salesforce

AJAX Toolkit Developer Guide

Last updated: August 22, 2025

© Copyright 2000-2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc,, as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: AJAX Toolkit Developer Guide o 1
When to Use the AJAX Toolkito 1
AJAX Toolkit Support Policyo 2
Other RESOUICES .« . o oot e e e e 2
AJAX Typographical Conventions 2
Sample Visualforce Page Using the AJAX Toolkit 2
Working with the AJAX ToolKit o e 4
Connecting 1o the APl . . . 4
Embedding API Calls in JavaScripto 6
Processing ResUNSo e 7
APl Calls and the AJAX ToolKifo 8
Synchronous and Asynchronous Calls with the AJAX Toolkit 9
Object FUNCHONS oo e 9
Data Types in AJAX ToolKit . . . oo e 10
source Context Variable 10
Debugging with the AJAX ToolKit 10
Example Calls Using the Ajax Toolkito n
SOAP (AJAX) APl End-of-Life Policyo 24
SOAP Header Options with the AJAX Toolkito e 24
Error Handling with the AJAX Toolkit oo 26
AAVANCEA TOPICS « « v v v v e e e e e e e e e e e 28
QueryResultliterator 28
Differences in Escaping Reserved Characters 28
Working with Base64 Binary Encoded Strings o 29
Timeout Parameter for Asynchronous Calls o 30
AJAX PrOXY o ot e e 30

CHAPTER1 AJAX Toolkit Developer Guide

Embed API calls in Visualforce pages, buttons, and links with AJAX Toolkit — a JavaScript wrapper around SOAP API.

The AJAX Toolkit supports Microsoft” Internet Explorer® versions 9, 10, and 11 with the latest Microsoft hot fixes applied, and Mozilla®
Firefox®, most recent stable version. The AJAX Toolkit is based on the partner WSDL. Because there’s no type checking in JavaScript, the
type information available in the enterprise WSDL isn't needed.

@ Note: Before you use the AJAX Toolkit, familiarize yourself with JavaScript and with the information about SOAP APl in the SOAP
API Developer Guide.

When to Use the AJAX Toolkit

For best performance, use the AJAX Toolkit when working with small amounts of data.
Working with the AJAX Toolkit

API Calls and the AJAX Toolkit

This toolkit supports all SOAP API calls, as well as runTests () from Apex.

SOAP (AJAX) API End-of-Life Policy

See which SOAP API versions are supported, unsupported, or unavailable.

SOAP Header Options with the AJAX Toolkit

All header options in the SOAP API are supported in the toolkit, but they are specified differently than in the API.
Error Handling with the AJAX Toolkit

The AJAX Toolkit provides the ability to handle errors for synchronous and asynchronous calls.

Advanced Topics

When to Use the AJAX Toolkit

For best performance, use the AJAX Toolkit when working with small amounts of data.

Because information is delivered via a browser, AJAX works best with relatively small amounts of data (up to 200 records, approximately
six fields with 50 characters of data each). The larger the data set returned, the more time it will take to construct and deconstruct a
SOAP message, and as the size of an individual record gets larger, the impact on performance becomes greater. Also, as more HTML
nodes are created from the data, the potential for poor performance increases. Because browsers are not efficient, careful consideration
needs to be given to browser memory management if you intend to display a large amount of data.

The following are examples of appropriate uses:

e Display or modify a single record.

e Display two or three fields from many records.

e Perform one or more simple calculations, then update a record.

The following are examples of scenarios that require case-by-case analysis:

e Update more than 200 records.

e Update records that are unusually large. For example, what happens if the user clicks the browser stop button?

e Recalculate a complex value for more than 200 records.

https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/

AJAX Toolkit Developer Guide AJAX Toolkit Support Policy

An example of inappropriate usage is providing a sortable grid of many records. This would require too much processing time, and
browser rendering would be too slow.

AJAX Toolkit Support Policy
Other Resources
AJAX Typographical Conventions

Sample Visualforce Page Using the AJAX Toolkit
This example demonstrates using the AJAX Toolkit in a Visualforce page.

AJAX Toolkit Support Policy

The current release of the AJAX Toolkit is the only version that receives bug fixes and enhancements. When a new version is released,
the previous version continues to be available, but is not supported.

Other Resources

In addition to the content of this document, there are other resources available for you as you learn to use the AJAX Toolkit:
e IDE: Salesforce extensions for Visual Studio Code

e Message boards: Salesforce Developers

AJAX Typographical Conventions

Topics about the AJAX Toolkit use the following typographical conventions:

Convention Description

<script In an example, Courier font indicates items that you should type the
src="/soap/ajax/64.0/connection.js" information as shown. This includes sample code, literals, methods,
type="text/javascript"></script> calls, functions, and events from a variety of languages.

sforce.connection.header option name="value"; Inan example or syntax statement, italics represent variables. You
supply the actual value.

Sample Visualforce Page Using the AJAX Toolkit

This example demonstrates using the AJAX Toolkit in a Visualforce page.

To add JavaScript to a Visualforce page, use this procedure:

1. Create the Visualforce page. For more information, see the Visualforce Developer's Guide.
2. Cutand paste the following sample code into your Visualforce page.

The JavaScript code queries your organization and returns every account ID, account name, and industry type, if any:

<apex:page >
<script type="text/javascript">
var _ sfdcSessionId = '{!GETSESSIONID()}"';

https://developer.salesforce.com/page/Tools
http://community.salesforce.com/sforce/board?board.id=ajax_toolkit
https://developer.salesforce.com/docs/atlas.en-us.256.0.pages.meta/pages/

AJAX Toolkit Developer Guide

</script>
<script src="../../soap/ajax/64.0/connection.js"
type="text/javascript"></script>
<script type="text/javascript"> window.onload = setupPage;
function setupPage() {
//function contains all code to execute after page is rendered

var state = { //state that you need when the callback is called
output : document.getElementById ("output"),
startTime : new Date () .getTime() };

var callback = {
//call layoutResult if the request is successful
onSuccess: layoutResults,

//call queryFailed if the api request fails
onFailure: queryFailed,
source: state};

sforce.connection.query (
"Select Id, Name, Industry From Account order by Industry",
callback) ;

function queryFailed(error, source) {
source.output.innerHTML = "An error has occurred: " + error;

/**
* This method will be called when the toolkit receives a successful
* response from the server.

* @queryResult - result that server returned
* @source - state passed into the query method call.
*/

function layoutResults (queryResult, source) {
if (queryResult.size > 0) {
var output = "";

//get the records array
var records = queryResult.getArray('records');

//loop through the records and construct html string
for (var 1 = 0; 1 < records.length; i++) {

var account = records[i];
output += account.Id + " " 4+ account.Name +
" [Industry - " + account.Industry + "]
";

//render the generated html string
source.output.innerHTML = output;
}

}
</script>

Sample Visualforce Page Using the AJAX Toolkit

AJAX Toolkit Developer Guide Working with the AJAX Toolkit

<div id="output"> </div>
</apex:page>

After you created and navigated to the Visualforce page, you see text similar to this image:

001x0000002gqsIWAAY HQAccount [Industry - mull]
001x0000002gsJJAAY SecondTestUser [Industry - mull]
001x0000002gpoZAAQ Myriad Pubs [Industry - Media)
001x0000002gsIIAAY TestUserAccount [Industry - null]
001x0000002sqFnAAI Joe Bob [Industry - null]
001x0000002vCwvAAE API Doc Tracking [Industry - null]
001x0000003BXyAAK Mysti [Industry - null]

@ Nofe: You can also use an Apex controller to create the Visualforce page. However, this sample is about basic functionality with
the AJAX Toolkit that contains API calls and processes Salesforce data.

