods work with workspace tabs and subtabs in Lightning console apps. Both Lightning Web Components (LWC) and Aura
Components are supported unless otherwise specified.

@ Nofe: Keep in mind that tablds are case sensitive.

IN THIS SECTION:

addToBrowserTitleQueue() for Lightning Experience

Adds a string to a list of titles that rotate in the browser title bar every three seconds.This method works only in Lightning console
apps. This method isn't supported for Lightning Web Components (LWC).

closeTab() for Lightning Experience

Closes a workspace tab or subtab. This method works only in Lightning console apps.

disableTabClose() for Lightning Experience
Prevents a workspace tab or subtab from closing. This method removes the close button from a tab or subtab, and disables the
keyboard shortcuts that close tabs and subtabs. This method works only in Lightning console apps.

focusTab() for Lightning Experience
Focuses a workspace tab or subtab. This method works only in Lightning console apps.

generateConsoleUrl() for Lightning Experience

Generates a URL for a workspace tab and its subtabs. This method works only in Lightning console apps. This method isn't supported
for Lightning Web Components (LWC).

getAllTabInfo() for Lightning Experience
Returns information about all open tabs. This method works only in Lightning console apps.

42

Lightning Console API Methods for Lightning Console JavaScript API

getEnclosingTabld() for Lightning Experience
Returns the ID of the enclosing tab. This method isn't supported for Lightning Web Components (LWCQ).

getFocusedTablnfo() for Lightning Experience
Returns information about the focused workspace tab or subtab. This method works only in Lightning console apps.

getTablnfo() for Lightning Experience
Returns information about the specified tab. This method works only in Lightning console apps.

getTabURL() for Lightning Experience

Returns the URL of the specified tab. This method works only in Lightning console apps. This method isn't supported for Lightning
Web Components (LWC).

isConsoleNavigation() for Lightning Experience

Determines whether the app it's used within uses console navigation. This method isn't supported for Lightning Web Components
(LWQ).

isSubtab() for Lightning Experience

Checks whether a tab is a subtab. This method works only in Lightning console apps. This method isn't supported for Lightning Web
Components (LWQ).

openConsoleUrl() for Lightning Experience

Opens a URL generated by generateConsoleUrl (). This method works only in Lightning console apps. This method isn't
supported for Lightning Web Components (LWC).

openSubtab() for Lightning Experience

Opens a subtab within a workspace tab. If the subtab is already open, the subtab is focused. This method works only in Lightning
console apps.

openTab() for Lightning Experience

Opens a new workspace tab. If the tab is already open, the tab is focused.

refreshTab() for Lightning Experience

Refreshes a workspace tab or a subtab specified by tab1d.Keepin mind that the first subtab has the same tab1d asthe workspace
tab. This method works only in Lightning console apps.

removeFromBrowserTitleQueue() for Lightning Experience

Removes a string from a list of titles that rotate in the browser title bar every three seconds. This method works only in Lightning
console apps. This method isn't supported for Lightning Web Components (LWC).

setTabHighlighted() for Lightning Experience

Highlights the specified tab with a different background color and a badge. Tab highlights don't persist after reloading a Lightning
console app. This method works only in Lightning console apps.

setTablcon() for Lightning Experience

Sets the icon and alternative text of the specified tab. This method works only in Lightning console apps.

setTabLabel() for Lightning Experience

Sets the label of the specified tab. This method works only in Lightning console apps.

EnclosingTabld Context Wire Adapter for Lightning Experience

Returns the ID of the enclosing tab or subtab. This wire adapter is available for Lightning Web Components (LWC) only.
IsConsoleNavigation Context Wire Adapter for Lightning Experience

Determines whether the app it's used within uses console navigation. This wire adapter is available for Lightning Web Components
(LWCQ) only.

43

Lightning Console API Methods for Lightning Console JavaScript API

addToBrowserTitleQueue () for Lightning Experience

Adds a string to a list of titles that rotate in the browser title bar every three seconds.This method works only in Lightning console apps.
This method isn't supported for Lightning Web Components (LWC).

Note: Accurate browser tab titles help improve accessibility. Screen readers announce page titles when a page is first loaded,
and don't announce dynamic updates to the title. Use the root node of the document, like document . title,toannounce
the updated browser tab title instead.

Arguments
Name Type Description
title string The browser tab title to add.

Aura Components Sample Code
This component has a button that, when pressed, adds a string to a list of titles that rotate in the browser title bar every three seconds.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Add to Browser Title Queue" onclick="{!
c.handleAddToBrowserTitleQueue }" />
</aura:component>

Controller code:

({
handleAddToBrowserTitleQueue : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.addToBrowserTitleQueue ({
title: "New Browser Title"
})
.then (function (result) {
console.log(result);
)
.catch (function(error) {
console.log(error) ;

)i

Response

This method returns a promise that, upon success, resolves to true.

closeTab () for Lightning Experience

Closes a workspace tab or subtab. This method works only in Lightning console apps.

44

Lightning Console API Methods for Lightning Console JavaScript API

Arguments

The method provides the same argument for both Aura Components and Lightning Web Components (LWC).

Name Type Description
tabId string ID of the workspace tab or subtab to close.
LWC Sample Code

This component checks if it's in a Lightning console app using the isConsoleNavigation wire adapter. When the
getFocusedTabInfo () on page 54 resolves successfully, it returns the tabInfo object. The const { tabId } syntax
destructuresthe tabInfo objectandbindsthe tabInfo.tabId valueonthe tabId variable. closeTab () usesthis tabId
value to close the tab.

import { LightningElement, wire } from 'lwc';
import { IsConsoleNavigation, getFocusedTabInfo, closeTab } from
'lightning/platformiWorkspaceApi’';

export class WorkspaceAPICloseTab extends LightningElement {
@wire (IsConsoleNavigation) isConsoleNavigation;

async closeTab () {
if (!'this.isConsoleNavigation) {
return;

}
const { tabId } = await getFocusedTabInfo();
awalt closeTab (tabId);

}

This example shows the workspaceAPICloseTab component in the lwc-recipes repo.

To make your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

Aura Components Sample Code
This component has a button that, when pressed, closes the currently focused tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Close Focused Tab" onclick="{!c.closeFocusedTab}"/>
</aura:component>

Controller code:

({
closeFocusedTab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo () .then (function (response) {
var focusedTabId = response.tabId;
workspaceAPI.closeTab ({tabId: focusedTabId});
)

45

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPICloseTab
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API Methods for Lightning Console JavaScript API

.catch (function(error) {
console.log(error);

)i

Response

This method returns a promise that resolves to t rue if successful. The promise is rejected on error.

disableTabClose () for Lightning Experience

Prevents a workspace tab or subtab from closing. This method removes the close button from a tab or subtab, and disables the keyboard
shortcuts that close tabs and subtabs. This method works only in Lightning console apps.

Arguments
The method provides the same argument for both Aura Components and Lightning Web Components (LWC).

Name Type Description

tabId string The ID of the workspace tab or subtab to
disable tab close for.

disabled boolean Specifies whether to disable tab close.

@ Note: disableTabClose () doesn't prevent the browser from refreshing or closing the browser tab.

LWC Sample Code

This component has a function that opens a tab using a page reference and then prevents it from being closed. When the openTab ()
method resolves successfully, it returns the tabInfo object. The const { tabId } syntax destructuresthe tabInfo object
and binds the tabInfo.tablId valueonthe tablId variable. disableTabClose () usesthis tabId value to prevent the
tab from closing.

import { LightningElement } from 'lwc';
import { openTab, disableTabClose, IsConsoleNavigation } from
'lightning/platformiWorkspaceApi';

export default class DisableTabCloseExample extends LightningElement {

async handleOpenAndDisable () {
if (!'this.isConsoleNavigation) {
return;
}
try |
const { tabId } = await openTab ({
pageReference: {
"type": "standard objectPage",
"attributes": {
"objectApiName":"Account",

46

Lightning Console API Methods for Lightning Console JavaScript API

"actionName":"home"
by
s
}) i
awailt disableTabClose (tabId, true);
} catch (error) {
// handle error

}
For another example that uses disableTabClose (), see the workspaceAPIDisableTabClose component in the lwc-recipes repo.

Tomake your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

Aura Components Sample Code
This component has a button that, when pressed, disables the ability to close the currently focused tab.
Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Disable Close Focused Tab" onclick="{! c.disableCloseFocusedTab
/>
</aura:component>

Controller code:

({
disableCloseFocusedTab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo () .then (function (response) {
var focusedTabId = response.tabld;
workspaceAPI.disableTabClose ({
tabId: focusedTablId,
disabled: true
})
.then (function (tabInfo) {
console.log(tabInfo);
})
.catch (function(error) {
console.log(error) ;
})
})
.catch (function(error) {
console.log(error) ;
})
}
})

47

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPIDisableTabClose
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API

Response

Methods for Lightning Console JavaScript API

This method returns a promise that, upon success, resolves to a tabInfo object representing the focused tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure of a tabInfo

object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [
{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

1,
focused: boolean,
recordId: string

focusTab () for Lightning Experience

Focuses a workspace tab or subtab. This method works only in Lightning console apps.

Arguments

The method provides the same argument for both Aura Components and Lightning Web Components (LWC).

48

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description
tabId string ID of the workspace tab or subtab on which
to focus.
LWC Sample Code

This component has a function that retrieves information of all tabs using getA11TabInfo () on page 51, which returns an array
of tabInfo objects. Then, it uses focusTab (allTabs[0].tabId) tofocuson the firsttab in the array.

import { LightningElement } from 'lwc';
import { IsConsoleNavigation, getAllTabInfo, focusTab } from
'lightning/platformWorkspaceApi’';

export default class FocusTabExample extends LightningElement {

async handleOpen () {

if (!'this.isConsoleNavigation) {
return;

}

try {
const tabInfo = await getAllTabInfol();
await focusTab (tabInfo[0].tabId);

} catch (error) {
console.log(error);

}
For another example that uses focusTab (), see the workspaceAPIFocusTab component in the Iwc-recipes repo.

Tomake your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component's
configuration file.

Aura Components Sample Code
This component has a button that, when pressed, opens a new tab and focuses it.

Component code:

_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Focus New Tab" onclick="{! c.focusNewTab }" />
</aura:component>

Controller code:

({

focusNewTab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
url: '/lightning/r/Account/001xx000003DI05AAG/view"',
}) .then (function (response) {
workspaceAPI.focusTab ({tabId : response});
})

49

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPIFocusTab
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API Methods for Lightning Console JavaScript API

.catch (function(error) {
console.log(error);

)i
})

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to true.

generateConsoleUrl () for Lightning Experience

Generates a URL for a workspace tab and its subtabs. This method works only in Lightning console apps. This method isn't supported
for Lightning Web Components (LWQ).

Arguments
Name Type Description
pageReferences pageReferencel] An array of page references. The first page
reference is the workspace tab. Any
following page references are subtabs. The
last page reference is the focused subtab.
Sample Code

This component has a button that, when pressed, uses the generateConsoleUrl () method to create a URL for the provided
page references.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspaceAPI" />
<lightning:button label="Get Console URL" onclick="{! c.handleGenerateConsoleUrl }"
/>

</aura:component>
Controller code:

({
handleGenerateConsoleUrl : function (component, event, helper) ({
var workspaceAPI = cmp.find("workspaceAPI");
workspaceAPI.generateConsoleURL ({

"pageReferences": [
{
"type": "standard recordPage",
"attributes": {
"objectApiName": "Account",
"actionName": "view",
"recordId": "001xx000003DGQXAA4™"

50

Lightning Console API Methods for Lightning Console JavaScript API

by

"state": {}
}y
{
"type": "standard recordPage",
"attributes": {
"objectApiName": "Account",
"actionName": "view",
"recordId": "001xx000003DGQWAA4"
}y
"state": {}
by
{
"type": "standard recordPage",
"attributes": {
"objectApiName": "Account",
"actionName": "view",

"recordId": "001xx000003DGQYAR4"

b
"state": {}

]

}) .then (function (url) {
console.log(url);

)

.catch (function(error) {
console.log(error) ;

)i

Response

This method returns a promise that, upon success, resolves with the generated URL.

Name Type Description

url string A console URL that represents the array of
URLs passed into Salesforce.

getAllTabInfo () for Lightning Experience

Returns information about all open tabs. This method works only in Lightning console apps.

Arguments

None.

51

Lightning Console API Methods for Lightning Console JavaScript API

LWC Sample Code

This component has a function that returns the information on all tabs.

import { LightningElement, wire } from 'lwc';
import { IsConsoleNavigation, getAllTabInfo } from 'lightning/platformWorkspaceApi';

export class GetAllTabInfoExample extends LightningElement {
@wire (IsConsoleNavigation) isConsoleNavigation;

async handleOpen () {

if (!'this.isConsoleNavigation) {
return;

}

try {
const tabInfo = await getAllTabInfol();
//do something with tabInfo

} catch (error) {
console.log(error);

}

For another example that uses getAl1TabInfo (), see focusTabl().

To make your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

Aura Components Sample Code
This component has a button that, when pressed, gets the info of all open tabs and prints the resulting tabInfo object.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get All Tab Info" onclick="{! c.handleGetAllTabInfo }" />
</aura:component>

Controller code:

({
handleGetAllTabInfo : function (component, event, helper) {

var workspaceAPI = component.find("workspace");

workspaceAPI.getAllTabInfo () .then (function (response) {
console.log(response) ;

1)

.catch (function (error) {
console.log(error);

})

52

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API

Response

Methods for Lightning Console JavaScript API

This method returns a promise that, upon success, resolves to an array of tabInfo objects. A tabInfo objectisa JSON array of
information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,

customTitle: string (optional),

customIcon: string (optional),

customIconAlt: string (optional),

highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [
{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,

icon: string (SLDS iconKey),

iconAlt: string,

customTitle: string (optional),

customIcon: string (optional),

customIconAlt: string
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

1,
focused: boolean,
recordId: string

(optional),

getEnclosingTabld () for Lightning Experience

Returns the ID of the enclosing tab. This method isn't supported for Lightning Web Components (LWCQ).

To retrieve the enclosing tab ID with LWC, see EnclosingTabld context wire adapter.

O Tip: Toretrieve information about the tab or the subtab that a component is rendered in, first use getEnclosingTabId ()
instead of getFocusedTabInfo () onpage 54.Then callgetTabInfo () on page 57 and use the enclosing tab’s ID as
the argument. By using getEnclosingTabId (), you make sure that the correct tab ID is returned when you work with

lifecycle hooks such as renderedCallback () or connectedCallback ().

53

Lightning Console API Methods for Lightning Console JavaScript API

Arguments

None.

Aura Components Sample Code
This component has a button that, when clicked, retrieves the enclosing tab ID.

This is the component code. The 1ightning:workspaceAPI component provides access to Lightning console methods. When
clicked, the 1ightning:button base component executes the handleGetEnclosingTabId actionin the component’s
client-side controller.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Enclosing Tab Id" onclick="{! c.handleGetEnclosingTabId
}" />

</aura:component>
This is the controller code. The handleGetEnclosingTabId action returns the ID of the enclosing workspace tab.

({
handleGetEnclosingTabId : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getEnclosingTabId() .then (function (tabId) {
console.log(tabId);
})

.catch (function(error) {
console.log(error);

)i

Response

This method returns a promise that, upon success, resolves to the tabId of the enclosing tab, if within a tab. If not within a tab, the
method resolves to false upon success.

getFocusedTabInfo () for Lightning Experience

Returns information about the focused workspace tab or subtab. This method works only in Lightning console apps.
@ Nofe: To retrieve information about the workspace tab or the subtab that a component is rendered in, don't use
getFocusedTabInfo (). When lifecycle hooks such as renderedCallback () or connectedCallback () are

invoked for the component, the tab enclosing that component isn't guaranteed to be in focus, so get FocusedTabInfo ()
sometimes doesn't return that tab’s information.

Instead, first use getEnclosingTabId () on page 53 for Aura components or the EnclosingTabId on page 78 wire
adaptor for LWC. Then call get TabInfo () on page 57 and use the enclosing tab’s ID as the argument.

We recommend that you continue to use getFocusedTabInfo () with components in the utility bar, because the utility
bar doesn't have an enclosing tab ID.

Arguments

None.

54

Lightning Console API Methods for Lightning Console JavaScript API

LWC Sample Code

This component checks if it's in a Lightning console app, using the IsConsoleNavigation wire adapter, and returns information
about the focused tab or subtab. It uses the tabId and highlighted properties fromthe tabInfo return object to toggle
highlighting on the tab.

import { LightningElement, wire } from 'lwc';
import { IsConsoleNavigation, getFocusedTabInfo, setTabHighlighted } from
'lightning/platformWorkspaceApi"';

export class FocusedTabInfoExample extends LightningElement ({
@wire (IsConsoleNavigation) isConsoleNavigation;

async handleFocusToggleHighlight () {
if (!'this.isConsoleNavigation) {
return;

}

try {
let { tabId, highlighted } = await getFocusedTabInfo();
highlighted = highlighted ? false : true;
setTabHighlighted (tabId, highlighted) ;

} catch (error) {
console.log(error) ;

}

For another example, see closeTab().

Tomake your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component's
configuration file.

Aura Components Sample Code
This component has a button that, when clicked, closes the currently focused tab.

This is the component code. The 1ightning:workspaceAPI component provides access to Lightning console methods. When
clicked, the 1ightning:button base component executes the closeFocusedTab action in the component’s client-side
controller.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Close Focused Tab" onclick="{! c.closeFocusedTab }" />
</aura:component>

This is the client-side controller code. The closeFocusedTab action retrieves the tab ID of the tab in focus, and then closes the tab
with that ID.

({

closeFocusedTab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo () .then (function (response) {
var focusedTabId = response.tabId;
workspaceAPI.closeTab ({tabId: focusedTabId});
1)

.catch (function(error) {

55

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API

console.log(error) ;

)

Response

Methods for Lightning Console JavaScript API

This method returns a promise that, upon success, resolvestoa tabInfo object that represents the focused tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure of a tabInfo

object.

{

tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [
{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

1,
focused: boolean,
recordId: string

56

Lightning Console API Methods for Lightning Console JavaScript API

getTabInfo () for Lightning Experience

Returns information about the specified tab. This method works only in Lightning console apps.

Arguments

The method provides the same argument for both Aura Components and Lightning Web Components (LWC).

Name Type Description
tabId string ID of the tab for which to retrieve the
information.
LWC Sample Code

This component has a function that returns the tab information.

import { LightningElement, wire } from 'lwc';
import { EnclosingTablId, getTabInfo } from 'lightning/platformWorkspaceApi';

export default class ConsoleNavExample extends LightningElement {
@wire (EnclosingTabId) enclosingTabId;
handleClick() {
if (this.enclosingTabId) {
getTabInfo (this.enclosingTabId) .then ((tabInfo) => {
// do something with it
}) .catch((error) => {
console.log(error);

)i

Tomake your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component's
configuration file.

Aura Components Sample Code

This component has a button that, when pressed, opens a tab and usesthe getTabInfo () methodto printthenewtab’s tabInfo
to the developer console.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Opened Tab Info" onclick="{! c.getOpenedTabInfo }" />
</aura:component>

Controller code:

(1
getOpenedTabInfo : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({

57

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API Methods for Lightning Console JavaScript API

url: '/lightning/r/Account/001xx000003DI05AAG/view',
focus: true
}) .then (function (response) {
workspaceAPI.getTabInfo ({
tabId: response
}) .then (function (response) {
console.log(response);
1)
})
.catch (function(error) {
console.log(error);

)i
})

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves toa tabInfo object representing the specified tab. A tabInfo object
is a JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo
object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [
{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,

58

Lightning Console API Methods for Lightning Console JavaScript API

parentTabId: string,
focused: boolean,
recordId: string,

by

1,
focused: boolean,
recordId: string

getTabURL () for Lightning Experience

Returns the URL of the specified tab. This method works only in Lightning console apps. This method isn't supported for Lightning Web
Components (LWQ).

To retrieve the URL of a specified tab in LWC, use getTablnfo().

Arguments
Name Type Description
tabId string ID of the tab for which to retrieve the URL.

Aura Components Sample Code

This component has a button that, when pressed, opens a tab and uses the getTabURL () method to print the new tab’s URL to the
developer console.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Opened Tab URL" onclick="{! c.getOpenedTabURL }" />
</aura:component>

Controller code:

({
getOpenedTabURL : function (component, event, helper) ({
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
url: '/lightning/r/Account/001xx000003DI05AAG/view',
focus: true
}) .then (function (response) {
workspaceAPI.getTabURL ({
tabId: response
}) .then (function (response) {
console.log(response) ;
1)
})
.catch (function(error) {
console.log(error);

1)

59

Lightning Console API Methods for Lightning Console JavaScript API

H)

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to the URL of the specified tab.

isConsoleNavigation () for Lightning Experience

Determines whether the app it's used within uses console navigation. This method isn't supported for Lightning Web Components
(LWCQ).

To determine if a component is using console navigation with LWC, see IsConsoleNavigation context wire adapter.

Arguments

None.

Aura Components Sample Code
This component has a button that, when pressed, prints whether the current app is using console navigation.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Is Console Navigation?" onclick="{! c.handleIsConsoleNavigation
/>
</aura:component>

Controller code:

({
handleIsConsoleNavigation : function (component, event, helper) ({

var workspaceAPI = component.find("workspace");

workspaceAPI.isConsoleNavigation () .then (function (response) {
console.log(response) ;

1)

.catch (function (error) {
console.log(error) ;

I

Response

If the current app uses console navigation, this method returns a promise that resolves to t rue when successful,or false otherwise.

60

Lightning Console API Methods for Lightning Console JavaScript API

isSubtab () for Lightning Experience

Checks whether a tab is a subtab. This method works only in Lightning console apps. This method isn't supported for Lightning Web
Components (LWQ).

To check whether a tab is a subtab in LWC, use getTablnfo().

Arguments
Name Type Description
tabId string ID of the tab.

Aura Components Sample Code
This component has a button that checks whether the focused tab is a subtab and opens a modal with the answer.

Component code:

_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Is the Focused Tab a Subtab?" onclick="{! c.isFocusedTabSubtab
/>
</aura:component>

Controller code:

({
isFocusedTabSubtab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo () .then (function (response) {
workspaceAPI.isSubtab ({
tabId: response.tabId
}) .then (function (response) {
if (response) {

confirm("This tab is a subtab.");
}
else {
confirm("This tab is not a subtab.");

1)

})

.catch (function(error) {
console.log(error);

)i

Response

This method returns a promise that, upon success, resolves to true if the tab is a subtab, and false otherwise.

61

Lightning Console API Methods for Lightning Console JavaScript API

openConsoleUrl () for Lightning Experience

Opens a URL generated by generateConsoleUrl (). This method works only in Lightning console apps. This method isn't
supported for Lightning Web Components (LWC).

Arguments

Name Type Description

url string Console URL representing the array of URLs
passed into Salesforce.

focus boolean Optional. If true, the workspace tab opens
and displays immediately. If false, the
workspace tab opens in the background.

labels string(] Optional. An array of labels for the opened

tabs. The order that the tabs appear in the
URL should match the order in the array.
Use an emptry string if you don't want to
set any labels.

Aura Components Sample Code
This component has a button that, when pressed, opens a workspace using the openConsoleUrl () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspaceAPI" />
<lightning:button label="Open Console URL" onclick="{! c.handleOpenConsoleUrl }" />
</aura:component>

Controller code:

// Assume URL generated by generateConsoleUrl () API
// E.g.
({
handleOpenConsoleUrl : function (component, event, helper) {
var url = generateConsoleUrl () ;
var workspaceAPI = cmp.find("workspaceAPI");
workspaceAPI.openConsoleURL ({
"url": url,
"focus": true,
"labels": ["Workspace Label", "First Subtab Label", "Second Subtab Label"]
}) .then (function (activeTabId) {
console.log(activeTablId) ;

.catch (function (error) {

console.log(error) ;

H

62

Lightning Console API Methods for Lightning Console JavaScript API

Response

This method returns a promise that, upon success, resolves to the tabId of the active tab.

openSubtab () for Lightning Experience

Opens a subtab within a workspace tab. If the subtab is already open, the subtab is focused. This method works only in Lightning console
apps.

Arguments

The method provides the same argument for both Aura Components and Lightning Web Components (LWC). However, icon,
iconAlt,and label are supported only for LWC.

Name Type Description

parentTabId string The ID of the workspace tab within which
the new subtab opens. You must pass the
parent tab ID into the openSubtab ()
method.

pageReference object Optional. Specifies the pageReference
to open.

recordId D Optional. Specifies the record to open.
url string

Optional. The URL representing the content
of the new workspace tab.

The URL can be either relative or absolute.
To use a third-party domain, add the site as
a CSP Trusted Site.

focus boolean Optional. Specifies whether the new subtab
has focus. To display the subtab
immediately, set focus to true.Toopen
the subtab in the background, set focus
to false.

icon string Optional. An SLDS icon key. See a full list of
icon keys on the SLDS reference site.
Available for LWC only.

iconAlt string Optional. Alternative text for the icon.
Available for LWC only.

label string Optional. The text label for the icon.
Available for LWC only.

@ Nofe: pageReference, recordId,and url are prioritized in that order. Providing arguments with a higher priority means
the others get ignored.

63

https://www.lightningdesignsystem.com/icons/

Lightning Console API Methods for Lightning Console JavaScript API

LWC Sample Code

This component retrieves the enclosing tab ID using the EnclosingTabId wire adapter. It opens a subtab on the current tab when
the handleClick () function is called. If the component doesn't reside inside a tab or subtab, tab1d is null.

To check if the current tab is a subtab, use getTabInfo (). Ifthe current tab is a subtab, pass in the parent tab ID to the
openSubtab () function.

import { LightningElement, wire } from 'lwc';
import { EnclosingTabId, getTabInfo, openSubtab } from 'lightning/platformWorkspacelApi';

export default class OpenSubtabExample extends LightningElement {
@wire (EnclosingTabId) tabId;

async handleClick () {
if (!'this.tabId) {
return;

const tabInfo = await getTabInfo(this.tabId);
const primaryTabId = tabInfo.isSubtab ? tabInfo.parentTabId : tabInfo.tabld;

// Open a record as a subtab of the current tab
await openSubtab (primaryTabId, { recordId: 'YourRecordId',6 focus: true });

}

For another example that uses openSubtab (), see the workspaceAPIOpenSubtab component in the lwc-recipes repo.

To make your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

Aura Components Sample Code

This component has a button that, when pressed, opens a subtab within a workspace tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Open Tab with Subtab" onclick="{! c.openTabWithSubtab }" />
</aura:component>

Controller code:

({
openTabWithSubtab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
url: '/lightning/r/Account/001xx000003DI05AAG/view"',
focus: true
}) .then (function (response) {
workspaceAPI.openSubtab ({
parentTablId: response,
url: '/lightning/r/Contact/003xx000004Ts30AAC/view',
focus: true

)

64

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPIOpenSubtab
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API Methods for Lightning Console JavaScript API

)
.catch (function(error) {
console.log(error);

)i
})

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to the ID of the new subtab.

openTab () for Lightning Experience

Opens a new workspace tab. If the tab is already open, the tab is focused.

Arguments

The method provides the same argument for both Aura Components and Lightning Web Components (LWC). However, icon,
iconAlt,and label are supported only for LWC.

Name Type Description

pageReference object Optional. Generates a unique URL to open.
A page reference contains attributes that
apply to all pages of that type. See the Aura
pageReference types and LWC
pageReference types.

recordId ID Optional. Specifies the record to open.
url URL

Optional. The URL representing the content
of the new workspace tab.

The URL can be either relative or absolute.
To use a third-party domain, add the site as
a CSP Trusted Site.

focus boolean Optional. Specifies whether the new tab has
focus. To display the tab immediately, set
focus to true.Toopenthe tabin the
background, set focus to false.

overrideNavRules boolean Optional. Specifies whether the open tab
respects existing navigation rules. This
argument has no effect on records that have
no navigation rules configured and URLs
that do not point to a record.

65

https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/components_navigation_page_definitions.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/components_navigation_page_definitions.htm
https://developer.salesforce.com/docs/platform/lwc/guide/reference-page-reference-type.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-page-reference-type.html

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

icon string Optional. An SLDS icon key in the format
action:canvas where action is
the SLDS icon category. See a full list of icon
categories and keys on the SLDS reference
site. Available for LWC only.

iconAlt string Optional. Alternative text for the icon.
Available for LWC only.

label string Optional. The text label for the icon.
Available for LWC only.

@ Note: pageReference, recordId,and url are prioritized in that order. Providing an argument with a higher priority
means the others are ignored.

LWC Sample Code

This component has a function that opens a specified tab and applies focus on it.

import { LightningElement, wire } from 'lwc';
import { IsConsoleNavigation, openTab } from 'lightning/platformWorkspaceApi';

export default class OpenTabExample extends LightningElement {
@wire (IsConsoleNavigation) isConsoleNavigation;

async openTab () {
if (!'this.isConsoleNavigation) {
return;

}
await openTab ({
pageReference: {
type: 'standard objectPage',
attributes: {
objectApiName: 'Account',
actionName: 'home'

b

icon: 'utility:bookmark',
focus: true,

label: 'Account List'

For another example that uses openTab (), see the workspaceAPIOpenTab component in the Iwc-recipes repo.

To make your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

66

https://www.lightningdesignsystem.com/icons/
https://www.lightningdesignsystem.com/icons/
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPIOpenTab
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API Methods for Lightning Console JavaScript API

Aura Components Sample Code
This component has a button that when pressed, opens a tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Open Tab" onclick="{!c.handleOpenTab}"/>
</aura:component>

Pass in a pageReference Controller code (pageReference) using the standard recordPage type:

({
handleOpenTab: function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
pageReference: {
"type": "standard recordPage",
"attributes": {
"recordId":"500xx000000Ykt2AAC",
"actionName":"view"
I
"state": {}
by
focus: true
}) .then (function (response) {
workspaceAPI.getTabInfo ({
tabId: response
}) .then (function (tabInfo) {
console.log ("The recordId for this tab is: " + tabInfo.recordId);
});
}) .catch (function (error) {
console.log(error);
})

)}
Controller code (recordld):

(1
handleOpenTab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
recordId: '001xx000003DIkeAAG',
focus: true
}) .then (function (response) {
workspaceAPI.getTabInfo ({
tabId: response
}) .then (function (tabInfo) {
console.log("The url for this tab is: " + tabInfo.url);
}) i
})
.catch (function(error) {
console.log(error);

)

67

https://developer.salesforce.com/docs/atlas.en-us.256.0.lightning.meta/lightning/components_navigation_page_definitions.htm

Lightning Console API Methods for Lightning Console JavaScript API

})
Controller code (url):

({
handleOpenTab : function (component, event, helper) {

var workspaceAPI = component.find("workspace");

workspaceAPI.openTab ({
url: '/lightning/r/Account/001xx000003DI05AAG/view",
focus: true

}) .then (function (response) {
workspaceAPI.getTabInfo ({

tabId: response

}) .then (function (tabInfo) {
console.log ("The recordId for this tab is: " + tabInfo.recordId);

)i
}) .catch (function (error) {
console.log(error);

)i

@ Note: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to the tabId of the new tab.

refreshTab () for Lightning Experience

Refreshes a workspace tab or a subtab specified by tabId. Keep in mind that the first subtab has the same tabId asthe workspace
tab. This method works only in Lightning console apps.

If this method is invoked for a workspace tab with unsaved changes, a confirmation window opens for the user.
e (Continue editing: Changes are preserved and the tab or workspace isn't refreshed.
e Discard changes: Changes are discarded and the tab or workspace is refreshed.

e Save: Changes are saved and then the tab or workspace is refreshed.

Arguments
The method provides the same argument for both Aura Components and Lightning Web Components (LWC).

Name Type Description
tabId string ID of the workspace tab or subtab to refresh.
includeAllSubtabs boolean Optional. Ifthe tabId corresponds toaworkspace tab, all subtabs

within that workspace are refreshed. The default is true. Keep in

68

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

mind that the first subtab has the same tab1d as the workspace
tab.

LWC Sample Code

This component checks if it's in a Lightning console app, returns information about the focused tab and refreshes it. When the
getFocusedTablnfo() method resolves successfully, it returns the tabInfo object. The const { tabId } syntaxdestructures
the tabInfo objectand bindsthe tabInfo.tablId valueonthe tabId variable. refreshTab () usesthis tabId value
to refresh the tab and its subtabs.

import { LightningElement, wire } from 'lwc';
import {

IsConsoleNavigation,

getFocusedTabInfo,

refreshTab
} from 'lightning/platformWorkspaceApi';

export default class WorkspaceAPIRefreshTab extends LightningElement {
@wire (IsConsoleNavigation) isConsoleNavigation;

async refreshTab () {
if (!'this.isConsoleNavigation) {
return;

}
const { tabId } = await getFocusedTabInfo();

awalt refreshTab (tabId, ({
includeAllSubtabs: true

1)

}

This example is the workspaceAPIRefreshTab component from the lwc-recipes repo.

Tomake your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component's
configuration file.

Aura Components Sample Code

This component has a button that, when pressed, refreshes the focused workspace tab and all its open subtabs.

Component code:

—_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Refresh Focused Tab" onclick="{!c.refreshFocusedTab}"/>
</aura:component>

Controller code:

({

refreshFocusedTab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo () .then (function (response) {

69

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPIRefreshTab
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API

var focusedTabId = response.tabId;
workspaceAPI.refreshTab ({
tabId: focusedTablId,
includeAllSubtabs: true
});
})
.catch (function (error) {
console.log(error);
})

Response

This method returns a promise that, upon success, resolves to true. If there was an error, the promise is rejected.

@ Note: true doesn't necessarily mean that the refresh was successful. For example, if the tab has unsaved changes when this
method was called, the user has a choice to save or discard their changes. The refresh is canceled depending on user’s choice.

removeFromBrowserTitleQueue () for Lightning Experience

Removes a string from a list of titles that rotate in the browser title bar every three seconds. This method works only in Lightning console
apps. This method isn't supported for Lightning Web Components (LWC).

Note: Accurate browser tab titles help improve accessibility. Screen readers announce page titles when a page is first loaded,
and don't announce dynamic updates to the title. Use the root node of the document, like document . title,toannounce
the updated browser tab title instead.

Arguments

Name Type Description

title string The browser tab title to remove.
Sample Code

This component has a button that, when pressed, removes a string from a list of titles that rotate in the browser title bar every three
seconds.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Remove from Browser Title Queue" onclick="{!
c.handleRemoveFromBrowserTitleQueue }" />
</aura:component>

Controller code:

(1
handleremoveFromBrowserTitleQueue : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.removeFromBrowserTitleQueue ({

70

Methods for Lightning Console JavaScript API

Lightning Console API

title: "New Browser Title"

})

.then (function (result) {
console.log(result);

})

.catch (function(error) {
console.log(error);

)i

Response

This method returns a promise that, open success, resolves to true.

setTabHighlighted () for Lightning Experience

Methods for Lightning Console JavaScript API

Highlights the specified tab with a different background color and a badge. Tab highlights don't persist after reloading a Lightning

console app. This method works only in Lightning console apps.

Arguments
Name Type
tabId string
highlighted boolean
options object
LWC Sample Code

Description
The ID of the tab to be highlighted.

Whether the tab is highlighted. Makes a
utility more prominent by giving it a
different background color.

Optional. Additional options that modify the
appearance of the highlighted tab. Available
options are:

* pulse:lftrue, causes two colors to
alternate in a smooth animation.

e state:Changes the tab color.
Available types are success (i),
warning ([), and error ().

This component checks if it's in a Lightning console app, returns information about the focused tab and highlights it in green.

import { LightningElement, wire } from 'lwc';
import {

IsConsoleNavigation,

getFocusedTabInfo,

setTabHighlighted
} from 'lightning/platformWorkspaceApi';

71

Lightning Console API

Methods for Lightning Console JavaScript API

export default class WorkspaceAPIHighlightTab extends LightningElement {

@wire (IsConsoleNavigation) isConsoleNavigation;

async highlightTab (event) {
if (!'this.isConsoleNavigation) {
return;

}

const highlighted = event.detail.checked;
const { tabId } = await getFocusedTabInfo();

setTabHighlighted (tabId, highlighted, {
pulse: true,
state: 'success'

)i

}

This example is the workspaceAPIHighlightTab component from the Iwc-recipes repo.

Tomake your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s

configuration file.

Aura Components Sample Code

This component has a button that, when pressed, sets the focused tab as highlighted.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

<lightning:workspaceAPI aura:id="workspace" />

<lightning:button label="Set Focused Tab Highlighted" onclick="{!

c.setFocusedTabHighlighted }" />
</aura:component>

Controller code:

({

setFocusedTabHighlighted : function (component,
var workspaceAPI = component.find("workspace");

helper) {

workspaceAPI.getFocusedTabInfo () .then (function (response) {

var focusedTabId = response.tabId;
workspaceAPI.setTabHighlighted ({
tabId: focusedTabld,
highlighted: true,
options: {
pulse: true,
state: "success"

)i
})

.catch (function (error) {
console.log(error) ;

)i

72

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPIHighlightTab
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API

Response

Methods for Lightning Console JavaScript API

This method returns a promise that, upon success, returnsa tabInfo object representing the modified tab. A tabInfo objectis
aJSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure ofa tabInfo

object.

{

tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [
{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

1,
focused: boolean,
recordId: string

setTabIcon () for Lightning Experience

Sets the icon and alternative text of the specified tab. This method works only in Lightning console apps.

73

Lightning Console API Methods for Lightning Console JavaScript API

Arguments
Name Type Description
tablId string The ID of the tab for which to set the icon.
icon string An SLDS icon key in the format
utility:iconName where
utility isthe icon category. See a full
list of utility icons on the SLDS reference site.
iconAlt string Optional. Alternative text for the icon.
LWC Sample Code

This component has a function that sets an icon on a specified tab. It uses the tabId property from getFocusedTablInfo().

import { LightningElement, wire } from 'lwc';
import {

IsConsoleNavigation,

getFocusedTabInfo,

setTabIcon
} from 'lightning/platformWorkspaceApi';

export default class SetTabIconExample extends LightningElement {
@wire (IsConsoleNavigation) isConsoleNavigation;

async setTabIcon () {
if (!'this.isConsoleNavigation) {
return;

const { tabId } = await getFocusedTabInfo();
setTabIcon (tabId, 'utility:einstein', {
iconAlt: 'Account Insights'

)i

}

For another example that uses setTabIcon (), see the workspaceAPISetTablcon component in the lwc-recipes repo.

Tomake your component available for use in a Lightning console app, specify the 1ightning AppPage targetinthe component’s
configuration file.

Aura Components Sample Code
This component has a button that, when pressed, sets the icon of the focused tab to the SLDS “Approval” action icon.

Component code:
<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />

<lightning:button label="Set Focused Tab Icon" onclick="{! c.setFocusedTabIcon }" />
</aura:component>

74

https://www.lightningdesignsystem.com/icons/
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPISetTabIcon
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API

Controller code:

({

setFocusedTabIcon function (component,

var workspaceAPI =

event,

helper)

component.find ("workspace") ;

{

Methods for Lightning Console JavaScript API

workspaceAPI.getFocusedTabInfo () .then (function (response) {

var focusedTabId =
workspaceAPI.setTabIcon ({
tabId: focusedTabld,
icon: "action:approval",
iconAlt: "Approval"
});
})
.catch (function(error) {
console.log(error) ;

)

Response

response.tabId;

This method returns a promise that, upon success, resolves toa tabInfo object representing the modified tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo

object.

{

tabId:
url:

string,
(URL) ,
pinned: boolean,

string

closeable:
title:
icon: string
iconAlt:
customTitle:
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference:

boolean,

string,

(SLDS iconKey),
string,

string (optional),

object,
isSubtab: boolean,
parentTabId:
subtabs: [

{

string,

tabId: string,
url: string (URL),
pinned: boolean,
closeable:
title:
icon: string
iconAlt:
customTitle:
customIcon: (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference:

boolean,
string,
(SLDS iconKey),
string,
string (optional),
string

object,

75

Lightning Console API Methods for Lightning Console JavaScript API

isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

Iy
focused: boolean,
recordId: string

setTabLabel () for Lightning Experience

Sets the label of the specified tab. This method works only in Lightning console apps.

Arguments
Name Type Description
tabId string The ID of the tab for which to set the label.
label string The label of the workspace tab or subtab.
LWC Sample Code

This component has a function that sets a label on a specified tab. It uses the tabId property from getFocusedTablnfo().

import { LightningElement, wire } from 'lwc';
import {

IsConsoleNavigation,

getFocusedTabInfo,

setTabLabel
} from 'lightning/platformWorkspaceApi';

const TAB LABEL = 'Awesome Label';

export default class WorkspaceAPISetTabLabel extends LightningElement {
@wire (IsConsoleNavigation) isConsoleNavigation;

async setTabLabel () {
if (!'this.isConsoleNavigation) {
return;

}
const { tabId } = await getFocusedTabInfol();

setTabLabel (tabId, TAB LABEL);

}

This example is the workspaceAPISetTablLabel component from the Iwc-recipes repo.

To make your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

76

https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc/workspaceAPISetTabLabel
https://github.com/trailheadapps/lwc-recipes/tree/main/force-app/main/default/lwc
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html

Lightning Console API

Aura

Components Sample Code

Methods for Lightning Console JavaScript API

This component has a button that, when pressed, sets the label of the focused tab to “Focused Tab”".

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

}"

<lightning:workspaceAPI aura:id="workspac

<lightning:button label="Set Focused Tab with Label" onclick="{!

/>

</aura:component>

Controller code:

({

setFocusedTabLabel
var workspaceAPI =

function (component,

en />

event,

helper)

component.find ("workspace") ;

{

c.setFocusedTabLabel

workspaceAPI.getFocusedTabInfo () .then (function (response) {

var focusedTabId = response.tabId
workspaceAPI.setTabLabel ({
tabId: focusedTablId,
label: "Focused Tab"
}) i
})
.catch (function(error) {
console.log(error);

)i

Response

’

This method returns a promise that, upon success, resolves to a tabInfo object representing the modified tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure ofa tabInfo

object.

{

tabId:
url:

string,
(URL) ,
pinned: boolean,
closeable:
title:

string

boolean,

string,

icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,

isSubtab: boolean,

parentTabId:
subtabs: [

{

customIcon:

string,

tabId:
url:

string,
(URL) ,
pinned: boolean,

string

77

Lightning Console API Methods for Lightning Console JavaScript API

closeable: boolean,

title: string,

icon: string (SLDS iconKey),
iconAlt: string,

customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,

parentTabId: string,

focused: boolean,

recordId: string,

1,
focused: boolean,
recordId: string

EnclosingTabId Context Wire Adapter for Lightning Experience
Returns the ID of the enclosing tab or subtab. This wire adapter is available for Lightning Web Components (LWC) only.

To determine if the component is within a tab or subtab, use this context wire adapter. If a caller component isn't using the wire adapter
inside a tab or subtab, the enclosing utility tab ID is null.

O Tip: To retrieve information about the tab or the subtab that a component is rendered in, first use EnclosingTabId instead
of getFocusedTabInfo () on page 54. Then callgetTabInfo () on page 57 and use the enclosing tab’s ID as the
argument. By using EnclosingTabId, you make sure that the correct tab ID is returned when you work with lifecycle hooks
such as renderedCallback () or connectedCallback().

LWC Sample Code
To get the ID of the enclosing tab in LWC, use the EnclosingTabId wire adapter.

This component retrieves the enclosing tab ID and closes the tab.

import { LightningElement, wire } from 'lwc';
import { EnclosingTabId, closeTab } from 'lightning/platformWorkspaceApi';

export class CloseEnclosingTabExample extends LightningElement {
@wire (EnclosingTabId) enclosingTabId;

handleClick () {
// Ensure that we have a tab open
if (!'this.enclosingTabId) {
return;

}
closeTab (this.enclosingTabId) ;

}

For another example that uses the EnclosingTabId wire adapter, see openSubtab().

78

Lightning Console API Methods for Lightning Console JavaScript API

To make your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

Response

This method returns a promise that, upon success, resolves to the tabId of the enclosing tab, if within a tab. If not within a tab, this
method resolves to false upon success.

SEE ALSO:
LWC Dev Guide: Understand the Wire Service

IsConsoleNavigation Context Wire Adapter for Lightning Experience

Determines whether the app it's used within uses console navigation. This wire adapter is available for Lightning Web Components
(LWQ) only.

To determine if the component is within a console app, use this wire adapter. If a caller component isn't using the wire adapter inside
a tab or subtab, the enclosing utility tab ID is null.

LWC Sample Code

This component checks if it's within a Lightning console app and returns the tab information using the IsConsoleNavigation
wire adapter.

import { LightningElement, wire } from 'lwc';
import { IsConsoleNavigation, getFocusedTabInfo } from 'lightning/platformWorkspaceApi';

export class ConsoleNavExample extends LightningElement {
@wire (IsConsoleNavigation) isConsoleNavigation;

async handleFocusTab () {
if (!'this.isConsoleNavigation) {
return;

const { tabId } = await getFocusedTabInfo();
// do something with the tabId

)

}

For another example that uses IsConsoleNavigation, see closeTabl().

To make your component available for use in a Lightning console app, specify the 1ightning AppPage targetin the component’s
configuration file.

Response

If the current app uses console navigation, this method returns true, or false otherwise.

SEE ALSO:
LWC Dev Guide: Understand the Wire Service

79

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/data-wire-service-about.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-console-app.html
https://developer.salesforce.com/docs/platform/lwc/guide/data-wire-service-about.html

Lightning Console API Methods for Lightning Console JavaScript API

Methods for the Utility Bar in Lightning Experience

The utility bar houses Aura components and Lightning web components, providing users quick access to tools they use often. The utility
bar is available in Lightning Experience only. Both Lightning Web Components (LWC) and Aura Components support the utility bar
methods, with usage differences noted on each method.

To understand how the utility bar methods for LWC map to the methods for Aura Components, see Utility Bar API Method Parity.

These methods are available for working with the utility bar.

IN THIS SECTION:

disableUtilityPopOut() for Lightning Experience
Disables pop-out for a utility. This method isn't supported for Lightning Web Components (LWC).

enableModal() for Lightning Experience
Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is
visible. This method is available for Lightning Web Components (LWC) only.

enablePopout() for Lightning Experience
Toggles pop-out mode on a utility. Enabling pop-out mode on a utility displays the utility in a separate child window. This method
is available for Lightning Web Components (LWC) only.

getAllUtilitylnfo() for Lightning Experience
Returns the state of all utilities as an array of utilityInfo objects.

getEnclosingUtilityld() for Lightning Experience

Returns the ID of the enclosing utility, or false if not within a utility. This method isn't supported for Lightning Web Components
(LWQ).

getinfo() for Lightning Experience

Returns the state of the current utility asa uti1ityInfo object. This method is available for Lightning Web Components (LWC)
only.

getUtilitylnfo() for Lightning Experience

Returns the state of the current utility asa utilityInfo object. This method isn't supported for Lightning Web Components
(LWQ).

isUtilityPoppedQut() for Lightning Experience

Determines whether the utility is in a popped-out state. This method isn't supported for Lightning Web Components (LWC).

minimize() for Lightning Experience

Minimizes a utility. This method is available for Lightning Web Components (LWC) only.
minimizeUtility() for Lightning Experience

Minimizes a utility. This method isn't supported for Lightning Web Components (LWC).

onUtilityClick() for Lightning Experience
Registers an eventHandler for the utility. This eventHandler is called when the utility is clicked.

open() for Lightning Experience
Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is
already open, open () minimizes the utility. This method is available for Lightning Web Components (LWC) only.

openUtility() for Lightning Experience
Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is
already open, openUtility () minimizes the utility. This method isn't supported for Lightning Web Components (LWQ).

80

Lightning Console API Methods for Lightning Console JavaScript API

setPanelHeaderlcon() for Lightning Experience

Sets the icon of a utility’s panel. This icon is displayed in the utility panel header. This method isn't supported for Lightning Web
Components (LWQ).

setPanelHeaderlLabel() for Lightning Experience

Sets the label of a utility’s panel. This label is displayed in the utility panel header. This method isn't supported for Lightning Web
Components (LWQ).

setPanelHeight() for Lightning Experience

Sets a utility panel’s height. This method isn't supported for Lightning Web Components (LWC).

setPanelWidth() for Lightning Experience

Sets a utility panel’s width. This method isn't supported for Lightning Web Components (LWQ).

setUtilityHighlighted() for Lightning Experience

Sets a utility as highlighted, giving it a badge and a more prominent background color. This method isn't supported for Lightning
Web Components (LWCQ).

setUtilitylcon() for Lightning Experience

Sets the icon of a utility. This icon is displayed in the utility bar. This method isn't supported for Lightning Web Components (LWC).
setUtilityLabel() for Lightning Experience

Sets the label of a utility. This text is displayed in the utility bar. This method isn't supported for Lightning Web Components (LWC).

toggleModalMode() for Lightning Experience

Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is
visible. This method isn't supported for Lightning Web Components (LWC).

updatePanel() for Lightning Experience

Specifies a label and icon on the utility panel, and provides a height and width for the panel. This method is available for Lightning
Web Components (LWC) only.

updateUtility() for Lightning Experience

Specifies a label and icon on the utility bar, and sets a utility as highlighted. This method is available for Lightning Web Components
(LWQ) only.

EnclosingUtilityld Context Wire Adapter for Lightning Experience
Determines if the component is within a utility. This wire adapter is available for Lightning Web Components (LWC) only.

disableUtilityPopoOut () for Lightning Experience
Disables pop-out for a utility. This method isn't supported for Lightning Web Components (LWC).

For LWC usage, see enablePopout().

Arguments
Name Type Description
utilityId string The ID of the utility to disable pop-out for.
Optional when called within a utility.
disabled boolean

If true, disables pop-out and removes the
pop-out icon for a utility that isn't popped

81

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

out. If the utility is already popped out, the
pop-out icon is disabled.

If disabledText is provided, the
pop-outiconisn‘t removed, but it's disabled.

disabledText string Hover text for the pop-out and pop-inicons
if disabled is setto true. Optional.

Aura Components Sample Code
This component has a button that, when pressed, disables utility pop-out.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Disable Utility Pop-Out" onclick="{!
c.handleDisableUtilityPopQut }" />
</aura:component>

Controller code:

({
handleDisableUtilityPopOut : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.disableUtilityPopOut ({
disabled: true,
disabledText: "Pop-out is disabled"
});

Response

This method returns a promise that, upon success, resolves to true.

enableModal () for Lightning Experience

Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is visible.
This method is available for Lightning Web Components (LWC) only.

Arguments
Name Type Description
utilityIld string The ID of the utility for which to toggle
modal mode.
enabled boolean Specifies whether to enable the utility's
modal mode.

82

Lightning Console API Methods for Lightning Console JavaScript API

LWC Sample Code

Before you can use the LWC utility bar API, Lightning Web Security must be enabled.
This component toggles modal mode in a utility bar.

import { LightningElement, wire } from 'lwc';

import { enableModal, EnclosingUtilityId } from 'lightning/platformUtilityBarApi';

export default class EnableModalExample extends LightningElement {
@wire (EnclosingUtilityId) utilityId;
isModalEnabled = false;

async handleToggle () {
const enable = !this.isModalEnabled;
this.isModalEnabled = enable;
await enableModal (this.utilityId, enable);

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetinthe component's
configuration file.

Response

Returns a promise that resolves to true if successful. The promise is rejected on error.

enablePopout () for Lightning Experience

Toggles pop-out mode on a utility. Enabling pop-out mode on a utility displays the utility in a separate child window. This method is
available for Lightning Web Components (LWC) only.

Arguments

Optional parameters are passed into an object as the last argument of the method.

Name Type Description

utilityIld string The ID of the utility for which to toggle
pop-out mode.

enabled boolean Specifies whether to enable the utility's
modal mode.

disabledText string Optional. Hover text for pop-out button
when the utility is not enabled for pop-out
mode.

LWC Sample Code

Before you can use the LWC utility bar API, Lightning Web Security must be enabled.

83

https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html

Lightning Console API Methods for Lightning Console JavaScript API

This component toggles modal mode in a utility bar.

import { LightningElement, wire } from 'lwc';
import { enablePopout, EnclosingUtilityId } from 'lightning/platformUtilityBarApi';

export default class EnablePopoutExample extends LightningElement {
@wire (EnclosingUtilityId) utilityId;
enable = true;

async handleToggle () {
const enable = !this.isPopoutEnabled;
await enablePopout (this.utilityId, enable, { disabledText: 'disabled' });
this.isPopoutEnabled = enable;

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetin the component's
configuration file.

Response

Returns a promise that resolves to true if successful. The promise is rejected on error.

getAllUtilityInfo () for Lightning Experience

Returns the state of all utilities as an array of utilityInfo objects.

Arguments

None.

LWC Sample Code
Before you can use the LWC utility bar API, Lightning Web Security must be enabled.

This component returns the number of utilities in the utility bar using the utilityInfo object.

import { LightningElement, wire } from 'lwc';
import { getAllUtilityInfo } from 'lightning/platformUtilityBarApi';

export default class UtilityInfoExample extends LightningElement {
utilityCount = 0;

async handleGetAllUtilityInfo() {
try {
const utilityInfo = await getAllUtilityInfol();
this.utilityCount = utilityInfo.length;

} catch (error) {
// return error

84

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html

Lightning Console API Methods for Lightning Console JavaScript API

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetin the component’s
configuration file.

Aura Components Sample Code
This component has a button that, when pressed, retrieves all utilityInfo objects and opens the first utility, ordered by ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get All Utility Info" onclick="{! c.handleGetAllUtilityInfo
}" />

</aura:component>
Controller code:

({
handleGetAllUtilityInfo : function (component, event, helper) {
var utilityBarAPI = component.find("utilitybar");
utilityBarAPI.getAllUtilityInfo () .then (function (response) {
var myUtilityInfo = response([0];
utilityBarAPI.openUtility ({
utilityId: myUtilityInfo.id
1)
})
.catch (function(error) {
console.log(error);

)i

Response

For both LWC and Aura Components, this method returns a promise that resolves to an array of utilityInfo objects, containing
the following fields. The promise is rejected on error.

Name Type Description

id string The ID of the utility.

isLoaded boolean Whether the utility is loaded.
utilityLabel string The label of the utility.

utilityIcon string The SLDS icon ID of the utility's icon.
utilityIconVariant string The SLDS icon variant of the utility’s icon.
utilityHighlighted boolean Whether the utility is highlighted.
utilityVisible boolean Whether the utility is visible.
utilityPoppedOut boolean Whether the utility is popped out.
panelHeaderLabel string The label of the utility panel.

85

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description
panelHeaderIcon string The SLDS icon ID of the utility panel's icon.
panelHeaderIconVariant string The SLDS icon variant of the utility panel’s
icon.
panelHeight integer The height of the utility panel in pixels.
panelWidth integer The width of the utility panel in pixels
SEE ALSO:

MDN Web Docs: async function

getEnclosingUtilityId() for Lightning Experience
Returns the ID of the enclosing utility, or false if not within a utility. This method isn't supported for Lightning Web Components (LWC).

For LWC usage, see EnclosingUtilityld context wire adapter.

Arguments

None.

Aura Components Sample Code
This component has a button that, when pressed, retrieves the enclosing utility's ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get Enclosing Utility ID" onclick="{!
c.handleGetEnclosingUtilityId }" />
</aura:component>

Controller code:

({
handleGetEnclosingUtilityId : function (component, event, helper) {

var utilityAPI = component.find("utilitybar");

utilityAPI.getEnclosingUtilityId() .then (function(utilityId) {
console.log(utilityId);

})

.catch (function(error) {
console.log(error) ;

1)

Response

This method returns a promise that, upon success, resolves to the ut 111 tyId of the enclosing utility or false if not within a utility.

86

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Lightning Console API Methods for Lightning Console JavaScript API

getInfo () for Lightning Experience

Returns the state of the current utility asa utilityInfo object. This method is available for Lightning Web Components (LWC)

only.
Arguments
Name Type Description
utilityIld string The ID of the utility for which to retrieve the
state.
LWC Sample Code

Before you can use the LWC utility bar API, Lightning Web Security must be enabled.

This component retrieves the utilityInfo object.

import { LightningElement, wire } from 'lwc';
import { EnclosingUtilityId, getInfo } from 'lightning/platformUtilityBarApi';

export default class UtilityInfoExample extends LightningElement ({
@wire (EnclosingUtilityId) utilityId;

async handleGetUtilityInfo() {
try {
if (!this.utilityId) {
return;

}
const utilityInfo = await getInfo(this.utilityId);
console.log(utilityInfo);

}

catch (error) {
// handle error

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetin the component's
configuration file.

Response

This method returns a promise that resolvestoa utilityInfo object representing the enclosing utility, containing the following
fields. The promise is rejected on error.

Name Type Description

id string The ID of the utility.
isLoaded boolean Whether the utility is loaded.
utilityLabel string The label of the utility.

87

https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description
utilityIcon string The SLDS icon ID of the utility's icon.
utilityIconVariant string The SLDS icon variant of the utility’s icon.
utilityHighlighted boolean Whether the utility is highlighted.
utilityVisible boolean Whether the utility is visible.
utilityPoppedOut boolean Whether the utility is popped out.
panelHeaderLabel string The label of the utility panel.
panelHeaderIcon string The SLDS icon ID of the utility panel’s icon.
panelHeaderIconVariant string The SLDS icon variant of the utility panel’s
icon.
panelHeight integer The height of the utility panel in pixels.
panelWidth integer The width of the utility panel in pixels
SEE ALSO:

MDN Web Docs: async function

getUtilityInfo () for Lightning Experience
Returns the state of the current utilityasa utilityInfo object. This methodisn't supported for Lightning Web Components (LWQ).

For LWC usage, see getinfo().

Arguments
Name Type Description
utilityId string The ID of the utility for which to retrieve the

state.

Aura Components Sample Code

This component has a button that, when pressed, retrieves the enclosing utility's info and opens it if it's not currently visible, and closes
it otherwise.

Component code:
<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get Utility Info" onclick="{! c.handleGetUtilityInfo }" />
</aura:component>

88

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Lightning Console API Methods for Lightning Console JavaScript API

Controller code:

({
handleGetUtilityInfo : function (component, event, helper) {
var utilityBarAPI = component.find("utilitybar");
utilityBarAPI.getUtilityInfo () .then (function (response) {
if (response.utilityVisible) {
utilityBarAPI.minimizeUtility();
}
else {
utilityBarAPI.openUtility ()

})
.catch (function (error) {
console.log(error) ;

)

Response

This method returns a promise that resolves toa utilityInfo object representing the enclosing utility, containing the following
fields. The promise is rejected on error.

Name Type Description

id string The ID of the utility.

isLoaded boolean Whether the utility is loaded.

utilityLabel string The label of the utility.

utilityIcon string The SLDS icon ID of the utility’s icon.

utilityIconVariant string The SLDS icon variant of the utility’s icon.

utilityHighlighted boolean Whether the utility is highlighted.

utilityVisible boolean Whether the utility is visible.

utilityPoppedOut boolean Whether the utility is popped out.

panelHeaderLabel string The label of the utility panel.

panelHeaderIcon string The SLDS icon ID of the utility panel’s icon.

panelHeaderIconVariant string The SLDS icon variant of the utility panel’s
icon.

panelHeight integer The height of the utility panel in pixels.

panelWidth integer The width of the utility panel in pixels

isUtilityPoppedout () for Lightning Experience

Determines whether the utility is in a popped-out state. This method isn't supported for Lightning Web Components (LWQ).

89

Lightning Console API Methods for Lightning Console JavaScript API

To check if a utility is in a popped-out state with LWC, use getinfo() for Lightning Experience.

Arguments

None

Sample Code
This component has a button that, when pressed, states whether the current utility is popped out or not.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Is Utility popped out?" onclick="{! c.handlelIsUtilityPoppedOut
P>
<lightning:textarea label="Popped out?" aura:id="textarea" />
</aura:component>

Controller code:

({
handleIsUtilityPoppedOut : function (component, event, helper) {

var utilityBarAPI = component.find("utilitybar");

utilityBarAPI.isUtilityPoppedOut () .then (function (response) {
component.find('textarea').set('v.value', response);

})

.catch (function (error) {
console.log(error) ;

)

Response

This method returns a promise that, upon success, resolves to true if the utility is popped out, and false otherwise.

minimize () for Lightning Experience

Minimizes a utility. This method is available for Lightning Web Components (LWC) only.

Arguments

Name Type Description

utilityIld string The ID of the utility for which to minimize.
LWC Sample Code

Before you can use the LWC utility bar API, Lightning Web Security must be enabled.

90

https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html

Lightning Console API Methods for Lightning Console JavaScript API

This component minimizes a utility.

import { LightningElement, wire } from 'lwc';
import { minimize, EnclosingUtilityId } from 'lightning/platformUtilityBarApi';

export default class MinimizeUtilityExample extends LightningElement {
@wire (EnclosingUtilityId) utilityId;

async handleMinimize () {
try {
if (!'this.utilityId) {
return;

}
// Minimize the utility bar panel
const isMinimized = await minimize (this.utilityId);
console.log('Minimize utility ${isMinimized ? 'successfully' : 'failed'}");

}
catch (error) {
// handle error

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetinthe component's
configuration file.

Response

Returns a promise that resolves to true if successful. The promise is rejected on error.

SEE ALSO:
LWC Dev Guide: Understand the Wire Service

minimizeUtility () for Lightning Experience
Minimizes a utility. This method isn't supported for Lightning Web Components (LWC).

For LWC usage, see minimize().

Arguments
Name Type Description
utilityId string The ID of the utility to minimize. Optional

when called within a utility.

Aura Components Sample Code

This component minimizes the utility when the button is pressed.

91

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/data-wire-service-about.html

Lightning Console API Methods for Lightning Console JavaScript API

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Minimize Utility" onclick="{! c.handleMinimizeUtility }" />
</aura:component>

Controller code:

({
handleMinimizeUtility : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.minimizeUtility ()

Response

This method returns a promise that, upon success, resolves to true.

onUtilityClick () for Lightning Experience
Registers an eventHandler for the utility. This eventHandler is called when the utility is clicked.
Consider the following guidelines when working with this method.

e The method is supported in Lightning apps with standard and console navigation.
e You can use this method to register multiple callbacks per utilityItem when executed sequentially.

e You can't remove registered callbacks.

Arguments
The method provides the same arguments for both Aura Components and Lightning Web Components (LWC).

For LWC, optional parameters are passed into an object as the last argument of the method.

Name Type Description

utilityId string The ID of the utility for which to register the
callback. Optional when called within a
utility using Aura Components. Always
required for LWC.

eventHandler function The JavaScript function that's called when
the utility is clicked.

LWC Sample Code
Before you can use the LWC utility bar AP, Lightning Web Security must be enabled.

This component handles a utility click using the EnclosingUtilityId wire adapter.

import { LightningElement, wire } from 'lwc';
import { onUtilityClick, EnclosingUtilityId } from 'lightning/platformUtilityBarApi';

92

https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html

Lightning Console API Methods for Lightning Console JavaScript API

export default class UtilityClickExample extends LightningElement ({
@wire (EnclosingUtilityId) utilityId;

handleUtilityClick() {
if (!this.utilityId) {
return;
}
onUtilityClick(this.utilityId, () => {
console.log("Utility ${this.utilityId} clicked!");
});

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetinthe component's
configuration file.

LWC Response

Returns a promise that resolves to true if successful. The promise is rejected on error.

Aura Components Sample Code

This component has a button that, when pressed, registers an eventHandler function for the enclosing utility.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Register Event Handler" onclick="{!c.handleOnUtilityClick}"/>
</aura:component>

Controller code:

({
handleOnUtilityClick: function (component, event, helper) {
var utilityBarAPI = component.find("utilitybar");
var eventHandler = function (response) {
console.log(response) ;

b

utilityBarAPI.onUtilityClick({
eventHandler: eventHandler
}) .then (function (result) {
console.log(result);
}) .catch (function (error) {
console.log(error);

)

Aura Components Response

This method returns a promise that, upon success, resolves to true, and isrejected on error. The eventHandler expectsaresponse
JSON object containing the following fields.

93

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

utilityId string The ID of the utilityBar item button that was
clicked.

panelVisible boolean False if the utility item panel is hidden after

the button is clicked. True if the utility item
panel is visible after the button is clicked.

open () for Lightning Experience

Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is already
open, open () minimizes the utility. This method is available for Lightning Web Components (LWC) only.

Arguments

Optional parameters are passed into an object as the last argument of the method.

Name Type Description
utilityId string The ID of the utility to open.
autoFocus object Optional. Specifies whether the utility item

to open has focus.

LWC Sample Code

Before you can use the LWC utility bar API, Lightning Web Security must be enabled.
This component opens a utility using the enclosing utility ID.

import { LightningElement, wire } from 'lwc';

import { open, EnclosingUtilityId } from 'lightning/platformUtilityBarApi';

export default class EnablePopoutExample extends LightningElement {
@wire (EnclosingUtilityId) utilityId;

async handleOpen () {
if (!'this.utilityId) {
return;

}

await open(this.utilityId, { autoFocus: true });

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetinthe component's
configuration file.

Response

Returns a promise that resolves to true if successful. The promise is rejected on error.

94

https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html

Lightning Console API Methods for Lightning Console JavaScript API

openUtility () for Lightning Experience

Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is already
open, openUtility () minimizes the utility. This method isn't supported for Lightning Web Components (LWC).

For LWC usage, see open().

Arguments
Name Type Description
utilityIld string The ID of the utility to open. Optional when

called within a utility.

Aura Components Sample Code
This component, when added to a single-column Lightning page used in a utility bar, opens the utility when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Open Utility" onclick="{! c.handleOpenUtility }" />
</aura:component>

Controller code:

({

handleOpenUtility : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.openUtility ()

})

This example opens a utility from outside of the utility, using the utilityId field.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Open First Utility" onclick="{! c.openFirstUtility }" />
</aura:component>

Controller code:

({
openFirstUtility : function(component, event, helper) ({

var utilityAPI = component.find("utilitybar");

utilityAPI.getAllUtilityInfo() .then (function (response) {
var myUtilityInfo = response([0];
utilityAPI.openUtility ({

utilityId: myUtilityInfo.id

1)

})

.catch (function (error) {
console.log(error);

95

Lightning Console API Methods for Lightning Console JavaScript API

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeaderIcon () for Lightning Experience

Sets the icon of a utility’s panel. This icon is displayed in the utility panel header. This method isn't supported for Lightning Web
Components (LWQ).

For LWC usage, see updatePanel().

Arguments

Name Type Description

utilityId string The ID of the utility to set the panel header
icon on. Optional when called within a
utility.

icon string An SLDS utility icon key. This is displayed in
the utility bar. See a full list of utility icon
keys on the SLDS reference site.

options object Optional. Additional options that modify the

appearance of the utility panel icon.

® iconVariant—Changes the utility
panel icon color. Available types are
success (), warning (| 1),and

error ().

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the icon of the utility panel to a yellow SLDS
“frozen" icon when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Header Icon" onclick="{! c.handleSetPanelHeaderIcon
}" />

</aura:component>
Controller code:

({
handleSetPanelHeaderIcon : function (component, event, helper) ({
var utilityAPI = component.find("utilitybar");

96

https://www.lightningdesignsystem.com/icons/

Lightning Console API Methods for Lightning Console JavaScript API

utilityAPI.setPanelHeaderIcon ({
icon: “frozen”
options: {
iconVariant:"warning"

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeaderLabel () for Lightning Experience

Sets the label of a utility’s panel. This label is displayed in the utility panel header. This method isn't supported for Lightning Web
Components (LWCQ).

For LWC usage, see updatePanel().

Arguments
Name Type Description
utilityId string The ID of the utility to set the panel header
label on. Optional when called within a
utility.
label string The label of the utility displayed in the panel
header.

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the label of the utility panel to “My Utility”
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Header Label" onclick="{! c.handleSetPanelHeaderLabel
/>
</aura:component>

Controller code:

({
handleSetPanelHeaderLabel : function (component, event, helper) ({
var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeaderLabel ({
label: "My Utility"
});

97

Lightning Console API Methods for Lightning Console JavaScript API

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeight () for Lightning Experience
Sets a utility panel’s height. This method isn't supported for Lightning Web Components (LWC).
For LWC usage, see updatePanel().

Arguments
Name Type Description
utilityId string The ID of the utility of which to set the
height. Optional when called within a utility.
heightPX integer The height of the utility panel in pixels.

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the height of the utility to 500 pixels when
the button is pressed.

Component code:

_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Height" onclick="{! c.handleSetPanelHeight }" />
</aura:component>

Controller code:

({
handleSetPanelHeight : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeight ({
heightPX: 500
});

Response

This method returns a promise that, upon success, resolves to true.

setPanelWidth () for Lightning Experience

Sets a utility panel’s width. This method isn't supported for Lightning Web Components (LWC).

98

Lightning Console API Methods for Lightning Console JavaScript API

For LWC usage, see updatePanel().

Arguments
Name Type Description
utilityId string The ID of the utility of which to set the
width. Optional when called within a utility.
widthPX integer The width of the utility panel in pixels.

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the width of the utility panel to 800 pixels
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Width" onclick="{! c.handleSetPanelWidth }" />
</aura:component>

Controller code:

({
handleSetPanelWidth : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelWidth ({
widthPX: 800

)i

Response

This method returns a promise that, upon success, resolves to true.

setUtilityHighlighted () for Lightning Experience

Sets a utility as highlighted, giving it a badge and a more prominent background color. This method isn't supported for Lightning Web
Components (LWQ).

For LWC usage, see updateUtility() for Lightning Experience.

Arguments
Name Type Description
utilityId string The ID of the utility to highlight. Optional

when called within a utility.

99

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

highlighted boolean Whether the utility is highlighted. Makes a
utility more prominent by giving it a
different background color.

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets a utility as highlighted when the button is
pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Highlighted" onclick="{!
c.handleSetUtilityHighlighted}" />
</aura:component>

Controller code:

({
handleSetUtilityHighlighted : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityHighlighted ({
highlighted: true
}):

Response

This method returns a promise that, upon success, resolves to true.

setUtilityIcon() for Lightning Experience
Sets the icon of a utility. This icon is displayed in the utility bar. This method isn't supported for Lightning Web Components (LWC).
For LWC usage, see updateUtility() for Lightning Experience.

Arguments
Name Type Description
utilityId string The ID of the utility on which to set the icon.
Optional when called within a utility.
icon string An SLDS utility icon key that is displayed in

the utility bar. See a full list of utility icon
keys on the SLDS reference site.

100

https://www.lightningdesignsystem.com/icons/

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description
options object Optional. Additional options that modify the
appearance of the utility icon.

® iconVariant—Changes the utility
icon color. Available types are
success (Jl]), warning ([),and

error ().

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the icon of the utility to a green SLDS
“insert_tag_field” icon when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Icon" onclick="{! c.handleSetUtilityIcon }" />
</aura:component>

Controller code:

({
handleSetUtilityIcon : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityIcon ({
icon: "insert tag field",
options: {
iconVariant:"success"

Response

This method returns a promise that, upon success, resolves to true.

setUtilityLabel () for Lightning Experience
Sets the label of a utility. This text is displayed in the utility bar. This method isn't supported for Lightning Web Components (LWC).
For LWC usage, see updateUtility() for Lightning Experience.

Arguments
Name Type Description
utilityId string The ID of the utility of which to set the label.

Optional when called within a utility.

101

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description
label string The label of the utility displayed in the utility
bar.

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the label of the utility to "My Favorite Utility”
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Label" onclick="{! c.handleSetUtilityLabel }" />
</aura:component>

Controller code:

({
handleSetUtilityLabel : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityLabel ({
label: "My Favorite Utility"

)

Response

This method returns a promise that, upon success, resolves to true.

toggleModalMode () for Lightning Experience

Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is visible.
This method isn't supported for Lightning Web Components (LWCQ).

For LWC usage, see enableModal().

Arguments
Name Type Description
utilityIld string The ID of the utility to open. Optional when
called within a utility.
enableModalMode boolean Whether to enable modal mode.

Aura Components Sample Code

This component, when added to a single-column Lightning page used in a utility bar, has a button that, when pressed, toggles modal
mode.

102

Lightning Console API Methods for Lightning Console JavaScript API

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Toggle Modal Mode" onclick="{! c.handleToggleModalMode }" />
</aura:component>

Controller code:

({

handleToggleModalMode : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.toggleModalMode ({
enableModalMode: true
1)

Response

This method returns a promise that, upon success, resolves to true.

updatePanel () for Lightning Experience

Specifies a label and icon on the utility panel, and provides a height and width for the panel. This method is available for Lightning Web
Components (LWC) only.

Arguments

Optional parameters are passed into an object as the last argument of the method.

Name Type Description
utilityId string The ID of the utility panel to update.
panelAttrs object Optional. Attributes that specify the

appearance of the panel.

® label—The label of the utility that's
displayed in the panel header.

e icon—The Lightning Design System
(SLDS) name of the icon in the
format einstein, where
einstein isthe name of the SLDS
utility icon. The icon is displayed in the
utility panel header. See a full list of
utility icon keys at the SLDS reference
site. SLDS doctype, standard, custom,
and action icons aren't supported.

e iconVariant—Thevariantchanges
the color of the utility panel icon.

103

https://www.lightningdesignsystem.com/icons/
https://www.lightningdesignsystem.com/icons/

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

Available variants are success (i),
warning (), and error ().

e height—The height of the utility
panel in pixels.

® heightTransition—Anobject
that describes the CSS transition for the
utility panel's height. See the
heightTransition section.

e width—Thewidth of the utility panel
in pixels.

® widthTransition—Anobjectthat
describes the CSS transition for the
utility panel's width. See the
widthTransition section.

heightTransition

An optional object that describes the CSS transition for the utility panel's height. Pass this object to panelAttrs and use with
height. Optional arguments include:

® durationMs—The timein milliseconds. It takes for the height transition to complete. The default value is 0.

e timingFunction—The transition timing function that sets the rate for panel height changes. Applies any CSS easing function
that's supported by your target browser. The default value is ease.

® delayMs—The wait time in milliseconds before the height transition starts. The default value is 0.

widthTransition

An optional object that describes the CSS transition for the utility panel's width. Pass this object to panelAttrs and use with width.
Optional arguments include:

® durationMs—The time in milliseconds. It takes for the width transition to complete. The default value is 0.

® timingFunction—The transition timing function that sets the rate for panel width changes. Applies any CSS easing function
that's supported by your target browser. The default value is ease.

e delayMs—The wait time in milliseconds before the width transition starts. The default value is 0.

LWC Sample Code
Before you can use the LWC utility bar API, Lightning Web Security must be enabled.

This component opens a utility using the enclosing utility ID.

import { LightningElement, wire } from 'lwc';
import { updatePanel, EnclosingUtilityId } from 'lightning/platformUtilityBarApi';

export default class UpdatePanelExample extends LightningElement {
@wire (EnclosingUtilityId) utilityId;

104

https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html

Lightning Console API
panelAttrs = {
label: 'Account Insights',
icon: 'einstein',
iconVariant: 'success',
height: 600,
width: 600

handleUpdate () {
if (this.utilityId) {

return updatePanel (this.utilityId, this

}

Methods for Lightning Console JavaScript API

.panelAttrs);

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetin the component’s

configuration file.

Response

Returns a promise that resolves to true if successful. The promise is rejected on error.

updateUtility () for Lightning Experience

Specifies a label and icon on the utility bar, and sets a utility as highlighted. This method is available for Lightning Web Components

(LWQ) only.

Arguments

Optional parameters are passed into an object as the last argument of the method.

Name
utilityId

utilityAttrs

Type
string

object

Description

The ID of the utility to update.

Optional. Attributes that specify the
appearance of the icon.

label—The label of the utility that's
displayed in the utility bar.
icon—The Lightning Design System
(SLDS) name of the icon in the

format einstein, where
einstein isthe name of the SLDS
utility icon. The icon is displayed in the
utility bar. See a full list of utility icon
keys at the SLDS reference site. SLDS
doctype, standard, custom, and action
icons aren't supported.

iconVariant—Thevariantchanges
the color of the utility bar. Available

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://www.lightningdesignsystem.com/icons/

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

variants are success (i),
warning (), and error ().

® highlighted—Applies a different
background color.

LWC Sample Code
Before you can use the LWC utility bar AP, Lightning Web Security must be enabled.

This component opens a utility using the enclosing utility ID.

import { LightningElement, wire } from 'lwc';
import { updateUtility, EnclosingUtilityId } from 'lightning/platformUtilityBarApi';

export default class UpdatePanelExample extends LightningElement {
@wire (EnclosingUtilityId) utilityId;

utilityAttrs = {
label: 'Account Insights',
icon: 'einstein',
iconVariant: 'success',
highlighted: true

handleUpdate () {
if (this.utilityId) {
return updateUtility(this.utilityId, this.utilityAttrs);

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetin the component’s
configuration file.

Response

Returns a promise that resolves to true if successful. The promise is rejected on error.