Working with the AJAX Toolkit

Most JavaScript that you add to Visualforce pages, buttons, or links has three sections: first, connecting to the AJAX Toolkit, next,
embedding the APl methods in JavaScript, and finally, processing the results. This section explains each of these steps.

Connecting to the API

The first portion of any JavaScript code that uses the AJAX Toolkit must make the toolkit available to the JavaScript code. The syntax
for this is different depending on whether you are embedding JavaScript in a Visualforce page, or a button or link.

Embedding API Calls in JavaScript

Processing Results

Connecting to the API

The first portion of any JavaScript code that uses the AJAX Toolkit must make the toolkit available to the JavaScript code. The syntax for
this is different depending on whether you are embedding JavaScript in a Visualforce page, or a button or link.

@ Nofte: API calls using the AJAX Toolkit always use the latest version of installed packages. If you're working with Visualforce
components, keep in mind that you cannot access deleted components from previous package versions using the API.

e For Visualforce pages or any source other than a custom onc1ick JavaScript button, specify a <script> tagthat pointsto the
toolkit file:

<apex:page>
<script type="text/javascript"
src="../../soap/ajax/64.0/connection.js"></script>
<script type="text/javascript">
sforce.connection.sessionId="'{!GETSESSIONID() }';

AJAX Toolkit Developer Guide Connecting to the AP

</script>
</apex:page>

For Visualforce pages where <apex :page showHeader="false"> youmustfirstset var sfdcSiteUrlPrefix
= '{!$Site.Prefix}"' beforeyouload the toolkit file:

<apex:page showHeader="false">
<script type="text/javascript">
var _ sfdcSiteUrlPrefix = '{!$Site.Prefix}';
</script>
<script type="text/javascript"
src="{!$Site.Prefix}/soap/ajax/64.0/connection.js"></script>
<script type="text/javascript">
sforce.connection.sessionId="'{!GETSESSIONID() }';

</script>
</apex:page>

Alternatively, you can set the site path directly on the UserContext Javascriptobject withUserContext.siteUrlPrefix
= '"{!$Site.Prefix}"';.

For a custom onclick JavaScript button, use ! requireScript to point to the toolkit file:

<body>
{!requireScript ("/socap/ajax/64.0/connection.js") }

The AJAX Toolkit picks up the endpoint and manages the session ID. You do not need to set them.

The version of the AJAX Toolkit is in the URL.

After this script executes, the toolkit is loaded and a global object, sforce.connection,is created. This object contains all of the
API calls and AJAX Toolkit methods, and manages the session ID. No other session management is needed.

Salesforce checks the IP address from which the client app is logging in and blocks logins from unknown IP addresses. For a blocked
login via the API, Salesforce returns a login fault. Then, the user must add their security token to the end of their password in order to
log in. A security token is an automatically-generated key from Salesforce. For example, if a user's password is mypassword, and their
security token is XXXXXXXXXX, then the user must enter mypasswordXXXXXXXxxX tologin. Users can obtain their security
token by changing their password or resetting their security token via the Salesforce user interface. When a user changes their password
or resets their security token, Salesforce sends a new security token to the email address on the user's Salesforce record. The security
token is valid until a user resets their security token, changes their password, or has their password reset. When the security token is
invalid, the user must repeat the login process to log in. To avoid this, the administrator can make sure the client's IP address is added
to the organization's list of trusted IP addresses. For more information, see “Security Token” in the in the SOAP API Developer Guide.

O Tip: We recommend that you obtain your security token via the Salesforce user interface from a trusted network prior to attempting

to access Salesforce from a new location.

If single sign-on (SSO) is enabled, users who access the APl or a desktop client can't log in unless their IP address is included on your
org’s list of trusted IP addresses or on their profile, if their profile has IP address restrictions set. The delegated authentication authority
usually handles login lockout policies for users with the Uses Single Sign-On permission. However, if the security token is enabled, your
login lockout settings determine how many times a user can try to log in with an invalid security token before getting locked out. For
more information, see Setting Login Restrictions and Setting Password Policies in Salesforce Help.

https://resources.docs.salesforce.com/256/latest/en-us/sfdc/pdf/apex_api.pdf

AJAX Toolkit Developer Guide Embedding API Calls in JavaScript

Embedding API Calls in JavaScript

After you have made the toolkit available using the procedure in Connecting to the API, you can write the JavaScript code that contains
your API calls and processing. Be sure to check the SOAP API Developer Guide for information about each call that you wish to use. The
syntax for calls is different in the AJAX Toolkit; for details see API Calls and the AJAX Toolkit.

The following example shows a simple synchronized call that you can issue after connecting. This query returns the Name and 1d for
every User and writes them to the log.

result = sforce.connection.query("Select Name, Id from User");
records = result.getArray("records");

for (var i=0; i< records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}

We recommend that you wrap your JavaScript code so that the entire HTML page is rendered by the browser before the code executes,
to avoid errors. For example:

<body onload="setupPage () ;">
<div id="output"></div>
</body>

When you specify setupPage () inthe body onload,the browserinitializes all HTML elements before it calls setupPage ().
For example, the following code could be added to a Visualforce page to retrieve data:

<script type="text/javascript">
function setupPage() {
sforce.connection.query("Select Id, Name, Industry From Account order by

Industry",
{onSuccess : layoutResults,
onFailure : queryFailed,
source : {
output : document.getElementById ("output"),
startTime : new Date () .getTime ()
}
1)
}
</script>

The APl interaction in the code above is accomplished in the first line of the setupPage function. A SOQL statement specifies what
data to return. For more information about the source context variable, see source Context Variable.

After fetching the data in this example, you should handle error conditions, for example:

function queryFailed(error, source) {
source.output.innerHTML = "
An error has occurred: <p>" + error;

}

For more about error handling, see Error Handling with the AJAX Toolkit.

Use a callback function to handle the results of this asynchronous call. A callback function is a function that is passed by reference to the
AJAXToolkit. The AJAX Toolkit calls the callback function under defined conditions, for example, upon completion. For more information
about callback function syntax, see APl Calls and the AJAX Toolkit.

https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/

AJAX Toolkit Developer Guide Processing Results

For example, the following code verifies that at least one result was returned, and iterates through the result set if it exists:

/**
* This method will be called when the toolkit receives a successful
* response from the server.

* @queryResult - result that server returned
* @source - state passed into the query method call.
*/

function layoutResults (queryResult, source) {

if (queryResult.size > 0) {
var output = "";

//get the records array
var records = queryResult.getArray('records');

//loop through the records and construct html string

for (var 1 = 0; 1 < records.length; i++) {
var account = records[i];
output += account.Id + " " 4+ account.Name +
" [Industry - " + account.Industry + "]
";

//render the generated html string
source.output.innerHTML = output;
}

}

A suggested best practice is to use JavaScript onFailure as the callback function forfailure conditions and JavaScript onSuccess
for processing results that are successfully returned.

For more information about embedding API calls in JavaScript with the AJAX Toolkit, especially the differences in syntax and availability
of asynchronous calls, see API Calls and the AJAX Toolkit.

Processing Results

You can process the results of a query that returns enough rows to require queryMore and queryLocator, much asyou do now,
iterating across the results:

var result = sforce.connection.query("select name, id from account");
var queryMore = true;
while (queryMore) {

var records = result.getArray("records");

for (var 1 = 0; 1 < records.length; i++) {

//process records[i]

}

if (result.getBoolean ("done")) {

queryMore = false;
} else {
result = sforce.connection.queryMore (result.queryLocator);

AJAX Toolkit Developer Guide API Calls and the AJAX Toolkit

However, the AJAX Toolkit provides the QueryResultIterator objectsothatyou can easily iterate through results without
invoking queryMore and queryLocator. If you are experienced with the APl and JavaScript, see QueryResultlterator.

For other calls, you must handle the batching of up to 200 records at a time yourself. For example, the following sample shows how to
batchfilesfora create () call:

var accounts = [];

for (var i=0; 1<10; i++) {
var account = new sforce.SObject ("Account");
account.Name = "my new account " + 1i;
accounts.push (account) ;

}
var result = sforce.connection.create (accounts);
var sb = "";

for (var i1i=0; i<result.length; i++) {
if (result[i].getBoolean ("success")) {

sb += "\n new account created with id " + result[i].id;
} else {
sb += "\n failed to create account " + result[i];
}
}
alert ("Result : " + sb);

For more examples, see Examples of Synchronous Calls.

API Calls and the AJAX Toolkit

This toolkit supports all SOAP API calls, as well as runTests () from Apex.

Synchronous and Asynchronous Calls with the AJAX Toolkit

The AJAX Toolkit supports both synchronous and asynchronous calls.

Object Functions

Property values can be accessed directly or by using a generic set or get method.
Data Types in AJAX Toolkit

The AJAX Toolkit returns all data as strings. If needed, you can convert the data into an appropriate datatype by using one of the
functions supplied with the returned object.

source Context Variable

Pass in any context and get it back in the callback method by using the source context variable.
Debugging with the AJAX Toolkit

The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

Example Calls Using the Ajax Toolkit

AJAX Toolkit Developer Guide Synchronous and Asynchronous Calls with the AJAX Toolkit

Synchronous and Asynchronous Calls with the AJAX Toolkit

The AJAX Toolkit supports both synchronous and asynchronous calls.

Asynchronous calls allow the client side process to continue while waiting for a call back from the server. To issue an asynchronous call,
you must include an additional parameter with the APl call, referred to as a callback function. Once the result is ready, the server invokes
the callback method with the result.

API Call Syntax in the AJAX Toolkit
SOAP API calls use slightly different syntax in AJAX Toolkit, depending on whether the call is synchronous or asynchronous.

API Call Syntax in the AJAX Toolkit

SOAP API calls use slightly different syntax in AJAX Toolkit, depending on whether the call is synchronous or asynchronous.

Synchronous Calls

Syntax:
sforce.connection.method("argl","arg2", ...);
Example:

sforce.connection.login ("MyName@MyOrg.com", "myPasswordl") ;

Asynchronous Calls

Syntax:

method ("argl","arg2", ..., callback method) ;

Example:

var callback = {onSuccess: handleSuccess, onFailure: handleFailure};

function handleSuccess (result) ({}
function handleFailure (error) {}
sforce.connection.query("Select name from Account", callback);

In this example, onSuccess is the callback function, which returns the results when they are ready.

See Core Calls in the SOAP API Developer Guide for call usage, arguments, and best practices, but use the AJAX Toolkit syntax for methods
you embed in JavaScript.

@ Note: Because delete isa JavaScript keyword, use deleteIds instead of the APl call delete.

Obiject Functions

Property values can be accessed directly or by using a generic set or get method.

e A get function for each field in the object. For example, an Account object hasa get ("Name™) function. This can be used
instead of object.Field (forexample, account .Name).

* A set functionforeach field in the object. Forexample, an Account objecthasa set ("Name) function. This can be used instead
of object.Field = value.

https://developer.salesforce.com/docs/atlas.en-us.256.0.api.meta/api/sforce_api_calls_list.htm

AJAX Toolkit Developer Guide Data Types in AJAX Toolkit

Examples

For example, you can get the value of the Name field from an Account using either of these methods:
® account.get ("Name")

® account.Name

® account["Name"]

You can set the value of the Name field from an Account using either of these methods:

® account.set ("Name", "MyAccount");

® account.Name = "MyAccount";

® account["Name"]="MyAccount";

SEE ALSO:

Processing Results

Data Types in AJAX Toolkit

The AJAX Toolkit returns all data as strings. If needed, you can convert the data into an appropriate datatype by using one of the functions
supplied with the returned object.

® getDate maps dates to JavaScript Date.

® getDateTime maps dateTime values to JavaScript Date.
® getInt mapsinteger values to JavaScript Int.

® getFloat maps float values to JavaScript Float.

e getBoolean maps boolean values to JavaScript Boolean.
® getArray retrieves arrays of values.

® getBase64Binary returnsthe decoded value of a Base64 binary encoded string. This is typically used for working with documents
and attachments. See Working with Base64 Binary Encoded Strings for more information.

If you request a field whose value is null in a query, the returned value will be null. If you do not request a field, whether the value is null
or not, the value is not returned, and is therefore undefined.

source Context Variable

Pass in any context and get it back in the callback method by using the source context variable.

For an example of how to use source in an error handling context, see Error Handling with the AJAX Toolkit.

Debugging with the AJAX Toolkit

The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

You can invoke logging explicitly using the 1og method. For example, if you wanted to display the debugging window with the value
of a variable at a certain point in your client application, you could add this line at the appropriate place:

sforce.debug.log (myVar) ;

10

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

You can open the debugging window at any point by using this command:

sforce.debug.open() ;

Example Calls Using the Ajax Toolkit

The next two sections contain examples of synchrononous and asynchronous calls.
The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

You can invoke logging explicitly using the 1og () method. For example, if you wanted to display the debugging window with the
value of a variable at a certain point in your client application, you could add this line at the appropriate place:

sforce.debug.log (myVar) ;

The AJAX Toolkit samples in the following sections use 1og (). To use the samples in the following sections, add this simple version
of the 1og code before the first use of 1og:

function log(message) {
alert (message) ;

}

You can make log () as sophisticated as you wish.