EnclosingUtilityId Context Wire Adapter for Lightning Experience
Determines if the component is within a utility. This wire adapter is available for Lightning Web Components (LWC) only.

To obtain the ID of the enclosing utility, use this context wire adapter. If a caller component isn't using the wire adapter inside a panel,
the enclosing utility ID is null.

LWC Sample Code
Before you can use the LWC utility bar API, Lightning Web Security must be enabled.

106

https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/security-lwsec-enable.html

Lightning Console API Methods for Lightning Console JavaScript API

This component minimizes a utility bar panel using the enclosing utility ID and the minimize() method.

import { LightningElement, wire } from 'lwc';
import { EnclosingUtilityId, minimizeUtility } from 'lightning/platformUtilityBarApi';

export default class MinimizeUtilityExample extends LightningElement {
@wire (EnclosingUtilityId) utilityId;

handleClick () {
if (!'this.utilityId) {
return;

}
// Minimize the utility bar panel
minimize (this.utilityId);

}

To make your component available for use in a utility bar, specify the 1ightning UtilityBar targetin the component’s
configuration file.

Response

Returns the enclosing utility ID if the caller component is within a utility, or nul1 otherwise.

SEE ALSO:
LWC Dev Guide: Understand the Wire Service

LWC Methods for Enhanced Messaging in Lightning Experience

The Conversation Toolkit API for Enhanced Messaging provides methods to interact with a Messaging customer from a Lightning web
component (LWC). These methods apply to Lightning web components in Lightning Experience only.

The Conversation Toolkit APlis designed for Enhanced Messaging channels, which includes Messaging for In-App and Web, Enhanced
Apple, Enhanced Facebook Messenger, Enhanced WhatsApp, Enhanced SMS, and Partner Messaging.

You can now import Lightning console API methods, which allow your background and non-rendered custom components to use the
APIs.

These methods help developers customize the agent experience and how users and other components interact with the conversation
component on a page. For example, if you want to customize how an agent composes a message, you can create a messaging composer
to draft and send a message during the conversation. These methods only work with an open Messaging Session record page in the
console or standard app. If the record is not open, the methods don’t work.

@ Nofte: Use only rendered components with the Conversation Toolkit APIs. If you use a component that doesn’t have markup or
that operates in the background, the APIs don't work. The conversation component must also be rendered for the APIs to work.

Sample Code
This sample code is an example of the .html file of an LWC bundle that uses Conversation Toolkit API.

<template>
<lightning-card title="LWC tool kit api" icon-name="custom:customl4">
<lightning-conversation-toolkit-api lwc:ref="lwcToolKitApi">
</lightning-conversation-toolkit-api>

107

https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-utility-bar.html
https://developer.salesforce.com/docs/platform/lwc/guide/data-wire-service-about.html

Lightning Console API Methods for Lightning Console JavaScript API

<div>
{apiOutput}
</div>
<div>
<lightning-button label="getConversationLog" onclick={handleButtonClick}
value="getConversationLog"></lightning-button>
<lightning-button label="sendTextMessage" onclick={handleButtonClick}
value="sendTextMessage"></lightning-button>
<lightning-button label="setAgentInput" onclick={handleButtonClick}
value="setAgentInput"></lightning-button>
<lightning-button label="endConversation" onclick={handleButtonClick}
value="endConversation"></lightning-button>
</div>
<template for:each={log} for:item="item">
<1li key={item}>
{item}
</1li>
</template>

</lightning-card>
</template>

This sample code is an example of the xml metadata file of the LWC bundle.

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata” fgn="helloWorld">

<apiVersion>52.0</apiVersion>

<isExposed>true</isExposed>

<targets>
<target>lightning AppPage</target>
<target>lightning RecordPage</target>
<target>lightning HomePage</target>

</targets>

</LightningComponentBundle>

This sample code is an example of the Jjs file of the LWC bundle. Here is where you use the LWC methods for Enhanced Messaging.

import { LightningElement, api,track } from 'lwc';

export default class HelloWorld extends LightningElement ({
@api recordId;

@track log = [];
@track apiOutput;
changeHandler (event) {
this.greeting = event.target.value;

async handleButtonClick (event) {
this.reset () ;
const toolKit = this.refs.lwcToolKitApi;
let result;
switch (event.target.value) {
case 'getConversationLog':

108

Lightning Console API Methods for Lightning Console JavaScript API

result = await toolKit.getConversationLog (this.recordId);
for(let i=0;i<result.messages.length;i++) {
var msg = {
type:result.messages[i].type,
content:result.messages[i].content,
name:result.messages[i] .name,
timestamp:result.messages[i].timestamp
}
this.log.push (JSON.stringify (msg));
}

break;
case 'sendTextMessage':
result = await toolKit.sendTextMessage (this.recordId, { text: 'Text from toolkit'
1) ;
break;

case 'setAgentInput':
result = await toolKit.setAgentInput (this.recordId,{ text: 'Inserting from toolkit'

break;

case 'endConversation':
result = await toolKit.endConversation (this.recordId);
break;

}
if (result) {

this.apiOutput = event.target.value + " sucess";
} else {

this.apiOutput = event.target.value + " failed";

reset () {
this.log = [];
this.apiOutput="";

}

These are the LWC methods for Enhanced Messaging.

IN THIS SECTION:

endConversation() for LWC for Lightning Experience
Ends the Messaging session. This method works only in Lightning console apps.

getConversationlLog() for LWC for Lightning Experience
Retrieves the conversation log. This method works only in Lightning console apps.

sendTextMessage() for LWC for Lightning Experience
Sends a new text message from the agent to an end user. This method works only in Lightning console apps.

setAgentinput() for LWC for Lightning Experience
Sets the text in the agent's text box. This method works only in Lightning console apps.

109

Lightning Console API Methods for Lightning Console JavaScript API

setMessagingComponent() for LWC for Lightning Experience

Inserts a specified messaging component into the service rep’s text box. You can also use this method to insert text into the service
rep’s text box. This method works only in Lightning console apps.

sendMessagingComponent() for LWC for Lightning Experience

Sends a new message with a specified messaging component on behalf of the service rep. You can also use this method to send a
text message. This method works only in Lightning console apps.

SEE ALSO:
Salesforce Trailhead: Build Lightning Web Components
Salesforce Help: Customize the Enhanced Conversation Component in the Agent Console

Salesforce Help: Messaging Component Types and Formats

endConversation() for LWC for Lightning Experience

Ends the Messaging session. This method works only in Lightning console apps.

Arguments

Name Type Description

recordId String The ID of the record for the Messaging session.
Response

Returns a Promise. Success resolves to t rue. The Promise is rejected if there's an error.

getConversationLog() for LWC for Lightning Experience
Retrieves the conversation log. This method works only in Lightning console apps.

This method returns up to 200 entries from the point the user scrolled to in the transcript. Rich content from bots, for example, messaging
components with a question with choices, are not supported.

Arguments

Name Type Description

recordId String The ID of the record for the Messaging session.
Response

Returns a Promise. Success resolves to a messages response object. The Promise is rejected if there's an error.

110

https://trailhead.salesforce.com/content/learn/trails/build-lightning-web-components
https://help.salesforce.com/s/articleView?language=en_US&id=sf.messaging_customize_enhanced_conversation_component.htm
https://help.salesforce.com/s/articleView?language=en_US&id=sf.messaging_customize_enhanced_conversation_component.htm

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description
messages Array of An array of message objects containing all of the messages from the conversation
message log.
objects.
message

The message object containing a single message from the conversation log.

Name Type Description
content String The text content of a message in the conversation log.
name String The name of the user who sent the message in the conversation log. This name

appears exactly as it is displayed in the conversation.
type String The type of message that was received, such as AGENT or END USER.

timestamp String The date and time the message was received.

sendTextMessagel() for LWC for Lightning Experience

Sends a new text message from the agent to an end user. This method works only in Lightning console apps.

Arguments
Name Type Description
recordId String The ID of the record for the Messaging session.
message Object The message object with the message to send to the customer.
message
Name Type Description
text String The message to the customer. Forexample: { text: "This is a sample
message." }
Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

setAgentinput() for LWC for Lightning Experience

Sets the text in the agent's text box. This method works only in Lightning console apps.

m

Lightning Console API Methods for Lightning Console JavaScript API

Arguments
Name Type Description
recordId String The ID of the record for the Messaging session.
message Object The message object with the message to place in the agent's text box.
setAtCursor Boolean Optional. Indicates whether to insert the message at the current cursor location. If
false, the message overwrites any existing text. Default value is false.
message
Name Type Description
text String The message to the agent. For example: { text: "This is a sample
message." }
Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

setMessagingComponent() for LWC for Lightning Experience

Inserts a specified messaging component into the service rep’s text box. You can also use this method to insert text into the service rep'’s
text box. This method works only in Lightning console apps.

Arguments
Name Type Description
recordId String The ID of the record for the Messaging session.
messageType String The message component type to place in the service rep’s text box. For example,
StaticContentMessage. See Message Types and Message Format Types.
nameQOrld String The name or ID of the messaging component to place in the service rep’s text box.
text String Optional. The message to the end user. For example: This is a sample
message.
setAtCursor Boolean Optional. Indicates whether to insert the message at the current cursor location. If
false, the message overwrites any existing text. Default value is false.
Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

N2

https://developer.salesforce.com/docs/service/messaging-api/references/about/message-types-format-types.html

Lightning Console API Methods for Lightning Console JavaScript API

Sample Code

This example inserts a static content message into the service rep’s text box.

import { LightningElement, api } from 'lwc';
import { setMessagingComponent } from 'lightning/conversationToolkitApi';

export default class MyComponent extends LightningElement {
@api recordId;

async handleButtonClick (event) {
const result = await setMessagingComponent (
this.recordId, {
messageType: "StaticContentMessage",
nameOrId: "1mdxx0000000001AAA"™
1)

console.log(result);

sendMessagingComponent() for LWC for Lightning Experience

Sends a new message with a specified messaging component on behalf of the service rep. You can also use this method to send a text
message. This method works only in Lightning console apps.

Arguments
Name Type Description
recordId String The ID of the record for the Messaging session.
messageType String The message component type to send on behalf of the service rep. For example,
StaticContentMessage. See Message Types and Message Format Types.
nameQOrld String The name or ID of the messaging component to send on behalf of the service rep.
text String Optional. The message to the end user. For example: This is a sample
message.
Response

Returns a Promise. Success resolves to t rue. The Promise is rejected if there's an error.

Sample Code

This example sends a static content message on behalf of the service rep.

import { LightningElement, api } from 'lwc';
import { sendMessagingComponent } from 'lightning/conversationToolkitApi';

export default class MyComponent extends LightningElement ({

13

https://developer.salesforce.com/docs/service/messaging-api/references/about/message-types-format-types.html

Lightning Console API Methods for Lightning Console JavaScript API

@api recordId;

async handleButtonClick (event) {
const result = await setMessagingComponent (
this.recordId, {
messageType: "StaticContentMessage",
nameOrId: "1mdxx0000000001AAA"™
1)

console.log(result);

Aura Methods for Enhanced Messaging in Lightning Experience

Enable your developers to customize the agent experience by allowing custom components to interact with the Enhanced Conversation
Component. These methods apply to Aura components in Lightning Experience only.

Use Enhanced Messaging methods when:

e The methods are invoked within the page context of the Enhanced Messaging session.
e The Enhanced Messaging session is active.

e The Enhanced Conversation Component is visible on the page.

These methods apply to Aura components in Lightning Experience only.

IN THIS SECTION:

endChat() for Lightning Experience
Ends a chat in which an agent is currently engaged. This method works only in Lightning console apps.

getChatlLog() for Lightning Experience

Returns the chat log of an Enhanced Messaging chat associated with a specific recordld. This method works only in Lightning console
apps.

sendMessage() for Lightning Experience

Sends a new chat message from the agent to a chat with a specific chat key. This method works only in Lightning console apps.

setAgentinput() for Lightning Experience
Sets the text in the agent's text box while showing typing indicators. This method works only in Lightning console apps.

endChat () for Lightning Experience

Ends a chat in which an agent is currently engaged. This method works only in Lightning console apps.

Arguments
Name Type Description
argumentObj Object An object containing all the arguments to be passed into this method.

114

Lightning Console API Methods for Lightning Console JavaScript API

argumentObj

Name Type Description

recordId String The ID of the chat that you want to end.
Sample Code

This example ends the chat and logs the result.

Component Code:

_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="endChat" press="{!c.endChat}" />
</aura:component>

Controller Code:

({
endChat: function (cmp, evt, helper) {
var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get ("v.recordId");
conversationKit.endChat ({
recordId: recordId
})
.then (function (result) {
if (result) {
console.log("Successfully ended chat");
} else {
console.log("Failed to end chat");

Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

getChatLog () for Lightning Experience

Returns the chat log of an Enhanced Messaging chat associated with a specific recordld. This method works only in Lightning console

apps.
Arguments

Name Type Description

argumentOb7 Object An object containing all the arguments to be passed into this method.

15

Lightning Console API Methods for Lightning Console JavaScript API

argumentObj

Name Type Description

recordId String The ID of the work associated with the current chat.
Sample Code

This example retrieves the chat log for the given chat, logs the result, and if successful, saves the result to a variable.

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<aura:attribute name="chatLog" type="Object" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="getChatLog" press="{!c.getChatLog}" />
</aura:component>

Controller Code:

({
getChatlLog: function(cmp, evt, helper) ({
var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get ("v.recordId");
conversationKit.getChatLog ({
recordId: recordId
})
.then (function (result) {
if (result) {
console.log("Successfully retrieved chat log");
cmp.set ("v.chatLog", result);
} else {
console.log("Failed to retrieve chat log");

Response

Returns a Promise. Success resolves to a response object containing the messages. The Promise is rejected if there's an error.

Name Type Description
messages Array of An array of chat message objects containing all of the chat messages from the chat
message log.
objects.
message

The message object contains a single chat message from the chat log and the following properties:

116

Lightning Console API

Property
content

name

type

timestamp

Type
String
String

String

Date/Time

Methods for Lightning Console JavaScript API

Description
The text content of a message in the chat log.

The name of the user who sent the message in the chat log. This name appears
exactly as it is displayed in the chat log.

The type of message that was received, such as Agent or Visitor.

The date and time the chat message was received.

sendMessage () for Lightning Experience

Sends a new chat message from the agent to a chat with a specific chat key. This method works only in Lightning console apps.

Arguments

Name

argumentObj

argumentObj

Name
recordId

message

message

Name

text

Sample Code

Type
Object

Type
String
Object

Type
String

Description

An object containing all the arguments to be passed into this method.

Description
The ID of the chat that you want to end.

An object containing the data to send in the message.

Description

The text to be sent in the message.

This example sends a message to the visitor and logs the result.

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"

description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />

<ui:button label="sendMessage" press="{!c.sendMessage}" />

</aura:component>

n7

Lightning Console API Methods for Lightning Console JavaScript API

Controller Code:

({
sendMessage: function(cmp, evt, helper) {
var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get ("v.recordId");
conversationKit.sendMessage ({
recordId: recordId,
message: {
text:"Hi, this was sent using the sendMessage API!"

})
.then (function (result) {
if (result) {
console.log("Successfully sent message");
} else {
console.log("Failed to send message");

Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

setAgentInput () for Lightning Experience

Sets the text in the agent's text box while showing typing indicators. This method works only in Lightning console apps.

Arguments
Name Type Description
argumentOb] Object An object containing all the arguments to be passed into this method.
argumentObj
Name Type Description
recordId String The ID of the work associated with the current chat.
message Object The message to place in the agent’s text box. The message should be an object with
a string property for the text value. For example: { text: "This is a
sample message." }
setAtCursor Boolean Indicates whether to insert the message at the current cursor location. If false,

the message overwrites any existing text. Default value is false.

18

Lightning Console API Methods for Lightning Console JavaScript API

Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

Methods for Chat in Lightning Experience

Let customers chat with your agents on your web page.

Connect with customers or website visitors in real time through Web-based chat.

@ Important: The legacy chat product is in maintenance-only mode, and we won't continue to build new features. You can continue
to use it, but we no longer recommend that you implement new chat channels. Instead, you can modernize your customer
communication with Messaging for In-App and Web. Messaging offers many of the chat features that you love plus asynchronous

conversations that can be picked back up at any time. For Lightning Console JavaScript AP, use Aura Methods for Enhanced
Messaging in Lightning Experience.

IN THIS SECTION:

endChat() for Lightning Experience
Ends a chat in which an agent is currently engaged. This method works only in Lightning console apps.

getChatLog() for Lightning Experience
Returns the chat log of a chat associated with a specific recordld. This method works only in Lightning console apps.

sendCustomEvent() for Lightning Experience

Sends a custom event to the client-side chat window for a chat with a specific chat key. This method works only in Lightning console
apps.

sendMessage() for Lightning Experience

Sends a new chat message from the agent to a chat with a specific chat key. This method works only in Lightning console apps.

endChat () for Lightning Experience

Ends a chat in which an agent is currently engaged. This method works only in Lightning console apps.

Arguments

Name Type Description

argumentOb] Object An object containing all the arguments to be passed into this method.
argumentObj

Name Type Description

recordId String The ID of the chat that you want to end.
Sample Code

This example ends the chat and logs the result.

19

https://help.salesforce.com/s/articleView?id=sf.miaw_intro_landing.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.miaw_chat_vs_messaging.htm&language=en_US

Lightning Console API Methods for Lightning Console JavaScript API

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="endChat" press="{!c.endChat}" />
</aura:component>

Controller Code:

(1
endChat: function(cmp, evt, helper) ({
var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get ("v.recordId");
conversationKit.endChat ({
recordId: recordId
})
.then (function (result) {
if (result) {
console.log("Successfully ended chat");
} else {
console.log("Failed to end chat");

Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

getChatLog () for Lightning Experience

Returns the chat log of a chat associated with a specific recordld. This method works only in Lightning console apps.

Arguments

Name Type Description

argumentOb] Object An object containing all the arguments to be passed into this method.
argumentObj

Name Type Description

recordId String The ID of the work associated with the current chat.
Sample Code

This example retrieves the chat log for the given chat, logs the result, and if successful, saves the result to a variable.

120

Lightning Console API

Methods for Lightning Console JavaScript API

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<aura:attribute name="chatLog" type="Object" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="getChatLog" press="{!c.getChatLog}" />
</aura:component>

Controller Code:

({
getChatLog: function(cmp, evt, helper) {
var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get ("v.recordId");
conversationKit.getChatLog ({
recordId: recordId
})
.then (function (result) {
if (result) {
console.log("Successfully retrieved chat log");
cmp.set ("v.chatLog", result);
} else {

console.log("Failed to retrieve chat log");

Response

Returns a Promise. Success resolves to a response object containing the messages and customEvents properties. The Promise
is rejected if there's an error.

Name Type Description

customEvents Array of An array of custom event objects representing the custom events that occurred
customEvent duringa chat.
objects.

messages Array of An array of chat message objects containing all of the chat messages from the chat
message log.
objects.

success Boolean true if getting the chat log was successful; false if getting the chat log wasn't

successful.
customEvent

The customEvent object contains a single event from the chat log and the following properties:

121

Lightning Console API
Property Type
source String
type String
data String
timestamp Date/Time
message

Methods for Lightning Console JavaScript API

Description
The person who initiated the custom event, either the chat visitor or the agent.
The type of custom event that occurred.

The data of the custom event that was sent to the chat; corresponds to the data
argumentofthe 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.

The date and time a custom event was received.

The message object contains a single chat message from the chat log and the following properties:

Property Type
content String
name String
type String
timestamp Date/Time

Description
The text content of a message in the chat log.

The name of the user who sent the message in the chat log. This name appears
exactly as itis displayed in the chat log.

The type of message that was received, such as Agent or Visitor.

The date and time the chat message was received.

sendCustomEvent () for Lightning Experience

Sends a custom event to the client-side chat window for a chat with a specific chat key. This method works only in Lightning console

apps.
Arguments
Name Type
argumentObj Object
argumentObj
Name Type
recordId String
type String
data String
Sample Code

Description

An object containing all the arguments to be passed into this method.

Description
The ID of the event that you want to customize.
The name of the custom event type.

The data attached to the custom event.

This example publishes a custom event and logs the result.

122

Lightning Console API Methods for Lightning Console JavaScript API

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">

<aura:attribute name="recordId" type="String" />

<lightning:conversationToolkitAPI aura:id="conversationKit" />

<ui:button label="sendCustomEvent" press="{!c.sendCustomEvent}" />
</aura:component>

Controller Code:

({
sendCustomEvent: function (cmp, evt, helper) {
var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get ("v.recordId");
var type

"myCustomEventType";
var data = "myCustomEventData";
conversationKit.sendCustomEvent ({
recordId: recordId,
type: type,
data: data
})
.then (function (result) {
if (result) {

console.log("Successfully sent custom event");
} else {

console.log("Failed to send custom event");

})
The custom event type must match the name of your custom event. Replace myCustomEventType with your own custom event

name.

Response

Returns a Promise. Success is indicated if the promise is fulfilled. Failure is indicated if the catch clause is invoked.

sendMessage () for Lightning Experience

Sends a new chat message from the agent to a chat with a specific chat key. This method works only in Lightning console apps.

Arguments
Name Type Description
argumentOb] Object An object containing all the arguments to be passed into this method.

123

Lightning Console API Methods for Lightning Console JavaScript API

argumentObj

Name Type Description

recordId String The ID of the chat that you want to end.

message Object An object containing the data to send in the message.
message

Name Type Description

text String The text to be sent in the message.
Sample Code

This example sends a message to the visitor and logs the result.

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="sendMessage" press="{!c.sendMessage}" />
</aura:component>

Controller Code:

({
sendMessage: function (cmp, evt, helper) {
var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get ("v.recordId");
conversationKit.sendMessage ({
recordId: recordId,
message: {
text:"Hi, this was sent using the sendMessage API!"

})
.then (function (result) {
if (result) {
console.log ("Successfully sent message");
} else {
console.log("Failed to send message");

Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

124

Lightning Console API Methods for Lightning Console JavaScript API

Methods for Omni-Channel in Lightning Experience

Omni-Channel lets your call center route any type of incoming work item to the most qualified, available agents.

For more information about Omni-Channel, see Omni-Channel for Administrators in Salesforce Help.

IN THIS SECTION:

acceptAgentWork for Lightning Experience
Accepts a work item that's assigned to an agent.

closeAgentWork for Lightning Experience
Changes the status of a work item to Closed and removes it from the list of work items in the Omni-Channel utility.

declineAgentWork for Lightning Experience
Declines a work item that's assigned to an agent.

getAgentWorkload for Lightning Experience
Retrieves an agent’s currently assigned workload. Use this method to reroute work to available agents.

getAgentWorks for Lightning Experience
Returns a list of work items that are assigned to an agent and open in the agent’s workspace.

getServicePresenceStatusChannels for Lightning Experience
Retrieves the service channels that are associated with an Omni-Channel user’s current presence status.

getServicePresenceStatusld for Lightning Experience
Retrieves an agent's current presence status.

login for Lightning Experience
Logs an agent in to Omni-Channel with a specific presence status.

logout for Lightning Experience
Logs an agent out of Omni-Channel.

lowerAgentWorkFlag for Lightning Experience
Lowers a flag for this agent work item.

raiseAgentWorkFlag for Lightning Experience
Raises a flag for this agent work item.

setServicePresenceStatus for Lightning Experience

Sets an agent's presence status to a status with a particular ID. If the specified agent is not already logged in, we log in the agent
with the presence status. This method removes the need for you to make more calls.

acceptAgentWork for Lightning Experience

Accepts a work item that's assigned to an agent.

Arguments
Name Type Description
workId string The ID of the work item the agent accepts.

125

Lightning Console API Methods for Lightning Console JavaScript API

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Accept" onclick="{! c.acceptWork }" />
</aura:component>

Controller code:

({
acceptWork: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks () .then (function (result) {
var works = JSON.parse (result.works);
var work = works[0];
omniAPI.acceptAgentWork ({workId: work.workId}).then(function(res) {
if (res) {
console.log ("Accepted work successfully");
} else {
console.log ("Accept work failed");
}
}) .catch (function (error) {
console.log(error) ;

)i

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

closeAgentWork for Lightning Experience

Changes the status of a work item to Closed and removes it from the list of work items in the Omni-Channel utility.

Arguments

Name Type Description

workId string The ID of the work item that's closed.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Close" onclick="{! c.closeWork }" />
</aura:component>

126

Lightning Console API Methods for Lightning Console JavaScript API

Controller code:

({
closeWork: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks () .then (function (result) {
var works = JSON.parse (result.works);
var work = works[0];
omniAPI.closeAgentWork ({workId: work.workId}).then (function(res) {
if (res) {
console.log("Closed work successfully");
} else {
console.log("Close work failed");
}
}) .catch (function (error) {
console.log(error);

)i

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

declineAgentWork for Lightning Experience

Declines a work item that's assigned to an agent.

Arguments
Name Type Description
workId string The ID of the work item that the agent declines.
declineReason string The reason that the agent declined the work request.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Decline" onclick="{! c.declineWork }" />
</aura:component>

Controller code:

({
declineWork: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks () .then (function (result) {
var works = JSON.parse (result.works);

127

Lightning Console API Methods for Lightning Console JavaScript API

var work = works[0];
omniAPI.declineAgentWork ({workId: work.workId}) .then (function(res) {
if (res) {
console.log("Declined work successfully");
} else {
console.log("Decline work failed");
}
}) .catch (function (error) {
console.log(error) ;

)

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

getAgentWorkload for Lightning Experience

Retrieves an agent’s currently assigned workload. Use this method to reroute work to available agents.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get workload" onclick="{! c.getAgentWorkload }" />
</aura:component>

Controller code:

({
getAgentWorkload: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorkload () .then (function (result) {
console.log('Retrieved Agent Configured Capacity and Current Workload
successfully');
console.log('Agent\'s configured capacity is: ' + result.configuredCapacity);

console.log('Agent\'s currently assigned workload is: ' +
result.currentWorkload) ;
}) .catch (function (error) {
console.log(error) ;
})

Response

This method returns a promise that, upon success, resolves to an object containing the following fields.

128

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

configuredCapacity number The agent’s configured primary capacity (work that's assigned to the current user)
through Presence Configuration.

currentWorkload number The agent’s currently assigned primary workload.

anfigredintemptibleCaacity Number Indicates the agent’s configured interruptible capacity (that is, work that's assigned
to the current user) through Presence Configuration.

arrentInternptibleiorkload Number Indicates the agent’s currently assigned interruptible workload.

getAgentWorks for Lightning Experience

Returns a list of work items that are assigned to an agent and open in the agent’s workspace.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Agent works" onclick="{! c.getAgentWorks }" />
</aura:component>

Controller code:

({
getAgentWorks: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks () .then (function (result) {

var works = JSON.parse (result.works);

console.log('First Agent Work ID is: ' + works[0].workId);

console.log('Assigned Entity Id of the first Agent Work is: ' +
works[0] .workItemId);

console.log('Is first Agent Work Engaged: ' + works[0O].isEngaged);

}) .catch (function (error) {
console.log(error);

)

Response

This method returns a promise that, upon success, resolves to an array of work objects, containing the following fields.

Name Type Description

workItemId String The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

workId String The ID of a work assignment that's routed to an agent.

129

Lightning Console API Methods for Lightning Console JavaScript API

Name Type Description

isEngaged Boolean Indicates whether an agent is working on a work item that's been assigned to them
(true)ornot (false).

getServicePresenceStatusChannels for Lightning Experience

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Status Channels" onclick="{! c.getStatusChannels }" />
</aura:component>

Controller code:

({
getStatusChannels: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");

omniAPI.getServicePresenceStatusChannels () .then (function (result) {
var channels = JSON.parse (result.channels);
//For example purposes, just retrieve the first channel
console.log('First channel ID is: ' + channels[0].channelId);
console.log('First channel developer name is: ' + channels[0].developerNamnme) ;

}) .catch (function (error) {
console.log(error);

)i

Response

This method returns a promise that, upon success, resolves to an array of channel objects, containing the following fields.

Name Type Description
channellId String The ID of the channel.
developerName String The name of the channel.

getServicePresenceStatusId for Lightning Experience

Retrieves an agent/s current presence status.

130

Lightning Console API Methods for Lightning Console JavaScript API

Sample Code
Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Status" onclick="{! c.getStatus }" />
</aura:component>

Controller code:

({
getStatus: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getServicePresenceStatusId() .then (function(result) {
console.log('Status Id is: ' + result.statusId);

}) .catch (function (error) {
console.log(error) ;
1)

Response

This method returns a promise that, upon success, resolves to an object, containing the following fields.

Name Type Description

statusName string The name of the agent's current presence status.
statusApiName string The API name of the agent’s current presence status.
statusId string The ID of the agent’s current presence status.

login for Lightning Experience

Logs an agent in to Omni-Channel with a specific presence status.

Arguments
Name Type Description
statusId string The ID of the presence status. Agents must be given access to this presence status
through their associated profile or permission set.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Login" onclick="{! c.login }" />

</aura:component>

131

Lightning Console API Methods for Lightning Console JavaScript API

Controller code:

({
login: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.login ({statusId: "ON5xx0000000001"}) .then(function(result) {
if (result) {
console.log("Login successful");
} else {
console.log("Login failed");
}
}) .catch (function (error) {
console.log(error) ;

)i

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

logout for Lightning Experience

Logs an agent out of Omni-Channel.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Logout" onclick="{! c.logout }" />

</aura:component>

Controller code:

({
logout: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.logout () .then (function (result) {
if (result) {
console.log("Logout successful");
} else {
console.log ("Logout failed");
}
}) .catch (function (error) {
console.log(error) ;

)

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

132

Lightning Console API Methods for Lightning Console JavaScript API

lowerAgentWorkFlag for Lightning Experience

Lowers a flag for this agent work item.

Arguments

Name Type Description

workId string The ID of the work item to lower the flag on.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Lower Flag" onclick="{! c.lowerFlag }" />
</aura:component>

Controller code:

({
lowerFlag: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks () .then (function (result) {
var works = JSON.parse (result.works);
var work = works([0];
omniAPI.lowerAgentWorkFlag ({workId: work.workId}).then (function(res) {
if (res) {
console.log("Flag lowered successfully");
} else {
console.log("Flag lower failed");
}
}) .catch (function (error) {
console.log(error);

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

Note: When Omni-Channel Fallback Mode is enabled, the raise and lower flag feature isn't supported. If this method is used, it
doesn’t perform any operations and always resolves to true.

SEE ALSO:
Knowledge Article: Routing Work with Omni-Channel Fallback Mode

133

https://help.salesforce.com/s/articleView?id=002186102&type=1&language=en_US

Lightning Console API Methods for Lightning Console JavaScript API

raiseAgentWorkFlag for Lightning Experience

Raises a flag for this agent work item.

Arguments
Name Type Description
workId string The ID of the work item to raise the flag on.
message string Optional. The message associated with this flag.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />

<lightning:button label="Raise Flag" onclick="{! c.raiseFlag }" />
</aura:component>

Controller code:

({

raiseFlag: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks () .then (function (result) {
var works = JSON.parse (result.works);

var work = works[0];

omniAPI.raiseAgentWorkFlag ({workId: work.workId, message: "Raise Flag
Message"}) .then (function(res) {

if (res) {

console.log("Flag raised successfully");
} else {

console.log("Flag raise failed");
}
}) .catch (function (error) {
console.log(error) ;

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

Notfe: When Omni-Channel Fallback Mode is enabled, the raise and lower flag feature isn't supported. If this method is used, it
doesn't perform any operations and always resolves to true.

SEE ALSO:
Knowledge Article: Routing Work with Omni-Channel Fallback Mode

134

https://help.salesforce.com/s/articleView?id=002186102&type=1&language=en_US

Lightning Console API Methods for Lightning Console JavaScript API

setServicePresenceStatus for Lightning Experience

Sets an agent's presence status to a status with a particular ID. If the specified agent is not already logged in, we log in the agent with
the presence status. This method removes the need for you to make more calls.

Arguments
Name Type Description
statusId string The ID of the presence status to which you want to set the agent. Agents must be
given access to this presence status through their associated profile or permission
set.
Sample Code

Component code:

_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Set Status" onclick="{! c.setStatus }" />
</aura:component>

Controller code:

({
setStatus: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.setServicePresenceStatus ({statusId: "0ON5xx0000000002"}) .then (function (result)

console.log('Current statusId is: ' + result.statusId);
console.log('Channel list attached to this status is: ' + result.channels);

}) .catch (function (error) {
console.log(error) ;

)

Response

This method returns a promise that, upon success, resolves to an object containing the following fields.

Name Type Description

statusName string The name of the agent’s current presence status.

statusApiName string The APl name of the agent’s current presence status.

statusId string The ID of the agent's current presence status.

channels JSON string of ~ Returns the IDs and API names of the channels associated with the presence status.
channel
objects

135

Lightning Console API Events for Lightning Console JavaScript API

Events for Lightning Console JavaScript API

Use events and handlers in your Aura components and controllers to respond to events like workspace tabs opening, closing, or gaining
focus. In Lightning web components, subscribe to Aura application events using their corresponding Lightning message channels.

Aura application events are received by all rendered Aura components, even those on background tabs. By default, the Lightning message
channel events are received by active components only, such as those on the foreground tab or in activated utility bar components.
Your component can receive all Lightning message channel events by subscribing with the optional APPLICATION SCOPE
parameter. For more information, see Define the Scope of the Message Service.

IN THIS SECTION:

lightning:tabClosed
Indicates that a tab has been closed.

lightning:tabCreated
Indicates that a tab has been created successfully.

lightning:tabFocused
Indicates a tab was focused.

lightning:tabRefreshed

Indicates that a tab has been refreshed.
lightning:tabReplaced

Indicates that a tab has been replaced successfully.
lightning:tabUpdated

Indicates that a tab has been updated successfully.

Subscribe to Aura Application Events in LWC
Subscribe to Aura application events using their corresponding Lightning message channels.

Lightning Web Component Events for Enhanced Messaging

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are
specific to Messaging. These events apply to Lightning web components in Lightning Experience only.

Aura Events for Enhanced Messaging

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are
specific to Messaging. These events apply to Aura components in Lightning Experience only.

Events for Chat

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are
specific to Chat. These events apply to Lightning Experience only.

Events for Omni-Channel

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. There are a few events
that are specific to Omni-Channel. These events apply to Lightning Experience only.

lightning: tabClosed

Indicates that a tab has been closed.

136

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-scope.html

Lightning Console API Events for Lightning Console JavaScript API

Response
Name Type Description
tabId string The ID of the closed tab.

Example: This example prints a line to the browser’s developer console when a tab is closed.
Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<aura:handler event="lightning:tabClosed" action="{! c.onTabClosed }"/>

</aura:component>
Controller code:

({
onTabClosed : function (component, event, helper) {
var tabId = event.getParam('tabId');
console.log("Tab closed: " + tabId);

lightning:tabCreated

Indicates that a tab has been created successfully.

Response
Name Type Description
tabId string The ID of the new tab.

Example: This example prints a line to the browser’s developer console when a tab is created, and sets the label of the tab to
"New Tab" using the setTabLabel () method.

Component code:

_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabCreated" action="{! c.onTabCreated }"/>

</aura:component>
Controller code:

({

onTabCreated : function (component, event, helper) {
console.log ("Tab created.");
var newTabId = event.getParam('tabId');
var workspaceAPI = component.find("workspace");

workspaceAPI.setTabLabel ({

137

Lightning Console API Events for Lightning Console JavaScript API

tabId: newTabld,
label: 'New Tab'

lightning: tabFocused
Indicates a tab was focused.

lightning:tabFocused fires whenever a user selects a workspace tab or subtab, so console navigation users frequently trigger
this application event in typical use. This event also fires when going from a tab to a navigation item, or going from a navigation item
to a tab. Aura application events notify all listeners registered in the default phase, including listeners in background tabs. Multiple
listeners responding at the same time can impact performance. To minimize performance impact, use a utility item as the only listener,
or use a custom component event instead.

Response
Name Type Description
previousTabld string The ID of the previously focused tab.
currentTabld string The ID of the currently focused tab.

@ Example: This example prints a line to the browser's developer console when a tab is focused, and then returns that tab’s
tabInfo objectusingthe getTabInfo () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabFocused" action="{! c.onTabFocused }"/>
</aura:component>

Controller code:

({
onTabFocused : function (component, event, helper) {
console.log("Tab Focused");
var focusedTabId = event.getParam('currentTabId'):;
var workspaceAPI = component.find("workspace");
workspaceAPI.getTabInfo ({
tabId : focusedTabld
}) .then (function (response) {
console.log(response) ;

)

138

Lightning Console API Events for Lightning Console JavaScript API

lightning: tabRefreshed

Indicates that a tab has been refreshed.

Response
Name Type Description
tabId string The ID of the refreshed tab.

@ Example: This example prints a line to the browser’s developer console when a tab is refreshed, and then returns that tab’s
tabInfo objectusingthe getTabInfo () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />

<aura:handler event="lightning:tabRefreshed" action="{! c.onTabRefreshed }"/>
</aura:component>

Controller code:

({
onTabRefreshed : function (component, event, helper) {

console.log("Tab Refreshed");

var refreshedTabId = event.getParam("tabId");

var workspaceAPI = component.find("workspace");

workspaceAPI.getTabInfo ({
tabId : refreshedTabId

}) .then (function (response) {
console.log(response) ;

1)

lightning: tabReplaced

Indicates that a tab has been replaced successfully.

Response
Name Type Description
tabId string The ID of the replaced tab.

139

Lightning Console API Events for Lightning Console JavaScript API

Example: This example prints a line to the browser's developer console when a tab is replaced, and then returns that tab’s URL
using the getTabURL () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabReplaced" action="{! c.onTabReplaced }"/>
</aura:component>

Controller code:

({

onTabReplaced : function (component, event, helper) {
console.log ("Tab Replaced");
var replacedTabId = event.getParam("tabId");
var workspaceAPI = component.find("workspace");
workspaceAPI.getTabURL ({
tabId : replacedTabId
}) .then (function (response) {
console.log(response);

)i

lightning: tabUpdated

Indicates that a tab has been updated successfully.

Response
Name Type Description
tabId string The ID of the updated tab.

Example: Thisexample prints aline to the browser's developer console when a tab is updated, and then prints that tab’s tabId.

Component code:

—_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabUpdated" action="{! c.onTabUpdated }"/>
</aura:component>

Controller code:

(1
onTabUpdated : function (component, event, helper) ({
console.log ("Tab Updated") ;
var updatedTabId = event.getParam("tabId"):;
console.log (updatedTabId) ;

by

140

Lightning Console API Events for Lightning Console JavaScript API

Subscribe to Aura Application Events in LWC

Subscribe to Aura application events using their corresponding Lightning message channels.