Examples of Synchronous Calls

Examples of Asynchronous Calls

Examples of Synchronous Calls

O [other]: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Data Call Examples
login Example:

tryf
var result = sforce.connection.login ("myname@myemail.com", "password") ;
log("logged in with session id " + result.sessionId);

}catch (error) {

if (error.faultcode.indexOf ("INVALID LOGIN") != -1) {
log ("check your username and passwd, invalid login");
} else {

log(error);

}
query Example:

result = sforce.connection.query("Select Name, Id from User");
records = result.getArray("records");

for (var i=0; i< records.length; i++) {
var record = records[i];

n

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

log(record.Name + " -- " + record.Id);

}
queryMore Example

var result = sforce.connection.query("select name, id from account");

var queryMore = true;

while (queryMore) {
var records = result.getArray("records");
var sb = new sforce.StringBuffer();

for (var 1 = 0; 1 < records.length; i++) {
sb.append (records[i] .Name) .append (", ") ;
log(records.length);

log(sb.toString());

if (result.getBoolean ("done")) {

queryMore = false;
} else {
result = sforce.connection.queryMore (result.querylLocator);

queryAll Example:

var result = sforce.connection.queryAll ("Select Name, Id from Account");
var records = result.getArray("records");

for (var i1i=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}
Relationship Query Example—Child to Parent:

var result = sforce.connection.query ("SELECT c.Id, c.firstname, " +
"c.lastname, c.leadsource, a.Id, a.name, a.industry, c.accountId " +
"FROM Contact c, c.account a ORDER BY leadsource LIMIT 10");

var it = new sforce.QueryResultlIterator (result);
while (it.hasNext ()) {
var record = it.next();

var accountName = record.Account ? record.Account.Name : null;

log(record.FirstName + " " + record.LastName +
" in account " + accountName) ;

12

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

@ Note: Relationship name formats differ depending on the direction of the relationship (parent-to-child or child-to-parent), and
also depending on whether the objects are standard or custom objects. For more information, see Relationship Queries in the
Salesforce SOQL and SOSL Reference Guide at www . salesforce.com/us/developer/docs/sogql sosl/index.htm

Relationship Query Example—Parent to Child:
var result = sforce.connection.query("select a.Name, a.Industry, " +

"(select c.LastName, c.LeadSource from a.Contacts c) " +
"from account a order by industry limit 100");

var ait = new sforce.QueryResultIterator (result);

while (ait.hasNext ()) {
var account = ait.next();
var contacts = [];

if (account.Contacts) {

var cit = new sforce.QueryResultlterator (account.Contacts);
while (cit.hasNext ()) {

var contact = cit.next():;
contacts.push (contact.LastName) ;

log(account.Name + ": " + contacts.join(","));

}
create Example:

var account = new sforce.SObject ("Account");
account.Name = "my new account";

var result = sforce.connection.create ([account]);

if (result[0].getBoolean ("success")) {

log ("new account created with id " + result[0].id);
} else {

log("failed to create account " + result[0]);

}
Batch create Example:

var accounts = [];
for (var i=0; i<10; i++) {
var account = new sforce.SObject ("Account");

account.Name = "my new account " + i;
accounts.push (account) ;

var result = sforce.connection.create (accounts);

for (var i=0; i<result.length; i++) {

if (result[i].getBoolean ("success")) {

log("new account created with id " + result[i].id);
} else {

log("failed to create account " + result[il]);

13

https://developer.salesforce.com/docs/atlas.en-us.256.0.soql_sosl.meta/soql_sosl/

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

}
delete Example:

//create an example account
var account = new sforce.SObject ("Account");

account.Name = "my new account";
var result = sforce.connection.create ([account]);
if (result[0].getBoolean ("success")) {

log("new account created with id " + result[0].id);
account.Id = result[0].id;

} else {
throw ("failed to create account " + result[0]);

//now delete the example account
var delResult = sforce.connection.deletelds ([account.Id]);
if (delResult[0].getBoolean ("success")) {
log("account with id " + result[0].id + " deleted");
} else {
log("failed to delete account " + result[0]);

merge Example:

//create two accounts

var accountl = new sforce.SObject ("Account");
accountl.Name = "myName";

accountl.Phone = "2837484894";

var account?2 = new sforce.SObject ("Account");
account?2.Name = "anotherName";
account2.Phone = "938475950";

var result = sforce.connection.create([accountl, account2]);
if (result.length != 2) throw "create failed";

accountl.id result[0].1id;

account2.id = result[l].id;

//create merge request
var request = new sforce.MergeRequest();

request.masterRecord = accountl;
request.recordToMergelds = account2.id;

//call merge
result = sforce.connection.merge ([request]);

if (result[0].getBoolean ("success")) {

log ("merge success " + result[0]);
} else {

14

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

log("merge failed " + result[0]);
}

process Example

var request = new sforce.ProcessSubmitRequest () ;

request.objectId = "id of object that has a workflow rule on it"; // valid id
request.comments = "automated approval";

var request2 = new sforce.ProcessSubmitRequest () ;

request2.objectId = 'id of object that does NOT have a workflow rule on it' ; // valid id,
not useful for workflow

request2.comments = "approval that will fail";

var processRes = sforce.connection.process ([request, request2]);

if (!processRes[0] .getBoolean ('success')) {
log ("The first process request failed and it should not have");

if (processRes[1l] .getBoolean ('success')) {
log ("The second process request succeeded and it should not have");

log (processRes[0] .errors) ;
log (processRes[1l] .errors);

update Example

//create an account
var account = new sforce.SObject ("Account");

account.Name = "myName";
account.Phone = "2837484894";
result = sforce.connection.create([account]);

//update that account
account.id = result[0].id;

account.Phone = "12398238";
result = sforce.connection.update ([account]);
if (result[0].getBoolean ("success")) {
log("account with id " + result[0].id + " updated");
} else {

log("failed to update account " + result[0]);
}

undelete Example

var account = new sforce.SObject ("Account");

account.Name = "account to delete";
account.Phone = "2837484894";
result = sforce.connection.create([account]);

account.id = result[0].id;
log("account created " + account);

result = sforce.connection.deletelds ([account.id]);

15

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

if (!'result[0].getBoolean ("success")) throw "delete failed";
log("account deleted " + result);

result = sforce.connection.undelete ([account.id]);
if (!'result[0].getBoolean ("success")) throw "undelete failed";
log ("account undeleted " + result[0]);

upsert Example:

var account = new sforce.SObject ("Account");
account.Name = "TestingAjaxUpsert";

account.Phone = "2837484894";

// this will insert an account

var result = sforce.connection.upsert ("Id", [account]);

account.Id = result[0].id;

account.Name = "TestingAjaxUpsert2";

// this will update the account

result = sforce.connection.upsert ("Id", [account]);

if (result[0] .getBoolean ("success") && result[0].id == account.Id) {
log ("upsert updated the account as expected");

}

else {

log ("upsert failed!");

}

retrieve Example

var account = new sforce.SObject ("Account");

account.Name = "retrieve update test";

account.Phone = "2837484894";

var result = sforce.connection.create ([account]):;

if (result[0].getBoolean ("success") == false) throw "create failed";

log("account created " + result[0]);

result = sforce.connection.retrieve ("Name, Phone", "Account", [result[0].id]);
if (result[0] == null) throw "retrive failed";

log("account retrieved: " + result[0]);

result([0].Phone = "111111111111";

result = sforce.connection.update (result) ;

if (result[0].getBoolean ("success") == false) throw "update failed";

log ("account updated: " + result[0]);

search Example:

var result = sforce.connection.search (
"find {manoj} in Name fields RETURNING Account (name, id)");

if (result) {
var records = result.getArray("searchRecords");

for (var 1=0; i<records.length; i++) {

var record = records[i].record;
log(record.Id + " -- " + record.Name) ;

16

AJAX Toolkit Developer Guide

}

getDeleted Example:

var start =

new Date () ;

var end = new Date();
start.setDate (end.getDate() - 1);
var result = sforce.connection.getDeleted ("Account", start,
var records = result.getArray("deletedRecords");
log("following records are deleted:");
for (var 1=0; i<records.length; i++) {
log(records[1i].id);
}
getUpdated Example:
var start = new Date();
var end = new Date();
start.setDate (end.getDate() - 1);
var result = sforce.connection.getUpdated ("Account", start,

var records =

result.getArray("ids");

log("following records are updated:");

for

(var i=0; i<records.length; i++) {

log(records[i]);

}

convertLead Example;

var account =
account.Name =
account.Phone =
result =
account.Id =

var lead =
lead.
lead.
lead.

lead

lead

var convert =
convert.accountId =
convert.leadIld =

.FirstName =
lead.
lead.
result =
.Id =

new sforce.SObject ("Account") ;
"convert lead sample";
"2837484894";
sforce.connection.create ([account]);
result[0].1id;

= new sforce.SObject ("Lead");
Country = "US";

Description =
"someone@somewhere.com";
"first";

"last";

account.Name;

"This is a description";
Email =

LastName =
Company =
sforce.connection.create([lead]);
result[0].id;

new sforce.LeadConvert();
account.Id;
lead.Id;

convert.convertedStatus = "Qualified";

17

end) ;

end) ;

Example Calls Using the Ajax Toolkit

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

result = sforce.connection.convertLead ([convert]);
if (result[0].getBoolean ("success")) {

log("lead converted " + result[0]);
} else {

log("lead convert failed " + result[0]);

Describe Examples

describeSObject Account Example:

var result = sforce.connection.describeSObject ("Account") ;
log(result.label + "™ : " + result.name + " : ");
log("-—==—=———-- fields --—--—----- ")

for (var i1i=0; i<result.fields.length; i++) {
var field = result.fields[1i]:;
log(field.name + " : " + field.label + "™ : " + field.length + " : ");

log("-—=—=———-- child relationships --------- ")

for (var i=0; i<result.childRelationships.length; i++) {

var cr = result.childRelationships([i];
log(cr.field + "™ : "™ + cr.childSObject);

}

log("-—==—————- record type info ---------- ")

for (var 1=0; i<result.recordTypelInfos.length; i++) {
var rt = result.recordTypelInfos[i];
log(rt.name) ;

}

describeSObjects Example

var result = sforce.connection.describeSObjects (["Account", "Contact"]):;

for (var i=0; i<result.length; i++) {
log(result[i].label + "™ : "™ + result[i].name + " : ");

}
describeGlobal Example:

var result = sforce.connection.describeGlobal () ;
var sobjects = result.getArray("sobjects");

for (var 1=0; i<sobjects.length; i++) {
log (sobjects[i] .name) ;

18

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

describelLayout Example:
var result = sforce.connection.describelLayout ("Account");
var layouts = result.getArray("layouts");
for (var 1=0; i<layouts.length; i++) {

var layout = layouts[0];
detaillayoutSections (layout.detaillayoutSections) ;

function detaillayoutSections (sections) {
for (var i=0; i<sections.length; i++) {

var section = sections[i];
log(section.columns + ":" + section.heading + ":");
layoutRows (section.getArray ("layoutRows")) ;

function layoutRows (rows) {
for (var i1i=0; i<rows.length; i++) {
var row = rows/[i];
layoutItems (row.getArray("layoutItems"))

function layoutItems (items) {
for (var i=0; i<items.length; i++) {
var item = items([i];
log (" " + item.label);

}
describeTabs Example

var result = sforce.connection.describeTabs () ;

for (var 1=0; i<result.length; i++) {
var tabSet = result[i];
log(tabSet.label);
displayTabs (tabSet.get ("tabs"));

function displayTabs (tabs) {
for(var 1=0; i<tabs.length; i++) {
var tab = tabs[i];
log("™ " 4+ tab.label + " " + tab.url);

19

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

Utility Examples
getServerTimestamp Example

var result = sforce.connection.getServerTimestamp () ;
log(result.timestamp) ;

getUserInfo Example

var user = sforce.connection.getUserInfol();
log("Hello " + user.userName);

log("Your email id is " + user.userEmail);
log("and you work for " + user.organizationName) ;

resetPassword and setPassword Example

var username = "myname@myemail.com";
var result = sforce.connection.query (
"SELECT ID from User WHERE User.username='" + username + "'");
var records = result.getArray("records");
if (records.length != 1) throw "unable to find user";

var id = records[0].Id;

sforce.connection.resetPassword (id) ;
sforce.connection.setPassword (id, "123456");

sendEmail Example

// single mail request
var singleRequest = new sforce.SingleEmailMessage () ;

singleRequest.replyTo = "Jjsmith@acme.com";

singleRequest.subject = "sent through ajax test driver";
singleRequest.plainTextBody = "this test went through ajax";
singleRequest.toAddresses = ["noone@nowhere.com"];

// mass mail request - need to get email template ID

var queryResponse = sforce.connection.query("select id from emailtemplate");

var templatedId = queryResponse.getArray("records") [0].Id;
var massRequest = new sforce.MassEmailMessage () ;
massRequest.targetObjectIds = [globalContact.id];
massRequest.replyTo = "jsmith@acme.com";
massRequest.subject = "sent through ajax test driver";
massRequest.templateld = templateld;

var sendMailRes = sforce.connection.sendEmail ([singleRequest, massRequest]);

The following sample shows best practice techniques by putting all processing in a function that does not execute until the HTML page
is loaded.