Aura application events are received by all rendered Aura components, even those on background tabs. By default, the Lightning message
channel events are received by active components only, such as those on the foreground tab or in activated utility bar components.
Your component can receive all Lightning message channel events by subscribing with the optional APPLICATION SCOPE
parameter. For more information, see Define the Scope of the Message Service.

IN THIS SECTION:

lightning__tabClosed
A Lightning message channel that corresponds to the 1ightning: tabClosed Auraapp event.

lightning__tabCreated
A Lightning message channel that corresponds to the 1ightning:tabCreated Auraapp event. This message channel is
available for Lightning web components used within a Lightning console app.

lightning__tabFocused
A Lightning message channel that corresponds to the 1ightning:tabFocused Auraapp event. This message channel is
available for Lightning web components used within a Lightning console app.

lightning__tabRefreshed
A Lightning message channel that corresponds to the 1ightning: tabRefreshed Aura app event. This message channel is
available for Lightning web components used within a Lightning console app.

lightning__tabReplaced
A Lightning message channel that corresponds to the Lightning:tabReplaced Auraapp event. This message channel is
available for Lightning web components used within a Lightning console app.

lightning__tabUpdated
A Lightning message channel that corresponds to the 1ightning:tabUpdated Auraapp event. This message channel is
available for Lightning web components used within a Lightning console app.

lightning tabClosed

A Lightning message channel that corresponds to the 1ightning:tabClosed Auraapp event.

Response

The response is the same as that of the lightning:tabClosed Aura app event.

LWC Example

Importthe 1ightning tabClosed message channelfromthe @salesforce/messageChannel/ scoped module. The
event returns the message in the response.

import { LightningElement, wire } from "lwc";

import { MessageContext, subscribe, unsubscribe, APPLICATION SCOPE } from
"lightning/messageService";

import tabClosedChannel from "@salesforce/messageChannel/lightning tabClosed";

export default class TabClosedExample extends LightningElement {
subscription = null;

141

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-scope.html

Lightning Console API Events for Lightning Console JavaScript API

@wire (MessageContext) messageContext;

// Encapsulate logic for Lightning message service subscribe and unsubscribe
subscribeToMessageChannel () {
if (!this.subscription) {
this.subscription = subscribe (
this.messageContext,
tabClosedChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }

)

unsubscribeToMessageChannel () {
unsubscribe (this.subscription);
this.subscription = null;

// Handler for message received by component
handleMessage (message) {

// do something

console.log("Tab closed: ", message.tabId);

}

// Standard lifecycle hooks used to subscribe and unsubscribe to the message channel
connectedCallback () {
this.subscribeToMessageChannel () ;

disconnectedCallback () {
this.unsubscribeToMessageChannel () ;

}

For more information, see Subscribe and Unsubscribe from a Message Channel.

lightning tabCreated

ALightning message channel that correspondstothe 1ightning: tabCreated Auraapp event. This message channelis available
for Lightning web components used within a Lightning console app.

Response

The response is the same as that of the lightning:tabCreated Aura app event.

LWC Example

Importthe 1ightning tabCreated message channel fromthe @salesforce/messageChannel/ scoped module
The event returns the message in the response.

import { LightningElement, track, wire } from "lwc";

import { MessageContext, subscribe, unsubscribe, APPLICATION SCOPE } from

"lightning/messageService";
import tabCreatedChannel from "@salesforce/messageChannel/lightning tabCreated";

142

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html

Lightning Console API Events for Lightning Console JavaScript API

export default class TabCreatedExample extends LightningElement {
subscription = null;
@wire (MessageContext) messageContext;

// Encapsulate logic for Lightning message service subscribe and unsubscribe
subscribeToMessageChannel () {
if (!this.subscription) {
this.subscription = subscribe (
this.messageContext,
tabCreatedChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }
)

unsubscribeToMessageChannel () {
unsubscribe (this.subscription);
this.subscription = null;

// Handler for message received by component
handleMessage (message) {

// do something
}

// Standard lifecycle hooks used to subscribe and unsubscribe to the message channel
connectedCallback () {
this.subscribeToMessageChannel () ;

disconnectedCallback () {
this.unsubscribeToMessageChannel () ;

}

For more information, see Subscribe and Unsubscribe from a Message Channel.

lightning __tabFocused

ALightning message channel that correspondstothe 1ightning: tabFocused Auraapp event. This message channelis available
for Lightning web components used within a Lightning console app.

By default, this event is only received when that component's tab comes into focus, not when it leaves focus. To receive all events and
minimize performance impact, use a utility item as the only listener.

Response

The response is the same as that of the lightning:tabFocused Aura app event.

143

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html

Lightning Console API Events for Lightning Console JavaScript API

LWC Example

Importthe 1ightning tabFocused message channel fromthe @salesforce/messageChannel/ scoped module.
The event returns the message in the response.

import { LightningElement, track, wire } from "lwc";

import { MessageContext, subscribe, unsubscribe, APPLICATION SCOPE } from
"lightning/messageService";

import tabFocusedChannel from "@salesforce/messageChannel/lightning tabFocused";

export default class TabFocusedExample extends LightningElement {
subscription = null;
@wire (MessageContext) messageContext;

// Encapsulate logic for Lightning message service subscribe and unsubscribe
subscribeToMessageChannel () {
if (!this.subscription) {
this.subscription = subscribe (
this.messageContext,
tabFocusedChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }

)

unsubscribeToMessageChannel () {
unsubscribe (this.subscription);
this.subscription = null;

// Handler for message received by component
handleMessage (message) {

// do something
}

// Standard lifecycle hooks used to subscribe and unsubscribe to the message channel
connectedCallback () {
this.subscribeToMessageChannel () ;

disconnectedCallback () {
this.unsubscribeToMessageChannel () ;

}

For more information, see Subscribe and Unsubscribe from a Message Channel.
lightning tabRefreshed
A Lightning message channel that corresponds to the 1ightning:tabRefreshed Aura app event. This message channel is

available for Lightning web components used within a Lightning console app.

Response

The response is the same as that of the lightning:tabRefreshed Aura app event.

144

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html

Lightning Console API Events for Lightning Console JavaScript API

LWC Example

Importthe 1ightning tabRefreshed messagechannelfromthe @salesforce/messageChannel/ scoped module.
The event returns the message in the response.

import { LightningElement, track, wire } from "lwc";

import { MessageContext, subscribe, unsubscribe, APPLICATION SCOPE } from
"lightning/messageService";

import tabRefreshedChannel from "@salesforce/messageChannel/lightning tabRefreshed";

export default class TabRefreshedExample extends LightningElement {
subscription = null;
@wire (MessageContext) messageContext;

// Encapsulate logic for Lightning message service subscribe and unsubscribe
subscribeToMessageChannel () {
if (!this.subscription) {
this.subscription = subscribe (
this.messageContext,
tabRefreshedChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }

)

unsubscribeToMessageChannel () {
unsubscribe (this.subscription);
this.subscription = null;

// Handler for message received by component
handleMessage (message) {

// do something
}

// Standard lifecycle hooks used to subscribe and unsubscribe to the message channel
connectedCallback () {
this.subscribeToMessageChannel () ;

disconnectedCallback () {
this.unsubscribeToMessageChannel () ;

}

For more information, see Subscribe and Unsubscribe from a Message Channel.
lightning tabReplaced
A Lightning message channel that correspondstothe 1ightning:tabReplaced Auraapp event. This message channelis available

for Lightning web components used within a Lightning console app.

Response

The response is the same as that of the lightning:tabReplaced Aura app event.

145

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html

Lightning Console API Events for Lightning Console JavaScript API

LWC Example

Importthe 1ightning tabReplaced message channel from the @salesforce/messageChannel/ scoped module.
The event returns the message in the response.

import { LightningElement, wire } from "lwc";

import { MessageContext, subscribe, unsubscribe, APPLICATION SCOPE } from
"lightning/messageService";

import tabReplacedChannel from "@salesforce/messageChannel/lightning tabReplaced";

export default class TabReplacedExample extends LightningElement {
subscription = null;
@wire (MessageContext) messageContext;

// Encapsulate logic for Lightning message service subscribe and unsubscribe
subscribeToMessageChannel () {
if (!this.subscription) {
this.subscription = subscribe (
this.messageContext,
tabReplacedChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }

)

unsubscribeToMessageChannel () {
unsubscribe (this.subscription);
this.subscription = null;

// Handler for message received by component
handleMessage (message) {

// do something
}

// Standard lifecycle hooks used to subscribe and unsubscribe to the message channel
connectedCallback () {
this.subscribeToMessageChannel () ;

disconnectedCallback () {
this.unsubscribeToMessageChannel () ;

}

For more information, see Subscribe and Unsubscribe from a Message Channel.
lightning tabUpdated
A Lightning message channel that correspondstothe 1ightning: tabUpdated Auraapp event. This message channelis available

for Lightning web components used within a Lightning console app.

Response
The response is the same as that of the lightning:tabUpdated Aura app event.

146

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html

Lightning Console API Events for Lightning Console JavaScript API

LWC Example

Importthe 1ightning tabUpdated message channel from the @salesforce/messageChannel/ scoped module.
The event returns the message in the response.

import { LightningElement, track, wire } from "lwc";

import { MessageContext, subscribe, unsubscribe, APPLICATION SCOPE } from
"lightning/messageService";

import tabUpdatedChannel from "@salesforce/messageChannel/lightning tabUpdated";

export default class TabUpdatedExample extends LightningElement {
subscription = null;
@wire (MessageContext) messageContext;

// Encapsulate logic for Lightning message service subscribe and unsubscribe
subscribeToMessageChannel () {
if (!this.subscription) {
this.subscription = subscribe (
this.messageContext,
tabUpdatedChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }

)

unsubscribeToMessageChannel () {
unsubscribe (this.subscription);
this.subscription = null;

// Handler for message received by component
handleMessage (message) {

// do something
}

// Standard lifecycle hooks used to subscribe and unsubscribe to the message channel
connectedCallback () {
this.subscribeToMessageChannel () ;

disconnectedCallback () {
this.unsubscribeToMessageChannel () ;

}

For more information, see Subscribe and Unsubscribe from a Message Channel.

Lightning Web Component Events for Enhanced Messaging

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are specific
to Messaging. These events apply to Lightning web components in Lightning Experience only.

@ Nofte: Use only rendered components with the Conversation Toolkit APIs. If you use a component that doesn’'t have markup or
that operates in the background, the APIs don't work. The conversation component must also be rendered for the APIs to work.

147

https://developer.salesforce.com/docs/platform/lwc/guide/use-message-channel-subscribe.html

Lightning Console API Events for Lightning Console JavaScript API

IN THIS SECTION:

lightning__conversationAgentSend

Messaging event triggered when an agent sends a message through the Salesforce console. This method intercepts the message
before it's sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels. To work with Enhanced
Messaging channels, the session must be active and the Enhanced Conversation Component must be visible on the page.

lightning__conversationEnded

Messaging event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using
Enhanced Messaging channels. To work with Enhanced Messaging channels, the session must be active and the Enhanced Conversation
Component must be visible on the page.

lightning__conversationEndUserMessage

Messaging event triggered when the customer sends a new message. In Enhanced Messaging channels, this event is triggered only
for text messages. This event is not triggered for messages with files or rich content. To work with Enhanced Messaging channels,
the session must be active and the Enhanced Conversation Component must be visible on the page.

lightning conversationAgentSend

Messaging event triggered when an agent sends a message through the Salesforce console. This method intercepts the message before
it's sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels. To work with Enhanced Messaging
channels, the session must be active and the Enhanced Conversation Component must be visible on the page.

Response
Name Type Description
recordId String The ID of the work record that's associated
with the current conversation.
content String The text of the message in the conversation
log.
name String The name of the agent who is attempting
to send the message. This name matches
the agent name displayed in the
conversation log.
timestamp Date/Time The date and time that the agent attempted
to send the message.
LWC Sample Code

Tolistentothe 1ightning conversationAgentSend event, import the Lightning Message Service features from
lightning/messageService and passthe eventto the subscribe () method.

import { LightningElement, wire } from 'lwc';

import {
subscribe,
unsubscribe,
APPLICATION_ SCOPE,

148

Lightning Console API Events for Lightning Console JavaScript API

MessageContext
} from 'lightning/messageService';

import ConversationAgentSendChannel from
'@salesforce/messageChannel/lightning conversationAgentSend';

export default class ConversationAgentSendExample extends LightningElement {
subscription = null;
recordId;

// To pass scope, you must get a message context.
@wire (MessageContext)
messageContext;

// Standard lifecycle hook used to subscribe to the message channel

connectedCallback () {
this.subscribeToMessageChannel () ;

// Pass scope to the subscribe () method.

subscribeToMessageChannel () {
if (!'this.subscription) {
this.subscription = subscribe (

this.messageContext,
ConversationAgentSendChannel,

(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }

)

// Handler for message received by component
handleMessage (message) {
this.recordId = message.recordIld;

Aura Components Sample Code
Component code:

<lightning:messageChannel type="lightning conversationAgentSend" scope="APPLICATION"
onMessage="{!c.onConversationAgentSend}" />

Controller code:

(1
onConversationAgentSend: function (cmp, evt, helper) {
var recordId = evt.getParam("recordId");
var content = evt.getParam("content");
var name = evt.getParam("name");
var timestamp = evt.getParam("timestamp");
console.log("recordId:" + recordId + " content:" + content + " name:" + name + "

timestamp:" + timestamp);

149

Lightning Console API Events for Lightning Console JavaScript API

lightning conversationEnded

Messaging event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using

Enhanced Messaging channels. To work with Enhanced Messaging channels, the session must be active and the Enhanced Conversation
Component must be visible on the page.

Response
Name Type Description
recordId String The ID of the work record that's associated
with the current chat.
LWC Sample Code

Tolistentothe 1ightning conversationEnded event, import the Lightning Message Service features from
lightning/messageService and passthe eventto the subscribe () method.

import { LightningElement, wire } from 'lwc';

import {
subscribe,
unsubscribe,
APPLICATION SCOPE,
MessageContext
} from 'lightning/messageService';

import ConversationEndedChannel from
'@salesforce/messageChannel/lightning conversationEnded';

export default class ConversationEndedExample extends LightningElement {
subscription = null;
recordId;

// To pass scope, you must get a message context.
@Qwire (MessageContext)
messageContext;

// Standard lifecycle hook used to subscribe to the message channel
connectedCallback () {

this.subscribeToMessageChannel () ;

// Pass scope to the subscribe () method.
subscribeToMessageChannel () {
if (!this.subscription) {

this.subscription = subscribe (
this.messageContext,

150

Lightning Console API

ConversationEndedChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }

);

// Handler for message received by component
handleMessage (message) {
this.recordId = message.recordIld;

Aura Components Sample Code

Component code:

Events for Lightning Console JavaScript API

<lightning:messageChannel type="lightning conversationEnded" scope="APPLICATION"
onMessage="{!c.onConversationkEndedEvent}" />

Controller code:

({
onConversationEndedEvent: function (cmp, evt, helper)
var conversation = cmp.find("conversationKit");
var recordId = evt.getParam("recordId");

console.log("recordId:" + recordId);

lightning conversationEndUserMessage

{

Messaging event triggered when the customer sends a new message. In Enhanced Messaging channels, this event is triggered only for
text messages. This event is not triggered for messages with files or rich content. To work with Enhanced Messaging channels, the session
must be active and the Enhanced Conversation Component must be visible on the page.

Response

Name Type
recordId String
content String
name String
timestamp Date/Time

151

Description

The ID of the work record that's associated
with the current conversation.

The message sent by the customer.

The name of the user who sent the
message. This name matches the username
displayed in the conversation log.

The date and time the message was
received.

Lightning Console API Events for Lightning Console JavaScript API

LWC Sample Code

Tolistentothe 1ightning conversationEndUserMessage event, import the Lightning Message Service features from
lightning/messageService and passthe eventto the subscribe () method.

import { LightningElement, wire } from 'lwc';

import {
subscribe,
unsubscribe,
APPLICATION_ SCOPE,
MessageContext
} from 'lightning/messageService';

import ConversationEndUserChannel from
'@salesforce/messageChannel/lightning conversationEndUserMessage';

export default class ConversationEndUserExample extends LightningElement ({
subscription = null;
recordId;

// To pass scope, you must get a message context.
@wire (MessageContext)
messageContext;

// Standard lifecycle hook used to subscribe to the message channel
connectedCallback () {
this.subscribeToMessageChannel () ;

// Pass scope to the subscribe () method.
subscribeToMessageChannel () {
if (!this.subscription) {
this.subscription = subscribe (
this.messageContext,
ConversationEndUserChannel,
(message) => this.handleMessage (message),
{ scope: APPLICATION SCOPE }
)

// Handler for message received by component
handleMessage (message) {
this.recordId = message.recordIld;

Aura Components Sample Code

Component code:

<lightning:messageChannel type="lightning conversationEndUserMessage" scope="APPLICATION"

onMessage="{!c.onConversationEndUserMessage}" />

152

Lightning Console API Events for Lightning Console JavaScript API

Controller code:

({
onConversationEndUserMessage: function(cmp, evt, helper) {
var recordId = evt.getParam('recordId');
var content = evt.getParam('content');
var name = evt.getParam('name');
var timestamp = evt.getParam('timestamp');

console.log("recordId:" + recordId + " content:" + content + " name:" + name + "
timestamp:" + timestamp);
}
b

Aura Events for Enhanced Messaging

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are specific
to Messaging. These events apply to Aura components in Lightning Experience only.

IN THIS SECTION:

lightning:conversationAgentSend

Messaging event triggered when an agent sends a message through the Salesforce console. This method intercepts the message
before it's sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels. To work with Enhanced
Messaging channels, the session must be active and the Enhanced Conversation Component must be visible on the page.

lightning:conversationChatEnded

Messaging event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using
Enhanced Messaging channels. To work with Enhanced Messaging channels, the session must be active and the Enhanced Conversation
Component must be visible on the page.

lightning:conversationNewMessage

Messaging event triggered when the customer sends a new message. In Enhanced Messaging channels, this event is triggered only
for text messages. This event is not triggered for messages with files or rich content. To work with Enhanced Messaging channels,
the session must be active and the Enhanced Conversation Component must be visible on the page.

lightning:conversationAgentSend

Messaging event triggered when an agent sends a message through the Salesforce console. This method intercepts the message before
it's sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels. To work with Enhanced Messaging
channels, the session must be active and the Enhanced Conversation Component must be visible on the page.

Response
Name Type Description
recordId String The ID of the work record that's associated
with the current conversation.
content String The text of the message in the conversation

log.

153

Lightning Console API Events for Lightning Console JavaScript API

Name Type Description

name String The name of the agent who is attempting
to send the message. This name matches
the agent name displayed in the
conversation log.

type String The type of message that was received, such
as an Agent or EndUser message.

timestamp Date/Time The date and time that the agent attempted
to send the message.

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">

<lightning:conversationToolkitAPI aura:id="conversationKit" />

<aura:handler event="lightning:conversationAgentSend" action="{! c.onAgentSend}" />
</aura:component>

Controller code:

({
onAgentSend: function (cmp, evt, helper) {
var recordId = evt.getParam("recordId");
var content = evt.getParam("content");
var name = evt.getParam("name");
var type = evt.getParam("type");
var timestamp = evt.getParam("timestamp");

console.log("recordId:" + recordId + " content:" + content + " name:" + name
+ " timestamp:" + timestamp);
}
})

lightning:conversationChatEnded

Messaging event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using
Enhanced Messaging channels. To work with Enhanced Messaging channels, the session must be active and the Enhanced Conversation
Component must be visible on the page.

Response
Name Type Description
recordId String The ID of the work record that's associated

with the current chat.

154

Lightning Console API Events for Lightning Console JavaScript API

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">

<lightning:conversationToolkitAPI aura:id="conversationKit" />

<aura:handler event="lightning:conversationChatEnded" action="{!c.onChatEnded}" />
</aura:component>

Controller code:

({
onChatEnded: function(cmp, evt, helper) {
var conversation = cmp.find("conversationKit");
var recordId = evt.getParam("recordId");

console.log("recordId:" + recordId);

lightning:conversationNewMessage

Messaging event triggered when the customer sends a new message. In Enhanced Messaging channels, this event is triggered only for
text messages. This event is not triggered for messages with files or rich content. To work with Enhanced Messaging channels, the session
must be active and the Enhanced Conversation Component must be visible on the page.

Response

Name Type Description

recordId String The ID of the work record that's associated
with the current conversation.

content String The message sent by the customer.

name String The name of the user who sent the
message. This name matches the username
displayed in the conversation log.

type String The type of message that was received, such
as an Agent or Visitor message.

timestamp Date/Time The date and time the message was

received.

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">

<lightning:conversationToolkitAPI aura:id="conversationKit" />

<aura:handler event="lightning:conversationNewMessage" action="{!c.onNewMessage}"
/>

</aura:component>

155

Lightning Console API

Controller code:

({

Events for Lightning Console JavaScript API

onNewMessage: function (cmp, evt, helper) {

var
var
var
var
var

recordId = evt.getParam('recordId'):;
content = evt.getParam('content');
name = evt.getParam('name');

type = evt.getParam('type');

timestamp = evt.getParam('timestamp');

console.log("recordId:" + recordId + " content:" + content + " name:" + name
+ " timestamp:" + timestamp) ;
}
})
Events for Chat

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are specific
to Chat. These events apply to Lightning Experience only.

@ Important: The legacy chat productis in maintenance-only mode, and we won't continue to build new features. You can continue
to use it, but we no longer recommend that you implement new chat channels. Instead, you can modernize your customer
communication with Messaging for In-App and Web. Messaging offers many of the chat features that you love plus asynchronous
conversations that can be picked back up at any time. For Lightning Console JavaScript API, use Lightning Web Component Events
for Enhanced Messaging or Aura Events for Enhanced Messaging.

IN THIS SECTION:

lightning:conversationAgentSend

Event triggered when an agent sends a chat message through the Salesforce console. This method does not intercept the message
before it's sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels.

lightning:conversationChatEnded
Event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using Enhanced
Messaging channels.

lightning:conversationCustomEvent
Event triggered when a custom event occurs during a chat.

lightning:conversationNewMessage
Event triggered when the customer sends a new message. This event is also triggered when using Enhanced Messaging channels.
To work with Enhanced Messaging channels, the session must be active and the Enhanced Conversation Component must be visible

on the page.

lightning:conversationAgentSend

Event triggered when an agent sends a chat message through the Salesforce console. This method does not intercept the message
before it's sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels.

156

https://help.salesforce.com/s/articleView?id=sf.miaw_intro_landing.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.miaw_chat_vs_messaging.htm&language=en_US

Lightning Console API Events for Lightning Console JavaScript API

Response

Name Type Description

recordId String The ID of the work record that's associated
with the current chat.

content String The text of the message in the chat log.

name String The name of the agent who is attempting
to send the message. This name matches
the agent name displayed in the chat log.

type String The type of message that was received—for
example, agent.

timestamp Date/Time The date and time that the agent attempted

to send the chat message.

@ Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">

<lightning:conversationToolkitAPI aura:id="conversationKit" />

<aura:handler event="lightning:conversationAgentSend" action="{! c.onAgentSend}" />
</aura:component>

Controller code:

({
onAgentSend: function (cmp, evt, helper) {
var recordId = evt.getParam("recordId");
var content = evt.getParam("content");
var name = evt.getParam("name");
var type = evt.getParam("type");
var timestamp = evt.getParam("timestamp");

console.log("recordId:" + recordId + " content:" + content + " name:" + name

+ " timestamp:'

}

+ timestamp) ;

H)

lightning:conversationChatEnded

Event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using Enhanced
Messaging channels.

157

Lightning Console API Events for Lightning Console JavaScript API

Response
Name Type Description
recordId String The ID of the work record that's associated

with the current chat.

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">

<lightning:conversationToolkitAPI aura:id="conversationKit" />

<aura:handler event="lightning:conversationChatEnded" action="{!c.onChatEnded}" />
</aura:component>

Controller code:

(1
onChatEnded: function(cmp, evt, helper) {
var conversation = cmp.find("conversationKit");
var recordId = evt.getParam("recordId");

console.log("recordId:" + recordId);

lightning:conversationCustomEvent

Event triggered when a custom event occurs during a chat.

Response

Name Type Description

recordId String The ID of the work record that's associated
with the current chat.

type String The type of the custom event that was sent
to this chat; corresponds to the type
argument of the
liveagent.chasitor.sendCustarEvent ()
method used to send this event from the
chat window.

data String The data of the custom event that was sent

to this chat; corresponds to the data
argument of the
liveagent.chasitor.sendCustarkEvent ()
method used to send this event from the
chat window.

158

Lightning Console API Events for Lightning Console JavaScript API

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<aura:handler event="lightning:conversationCustomEvent" action="{!c.onCustomEvent}"
/>

</aura:component>
Controller code:

({
onCustomEvent: function(cmp, evt, helper) {
var conversation = cmp.find("conversationKit");
var data = evt.getParam("data");
var type = evt.getParam("type");

console.log("type:" + type + " data:" + data);

lightning:conversationNewMessage

Event triggered when the customer sends a new message. This event is also triggered when using Enhanced Messaging channels. To
work with Enhanced Messaging channels, the session must be active and the Enhanced Conversation Component must be visible on

the page.
Response
Name Type Description
recordId String The ID of the work record that's associated
with the current chat.
content String The text sent by the customer.
name String The name of the user who sent the
message. This name matches the username
displayed in the chat log.
type String The type of message that was received, such
as an Agent or Visitor message.
timestamp Date/Time The date and time the message was

received.

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />

159

Lightning Console API Events for Lightning Console JavaScript API

<aura:handler event="lightning:conversationNewMessage" action="{!c.onNewMessage}"
/>

</aura:component>
Controller code:

(1
onNewMessage: function(cmp, evt, helper) {
var recordId = evt.getParam('recordId');
var content = evt.getParam('content');
var name = evt.getParam('name');
var type = evt.getParam('type');
var timestamp = evt.getParam('timestamp');

console.log("recordId:" + recordId + " content:" + content + " name:" + name
+ " timestamp:" + timestamp) ;
}
})

Events for Omni-Channel

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. There are a few events
that are specific to Omni-Channel. These events apply to Lightning Experience only.

IN THIS SECTION:

lightning:omniChannelConnectionError
Indicates that a network connection issue occurred.

lightning:omniChannellLoginSuccess
Indicates that an agent has been logged into Omni-Channel successfully.

lightning:omniChannelStatusChanged
Indicates that an agent has changed his or her presence status in Omni-Channel.

lightning:omniChannelLogout
Indicates that an agent has logged out of Omni-Channel.

lightning:omniChannelWorkAssigned
Indicates that an agent has been assigned a new work item.

lightning:omniChannelWorkAccepted
Indicates that an agent has accepted a work assignment, or that a work assignment has been automatically accepted.

lightning:omniChannelWorkDeclined
Indicates that an agent has declined a work assignment.

lightning:omniChannelWorkClosed
Indicates that the status of an AgentWork object is changed to Closed.

lightning:omniChannelWorkFlagUpdated
Indicates that an agent’s work item flag has been raised or lowered.

160

Lightning Console API Events for Lightning Console JavaScript API

lightning:omniChannelWorkloadChanged

Indicates that an agent’s workload has changed. This includes receiving new work items, declining work items, and closing items in
the console. It also indicates that there has been a change to an agent’s capacity or presence configuration, or that the agent has
gone offline in the Omni-Channel utility.

lightning:omniChannelConnectionError

Indicates that a network connection issue occurred.

Response
Name Type Description
error object The network connection error message.

@ Example: This example prints a line to the browser's developer console when a network connection error occurs.
Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelConnectionError" action="{!
c.onConnectionError }"/>
</aura:component>

Controller code:

({

onConnectionError : function (component, event, helper) {
console.log ("Network Connection Error.");
var error = event.getParam('error');

console.log(error);
by
)

lightning:omniChannellLoginSuccess

Indicates that an agent has been logged into Omni-Channel successfully.

Response
Name Type Description
statusId string The ID of the agent’s current presence

status.

161

Lightning Console API Events for Lightning Console JavaScript API

Example: This example prints a line to the browser’s developer console when an Omni-Channel user logs into Omni-Channel
successfully.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannellLoginSuccess" action="{! c.onlLoginSuccess
}"/>

</aura:component>
Controller code:

({
onLoginSuccess : function (component, event, helper) {
console.log("Login success.");
var statusId = event.getParam('statusId');
console.log(statusId);
by
})

lightning:omniChannelStatusChanged

Indicates that an agent has changed his or her presence status in Omni-Channel.

Response

Name Type Description

statusId string The ID of the agent’s current presence
status.

channels string JSON string of channel objects.

statusName string The name of the agent’s current presence
status.

statusApiName string The API name of the agent’s current

presence status.

Example: This example prints status details to the browser's developer console when an Omni-Channel user's presence status
is changed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelStatusChanged" action="{! c.onStatusChanged
/>
</aura:component>

162

Lightning Console API Events for Lightning Console JavaScript API

Controller code:

({
onStatusChanged : function (component, event, helper) {

console.log("Status changed.");
var statusId = event.getParam('statusId');
var channels = event.getParam('channels');
var statusName = event.getParam('statusName');
var statusApiName = event.getParam('statusApiName') ;
console.log(statusId);
console.log(channels);
console.log(statusName) ;
console.log(statusApiName) ;

channel

The channel object contains the following properties:

Name Type Description

channellId string Retrieves the ID of the service channel that's
associated with a presence status.

developerName string Retrieves the developer name of the service
channel that's associated with the
channelId.

lightning:omniChannellLogout

Indicates that an agent has logged out of Omni-Channel.

Response
Name Type Description
reason string The reason why the agent is logged out.

Possible values are:

e DuplicateLogin

e DuplicateLogininSameBrowser
* MaintenancelLogout

e OmniSupervisorLogout

163

Lightning Console API Events for Lightning Console JavaScript API

Example: This example prints a line to the browser's developer console when an Omni-Channel user logs out of Omni-Channel.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelLogout" action="{! c.onLogout }"/>
</aura:component>

Controller code:

({
onLogout : function (component, event, helper) {
console.log ("Logout success.");
var reason = event.getParam('reason');
console.log(reason);
s
})

lightning:omniChannelWorkAssigned

Indicates that an agent has been assigned a new work item.

Response
Name Type Description
workItemId string The ID of the object that's routed through
Omni-Channel. This object becomes a work
assignment with a workId whenit's
assigned to an agent.
workId string The ID of a work assignment that's routed

to an agent.

Example: This example prints work details to the browser's developer console when an Omni-Channel user is assigned a new
work item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkAssigned" action="{! c.onWorkAssigned
/>

</aura:component>
Controller code:

({
onWorkAssigned : function (component, event, helper) {
console.log ("Work assigned.");
var workItemId = event.getParam('workItemId');
var workId = event.getParam('workId');

164

Lightning Console API

by
H)

console.log(workItemId)
console.log(workId);

lightning:omniChannelWorkAccepted

Events for Lightning Console JavaScript API

Indicates that an agent has accepted a work assignment, or that a work assignment has been automatically accepted.

Response

Name

workItemId

workId

Type

string

string

Description

The ID of the object that's routed through
Omni-Channel. This object becomes a work
assignment with a workId whenit's
assigned to an agent.

The ID of a work assignment that's routed
to an agent.

@ Example: This example prints work details to the browser's developer console when an Omni-Channel user accepts a work
assignment, or when a work assignment is automatically accepted.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

<lightning:omniToolkitAPI aura:id="omniToolkit" />

<aura:handler event="lightning:omniChannelWorkAccepted" action="{! c.onWorkAccepted

}n/>

</aura:component>

Controller code:

({

onWorkAccepted

function (component, event,
console.log ("Work accepted.");

var workItemId =
var workId = event.getParam('workId');
console.log(workItemId)

console.log (workId) ;

lightning:omniChannelWorkDeclined

Indicates that an agent has declined a work assignment.

165

helper)

event.getParam('workItemId') ;

{

Lightning Console API
Response
Name Type
workItemId string
workId string

Events for Lightning Console JavaScript API

Description

The ID of the object that's routed through
Omni-Channel. This object becomes a work
assignment with a workId whenit's
assigned to an agent.

The ID of a work assignment that's routed
to an agent.

@ Example: This example prints work details to the browser's developer console when an Omni-Channel user declines a work

assignment.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

<lightning:omniToolkitAPI aura:id="omniToolkit" />

<aura:handler event="lightning:omniChannelWorkDeclined" action="{! c.onWorkDeclined

}ll/>

</aura:component>
Controller code:

({

onWorkDeclined : function (component, event,

console.log ("Work declined.");

var workItemId = event.getParam('workItemId');
var workId = event.getParam('workId');

console.log(workItemId);
console.log(workId) ;

lightning:omniChannelWorkClosed

Indicates that the status of an AgentWork object is changed to Closed.

Response
Name Type
workItemId string
workId string

166

{

Description

The ID of the object that's routed through
Omni-Channel. This object becomes a work
assignment with a workId whenit's
assigned to an agent.

The ID of a work assignment that's routed
to an agent.

Lightning Console API Events for Lightning Console JavaScript API

Example: This example prints work details to the browser's developer console when an Omni-Channel user closes a tab in the
console that's associated with a work item.

Component code:

—_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkClosed" action="{! c.onWorkClosed
/>

</aura:component>
Controller code:

({
onWorkClosed : function(component, event, helper) ({
console.log ("Work closed.");
var workItemId = event.getParam('workItemId'):;
var workId = event.getParam('workId');
console.log(workItemId);
console.log(workId) ;

lightning:omniChannelWorkFlagUpdated

Indicates that an agent’s work item flag has been raised or lowered.

Response
Name Type Description
workId string The ID of a work item with the updated flag.
isFlagged Boolean Specifies whether the flag is raised or not.
message string Optional. A message associated with
changing the flag.
roleUpdatedBy string The role of the user who triggered this flag
change. The value is AGENT or
SUPERVISOR.
updatedBy string The ID of the user who triggered this flag
change.

Example: This example prints a line to the browser's developer console when an agent's work item flag is raised or lowered.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:thandler event="lightning:omniChannelWorkFlagUpdated" action="{!

167

Lightning Console API Events for Lightning Console JavaScript API

c.onChannelWorkFlagUpdated }"/>
</aura:component>

Controller code:

({

onChannelWorkFlagUpdated : function(cmp, evt, hlp) {
var workId = evt.getParam('workId');
var message = evt.getParam('message');
var isFlagged = evt.getParam('isFlagged');
console.log("WorkFlag event");

console.log (" workId : "+ workId);
console.log (" isFlagged : "+ isFlagged);
console.log (" message : "+ message);

lightning:omniChannelWorkloadChanged

Indicates that an agent’s workload has changed. This includes receiving new work items, declining work items, and closing items in the
console. It also indicates that there has been a change to an agent’s capacity or presence configuration, or that the agent has gone
offline in the Omni-Channel utility.

Response
Name Type Description
configuredCapacity number The configured primary capacity for the
agent.
previousWorkload number The agent’s primary workload before the
change.
newWorkload number The agent's new primary workload after the
change.
configuredInterruptibleCapacity number The configured interruptible capacity for the
agent.
previousInterruptibleWorkload number The agent's interruptible workload before
the change.
newlInterruptibleWorkload number The agent’s new interruptible workload after
the change.

@ Example: This example prints workload details to the browser's developer console when an agent’s workload changes.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />

168

Lightning Console API Events for Lightning Console JavaScript API

<aura:handler event="lightning:omniChannelWorkloadChanged" action="{!
c.onWorkloadChanged }"/>
</aura:component>

Controller code:

(1
onWorkloadChanged : function (component, event, helper) {

console.log ("Workload changed.");
var configuredCapacity = event.getParam('configuredCapacity');
var previousWorkload = event.getParam('previousWorkload');
var newWorkload = event.getParam('newWorkload');
console.log(configuredCapacity);
console.log (previousWorkload) ;
console.log(newWorkload) ;

169

CHAPTER 3 Salesforce Console Integration Toolkit for Salesforce

Classic

The Salesforce Console Integration Toolkit is a browser-based JavaScript APl that provides you with
programmatic access to the console in Salesforce Classic. The Salesforce Console Integration Toolkit
uses browsers as clients to display pages as tabs in the console. For example, the toolkit lets you
integrate third-party systems with the console, opening up an external application in the same
window, in a tab.

This guide explains how to use the Salesforce Console Integration Toolkit in JavaScript to embed
API calls and processes. The toolkit is available for use with third-party domains, such as

www . yourdomain . com; however, the examples in this guide are in Visualforce. The functionality
it describes is available to your organization if you have:

e Enterprise, Unlimited, Performance, or Developer Edition with the Service Cloud

e Salesforce console

The Salesforce Console Integration Toolkit supports any browser that the Salesforce console supports.

EDITIONS

Available in: Salesforce
Classic (not available in all
orgs)

Available in: Professional,
Enterprise, Performance,

Unlimited, and Developer
Editions

@ Nofe: To enable the toolkit for third-party domains, add the domains to the allowlist of the Salesforce console.

IN THIS SECTION:

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party
content as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an APl that uses browsers as clients to display
pages in the console.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements.

Change a Visualforce Page by Using the Salesforce Console Integration Toolkit

Each implementation of Salesforce Console Integration Toolkit can look different. This example shows how to change the Salesforce
console user interface using the Salesforce Console Integration Toolkit.

Working with the Salesforce Console Integration Toolkit
You can use Salesforce Console Integration Toolkit to streamline a business process.

170

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic When to Use the Salesforce Console Integration Toolkit

Methods for Salesforce Classic
If your org is using Salesforce Classic, use Salesforce Console Integration Toolkit methods.

SEE ALSO:
Salesforce Help: Allow Domains for a Salesforce Console in Salesforce Classic
Salesforce Help: Supported Browsers and Devices

Methods for Salesforce Classic

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party content
as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an APl that uses browsers as clients to display pages in
the console.

Your organization may have complex business processes that are unsupported by Salesforce Console Integration Toolkit functionality.
Not to worry. When this is the case, the Lightning Platform offers advanced administrators and developers several ways to implement
custom functionality.

The following table lists additional features that developers can use to implement custom functionality for Salesforce organizations.

Feature Description

SOAP AP Use standard SOAP API calls when you want to add functionality to a composite application that

processes only one type of record at a time and does not require any transactional control (such as
setting a Savepoint or rolling back changes).

For more information, see the SOAP API Developer Guide.