<html>

<head>
<script src="/soap/ajax/64.0/connection.js"></script>
<script>

20

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

var contactId = "{!Contact ID}";
function initPage () {
try{
var contact = sforce.connection.retrieve ("AccountId", "Contact", [contactId]) [0];
var accountsRetrieved = sforce.connection.retrieve("Id, Name, Industry,

LastModifiedDate", "Account", [contact.AccountId]):;
if (accountsRetrieved.length > 0) {

var account = accountsRetrieved.records[0];

document .body.innerHTML += "Account name: <a href='/" + account.Id;
document.body.innerHTML += "' target=' blank'>" + account.Name + "
;
document.body.innerHTML += "Industry: " + account.Industry + "
";

}
} catch (e) {
document.body.innerHTML += "Error retrieving contact information";
document.body.innerHTML += "
Fault code: " + e.faultcode;
document .body.innerHTML += "
Fault string: " + e.faultstring;
}
}
</script>
</head>
<body onload="initPage () ;">

</body>
</html>

Examples of Asynchronous Calls

query Example

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : success,
onFailure : failure

)

function success (result) {
var records = result.getArray("records");

for (var 1=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

function failure (error) {
log ("An error has occurred " + error);

}

query Inline Function Example:

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : function(result) {
var records = result.getArray("records");

21

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

for (var 1=0; i<records.length; i++) {

var record = records[i];

log (record.Name + " -- " + record.Id);
}
I
onFailure : function(error) {
log ("An error has occurred " + error);

)i

query With LIMIT Example;

var result = sforce.connection.query("Select Name, Id from Account
order by Name limit 10", {
onSuccess : success, onFailure : failure});

function success (result) {

var it = new sforce.QueryResultIterator (result);
while (it.hasNext ()) {

var record = it.next();

log(record.Name + " -- " + record.Id);

function failure (error) {
log("An error has occurred " + error);

}
queryResultIterator Example

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : success, onFailure : failure});

function success (result) {
var it = new sforce.QueryResultIterator (result);
while (it.hasNext ()) {
var record = it.next();
log(record.Name + " -- " + record.Id);

function failure (error) {
log ("An error has occurred " + error);

}
queryMore Example

sforce.connection.query ("Select Name,Id from Account", ({
onSuccess : success, onFailure : log });

function success (result) {
var records = result.getArray("records");

var sb = new sforce.StringBuffer();
for (var 1=0; i<records.length; i++) {

22

AJAX Toolkit Developer Guide Example Calls Using the Ajax Toolkit

var record = records[i];
sb.append (record.Name) .append (", ") ;

log(records.length);
log(sb.toString());

if (result.queryLocator) {
sforce.connection.queryMore (result.queryLocator, {
onSuccess : success, onFailure : log});

}
create Example:

var account = new sforce.SObject ("Account");
account.Name = "my new account";

sforce.connection.create ([account],
{onSuccess : success, onFailure : failed});

function success (result) {

if (result[0].getBoolean ("success")) {

log("new account created with id " + result[0].id);
} else {

log("failed to create account " + result[O0]);

function failed(error) {
log("An error has occurred " + error);

}
create Other Objects Example:

var campaign = new sforce.SObject ("Campaign");
campaign.Name = "new campaign";
campaign.ActualCost = 12938.23;
campaign.EndDate = new Date();
campaign.IsActive = true;

sforce.connection.create ([campaign],
{onSuccess : success, onFailure : log});

function success (result) {

if (result[0].getBoolean ("success")) {
log("new campaign created with id " + result[0].id);
} else {

log("failed to create campaign " + result[0]);

}

retrieve Account Example:

var account = new sforce.SObject ("Account") ;

23

AJAX Toolkit Developer Guide

account.Name = "retrieve update test";

account.Phone = "2837484894";

var result = sforce.connection.create ([account]);

if (result[0].getBoolean ("success") == false) throw "create failed";

log ("account created " + result[0]);

var callback = {
onSuccess: function(result) {
if (result[0] == null) throw "retrive failed";
log("account retrieved: " + result[0]);

by
onFailure: function(error) {
log("failed due to " + error);
}
}i

result = sforce.connection.retrieve ("Name, Phone", "Account",
[result[0].1id], callback);

SOAP (AJAX) API End-of-Life Policy

SOAP (AJAX) API End-of-Life Policy

See which SOAP API versions are supported, unsupported, or unavailable.

@ Note: The SOAP APl 1ogin () callis scheduled for retirement in Summer 27. The 1ogin () call will be supported in API
versions 62.0, 63.0, and 64.0 for a minimum of two years following the release of the version.

Salesforce is committed to supporting each APl version for a minimum of 3 years from the date of first release. To improve the quality
and performance of the API, versions that are over 3 years old sometimes are no longer supported.

Salesforce notifies customers who use an APl version scheduled for deprecation at least 1 year before support for the version ends.

Salesforce APl Versions Version Support Status Version Retirement Info
Versions 31.0 through 64.0 ~ Supported.

Versions 21.0 through 30.0 As of Summer ‘25, these versions are retired Salesforce Platform API Versions 21.0 through 30.0
and unavailable. Retirement

Versions 7.0 through 20.0 As of Summer ‘22, these versions are retired Salesforce Platform API Versions 7.0 through 20.0
and unavailable. Retirement

Ifyou request any resource or use an operation from a retired APl version, SOAP APl returns 500 : UNSUPPORTED API VERSION error

code.

To identify requests made from old or unsupported AP versions, use the APl Total Usage event type.

SOAP Header Options with the AJAX Toolkit

All header options in the SOAP APl are supported in the toolkit, but they are specified differently than in the API.

24

https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.256.0.object_reference.meta/object_reference/sforce_api_objects_eventlogfile_apitotalusage.htm

AJAX Toolkit Developer Guide SOAP Header Options with the AJAX Toolkit

Syntax for Specifying Header Options
e For headers that have only one option such as queryOptions:

sforce.connection.header option name="value";

e Forheaders that have more than one option such as assignmentRuleHeader:

sforce.connection.header name = {}
sforce.connection.header name.header option name="value";

Valid Options

Here's each valid option, organized by its corresponding SOAP header name in the API for your reference.
e From the assignmentRuleHeader:

assignmentRuleld
ID of a specific assignment rule to run for the case or lead. Can be an inactive assignment rule. The ID can be retrieved by querying
the AssignmentRule object. If specified, do not specify useDefaul tRule. This element is ignored for accounts, because all
territory assignment rules are applied. If the value is not in correct ID format (15-character or 18-character Salesforce ID), the call
failsand a MALFORMED _ID exception is returned.

useDefaultRule
If true for a Case or Lead, uses the default (active) assignment rule for a Case or Lead. If specified, do not specify an
assignmentRulelId. If true foran Account, all territory assignment rules are applied, and if false, no territory assignment
rules are applied.

e From callOptions:

client
A string that identifies a particular client.

defaul tNamespace
A string that identifies a developer namespace prefix.

e From emailHeader:

triggerAutoResponseEmail
Indicates whether to trigger auto-response rules (t rue) or not (false), for leads and cases. In the Salesforce user interface,
this email can be automatically triggered by a number of events, for example resetting a user password.

triggerOtherEmail
Indicates whether to trigger email outside the organization (t rue) or not (false). In the Salesforce user interface, this email
can be automatically triggered by creating, editing, or deleting a contact for a case.

triggerUserEmail
Indicates whether to trigger email that is sent to users in the organization (t rue) or not (fFalse). In the Salesforce user interface,
this email can be automatically triggered by a number of events; resetting a password, creating a new user, adding comments
to a case, or creating or modifying a task.

e From loginScopeHeader:

organizationId
The ID of the organization against which you will authenticate Self-Service users.