Visualforce Visualforce consists of a tag-based markup language that gives developers a more powerful way of
building applications and customizing the Salesforce user interface. With Visualforce you can:
e Build wizards and other multistep processes.
e (Create your own custom flow control through an application.
e Define navigation patterns and data-specific rules for optimal, efficient application interaction.
For more information, see the Visualforce Developer's Guide.
Due to third-party cookie restrictions in modern web browsers, Visualforce pages can't load in
Salesforce Classic console apps when third-party cookies are disabled. See Visualforce Limitations in
Salesforce Classic When Third-Party Cookies are Blocked.

Apex

Use Apex if you want to:

e (reate Web services.

e (reate email services.

e Perform complex validation over multiple objects.

e (reate complex business processes that aren’t supported by Flow Builder.

e (reate custom transactional logic (logic that occurs over the entire transaction, not just with a
single record or object).

171

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_allowed_domains.htm&language=en_US
https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.256.0.pages.meta/pages/
https://help.salesforce.com/s/articleView?id=003786014&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=003786014&type=1&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Salesforce Console Integration Toolkit Support Policy

Feature Description

e Attach custom logic to another operation, such as saving a record, so that it occurs whenever
the operation is executed, regardless of whether it originates in the user interface, a Visualforce
page, or from SOAP API.

For more information, see the Apex Developer Guide.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements.

Previous versions may or may not receive fixes. When a new version is released, the previous version remains available.

IN THIS SECTION:
Backward Compatibility
Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.
End-of-Life
Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the

date of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more
than three years old may not be supported.

Backward Compatibility

Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.
Each new Salesforce release consists of two components:

® Anew release of platform software that resides on Salesforce systems

e A new version of the API

The Salesforce Console Integration Toolkit matches the API version for any given release. For example, if the current version of SOAP API
is 64.0, then there’s also a version 64.0 of Salesforce Console Integration Toolkit.

We maintain support for each Salesforce Console Integration Toolkit version across releases of the platform. The Salesforce Console
Integration Toolkit is backward compatible in that an application created to work with a given Salesforce Console Integration Toolkit
version will continue to work with that same Salesforce Console Integration Toolkit version in future platform releases.

Salesforce doesn't guarantee that an application written against one Salesforce Console Integration Toolkit version will work with future
Salesforce Console Integration Toolkit versions: Changes in method signatures and data representations are often required as we continue
to enhance the Salesforce Console Integration Toolkit. However, we strive to keep the Salesforce Console Integration Toolkit consistent
from version to version with minimal changes required to port applications to newer Salesforce Console Integration Toolkit versions.

Forexample, an application written using Salesforce Console Integration Toolkit version 37.0, which shipped with the Summer ‘16 release,
will continue to work with Salesforce Console Integration Toolkit version 37.0 on the Winter 17 release and on future releases. However,
that same application may not work with Salesforce Console Integration Toolkit version 38.0 without modifications to the application.

172

https://developer.salesforce.com/docs/atlas.en-us.256.0.apexcode.meta/apexcode/

Salesforce Console Integration Toolkit for Salesforce Classic End-of-Life

End-of-Life

Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the date
of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more than
three years old may not be supported.

When a Salesforce Console Integration Toolkit version is scheduled to be unsupported, an advance end-of-life notice will be given at
least one year before support for the version ends. Salesforce will directly notify customers using Salesforce Console Integration Toolkit
versions scheduled for end of life.

Change a Visualforce Page by Using the Salesforce Console Integration
Toolkit

Each implementation of Salesforce Console Integration Toolkit can look different. This example shows how to change the Salesforce
console user interface using the Salesforce Console Integration Toolkit.

@ Note: Due to third-party cookie restrictions in modern web browsers, Visualforce pages can’t load in Salesforce Classic console
apps when third-party cookies are disabled. See Visualforce Limitations in Salesforce Classic When Third-Party Cookies are Blocked.

1. Create a Visualforce page.
2. Cutand paste the following sample code into your Visualforce page.

This code demonstrates various functions of the Salesforce Console Integration Toolkit:

<apex:page standardController="Case">

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function openPrimaryTab () {
sforce.console.openPrimaryTab (undefined,
'https://www.example.com', true, 'example');

//The callback function that openSubtab will call once it has the ID for its
primary tab
var callOpenSubtab=function callOpenSubtab (result) {
sforce.console.openSubtab (result.id,
'https://www.example.com', true, 'example');

b

function openSubtab () {
sforce.console.getEnclosingPrimaryTabId (callOpenSubtab) ;

//Sets the title of the current tab to "Example"
function setTitle () {
sforce.console.setTabTitle ('Example') ;

//The callback function that closeTab will call once it has the ID for its tab
var callCloseTab= function callCloseTab (result) {
sforce.console.closeTab (result.id);

173

https://help.salesforce.com/s/articleView?id=003786014&type=1&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Working with the Salesforce Console Integration Toolkit

function closeTab () {
sforce.console.getEnclosingTabId(callCloseTab) ;

}
</script>

Open A Primary Tab
<p/>Open A Subtab
<p/>Set Title to Example
<p/>Close This Tab

</apex:page>

3. Create a custom link for cases that use your Visualforce page.
4. Edit the page layout for cases and add your custom link.

5. Add any domains to the console’s allowlist.

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Here's the sample Visualforce page loaded in the console.

salesforce Q, Ssearch Salesforce
[Accounts ¥ | @ Global Media + v
Details B Jon Amos External Page + v

Open A Primary Tab
Open & Subtab

Set Title to SFDC
Close This Tab

SEE ALSO:
Visualforce Developer Guide
Salesforce Help: Create and Edit Page Layouts

Salesforce Help: Allow Domains for a Salesforce Console in Salesforce

Working with the Salesforce Console Integration Toolkit

You can use Salesforce Console Integration Toolkit to streamline a business process.
With Salesforce Console Integration Toolkit, you can:

e Open a new primary tab or subtab that displays a specified URL
e Set the title of a primary tab or a subtab

174

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.pages.meta/pages/
https://help.salesforce.com/apex/HTViewHelpDoc?id=customize_layoutcreate.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_allowed_domains.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Connect to the Toolkit

e Return the ID of a primary tab or subtab
e (lose a specified primary tab or subtab

Before developing an Salesforce Console Integration Toolkit implementation, learn how to connect to Salesforce Console Integration
Toolkit and review the best practices.

IN THIS SECTION:

Connect to the Toolkit

The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page or in a
third-party domain.

Asynchronous Calls with the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to
continue instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter
with the API call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with
the result.

Working with Lightning Platform Canvas
To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Lightning Platform Canvas.

Salesforce Console Integration Toolkit Best Practices
Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

Connect to the Toolkit

The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page or in a
third-party domain.

@ Nofe: Due to third-party cookie restrictions in modern web browsers, Visualforce pages can't load in Salesforce Classic console
apps when third-party cookies are disabled. See Visualforce Limitations in Salesforce Classic When Third-Party Cookies are Blocked.

The version of the Salesforce Console Integration Toolkit is in the URL.

e For Visualforce pages or any source other than a custom onc11ick JavaScript button, specify a <script> tagthat pointsto the
toolkit file.

<apex:page>

<script src="/support/console/64.0/integration.js"
type="text/javascript"></script>

</apex:page>

For Visualforce, a relative path is sufficient to include integration. s, andis recommended.

175

https://help.salesforce.com/s/articleView?id=003786014&type=1&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Asynchronous Calls with the Salesforce Console Integration
Toolkit

e Fora third-party domain, insert this <script> tag.

<script
src="https://MyDomainName--PackageName.vf.force.com/support/console/64.0/integration.js"
type="text/javascript"></script>

SEE ALSO:
Salesforce Help: My Domain URL Formats

Asynchronous Calls with the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to continue
instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter with the API
call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with the result.

Asynchronous syntax:
method('argl', 'arg2', ..., callback method) ;
For example:

//Open a new primary tab with the Salesforce home page in it
sforce.console.openPrimaryTab (null, 'https://salesforce.com',
false, 'Salesforce', callback);

Working with Lightning Platform Canvas

To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Lightning Platform Canvas.

Lightning Platform Canvas and the Salesforce Console Integration Toolkit are similar—they're a set of tools and JavaScript APIs that
developers can use to add third-party systems to Salesforce. However, one of the benefits of Lightning Platform Canvas, is the ability to
choose authentication methods. For more information, see the Lightning Platform Canvas Developer's Guide.

@ Note: Fora canvas app to appear in a console, you must add it to the console as a custom console component.
When developing a canvas app, and you want to include functionality from the Salesforce Console Integration Toolkit, do the following:
1. Include the console integration toolkit APl in index . sp.

2. Ifyour console has an allowlist for domains, add the domain of your canvas app to the allowlist.

3. Gill sfdc.canvas.client.signedrequest () to store the signed request needed by the console integration toolkit
API. For example, if the Lightning Platform Canvas method of authentication is a signed request, do the following:

Sfdc.canvas.client.signedrequest ('<%$=signedRequest%>")

Ifthe Lightning Platform Canvas method of authentication is OAuth, do the following in the callback function used to get the context
as shown in “Getting Context in Your Canvas App” in the Lightning Platform Canvas Developer's Guide:

Sfdc.canvas.client.signedrequest (msg)

Consider the following when working with the Salesforce Console Integration Toolkit and canvas apps:

176

https://help.salesforce.com/s/articleView?language=en_US&id=sf.domain_name_app_url_changes.htm

Salesforce Console Integration Toolkit for Salesforce Classic Salesforce Console Integration Toolkit Best Practices

e The console integration toolkit APl script depends on the signed request and should be added after the call to
Sfdc.canvas.client.signedrequest () hasexecuted. We recommend that you load the scripts dynamically.
e To retrieve the entity ID of the record that is associated with the canvas sidebar component, do the following:
// Get signedRequest
var signedRequest = Sfdc.canvas.client.signedrequest () ;
var parsedRequest = JSON.parse (signedRequest) ;

// get the entity Id that is associated with this canvas sidebar component.
var entityId = parsedRequest.context.environment.parameters.entityId;

e Toretrieve the entityId for OAuth, do the following:
var entityId = msg.payload.environment.parameters.entityId;

To see an example on how to retrieve msg . payload, see the Lightning Platform Canvas Developer’s Guide.

SEE ALSO:
Salesforce Canvas Developer Guide: Getting Context in Your Canvas App
Salesforce Help: Add Console Components to Apps in Salesforce Classic

Salesforce Help: Allow Domains for a Salesforce Console in Salesforce

Salesforce Console Integration Toolkit Best Practices

Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

e Many of the methods in the Salesforce Console Integration Toolkit are asynchronous and return their results using a callback method.
We recommend that you refer to the documentation for each method to understand the information for each response.

e Errors generated by the Salesforce Console Integration Toolkit are typically emitted in a way that doesn't halt JavaScript processing.
Therefore, we recommend that you use a tool such as Firebug for Firefox to monitor the JavaScript console and to help you debug
your code.

e Due to third-party cookie restrictions in modern web browsers, Visualforce pages can't load in Salesforce Classic console apps when
third-party cookies are disabled. See Visualforce Limitations in Salesforce Classic When Third-Party Cookies are Blocked.

e Todisplay Visualforce pages properly in the Salesforce Console, we recommend you:
- Accept the default setting showHeader="true" andset sidebar="false" onthe apex:page tag.
- Set Behavior on custom buttons and links that include methods from the toolkit to display in an existing window without
a sidebar or header. For more information, see Define Custom Buttons and Links” in the Salesforce online help.
e When using Firefox, we recommend that you don't call closeTab () on a tab with an active alert box because the browser may
not load properly.

e Duplicate tabs might open when users initiate methods with invalid URLs. We recommend that you check URLs for validity before
you include them in methods.

e Toprevent External Page from displaying as a tab name, we recommend that you specify the tabLabel argumenton
methods such as openPrimaryTab () and openSubtab ().

e Toenable the toolkit for third-party domains, add the domains to the allowlist of the Salesforce console.

e The Salesforce Console Integration Toolkit methods don't work in nested iframes. For example, if you use a custom quick action in
a feed, the methods still work as expected because the feed is in a single iframe. But if Development Mode is also enabled in your
org, the methods no longer work because the iframe of the feed is nested inside the Development Mode iframe.

177

https://developer.salesforce.com/docs/atlas.en-us.256.0.platform_connect.meta/platform_connect/canvas_app_getting_context_code_example.htm
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_allow_domains.htm&language=en_US
https://addons.mozilla.org/en-US/firefox/addon/firebug/?src=ss
https://help.salesforce.com/s/articleView?id=003786014&type=1&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Salesforce Classic

Methods for Salesforce Classic

If your org is using Salesforce Classic, use Salesforce Console Integration Toolkit methods.

IN THIS SECTION:
Methods for Primary Tabs and Subtabs
Methods for Navigation Tabs
Methods for Computer-Telephony Integration (CTI)
Methods for Application-Level Custom Console Components
Methods for Push Notifications
Methods for Console Events
Methods for Chat
Methods for Omni-Channel

Methods for Primary Tabs and Subtabs

A Salesforce console displays Salesforce pages as primary tabs or subtabs. A primary tab displays the main item to work on, such as an
account. A subtab displays related items, such as an account’s contacts or opportunities.

IN THIS SECTION:

closeTab()

Closes a specified primary tab or subtab. Keep in mind that closing the first tab in a primary tab closes the primary tab itself. This
method is only available in APl version 20.0 or later.

disableTabClose()

Prevents a user from closing a tab or a subtab. If the ID parameter doesn't specify a tab, the enclosing tab is used. You can also use
this method to re-enable a tab that has been disabled. Available in APl version 36.0 or later.

focusPrimaryTabByld()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in APl version 22.0 or
later.

focusPrimaryTabByName()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in APl version 22.0
or later.

focusSidebarComponent()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style.
focusSubtabByld()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in APl version 22.0 or later.
focusSubtabByNameAndPrimaryTabld()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in
APl version 22.0 or later.

178

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

focusSubtabByNameAndPrimaryTabName()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available
in APl version 22.0 or later.

generateConsoleUrl()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external
URLs to the console’s allowlist so that they can display correctly.This method is only available in APl version 28.0 or later.
getEnclosingPrimaryTabld()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

getEnclosingPrimaryTabObjectld()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works
within a primary tab or subtab. This method is only available in APl version 24.0 or later.

getEnclosingTabld()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work
if the call is made within a component enclosed within a subtab. This method is only available in APl version 20.0 or later.
getFocusedPrimaryTabld()

Returns the ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

getFocusedPrimaryTabObjectld()
Returns the object ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

getFocusedSubtabld()

Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in
APl version 25.0 or later.

getFocusedSubtabObjectld()

Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only
available in APl version 24.0 or later.

getPagelnfo()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the
enclosing primary tab or subtab. Note that to get the page information from a custom console component, a tabId must be
passed as the first parameter to this method.This method is only available in APl version 26.0 or later.

getPrimaryTablds()

Returns all of the IDs of open primary tabs. This method is only available in APl version 26.0 or later.

getSubtablds()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of
the subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten
by a Visualforce page. This method is only available in APl version 26.0 or later.

getTabLink()

Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in APl version 28.0 or
later.

isinConsole()

Determines if the page is in the Salesforce console. This method is only available in APl version 22.0 or later.
onEnclosingTabRefresh()

Registers a function to call when the enclosing tab refreshes. This method is only available in API version 24.0 or later.

179

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

onFocusedPrimaryTab()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in AP
version 25.0 or later.

onFocusedSubtab()

Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in APl version
24.0 or later.

onTabSave()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method,
call setTabUnsavedChanges () in the callback method. This notifies the console that the custom save operation completed.
Inthe callto setTabUnsavedChanges (), passthefirst parameteras false toindicate a successful save or true toindicate
an unsuccessful save. This method is only available in API version 28.0 or later.

openConsoleUrl()

Opens a URL created by the generateConsoleUrl () method (a URL to a tab, or group of related tabs, in the Salesforce
console). This method is only available in APl version 28.0 or later.

openPrimaryTab()

Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an
existing tab. This method is only available in APl version 20.0 or later.

openSubtab()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available
in APl version 20.0 or later.

openSubtabByPrimaryTabName()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available
in APl version 22.0 or later.

refreshPrimaryTabByld()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

refreshPrimaryTabByName()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

refreshSubtabByld()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab if the last known URL is an external
page or a Visualforce page. This method is only available in APl version 22.0 or later.

refreshSubtabByNameAndPrimaryTabld()

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab if the
last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.
refreshSubtabByNameAndPrimaryTabName()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab if
the last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.
reopenlastClosedTab()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available
in APl version 35.0 or later.

180

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

resetSessionTimeOut()

Resets a session timeout for a console app. This method ensures that users can continue working on Visualforce pages without being
prompted to log back in to the console when they return to a console tab or console component. This method is only available in
APl version 24.0 or later.

setTabUnsavedChanges()

Sets the unsaved changes icon (4) on subtabs to indicate unsaved data. This method is only available in APl version 23.0 or later.
setTablcon()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab’s
icon. This method is only available in API version 28.0 or later.

setTabLink()

Sets a console tab’s URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in APl version 28.0 or later.
setTabStyle()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method
to customize a tab’s look and feel. This method is only available in APl version 28.0 or later.

setTabTextStyle()

Sets a cascading style sheet (CSS) on a specified tab's text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in APl version 28.0 or later.

setTabTitle()

Sets the title of a primary tab or subtab. This method is only available in APl version 20.0 or later.

closeTab ()

Closes a specified primary tab or subtab. Keep in mind that closing the first tab in a primary tab closes the primary tab itself. This method
is only available in APl version 20.0 or later.

@ Nofe: The user interface and APl behave different for pinned primary tabs. In the Ul, when a primary tab is pinned, you can close
subtabs using your mouse. However, in the AP, if the primary tab is pinned, you can't close its subtabs.
Syntax

sforce.console.closeTab (id:String, (optional) callback:Function)

Arguments
Name Type Description
id string ID of the primary tab or subtab to close.
callback function For APl version 35.0 or later, the JavaScript method that's called upon completion

of the method.

Sample Code API 20.0 or Later-Visualforce

<apex:page standardController="Case'">

181

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Click here to close this tab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId);
}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response

None

Sample Code API Version 35.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function () {
if (result.error) {
alert ("Error message is " + result.error);
}
}i
function testCloseTab () {

//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId, callback);
}i
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

182

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US
https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the tab was re-opened, false otherwise.

error string Error message if the tab couldn't be closed.

O Tip: When using Firefox, we recommend that youdon't call c1oseTab () onatab with an active alert box because the browser
may not load properly.

disableTabClose ()

Prevents a user from closing a tab or a subtab. If the ID parameter doesn't specify a tab, the enclosing tab is used. You can also use this
method to re-enable a tab that has been disabled. Available in API version 36.0 or later.

@ Note:

e Ifyou disable subtabs from closing, the primary tab is also disabled from closing.
e Ifarecordis deleted whose primary tab is disabled, the tab is forcibly closed.

e [farecordis deleted whose subtab is disabled, the subtab is not closed.

Syntax

sforce.console.disableTabClose (disable:boolean, (optional) tabId:String, (optional)
callback:Function)

Arguments

Name Type Description

disable boolean Specifies whether to disable the tab. If t rue, the user can't close thetab. If false,
the user can close the tab.

tabId string The tabld for the tab to enable or disable. Use false to automatically select the
enclosing tab or subtab without needing to specify a tabld. The enclosing tabld can't
be inferred when this call is made from outside a sidebar component. For example,
if you call this method from a footer widget, specify the tabld. If the tabld is for a
“Details” subtab of a primary tab, the primary tabld is used instead.

callback function JavaScript method that's called upon completion of the method. The callback is

passed a response object. See response information below.

183

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Sample Code-Visualforce
<apex:page >
<html>

<head>
<title>Disable close Tab on Load</title>

<!-- Service Console integration API library -->
<script src="/support/console/64.0/integration.js"></script>

<!-- Callback functions to handle tab events -->
<script type="text/javascript">

function displayResultsCallback(result) {
var resDiv = document.getElementById("eventResults");
resDiv.innerHTML = JSON.stringify (result);
// For use within a tab's sidebar (you don't need tab ID)
function testDisableTabCloseTrueWithoutId() {

sforce.console.disableTabClose (true, false, displayResultsCallback);

function testDisableTabCloseFalseWithoutId() {
sforce.console.disableTabClose (false, false, displayResultsCallback);

// For use anywhere (you need the tab ID)

// Note: Your tab ID might be different than the one used here.

// You can get the tab ID many different ways,
// including sforce.console.getEnclosingTabId() .
// See the documentation for details.

function testDisableTabCloseTrueWithId() {
var tabId = window.prompt ("Enter the tab ID","scc-pt-0");
sforce.console.disableTabClose (true, tabId, displayResultsCallback);

function testDisableTabCloseFalseWithId() {
var tabId = window.prompt ("Enter the tab ID","scc-pt-0");
sforce.console.disableTabClose (false, tabId, displayResultsCallback);

</script>
</head>
<body>
<hl>Disable Tab Close Examples</hl>

<h2>API Callback Result</h2>

<code><div id="eventResults" /></code>

184

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

<h2>With No Tab ID</h2>
<p>The tab ID will be auto-detected by context, or the event will fail.</p>

Disable closing for the enclosing tab</1i>

Re-enable closing for the enclosing tab</1li>

<h2>With Tab ID Provided</h2>
<p>When the event context doesn't have a detectable tab ID, you can
supply it yourself.</p>

Disable closing for a specific tab (via tab ID)

Re-enable closing for a specific tab (via tab ID)

</body>
</html>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the action completed successfully, false otherwise.

message string If the action completed successfully, message contains the affected tabld. If the

action failed, message contains the error message.

focusPrimaryTabById()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.focusPrimaryTabById (id:String, (optional)callback:Function)

185

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Arguments
Name Type Description
id string ID of the primary tab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to an open primary tab by id

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testFocusPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.focusPrimaryTabById (primaryTabId, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the open primary tab was successful
if (result.success == true) ({
alert ('Going to the primary tab was successful');
} else {
alert ('Going to the primary tab was not successful');

bi
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the primary tab was successful; false if going to the primary

tab wasn't successful.

186

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

focusPrimaryTabByName ()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in API version 22.0 or
later.

Syntax

sforce.console.focusPrimaryTabByName (name:String, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the primary tab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a primary tab by name

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testFocusPrimaryTabByName () {
//Get the value for 'myPrimaryTab' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';
sforce.console.focusPrimaryTabByName (primaryTabName, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the primary tab was successful
if (result.success == true) {
alert ('Going to the primary tab was successful');
} else {
alert ('Going to the Primary tab was not successful');

}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

187

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the primary tab was successful; false if going to the primary

tab wasn't successful.

focusSidebarComponent ()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style.

Syntax

sforce.console.focusSidebarComponent (componentInfo:string (optional)tabld:string,
callback: Function)

Arguments
Name Type Description
componentInfo string The JSON object that represents the component to focus on. This argument must
include one of the following forms:
Unambiguous types:
¢ {componentType: 'CASE EXPERT WIDGET' }
¢ {componentType: 'FILES WIDGET' }
¢® {componentType: 'HIGHLIGHTS PANEL' }
¢ {componentType: 'KNOWLEDGE ONE'}
¢ {componentType: 'MILESTONE WIDGET' }
¢ {componentType: 'TOPICS WIDGET' }
® {componentType: 'VISUALFORCE' }
Types that require additional parameters:
® {componentType: 'CANVAS', canvasAppld:
'09Hxx0000000001"}
® {componentType: 'RELATED LIST', listName:
'Solution'} a
® {componentType: 'LOOKUP', fieldName: 'Account'}
® {componentType: 'VISUALFORCE', pageName: 'VF1'}
tabId string The ID of the tab on which to focus the browser.
callback function JavaScript method that's called upon completion of the method.

188

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {

alert ('Congratulations!');
lelse{
alert ('Something is wrong!');
}
}i
function focusKnowledgeComponent () {

sforce.console.focusSidebarComponent (JSON.stringify ({componentType:
'KNOWLEDGE ONE'}), "scc-st-2", callback);
}
</script>
Focus Knowledge Component
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if focusing the sidebar component was successful; false otherwise.
focusSubtabById()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.focusSubtabById(id:String, (optional)callback:Function)

Arguments
Name Type Description
id string ID of the subtab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

189

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Click here to go to a subtab by id

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabById() {
//Get the value for 'scc-st-0' from the openSubtab method
//This value is for example purposes only
var subtabId = 'scc-st-0';
sforce.console.focusSubtabById (subtabId, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) {
alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');

}i
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the subtab was successful; false if going to the subtab wasn't

successful.

focusSubtabByNameAndPrimaryTabId ()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in AP
version 22.0 or later.

Syntax

sforce.console.focusSubtabByNameAndPrimaryTabId (name:String,
primaryTabId:String, (optional)callback:Function)

190

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Arguments
Name Type Description
name string Name of the subtab to go to.
primaryTabId string ID of the primary tab in which the subtab opened.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by name and primary tab ID

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabByNameAndPrimaryTabId() {
//Get the values for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console.focusSubtabByNameAndPrimaryTabId (subtabName, primaryTabId,
focusSuccess) ;

}

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) {
alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');

bi
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the subtab was successful; false if going to the subtab wasn't

successful.

191

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

focusSubtabByNameAndPrimaryTabName ()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available in
APl version 22.0 or later.

Syntax

sforce.console.focusSubtabByNameAndPrimaryTabName (name:String,
primaryTabName:String, (optional)callback: Function)

Arguments
Name Type Description
name string Name of the subtab to go to.
primaryTabName string Name of the primary tab in which the subtab opened.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by name and primary tab name

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabByNameAndPrimaryTabName () {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';
sforce.console.focusSubtabByNameAndPrimaryTabName (subtabName, primaryTabName,
focusSuccess) ;

}

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) ({

alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');
}i

</script>

</apex:page>

192

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the subtab was successful; false if going to the subtab wasn't

successful.

generateConsoleUrl ()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external URLs
to the console’s allowlist so that they can display correctly.This method is only available in APl version 28.0 or later.

Syntax

sforce.console.generateConsoleUrl (urls:String, (optional)callback:Function)

Arguments
Name Type Description
urls string An array of URLs. The first URL is a primary tab and subsequent URLs are subtabs.
Note that the last URL is the subtab on which the console is focused. These URLs
can be standard Salesforce URLs or relative URLs.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

Click here to generate a console URL

<script type="text/javascript">
function showConsoleUrl (result) {
alert (result.consoleUrl);
}
function testGenerateConsoleURL() {
sforce.console.generateConsoleUrl ([/apex/pagename, /entityId,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl); }
</script>
</apex:page>

193

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

consoleUrl string Console URL that represents the array of URLs passed into Salesforce.

success boolean true if the URL was generated successfully, false if otherwise.

callback function JavaScript method that's called upon completion of the method.

getEnclosingPrimaryTabId ()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabId((optional)callback: function)

Arguments
Name Type Description
callback function JavaScript method that’s called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to close this primary tab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current primary tab to close it
sforce.console.getEnclosingPrimaryTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the primary tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId) ;
}i
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

194

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The ID of the current primary tab that contains this tab.

getEnclosingPrimaryTabObjectId()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works within
a primary tab or subtab. This method is only available in API version 24.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabObjectId((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to get enclosing primary tab object ID

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testGetEnclosingPrimaryTabObjectId() {
sforce.console.getEnclosingPrimaryTabObjectId (showObjectId) ;

var showObjectId = function showObjectId(result) {
// Display the object ID
alert ('Object ID: ' + result.id);
i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links

in Salesforce Help.

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

195

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description
id string The ID of the current primary tab that contains this subtab.
success boolean true if returning the enclosing primary tab was successful; false if returning

the enclosing primary tab wasn't successful.

getEnclosingTabId()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work if the
callis made within a component enclosed within a subtab. This method is only available in API version 20.0 or later.

Syntax

sforce.console.getEnclosingTabId ()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId);
bi
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

196

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

id string The ID of the current primary tab or subtab.

getFocusedPrimaryTabId ()

Returns the ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

Syntax

sforce.console.getFocusedPrimaryTabId((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to get the focused primary tab ID

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedPrimaryTabId() {
sforce.console.getFocusedPrimaryTabId (showTabId) ;
}
var showTabId = function showTabId(result) {
//Display the tab ID
alert ('Tab ID: ' + result.id);
}i

</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

id string The ID of the primary tab on which the browser is focused. If no primary tab is open,

the IDis null.

197

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

success boolean true ifreturning the primary tab ID on which the browser is focused was successful;
false if returning the primary tab ID on which the browser is focused wasn't
successful.

getFocusedPrimaryTabObjectId()

Returns the object ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

Syntax

sforce.console.getFocusedPrimaryTabObjectId ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to get the focused primary tab object ID

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedPrimaryTabObjectId () {
sforce.console.getFocusedPrimaryTabObjectId (showObjectId) ;

}

var showObjectId = function showObjectId(result) {
//Display the object ID
alert ('Object ID: ' + result.id);

i
</script>

</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

198

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

id string The object ID of the primary tab on which the browser is focused. If there is no
primary tab open, the ID is null.

success boolean true ifreturning the primary tab object ID on which the browser is focused was
successful; false if returning the primary tab object ID on which the browser is
focused wasn't successful.

getFocusedSubtabId()

Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in API
version 25.0 or later.

Syntax

sforce.console.getFocusedSubtabId((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the ID of the focused subtab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedSubtabId() {
sforce.console.getFocusedSubtabId (showTabId) ;
}
var showTabId = function showTabId(result) {
// Display the tab ID
alert ('Tab ID: ' + result.id);
b
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

199

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

id string The ID of the subtab on which the browser is focused. If no subtab is open, the ID is
null.

success boolean true ifreturning the ID of the focused subtab was successful; false ifreturning

the ID of the focused subtab wasn't successful.

getFocusedSubtabObjectId()

Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available
in APl version 24.0 or later.

Syntax

sforce.console.getFocusedSubtabObjectId((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to get the object ID of the focused subtab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedSubtabObjectId() {
sforce.console.getFocusedSubtabObjectId (showObjectId) ;

var showObjectId = function showObjectId(result) {
// Display the object ID
alert ('Object ID: ' + result.id);
}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links

in Salesforce Help.

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

200

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

id string The object ID of the subtab on which the browser is focused. If no subtab is open,
the IDis null.

success boolean true if returning the object ID of the focused subtab was successful; false if

returning the object ID of the focused subtab wasn't successful.

getPageInfo ()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the enclosing
primary tab or subtab. Note that to get the page information from a custom console component, a tabId must be passed as the first
parameter to this method.This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getPagelInfo (tabId:String, (optional)callback:Function)

Arguments
Name Type Description
tabId string ID of the tab from which page information is returned.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get page information

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testGetPageInfo() {
//Get the page information of 'scc-pt-1'"
//This value is for example purposes only
var tabId = 'scc-pt-1';
sforce.console.getPageInfo (tabId , showPagelInfo);

var showPageInfo = function showPageInfo (result) {
alert ('Page Info: ' + result.pagelInfo);
}i
</script>
</apex:page>

201

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

pageInfo string Returns the URL of the current page as a JSON string, and includes any applicable object ID, object
name, object type, and for APl version 33.0 or later, the object tab name. For example:

{"url":"https://MyDomainNameny.salesforce.com/001x0000003DGQR",
"dojectId":"001x0000003DCR", "dojectName" : "Aare", "doject" : "Account", "displayName" : "Carnpany’

For APlversion 31.0 and later, invoking this APl method on a PersonAccount object returns the following
additional information.

e accountld or contactld, the associated account or contact ID

e personAccount, which is t rue if the object is a PersonAccount and false otherwise

For example:

{"url":"https://MyDomainNameny.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR", "objectName":"Acme Person Account",
"object":"Account", "contactId":"003D000000QOMgg",
"personAccount":true}

callback function JavaScript method that's called upon completion of the method.
getPrimaryTabIds ()
Returns all of the IDs of open primary tabs. This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getPrimaryTabIds ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the primary tab IDs

<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">
function testGetPrimaryTabIds () {

202

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

sforce.console.getPrimaryTabIds (showTabId) ;

var showTabId = function showTabId(result) {
//Display the primary tab IDs
alert ('Primary Tab IDs: ' + result.ids);
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string An array of open primary tab IDs, in order of appearance.

success boolean true ifreturning the IDs of open primary tabs was successful; false if returning

the IDs of open primary tabs wasn't successful.

getSubtablIds ()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of the
subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten by
a Visualforce page. This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getSubtabIds((optional) primaryTabId:String, (optional) callback:Function)

Arguments
Name Type Description
primaryTabId string ID of the primary tab from which the subtab IDs are returned.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the subtab IDs

<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">
function testGetSubtabIds () {

203

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

//Get the subtabs of the primary tab 'scc-pt-0'
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.getSubtablds (primaryTabId , showTabId);

var showTabId = function showTabId(result) {
//Display the subtab IDs
alert ('Subtab IDs: ' + result.ids);
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string An array of open subtab IDs.

success boolean true iffiring the event was successful; £alse iffiring the event wasn't successful.
getTabLink ()

Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.getTabLink (level:String, (optional) tabId:String,
(optional)callback: Function)

Arguments
Name Type Description
level string Level that matches one of the Link to Share options in the Salesforce console user
interface. The options are;
e All primary tabs and subtabs —
sforce.console.TabLink.PARENT AND CHILDREN.
e Only the specified tab— sforce.console.TabLink.TAB ONLY
e Astandard Salesforce URL —
sforce.console.TabLink.SALESFORCE URL
tabId string Optional tab ID of the tab from which you're retrieving the URL. If you do not pass
atab ID, the URL to the current tab is returned.
callback function JavaScript method that's called upon completion of the method.

204

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

Click here to get tab link

<script type="text/javascript">
var getEnclosingPrimaryTabId = function getEnclosingPrimaryTabId() {
sforce.console.getEnclosingPrimaryTabId (getTabLink) ;
}
var getTabLink = function getTabLink (result) {
sforce.console.getTabLink (sforce.console.TabLink.PARENT AND CHILDREN, result.id,
showTabLink) ;
}
var showTabLink = function showTabLink (result) {
var link = result.tabLink;
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
tabLink string The retrieved URL.
success boolean true if the link was retrieved successfully, false if retrieving was unsuccessful.
callback function JavaScript method that's called upon completion of the method.

isInConsole ()

Determines if the page is in the Salesforce console. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.isInConsole ()

Arguments

None

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to check if the page is in the Service Cloud console

205

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testIsInConsole() {
if (sforce.console.isInConsole()) {
alert ('in console');
} else {
alert ('not in console');

}
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links

in Salesforce Help.

Response

Returns true if the page is in the Salesforce console; false if the page is not in the Salesforce console.

onEnclosingTabRefresh ()

Registers a function to call when the enclosing tab refreshes. This method is only available in API version 24.0 or later.

Syntax

sforce.console.onEnclosingTabRefresh (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the enclosing tab refreshes.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">
var eventHandler = function eventHandler (result) {
alert ('Enclosing tab has refreshed:' + result.id
+ 'and the object Id is:' + result.objectId);
}i
sforce.console.onkEnclosingTabRefresh (eventHandler) ;
</script>
</apex:page>

206

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

fields:
Name Type Description
id string The ID of the refreshed tab.
objectlId string The object ID of the refreshed tab or null if no object exists.

onFocusedPrimaryTab ()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.onFocusedPrimaryTab (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the focus of the browser changes to a different

primary tab.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">

var eventHandler = function (result) {
alert ('Focus changed to a different primary tab. The primary tab ID is:'

+ result.id + 'and the object Id is:' + result.objectId);
bi
sforce.console.onFocusedPrimaryTab (eventHandler) ;

</script>

</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

fields:
Name Type Description
id string The ID of the primary tab on which the browser is focused.

207

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description
objectId string The object ID of the primary tab on which the browser is focused or null if no object
exists.
onFocusedSubtab ()
Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in APl version 24.0
or later.
Syntax

sforce.console.onFocusedSubtab (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the focus of the browser changes to a different

subtab.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">

var eventHandler = function (result) {
alert ('Focus changed to a different subtab. The subtab Id is:'

+ result.id + 'and the object Id is:' + result.objectId);
b
sforce.console.onFocusedSubtab (eventHandler) ;

</script>

</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

fields:
Name Type Description
id string The ID of the subtab on which the browser is focused.
objectId string The object ID of the subtab on which the browser is focused or null if no object exists.

208

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

onTabSave ()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method, call
setTabUnsavedChanges () in the callback method. This notifies the console that the custom save operation completed. In the
callto setTabUnsavedChanges (), pass the first parameter as false to indicate a successful save or true to indicate an
unsuccessful save. This method is only available in APl version 28.0 or later.

Registering a callback method affects the user interface. When no save handler is registered, the user is presented with two options
when closing a subtab with unsaved changes: Continue or Cancel. When a save handler is registered, the user is presented with three
options when closing the subtab: Save, Don’t Save, or Cancel. In this scenario, the callback method registered is called when the user
chooses Save.

(:) Important: When using onTabSave () with setTabUnsavedChanges ():

e (alling sforce.console.setTabUnsavedChanges (false, ...) closesthe specified subtab. We recommend
placing the callto sforce.console.setTabUnsavedChanges () atthe end of the callback method, as any
subsequent save logic might not execute.

e onTabSave () worksonly on subtabs or their sidebar components. It doesn't work on primary tabs.

e Notcalling sforce.console.setTabUnsavedChanges () will have a severe effect on the user interface. For
example, closing a primary tab with a subtab for which sforce.console.setTabUnsavedChanges () hasnot
been called preventsa Saving. . . modal dialog box from closing.

e Any callback passed to sforce.console.setTabUnsavedChanges () will not execute if the specified tab saves
successfully and closes.

@ Nofe: Calling onTabSave () from a custom console component prevents that component from refreshing when saving the
subtab. " in the Salesforce online help.

Syntax

sforce.console.onTabSave (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called to handle the save operation.

Sample Code-Visualforce

<apex:page>

Click here to register save handler

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testOnTabSave () {
sforce.console.onTabSave (handleSave) ;
}
var handleSave = function handleSave (result) {
alert ('save handler called from tab with id ' + result.id +

209

Salesforce Console Integration Toolkit for Salesforce Classic

//Mark tab as

and objectId '
//Perform save logic here

'clean'

Methods for Primary Tabs and Subtabs

+ result.objectId);

sforce.console.setTabUnsavedChanges (false, undefined, result.id);

}i
</script>
</apex:page>

Response

Name
id

objectId

Type
string

string

openConsoleUrl ()

Description
ID of the subtab being saved.

Object ID of the subtab being saved, if applicable; null otherwise.

Opens a URL created by the generateConsoleUr1l () method (a URL toatab, or group of related tabs, in the Salesforce console).
This method is only available in APl version 28.0 or later.