25

AJAX Toolkit Developer Guide Error Handling with the AJAX Toolkit

portalld

Specify only if user is a Customer Portal user. The ID of the portal for this organization. The ID is available in the Salesforce user
interface:
-~ FromSetup,enter Customer Portal Settingsinthe Quick Find box thenselect Customer Portal Settings

- Select a Customer Portal name, and on the Customer Portal detail page, the URL of the Customer Portal displays. The Portal
IDis in the URL.

e From mruHeader:

updateMru
Indicates whether to update the list of most recently used items (t rue) or not (false). For retrieve, if the result has only one
row, MRU is updated to the ID of the retrieve result. For query, if the result has only one row and the ID field is selected, the MRU
is updated to the ID of the query result.

e From queryOptions:

batchSize
Batch size for the number of records returned in a query or queryMore call. Child objects count toward the number of records
for the batch size. For example, in relationship queries, multiple child objects may be returned per parent row returned. The
default is 500; the minimum is 200, and the maximum is 2,000.

e From sessionHeader:

sessionIld
Session ID returned by the login call to be used for subsequent call authentication. Since session management is done for you
by the AJAX Toolkit, most scripts won't need to use this header option.

e From userTerritoryDeleteHeader:

transferToUserId
The ID of the user to whom open opportunities in that user's territory will be assigned when an opportunity's owner (user) is
removed from a territory.

Error Handling with the AJAX Toolkit

The AJAX Toolkit provides the ability to handle errors for synchronous and asynchronous calls.

Error Handling for Synchronous Calls

If the API call fails, then the AJAX Toolkit throws an exception. The exception contains all the available error information. For example:

<html>
<head>
<script src="/soap/ajax/64.0/connection.js" type="text/javascript"></script>

<script>
function setupPage() {
var output = document.getElementById ("output");
var startTime = new Date () .getTime ()
try f

26

AJAX Toolkit Developer Guide Error Handling with the AJAX Toolkit

var queryResult = sforce.connection.query("Select Id, Name, Industry From

Account order by Industry limit 30");
layoutResults (queryResult, output, startTime);
} catch(error) {
queryFailed (error, output);

function queryFailed(error, out) {
out.innerHTML = "An error has occurred: <p>" + error;

function layoutResults (queryResult, out, startTime) {
var timeTaken = new Date () .getTime () - startTime;

if (queryResult.size > 0) {

var output = "";
var records = queryResult.getArray('records');

for (var 1 = 0; 1 < records.length; i++) {

var account = records[i]:;
output += account.Id + " " 4+ account.Name + " [Industry -

"

+ account.Industry + "]
";

out.innerHTML = output + "
 query complexted in: " + timeTaken + " ms.";

} else {
out.innerHTML = "No records matched.";

</script>
</head>

<body onload="setupPage () ">
<div id="output"></div>
</body>

</html>

Error Handling for Asynchronous Calls

For asynchronous calls, the onFailure property of the asynchronous object is called. For example:

connection.query ("Select Name From Account",
{onSuccess: displayResult,
onFailure: queryFailed});

function displayResult (result) {}
function queryFailed(error) {}

If the onFailure property was not defined, the AJAX Toolkit pops up a new read-only browser window showing the error.

27

AJAX Toolkit Developer Guide Advanced Topics

Advanced Topics

This chapter contains information about advanced activities in the AJAX Toolkit.

QueryResultlterator
Iterate over query results returned by the AJAX Toolkit without invoking queryMore and queryLocator.

Differences in Escaping Reserved Characters
If you have a single quote or backslash in a string literal, use two backslashes instead of one to escape it.

Working with Base64 Binary Encoded Strings

When working with Base64 encoded binary documents, access the document directly using the Id, rather than decoding Base64 in
JavaScript.

Timeout Parameter for Asynchronous Calls
If an asynchronous call does not complete in an appropriate amount of time, you can end the call. To do this, specify the timeout
parameter in the callback section of any asynchronous call.

AJAX Proxy

Some browsers don'tallow JavaScript code to connect to external servers directly. Therefore, you may need to send requests through
the AJAX proxy.

QueryResultlterator
Iterate over query results returned by the AJAX Toolkit without invoking queryMore and queryLocator.

var result = sforce.connection.query("select id, name from account");
var it = new sforce.QueryResultlIterator (result);

while (it.hasNext()) {
var account = it.next();
sforce.debug.log (account.Name) ;
}

1. The sforce.connection.query method returns a QueryResult object.
2. AQueryResultlterator object is created and passed the QueryResult object.

3. The code iterates through the records.

Differences in Escaping Reserved Characters

If you have a single quote or backslash in a string literal, use two backslashes instead of one to escape it.

For example, the following statement in a Java client program is valid for finding account names like Bob's B-B-Q.
SELECT ID from ACCOUNT WHERE Name LIKE 'Bob\'s B-B-Q%'
For the AJAX Toolkit, escape the single quote literal character twice.

SELECT ID from ACCOUNT WHERE Name LIKE 'Bob\\'s B-B-0%'

28

AJAX Toolkit Developer Guide Working with Baseé4 Binary Encoded Strings

Working with Baseé4 Binary Encoded Strings

When working with Base64 encoded binary documents, access the document directly using the Id, rather than decoding Base64 in
JavaScript.

Base64 encoding and decoding is very slow in JavaScript. Also, encoding and decoding does not work correctly for binary or multibyte
strings. We do not recommend that you manipulate Base64 binary encoded strings with the AJAX Toolkit. However, if you want to read
a document with Base64 binary encoding, you can use the API to query for the Id of the document and then download it directly from
the server.

The following example demonstrates how to query for the document Id and then download it from the server.

<html>

<head>

<script type="text/javascript"
src="//ajax.googleapis.com/ajax/libs/dojo/1.10.4/dojo/dojo.js"></script>
<script src="/soap/ajax/64.0/connection.js"></script>

<script>
function setup() {

var document ta = document.getElementById("document-ta");

sforce.connection.query("select name, id from document limit 1",

{onSuccess : guerySuccess,
onFailure : function(error, doc ta) {
doc_ta.value = "Oops something went wrong: " + error;

by

source: document ta});

function querySuccess (result, doc_ta) {

var records = result.getArray("records");
if (records.length == 1) {
dojo.io.bind ({
url: "/servlet/servlet.FileDownload?file=" + records[0].Id,
load: loadDocument}) ;
} else {
doc_ta.value = "no records found";

function loadDocument (type, data, event) {
var document ta = document.getElementById("document-ta");
document ta.value = data;

</script>
</head>

<body onload="setup () ">

<textarea id="document-ta" cols="80" rows="20">
</textarea>

</body>

</html>

29

AJAX Toolkit Developer Guide Timeout Parameter for Asynchronous Calls

@ Nofte: This example uses the JavaScript toolkit Dojo, which you'll need to upload as a static resource, reference from a CDN, or
otherwise provide. For more information, see http://dojotoolkit.org/.

Timeout Parameter for Asynchronous Calls

If an asynchronous call does not complete in an appropriate amount of time, you can end the call. To do this, specify the timeout
parameter in the callback section of any asynchronous call.

var account = new sforce.SObject ("Account");
account.Name = "my new account";

sforce.connection.create ([account], {onSuccess: print, onFailure: printerr, timeout: 100});

Values for this parameter are in milliseconds, and valid values are integers beginning with 1.
If the callis successful within the time specified by the callout, no additional actions are taken. If the call is not successful, the onFailure

action is performed.