Syntax

sforce.console.openConsoleUrl (id:String, consoleUrl:URL, active:Boolean,

(optional) tabLabels:String,

Arguments

Name

id

consoleUrl

active

tabLabels

tabNames

callback

Type

string

string

boolean

string

string

function

(optional) tabNames:String, (optional)callback:Function)

Description

ID of the console tab to override. If the ID corresponds to an existing primary tab,
then the existing primary tab is redirected to the given URL because the console
prevents duplicate tabs. Use null to create a new primary tab.

Console URL that represents the array of URLs passed into Salesforce.

If true, the opened primary tab displays immediately. If false, the opened
primary tab displays in the background and the current tab maintains focus.

Optional array of labels of the opened primary tab or subtabs. The order in which
the tabs appear in the console URL should match the order of the labels that appear
in the array. If you do not want to set the labels of tabs, use an empty string (').

Optional array of names of the opened primary and subtabs. The order in which the
tabs appear in the console URL should match the order of the names that appear in
the array. If you do not want to set the names of tabs, use an empty string (' ').

JavaScript method that's called upon completion of the method.

210

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

Click here to open a console URL

<script type="text/javascript">
var generateConsoleUrl = function testGenerateConsoleURL() {
sforce.console.generateConsoleUrl ([/apex/pagename, /entityId,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl);
}
var openConsoleUrl = function showConsoleUrl (result) {
sforce.console.openConsoleUrl (null, result.consoleUrl, true, ['Apex', '',
'Salesforce', ''], ['', '', 'externalUrl', ''])
}
</script>
</apex:page>

@ Nofte: This example shows that if you want to set a label or name, you must set the other values to empty string (**).

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the console URL was opened successfully, false otherwise.
openPrimaryTab ()

Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an existing
tab. This method is only available in APl version 20.0 or later.

e IfthelD corresponds to an existing primary tab, the existing tab is redirected to the given URL because the Salesforce console prevents
duplicate tabs.

e Ifthe URL s to a Salesforce object, that object displays as specified in the Salesforce console app settings. For example, if cases are
set to open as a subtab of their parent accounts, and openPrimaryTab () is called on a case, the case opens as subtab on its
parent account's primary tab.

If there's an error opening the tab, the error code is reported in the JavaScript console.
Syntax

sforce.console.openPrimaryTab (id:String, url:URL, active:Boolean,
(optional) tabLabel:String, (optional)callback:Function, (optional)name)

n

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Arguments

Name Type Description

id string ID of the primary tab to override.
Use null to create a new primary tab.

If the ID corresponds to an existing primary tab, the existing tab is redirected to the
given URL because the Salesforce console prevents duplicate tabs.

url URL URL of the opened primary tab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a subtab of their parent
accounts,and openPrimaryTab () iscalled ona case, the case opens as subtab
on its parent account's primary tab.

Users can open an external URL if it's been added to the console’s allowlist.

@ Note: When using a relative URL, make sure that you include " /" at the
beginning of your URL. When pointing to a Visualforce page, use " /apex /"
atthe beginning of your URL. Otherwise, your URL might not work as expected.

active boolean If true, the opened primary tab displays immediately. If false, the opened
primary tab displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened primary tab. If a label isn't specified, External
Page displays.

Add labels as text; HTML isn't supported.

callback function JavaScript method called upon completion of the method.

name string Optional name of the opened primary tab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new primary tab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testOpenPrimaryTab () {
//Open a new primary tab with the salesforce.com home page in it
sforce.console.openPrimaryTab (null, 'https://salesforce.com', false,
'salesforce', openSuccess, 'salesforceTab');

var openSuccess = function openSuccess (result) {
//Report whether opening the new tab was successful

212

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

if (result.success == true) {

alert ('Primary tab successfully opened');
} else {

alert ('Primary tab cannot be opened');

}i
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean true if the tab successfully opened; false if the tab didn't open.
id string ID of the primary tab. IDs are only valid during a user session; IDs become invalid
when a user leaves the Salesforce console.
openSubtab ()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available in AP
version 20.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openSubtab (primaryTablId:String, url:URL, active:Boolean, tabLabel:String,
id:String, (optional)callback:Function, (optional)name:String)

Arguments
Name Type Description
primaryTabId string ID of the primary tab in which the subtab opened.
url URL URL of the opened subtab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a primary tab, and
openSubtab () is called on a case, the case opens as a primary tab.

Users can open an external URL if it's been added to the console’s allowlist.

213

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

@ Notfe: When using a relative URL, make sure that you include " /" at the
beginning of your URL. When pointing to a Visualforce page, use " /apex /"
atthe beginning of your URL. Otherwise, your URL might not work as expected.

active boolean If true, the opened subtab displays immediately. If £alse, the opened subtab
displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened subtab. If a label isn't specified, External Page
displays.

Add labels as text; HTML isn't supported.

id string ID of the subtab to override.

Use null to create a new subtab.

callback function JavaScript method called upon completion of the method.

name string Optional name of the opened subtab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new subtab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testOpenSubtab () {
//First find the ID of the primary tab to put the new subtab in
sforce.console.getEnclosingPrimaryTabId (openSubtab) ;

var openSubtab = function openSubtab (result) {
//Now that we have the primary tab ID, we can open a new subtab in it
var primaryTabId = result.id;
sforce.console.openSubtab (primaryTabId , 'https://salesforce.com', false,
'salesforce', null, openSuccess, 'salesforceSubtab');

var openSuccess = function openSuccess (result) {
//Report whether we succeeded in opening the subtab
if (result.success == true) {

alert ('subtab successfully opened');
} else {
alert ('subtab cannot be opened');

214

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the subtab successfully opened; false if the subtab didn't open.

id string ID of the subtab. IDs are only valid during a user session; IDs become invalid when

the user leaves the Salesforce console.

openSubtabByPrimaryTabName ()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available in API
version 22.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openSubtabByPrimaryTabName (primaryTabName:String, url:URL, active:Boolean,
tabLabel:String, id:String, (optional)callback:Function, (optional)name:String)

Arguments

Name Type Description

primaryTabName string Name of the primary tab in which the subtab opened.

url URL URL of the opened subtab.
If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a primary tab, and
openSubtab () is called on a case, the case opens as a primary tab.
Users can open an external URL if it's been added to the console’s allowlist.

active boolean If true, the opened subtab displays immediately. If £alse, the opened subtab
displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened subtab. If a label isn't specified, External Page

displays.
Add labels as text; HTML isn't supported.

215

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

id string ID of the subtab to override.

Use null to create a new subtab.

callback function JavaScript method called upon completion of the method.

name string Optional name of the opened subtab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new subtab by primary tab name

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testOpenSubtabByPrimaryTabName () {
//First open a primary tab by name
sforce.console.openPrimaryTab (null, 'http://www.yahoo.com', true, 'Yahoo',
openSubtab, 'yahoo');
}

var openSubtab = function openSubtab (result) {
//Open the subtab by the name specified in function
testOpenSubtabByPrimaryTabName ()
sforce.console.openSubtabByPrimaryTabName ('yahoo', 'https://salesforce.com',

true,
'salesforce', null, openSuccess);
}i
var openSuccess = function openSuccess (result) {
//Report whether we succeeded in opening the subtab
if (result.success == true) {
alert ('subtab successfully opened');
} else {
alert ('subtab cannot be opened');
}
}i
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

216

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description
success boolean true if the subtab successfully opened; false if the subtab didn't open.
id string ID of the subtab. IDs are only valid during a user session; IDs become invalid when

the user leaves the Salesforce console.

refreshPrimaryTabById()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or Visualforce
pages. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabById (id:String, activate:Boolean,
(optional) callback:Function, (optional) fullRefresh:Boolean)

Arguments
Name Type Description
id string ID of the primary tab to refresh.
activate boolean If true, the refreshed primary tab displays immediately. If £alse, the refreshed
primary tab displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a primary tab by id

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testRefreshPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.refreshPrimaryTabById (primaryTabId, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) {
alert ('Primary tab refreshed successfully');
} else {

217

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

alert ('Primary did not refresh');
bi
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the primary tab refreshed successfully; false if the primary tab didn't

refresh.

refreshPrimaryTabByName ()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabByName (name:String, active:Boolean,
(optional) callback:Function), (optional)fullRefresh:Boolean)

Arguments
Name Type Description
name string Name of the primary tab to refresh.
active boolean If £rue, the refreshed primary tab displays immediately. If false, the refreshed
primary tab displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a primary tab by name

218

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testRefreshPrimaryTabByName () {
//Set the name of the tab by using the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';
sforce.console.refreshPrimaryTabByName (primaryTabName, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) {

alert ('Primary tab refreshed successfully');
} else {
alert ('Primary tab did not refresh');
i
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true if the primary tab refreshed successfully; £alse if the primary tab didn't
refresh.
refreshSubtabById()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab if the last known URL is an external
page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabById (id:String, activate:Boolean, (optional)callback:Function,
(optional) fullRefresh:Boolean)

219

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Arguments
Name Type Description
id string ID of the subtab to refresh.
activate boolean If t rue, the refreshed subtab displays immediately. If f£a1se, the refreshed subtab
displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by id

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testRefreshSubtabById() {
//Set the name of the tab by using the openSubtab method
//This value is for example purposes only
var subtabId = 'scc-st-0';
sforce.console.refreshSubtabById (subtabId, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) ({
alert ('Subtab refreshed successfully');
} else {

alert ('Subtab did not refresh'):;
b
</script>

</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; false if the subtab didn't refresh.

220

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic

refreshSubtabByNameAndPrimaryTablId ()

Methods for Primary Tabs and Subtabs

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab if the last

known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTabId (name:String, primaryTabId:String,
active:Boolean, (optional)callback:Function, (optional)fullRefresh:Boolean)

Arguments
Name Type Description
name string Name of the subtab to refresh.
primaryTabId string ID of the primary tab in which the subtab opened.
active boolean If t rue, the refreshed subtab displaysimmediately. If £a1se, the refreshed subtab
displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by name and primary tab ID

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testRefreshSubtabByNameAndPrimaryTabId() ({
//Get the value for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console.refreshSubtabByNameAndPrimaryTabId (subtabName, primaryTabId,
true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {
alert ('Subtab refreshed successfully');
} else {
alert ('Subtab did not refresh'):;

221

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; false if the subtab didn't refresh.

refreshSubtabByNameAndPrimaryTabName ()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab if the
last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTabName (name:String, primaryTabName:String,
active:Boolean, (optional)callback:Function, (optional)fullRefresh:Boolean)

Arguments
Name Type Description
name string Name of the subtab to refresh.
primaryTabName string Name of the primary tab in which the subtab opened.
active boolean If t rue, the refreshed subtab displaysimmediately. If false,the refreshed subtab
displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by name and primary tab name

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

222

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

function testRefreshSubtabByNameAndPrimaryTabName () {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';
sforce.console.refreshSubtabByNameAndPrimaryTabName (subtabName, primaryTabName,
true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) ({
alert ('Subtab successfully refreshed');
} else {

alert ('Subtab did not refresh');
}i
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; false if the subtab didn't refresh.

reopenlLastClosedTab ()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available in
APl version 35.0 or later.

Syntax

sforce.console.reopenLastClosedTab ()

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

223

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var = callback = function (result) {
if (result.success) {
alert ('Last tab was re-opened!');

} else {
alert ('No tab was re-opened.');
}
}i
function reopenlastClosedTabTest () {

sforce.console.reopenlastClosedTab (callback) ;

</script>
Re-open Last Closed Tab
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the tab was reopened, false otherwise.

resetSessionTimeOut ()

Resets a session timeout for a console app. This method ensures that users can continue working on Visualforce pages without being
prompted to log back in to the console when they return to a console tab or console component. This method is only available in API
version 24.0 or later.

For more information, see Modify Session Security Settings in Salesforce Help.

Syntax

sforce.console.resetSessionTimeOut ()

Arguments

None
Sample Code-Visualforce

<apex:page standardController="Case">

224

https://help.salesforce.com/s/articleView?id=sf.admin_sessions.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Click here to reset session timeout

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testResetSessionTimeOut () {
sforce.console.resetSessionTimeOut () ;
}i
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links

in Salesforce Help.

Response

None

setTabUnsavedChanges ()

Sets the unsaved changes icon (4) on subtabs to indicate unsaved data. This method is only available in APl version 23.0 or later.

Syntax

sforce.console.setTabUnsavedChanges (unsaved: Boolean, callback:Function,
(optional) subtabId:String)

Arguments
Name Type Description
unsaved boolean If true, the tabis marked as having unsaved changes.
callback function JavaScript method that's called upon completion of the method.
subtabId string The ID of the subtab that is marked as having unsaved changes.

This argument is only available in APl version 25.0 or later.

Sample Code API Version 23.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testSetTabUnsavedChanges () {
sforce.console.setTabUnsavedChanges (true, displayResult);
}i
function displayResult (result) {
if (result.success) {

225

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

alert ('Tab status has been successfully updated');
} else {
alert ('Tab status couldn’t be updated');

</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response

This method returns its response in an object in a callback method. The response object contains the following field:

Name Type Description

success boolean true if update was successful; false if update wasn't successful.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testSetTabUnsavedChanges () {
sforce.console.getFocusedSubtabld (setTabDirty) ;
}i
function setTabDirty(result) {
sforce.console.setTabUnsavedChanges (true, displayResult, result.id);
}i
function displayResult (result) {
if (result.success) {
alert ('Tab status has been successfully updated');
} else {
alert ('Tab status couldn’t be updated');

bi
</script>
</apex:page>

Nofte: Thisexampleis only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 250.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

226

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

success boolean true if returning the focused subtab ID was successful; false if if returning the
focused subtab ID wasn't successful.

setTabIcon ()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab’s icon.
This method is only available in APl version 28.0 or later.

Syntax

sforce.console.setTabIcon (iconUrl:String, tabID:String, (optional)callback:Function)

Arguments
Name Type Description
iconUrl string A URL pointing to an image, which is used as the tab’s icon. If null or undefined, the
tab’s default icon is used.
tabId string The ID of the tab on which to set the icon. If null or undefined, the enclosing tab’s
IDis used.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s icon

Click here to reset the enclosing tab’s icon

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {

alert ('Tab icon set successfully!');
} else {
alert ('Tab icon cannot be set!');
}
}
function testSetTabIcon() {

sforce.console.setTabIcon ('http://host/path/to/your/icon.png', null,
checkResult) ;
}

function testResetTabIcon () {
sforce.console.setTabIcon (null, null, checkResult):;

227

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifsetting thetab'sicon was successful, false if setting thetab’sicon wasn't

successful.

@ Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabLink ()

Sets a console tab's URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in APl version 28.0 or later.

Syntax

sforce.console.setTabLink ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Account">
<apex: detail />
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
window.onload = function() {
sforce.console.setTabLink() ;
}i
</script>
</apex:page>

228

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean true if the link was set successfully, false if setting was unsuccessful.
callback function JavaScript method that's called upon completion of the method.
setTabStyle ()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method to
customize a tab's look and feel. This method is only available in API version 28.0 or later.

Syntax

sforce.console.setTabStyle (style:String, tabld:String, (optional)callback:Function)

Arguments
Name Type Description
style string A CSS specification string used to style the tab. If null or undefined, the tab’s default
style is used.
tabId string The ID of the tab on which to set the style. If null or undefined, the enclosing tab’s
IDis used.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s background color to red

Click here to reset the enclosing tab’s style

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('Tab style set successfully!');
} else {
alert ('Tab style cannot be set!');

function testSetTabStyle() {
sforce.console.setTabStyle ('background:red; "', null, checkResult);

229

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

function testResetTabStyle() {
sforce.console.setTabStyle (null, null, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifsetting the tab’s style was successful, false if setting the tab’s style wasn't

successful.

@ Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabTextStyle ()

Sets a cascading style sheet (CSS) on a specified tab’s text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in APl version 28.0 or later.

Syntax

sforce.console. setTabTextStyle (style:String, tabID:String, (optional)callback:Function))

Arguments
Name Type Description
style string A CSS specification string used to set a tab's text style. If null or undefined, the tab’s
default text style is used.
tabId string The ID of the tab on which to set the text style. If null or undefined, the enclosing
tab’s ID is used.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s text style

230

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Click here to reset the enclosing tab’s text style

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('Tab text style set successfully!');
} else {
alert ('Tab text style cannot be set!');

function testSetTabTextStyle () {
sforce.console.setTabTextStyle ('color:blue; font-style:italic;"', null,
checkResult) ;
}
function testResetTabTextStyle() {
sforce.console.setTabTextStyle(null, null, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the tab’s text style was successful, false if setting the tab’s text

style wasn't successful.

@ Nofte: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabTitle ()

Sets the title of a primary tab or subtab. This method is only available in API version 20.0 or later.

Syntax

sforce.console.setTabTitle (tabTitle:String, (optional)tabID:String)

Arguments
Name Type Description
tabTitle string Title of a primary tab or subtab.

231

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Primary Tabs and Subtabs

Name Type Description

tabId string The ID of the tab in which to set the title.

This argument is only available in APl version 25.0 or later.

Sample Code-Visualforce API Version 20.0 or Later

<apex:page standardController="Case'">

Click here to change this tab's title

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testSetTabTitle () {
//Set the current tab's title
sforce.console.setTabTitle ('My New Title');
}
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in Salesforce Help.

Response

None

Sample Code-Visualforce API Version 25.0 or Later

<apex:page>

Click here to change the title of the focused primary tab

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testSetTabTitle () {
sforce.console.getFocusedPrimaryTabId (function (result) {
sforce.console.setTabTitle ('My New Title', result.id);
})

</script>
</apex:page>

Nofte: This exampleis only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 250.

Response

None

232

https://help.salesforce.com/s/articleView?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Navigation Tabs

Methods for Navigation Tabs

A Salesforce console displays a navigation tab from which users can select objects to view lists or home pages. Administrators choose
the objects that users can access from a navigation tab.

IN THIS SECTION:

focusNavigationTab()
Focuses the browser on the navigation tab. This method is only available in APl version 31.0 or later.

getNavigationTabs()
Returns all of the objects in the navigation tab. This method is only available in APl version 31.0 or later.

getSelectedNavigationTab()
Returns the selected object in the navigation tab. This method is only available in APl version 31.0 or later.

refreshNavigationTab()
Refreshes the selected navigation tab. This method is only available in APl version 31.0 or later.

setSelectedNavigationTab()
Sets the navigation tab with a specific ID or URL. This method is only available in APl version 31.0 or later.

focusNavigationTab ()

Focuses the browser on the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.focusNavigationTab ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) ({}
if (result.success) {
alert ('success');

}

else{

alert ('Something is wrong.');

}

sforce.console.focusNavigationTab (callback) ;

233

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Navigation Tabs

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if returning the object IDs was successful; false otherwise.

getNavigationTabs ()

Returns all of the objects in the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.getNavigationTabs ((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
var id;
if (result.success) {
var tempItem = JSON.parse (result.items);
for (var 1 = 0, len = tempItem.length; i < len; i++) {

alert ('Label:'+tempIltem[i].label+'listViewURLl: "+tempItem[i].listViewUrl+'navTabid:"'
+tempIltem[i] .navigationTabId+'Selected ' +templtem[i].selected);
}
} else {
alert ('something is wrong!');
}
}i
sforce.console.getNavigationTabs (callback) ;
</script>
</apex:page>

234

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Navigation Tabs

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

menultems object The IDs of objects in the navigation tab.

success boolean true if returning the IDs of objects in the navigation tab was successful, false

otherwise.

getSelectedNavigationTab ()

Returns the selected object in the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.getSelectedNavigationTab ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {
alert ('the navigation tab id is ' + result.navigationTabId + ' and navigation
url is ' + result.listViewUrl);
} else {
alert ('something is wrong!');

b
sforce.console.getSelectedNavigationTab (callback) ;
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

235

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Navigation Tabs

Name Type Description

navigationTabId string The object ID of the selected object.

listViewUrl object The list view URL of the selected object.

label object The label of the selected object.

selected boolean true ifreturning the selected field of the object was successful, false otherwise.
success boolean true if returning the object IDs was successful, false otherwise.

refreshNavigationTab ()

Refreshes the selected navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.refreshNavigationTab ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) ({}
if (result.success) {
alert ('success');
}
else(
alert ('Something is wrong.');

b
sforce.console.refreshNavigationTab (callback) ;
</script>
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

236

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Navigation Tabs

Name Type Description

success boolean true if refreshing the navigation tab was successful, false otherwise.

setSelectedNavigationTab ()

Sets the navigation tab with a specific ID or URL. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.setSelectedNavigationTab ((optional)callback, navigatorTabId: (optional) string,
url: (optional) string)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.
navigatorTabId string The ID of the navigation tab to be selected.
url string The URL of the navigation tab to be selected.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var callback = function (result) {}
if (result.success) {
alert ('Successful');
} else {
alert ('something is wrong!');

bi
sforce.console.setSelectedNavigationTab (callback, 'nav-tab-4");
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the navigation tab with a specific ID or URL was successful, false

otherwise.

237

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Methods for Computer-Telephony Integration (CTI)

Salesforce Call Center seamlessly integrates Salesforce with Computer-Telephony Integration systems. Developers create a CTl system
with and console users access telephony features through a softphone, which is a call-control tool that appears in the footer of a console.

IN THIS SECTION:

fireOnCallBegin()

Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom
console component. This method is only available in APl version 31.0 or later.

fireOnCallEnd()

Fires an event that notifies a call has ended. Use to get information or send information between an interaction log and a custom
console component. This method executes when fireOnCallBegin () is called first. This method is only available in API
version 31.0 or later.

fireOnCallLogSaved()

Callsthe eventHandler function registered with onCallLogSaved () .Useto getinformation or send information between
an interaction log and a custom console component.. This method is only available in APl version 31.0 or later.
getCallAttachedData()

Returns the attached data of a call represented by the call object ID or null if there isn't an active call. The data is returned in JSON
format. This method is for computer-telephony integration (CTl); it's only available in APl version 24.0 or later.

getCallObjectlds()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

onCallBegin()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it's only
available in APl version 24.0 or later.

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTI); it's only available in API
version 24.0 or later.

onCallLogSaved()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an
interaction log and a custom console component. This method is only available in APl version 31.0 or later.

onSendCTIMessage()

Registers a function that is fired when a message is sent with the sendCTIMessage () . Use to get information or send information
between an interaction log and a custom console component. This method is only available in APl version 31.0 or later.
sendCTIMessage()

Sends a message to the CTl adapter or Open CTI. This method is for computer-telephony integration (CTl); it's only available in API
version 24.0 or later.

setCallAttachedData()

Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a
custom console component.This method is only available in API version 31.0 or later.

setCallObjectlds()

Sets call object IDs, in ascending order of arrival. This method is only available in APl version 31.0 or later.

238

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

fireOnCallBegin ()

Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom console
component. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.fireOnCallBegin(callObjectId:String, callType:String, calllabel:String,
(optional)callback:Function)

Arguments

Name Type Description

callObjectId string The object ID of the call.

callType string String that specifies the call type, which mustbe internal, inbound or
outbound

callLabel string String that specifies a call as it appears in the Attach Call drop-down button. For
example, Call Label — Inbound Call 12:52:31 PM

callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to start a call

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallBegin () {

sforce.console.cti.fireOnCallBegin('call.794937"' , 'outbound' , 'label 1');

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.

239

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

fireOnCallEnd ()

Fires an event that notifies a call has ended. Use to get information or send information between an interaction log and a custom console
component. This method executes when fireOnCallBegin () is called first. This method is only available in APl version 31.0 or
later.

Syntax

sforce.console.cti.fireOnCallEnd(callObjectId:String, callDuration:Number,
callDisposition:String, (optional)callback:Function)

Arguments
Name Type Description
callObjectId string The object ID of the call.
callDuration number Number specifying the duration of the call.
callDisposition string String representing the call’s disposition, such as call successful, left voicemail, or
disconnected.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to end a call

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallEnd () {
//Here, 'call.l' refers to a call that is in progress.
sforce.console.cti.fireOnCallEnd('call.l', 60, 'Set Appointment');

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.

240

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

fireOnCalllogSaved ()

Callsthe eventHandler function registered with onCallLogSaved (). Use to get information or send information between
an interaction log and a custom console component.. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.fireOnCalllLogSaved(id:String, (optional)callback:Function)

Arguments
Name Type Description
id string The object ID of the saved call log.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">

var MyCallback = function (result) {
alert ('fireOnCalllLogSaved was thrown: ' + result.success);

b

function testFireOnCallLogSaved() {
// Simulates that a call log was saved by passing the task object Id as input.

sforce.console.cti.fireOnCallLogSaved ('00Txx000003gf8u', myCallback);

var callback = function (result) {
alert('Call Log was saved! Object Id saved is : ' + result.id);

b

sforce.console.cti.onCalllogSaved(callback);

</script>

Test fireOnCallLogSaved API!
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.

24

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

getCallAttachedData ()

Returns the attached data of a call represented by the call object ID or null if there isn't an active call. The data is returned in JSON format.
This method is for computer-telephony integration (CTl); it's only available in APl version 24.0 or later.

Syntax

sforce.console.cti.getCallAttachedData(callObjectId, getCallType, (optional)
callback: Function)

Arguments
Name Type Description
callObjectId string The call object ID of the call that retrieves the attached data.
getCallType boolean true ifthe type of callis returned as either INTERNAL, INBOUND, or'OUTBOUND";
false otherwise. This field is only available in APl version 29.0 or later.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

/* Note: Open CTI needs to set call type to before getting it, and call type is
INTERNAL/INBOUND/OUTBOUND.
*/

var callback?2 = function (result) {
alert ('Call attached data 1is ' + result.data + '\n Call Type is ' +
result.type);

7

/* Retrieving call ID of first call that came in and
* calling getCallAttachedData () to retrieve call data.
*/
var callbackl = function (result) {
if (result.ids && result.ids.length > 0) {
sforce.console.cti.getCallAttachedData (result.ids[0], callback2,
{getCallType:true});
}
}i

//Note that we are using the CTI submodule here
function testGetCallAttachedData () {

sforce.console.cti.getCallObjectIds (callbackl);
}i

242

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

</script>
<h1>CTI</hl>
<button onclick="testGetCallAttachedData () ">getAttachedData</button>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

data string The attached data of a call in JSON format.

success boolean true ifreturning the attached data was successful; £alse ifreturning the attached

data wasn't successful.
type string The type of call. Possible values are 'INTERNAL', INBOUND', and 'OUTBOUND".

getCallObjectIds ()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

Syntax

sforce.console.cti.getCallObjectIds((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert ('"Active call object ids: ' + result.ids);

b

//Note that we are using the CTI submodule here
sforce.console.cti.getCallObjectIds (callback);
</script>
</apex:page>

243

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
ids string The call object IDs of active calls or null if no call is active.
success boolean true if returning the active call object IDs was successful; false ifreturning the
active call object IDs wasn't successful.
onCallBegin ()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it's only available
in APl version 24.0 or later.

Syntax

sforce.console.cti.onCallBegin(eventHandler:Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a call begins.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Call ' + result.id + 'Just came in!');

}i

//Note that we are using the CTI submodule here
sforce.console.cti.onCallBegin (callback) ;
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The call object ID of the call which has begun.

244

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTl); it's only available in AP
version 24.0 or later.

Syntax

sforce.console.cti.onCallEnd(eventHandler:Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a call ends.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">

var callback = function (result) {

var str = 'Call ' 4+ result.id + ' ended! ';
str += 'Call duration is ' + result.duration + '. ';
str += 'Call disposition is ' + result.disposition;

alert (str);
bi

//Note that we are using the CTI submodule here
sforce.console.cti.onCallEnd(callback);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
id string The call object ID of the call which has ended.
duration string The duration of the call.
disposition string The disposition of the call.
onCallLogSaved ()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an interaction
log and a custom console component. This method is only available in APl version 31.0 or later.

245

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Syntax

sforce.console.cti.onCallLogSaved(eventHandler:Function)

Arguments
Name Type Description
eventHandler function Forastandardinteractionlog, eventHandler isafunction thatis executed when

acalllogis saved. Fora custominteractionlog, eventHandler isafunction that
is executed when the £ireOnCallLogSaved APIis called in your Visualforce

page.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Call Log was saved! Object Id saved is : ' + result.id);

b
sforce.console.cti.onCalllLogSaved(callback);
</script>

<p>Registered onCallLogSaved listener...</p>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string Call log object ID that was saved.

onSendCTIMessage ()

Registers a function that is fired when a message is sent with the sendCTIMessage () . Use to get information or send information
between an interaction log and a custom console component. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.onSendCTIMessage (eventHandler:Function)

246

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Arguments
Name Type Description
eventHandler function JavaScript method called when a message is sent with the sendCTIMessage ()

method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert ('sendCTIMessage API sent the following message: ' + result.message);

}i
sforce.console.cti.onSendCTIMessage (callback);

function sendCTIMessage () {
sforce.console.cti.sendCTIMessage ('sending a message to CTI');
}
</script>

Send a message to see your listener receiving it!
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

message string The message that was sent with the sendCTIMessage () method.

sendCTIMessage ()

Sends a message to the CTl adapter or Open CTl. This method is for computer-telephony integration (CTl); it's only available in APl version
24.0 or later.

Syntax

sforce.console.cti.sendCTIMessage (msg, (optional) callback:Function)

247

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Arguments
Name Type Description
msg string Message to send to the adapter.
callback function JavaScript method called when the message is sent.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
if (result.success) {
alert ('CTI message was sent successfully!');
} else {
alert ('CTI message was not sent successfully.');

}i

//Note that we are using the CTI submodule here
sforce.console.cti.sendCTIMessage(‘/ANSWER?LINE_NUMBER=1', callback) ;
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true if sending the message was successful; £alse if sending the message wasn't
successful.
setCallAttachedData ()

Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a custom
console component.This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.setCallAttachedData(callObjectId:String, callData:JSON string
callType:String, (optional)callback:Functional)

248

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Arguments
Name Type Description
callObjectId string The object ID of the call.
callData string JSON string that specifies the data to attach to the call.
callType string String that specifies the call type, such as internal, inbound, or outbound.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set call attached data

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

function testSetCallAttachedData () {
//callData must be a JSON string. We assume that your browser has
//access to a JSON library.
var callData = JSON.stringify ({"ANI":"4155551212", "DNIS":"8005551212"});

//Set the call attached data associated to call id 'call.l'
sforce.console.cti.setCallAttachedData('call.l', callData, 'outbound');
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the event firing was successful; false otherwise.

setCallObjectIds ()

Sets call object IDs, in ascending order of arrival. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.setCallObjectIds(callObjectIds:Array, callback:Function)

249

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Arguments
Name Type Description
callObjectId array An array of string IDs specifying the calls to set.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set call object Ids

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

function checkResult (result) {
if (result.success) {

alert('Call object ids set successfully!');
} else {
alert ('Call object ids cannot be set!');

function testSetCallObjectIds () {
sforce.console.cti.setCallObjectIds(['call.l1', 'call.2', 'call.3'],
checkResult) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the call IDs was successful; false otherwise.

Methods for Application-Level Custom Console Components

Custom console components let you customize, extend, or integrate the footer, sidebars, highlights panels, and interaction logs of a
Salesforce console using Visualforce, canvas apps, lookup fields, or related lists. Administrators can add components to either:

e Page layouts to display content on specific pages

e Salesforce console apps to display content across all pages and tabs

250

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

IN THIS SECTION:

addToBrowserTitleQueue()
Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or later.

blinkCustomConsoleComponentButtonText()

Blinks a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later. This method isn't supported in Lightning Console.

isCustomConsoleComponentPoppedQOut()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must
be turned on. This method is only available in APl version 30.0 or later.

isCustomConsoleComponentWindowHidden()

Determines if the application-level custom console component window is hidden. This method is available in APl versions 25.0
through 31.0.

isCustomConsoleComponentHidden()

Determines if the application-level custom console component window is hidden. This method is available in APl version 32.0 and
later. In APl version 31.0 and earlier, this method was called i sCustomConsoleComponentWindowHidden ().

isinCustomConsoleComponent()

Determines if the page is in an application-level custom console component. This method is only available in APl version 25.0 or
later.

onCustomConsoleComponentButtonClicked()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in APl version 25.0 or later.

removeFromBrowserTitleQueue()

Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in APl version
28.0 or later.

runSelectedMacro()

Executes the selected macro in the macro widget. This method is only available in APl version 36.0 or later. This method isn't supported
in Lightning Console.

scrollCustomConsoleComponentButtonText()

Scrolls a button’s text on an application-level custom console component that's on a page. This method is only available in API
version 25.0 or later. This method isn't supported in Lightning Console.

selectMacro()

Selects and displays a specific macro in the macro widget. This method is only available in APl version 36.0 or later. This method isn't
supported in Lightning Console.

setCustomConsoleComponentButtonlconUrl()

Sets the button icon URL of an application-level custom console component that's on a page. This method is only available in API
version 25.0 or later.

setCustomConsoleComponentButtonStyle()

Sets the style of a button used to launch an application-level custom console component that's on a page. This method is only
available in APl version 25.0 or later. This method isn't supported in Lightning Console.
setCustomConsoleComponentButtonText()

Sets the text on a button used to launch an application-level custom console component that's on a page. This method is only
available in APl version 25.0 or later.

251

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

setCustomConsoleComponentHeight()

Sets the window height of an application-level custom console component that's on a page. This method is available in APl version
32.0 or later.

setCustomConsoleComponentVisible()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in APl version
32.0and later.In APlversion 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible ().
setCustomConsoleComponentWidth()

Sets the window width of an application-level custom console component that's on a page. This method is available in APl version
32.0 or later.

setCustomConsoleComponentPopoutable()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components
must be turned on. This method is only available in API version 30.0 or later.

setCustomConsoleComponentWindowVisible()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in APl versions
25.0 through 31.0. This method isn't supported in Lightning Console.

setSidebarVisible()

Shows or hides a console sidebar based on tabId and region. This method is available in APl version 33.0 or later. This method
isn't supported in Lightning Console.

addToBrowserTitleQueue ()

Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.addToBrowserTitleQueue (title:String, callback:Function)

Arguments
Name Type Description
title string Browser tab title that is displayed.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page >

Click here to enqueue a browser title

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testAddToBrowserTitleQueue () {
var title = 'TestTitle';
sforce.console.addToBrowserTitleQueue (title) ;

252

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean If true, the title was successfully added to the browser title queue. If false,the
title wasn't added to the browser title queue.
callback function JavaScript method that's called upon completion of the method.

blinkCustomConsoleComponentButtonText ()

Blinks a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later. This method isn't supported in Lightning Console.

Syntax

sforce.console.blinkCustomConsoleComponentButtonText (alternateText:String, interval:number,
(optional)callback:Function)

Arguments
Name Type Description
alternateText string The alternate text to display when the button text blinks.
interval number Controls how often the text blinks in milliseconds.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to blink the button text on a custom console component

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testBlinkCustomConsoleComponentButtonText () {
//Blink the custom console component button text
sforce.console.blinkCustomConsoleComponentButtonText ('Hello World', 10,
function (result) {
if (result.success) {

253

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

alert ('The text blinking starts!');
} else {
alert ('Could not initiate the text blinking!');
}

})

}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifblinking, the button text was successful; false if blinking the button text

wasn't successful.

isCustomConsoleComponentPoppedOut ()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must be
turned on. This method is only available in APl version 30.0 or later.

Syntax

sforce.console.isCustomConsoleComponentPoppedOut (callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Is this component popped out?

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert('Is this component popped out: ' + result.poppedOut);
} else {
alert ('Error invoking this method. Check the browser developer console for
more information.');

254

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

}
function checkPoppedOut () ({
sforce.console.isCustomConsoleComponentPoppedOut (checkResult) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true ifreturning the component’s pop out status was successful; false otherwise.
poppedOut boolean true if the component is popped out; false otherwise.

isCustomConsoleComponentWindowHidden ()

Determines if the application-level custom console component window is hidden. This method is available in APl versions 25.0 through
31.0.

@ Note: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. Starting in APl version 32.0, this method is no longer available and has been replaced by
isCustomConsoleComponentHidden ().Formoreinformation,see”isCustomConsoleComponentHidden ().

Syntax

sforce.console.isCustomConsoleComponentWindowHidden ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to check if the custom console component window is hidden

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testIsCustomConsoleComponentWindowHidden () {
sforce.console.isCustomConsoleComponentWindowHidden (checkWindowVisibility) ;

255

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

var checkWindowVisibility = function checkWindowVisibility (result) ({
//Display the window visibility
if (result.success) {

alert ('Is window hidden: ' + result.hidden);
} else {
alert ("Exror!");

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
hidden boolean true if the custom console component window is hidden; false if the custom
console component window is visible.
success boolean true ifreturning the custom console component window visibility was successful;
false if returning the custom console component window visibility wasn't
successful.

isCustomConsoleComponentHidden ()

Determines if the application-level custom console component window is hidden. This method is available in APl version 32.0 and later.
In APl version 31.0 and earlier, this method was called i sCustomConsoleComponentWindowHidden ().

Syntax

sforce.console.isCustomConsoleComponentHidden ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to check if the custom console component window is hidden

256

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testIsCustomConsoleComponentHidden () {
sforce.console.isCustomConsoleComponentHidden (checkWindowVisibility) ;

var checkWindowVisibility = function checkWindowVisibility (result) ({
//Display the window visibility
if (result.success) {

alert ('Is window hidden: ' + result.hidden);
} else {
alert ('Error!');

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
hidden boolean true if the custom console component window is hidden; false if the custom
console component window is visible.
success boolean true ifthe isCustomConsoleComponentHidden () callwassuccessful;

false ifthe isCustomConsoleComponentHidden () call wasn't
successful.

isInCustomConsoleComponent ()
Determines if the page is in an application-level custom console component. This method is only available in APl version 25.0 or later.

Syntax

sforce.console.isInCustomConsoleComponent ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

257

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Sample Code-Visualforce
<apex:page>

Click here to check if the page is in an app-level custom console component

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testIsInCustomConsoleComponent () {
sforce.console.isInCustomConsoleComponent (checkInComponent) ;

var checkInComponent = function checkInComponent (result) {

//Check if in component

alert('Is in custom console component: ' + result.inCustomConsoleComponent) ;
}i

</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
inCustomConsoleComponent boolean true if the page is in a custom console component; false if the pageisn'tina
custom console component.
success boolean true if returning the page status was successful; false if returning the page

status wasn't successful.

onCustomConsoleComponentButtonClicked ()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in APl version 25.0 or later.

Syntax

sforce.console.onCustomConsoleComponentButtonClicked (eventHandler: Function)

Arguments
Name Type Description
callback function JavaScript method called when a button is clicked on a custom console component.

258

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert ('The Custom Console Component button is clicked. The component ID
is: ' + result.id +
' and the component window is: ' + (result.windowHidden ? 'hidden'

'visible'));

i

sforce.console.onCustomConsoleComponentButtonClicked (eventHandler) ;
</script>

</apex:page>

Event Handler Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following

field:
Name Type Description
id string The ID of the custom console component which includes the page.
windowHidden boolean true if the custom console component window is hidden after the button is clicked;
false if the custom console component window is visible after the button is
clicked.

removeFromBrowserTitleQueue ()

Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or
later.

Syntax

sforce.console.removeFromBrowserTitleQueue (title:String, callback:Function)

Arguments
Name Type Description
title string Browser tab title to remove.
callback function JavaScript method that's called upon completion of the method.

259

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

 {
Click here to enqueue a browser title

Click here to remove browser title

var title = 'TestTitle';
function testAddToBrowserTitleQueue () {
sforce.console.addToBrowserTitleQueue (title) ;
}
function testRemoveFromBrowserTitleQueue () {
sforce.console.removeFromBrowserTitleQueue (title) ;
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean If t rue, the title was successfully removed from the browser title queue. If false,
the title wasn't removed from the browser title queue.
callback function JavaScript method that's called upon completion of the method.

runSelectedMacro ()

Executes the selected macro in the macro widget. This method is only available in APl version 36.0 or later. This method isn't supported
in Lightning Console.

Syntax

sforce.console.runSelectedMacro ((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that is called when the method is completed

260

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Sample Code-Visualforce

<apex:page>
Click here to run a macro
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function executeInWidget () {
sforce.console.runSelectedMacro () ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

cause string Explanation of function failure, if applicable

success boolean true if running the macro was successful; false otherwise

scrollCustomConsoleComponentButtonText ()

Scrolls a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later. This method isn't supported in Lightning Console.

Syntax

sforce.console.scrollCustomConsoleComponentButtonText (interval :number, pixelsToScroll:number,
isLeftScrolling:boolean, (optional)callback:Function)

Arguments
Name Type Description
interval number Controls how often the button text is scrolled in milliseconds.
pixelsToScroll number Controls how many pixels the button text scrolls.
isLeftScrolling boolean If true, the text scrolls left. If false, the text scrolls right.
callback function JavaScript method that's called upon completion of the method.

O Tip: Try to give buttons short names. Scrolling is limited to the width of the button. If a button name is too long, scrolling can
restart before the name finishes displaying.

261

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Sample Code-Visualforce
<apex:page>

Click here to scroll the button text on a custom console component

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testScrollCustomConsoleComponentButtonText () {
//Scroll the custom console component button text from right to left
sforce.console.scrollCustomConsoleComponentButtonText (500, 10, true,
function (result) {
if (result.success) {
alert ('The text scrolling starts!');
} else {
alert ('Could not initiate the text scrolling!');
}
});
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifscrolling the button text was successful; false if scrolling the button text

wasn't successful.

selectMacro ()

Selects and displays a specific macro in the macro widget. This method is only available in APl version 36.0 or later. This method isn't
supported in Lightning Console.

Syntax

sforce.console.selectMacro (macroId:String, (optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that is called when the method is completed
macrolID string ID of the macro that's selected

262

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Sample Code-Visualforce

<apex:page>
Click here to select
a macro
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function openInWidget (id) {
sforce.console.selectMacro (id) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

cause string Explanation of function failure, if applicable

success boolean true if selecting the macro was successful; false otherwise

setCustomConsoleComponentButtonIconUrl ()

Sets the button icon URL of an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonIconUrl (iconURL: String,
(optional)callback: Function)

Arguments
Name Type Description
iconUrl string A URL that points to an image that's used as a button to launch a custom console
component.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the custom console component button icon

263

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentButtonIconUrl () {

sforce.console.setCustomConsoleComponentButtonIconUrl ('http://imageserver/img.png') ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the button icon URL was successful; false if setting the button

icon URL wasn't successful.

setCustomConsoleComponentButtonStyle ()

Sets the style of a button used to launch an application-level custom console component that's on a page. This method is only available
in APl version 25.0 or later. This method isn't supported in Lightning Console.

Syntax
sforce.console.setCustomConsoleComponentButtonStyle (style:String, (optional)callback:
Function)
Arguments
Name Type Description
style string The style of a button used to launch a custom console component. The styles
supported include font, font color, and background color. Font and font color isn't
available for Internet Explorer® 7.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the style of a button used to launch a custom console
component

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

264

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

function testSetCustomConsoleComponentButtonStyle () {
sforce.console.setCustomConsoleComponentButtonStyle ('background:red;"');
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the button style was successful; false if setting the button style

wasn't successful.

setCustomConsoleComponentButtonText ()

Sets the text on a button used to launch an application-level custom console component that's on a page. This method is only available
in APl version 25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonText (text:String, (optional)callback:Function)

Arguments
Name Type Description
text string Text that's displayed on a button used to launch a custom console component.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the text on a button used to launch a custom console component

<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">
function testSetCustomConsoleComponentButtonText () {
//Change the custom console component button text to 'Hello World'

sforce.console.setCustomConsoleComponentButtonText ('Hello World');

}

</script>

</apex:page>

265

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Response
Name Type Description
success boolean true if setting the button text was successful; false if setting the button text

wasn't successful.

setCustomConsoleComponentHeight ()

Sets the window height of an application-level custom console component that's on a page. This method is available in APl version 32.0
or later.

@ Note: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen.

Syntax

sforce.console.setCustomConsoleComponentHeight (height:number, (optional)callback:Function)

Arguments
Name Type Description
height number The new height in pixels.
callback function Javascript method called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the custom console component height to 100px

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentHeight () {
// Set the custom console component height
sforce.console.setCustomConsoleComponentHeight (100) ;

}
</script>
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

266

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Name Type Description

success boolean true if the method call was successful; false otherwise.

setCustomConsoleComponentVisible ()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in API version
32.0 and later. In APl version 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible ().

Syntax

sforce.console.setCustomConsoleComponentVisible (visible:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
visible boolean true to make the custom console component window visible, false to hide
the custom console component window.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentVisible () {
// Make the custom console component window visible
sforce.console.setCustomConsoleComponentVisible (true) ;
}
</script>
</apex:page>

Response
Name Type Description
success boolean true if setting the button window visibility was successful; false if setting the

button window visibility wasn't successful.

267

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

setCustomConsoleComponentWidth ()

Sets the window width of an application-level custom console component that's on a page. This method is available in APl version 32.0
or later.

@ Note: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen.

Syntax

sforce.console.setCustomConsoleComponentWidth (width:number, callback:Function)

Arguments
Name Type Description
width number The new width in pixels.
callback function Javascript method called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the custom console component width to 100px

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentWidth () {
// Set the custom console component width
sforce.console.setCustomConsoleComponentWidth (100) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

setCustomConsoleComponentPopoutable ()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components must
be turned on. This method is only available in API version 30.0 or later.

268

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Syntax

sforce.console.setCustomConsoleComponentPopoutable (popoutable:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
popoutable boolean If true, the component can be popped out or popped into a browser. If false,
the component cannot be popped out or popped into a browser.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to enable pop out or pop in functionality

Click here to disable pop out or pop in functionality

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {

alert ('The method was successfully invoked.');
} else {
alert ('Error while invoking this method. Check the browser developer console
for more information.');
}
}
function enablePopout () {

sforce.console.setCustomConsoleComponentPopoutable (true, checkResult);

function disablePopout () {
sforce.console.setCustomConsoleComponentPopoutable (false, checkResult);

}
</script>
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

269

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Name Type Description

success boolean true ifenabling pop out or pop in functionality for the component was successful;
false otherwise.

setCustomConsoleComponentWindowVisible ()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in API versions
25.0 through 31.0. This method isn't supported in Lightning Console.

@ Note: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. Starting in APl version 32.0, this method is no longer available and has been replaced by
setCustomConsoleComponentVisible ().For more information, see
setCustomConsoleComponentVisible ().

Syntax

sforce.console.setCustomConsoleComponentWindowVisible (visible:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
visible boolean true to make the custom console component window visible, false to hide
the custom console component window.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/64.0/integration.js"/>

<script type="text/javascript">
function testSetCustomConsoleComponentWindowVisible () {
//Make the custom console component window visible

sforce.console.setCustomConsoleComponentWindowVisible (true) ;

}

</script>

</apex:page>

270

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Application-Level Custom Console Components

Response
Name Type Description
success boolean true if setting the button window visibility was successful; false if setting the

button window visibility wasn't successful.

setSidebarVisible ()

Shows or hides a console sidebar based on tabId and region. This method is available in APl version 33.0 or later. This method isn't
supported in Lightning Console.

Syntax

sforce.console.setSidebarVisible (visible:Boolean, (optional)tabld:String,
(optional) region:String, (optional)callback:Function)

Arguments
Name Type Description
visible boolean true to show the sidebar or false to hide the sidebar.
tabId string The ID of the tab on which to show or hide the sidebar.
region string The region on the console where the sidebar is located, such as left or right, top or
bottom. Regions are represented as:
® sforce.console.Region.LEFT
® sforce.console.Region.RIGHT
® sforce.console.Region.TOP
® sforce.console.Region.BOTTOM
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
if (result.success) {
alert ('Congratulations!');
lelse {
alert ('something is wrong!');
}
}i
function setSidebarVisible () {

271

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Push Notifications

sforce.console.setSidebarVisible (true, 'scc-st-1"',sforce.console.Region.LEFT, callback);

}

</script>
SetSidebarToExpand

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

Methods for Push Notifications

Push notifications are visual indicators on lists and detail pages in a console that show when a record or field has changed during a user’s
session. For example, if two support agents are working on the same case, and one agent changes the Priority, a push notification
appears to the other agent so he or she spots the change and doesn’t duplicate the effort.

When administrators set up a Salesforce console, they choose when push notifications display, and which objects and fields trigger push
notifications. Developers can use push notification methods to customize push notifications beyond the default visual indicators supplied
by Salesforce. For example, developers can use the methods below to create personalized notifications about objects accessible to
specific console users, thereby eliminating the need for email notifications.

Consider the following when using push notification methods:

Push notification listener response is only available for the objects and fields selected to trigger push notifications for a console.

When a Visualforce page includes a listener added by the addPushNotificationListener () method, the page receives
notifications. The listener receives notifications when there is an update by any user to the objects selected for triggering console
push notifications and the current user has access to the modified record. This functionality is slightly different from push notifications
set up in the Salesforce user interface in that:

- Listeners receive update notifications for changes made by all users.

- When Choose How Lists Refresh issetto Refresh List Rows and the userisviewinganempty list view for

an object set to trigger push notifications, a listener receives notifications for any record of that object created as well as any
updates made to fields selected to trigger push notifications on the object.

- When Choose How Lists Refresh issetto Refresh List andthe userisviewing a list view for an object set to

trigger push notifications, a listener receives notifications for any record of that object created and any updates made to fields
selected to trigger push notifications, where the viewing user is the owner of the record.

- The only way to stop receiving notifications is to remove listeners using the removePushNotificationListener ()

method.

Push notifications aren't available in the console in Professional Edition.

272

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Push Notifications

IN THIS SECTION:

addPushNotificationListener()

Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in APl version 26.0 or later.

removePushNotificationListener()
Removes a listener that gets added for a push notification. This method is only available in APl version 26.0 or later.

addPushNotificationListener ()

Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in APl version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 272.

Syntax

sforce.console.addPushNotificationListener (objects: array, eventHandler:Function)

Arguments
Name Type Description
objects array Objects set to receive notifications.
eventHandler function JavaScript method called when there is a push notification.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert ('There is a push notification of object: ' + result.Id);
}i
//Add a push notification listener for Case and Account
sforce.console.addPushNotificationListener (['Case', 'Account'], eventHandler):;
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method.

Name Type Description

id string The object ID of the push notification.

273

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Push Notifications

Name Type Description

entityType string The type of object included in the push notification. For example, Account or Contact.
Objects available for push notifications are determined by the administrator who

set up a Salesforce console.

Type string The field of the object included in the push notification. For example, the Account
Name field on Account. Notifications occur when the field is either updated or
created.

Fields on objects available for push notifications are determined by the administrator
who set up a Salesforce console.

LastModifiedById string The user ID of the user who last modified the object in the push notification.

removePushNotificationListener ()

Removes a listener that gets added for a push notification. This method is only available in APl version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 272.

Syntax

sforce.console.removePushNotificationListener ((optional) callback:Function)

Arguments
Name Type Description
callback function A function called when the removal of the push notification listener completes.

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to remove push notification

<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

function testRemovePushNotification() {
sforce.console.removePushNotificationListener (removeSuccess) ;
}
var removeSuccess = function removeSuccess (result) {
//Report whether removing the push notification listener is successful
if (result.success == true) {
alert ('Removing push notification was successful');
} else {
alert ('Removing push notification wasn't successful');

274

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Console Events

}7
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method.

Name Type Description

success boolean true ifremoving the push notification listener was successful; false if removing
the push notification listener wasn't successful.

Methods for Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. The following standard
events are supported:

Event Description Payload

sforce. ansole.ConsoleEventt .OFEN 2B Fired when a primary tab or subtab is opened.

e id —TheID of the opened tab.
Available in APl version 30.0 or later.

® objectId — TheobjectID of the
opened tab, if available.

sforce.amsole.Consolefvent IO B Fired when a primary tab or subtab with a
specified IDinthe additionalParams
argument is closed. Or, fired when a primary
tab or subtab with no specified ID is closed.
Available in API version 30.0 or later. Note: For some objects (such as Email and

Case Comment), the tab is opened and
closed immediately and no object ID is
generated for the tab. In those cases, this
field's value is equal to the parent’s object
ID.

e id — The ID of the closed tab.

objectID — The object ID of the
closed tab, if available.

® tabObjectId — TheobjectID of the
closed tab, if available.

Note: tabObjectId isgenerally the
same as objectID. However, for tabs
that close upon submission, no
tabObjectId isgenerated. In those
cases, the value of this field is either empty
or null. For an Email, the value is empty.
For a Case Comment, the value is null.

275

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Console Events

Event Description Payload

sforce. asole. GrsaleBert. QBIE IGET Delays the execution of logging out of a
console when a user clicks Logout. When
Logout is clicked:

None

1. Anoverlay appears, which tells a user that
logout is in progress.

2. Callbacks are executed that have been
registered by using
sfarce.arsale.Grsolefvatt.CNBIE I03T

3. Console logout logic is executed.

If the callback contains synchronous blocking
code, the console logout code isn't executed
until the blocking code is executed. As a best
practice, avoid synchronous blocking code or
long code execution during logout.

Available in APl version 31.0 or later.

IN THIS SECTION:

addEventListener()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom
event types in APl version 25.0 or later; it adds a listener for standard event types in APl version 30.0 or later.

fireEvent()
Fires a custom event. This method is only available in APl version 25.0 or later.

removeEventListener()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in APl version 30.0 or later.

addEventListener ()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom event
types in APl version 25.0 or later; it adds a listener for standard event types in APl version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 275.

Syntax

sforce.console.addEventListener (eventType: String, eventlistener:Function,
(optional)additionalParams:Object)

Arguments
Name Type Description
eventType string Custom event type for which eventListener listens.

276

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Console Events

Name Type Description
eventListener function JavaScript method called when an eventType is fired.
additionalParams object Optional parameters accepted by this method. The supported properties on this

objectare tabId: The ID of the tab to listen for the specified event.

This argument is only available in API version 30.0 or later.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var listener = function (result) {
alert ('Message received from event: ' + result.message);
}i
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener ('SampleEvent', listener);
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

message string The message which is sent with the fired event.

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

1. Object ID of the primary tab
2. ID of the primary tab

3. Object ID of the subtab

4. D of the subtab

Sample Code API Version 30.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var onEnclosingPrimaryTabClose = function (result) {
alert ('The enclosing primary tab is about to be closed. Tab ID: ' + result.id
+ ', Object ID: ' + (result.objectId ? result.objectId : 'not available'));
i

277

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Console Events

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId (function (result) {
if (result.id) {
sforce.console.addEventListener(sforce.console.ConsoleEvent.CLOSE_TAB,
onEnclosingPrimaryTabClose, { tabId : result.id });
} else {
alert ('Could not find an enclosing primary TAB!');

}) i
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

message string The message which is sent with the fired event.

If the response is from a console event, the message includes payload details as
described in Methods for Console Events on page 275.

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

1. Object ID of the primary tab

2. ID of the primary tab
3. Object ID of the subtab
4. D of the subtab

fireEvent ()

Fires a custom event. This method is only available in APl version 25.0 or later.

Syntax

sforce.console.fireEvent (eventType:String, message:String, (optional)callback:Function

)

Arguments
Name Type Description
eventType string The type of custom event to fire.
message string The message which is sent with the fired event.

278

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Console Events

Name Type Description

callback function JavaScript method called when the custom event is fired.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

Click here to fire an event of type 'SampleEvent'

var callback = function (result) {
if (result.success) {

alert ('The custom event is fired!');
} else {
alert ('The custom event could not be fired!');
}
}i
function testFireEvent () {

//Fire an event of type 'SampleEvent'
sforce.console.fireEvent ('SampleEvent', 'EventMessage',6 callback);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false iffiring the event wasn't successful.

removeEventListener ()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in APl version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 275.
Syntax

sforce.console.removeEventListener (eventType: String, eventListener:Function,
(optional)additionalParams:0Object)

279

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Console Events

Arguments
Name Type Description
eventType string Event type for which eventListener is removed.
eventListener function Event listener to remove.
additionalParams object Optional parameters accepted by this method. The supported properties on this

object are tabId: The ID of the tab to remove the listener for the specified event.

This argument is only available in API version 30.0 or later.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

Click here to remove an event listener for the 'SampleEvent' event type

<script type="text/javascript">
var listener = function (result) {
alert ('Message received from event: ' + result.message);
i
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener ('SampleEvent', listener);

function testRemoveEventListener () {
sforce.console.removeEventListener ('SampleEvent', listener);

}
</script>
</apex:page>

Response

None

Sample Code API Version 30.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

Click here to remove an event listener for the console 'CLOSE TAB' event

type

<script type="text/javascript">
var tabId;

var onEnclosingPrimaryTabClose = function (result) {
alert ('The enclosing primary tab is about to be closed. Tab ID: ' + result.id

280

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Object ID: ' + (result.objectId ? result.objectId : 'not available'));
b

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId (function (result) {
if (result.id) {
tabId = result.id;
sforce.console.addEventListener(sforce.console.ConsoleEvent.CLOSE_TAB,
onEnclosingPrimaryTabClose, { tabId : tabId });
} else {
alert ('Could not find an enclosing primary TAB!');

)

function testRemoveEventListener () {
sforce.console.removeEventListener(sforce.console.ConsoleEvent.CLOSE_TAB,
onEnclosingPrimaryTabClose, { tabId : tabId });

}
</script>
</apex:page>

Response

None

Methods for Chat

Connect with customers or website visitors in real time through Web-based chat.

Note: These methods in Salesforce Classic don't work for chats routed with Omni-Channel. Chats with Omni-Channel routing
use the Methods for Omni-Channel. If you're using Lightning Experience, use the Methods for Omni-Channel in Lightning Experience.

@ Important: The legacy chat product is in maintenance-only mode, and we won't continue to build new features. You can continue
to use it, but we no longer recommend that you implement new chat channels. Instead, you can modernize your customer
communication with Messaging for In-App and Web. Messaging offers many of the chat features that you love plus asynchronous
conversations that can be picked back up at any time.

IN THIS SECTION:

acceptChat()

Accepts a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in APl version 37.0 or
later.

cancelFileTransferByAgent()
Indicates that a file transfer request has been canceled by an agent. Available in APl version 31.0 or later.

declineChat()

Declines a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in API version 37.0 or
later.

endChat()
Ends a chat in which an agent is currently engaged. Available in API version 29.0 or later.

281

https://developer.salesforce.com/docs/atlas.en-us.256.0.api_console.meta/api_console/sforce_api_console_omnichannel_methods.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.api_console.meta/api_console/sforce_api_console_methods_lightning_omniToolkitAPI.htm
https://help.salesforce.com/s/articleView?id=sf.miaw_intro_landing.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.miaw_chat_vs_messaging.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

getAgentinput()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available
in APl version 29.0 or later.

getAgentState()

Returns the agent's current Chat status, such as Online, Away, or Offline. Available in APl version 29.0 or later.

getChatlLog()

Returns the chat log of a chat associated with a specific chat key. Available in APl version 29.0 or later.

getChatRequests()

Returns the chat keys of the chat requests that have been assigned to an agent. Available in APl version 29.0 or later.
getDetailsByChatKey()

Returns the details of the chat associated with a specific chat key. Available in APl version 29.0 or later.

getDetailsByPrimaryTabld()

Returns the details of the chat associated with a specific primary tab ID. Available in APl version 29.0 or later.

getEngagedChats()

Returns the chat keys of the chats in which the agent is currently engaged. Available in APl version 29.0 or later.

getMaxCapacity()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

initFileTransfer()

Initiates the process of transferring a file from a customer to an agent. Available in APl version 31.0 or later.

onAgentSend()

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in APl version 29.0 or later.

onAgentStateChanged()

Registers a function to call when agents change their Chat status, such as from Online to Away. Available in APl version 29.0 or later.
onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in APl version 29.0 or later.
onChatCriticalWaitState()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in APl version 29.0 or
later.

onChatDeclined()

Registers a function to call when an agent declines a chat request. Available in APl version 29.0 or later.

onChatEnded()

Registers a function to call when an engaged chat ends. Available in APl version 29.0 or later.

onChatRequested()

Registers a function to call when an agent receives a chat request. Available in APl version 29.0 or later.

onChatStarted()

Registers a function to call when an agent starts a new chat with a customer. Available in APl version 29.0 or later.
onChatTransferredOut()

Registers a function to call when an engaged chat is transferred out to another agent. Available in API version 29.0 or later.

282

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

onCurrentCapacityChanged()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat,
ends a currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed
to their chat queue. Available in APl version 29.0 or later.

onCustomEvent()

Registers a function to call when a custom event takes place during a chat. Available in APl version 29.0 or later.
onFileTransferCompleted()

Registers a function to call when afile is transferred from a customer to an agent. Available in APl version 31.0 or later.
onNewMessage()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in APl version 29.0 or later.
onTypingUpdate()

Registers a function to call when the customer’s text in the chat window changes. If Sneak Peek is enabled, this function is called
whenever the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer
starts or stops typing in the chat window. Available in APl version 29.0 or later.

sendCustomEvent()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in APl version 29.0 or later.
sendMessage()

Sends a new chat message from the agent to a chat with a specific chat key. Available in APl version 29.0 or later.

setAgentinput()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in APl version 29.0 or
later.

setAgentState()

Sets an agent's Chat status, such as Online, Away, or Offline. Available in APl version 29.0 or later.

Methods for Chat Visitors

There are a few methods available that you can use to customize the visitor experience for Chat in a custom Visualforce chat window.
These methods apply to Salesforce Classic only.

acceptChat()

Accepts a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in APl version 37.0 or later.

Syntax

sforce.console.chat.acceptChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat request you wish to accept.
callback function JavaScript method called upon completion of the method.

283

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Accept Chat

<script type="text/javascript">
function testAcceptChat () {
//Get the value for 'myChatKey'from the getChatRequests () or onChatRequested()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.acceptChat (chatKey, acceptSuccess);

function acceptSuccess (result) {
//Report whether accepting the chat was succesful
if (result.success == true) {
alert ('"Accepting the chat was successful');
} else {
alert ('Accepting the chat was not successful');

}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if accepting the chat was successful; false if accepting the chat wasn't

successful.

cancelFileTransferByAgent ()

Indicates that a file transfer request has been canceled by an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.cancelFileTransferByAgent (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat for which the agent canceled the file transfer request.
callback function JavaScript method that is called when the method is completed.

284

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Cancel file transfer

<script type="text/javascript">
function testCancelFileTransfer () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested/()

methods.
//These values are for example purposes only.
var chatKey = 'myChatKey';
sforce.console.chat.cancelFileTransferByAgent (chatKey, fileSuccess);

function fileSuccess (result) {
//Report whether canceling was successful

if (result.success == true) {
alert ('Canceling file transfer was successful.');
} else {
alert ('Canceling file transfer was not successful.');
}
}i
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if canceling the file transfer request was successful; false if canceling the
file transfer request wasn't successful.
declineChat ()

Declines a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in APl version 37.0 or later.

Syntax

sforce.console.chat.declineChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the request you wish to decline.

285

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description

callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Decline Chat

<script type="text/javascript">
function testDeclineChat () {
//Get the value for 'myChatKey'from the getChatRequests () or onChatRequested()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.declineChat (chatKey, declineSuccess);

function declineSuccess (result) {
//Report whether declining the chat was succesful

if (result.success == true) {
alert ('Declining the chat was successful');
} else {

alert ('Declining the chat was not successful');

}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if declining the event was successful; false if declining the event wasn't
successful.
endChat ()

Ends a chat in which an agent is currently engaged. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.endChat (chatKey:String, (optional)callback:Function)

286

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Arguments
Name Type Description
chatKey String The chat key for the engaged chat you wish to end.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
End Chat

<script type="text/javascript">
function testEndChat () {
//Get the value for 'myChatKey'from the getEngagedChats() or onChatStarted()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.endChat (chatKey, endSuccess);

function endSuccess (result) {
//Report whether ending the chat was succesful

if (result.success == true) ({
alert ('Ending the chat was successful');
} else {

alert ('Ending the chat was not successful');

bi
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true ifending the chat was successful; £alse ifending the chat wasn't successful.
getAgentInput ()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available in
APl version 29.0 or later.

287

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Syntax

sforce.console.chat.getAgentInput (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to retrieve the agent’s input text.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Agent Input

<script type="text/javascript">

function testGetAgentInput () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getAgentInput (chatKey, getAgentInputSuccess);

function getAgentInputSuccess (result) {
//Report whether getting the agent's input was successful
if (result.success == true) {
agentInput = result.text;
alert ('The text in the agent input is: ' + agentInput);
} else {
alert ('Getting the agent input was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

text String The text that is currently in an agent’s text input area.

288

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description

success Boolean true if getting the agent’s input was successful; false if getting the agent’s
input wasn't successful.

getAgentState ()

Returns the agent's current Chat status, such as Online, Away, or Offline. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getAgentState (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Agent State

<script type="text/javascript">
function testGetAgentState() {
sforce.console.chat.getAgentState (function (result) {
if (result.success) {
alert ('"Agent State:' + result.state);
} else {
alert ('getAgentState has failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
state String String representing the current agent state—for example, Online, Away, or Offline.
success Boolean true if getting the agent’s Chat status was successful; false if getting the agent’s

Chat status wasn't successful.

289

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

getChatLog ()

Returns the chat log of a chat associated with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getChatLog(chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to retrieve the chat log.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Chat Log

<script type="text/javascript">

function testGetChatLog() {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getChatLog(chatKey, getChatLogSuccess);

function getChatLogSuccess (result) {
//Report whether getting the chat log was succesful

if (result.success == true) ({

chatLogMessage = result.messages|[0].content;

alert ('The first message in this chatLog is: ' + chatLogMessage);
} else {

alert ('Getting the chat log was not successful');

</script>

</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

290

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type
customEvents Array of
customEvent
objects
messages Array of
message
objects
success Boolean
customEvent

Description

An array of custom event objects representing the custom events that occurred
during a chat.

An array of chat message objects containing all of the chat messages from the chat
log.

true if getting the chat log was successful; false if getting the chat log wasn't
successful.

The customEvent object contains a single event from the chat log and the following properties:

Property Type

source String

type String

data String

timestamp Date/Time
message

Description
The person who initiated the custom event, either the chat visitor or the agent.
The type of custom event that occurred.

The data of the custom event that was sent to the chat; corresponds to the data
argument of the 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.

The date and time a custom event was received.

The message object contains a single chat message from the chat log and the following properties:

Property Type
content String
name String
type String
timestamp Date/Time

getChatRequests ()

Description
The text content of a message in the chat log.

The name of the user who sent the message in the chat log. This appears exactly as
it is displayed in the chat log.

The type of message that was received, such as Agent or Visitor.

The date and time the chat message was received.

Returns the chat keys of the chat requests that have been assigned to an agent. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getChatRequests (callback: Function)

291

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Chat Requests

<script type="text/javascript">
function testGetChatRequests () {
sforce.console.chat.getChatRequests (function (result) {
if (result.success) {
alert ('Number of Chat Requests ' + result.chatKey.length);
} else {
alert ('getChatRequests has failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey Array Array of chatKey values, one for each of the current chat requests.

success Boolean true if getting chat requests was successful; false if getting chat requests wasn't

successful.

getDetailsByChatKey ()

Returns the details of the chat associated with a specific chat key. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByChatKey (chatKey:String, callback:Function)

292

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to retrieve details.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Chat Details

<script type="text/javascript">

function testGetDetailsByChatKey () {
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getDetailsByChatKey (chatKey, getDetailsSuccess);

function getDetailsSuccess (result) {
//Report whether accepting the chat was succesful

if (result.success == true) ({

ipAddress = result.details.ipAddress;

alert ('The Visitor IP Address for this chat is: ' + ipAddress);
} else {

alert ('Getting the details was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
primaryTabId String The ID of the primary tab associated with the chat.
details Object An object that contains all the details for a chat associated with a particular primary
tab.
success Boolean true ifretrieving the details was successful; false ifretrieving the details wasn't
successful.

293

details

Salesforce Console Integration Toolkit for Salesforce Classic

Methods for Chat

The details object contains the following properties:

Property
acceptTime

breadcrumbs

chatKey

customDetails

geoLocation

ipAddress
isEnded
isEngaged

isPushRequest

isTransferringOut

liveChatButtonId

liveChatDeploymentId

name
requestTime

visitorInfo

breadcrumb

Type
Date/Time

Array of
breadcrumb
objects

String

Array of
customDetail
objects

Object

String
Boolean
Boolean

Boolean

Boolean

String
String
String
Date/Time

Object

Description
The date and time an agent accepted the chat request.

An array of breadcrumb objects representing a list of Web pages visited by
the visitor before and during the chat.

The chat key associated with the chat.

An array of customDetail objects that represent custom details that have
been passed in to this chat via the Deployment API or Pre-Chat Form API.

An object representing the details of a chat visitor's location, derived from a
geolP lookup on the chat visitor's IP address.

The IP address of the chat visitor in dot-decimal format.
Specifies whether a chat has ended (true) or not (false).
Specifies whether a chat is currently engaged (t rue) or not (false).

Specifies whether a chat was routed to an agent through a push-based routing
method such as Least Active or Most Available (true) or not (false).

Specifies whether a chat is currently in the process of being transferred to another
agent (true) ornot (false).

The 15-digit record ID for the chat button from which the chat request originated.
The 15-digit record ID for the deployment from which the chat request originated.
The name of the chat visitor.

The date and time the chat was requested.

An object containing information about the visitor's web browser.

A breadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

Property
location

time

Type Description
String The URL of a Web page viewed by a chat visitor.
Date/Time The date and time a chat visitor visited a specific breadcrumb URL.

294

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

customDetail

Custom details are details have been passed into the chat through the Deployment APl or Pre-Chat Form API. The custombetail
object contains the following properties:

Property Type Description
label String The name of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.
value String The value of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.
transcriptFields Array of Strings The names of fields where the customer’s details on the chat transcript are saved.
entityMaps Array of An array of pre-created records used for mapping custom detail information.
entityMap
objects
entityMap

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

Property Type Description

entityName String The record to search for or create.

fieldName String The name of the field associated with the details.

isFastFillable Boolean Specifies whether the value can be used to populate the field when an agent creates

or edits a record (true) or not (false) (Live Agent console only).

isAutoQueryable Boolean If you're using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (true) or not (false) to find records with a
fieldName containing the value.

If you're using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (true) or not (false) to find records with a
fieldName containing the value.

isExactMatchable Boolean Specifies whether to only search for records that have fields exactly matching the
field fieldName (true)ornot(false).

geoLocation

The geoLocation object represents the details of a chat visitor's location. It contains the following properties:

Property Type Description
city String The name of the chat visitor's city.
countryCode String The two-digit ISO-3166 country code for the chat visitor's country.

295

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Property Type Description

countryName String The name of chat visitor's country.

latitude String The chat visitor's approximate latitude.

longitude String The chat visitor's approximate longitude.

organization String The organization name of the chat visitor's internet service provider.

region String The chat visitor's region, such as state or province.
visitorInfo

The visitorInfo object represents information about the visitor's web browser. It contains the following properties:

Property Type Description

browserName String The name and version of the chat visitor's web browser.

language String The language of the chat visitor's web browser.

originalReferrer String The original URL of the Web page from which the chat visitor requested a chat.

screenResolution String The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

sessionKey String the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor

record as a unique reference to this live chat visitor

getDetailsByPrimaryTablId()

Returns the details of the chat associated with a specific primary tab ID. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByPrimaryTabld (primaryTabId:String, callback:Function)

Arguments
Name Type Description
primaryTabId String The ID of the primary tab associated with the chat for which to retrieve details.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce
<apex:page >

<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Chat Details

296

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

<script type="text/javascript">

function testGetDetailsByPrimaryTabId() {
//Get the value for 'myPrimaryTabId'from the getPrimaryTabIds() or
getEnclosingPrimaryTabId () methods.
//These values are for example purposes only
var primaryTabId = 'myPrimaryTabId';
sforce.console.chat.getDetailsByPrimaryTabId (primaryTabId, getDetailsSuccess) ;

function getDetailsSuccess (result) {
//Report whether accepting the chat was succesful
if (result.success == true) {
console.log(result);
chatKey = result.details.chatKey;
alert ('The chatKey for this chat is: ' + chatKey);
} else {
alert ('Getting the details was not Succesful');

b

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
primaryTabId String The ID of the primary tab associated with the chat.
details Object An object that contains all the details for a chat associated with a particular primary
tab.
success Boolean true ifretrieving the details was successful; false ifretrieving the details wasn't
successful.
details

The details object contains the following properties:

Property Type Description

acceptTime Date/Time The date and time an agent accepted the chat request.

breadcrumbs Array of An array of breadcrumb objects representing a list of Web pages visited by
breadcrumb the visitor before and during the chat.
objects

297

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Property Type Description

chatKey String The chat key associated with the chat.

customDetails Array of An array of customDetail objects that represent custom details that have
customDetail been passed in to this chat via the Deployment API or Pre-Chat Form API.
objects

geoLocation Object An object representing the details of a chat visitor's location, derived from a

geolP lookup on the chat visitor's IP address.

ipAddress String The IP address of the chat visitor in dot-decimal format.

isEnded Boolean Specifies whether a chat has ended (true) or not (false).

isEngaged Boolean Specifies whether a chat is currently engaged (t rue) or not (false).
isPushRequest Boolean Specifies whether a chat was routed to an agent through a push-based routing

method such as Least Active or Most Available (true) or not (false).

isTransferringOut Boolean Specifies whether a chat is currently in the process of being transferred to another
agent (true) ornot (false).

liveChatButtonId String The 15-digit record ID for the chat button from which the chat request originated.

liveChatDeploymentId String The 15-digit record ID for the deployment from which the chat request originated.

name String The name of the chat visitor.

requestTime Date/Time The date and time the chat was requested.

visitorInfo Object An object containing information about the visitor's web browser.
breadcrumb

A breadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

Property Type Description

location String The URL of a Web page viewed by a chat visitor.

time Date/Time The date and time a chat visitor visited a specific breadcrumb URL.
customDetail

Custom details are details that have been passed into the chat through the Deployment APl or Pre-Chat Form APl. The customDetail
object contains the following properties:

Property Type Description

label String The name of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.

value String The value of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.

298

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Property
transcriptFields

entityMaps

entityMap

Type Description
Array of Strings The names of fields where the customer’s details on the chat transcript are saved.

Array of An array of pre-created records used for mapping the custom detail information.
entityMap
objects

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

Property
entityName
fieldName

isFastFillable

isAutoQueryable

isExactMatchable

geoLocation

Type Description

String The record to search for or create.

String The name of the field associated the details.

Boolean Specifies whether the value can be used to populate the field when an agent creates

or edits a record (true) or not (false) (Live Agent console only).

Boolean If you're using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (true) or not (false) to find records with a
fieldName containing the value.

If you're using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (true) or not (false) to find records with a
fieldName containing the value.

Boolean Specifies whether to only search for records that have fields exactly matching the
field fieldName (true)ornot(false).

The geoLocation object represents the details of a chat visitor's location. It contains the following properties:

Property

city
countryCode
countryName
latitude
longitude
organization

region

Type Description

String The name of the chat visitor's city.

String The two-digit ISO-3166 country code for the chat visitor's country.
String The name of chat visitor's country.

String The chat visitor's approximate latitude.

String The chat visitor's approximate longitude.

String The organization name of the chat visitor's internet service provider.
String The chat visitor's region, such as state or province.

299

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

visitorInfo

The visitorInfo object represents information about the visitor's web browser. It contains the following properties:

Property Type Description

browserName String The name and version of the chat visitor's web browser.

language String The language of the chat visitor's web browser.

originalReferrer String The original URL of the Web page from which the chat visitor requested a chat.

screenResolution String The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

sessionKey String the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor

record as a unique reference to this live chat visitor
getEngagedChats ()
Returns the chat keys of the chats in which the agent is currently engaged. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getEngagedChats (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Engaged Chats

<script type="text/javascript">
function testGetEngagedChats () {
sforce.console.chat.getEngagedChats (function (result) {
if (result.success) {
alert ('"Number Engaged Chats: ' + result.chatKey.length);
} else {
alert ('getEngagedChats has failed');

1)
}
</script>
</apex:page>

300

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
chatKey array Array of chatKey values, one for each of the currently engaged chats.
success boolean true if getting engaged chats was successful; false if getting engaged chats
wasn't successful.
getMaxCapacity ()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

Syntax

sforce.console.chat.getMaxCapacity (callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Max Capacity

<script type="text/javascript">
function testGetMaxCapacity () {
sforce.console.chat.getMaxCapacity (function (result) {
if (result.success) {
alert ('max capacity '+result.count);
} else {
alert ('getMaxCapacity failed, agent my not be online');

})q
}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

301

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description
count integer Agent's current, maximum chat capacity.
success boolean true if getting the agent’s capacity was successful; false if getting the agent’s

capacity wasn't successful.

initFileTransfer ()

Initiates the process of transferring a file from a customer to an agent. Available in API version 31.0 or later.