Warning: Use this parameter with caution. Because the timeout is performed on the client side, it is possible that the call
may complete on the server but the timeout is still triggered. For example, you might issue a create call to create 100 new
accounts, and any number of them, 1 or 100, might be created just before the t imeout is triggered; your onFailure action
would still occur, but the accounts would have been created.

AJAX Proxy

Some browsers don't allow JavaScript code to connect to external servers directly. Therefore, you may need to send requests through
the AJAX proxy.

@ Note: To use the AJAX proxy, you must register all external services in the Salesforce user interface. From Setup, enter Remote
Site Settings inthe Quick Find box, then select Remote Site Settings.
For security reasons, Salesforce restricts the outbound ports you may specify to one of the following:

e 80: This port only accepts HTTP connections.
e 443:This port only accepts HTTPS connections.
e 1024-66535 (inclusive): These ports accept HTTP or HTTPS connections.

The AJAX proxy is part of the AJAX Toolkit. Access it using remoteFunction definedin connection.js.You can specify any
HTTP method in remoteFunction, for example HTTP GET or POST, and it will be forwarded to the external service.

The following examples illustrate typical approaches for GET and POST:

GET Example:
sforce.connection.remoteFunction ({
url : "http://www.myExternalServer.com",
onSuccess : function (response) {
alert ("result" + response);
}
}) i

POST Example:

var envelope = ""; //request envelope, empty for this example
sforce.connection.remoteFunction ({

30

http://dojotoolkit.org/

AJAX Toolkit Developer Guide

url : "http://services.xmethods.net:80/soap",
requestHeaders: {"Content-Type":"text/xml",

"SOAPAction": "\"\""
s
requestData: envelope,
method: "POST",
onSuccess : function (response) {
sforce.debug.log(response) ;
bo
onFailure : function (response) {
alert ("Failed" + response)

remoteFunction Syntax and Parameters

AJAX proxy uses remoteFunction to proxy calls.

Download the Salesforce Client Certificate

AJAX Proxy

Your application (endpoint) server’s SSL/TLS can be configured to require client certificates (two-way SSL/TLS) to validate the identity
of the Salesforce server when it takes the role of client to your server. If so, you can download the Salesforce client certificate from

the Salesforce API page.

remoteFunction Syntax and Parameters

AJAX proxy uses remoteFunction to proxy calls.

The remoteFunction syntax and parameters:

sforce.connection.remoteFunction ({

url : endpoint url,

onSuccess : callback method
onFailure : error callback

method : http method

mimeType : "text/plain" | "text/xml"

async : true | false
requestHeaders : http headers

requestData : http post data
cache : true | false
timeout : client side timeout in ms

)

@ Nofe: cache and timeout are available in version 10.0 and later.

Download the Salesforce Client Certificate

Your application (endpoint) server's SSL/TLS can be configured to require client certificates (two-way SSL/TLS) to validate the identity
of the Salesforce server when it takes the role of client to your server. If so, you can download the Salesforce client certificate from the

Salesforce API page.

1. From Setup, enter APT inthe Quick Find box, then select API.

2. Onthe APIWSDL page, click Manage API Client Certificate.

3. On the Certificate and Key Management page, in the API Client Certificate section, click the API Client Certificate.

31

AJAX Toolkit Developer Guide AJAX Proxy

4. On the Certificates page, click Download Certificate. The .crt file is saved in the download location specified in your browser.

Import the downloaded certificate into your application server, and configure your application server to request the client certificate.
The application server then checks that the certificate used in the SSL/TLS handshake matches the one you downloaded.

@ Note: Your application (endpoint) server must send intermediate certificates in the certificate chain, and the certificate chain
must be in the correct order. The correct order is:

1.

2
3.
4

Server certificate

Intermediate certificate that signed the server certificate if the server certificate wasn't signed directly by a root certificate
Intermediate certificate that signed the certificate in step 2

Any remaining intermediate certificates

Don't include the root certificate authority certificate. The root certificate isn't sent by your server. Salesforce already has its
own list of trusted certificates on file, and a certificate in the chain must be signed by one of those root certificate authority
certificates.

32

INDEX

A

Advanced topics 28
AJAX proxy 30
APl calls, see Calls 8
assignmentRulelD header option 24
Asynchronous calls

introduction 8

samples 21

using the timeout parameter 30

B

batchSize header option 24

C

callback function

and APl calls 8

in sample s-control 2
Calls

APl with AJAX Toolkit 8

different syntax with AJAX Toolkit 9
Client certificate download 31
client header option 24
Connecting to AJAX Toolkit 4
connection.js 4
Context variable source 10

D

Data types
Base64 issues 10
converting 10
Debugging window 10

E

Embedding calls in JavaScript 6

G

get method 9
Getting started 6
Getting started examples 6

H

Header options for SOAP messages 24

L

log method 10

33

O

Object functions 9

onclick JavaScript button 4
organizationld header option 24
Outbound port restrictions 30

P

Port restrictions 30
Processing results 7
Proxy for AJAX 30

Q

querylocator, see QueryResultlterator 28
queryMore, see QueryResultlterator 28
QueryResultlterator 28

R

remoteFunction 31
requireScript 4

Reserved characters, differences in escaping 28

Results processing 7

S

S-control sample 2
Samples
asynchronous calls 21
s-control 2
sessionld header option 24
set method 9
SOAP headers 24
source context variable 10
Support policy 2
Synchronous calls
introduction 8

T

timeout parameter with asynchronous calls 30

transferToUserld 24

triggerAutoResponseEmail header option 24

triggerOtherEmail header option 24
triggerUserEmail 24

U

updateMru header option 24
useDefaultRule header option 24

Index

W When to use the AJAX Toolkit 1

34

	AJAX Toolkit Developer Guide
	When to Use the AJAX Toolkit
	AJAX Toolkit Support Policy
	Other Resources
	AJAX Typographical Conventions
	Sample Visualforce Page Using the AJAX Toolkit

	Working with the AJAX Toolkit
	Connecting to the API
	Embedding API Calls in JavaScript
	Processing Results

	API Calls and the AJAX Toolkit
	Synchronous and Asynchronous Calls with the AJAX Toolkit
	API Call Syntax in the AJAX Toolkit

	Object Functions
	Data Types in AJAX Toolkit
	source Context Variable
	Debugging with the AJAX Toolkit
	Example Calls Using the Ajax Toolkit
	Examples of Synchronous Calls
	Examples of Asynchronous Calls

	SOAP (AJAX) API End-of-Life Policy
	SOAP Header Options with the AJAX Toolkit
	Error Handling with the AJAX Toolkit
	Advanced Topics
	QueryResultIterator
	Differences in Escaping Reserved Characters
	Working with Base64 Binary Encoded Strings
	Timeout Parameter for Asynchronous Calls
	AJAX Proxy
	remoteFunction Syntax and Parameters
	Download the Salesforce Client Certificate

	Index