Syntax

sforce.console.chat.initFileTransfer (chatKey:String, entityId:String,
(optional)callback: Function)

Arguments
Name Type Description
chatKey String The chat key for the chat the file is transferred from.
entityId String The ID of the transcript object to attach the transferred file to.
callback function JavaScript method that is called when the method is completed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Init file transfer

<script type="text/javascript">
function testInitFileTransfer () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested ()
methods.
//These values are for example purposes only.
var chatKey = 'myChatKey'; wvar entityId = 'myEntityId';
sforce.console.chat.initFileTransfer (chatKey, entityId, fileSuccess);

function fileSuccess (result) {
//Reports whether initiating the file transfer was successful.

if (result.success == true) {
alert('Initiating file transfer was successful.');
} else {
alert('Initiating file transfer was not successful.');
}
}i
</script>

</apex:page>

302

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if the request to transfer a file was sent successfully; false if the request
wasn't sent successfully.

@ Nofe: Avalue of true doesn't necessarily mean that the file was successfully
transferred to an agent. Rather, it indicates that the request to begin a file
transfer was sent successfully.

onAgentSend ()

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in APl version 29.0 or later.

@ Note: This method is only called when an agent sends a message through the chat window interface. This method doesn't apply
when a sendMessage () method is called in the API.

Syntax

sforce.console.chat.onAgentSend (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to call a function when the agent
sends a message.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
var theMessage = result.content;
alert ('The agent is attempting to send the following message: ' +
result.content);
sforce.console.chat.sendMessage (chatKey, theMessage)
alert ('The following message has been sent: ' + theMessage);
}
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only

303

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

var chatKey = 'myChatKey';
sforce.console.chat.onAgentSend (chatKey, eventHandler);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

content String The text of the agent’s message.

name String The name of the agent who is attempting to send the message as it appears in the

chat log.

type String The type of message that was received—for example, agent.

timestamp Date/Time The date and time the agent attempted to send the chat message.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onAgentStateChanged ()

Registers a function to call when agents change their Chat status, such as from Online to Away. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onAgentStateChanged (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the agent's Chat status has changed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ("Agent's State has Changed to: " + result.state);
}i
sforce.console.chat.onAgentStateChanged (eventHandler) ;
</script>
</apex:page>

304

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
state String String that represents the agent's current Chat status—for example, Online, Away,
or Offline. When an agent switches from Offline to Away, you may see two returned
values (Online then Away) instead of one (Away).
success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatCanceled (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('The chat request has been canceled for this chatKey: ' + result.chatKey);

}

sforce.console.chat.onChatCanceled (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey string The chat key for the chat request that has been canceled.

305

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

onChatCriticalWaitState ()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatCanceled (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which the critical wait state has changed.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('This chat has reached a critical wait');
}
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onChatCriticalWaitState (chatKey, eventHandler);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

state Boolean Indicates whether the chat is in critical wait state (true) or not (false).
onChatDeclined()

Registers a function to call when an agent declines a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatDeclined (eventHandler: Function)

306

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat request is declined.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat request with this chatKey has been declined: ' + result.chatKey);

}
sforce.console.chat.onChatDeclined (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat request that has been declined.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatEnded ()

Registers a function to call when an engaged chat ends. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatEnded (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when an engaged chat ends.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>

307

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat with this chatKey has ended: ' + result.chatKey);
}
sforce.console.chat.onChatEnded (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the engaged chat that has ended.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatRequested ()

Registers a function to call when an agent receives a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatRequested (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat request is assigned to an agent.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new incoming chat request with this chatKey: ' +
result.chatKey) ;
}
sforce.console.chat.onChatRequested (eventHandler) ;
</script>
</apex:page>

308

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the incoming chat request.

success Boolean true iffiring event was successful; false iffiring event wasn't successful.
onChatStarted ()

Registers a function to call when an agent starts a new chat with a customer. Available in APl version 29.0 or later.
Usage

Syntax

sforce.console.chat.onChatStarted (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat request is accepted and becomes an engaged

chat.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A new engaged chat has started for this chatKey: ' + result.chatKey);
}
sforce.console.chat.onChatStarted (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat request that has become an engaged chat.

309

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description

success Boolean true iffiring event was successful; false if firing event wasn't successful.

onChatTransferredOut ()

Registers a function to call when an engaged chat is transferred out to another agent. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatTransferredOut (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat has been successfully transferred out to another

agent.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat with this chatKey has been transferred out: ' + result.chatKey);

}

sforce.console.chat.onChatTransferredOut (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat that has been transferred.

success Boolean true iffiring event was successful; false if firing event wasn't successful.

onCurrentCapacityChanged ()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat, ends a
currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed to their
chat queue. Available in APl version 29.0 or later.

310

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Syntax

sforce.console.chat.onCurrentCapacityChanged (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the agent's capacity for accepting chats has changed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('Capacity Changed. Current Requests + Engaged Chats is now: ' +
result.count) ;
}
sforce.console.chat.onCurrentCapacityChanged (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

count integer The number of chats in which the agent is currently engaged plus the number of

chat requests currently assigned to the agent.

success Boolean true iffiring event was successful; false if firing event wasn't successful.

onCustomEvent ()

Registers a function to call when a custom event takes place during a chat. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onCustomEvent (chatKey:String, type:String, callback:Function)

3an

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to call a function when a custom
event takes place.
type String The name of the custom event you want to listen for. This should match the name
of the custom event sent from the chat window.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert ('A new custom event has been received of type ' + result.type + ' and
with data: ' + result.data);

}
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var type = 'myCustomEventType';
sforce.console.chat.onCustomEvent (chatKey, type, eventHandler);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
type String The type of the custom event that was sent to this chat; corresponds to the type
argument of the 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.
data String The data of the custom event that was sent to this chat; corresponds to the data
argumentofthe 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.
source String The source of the custom event that was sent to this chat; corresponds to either the
agent or the chat visitor, depending on who triggered the custom event.
timestamp Date/Time The time and date the event was received.
success Boolean true iffiring event was successful; false if firing event wasn't successful.

312

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

onFileTransferCompleted()

Registers a function to call when a file is transferred from a customer to an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.onFileTransferCompleted (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat the file was transferred from.
callback function JavaScript method that is called when the method is complete.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
test on file transfer

complete

<script type="text/javascript">
function testOnFileComplete () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested/()
methods.
//These values are for example purposes only.
var chatKey = 'myChatKey';
sforce.console.chat.onFileTransferCompleted (chatKey, fileSuccess);

function fileSuccess (result) {
//Reports status of the file transfer.

if (result.success == true) ({
alert ('File transfer was successful.');
} else {
alert ('File transfer was not successful.');
}
}i
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

attachmentId String The ID of the object created for the transferred file.

313

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description

success Boolean true iffiring event was successful; false if firing event was unsuccessful.

onNewMessage ()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onNewMessage (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey string The chatKey associated with the chat for which to call a function when a new
customer message is received.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new message in this chat: ' + result.content);
}
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onNewMessage (chatKey, eventHandler);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

content String The text of a message in the chat log.

name String The name of the user who sent the message. This appears exactly as it is displayed

in the chat log.
type String The type of message that was received, such as an Agent or Visitor message.

314

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description

timestamp Date/Time The date and time the message was received.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onTypingUpdate ()

Registers a function to call when the customer's text in the chat window changes. If Sneak Peek is enabled, this function is called whenever
the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer starts or stops
typing in the chat window. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onTypingUpdate (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to call a function when a customer
begins typing a new message to the agent.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new typing update in this chat');
}
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onTypingUpdate (chatKey, eventHandler);
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

315

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description
isTyping Boolean Indicates whether a chat visitor is typing (t rue) or not (false).
sneakPeek String The text the chat visitor is currently typing into their input box in the chat window.

This is visible only if Sneak Peek is enabled for the agent.

success Boolean true iffiring event was successful; false if firing event wasn't successful.

sendCustomEvent ()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.sendCustomEvent (chatKey:String, type:String, data:String,
callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat to which to send a custom event.
type String The name of the custom event you want to send to the chat window.
data String Additional data you want to send to the chat window along with the custom event.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
Send Custom Event

<script type="text/javascript">

function testSendCustomEvent () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only

var chatKey = 'myChatKey';
var type = 'myCustomEventType'
var data = 'myCustomEventData'

sforce.console.chat.sendCustomEvent (chatKey, type, data, sendCustomEventSuccess);

function sendCustomEventSuccess (result) {
//Report whether sending the custom event was successful

316

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

if (result.success == true) {
alert ('The customEvent has been sent');
} else {
alert ('Sending the customEvent was not successful');

}s

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if sending the custom event was successful; false if sending the custom

event wasn't successful.

sendMessage ()

Sends a new chat message from the agent to a chat with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.sendMessage (chatKey:String, message:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey of the chat where the agent’s message is sent.
message String The message you would like to send from the agent to the customer in a chat.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
Send Message

<script type="text/javascript">
function testSendMessage () {
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only

317

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

var chatKey = 'myChatKey';
var text ='This is sample text to send as a message';
sforce.console.chat.sendMessage (chatKey, text, sendMessageSuccess)

function sendMessageSuccess (result) {
//Report whether getting the chat log was successful

if (result.success == true) {
alert ('Message Sent');
} else {

alert ('Sending the message was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true ifsending the message was successful; false if sending the message wasn't
successful.
setAgentInput ()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in APl version 29.0 or later.

Syntax

sforce.console.chat.setAgentInput (chatKey:String, text:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to set the agent’s input text.
text String The string of text which you want to set into an agent's input.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>

318

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Set Agent Input
<script type="text/javascript">

function testSetAgentInput () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var text = 'This is example text to set the agent input'
sforce.console.chat.setAgentInput (chatKey, text, setAgentInputSuccess);

function setAgentInputSuccess (result) {
//Report whether setting the agent's input was succesful
if (result.success == true) ({
alert ('The text in the agent input has been updated');
} else {
alert ('Setting the agent input was not Succesful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true ifsetting the agent’sinput was successful; false if setting the agent’sinput

wasn't successful.

setAgentState()

Sets an agent's Chat status, such as Online, Away, or Offline. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.setAgentState (state:String, (optional)callback:Function)

Arguments
Name Type Description
state String Chat status you want to set the agent to—for example, Online, Away, or Offline.
callback function JavaScript method called upon completion of the method.

319

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Set Agent Status to
Online
<script type="text/javascript">
function testSetAgentState (state) {
sforce.console.chat.setAgentState (state, function(result) {
if (result.success) {
alert ('Agent State Set to Online');
} else {
alert ('setAgentState has failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if setting the agent’s Chat status was successful; false if setting the agent’s
Chat status wasn't successful.
Methods for Chat Visitors

There are a few methods available that you can use to customize the visitor experience for Chat in a custom Visualforce chat window.
These methods apply to Salesforce Classic only.

@ Important: Thelegacy chat productis in maintenance-only mode, and we won't continue to build new features. You can continue
to use it, but we no longer recommend that you implement new chat channels. Instead, you can modernize your customer
communication with Messaging for In-App and Web. Messaging offers many of the chat features that you love plus asynchronous
conversations that can be picked back up at any time.

IN THIS SECTION:

chasitor.addCustomEventListener()
Registers a function to call when a custom event is received in the chat window. Available in APl version 29.0 or later.

chasitor.getCustomEvents()
Retrieves a list of custom events that have been received in this chat window during this chat session. Available in APl version 29.0
or later.

chasitor.sendCustomEvent()
Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in APl version 29.0 or
later.

320

https://help.salesforce.com/s/articleView?id=sf.miaw_intro_landing.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.miaw_chat_vs_messaging.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

chasitor.addCustomEventListener ()

Registers a function to call when a custom event is received in the chat window. Available in APl version 29.0 or later.

Syntax

liveagent.chasitor.addCustomEventListener (type:String, callback:Function)

Arguments
Name Type Description
type string The type of custom event you want to listen for.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<script type="text/javascript">

function testAddCustomEventListener () {
//These values are for example purposes only
var type = 'myCustomEventType'

liveagent.chasitor.addCustomEventListener (type, customEventReceived)

function customEventReceived (result) {
eventType = result.getType();

eventData = result.getData();
alert ('A custom event of type: ' + eventType + ' has been received with the
following data: ' + eventData);

b

testAddCustomEventListener () ;

</script>
Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods:
Name Type Description
getType method Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.
getData method Accesses the data of the custom event that was sent to this chat window. Returns

the data argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.

321

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description

getSource method Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.

getDate method Accesses the date of the custom event that was sent to this chat window. Returns
the date and time the event was received.

chasitor.getCustomEvents ()

Retrieves a list of custom events that have been received in this chat window during this chat session. Available in APl version 29.0 or
later.

Syntax

liveagent.chasitor.getCustomEvents ()

Sample Code-Visualforce

Get Custom Events

<script type="text/javascript">
function testGetCustomEvents () {
events = liveagent.chasitor.getCustomEvents () ;
eventsCount = events.length;
alert ('The following number of custom events have occurred: ' + eventsCount);

}i
</script>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods and properties:

Name Type Description
events Arrayof event Anarray of event objects. Each object represents a custom event that has occurred
objects in this chat. Data on each message object can be accessed by the following methods:
® getType ()
® getDhata()

® getSource ()

® getDhate()

getType method Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.

322

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Chat

Name Type Description

getData method Accesses the data of the custom event that was sent to this chat window. Returns
the data argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.

getSource method Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.

getDate method Accesses the date of the custom event that was sent to this chat window. Returns
the date and time the event was received.

chasitor.sendCustomEvent ()

Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in APl version 29.0 or later.

Syntax

liveagent.chasitor.sendCustomEvent (type:String, data:String)

Arguments
Name Type Description
type string The name of the custom event to send to the agent console.
data string Additional data you want to send to the agent console along with the custom event.

Sample Code-Visualforce

Send Custom Event

<script type="text/javascript">

function testSendCustomEvent () {
type = 'myCustomEventType';
data = 'myCustomEventData';

liveagent.chasitor.sendCustomEvent (type, data);
alert ('The custom event has been sent');
}i
</script>

Response

This method returns no responses.

323

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

Methods for Omni-Channel

Omni-Channelis a comprehensive customer service solution that lets your call center route any type of incoming work item—including
cases, chats, phone calls, or leads—to the most qualified, available agents in your organization. Omni-Channel provides a customizable
customer service solution that integrates seamlessly into the Salesforce console and benefits your customers and support agents.

For more information on Omni-Channel, see Set Up Omni-Channel.

IN THIS SECTION:

acceptAgentWork
Accepts a work item that's assigned to an agent. Available in APl versions 32.0 and later.

closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in
APl versions 32.0 and later.

declineAgentWork

Declines a work item that's assigned to an agent. Available in APl versions 32.0 and later.

getAgentWorks

Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace. Available in APl versions 32.0
and later.

getAgentWorkload

In APl version 35.0 and later, we can retrieve an agent’s currently assigned workload. Use this method for rerouting work to available
agents.

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status. Available in APl versions
32.0and later.

getServicePresenceStatusld

Retrieves an agent’s current presence status. Available in APl versions 32.0 and later.

login

Logs an agent into Omni-Channel with a specific presence status. You also can use this method to reconnect to Omni-Channel after
a connection error. Available in APl versions 32.0 and later.

logout

Logs an agent out of Omni-Channel. Available in APl versions 32.0 and later.

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In APl version 35.0 and later, we log the user into presence if that user
is not already logged in, so you don't have to make additional calls. You also can use this method to reconnect to Omni-Channel
after a connection error.

Methods for Omni-Channel Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the
standard methods for console events, there are a few events that are specific to Omni-Channel. These events apply to Salesforce
Classic only.

acceptAgentWork

Accepts a work item that's assigned to an agent. Available in APl versions 32.0 and later.

324

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

Syntax

sforce.console.presence.acceptAgentWork (workId:String, (optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item the agent accepts.
callback function JavaScript method to call when an agent accepts the work item associated with the

workId.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Accept Assigned Work Item

<script type="text/javascript">
function testAcceptWork() {
//First get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[0];
if (!work.isEngaged) {
//Now that we have the assigned work item ID, we can accept it
sforce.console.presence.acceptAgentWork (work.workId,
function (result) {
if (result.success) {
alert ('Accepted work successfully');
} else {
alert ('Accept work failed');

});
} else {
alert ('The work item has already been accepted');

1)
}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

325

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

Name Type Description

success Boolean true if accepting the work item was successful; false if accepting the work
item wasn't successful.

closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in API
versions 32.0 and later.

Syntax

sforce.console.presence.closeAgentWork (workId:String, (optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item that's closed.
callback function JavaScript method to call when the work item associated with the workId is

closed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Close Engaged Work Item
<script type="text/javascript">
function testCloseWork () {
//First get the ID of the engaged work item to close it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[0];
if (work.isEngaged) ({
//Now that we have the engaged work item ID, we can close it
sforce.console.presence.closeAgentWork (work.workId, function (result)

if (result.success) {

alert ('Closed work successfully');
} else {

alert ('Close work failed');

1)
} else {
alert ('The work item should be accepted first');

326

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if closing the work item was successful; false if closing the work item
wasn't successful.
declineAgentWork

Declines a work item that's assigned to an agent. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.declineAgentWork (workId:String, (optional) declineReason:String,
(optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item that the agent declines.
declineReason String The provided reason for why the agent declined the work request.
callback function JavaScript method to call when an agent declines the work item associated with the

workId.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/64.0/integration.js"/>
Decline Assigned Work Item

<script type="text/javascript">
function testDeclineWork () {
//First, get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[0];
sforce.console.presence.declineAgentWork (work.workId, function (result)

327

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

if (result.success) {

alert ('Declined work successfully');
} else {

alert ('Decline work failed');

}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if declining the work item was successful; false if declining the work item
wasn't successful.
getAgentWorks
Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace. Available in APl versions 32.0 and
later.
Syntax

sforce.console.presence.getAgentWorks (callback: function)

Arguments
Name Type Description
callback function JavaScript method to call when the list of an agent’s work items is retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Agent’s Current Work Items

<script type="text/javascript">
function testGetWorks () {
//These values are for example purposes only.
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {

328

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

alert ('Get work items successful');

var works = JSON.parse (result.works);
alert ('First Agent Work ID is: ' + works[0].workId);
alert ('Assigned Entity Id of the first Agent Work is: ' +
works[0] .workItemId) ;
alert('Is first Agent Work Engaged: ' + works[0].isEngaged);
} else {

alert ('Get work items failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if retrieving the agent’s work items was successful; false if retrieving the
agent’s work items wasn't successful.
works JSON string of A JSON string of work objects that represents the work items assigned to the agent
work objects thatare open in the agent’s workspace.
work

The work object contains the following properties:

Name Type Description

workItemId String The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

workId String The ID of a work assignment that's routed to an agent.

isEngaged Boolean Indicates whether an agent is working on a work item that's been assigned to them
(true)ornot(false).

getAgentWorkload

In APl version 35.0 and later, we can retrieve an agent’s currently assigned workload. Use this method for rerouting work to available
agents.

Syntax

sforce.console.presence.getAgentWorkload (callback: function)

329

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

Arguments
Name Type Description
callback function JavaScript method to call when the agent’s configured capacity and work is retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

Get Agent’s configured capacity and current workload

<script type="text/javascript">
function testGetAgentWorkload() {
sforce.console.presence.getAgentWorkload (function (result) {
if (result.success) {
alert ('Retrieved Agent Configured Capacity and Current Workload
successfully');

alert ('Agent\'s configured capacity is: ' + result.configuredCapacity):;
alert ('Agent\'s currently assigned workload is: ' +
result.currentWorkload) ;
} else {

alert ('Get Agent Workload failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if retrieving the agent’s work items was successful; false if retrieving the
agent's work items wasn't successful.
configuredCapacity Number Indicates the agent’s configured primary capacity (work that's assigned to the current
user) through Presence Configuration.
currentWorkload Number Indicates the agent’s currently assigned primary workload.
anfigredintemptibleCaacity Number Indicates the agent's configured interruptible capacity (work that's assigned to the
current user) through Presence Configuration.
arrentInternptibleiorkload Number Indicates the agent's currently assigned interruptible workload.

330

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status. Available in APl versions 32.0
and later.

Syntax

sforce.console.presence.getServicePresenceStatusChannels (callback: function)

Arguments
Name Type Description
callback function JavaScript method to call when the channels associated with a presence status are

retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>

Get Channels Associated with a Presence Status

<script type="text/javascript">
function testGetChannels () {
//These values are for example purposes only.
sforce.console.presence.getServicePresenceStatusChannels (function (result) {
if (result.success) {
alert ('Retrieved Service Presence Status Channels successfully');
var channels = JSON.parse (result.channels);
//For example purposes, just retrieve the first channel
alert ('First channel ID is: ' + channels[0].channelld);
alert ('First channel developer name is: ' + channels[0].developerName) ;

} else {
alert ('Get Service Presence Status Channels failed');

1)
}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

331

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

Name Type Description

success Boolean true if retrieving the current presence status channels was successful;, false if
the retrieving the current presence status channels wasn't successful.

channels JSON string of ~ Returns the IDs and APl names of the channels associated with the presence status.
channel
objects

getServicePresenceStatusId

Retrieves an agent’s current presence status. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.getServicePresenceStatusId(callback: function)

Arguments
Name Type Description
callback function JavaScript method to call when the agent’s presence status is retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Get Omni-Channel Status ID

<script type="text/javascript">
function testGetStatusId() {
sforce.console.presence.getServicePresenceStatusId (function (result) {
if (result.success) {
alert ('Get Status Id successful');
alert ('Status Id is: ' + result.statusId);
} else {
alert ('Get Status Id failed'):;

}) i
}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

332

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

Name Type Description

success Boolean true ifretrieving the presence status ID was successful; false if the retrieving
the presence status ID wasn't successful.

statusName String The name of the agent’s current presence status.

statusApiName String The APl name of the agent’s current presence status.

statusId String The ID of the agent's current presence status.
login

Logs an agent into Omni-Channel with a specific presence status. You also can use this method to reconnect to Omni-Channel after a
connection error. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.login(statusId:String, (optional) callback:function)

Arguments
Name Type Description
statusId String The ID of the presence status. Agents must be given access to this presence status
through their associated profile or permission set.
callback function JavaScript method to call when the agent is logged in with the presence status

associated with statusId.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Log In to

Omni-Channel

<script type="text/javascript">
function testLogin(statusId) {
//Gets the Salesforce ID of the presence status entity which the current user
has been assigned through their permission set or profile.
//These values are for example purposes only.
sforce.console.presence.login(statusId, function(result) ({
if (result.success) {
alert ('Login successful');
} else {
alert ('Login failed');

333

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if the login was successful; £alse if the login wasn't successful.
logout

Logs an agent out of Omni-Channel. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.logout ((optional) callback: function)

Arguments
Name Type Description
callback function JavaScript method to call when the agent is logged out of Omni-Channel.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/64.0/integration.js"/>
Log out of Omni-Channel

<script type="text/javascript">
function testLogout () {
sforce.console.presence.logout (function (result) {
if (result.success) {
alert ('Logout successfully');
} else {
alert ('Logout failed');

}) i

}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

334

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

Name Type Description

success Boolean true if the logout was successful; false if the logout wasn't successful.

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In APl version 35.0 and later, we log the user into presence if that user is
not already logged in, so you don't have to make additional calls. You also can use this method to reconnect to Omni-Channel after a
connection error.

Syntax

sforce.console.presence.setServicePresenceStatus (statusId:String,
(optional) callback:function)

Arguments
Name Type Description
statusId String The ID of the presence status you want to set the agent to. Agents must be given
access to this presence status through their associated profile or permission set.
callback function JavaScript method to call when the agent’s status is changed to the presence status

associated with statusId.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/64.0/integration.js"/>

Set Presence
Status

<script type="text/javascript">
function testSetStatus(statusId) {

//Sets the user’s presence status to statusID. Assumes that the user was
assigned this presence status through Setup.

//These values are for example purposes only

sforce.console.presence.setServicePresenceStatus (statusId, function(result) {

if (result.success) {
alert ('Set status successful');

alert ('Current statusId is: ' + result.statusId);
alert ('Channel list attached to this status is: ' + result.channels);
//printout in console for lists
} else {

alert ('Set status failed'):;

335

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if setting the agent’s status was successful; false if setting the agent's
status wasn't successful.
statusName String The name of the agent’s current presence status.
statusApiName String The API name of the agent’s current presence status.
statusId String The ID of the agent's current presence status.
channels JSON string of ~ Returns the IDs and API names of the channels associated with the presence status.
channel
objects

Methods for Omni-Channel Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the standard
methods for console events, there are a few events that are specific to Omni-Channel. These events apply to Salesforce Classic only.

Omni-Channel Console Events

Event Description Payload

sforce.console.ConsoleEvent. Fired whenan

PRESENCE.LOGIN SUCCESS Omni-Channel user logs
into Omni-Channel
successfully.

° statusId—thelDoftheagent’scurrent presence status.

Available in APl version
32.0or later.

sforce.console.ConsoleEvent. Firedwhenauserchanges

. e statusId—thelDoftheagent’scurrent presence status.
PRESENCE.STATUS CHANGED his or her presence status.

e channels—channelJSON string of channel objects.
Available in APl version

statusName—the name of theagent's current presence
32.0 or later.

status.

® statusApiName—the APl name of the agent’s current
presence status.

336

Salesforce Console Integration Toolkit for Salesforce Classic

Event

sforce.console.ConsoleEvent.
PRESENCE .LOGOUT

sforce.console.ConsoleEvent.
PRESENCE.WORK_ASSIGNED

sforce.console.ConsoleEvent.
PRESENCE.WORK ACCEPTED

sforce.console.ConsoleEvent.
PRESENCE.WORK_DECLINED

sforce.console.ConsoleEvent.
PRESENCE.WORK_CLOSED

sforce.console.ConsoleEvent.
PRESENCE . WORKLOAD CHANGED

Description

Fired when a user logs out
of Salesforce.

Available in APl version
32.0or later.

Fired when a user is
assigned a new work item.

Available in APl version
32.0or later.

Fired when a user accepts
a work assignment, or

when a work assignment
is automatically accepted.

Available in API version
32.0or later.

Fired when a user declines
a work assignment.

Available in APl version
32.0or later.

Fired when the status of
an AgentWork object is
changed to Closed.

Available in APl version
32.0or later.

Fired when an agent’s
workload changes. This
includes receiving new
work items, declining work
items, and closing items in
the console. It's also fired
when there’s a change to
an agent's capacity or
Presence Configuration or
when the agent goes
offline in the
Omni-Channel widget.

337

Methods for Omni-Channel

Payload

None

workItemId—thelD ofthe objectthat’s routed through
Omni-Channel. This object becomes a work assignment with
a workId whenit's assigned to an agent.

workId—theID of a work assignment that's routed to an
agent.

workItemId—thelD oftheobjectthat’sroutedthrough
Omni-Channel. This object becomes a work assignment with
a workId whenit's assigned to an agent.

workId—the ID of a work assignment that's routed to an
agent.

workItemId—thelD ofthe objectthat’s routed through
Omni-Channel. This object becomes a work assignment with
a workId whenit's assigned to an agent.

workId—the ID of a work assignment that's routed to an
agent.

workItemId—thelDoftheobjectthat’sroutedthrough
Omni-Channel. This object becomes a work assignment with
a workId whenit's assigned to an agent.

workId—the ID of a work assignment that's routed to an
agent.

ConfiguredCapacity—the configured capacity for
the agent.

PreviousWorkload—theagent's workload before the
change.

NewWorkload—the agent’s new workload after the
change.

Salesforce Console Integration Toolkit for Salesforce Classic Methods for Omni-Channel

channel

The channel object contains the following functions:

Name Type Description

channellId String Retrieves the ID of a service channel that's associated with a presence status.

developerName String Retrieves the developer name of the the service channel that's associated with the
channelId.

338

CHAPTER 4 Other Resources

In addition to this guide, there are other resources available for you as you learn how to use the console APIs.

IN THIS SECTION:

Console API Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

SEE ALSO:

Salesforce Help: Salesforce Console

Salesforce Help: Glossary

Salesforce Developers: Getting Started with Salesforce Platform

Salesforce University: Training

Firebug Extension for Firefox

Salesforce Extensions for Visual Studio Code

Console API Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

Convention

Courier font

Italics

Bold Courier font

Description

In descriptions of syntax, a monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

In descriptions of syntax, italics represent variables. You supply the actual value. In the following
example, three values must be supplied: datatype variable name [= value];

If the syntax is bold and italic, the text represents a code element that needs a value supplied
by you, such as a class name or variable value:

public static class YourClassHere { ... }

In code samples and syntax descriptions, a bold courier font emphasizes a portion of the code
or syntax.

339

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=glossary.htm&language=en_US
https://developer.salesforce.com/gettingstarted
https://trailhead.salesforce.com/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://developer.salesforce.com/page/Tools

Other Resources Console API Typographical Conventions

Convention Description
<> In descriptions of syntax, less-than and greater-than symbols (< >) are typed exactly as shown.

<apex:pageBlockTable value="{'!account.Contacts}" var="contact">

<apex:column value="{!contact.Name}"/>

<apex:column value="{!contact.MailingCity}"/>

<apex:column value="{!contact.Phone}"/>
</apex:pageBlockTable>

{1 In descriptions of syntax, braces ({}) are typed exactly as shown.

<apex:page>
Hello {!S$User.FirstName}!
</apex:page>

[In descriptions of syntax, anything included in brackets is optional. In the following example,
specifying value is optional:

data type variable name [= value];

In descriptions of syntax, the pipe sign means “or”. You can do one of the following (not all).
In the following example, you can create a new unpopulated set in one of two ways, or you
can populate the set:

Set<data type> set name
[= new Set<data_type>();] |
[= new Set<data_type{value [, value2. . .] };] |

’

340

INDEX

C M

Chat 107,114,119 Methods
Chat 107,114,119

341

	Salesforce Console Developer Guide
	Get to Know Lightning Console
	Get to Know the Utility Bar

	Lightning Console API
	How are the Classic and Lightning Console APIs Different?
	Console API Method Parity
	Salesforce Classic Methods Supported in Lightning Experience
	Utility Bar API Method Parity

	Lightning Console JavaScript API
	Lightning Console JavaScript API Syntax
	JavaScript Promises
	Error Handling with Promises

	Using Background Utility Items
	Using Pop-Out Utilities
	Supported APIs

	Using Events with the Lightning Console JavaScript API
	Use Page Context in the Utility Bar API
	Using Page References to Open Console Workspace Tabs and Subtabs
	Debugging
	Methods for Lightning Console JavaScript API
	Methods for Navigation Items
	focusNavigationItem()
	getNavigationItems()
	getSelectedNavigationItem()
	refreshNavigationItem()
	setSelectedNavigationItem()

	Methods for Workspace Tabs and Subtabs
	addToBrowserTitleQueue()
	closeTab()
	disableTabClose()
	focusTab()
	generateConsoleUrl()
	getAllTabInfo()
	getEnclosingTabId()
	getFocusedTabInfo()
	getTabInfo()
	getTabURL()
	isConsoleNavigation()
	isSubtab()
	openConsoleUrl()
	openSubtab()
	openTab()
	refreshTab()
	removeFromBrowserTitleQueue()
	setTabHighlighted()
	setTabIcon()
	setTabLabel()
	EnclosingTabId Wire Adapter
	IsConsoleNavigation Context Wire Adapter for Lightning Experience

	Methods for the Utility Bar
	disableUtilityPopOut()
	enableModal()
	enablePopout()
	getAllUtilityInfo()
	getEnclosingUtilityId()
	getInfo() for Lightning Experience
	getUtilityInfo()
	isUtilityPoppedOut()
	minimize()
	minimizeUtility()
	onUtilityClick()
	open()
	openUtility()
	setPanelHeaderIcon()
	setPanelHeaderLabel()
	setPanelHeight()
	setPanelWidth()
	setUtilityHighlighted()
	setUtilityIcon()
	setUtilityLabel()
	toggleModalMode()
	updatePanel()
	updateUtility()
	EnclosingUtilityId Wire Adapter

	LWC Methods for Enhanced Messaging
	endConversation()
	getConversationLog()
	sendTextMessage()
	setAgentInput()
	setMessagingComponent()
	sendMessagingComponent()

	Aura Methods for Enhanced Messaging
	endChat()
	getChatLog()
	sendMessage()
	setAgentInput()

	Methods for Chat
	endChat()
	getChatLog()
	sendCustomEvent()
	sendMessage()

	Methods for Omni-Channel
	acceptAgentWork()
	closeAgentWork()
	declineAgentWork()
	getAgentWorkload()
	getAgentWorks()
	getServicePresenceStatusChannels()
	getServicePresenceStatusId()
	login()
	logout()
	lowerAgentWorkFlag()
	raiseAgentWorkFlag()
	setServicePresenceStatus()

	Events for Lightning Console JavaScript API
	lightning:tabClosed
	lightning:tabCreated
	lightning:tabFocused
	lightning:tabRefreshed
	lightning:tabReplaced
	lightning:tabUpdated
	Subscribe to Aura Application Events in LWC
	lightning__tabClosed
	lightning__tabCreated
	lightning__tabFocused
	lightning__tabRefreshed
	lightning__tabReplaced
	lightning__tabUpdated

	LWC Events for Enhanced Messaging
	lightning__conversationAgentSend
	lightning__conversationEnded
	lightning__conversationEndUserMessage

	Aura Events for Enhanced Messaging
	lightning:conversationAgentSend
	lightning:conversationChatEnded
	lightning:conversationNewMessage

	Events for Chat
	lightning:conversationAgentSend
	lightning:conversationChatEnded
	lightning:conversationCustomEvent
	lightning:conversationNewMessage

	Events for Omni-Channel
	lightning:omniChannel﻿ConnectionError
	lightning:omniChannelLoginSuccess
	lightning:omniChannelStatusChanged
	lightning:omniChannelLogout
	lightning:omniChannelWorkAssigned
	lightning:omniChannelWorkAccepted
	lightning:omniChannelWorkDeclined
	lightning:omniChannelWorkClosed
	lightning:omniChannelWorkFlagUpdated
	lightning:omniChannelWorkloadChanged

	Salesforce Classic API
	When to Use the Salesforce Console Integration Toolkit
	Salesforce Console Integration Toolkit Support Policy
	Backward Compatibility
	End-of-Life

	Change a Visualforce Page by Using the Salesforce Console Integration Toolkit
	Working with the Salesforce Console Integration Toolkit
	Connect to the Toolkit
	Asynchronous Calls with the Salesforce Console Integration Toolkit
	Working with Lightning Platform Canvas
	Salesforce Console Integration Toolkit Best Practices

	Methods for Salesforce Classic
	Methods for Primary Tabs and Subtabs
	closeTab()
	disableTabClose()
	focusPrimaryTabById()
	focusPrimaryTabByName()
	focusSidebarComponent()
	focusSubtabById()
	focusSubtabByNameAndPrimaryTabId()
	focusSubtabByNameAndPrimaryTabName()
	generateConsoleUrl()
	getEnclosingPrimaryTabId()
	getEnclosingPrimaryTabObjectId()
	getEnclosingTabId()
	getFocusedPrimaryTabId()
	getFocusedPrimaryTabObjectId()
	getFocusedSubtabId()
	getFocusedSubtabObjectId()
	getPageInfo()
	getPrimaryTabIds()
	getSubtabIds()
	getTabLink()
	isInConsole()
	onEnclosingTabRefresh()
	onFocusedPrimaryTab()
	onFocusedSubtab()
	onTabSave()
	openConsoleUrl()
	openPrimaryTab()
	openSubtab()
	openSubtabByPrimaryTabName()
	refreshPrimaryTabById()
	refreshPrimaryTabByName()
	refreshSubtabById()
	refreshSubtabByNameAndPrimaryTabId()
	refreshSubtabByNameAndPrimaryTabName()
	reopenLastClosedTab()
	resetSessionTimeOut()
	setTabUnsavedChanges()
	setTabIcon()
	setTabLink()
	setTabStyle()
	setTabTextStyle()
	setTabTitle()

	Methods for Navigation Tabs
	focusNavigationTab()
	getNavigationTabs()
	getSelectedNavigationTab()
	refreshNavigationTab()
	setSelectedNavigationTab()

	Methods for Computer-Telephony Integration (CTI)
	fireOnCallBegin()
	fireOnCallEnd()
	fireOnCallLogSaved()
	getCallAttachedData()
	getCallObjectIds()
	onCallBegin()
	onCallEnd()
	onCallLogSaved()
	onSendCTIMessage()
	sendCTIMessage()
	setCallAttachedData()
	setCallObjectIds()

	Methods for Application-Level Custom Console Components
	addToBrowserTitleQueue()
	blinkCustomConsoleComponentButtonText()
	isCustomConsoleComponentPoppedOut()
	isCustomConsoleComponentWindowHidden()
	isCustomConsoleComponentHidden()
	isInCustomConsoleComponent()
	onCustomConsoleComponentButtonClicked()
	removeFromBrowserTitleQueue()
	runSelectedMacro()
	scrollCustomConsoleComponentButtonText()
	selectMacro()
	setCustomConsoleComponentButtonIconUrl()
	setCustomConsoleComponentButtonStyle()
	setCustomConsoleComponentButtonText()
	setCustomConsoleComponentHeight()
	setCustomConsoleComponentVisible()
	setCustomConsoleComponentWidth()
	setCustomConsoleComponentPopoutable()
	setCustomConsoleComponentWindowVisible()
	setSidebarVisible()

	Methods for Push Notifications
	addPushNotificationListener()
	removePushNotificationListener()

	Methods for Console Events
	addEventListener()
	fireEvent()
	removeEventListener()

	Methods for Chat
	acceptChat()
	cancelFileTransferByAgent()
	declineChat()
	endChat()
	getAgentInput()
	getAgentState()
	getChatLog()
	getChatRequests()
	getDetailsByChatKey()
	getDetailsByPrimaryTabId()
	getEngagedChats()
	getMaxCapacity()
	initFileTransfer()
	onAgentSend()
	onAgentStateChanged()
	onChatCanceled()
	onChatCriticalWaitState()
	onChatDeclined()
	onChatEnded()
	onChatRequested()
	onChatStarted()
	onChatTransferredOut()
	onCurrentCapacityChanged()
	onCustomEvent()
	onFileTransferCompleted()
	onNewMessage()
	onTypingUpdate()
	sendCustomEvent()
	sendMessage()
	setAgentInput()
	setAgentState()
	Methods for Chat Visitors
	chasitor.addCustomEventListener()
	chasitor.getCustomEvents()
	chasitor.sendCustomEvent()

	Methods for Omni-Channel
	acceptAgentWork
	closeAgentWork
	declineAgentWork
	getAgentWorks
	getAgentWorkload
	getServicePresenceStatusChannels
	getServicePresenceStatusId
	login
	logout
	setServicePresenceStatus
	Methods for Omni-Channel Console Events

	Other Resources
	Console API Typographical Conventions

	Index

